• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 				    const struct ethtool_ops *ops);
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously; in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90  * others are propagated to higher layers.
91  */
92 
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS	0x00
95 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
96 #define NET_XMIT_CN		0x02	/* congestion notification	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
dev_xmit_complete(int rc)119 static inline bool dev_xmit_complete(int rc)
120 {
121 	/*
122 	 * Positive cases with an skb consumed by a driver:
123 	 * - successful transmission (rc == NETDEV_TX_OK)
124 	 * - error while transmitting (rc < 0)
125 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 	 */
127 	if (likely(rc < NET_XMIT_MASK))
128 		return true;
129 
130 	return false;
131 }
132 
133 /*
134  *	Compute the worst-case header length according to the protocols
135  *	used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *	Old network device statistics. Fields are native words
159  *	(unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163 	unsigned long	rx_packets;
164 	unsigned long	tx_packets;
165 	unsigned long	rx_bytes;
166 	unsigned long	tx_bytes;
167 	unsigned long	rx_errors;
168 	unsigned long	tx_errors;
169 	unsigned long	rx_dropped;
170 	unsigned long	tx_dropped;
171 	unsigned long	multicast;
172 	unsigned long	collisions;
173 	unsigned long	rx_length_errors;
174 	unsigned long	rx_over_errors;
175 	unsigned long	rx_crc_errors;
176 	unsigned long	rx_frame_errors;
177 	unsigned long	rx_fifo_errors;
178 	unsigned long	rx_missed_errors;
179 	unsigned long	tx_aborted_errors;
180 	unsigned long	tx_carrier_errors;
181 	unsigned long	tx_fifo_errors;
182 	unsigned long	tx_heartbeat_errors;
183 	unsigned long	tx_window_errors;
184 	unsigned long	rx_compressed;
185 	unsigned long	tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	u16		hh_len;
239 	u16		__pad;
240 	seqlock_t	hh_lock;
241 
242 	/* cached hardware header; allow for machine alignment needs.        */
243 #define HH_DATA_MOD	16
244 #define HH_DATA_OFF(__len) \
245 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
246 #define HH_DATA_ALIGN(__len) \
247 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
248 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
249 };
250 
251 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
252  * Alternative is:
253  *   dev->hard_header_len ? (dev->hard_header_len +
254  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
255  *
256  * We could use other alignment values, but we must maintain the
257  * relationship HH alignment <= LL alignment.
258  */
259 #define LL_RESERVED_SPACE(dev) \
260 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
262 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 
264 struct header_ops {
265 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
266 			   unsigned short type, const void *daddr,
267 			   const void *saddr, unsigned int len);
268 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
269 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
270 	void	(*cache_update)(struct hh_cache *hh,
271 				const struct net_device *dev,
272 				const unsigned char *haddr);
273 	bool	(*validate)(const char *ll_header, unsigned int len);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 /*
303  * Structure for NAPI scheduling similar to tasklet but with weighting
304  */
305 struct napi_struct {
306 	/* The poll_list must only be managed by the entity which
307 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
308 	 * whoever atomically sets that bit can add this napi_struct
309 	 * to the per-CPU poll_list, and whoever clears that bit
310 	 * can remove from the list right before clearing the bit.
311 	 */
312 	struct list_head	poll_list;
313 
314 	unsigned long		state;
315 	int			weight;
316 	unsigned int		gro_count;
317 	int			(*poll)(struct napi_struct *, int);
318 #ifdef CONFIG_NETPOLL
319 	spinlock_t		poll_lock;
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
336 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 };
338 
339 enum gro_result {
340 	GRO_MERGED,
341 	GRO_MERGED_FREE,
342 	GRO_HELD,
343 	GRO_NORMAL,
344 	GRO_DROP,
345 };
346 typedef enum gro_result gro_result_t;
347 
348 /*
349  * enum rx_handler_result - Possible return values for rx_handlers.
350  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
351  * further.
352  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
353  * case skb->dev was changed by rx_handler.
354  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
355  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
356  *
357  * rx_handlers are functions called from inside __netif_receive_skb(), to do
358  * special processing of the skb, prior to delivery to protocol handlers.
359  *
360  * Currently, a net_device can only have a single rx_handler registered. Trying
361  * to register a second rx_handler will return -EBUSY.
362  *
363  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
364  * To unregister a rx_handler on a net_device, use
365  * netdev_rx_handler_unregister().
366  *
367  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
368  * do with the skb.
369  *
370  * If the rx_handler consumed the skb in some way, it should return
371  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
372  * the skb to be delivered in some other way.
373  *
374  * If the rx_handler changed skb->dev, to divert the skb to another
375  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
376  * new device will be called if it exists.
377  *
378  * If the rx_handler decides the skb should be ignored, it should return
379  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
380  * are registered on exact device (ptype->dev == skb->dev).
381  *
382  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
383  * delivered, it should return RX_HANDLER_PASS.
384  *
385  * A device without a registered rx_handler will behave as if rx_handler
386  * returned RX_HANDLER_PASS.
387  */
388 
389 enum rx_handler_result {
390 	RX_HANDLER_CONSUMED,
391 	RX_HANDLER_ANOTHER,
392 	RX_HANDLER_EXACT,
393 	RX_HANDLER_PASS,
394 };
395 typedef enum rx_handler_result rx_handler_result_t;
396 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
397 
398 void __napi_schedule(struct napi_struct *n);
399 void __napi_schedule_irqoff(struct napi_struct *n);
400 
napi_disable_pending(struct napi_struct * n)401 static inline bool napi_disable_pending(struct napi_struct *n)
402 {
403 	return test_bit(NAPI_STATE_DISABLE, &n->state);
404 }
405 
406 /**
407  *	napi_schedule_prep - check if NAPI can be scheduled
408  *	@n: NAPI context
409  *
410  * Test if NAPI routine is already running, and if not mark
411  * it as running.  This is used as a condition variable to
412  * insure only one NAPI poll instance runs.  We also make
413  * sure there is no pending NAPI disable.
414  */
napi_schedule_prep(struct napi_struct * n)415 static inline bool napi_schedule_prep(struct napi_struct *n)
416 {
417 	return !napi_disable_pending(n) &&
418 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
419 }
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
napi_schedule(struct napi_struct * n)428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
napi_schedule_irqoff(struct napi_struct * n)440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 void __napi_complete(struct napi_struct *n);
457 void napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459  *	napi_complete - NAPI processing complete
460  *	@n: NAPI context
461  *
462  * Mark NAPI processing as complete.
463  * Consider using napi_complete_done() instead.
464  */
napi_complete(struct napi_struct * n)465 static inline void napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_add - add a NAPI to global hashtable
472  *	@napi: NAPI context
473  *
474  * Generate a new napi_id and store a @napi under it in napi_hash.
475  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
476  * Note: This is normally automatically done from netif_napi_add(),
477  * so might disappear in a future Linux version.
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: NAPI context
484  *
485  * Warning: caller must observe RCU grace period
486  * before freeing memory containing @napi, if
487  * this function returns true.
488  * Note: core networking stack automatically calls it
489  * from netif_napi_del().
490  * Drivers might want to call this helper to combine all
491  * the needed RCU grace periods into a single one.
492  */
493 bool napi_hash_del(struct napi_struct *napi);
494 
495 /**
496  *	napi_disable - prevent NAPI from scheduling
497  *	@n: NAPI context
498  *
499  * Stop NAPI from being scheduled on this context.
500  * Waits till any outstanding processing completes.
501  */
502 void napi_disable(struct napi_struct *n);
503 
504 /**
505  *	napi_enable - enable NAPI scheduling
506  *	@n: NAPI context
507  *
508  * Resume NAPI from being scheduled on this context.
509  * Must be paired with napi_disable.
510  */
napi_enable(struct napi_struct * n)511 static inline void napi_enable(struct napi_struct *n)
512 {
513 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 	smp_mb__before_atomic();
515 	clear_bit(NAPI_STATE_SCHED, &n->state);
516 	clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518 
519 /**
520  *	napi_synchronize - wait until NAPI is not running
521  *	@n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
napi_synchronize(const struct napi_struct * n)527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 	if (IS_ENABLED(CONFIG_SMP))
530 		while (test_bit(NAPI_STATE_SCHED, &n->state))
531 			msleep(1);
532 	else
533 		barrier();
534 }
535 
536 enum netdev_queue_state_t {
537 	__QUEUE_STATE_DRV_XOFF,
538 	__QUEUE_STATE_STACK_XOFF,
539 	__QUEUE_STATE_FROZEN,
540 };
541 
542 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
545 
546 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 					QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 					QUEUE_STATE_FROZEN)
551 
552 /*
553  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
554  * netif_tx_* functions below are used to manipulate this flag.  The
555  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556  * queue independently.  The netif_xmit_*stopped functions below are called
557  * to check if the queue has been stopped by the driver or stack (either
558  * of the XOFF bits are set in the state).  Drivers should not need to call
559  * netif_xmit*stopped functions, they should only be using netif_tx_*.
560  */
561 
562 struct netdev_queue {
563 /*
564  * read-mostly part
565  */
566 	struct net_device	*dev;
567 	struct Qdisc __rcu	*qdisc;
568 	struct Qdisc		*qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 	struct kobject		kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 	int			numa_node;
574 #endif
575 	unsigned long		tx_maxrate;
576 	/*
577 	 * Number of TX timeouts for this queue
578 	 * (/sys/class/net/DEV/Q/trans_timeout)
579 	 */
580 	unsigned long		trans_timeout;
581 /*
582  * write-mostly part
583  */
584 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
585 	int			xmit_lock_owner;
586 	/*
587 	 * Time (in jiffies) of last Tx
588 	 */
589 	unsigned long		trans_start;
590 
591 	unsigned long		state;
592 
593 #ifdef CONFIG_BQL
594 	struct dql		dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
netdev_queue_numa_node_read(const struct netdev_queue * q)598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 } ____cacheline_aligned_in_smp;
701 
702 /*
703  * RX queue sysfs structures and functions.
704  */
705 struct rx_queue_attribute {
706 	struct attribute attr;
707 	ssize_t (*show)(struct netdev_rx_queue *queue,
708 	    struct rx_queue_attribute *attr, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
736     (nr_cpu_ids * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 /* These structures hold the attributes of qdisc and classifiers
785  * that are being passed to the netdevice through the setup_tc op.
786  */
787 enum {
788 	TC_SETUP_MQPRIO,
789 	TC_SETUP_CLSU32,
790 	TC_SETUP_CLSFLOWER,
791 	TC_SETUP_MATCHALL,
792 	TC_SETUP_CLSBPF,
793 };
794 
795 struct tc_cls_u32_offload;
796 
797 struct tc_to_netdev {
798 	unsigned int type;
799 	union {
800 		u8 tc;
801 		struct tc_cls_u32_offload *cls_u32;
802 		struct tc_cls_flower_offload *cls_flower;
803 		struct tc_cls_matchall_offload *cls_mall;
804 		struct tc_cls_bpf_offload *cls_bpf;
805 	};
806 };
807 
808 /* These structures hold the attributes of xdp state that are being passed
809  * to the netdevice through the xdp op.
810  */
811 enum xdp_netdev_command {
812 	/* Set or clear a bpf program used in the earliest stages of packet
813 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
814 	 * is responsible for calling bpf_prog_put on any old progs that are
815 	 * stored. In case of error, the callee need not release the new prog
816 	 * reference, but on success it takes ownership and must bpf_prog_put
817 	 * when it is no longer used.
818 	 */
819 	XDP_SETUP_PROG,
820 	/* Check if a bpf program is set on the device.  The callee should
821 	 * return true if a program is currently attached and running.
822 	 */
823 	XDP_QUERY_PROG,
824 };
825 
826 struct netdev_xdp {
827 	enum xdp_netdev_command command;
828 	union {
829 		/* XDP_SETUP_PROG */
830 		struct bpf_prog *prog;
831 		/* XDP_QUERY_PROG */
832 		bool prog_attached;
833 	};
834 };
835 
836 /*
837  * This structure defines the management hooks for network devices.
838  * The following hooks can be defined; unless noted otherwise, they are
839  * optional and can be filled with a null pointer.
840  *
841  * int (*ndo_init)(struct net_device *dev);
842  *     This function is called once when a network device is registered.
843  *     The network device can use this for any late stage initialization
844  *     or semantic validation. It can fail with an error code which will
845  *     be propagated back to register_netdev.
846  *
847  * void (*ndo_uninit)(struct net_device *dev);
848  *     This function is called when device is unregistered or when registration
849  *     fails. It is not called if init fails.
850  *
851  * int (*ndo_open)(struct net_device *dev);
852  *     This function is called when a network device transitions to the up
853  *     state.
854  *
855  * int (*ndo_stop)(struct net_device *dev);
856  *     This function is called when a network device transitions to the down
857  *     state.
858  *
859  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
860  *                               struct net_device *dev);
861  *	Called when a packet needs to be transmitted.
862  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
863  *	the queue before that can happen; it's for obsolete devices and weird
864  *	corner cases, but the stack really does a non-trivial amount
865  *	of useless work if you return NETDEV_TX_BUSY.
866  *	Required; cannot be NULL.
867  *
868  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
869  *					   struct net_device *dev
870  *					   netdev_features_t features);
871  *	Called by core transmit path to determine if device is capable of
872  *	performing offload operations on a given packet. This is to give
873  *	the device an opportunity to implement any restrictions that cannot
874  *	be otherwise expressed by feature flags. The check is called with
875  *	the set of features that the stack has calculated and it returns
876  *	those the driver believes to be appropriate.
877  *
878  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
879  *                         void *accel_priv, select_queue_fallback_t fallback);
880  *	Called to decide which queue to use when device supports multiple
881  *	transmit queues.
882  *
883  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
884  *	This function is called to allow device receiver to make
885  *	changes to configuration when multicast or promiscuous is enabled.
886  *
887  * void (*ndo_set_rx_mode)(struct net_device *dev);
888  *	This function is called device changes address list filtering.
889  *	If driver handles unicast address filtering, it should set
890  *	IFF_UNICAST_FLT in its priv_flags.
891  *
892  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
893  *	This function  is called when the Media Access Control address
894  *	needs to be changed. If this interface is not defined, the
895  *	MAC address can not be changed.
896  *
897  * int (*ndo_validate_addr)(struct net_device *dev);
898  *	Test if Media Access Control address is valid for the device.
899  *
900  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
901  *	Called when a user requests an ioctl which can't be handled by
902  *	the generic interface code. If not defined ioctls return
903  *	not supported error code.
904  *
905  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
906  *	Used to set network devices bus interface parameters. This interface
907  *	is retained for legacy reasons; new devices should use the bus
908  *	interface (PCI) for low level management.
909  *
910  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
911  *	Called when a user wants to change the Maximum Transfer Unit
912  *	of a device. If not defined, any request to change MTU will
913  *	will return an error.
914  *
915  * void (*ndo_tx_timeout)(struct net_device *dev);
916  *	Callback used when the transmitter has not made any progress
917  *	for dev->watchdog ticks.
918  *
919  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
920  *                      struct rtnl_link_stats64 *storage);
921  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
922  *	Called when a user wants to get the network device usage
923  *	statistics. Drivers must do one of the following:
924  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
925  *	   rtnl_link_stats64 structure passed by the caller.
926  *	2. Define @ndo_get_stats to update a net_device_stats structure
927  *	   (which should normally be dev->stats) and return a pointer to
928  *	   it. The structure may be changed asynchronously only if each
929  *	   field is written atomically.
930  *	3. Update dev->stats asynchronously and atomically, and define
931  *	   neither operation.
932  *
933  * bool (*ndo_has_offload_stats)(int attr_id)
934  *	Return true if this device supports offload stats of this attr_id.
935  *
936  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
937  *	void *attr_data)
938  *	Get statistics for offload operations by attr_id. Write it into the
939  *	attr_data pointer.
940  *
941  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
942  *	If device supports VLAN filtering this function is called when a
943  *	VLAN id is registered.
944  *
945  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
946  *	If device supports VLAN filtering this function is called when a
947  *	VLAN id is unregistered.
948  *
949  * void (*ndo_poll_controller)(struct net_device *dev);
950  *
951  *	SR-IOV management functions.
952  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
953  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
954  *			  u8 qos, __be16 proto);
955  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
956  *			  int max_tx_rate);
957  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
958  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
959  * int (*ndo_get_vf_config)(struct net_device *dev,
960  *			    int vf, struct ifla_vf_info *ivf);
961  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
962  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
963  *			  struct nlattr *port[]);
964  *
965  *      Enable or disable the VF ability to query its RSS Redirection Table and
966  *      Hash Key. This is needed since on some devices VF share this information
967  *      with PF and querying it may introduce a theoretical security risk.
968  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
969  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
970  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
971  * 	Called to setup 'tc' number of traffic classes in the net device. This
972  * 	is always called from the stack with the rtnl lock held and netif tx
973  * 	queues stopped. This allows the netdevice to perform queue management
974  * 	safely.
975  *
976  *	Fiber Channel over Ethernet (FCoE) offload functions.
977  * int (*ndo_fcoe_enable)(struct net_device *dev);
978  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
979  *	so the underlying device can perform whatever needed configuration or
980  *	initialization to support acceleration of FCoE traffic.
981  *
982  * int (*ndo_fcoe_disable)(struct net_device *dev);
983  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
984  *	so the underlying device can perform whatever needed clean-ups to
985  *	stop supporting acceleration of FCoE traffic.
986  *
987  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
988  *			     struct scatterlist *sgl, unsigned int sgc);
989  *	Called when the FCoE Initiator wants to initialize an I/O that
990  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
991  *	perform necessary setup and returns 1 to indicate the device is set up
992  *	successfully to perform DDP on this I/O, otherwise this returns 0.
993  *
994  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
995  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
996  *	indicated by the FC exchange id 'xid', so the underlying device can
997  *	clean up and reuse resources for later DDP requests.
998  *
999  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1000  *			      struct scatterlist *sgl, unsigned int sgc);
1001  *	Called when the FCoE Target wants to initialize an I/O that
1002  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1003  *	perform necessary setup and returns 1 to indicate the device is set up
1004  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1005  *
1006  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1007  *			       struct netdev_fcoe_hbainfo *hbainfo);
1008  *	Called when the FCoE Protocol stack wants information on the underlying
1009  *	device. This information is utilized by the FCoE protocol stack to
1010  *	register attributes with Fiber Channel management service as per the
1011  *	FC-GS Fabric Device Management Information(FDMI) specification.
1012  *
1013  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1014  *	Called when the underlying device wants to override default World Wide
1015  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1016  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1017  *	protocol stack to use.
1018  *
1019  *	RFS acceleration.
1020  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1021  *			    u16 rxq_index, u32 flow_id);
1022  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1023  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1024  *	Return the filter ID on success, or a negative error code.
1025  *
1026  *	Slave management functions (for bridge, bonding, etc).
1027  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1028  *	Called to make another netdev an underling.
1029  *
1030  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1031  *	Called to release previously enslaved netdev.
1032  *
1033  *      Feature/offload setting functions.
1034  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1035  *		netdev_features_t features);
1036  *	Adjusts the requested feature flags according to device-specific
1037  *	constraints, and returns the resulting flags. Must not modify
1038  *	the device state.
1039  *
1040  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1041  *	Called to update device configuration to new features. Passed
1042  *	feature set might be less than what was returned by ndo_fix_features()).
1043  *	Must return >0 or -errno if it changed dev->features itself.
1044  *
1045  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1046  *		      struct net_device *dev,
1047  *		      const unsigned char *addr, u16 vid, u16 flags)
1048  *	Adds an FDB entry to dev for addr.
1049  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1050  *		      struct net_device *dev,
1051  *		      const unsigned char *addr, u16 vid)
1052  *	Deletes the FDB entry from dev coresponding to addr.
1053  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1054  *		       struct net_device *dev, struct net_device *filter_dev,
1055  *		       int *idx)
1056  *	Used to add FDB entries to dump requests. Implementers should add
1057  *	entries to skb and update idx with the number of entries.
1058  *
1059  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1060  *			     u16 flags)
1061  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1062  *			     struct net_device *dev, u32 filter_mask,
1063  *			     int nlflags)
1064  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1065  *			     u16 flags);
1066  *
1067  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1068  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1069  *	which do not represent real hardware may define this to allow their
1070  *	userspace components to manage their virtual carrier state. Devices
1071  *	that determine carrier state from physical hardware properties (eg
1072  *	network cables) or protocol-dependent mechanisms (eg
1073  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1074  *
1075  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1076  *			       struct netdev_phys_item_id *ppid);
1077  *	Called to get ID of physical port of this device. If driver does
1078  *	not implement this, it is assumed that the hw is not able to have
1079  *	multiple net devices on single physical port.
1080  *
1081  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1082  *			      struct udp_tunnel_info *ti);
1083  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1084  *	address family that a UDP tunnel is listnening to. It is called only
1085  *	when a new port starts listening. The operation is protected by the
1086  *	RTNL.
1087  *
1088  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1089  *			      struct udp_tunnel_info *ti);
1090  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1091  *	address family that the UDP tunnel is not listening to anymore. The
1092  *	operation is protected by the RTNL.
1093  *
1094  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1095  *				 struct net_device *dev)
1096  *	Called by upper layer devices to accelerate switching or other
1097  *	station functionality into hardware. 'pdev is the lowerdev
1098  *	to use for the offload and 'dev' is the net device that will
1099  *	back the offload. Returns a pointer to the private structure
1100  *	the upper layer will maintain.
1101  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1102  *	Called by upper layer device to delete the station created
1103  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1104  *	the station and priv is the structure returned by the add
1105  *	operation.
1106  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1107  *				      struct net_device *dev,
1108  *				      void *priv);
1109  *	Callback to use for xmit over the accelerated station. This
1110  *	is used in place of ndo_start_xmit on accelerated net
1111  *	devices.
1112  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1113  *			     int queue_index, u32 maxrate);
1114  *	Called when a user wants to set a max-rate limitation of specific
1115  *	TX queue.
1116  * int (*ndo_get_iflink)(const struct net_device *dev);
1117  *	Called to get the iflink value of this device.
1118  * void (*ndo_change_proto_down)(struct net_device *dev,
1119  *				 bool proto_down);
1120  *	This function is used to pass protocol port error state information
1121  *	to the switch driver. The switch driver can react to the proto_down
1122  *      by doing a phys down on the associated switch port.
1123  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1124  *	This function is used to get egress tunnel information for given skb.
1125  *	This is useful for retrieving outer tunnel header parameters while
1126  *	sampling packet.
1127  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1128  *	This function is used to specify the headroom that the skb must
1129  *	consider when allocation skb during packet reception. Setting
1130  *	appropriate rx headroom value allows avoiding skb head copy on
1131  *	forward. Setting a negative value resets the rx headroom to the
1132  *	default value.
1133  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1134  *	This function is used to set or query state related to XDP on the
1135  *	netdevice. See definition of enum xdp_netdev_command for details.
1136  *
1137  */
1138 struct net_device_ops {
1139 	int			(*ndo_init)(struct net_device *dev);
1140 	void			(*ndo_uninit)(struct net_device *dev);
1141 	int			(*ndo_open)(struct net_device *dev);
1142 	int			(*ndo_stop)(struct net_device *dev);
1143 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1144 						  struct net_device *dev);
1145 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1146 						      struct net_device *dev,
1147 						      netdev_features_t features);
1148 	u16			(*ndo_select_queue)(struct net_device *dev,
1149 						    struct sk_buff *skb,
1150 						    void *accel_priv,
1151 						    select_queue_fallback_t fallback);
1152 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1153 						       int flags);
1154 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1155 	int			(*ndo_set_mac_address)(struct net_device *dev,
1156 						       void *addr);
1157 	int			(*ndo_validate_addr)(struct net_device *dev);
1158 	int			(*ndo_do_ioctl)(struct net_device *dev,
1159 					        struct ifreq *ifr, int cmd);
1160 	int			(*ndo_set_config)(struct net_device *dev,
1161 					          struct ifmap *map);
1162 	int			(*ndo_change_mtu)(struct net_device *dev,
1163 						  int new_mtu);
1164 	int			(*ndo_neigh_setup)(struct net_device *dev,
1165 						   struct neigh_parms *);
1166 	void			(*ndo_tx_timeout) (struct net_device *dev);
1167 
1168 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1169 						     struct rtnl_link_stats64 *storage);
1170 	bool			(*ndo_has_offload_stats)(int attr_id);
1171 	int			(*ndo_get_offload_stats)(int attr_id,
1172 							 const struct net_device *dev,
1173 							 void *attr_data);
1174 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1175 
1176 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1177 						       __be16 proto, u16 vid);
1178 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1179 						        __be16 proto, u16 vid);
1180 #ifdef CONFIG_NET_POLL_CONTROLLER
1181 	void                    (*ndo_poll_controller)(struct net_device *dev);
1182 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1183 						     struct netpoll_info *info);
1184 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1185 #endif
1186 #ifdef CONFIG_NET_RX_BUSY_POLL
1187 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1188 #endif
1189 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1190 						  int queue, u8 *mac);
1191 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1192 						   int queue, u16 vlan,
1193 						   u8 qos, __be16 proto);
1194 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1195 						   int vf, int min_tx_rate,
1196 						   int max_tx_rate);
1197 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1198 						       int vf, bool setting);
1199 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1200 						    int vf, bool setting);
1201 	int			(*ndo_get_vf_config)(struct net_device *dev,
1202 						     int vf,
1203 						     struct ifla_vf_info *ivf);
1204 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1205 							 int vf, int link_state);
1206 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1207 						    int vf,
1208 						    struct ifla_vf_stats
1209 						    *vf_stats);
1210 	int			(*ndo_set_vf_port)(struct net_device *dev,
1211 						   int vf,
1212 						   struct nlattr *port[]);
1213 	int			(*ndo_get_vf_port)(struct net_device *dev,
1214 						   int vf, struct sk_buff *skb);
1215 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1216 						   int vf, u64 guid,
1217 						   int guid_type);
1218 	int			(*ndo_set_vf_rss_query_en)(
1219 						   struct net_device *dev,
1220 						   int vf, bool setting);
1221 	int			(*ndo_setup_tc)(struct net_device *dev,
1222 						u32 handle,
1223 						__be16 protocol,
1224 						struct tc_to_netdev *tc);
1225 #if IS_ENABLED(CONFIG_FCOE)
1226 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1227 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1228 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1229 						      u16 xid,
1230 						      struct scatterlist *sgl,
1231 						      unsigned int sgc);
1232 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1233 						     u16 xid);
1234 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1235 						       u16 xid,
1236 						       struct scatterlist *sgl,
1237 						       unsigned int sgc);
1238 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1239 							struct netdev_fcoe_hbainfo *hbainfo);
1240 #endif
1241 
1242 #if IS_ENABLED(CONFIG_LIBFCOE)
1243 #define NETDEV_FCOE_WWNN 0
1244 #define NETDEV_FCOE_WWPN 1
1245 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1246 						    u64 *wwn, int type);
1247 #endif
1248 
1249 #ifdef CONFIG_RFS_ACCEL
1250 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1251 						     const struct sk_buff *skb,
1252 						     u16 rxq_index,
1253 						     u32 flow_id);
1254 #endif
1255 	int			(*ndo_add_slave)(struct net_device *dev,
1256 						 struct net_device *slave_dev);
1257 	int			(*ndo_del_slave)(struct net_device *dev,
1258 						 struct net_device *slave_dev);
1259 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1260 						    netdev_features_t features);
1261 	int			(*ndo_set_features)(struct net_device *dev,
1262 						    netdev_features_t features);
1263 	int			(*ndo_neigh_construct)(struct net_device *dev,
1264 						       struct neighbour *n);
1265 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1266 						     struct neighbour *n);
1267 
1268 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1269 					       struct nlattr *tb[],
1270 					       struct net_device *dev,
1271 					       const unsigned char *addr,
1272 					       u16 vid,
1273 					       u16 flags);
1274 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1275 					       struct nlattr *tb[],
1276 					       struct net_device *dev,
1277 					       const unsigned char *addr,
1278 					       u16 vid);
1279 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1280 						struct netlink_callback *cb,
1281 						struct net_device *dev,
1282 						struct net_device *filter_dev,
1283 						int *idx);
1284 
1285 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1286 						      struct nlmsghdr *nlh,
1287 						      u16 flags);
1288 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1289 						      u32 pid, u32 seq,
1290 						      struct net_device *dev,
1291 						      u32 filter_mask,
1292 						      int nlflags);
1293 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1294 						      struct nlmsghdr *nlh,
1295 						      u16 flags);
1296 	int			(*ndo_change_carrier)(struct net_device *dev,
1297 						      bool new_carrier);
1298 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1299 							struct netdev_phys_item_id *ppid);
1300 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1301 							  char *name, size_t len);
1302 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1303 						      struct udp_tunnel_info *ti);
1304 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1305 						      struct udp_tunnel_info *ti);
1306 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1307 							struct net_device *dev);
1308 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1309 							void *priv);
1310 
1311 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1312 							struct net_device *dev,
1313 							void *priv);
1314 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1315 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1316 						      int queue_index,
1317 						      u32 maxrate);
1318 	int			(*ndo_get_iflink)(const struct net_device *dev);
1319 	int			(*ndo_change_proto_down)(struct net_device *dev,
1320 							 bool proto_down);
1321 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1322 						       struct sk_buff *skb);
1323 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1324 						       int needed_headroom);
1325 	int			(*ndo_xdp)(struct net_device *dev,
1326 					   struct netdev_xdp *xdp);
1327 };
1328 
1329 /**
1330  * enum net_device_priv_flags - &struct net_device priv_flags
1331  *
1332  * These are the &struct net_device, they are only set internally
1333  * by drivers and used in the kernel. These flags are invisible to
1334  * userspace; this means that the order of these flags can change
1335  * during any kernel release.
1336  *
1337  * You should have a pretty good reason to be extending these flags.
1338  *
1339  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1340  * @IFF_EBRIDGE: Ethernet bridging device
1341  * @IFF_BONDING: bonding master or slave
1342  * @IFF_ISATAP: ISATAP interface (RFC4214)
1343  * @IFF_WAN_HDLC: WAN HDLC device
1344  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1345  *	release skb->dst
1346  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1347  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1348  * @IFF_MACVLAN_PORT: device used as macvlan port
1349  * @IFF_BRIDGE_PORT: device used as bridge port
1350  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1351  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1352  * @IFF_UNICAST_FLT: Supports unicast filtering
1353  * @IFF_TEAM_PORT: device used as team port
1354  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1355  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1356  *	change when it's running
1357  * @IFF_MACVLAN: Macvlan device
1358  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1359  *	underlying stacked devices
1360  * @IFF_IPVLAN_MASTER: IPvlan master device
1361  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1362  * @IFF_L3MDEV_MASTER: device is an L3 master device
1363  * @IFF_NO_QUEUE: device can run without qdisc attached
1364  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1365  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1366  * @IFF_TEAM: device is a team device
1367  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1368  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1369  *	entity (i.e. the master device for bridged veth)
1370  * @IFF_MACSEC: device is a MACsec device
1371  */
1372 enum netdev_priv_flags {
1373 	IFF_802_1Q_VLAN			= 1<<0,
1374 	IFF_EBRIDGE			= 1<<1,
1375 	IFF_BONDING			= 1<<2,
1376 	IFF_ISATAP			= 1<<3,
1377 	IFF_WAN_HDLC			= 1<<4,
1378 	IFF_XMIT_DST_RELEASE		= 1<<5,
1379 	IFF_DONT_BRIDGE			= 1<<6,
1380 	IFF_DISABLE_NETPOLL		= 1<<7,
1381 	IFF_MACVLAN_PORT		= 1<<8,
1382 	IFF_BRIDGE_PORT			= 1<<9,
1383 	IFF_OVS_DATAPATH		= 1<<10,
1384 	IFF_TX_SKB_SHARING		= 1<<11,
1385 	IFF_UNICAST_FLT			= 1<<12,
1386 	IFF_TEAM_PORT			= 1<<13,
1387 	IFF_SUPP_NOFCS			= 1<<14,
1388 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1389 	IFF_MACVLAN			= 1<<16,
1390 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1391 	IFF_IPVLAN_MASTER		= 1<<18,
1392 	IFF_IPVLAN_SLAVE		= 1<<19,
1393 	IFF_L3MDEV_MASTER		= 1<<20,
1394 	IFF_NO_QUEUE			= 1<<21,
1395 	IFF_OPENVSWITCH			= 1<<22,
1396 	IFF_L3MDEV_SLAVE		= 1<<23,
1397 	IFF_TEAM			= 1<<24,
1398 	IFF_RXFH_CONFIGURED		= 1<<25,
1399 	IFF_PHONY_HEADROOM		= 1<<26,
1400 	IFF_MACSEC			= 1<<27,
1401 };
1402 
1403 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1404 #define IFF_EBRIDGE			IFF_EBRIDGE
1405 #define IFF_BONDING			IFF_BONDING
1406 #define IFF_ISATAP			IFF_ISATAP
1407 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1408 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1409 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1410 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1411 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1412 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1413 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1414 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1415 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1416 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1417 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1418 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1419 #define IFF_MACVLAN			IFF_MACVLAN
1420 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1421 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1422 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1423 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1424 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1425 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1426 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1427 #define IFF_TEAM			IFF_TEAM
1428 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1429 #define IFF_MACSEC			IFF_MACSEC
1430 
1431 /**
1432  *	struct net_device - The DEVICE structure.
1433  *		Actually, this whole structure is a big mistake.  It mixes I/O
1434  *		data with strictly "high-level" data, and it has to know about
1435  *		almost every data structure used in the INET module.
1436  *
1437  *	@name:	This is the first field of the "visible" part of this structure
1438  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1439  *	 	of the interface.
1440  *
1441  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1442  *	@ifalias:	SNMP alias
1443  *	@mem_end:	Shared memory end
1444  *	@mem_start:	Shared memory start
1445  *	@base_addr:	Device I/O address
1446  *	@irq:		Device IRQ number
1447  *
1448  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1449  *
1450  *	@state:		Generic network queuing layer state, see netdev_state_t
1451  *	@dev_list:	The global list of network devices
1452  *	@napi_list:	List entry used for polling NAPI devices
1453  *	@unreg_list:	List entry  when we are unregistering the
1454  *			device; see the function unregister_netdev
1455  *	@close_list:	List entry used when we are closing the device
1456  *	@ptype_all:     Device-specific packet handlers for all protocols
1457  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1458  *
1459  *	@adj_list:	Directly linked devices, like slaves for bonding
1460  *	@all_adj_list:	All linked devices, *including* neighbours
1461  *	@features:	Currently active device features
1462  *	@hw_features:	User-changeable features
1463  *
1464  *	@wanted_features:	User-requested features
1465  *	@vlan_features:		Mask of features inheritable by VLAN devices
1466  *
1467  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1468  *				This field indicates what encapsulation
1469  *				offloads the hardware is capable of doing,
1470  *				and drivers will need to set them appropriately.
1471  *
1472  *	@mpls_features:	Mask of features inheritable by MPLS
1473  *
1474  *	@ifindex:	interface index
1475  *	@group:		The group the device belongs to
1476  *
1477  *	@stats:		Statistics struct, which was left as a legacy, use
1478  *			rtnl_link_stats64 instead
1479  *
1480  *	@rx_dropped:	Dropped packets by core network,
1481  *			do not use this in drivers
1482  *	@tx_dropped:	Dropped packets by core network,
1483  *			do not use this in drivers
1484  *	@rx_nohandler:	nohandler dropped packets by core network on
1485  *			inactive devices, do not use this in drivers
1486  *
1487  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1488  *				instead of ioctl,
1489  *				see <net/iw_handler.h> for details.
1490  *	@wireless_data:	Instance data managed by the core of wireless extensions
1491  *
1492  *	@netdev_ops:	Includes several pointers to callbacks,
1493  *			if one wants to override the ndo_*() functions
1494  *	@ethtool_ops:	Management operations
1495  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1496  *			discovery handling. Necessary for e.g. 6LoWPAN.
1497  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1498  *			of Layer 2 headers.
1499  *
1500  *	@flags:		Interface flags (a la BSD)
1501  *	@priv_flags:	Like 'flags' but invisible to userspace,
1502  *			see if.h for the definitions
1503  *	@gflags:	Global flags ( kept as legacy )
1504  *	@padded:	How much padding added by alloc_netdev()
1505  *	@operstate:	RFC2863 operstate
1506  *	@link_mode:	Mapping policy to operstate
1507  *	@if_port:	Selectable AUI, TP, ...
1508  *	@dma:		DMA channel
1509  *	@mtu:		Interface MTU value
1510  *	@type:		Interface hardware type
1511  *	@hard_header_len: Maximum hardware header length.
1512  *	@min_header_len:  Minimum hardware header length
1513  *
1514  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1515  *			  cases can this be guaranteed
1516  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1517  *			  cases can this be guaranteed. Some cases also use
1518  *			  LL_MAX_HEADER instead to allocate the skb
1519  *
1520  *	interface address info:
1521  *
1522  * 	@perm_addr:		Permanent hw address
1523  * 	@addr_assign_type:	Hw address assignment type
1524  * 	@addr_len:		Hardware address length
1525  *	@neigh_priv_len:	Used in neigh_alloc()
1526  * 	@dev_id:		Used to differentiate devices that share
1527  * 				the same link layer address
1528  * 	@dev_port:		Used to differentiate devices that share
1529  * 				the same function
1530  *	@addr_list_lock:	XXX: need comments on this one
1531  *	@uc_promisc:		Counter that indicates promiscuous mode
1532  *				has been enabled due to the need to listen to
1533  *				additional unicast addresses in a device that
1534  *				does not implement ndo_set_rx_mode()
1535  *	@uc:			unicast mac addresses
1536  *	@mc:			multicast mac addresses
1537  *	@dev_addrs:		list of device hw addresses
1538  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1539  *	@promiscuity:		Number of times the NIC is told to work in
1540  *				promiscuous mode; if it becomes 0 the NIC will
1541  *				exit promiscuous mode
1542  *	@allmulti:		Counter, enables or disables allmulticast mode
1543  *
1544  *	@vlan_info:	VLAN info
1545  *	@dsa_ptr:	dsa specific data
1546  *	@tipc_ptr:	TIPC specific data
1547  *	@atalk_ptr:	AppleTalk link
1548  *	@ip_ptr:	IPv4 specific data
1549  *	@dn_ptr:	DECnet specific data
1550  *	@ip6_ptr:	IPv6 specific data
1551  *	@ax25_ptr:	AX.25 specific data
1552  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1553  *
1554  *	@last_rx:	Time of last Rx
1555  *	@dev_addr:	Hw address (before bcast,
1556  *			because most packets are unicast)
1557  *
1558  *	@_rx:			Array of RX queues
1559  *	@num_rx_queues:		Number of RX queues
1560  *				allocated at register_netdev() time
1561  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1562  *
1563  *	@rx_handler:		handler for received packets
1564  *	@rx_handler_data: 	XXX: need comments on this one
1565  *	@ingress_queue:		XXX: need comments on this one
1566  *	@broadcast:		hw bcast address
1567  *
1568  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1569  *			indexed by RX queue number. Assigned by driver.
1570  *			This must only be set if the ndo_rx_flow_steer
1571  *			operation is defined
1572  *	@index_hlist:		Device index hash chain
1573  *
1574  *	@_tx:			Array of TX queues
1575  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1576  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1577  *	@qdisc:			Root qdisc from userspace point of view
1578  *	@tx_queue_len:		Max frames per queue allowed
1579  *	@tx_global_lock: 	XXX: need comments on this one
1580  *
1581  *	@xps_maps:	XXX: need comments on this one
1582  *
1583  *	@watchdog_timeo:	Represents the timeout that is used by
1584  *				the watchdog (see dev_watchdog())
1585  *	@watchdog_timer:	List of timers
1586  *
1587  *	@pcpu_refcnt:		Number of references to this device
1588  *	@todo_list:		Delayed register/unregister
1589  *	@link_watch_list:	XXX: need comments on this one
1590  *
1591  *	@reg_state:		Register/unregister state machine
1592  *	@dismantle:		Device is going to be freed
1593  *	@rtnl_link_state:	This enum represents the phases of creating
1594  *				a new link
1595  *
1596  *	@destructor:		Called from unregister,
1597  *				can be used to call free_netdev
1598  *	@npinfo:		XXX: need comments on this one
1599  * 	@nd_net:		Network namespace this network device is inside
1600  *
1601  * 	@ml_priv:	Mid-layer private
1602  * 	@lstats:	Loopback statistics
1603  * 	@tstats:	Tunnel statistics
1604  * 	@dstats:	Dummy statistics
1605  * 	@vstats:	Virtual ethernet statistics
1606  *
1607  *	@garp_port:	GARP
1608  *	@mrp_port:	MRP
1609  *
1610  *	@dev:		Class/net/name entry
1611  *	@sysfs_groups:	Space for optional device, statistics and wireless
1612  *			sysfs groups
1613  *
1614  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1615  *	@rtnl_link_ops:	Rtnl_link_ops
1616  *
1617  *	@gso_max_size:	Maximum size of generic segmentation offload
1618  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1619  *			NIC for GSO
1620  *
1621  *	@dcbnl_ops:	Data Center Bridging netlink ops
1622  *	@num_tc:	Number of traffic classes in the net device
1623  *	@tc_to_txq:	XXX: need comments on this one
1624  *	@prio_tc_map:	XXX: need comments on this one
1625  *
1626  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1627  *
1628  *	@priomap:	XXX: need comments on this one
1629  *	@phydev:	Physical device may attach itself
1630  *			for hardware timestamping
1631  *
1632  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1633  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1634  *
1635  *	@proto_down:	protocol port state information can be sent to the
1636  *			switch driver and used to set the phys state of the
1637  *			switch port.
1638  *
1639  *	FIXME: cleanup struct net_device such that network protocol info
1640  *	moves out.
1641  */
1642 
1643 struct net_device {
1644 	char			name[IFNAMSIZ];
1645 	struct hlist_node	name_hlist;
1646 	char 			*ifalias;
1647 	/*
1648 	 *	I/O specific fields
1649 	 *	FIXME: Merge these and struct ifmap into one
1650 	 */
1651 	unsigned long		mem_end;
1652 	unsigned long		mem_start;
1653 	unsigned long		base_addr;
1654 	int			irq;
1655 
1656 	atomic_t		carrier_changes;
1657 
1658 	/*
1659 	 *	Some hardware also needs these fields (state,dev_list,
1660 	 *	napi_list,unreg_list,close_list) but they are not
1661 	 *	part of the usual set specified in Space.c.
1662 	 */
1663 
1664 	unsigned long		state;
1665 
1666 	struct list_head	dev_list;
1667 	struct list_head	napi_list;
1668 	struct list_head	unreg_list;
1669 	struct list_head	close_list;
1670 	struct list_head	ptype_all;
1671 	struct list_head	ptype_specific;
1672 
1673 	struct {
1674 		struct list_head upper;
1675 		struct list_head lower;
1676 	} adj_list;
1677 
1678 	struct {
1679 		struct list_head upper;
1680 		struct list_head lower;
1681 	} all_adj_list;
1682 
1683 	netdev_features_t	features;
1684 	netdev_features_t	hw_features;
1685 	netdev_features_t	wanted_features;
1686 	netdev_features_t	vlan_features;
1687 	netdev_features_t	hw_enc_features;
1688 	netdev_features_t	mpls_features;
1689 	netdev_features_t	gso_partial_features;
1690 
1691 	int			ifindex;
1692 	int			group;
1693 
1694 	struct net_device_stats	stats;
1695 
1696 	atomic_long_t		rx_dropped;
1697 	atomic_long_t		tx_dropped;
1698 	atomic_long_t		rx_nohandler;
1699 
1700 #ifdef CONFIG_WIRELESS_EXT
1701 	const struct iw_handler_def *wireless_handlers;
1702 	struct iw_public_data	*wireless_data;
1703 #endif
1704 	const struct net_device_ops *netdev_ops;
1705 	const struct ethtool_ops *ethtool_ops;
1706 #ifdef CONFIG_NET_SWITCHDEV
1707 	const struct switchdev_ops *switchdev_ops;
1708 #endif
1709 #ifdef CONFIG_NET_L3_MASTER_DEV
1710 	const struct l3mdev_ops	*l3mdev_ops;
1711 #endif
1712 #if IS_ENABLED(CONFIG_IPV6)
1713 	const struct ndisc_ops *ndisc_ops;
1714 #endif
1715 
1716 	const struct header_ops *header_ops;
1717 
1718 	unsigned int		flags;
1719 	unsigned int		priv_flags;
1720 
1721 	unsigned short		gflags;
1722 	unsigned short		padded;
1723 
1724 	unsigned char		operstate;
1725 	unsigned char		link_mode;
1726 
1727 	unsigned char		if_port;
1728 	unsigned char		dma;
1729 
1730 	unsigned int		mtu;
1731 	unsigned short		type;
1732 	unsigned short		hard_header_len;
1733 	unsigned short		min_header_len;
1734 
1735 	unsigned short		needed_headroom;
1736 	unsigned short		needed_tailroom;
1737 
1738 	/* Interface address info. */
1739 	unsigned char		perm_addr[MAX_ADDR_LEN];
1740 	unsigned char		addr_assign_type;
1741 	unsigned char		addr_len;
1742 	unsigned short		neigh_priv_len;
1743 	unsigned short          dev_id;
1744 	unsigned short          dev_port;
1745 	spinlock_t		addr_list_lock;
1746 	unsigned char		name_assign_type;
1747 	bool			uc_promisc;
1748 	struct netdev_hw_addr_list	uc;
1749 	struct netdev_hw_addr_list	mc;
1750 	struct netdev_hw_addr_list	dev_addrs;
1751 
1752 #ifdef CONFIG_SYSFS
1753 	struct kset		*queues_kset;
1754 #endif
1755 	unsigned int		promiscuity;
1756 	unsigned int		allmulti;
1757 
1758 
1759 	/* Protocol-specific pointers */
1760 
1761 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1762 	struct vlan_info __rcu	*vlan_info;
1763 #endif
1764 #if IS_ENABLED(CONFIG_NET_DSA)
1765 	struct dsa_switch_tree	*dsa_ptr;
1766 #endif
1767 #if IS_ENABLED(CONFIG_TIPC)
1768 	struct tipc_bearer __rcu *tipc_ptr;
1769 #endif
1770 	void 			*atalk_ptr;
1771 	struct in_device __rcu	*ip_ptr;
1772 	struct dn_dev __rcu     *dn_ptr;
1773 	struct inet6_dev __rcu	*ip6_ptr;
1774 	void			*ax25_ptr;
1775 	struct wireless_dev	*ieee80211_ptr;
1776 	struct wpan_dev		*ieee802154_ptr;
1777 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1778 	struct mpls_dev __rcu	*mpls_ptr;
1779 #endif
1780 
1781 /*
1782  * Cache lines mostly used on receive path (including eth_type_trans())
1783  */
1784 	unsigned long		last_rx;
1785 
1786 	/* Interface address info used in eth_type_trans() */
1787 	unsigned char		*dev_addr;
1788 
1789 #ifdef CONFIG_SYSFS
1790 	struct netdev_rx_queue	*_rx;
1791 
1792 	unsigned int		num_rx_queues;
1793 	unsigned int		real_num_rx_queues;
1794 #endif
1795 
1796 	unsigned long		gro_flush_timeout;
1797 	rx_handler_func_t __rcu	*rx_handler;
1798 	void __rcu		*rx_handler_data;
1799 
1800 #ifdef CONFIG_NET_CLS_ACT
1801 	struct tcf_proto __rcu  *ingress_cl_list;
1802 #endif
1803 	struct netdev_queue __rcu *ingress_queue;
1804 #ifdef CONFIG_NETFILTER_INGRESS
1805 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1806 #endif
1807 
1808 	unsigned char		broadcast[MAX_ADDR_LEN];
1809 #ifdef CONFIG_RFS_ACCEL
1810 	struct cpu_rmap		*rx_cpu_rmap;
1811 #endif
1812 	struct hlist_node	index_hlist;
1813 
1814 /*
1815  * Cache lines mostly used on transmit path
1816  */
1817 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1818 	unsigned int		num_tx_queues;
1819 	unsigned int		real_num_tx_queues;
1820 	struct Qdisc		*qdisc;
1821 #ifdef CONFIG_NET_SCHED
1822 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1823 #endif
1824 	unsigned long		tx_queue_len;
1825 	spinlock_t		tx_global_lock;
1826 	int			watchdog_timeo;
1827 
1828 #ifdef CONFIG_XPS
1829 	struct xps_dev_maps __rcu *xps_maps;
1830 #endif
1831 #ifdef CONFIG_NET_CLS_ACT
1832 	struct tcf_proto __rcu  *egress_cl_list;
1833 #endif
1834 
1835 	/* These may be needed for future network-power-down code. */
1836 	struct timer_list	watchdog_timer;
1837 
1838 	int __percpu		*pcpu_refcnt;
1839 	struct list_head	todo_list;
1840 
1841 	struct list_head	link_watch_list;
1842 
1843 	enum { NETREG_UNINITIALIZED=0,
1844 	       NETREG_REGISTERED,	/* completed register_netdevice */
1845 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1846 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1847 	       NETREG_RELEASED,		/* called free_netdev */
1848 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1849 	} reg_state:8;
1850 
1851 	bool dismantle;
1852 
1853 	enum {
1854 		RTNL_LINK_INITIALIZED,
1855 		RTNL_LINK_INITIALIZING,
1856 	} rtnl_link_state:16;
1857 
1858 	void (*destructor)(struct net_device *dev);
1859 
1860 #ifdef CONFIG_NETPOLL
1861 	struct netpoll_info __rcu	*npinfo;
1862 #endif
1863 
1864 	possible_net_t			nd_net;
1865 
1866 	/* mid-layer private */
1867 	union {
1868 		void					*ml_priv;
1869 		struct pcpu_lstats __percpu		*lstats;
1870 		struct pcpu_sw_netstats __percpu	*tstats;
1871 		struct pcpu_dstats __percpu		*dstats;
1872 		struct pcpu_vstats __percpu		*vstats;
1873 	};
1874 
1875 	struct garp_port __rcu	*garp_port;
1876 	struct mrp_port __rcu	*mrp_port;
1877 
1878 	struct device		dev;
1879 	const struct attribute_group *sysfs_groups[4];
1880 	const struct attribute_group *sysfs_rx_queue_group;
1881 
1882 	const struct rtnl_link_ops *rtnl_link_ops;
1883 
1884 	/* for setting kernel sock attribute on TCP connection setup */
1885 #define GSO_MAX_SIZE		65536
1886 	unsigned int		gso_max_size;
1887 #define GSO_MAX_SEGS		65535
1888 	u16			gso_max_segs;
1889 
1890 #ifdef CONFIG_DCB
1891 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1892 #endif
1893 	u8			num_tc;
1894 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1895 	u8			prio_tc_map[TC_BITMASK + 1];
1896 
1897 #if IS_ENABLED(CONFIG_FCOE)
1898 	unsigned int		fcoe_ddp_xid;
1899 #endif
1900 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1901 	struct netprio_map __rcu *priomap;
1902 #endif
1903 	struct phy_device	*phydev;
1904 	struct lock_class_key	*qdisc_tx_busylock;
1905 	struct lock_class_key	*qdisc_running_key;
1906 	bool			proto_down;
1907 };
1908 #define to_net_dev(d) container_of(d, struct net_device, dev)
1909 
1910 #define	NETDEV_ALIGN		32
1911 
1912 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1913 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1914 {
1915 	return dev->prio_tc_map[prio & TC_BITMASK];
1916 }
1917 
1918 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1919 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1920 {
1921 	if (tc >= dev->num_tc)
1922 		return -EINVAL;
1923 
1924 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1925 	return 0;
1926 }
1927 
1928 static inline
netdev_reset_tc(struct net_device * dev)1929 void netdev_reset_tc(struct net_device *dev)
1930 {
1931 	dev->num_tc = 0;
1932 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1933 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1934 }
1935 
1936 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1937 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1938 {
1939 	if (tc >= dev->num_tc)
1940 		return -EINVAL;
1941 
1942 	dev->tc_to_txq[tc].count = count;
1943 	dev->tc_to_txq[tc].offset = offset;
1944 	return 0;
1945 }
1946 
1947 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1948 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1949 {
1950 	if (num_tc > TC_MAX_QUEUE)
1951 		return -EINVAL;
1952 
1953 	dev->num_tc = num_tc;
1954 	return 0;
1955 }
1956 
1957 static inline
netdev_get_num_tc(struct net_device * dev)1958 int netdev_get_num_tc(struct net_device *dev)
1959 {
1960 	return dev->num_tc;
1961 }
1962 
1963 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1964 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1965 					 unsigned int index)
1966 {
1967 	return &dev->_tx[index];
1968 }
1969 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)1970 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1971 						    const struct sk_buff *skb)
1972 {
1973 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1974 }
1975 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1976 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1977 					    void (*f)(struct net_device *,
1978 						      struct netdev_queue *,
1979 						      void *),
1980 					    void *arg)
1981 {
1982 	unsigned int i;
1983 
1984 	for (i = 0; i < dev->num_tx_queues; i++)
1985 		f(dev, &dev->_tx[i], arg);
1986 }
1987 
1988 #define netdev_lockdep_set_classes(dev)				\
1989 {								\
1990 	static struct lock_class_key qdisc_tx_busylock_key;	\
1991 	static struct lock_class_key qdisc_running_key;		\
1992 	static struct lock_class_key qdisc_xmit_lock_key;	\
1993 	static struct lock_class_key dev_addr_list_lock_key;	\
1994 	unsigned int i;						\
1995 								\
1996 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1997 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1998 	lockdep_set_class(&(dev)->addr_list_lock,		\
1999 			  &dev_addr_list_lock_key); 		\
2000 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2001 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2002 				  &qdisc_xmit_lock_key);	\
2003 }
2004 
2005 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2006 				    struct sk_buff *skb,
2007 				    void *accel_priv);
2008 
2009 /* returns the headroom that the master device needs to take in account
2010  * when forwarding to this dev
2011  */
netdev_get_fwd_headroom(struct net_device * dev)2012 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2013 {
2014 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2015 }
2016 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2017 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2018 {
2019 	if (dev->netdev_ops->ndo_set_rx_headroom)
2020 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2021 }
2022 
2023 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2024 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2025 {
2026 	netdev_set_rx_headroom(dev, -1);
2027 }
2028 
2029 /*
2030  * Net namespace inlines
2031  */
2032 static inline
dev_net(const struct net_device * dev)2033 struct net *dev_net(const struct net_device *dev)
2034 {
2035 	return read_pnet(&dev->nd_net);
2036 }
2037 
2038 static inline
dev_net_set(struct net_device * dev,struct net * net)2039 void dev_net_set(struct net_device *dev, struct net *net)
2040 {
2041 	write_pnet(&dev->nd_net, net);
2042 }
2043 
netdev_uses_dsa(struct net_device * dev)2044 static inline bool netdev_uses_dsa(struct net_device *dev)
2045 {
2046 #if IS_ENABLED(CONFIG_NET_DSA)
2047 	if (dev->dsa_ptr != NULL)
2048 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
2049 #endif
2050 	return false;
2051 }
2052 
2053 /**
2054  *	netdev_priv - access network device private data
2055  *	@dev: network device
2056  *
2057  * Get network device private data
2058  */
netdev_priv(const struct net_device * dev)2059 static inline void *netdev_priv(const struct net_device *dev)
2060 {
2061 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2062 }
2063 
2064 /* Set the sysfs physical device reference for the network logical device
2065  * if set prior to registration will cause a symlink during initialization.
2066  */
2067 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2068 
2069 /* Set the sysfs device type for the network logical device to allow
2070  * fine-grained identification of different network device types. For
2071  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2072  */
2073 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2074 
2075 /* Default NAPI poll() weight
2076  * Device drivers are strongly advised to not use bigger value
2077  */
2078 #define NAPI_POLL_WEIGHT 64
2079 
2080 /**
2081  *	netif_napi_add - initialize a NAPI context
2082  *	@dev:  network device
2083  *	@napi: NAPI context
2084  *	@poll: polling function
2085  *	@weight: default weight
2086  *
2087  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2088  * *any* of the other NAPI-related functions.
2089  */
2090 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2091 		    int (*poll)(struct napi_struct *, int), int weight);
2092 
2093 /**
2094  *	netif_tx_napi_add - initialize a NAPI context
2095  *	@dev:  network device
2096  *	@napi: NAPI context
2097  *	@poll: polling function
2098  *	@weight: default weight
2099  *
2100  * This variant of netif_napi_add() should be used from drivers using NAPI
2101  * to exclusively poll a TX queue.
2102  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2103  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2104 static inline void netif_tx_napi_add(struct net_device *dev,
2105 				     struct napi_struct *napi,
2106 				     int (*poll)(struct napi_struct *, int),
2107 				     int weight)
2108 {
2109 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2110 	netif_napi_add(dev, napi, poll, weight);
2111 }
2112 
2113 /**
2114  *  netif_napi_del - remove a NAPI context
2115  *  @napi: NAPI context
2116  *
2117  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2118  */
2119 void netif_napi_del(struct napi_struct *napi);
2120 
2121 struct napi_gro_cb {
2122 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2123 	void	*frag0;
2124 
2125 	/* Length of frag0. */
2126 	unsigned int frag0_len;
2127 
2128 	/* This indicates where we are processing relative to skb->data. */
2129 	int	data_offset;
2130 
2131 	/* This is non-zero if the packet cannot be merged with the new skb. */
2132 	u16	flush;
2133 
2134 	/* Save the IP ID here and check when we get to the transport layer */
2135 	u16	flush_id;
2136 
2137 	/* Number of segments aggregated. */
2138 	u16	count;
2139 
2140 	/* Start offset for remote checksum offload */
2141 	u16	gro_remcsum_start;
2142 
2143 	/* jiffies when first packet was created/queued */
2144 	unsigned long age;
2145 
2146 	/* Used in ipv6_gro_receive() and foo-over-udp */
2147 	u16	proto;
2148 
2149 	/* This is non-zero if the packet may be of the same flow. */
2150 	u8	same_flow:1;
2151 
2152 	/* Used in tunnel GRO receive */
2153 	u8	encap_mark:1;
2154 
2155 	/* GRO checksum is valid */
2156 	u8	csum_valid:1;
2157 
2158 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2159 	u8	csum_cnt:3;
2160 
2161 	/* Free the skb? */
2162 	u8	free:2;
2163 #define NAPI_GRO_FREE		  1
2164 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2165 
2166 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2167 	u8	is_ipv6:1;
2168 
2169 	/* Used in GRE, set in fou/gue_gro_receive */
2170 	u8	is_fou:1;
2171 
2172 	/* Used to determine if flush_id can be ignored */
2173 	u8	is_atomic:1;
2174 
2175 	/* Number of gro_receive callbacks this packet already went through */
2176 	u8 recursion_counter:4;
2177 
2178 	/* 1 bit hole */
2179 
2180 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2181 	__wsum	csum;
2182 
2183 	/* used in skb_gro_receive() slow path */
2184 	struct sk_buff *last;
2185 };
2186 
2187 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2188 
2189 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2190 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2191 {
2192 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2193 }
2194 
2195 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct sk_buff ** head,struct sk_buff * skb)2196 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2197 						struct sk_buff **head,
2198 						struct sk_buff *skb)
2199 {
2200 	if (unlikely(gro_recursion_inc_test(skb))) {
2201 		NAPI_GRO_CB(skb)->flush |= 1;
2202 		return NULL;
2203 	}
2204 
2205 	return cb(head, skb);
2206 }
2207 
2208 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2209 					     struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct sk_buff ** head,struct sk_buff * skb)2210 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2211 						   struct sock *sk,
2212 						   struct sk_buff **head,
2213 						   struct sk_buff *skb)
2214 {
2215 	if (unlikely(gro_recursion_inc_test(skb))) {
2216 		NAPI_GRO_CB(skb)->flush |= 1;
2217 		return NULL;
2218 	}
2219 
2220 	return cb(sk, head, skb);
2221 }
2222 
2223 struct packet_type {
2224 	__be16			type;	/* This is really htons(ether_type). */
2225 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2226 	int			(*func) (struct sk_buff *,
2227 					 struct net_device *,
2228 					 struct packet_type *,
2229 					 struct net_device *);
2230 	bool			(*id_match)(struct packet_type *ptype,
2231 					    struct sock *sk);
2232 	void			*af_packet_priv;
2233 	struct list_head	list;
2234 };
2235 
2236 struct offload_callbacks {
2237 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2238 						netdev_features_t features);
2239 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2240 						 struct sk_buff *skb);
2241 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2242 };
2243 
2244 struct packet_offload {
2245 	__be16			 type;	/* This is really htons(ether_type). */
2246 	u16			 priority;
2247 	struct offload_callbacks callbacks;
2248 	struct list_head	 list;
2249 };
2250 
2251 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2252 struct pcpu_sw_netstats {
2253 	u64     rx_packets;
2254 	u64     rx_bytes;
2255 	u64     tx_packets;
2256 	u64     tx_bytes;
2257 	struct u64_stats_sync   syncp;
2258 };
2259 
2260 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2261 ({									\
2262 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2263 	if (pcpu_stats)	{						\
2264 		int __cpu;						\
2265 		for_each_possible_cpu(__cpu) {				\
2266 			typeof(type) *stat;				\
2267 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2268 			u64_stats_init(&stat->syncp);			\
2269 		}							\
2270 	}								\
2271 	pcpu_stats;							\
2272 })
2273 
2274 #define netdev_alloc_pcpu_stats(type)					\
2275 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2276 
2277 enum netdev_lag_tx_type {
2278 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2279 	NETDEV_LAG_TX_TYPE_RANDOM,
2280 	NETDEV_LAG_TX_TYPE_BROADCAST,
2281 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2282 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2283 	NETDEV_LAG_TX_TYPE_HASH,
2284 };
2285 
2286 struct netdev_lag_upper_info {
2287 	enum netdev_lag_tx_type tx_type;
2288 };
2289 
2290 struct netdev_lag_lower_state_info {
2291 	u8 link_up : 1,
2292 	   tx_enabled : 1;
2293 };
2294 
2295 #include <linux/notifier.h>
2296 
2297 /* netdevice notifier chain. Please remember to update the rtnetlink
2298  * notification exclusion list in rtnetlink_event() when adding new
2299  * types.
2300  */
2301 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2302 #define NETDEV_DOWN	0x0002
2303 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2304 				   detected a hardware crash and restarted
2305 				   - we can use this eg to kick tcp sessions
2306 				   once done */
2307 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2308 #define NETDEV_REGISTER 0x0005
2309 #define NETDEV_UNREGISTER	0x0006
2310 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2311 #define NETDEV_CHANGEADDR	0x0008
2312 #define NETDEV_GOING_DOWN	0x0009
2313 #define NETDEV_CHANGENAME	0x000A
2314 #define NETDEV_FEAT_CHANGE	0x000B
2315 #define NETDEV_BONDING_FAILOVER 0x000C
2316 #define NETDEV_PRE_UP		0x000D
2317 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2318 #define NETDEV_POST_TYPE_CHANGE	0x000F
2319 #define NETDEV_POST_INIT	0x0010
2320 #define NETDEV_UNREGISTER_FINAL 0x0011
2321 #define NETDEV_RELEASE		0x0012
2322 #define NETDEV_NOTIFY_PEERS	0x0013
2323 #define NETDEV_JOIN		0x0014
2324 #define NETDEV_CHANGEUPPER	0x0015
2325 #define NETDEV_RESEND_IGMP	0x0016
2326 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2327 #define NETDEV_CHANGEINFODATA	0x0018
2328 #define NETDEV_BONDING_INFO	0x0019
2329 #define NETDEV_PRECHANGEUPPER	0x001A
2330 #define NETDEV_CHANGELOWERSTATE	0x001B
2331 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2332 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2333 
2334 int register_netdevice_notifier(struct notifier_block *nb);
2335 int unregister_netdevice_notifier(struct notifier_block *nb);
2336 
2337 struct netdev_notifier_info {
2338 	struct net_device *dev;
2339 };
2340 
2341 struct netdev_notifier_change_info {
2342 	struct netdev_notifier_info info; /* must be first */
2343 	unsigned int flags_changed;
2344 };
2345 
2346 struct netdev_notifier_changeupper_info {
2347 	struct netdev_notifier_info info; /* must be first */
2348 	struct net_device *upper_dev; /* new upper dev */
2349 	bool master; /* is upper dev master */
2350 	bool linking; /* is the notification for link or unlink */
2351 	void *upper_info; /* upper dev info */
2352 };
2353 
2354 struct netdev_notifier_changelowerstate_info {
2355 	struct netdev_notifier_info info; /* must be first */
2356 	void *lower_state_info; /* is lower dev state */
2357 };
2358 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2359 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2360 					     struct net_device *dev)
2361 {
2362 	info->dev = dev;
2363 }
2364 
2365 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2366 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2367 {
2368 	return info->dev;
2369 }
2370 
2371 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2372 
2373 
2374 extern rwlock_t				dev_base_lock;		/* Device list lock */
2375 
2376 #define for_each_netdev(net, d)		\
2377 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2378 #define for_each_netdev_reverse(net, d)	\
2379 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2380 #define for_each_netdev_rcu(net, d)		\
2381 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2382 #define for_each_netdev_safe(net, d, n)	\
2383 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2384 #define for_each_netdev_continue(net, d)		\
2385 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2386 #define for_each_netdev_continue_rcu(net, d)		\
2387 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2388 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2389 		for_each_netdev_rcu(&init_net, slave)	\
2390 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2391 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2392 
next_net_device(struct net_device * dev)2393 static inline struct net_device *next_net_device(struct net_device *dev)
2394 {
2395 	struct list_head *lh;
2396 	struct net *net;
2397 
2398 	net = dev_net(dev);
2399 	lh = dev->dev_list.next;
2400 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2401 }
2402 
next_net_device_rcu(struct net_device * dev)2403 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2404 {
2405 	struct list_head *lh;
2406 	struct net *net;
2407 
2408 	net = dev_net(dev);
2409 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2410 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2411 }
2412 
first_net_device(struct net * net)2413 static inline struct net_device *first_net_device(struct net *net)
2414 {
2415 	return list_empty(&net->dev_base_head) ? NULL :
2416 		net_device_entry(net->dev_base_head.next);
2417 }
2418 
first_net_device_rcu(struct net * net)2419 static inline struct net_device *first_net_device_rcu(struct net *net)
2420 {
2421 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2422 
2423 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2424 }
2425 
2426 int netdev_boot_setup_check(struct net_device *dev);
2427 unsigned long netdev_boot_base(const char *prefix, int unit);
2428 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2429 				       const char *hwaddr);
2430 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2431 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2432 void dev_add_pack(struct packet_type *pt);
2433 void dev_remove_pack(struct packet_type *pt);
2434 void __dev_remove_pack(struct packet_type *pt);
2435 void dev_add_offload(struct packet_offload *po);
2436 void dev_remove_offload(struct packet_offload *po);
2437 
2438 int dev_get_iflink(const struct net_device *dev);
2439 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2440 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2441 				      unsigned short mask);
2442 struct net_device *dev_get_by_name(struct net *net, const char *name);
2443 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2444 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2445 int dev_alloc_name(struct net_device *dev, const char *name);
2446 int dev_open(struct net_device *dev);
2447 int dev_close(struct net_device *dev);
2448 int dev_close_many(struct list_head *head, bool unlink);
2449 void dev_disable_lro(struct net_device *dev);
2450 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2451 int dev_queue_xmit(struct sk_buff *skb);
2452 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2453 int register_netdevice(struct net_device *dev);
2454 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2455 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2456 static inline void unregister_netdevice(struct net_device *dev)
2457 {
2458 	unregister_netdevice_queue(dev, NULL);
2459 }
2460 
2461 int netdev_refcnt_read(const struct net_device *dev);
2462 void free_netdev(struct net_device *dev);
2463 void netdev_freemem(struct net_device *dev);
2464 void synchronize_net(void);
2465 int init_dummy_netdev(struct net_device *dev);
2466 
2467 DECLARE_PER_CPU(int, xmit_recursion);
2468 #define XMIT_RECURSION_LIMIT	10
2469 
dev_recursion_level(void)2470 static inline int dev_recursion_level(void)
2471 {
2472 	return this_cpu_read(xmit_recursion);
2473 }
2474 
2475 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2476 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2477 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2478 int netdev_get_name(struct net *net, char *name, int ifindex);
2479 int dev_restart(struct net_device *dev);
2480 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2481 
skb_gro_offset(const struct sk_buff * skb)2482 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2483 {
2484 	return NAPI_GRO_CB(skb)->data_offset;
2485 }
2486 
skb_gro_len(const struct sk_buff * skb)2487 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2488 {
2489 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2490 }
2491 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2492 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2493 {
2494 	NAPI_GRO_CB(skb)->data_offset += len;
2495 }
2496 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2497 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2498 					unsigned int offset)
2499 {
2500 	return NAPI_GRO_CB(skb)->frag0 + offset;
2501 }
2502 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2503 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2504 {
2505 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2506 }
2507 
skb_gro_frag0_invalidate(struct sk_buff * skb)2508 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2509 {
2510 	NAPI_GRO_CB(skb)->frag0 = NULL;
2511 	NAPI_GRO_CB(skb)->frag0_len = 0;
2512 }
2513 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2514 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2515 					unsigned int offset)
2516 {
2517 	if (!pskb_may_pull(skb, hlen))
2518 		return NULL;
2519 
2520 	skb_gro_frag0_invalidate(skb);
2521 	return skb->data + offset;
2522 }
2523 
skb_gro_network_header(struct sk_buff * skb)2524 static inline void *skb_gro_network_header(struct sk_buff *skb)
2525 {
2526 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2527 	       skb_network_offset(skb);
2528 }
2529 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2530 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2531 					const void *start, unsigned int len)
2532 {
2533 	if (NAPI_GRO_CB(skb)->csum_valid)
2534 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2535 						  csum_partial(start, len, 0));
2536 }
2537 
2538 /* GRO checksum functions. These are logical equivalents of the normal
2539  * checksum functions (in skbuff.h) except that they operate on the GRO
2540  * offsets and fields in sk_buff.
2541  */
2542 
2543 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2544 
skb_at_gro_remcsum_start(struct sk_buff * skb)2545 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2546 {
2547 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2548 }
2549 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2550 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2551 						      bool zero_okay,
2552 						      __sum16 check)
2553 {
2554 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2555 		skb_checksum_start_offset(skb) <
2556 		 skb_gro_offset(skb)) &&
2557 		!skb_at_gro_remcsum_start(skb) &&
2558 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2559 		(!zero_okay || check));
2560 }
2561 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2562 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2563 							   __wsum psum)
2564 {
2565 	if (NAPI_GRO_CB(skb)->csum_valid &&
2566 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2567 		return 0;
2568 
2569 	NAPI_GRO_CB(skb)->csum = psum;
2570 
2571 	return __skb_gro_checksum_complete(skb);
2572 }
2573 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2574 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2575 {
2576 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2577 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2578 		NAPI_GRO_CB(skb)->csum_cnt--;
2579 	} else {
2580 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2581 		 * verified a new top level checksum or an encapsulated one
2582 		 * during GRO. This saves work if we fallback to normal path.
2583 		 */
2584 		__skb_incr_checksum_unnecessary(skb);
2585 	}
2586 }
2587 
2588 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2589 				    compute_pseudo)			\
2590 ({									\
2591 	__sum16 __ret = 0;						\
2592 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2593 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2594 				compute_pseudo(skb, proto));		\
2595 	if (__ret)							\
2596 		__skb_mark_checksum_bad(skb);				\
2597 	else								\
2598 		skb_gro_incr_csum_unnecessary(skb);			\
2599 	__ret;								\
2600 })
2601 
2602 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2603 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2604 
2605 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2606 					     compute_pseudo)		\
2607 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2608 
2609 #define skb_gro_checksum_simple_validate(skb)				\
2610 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2611 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2612 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2613 {
2614 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2615 		!NAPI_GRO_CB(skb)->csum_valid);
2616 }
2617 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2618 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2619 					      __sum16 check, __wsum pseudo)
2620 {
2621 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2622 	NAPI_GRO_CB(skb)->csum_valid = 1;
2623 }
2624 
2625 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2626 do {									\
2627 	if (__skb_gro_checksum_convert_check(skb))			\
2628 		__skb_gro_checksum_convert(skb, check,			\
2629 					   compute_pseudo(skb, proto));	\
2630 } while (0)
2631 
2632 struct gro_remcsum {
2633 	int offset;
2634 	__wsum delta;
2635 };
2636 
skb_gro_remcsum_init(struct gro_remcsum * grc)2637 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2638 {
2639 	grc->offset = 0;
2640 	grc->delta = 0;
2641 }
2642 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2643 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2644 					    unsigned int off, size_t hdrlen,
2645 					    int start, int offset,
2646 					    struct gro_remcsum *grc,
2647 					    bool nopartial)
2648 {
2649 	__wsum delta;
2650 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2651 
2652 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2653 
2654 	if (!nopartial) {
2655 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2656 		return ptr;
2657 	}
2658 
2659 	ptr = skb_gro_header_fast(skb, off);
2660 	if (skb_gro_header_hard(skb, off + plen)) {
2661 		ptr = skb_gro_header_slow(skb, off + plen, off);
2662 		if (!ptr)
2663 			return NULL;
2664 	}
2665 
2666 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2667 			       start, offset);
2668 
2669 	/* Adjust skb->csum since we changed the packet */
2670 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2671 
2672 	grc->offset = off + hdrlen + offset;
2673 	grc->delta = delta;
2674 
2675 	return ptr;
2676 }
2677 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2678 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2679 					   struct gro_remcsum *grc)
2680 {
2681 	void *ptr;
2682 	size_t plen = grc->offset + sizeof(u16);
2683 
2684 	if (!grc->delta)
2685 		return;
2686 
2687 	ptr = skb_gro_header_fast(skb, grc->offset);
2688 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2689 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2690 		if (!ptr)
2691 			return;
2692 	}
2693 
2694 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2695 }
2696 
2697 struct skb_csum_offl_spec {
2698 	__u16		ipv4_okay:1,
2699 			ipv6_okay:1,
2700 			encap_okay:1,
2701 			ip_options_okay:1,
2702 			ext_hdrs_okay:1,
2703 			tcp_okay:1,
2704 			udp_okay:1,
2705 			sctp_okay:1,
2706 			vlan_okay:1,
2707 			no_encapped_ipv6:1,
2708 			no_not_encapped:1;
2709 };
2710 
2711 bool __skb_csum_offload_chk(struct sk_buff *skb,
2712 			    const struct skb_csum_offl_spec *spec,
2713 			    bool *csum_encapped,
2714 			    bool csum_help);
2715 
skb_csum_offload_chk(struct sk_buff * skb,const struct skb_csum_offl_spec * spec,bool * csum_encapped,bool csum_help)2716 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2717 					const struct skb_csum_offl_spec *spec,
2718 					bool *csum_encapped,
2719 					bool csum_help)
2720 {
2721 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2722 		return false;
2723 
2724 	return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2725 }
2726 
skb_csum_offload_chk_help(struct sk_buff * skb,const struct skb_csum_offl_spec * spec)2727 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2728 					     const struct skb_csum_offl_spec *spec)
2729 {
2730 	bool csum_encapped;
2731 
2732 	return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2733 }
2734 
skb_csum_off_chk_help_cmn(struct sk_buff * skb)2735 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2736 {
2737 	static const struct skb_csum_offl_spec csum_offl_spec = {
2738 		.ipv4_okay = 1,
2739 		.ip_options_okay = 1,
2740 		.ipv6_okay = 1,
2741 		.vlan_okay = 1,
2742 		.tcp_okay = 1,
2743 		.udp_okay = 1,
2744 	};
2745 
2746 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2747 }
2748 
skb_csum_off_chk_help_cmn_v4_only(struct sk_buff * skb)2749 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2750 {
2751 	static const struct skb_csum_offl_spec csum_offl_spec = {
2752 		.ipv4_okay = 1,
2753 		.ip_options_okay = 1,
2754 		.tcp_okay = 1,
2755 		.udp_okay = 1,
2756 		.vlan_okay = 1,
2757 	};
2758 
2759 	return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2760 }
2761 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2762 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2763 				  unsigned short type,
2764 				  const void *daddr, const void *saddr,
2765 				  unsigned int len)
2766 {
2767 	if (!dev->header_ops || !dev->header_ops->create)
2768 		return 0;
2769 
2770 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2771 }
2772 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2773 static inline int dev_parse_header(const struct sk_buff *skb,
2774 				   unsigned char *haddr)
2775 {
2776 	const struct net_device *dev = skb->dev;
2777 
2778 	if (!dev->header_ops || !dev->header_ops->parse)
2779 		return 0;
2780 	return dev->header_ops->parse(skb, haddr);
2781 }
2782 
2783 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2784 static inline bool dev_validate_header(const struct net_device *dev,
2785 				       char *ll_header, int len)
2786 {
2787 	if (likely(len >= dev->hard_header_len))
2788 		return true;
2789 	if (len < dev->min_header_len)
2790 		return false;
2791 
2792 	if (capable(CAP_SYS_RAWIO)) {
2793 		memset(ll_header + len, 0, dev->hard_header_len - len);
2794 		return true;
2795 	}
2796 
2797 	if (dev->header_ops && dev->header_ops->validate)
2798 		return dev->header_ops->validate(ll_header, len);
2799 
2800 	return false;
2801 }
2802 
2803 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2804 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2805 static inline int unregister_gifconf(unsigned int family)
2806 {
2807 	return register_gifconf(family, NULL);
2808 }
2809 
2810 #ifdef CONFIG_NET_FLOW_LIMIT
2811 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2812 struct sd_flow_limit {
2813 	u64			count;
2814 	unsigned int		num_buckets;
2815 	unsigned int		history_head;
2816 	u16			history[FLOW_LIMIT_HISTORY];
2817 	u8			buckets[];
2818 };
2819 
2820 extern int netdev_flow_limit_table_len;
2821 #endif /* CONFIG_NET_FLOW_LIMIT */
2822 
2823 /*
2824  * Incoming packets are placed on per-CPU queues
2825  */
2826 struct softnet_data {
2827 	struct list_head	poll_list;
2828 	struct sk_buff_head	process_queue;
2829 
2830 	/* stats */
2831 	unsigned int		processed;
2832 	unsigned int		time_squeeze;
2833 	unsigned int		received_rps;
2834 #ifdef CONFIG_RPS
2835 	struct softnet_data	*rps_ipi_list;
2836 #endif
2837 #ifdef CONFIG_NET_FLOW_LIMIT
2838 	struct sd_flow_limit __rcu *flow_limit;
2839 #endif
2840 	struct Qdisc		*output_queue;
2841 	struct Qdisc		**output_queue_tailp;
2842 	struct sk_buff		*completion_queue;
2843 
2844 #ifdef CONFIG_RPS
2845 	/* input_queue_head should be written by cpu owning this struct,
2846 	 * and only read by other cpus. Worth using a cache line.
2847 	 */
2848 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2849 
2850 	/* Elements below can be accessed between CPUs for RPS/RFS */
2851 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2852 	struct softnet_data	*rps_ipi_next;
2853 	unsigned int		cpu;
2854 	unsigned int		input_queue_tail;
2855 #endif
2856 	unsigned int		dropped;
2857 	struct sk_buff_head	input_pkt_queue;
2858 	struct napi_struct	backlog;
2859 
2860 };
2861 
input_queue_head_incr(struct softnet_data * sd)2862 static inline void input_queue_head_incr(struct softnet_data *sd)
2863 {
2864 #ifdef CONFIG_RPS
2865 	sd->input_queue_head++;
2866 #endif
2867 }
2868 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2869 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2870 					      unsigned int *qtail)
2871 {
2872 #ifdef CONFIG_RPS
2873 	*qtail = ++sd->input_queue_tail;
2874 #endif
2875 }
2876 
2877 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2878 
2879 void __netif_schedule(struct Qdisc *q);
2880 void netif_schedule_queue(struct netdev_queue *txq);
2881 
netif_tx_schedule_all(struct net_device * dev)2882 static inline void netif_tx_schedule_all(struct net_device *dev)
2883 {
2884 	unsigned int i;
2885 
2886 	for (i = 0; i < dev->num_tx_queues; i++)
2887 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2888 }
2889 
netif_tx_start_queue(struct netdev_queue * dev_queue)2890 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2891 {
2892 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2893 }
2894 
2895 /**
2896  *	netif_start_queue - allow transmit
2897  *	@dev: network device
2898  *
2899  *	Allow upper layers to call the device hard_start_xmit routine.
2900  */
netif_start_queue(struct net_device * dev)2901 static inline void netif_start_queue(struct net_device *dev)
2902 {
2903 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2904 }
2905 
netif_tx_start_all_queues(struct net_device * dev)2906 static inline void netif_tx_start_all_queues(struct net_device *dev)
2907 {
2908 	unsigned int i;
2909 
2910 	for (i = 0; i < dev->num_tx_queues; i++) {
2911 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2912 		netif_tx_start_queue(txq);
2913 	}
2914 }
2915 
2916 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2917 
2918 /**
2919  *	netif_wake_queue - restart transmit
2920  *	@dev: network device
2921  *
2922  *	Allow upper layers to call the device hard_start_xmit routine.
2923  *	Used for flow control when transmit resources are available.
2924  */
netif_wake_queue(struct net_device * dev)2925 static inline void netif_wake_queue(struct net_device *dev)
2926 {
2927 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2928 }
2929 
netif_tx_wake_all_queues(struct net_device * dev)2930 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2931 {
2932 	unsigned int i;
2933 
2934 	for (i = 0; i < dev->num_tx_queues; i++) {
2935 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2936 		netif_tx_wake_queue(txq);
2937 	}
2938 }
2939 
netif_tx_stop_queue(struct netdev_queue * dev_queue)2940 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2941 {
2942 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2943 }
2944 
2945 /**
2946  *	netif_stop_queue - stop transmitted packets
2947  *	@dev: network device
2948  *
2949  *	Stop upper layers calling the device hard_start_xmit routine.
2950  *	Used for flow control when transmit resources are unavailable.
2951  */
netif_stop_queue(struct net_device * dev)2952 static inline void netif_stop_queue(struct net_device *dev)
2953 {
2954 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2955 }
2956 
2957 void netif_tx_stop_all_queues(struct net_device *dev);
2958 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)2959 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2960 {
2961 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2962 }
2963 
2964 /**
2965  *	netif_queue_stopped - test if transmit queue is flowblocked
2966  *	@dev: network device
2967  *
2968  *	Test if transmit queue on device is currently unable to send.
2969  */
netif_queue_stopped(const struct net_device * dev)2970 static inline bool netif_queue_stopped(const struct net_device *dev)
2971 {
2972 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2973 }
2974 
netif_xmit_stopped(const struct netdev_queue * dev_queue)2975 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2976 {
2977 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2978 }
2979 
2980 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)2981 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2982 {
2983 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2984 }
2985 
2986 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)2987 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2988 {
2989 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2990 }
2991 
2992 /**
2993  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2994  *	@dev_queue: pointer to transmit queue
2995  *
2996  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2997  * to give appropriate hint to the CPU.
2998  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)2999 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3000 {
3001 #ifdef CONFIG_BQL
3002 	prefetchw(&dev_queue->dql.num_queued);
3003 #endif
3004 }
3005 
3006 /**
3007  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3008  *	@dev_queue: pointer to transmit queue
3009  *
3010  * BQL enabled drivers might use this helper in their TX completion path,
3011  * to give appropriate hint to the CPU.
3012  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3013 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3014 {
3015 #ifdef CONFIG_BQL
3016 	prefetchw(&dev_queue->dql.limit);
3017 #endif
3018 }
3019 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3020 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3021 					unsigned int bytes)
3022 {
3023 #ifdef CONFIG_BQL
3024 	dql_queued(&dev_queue->dql, bytes);
3025 
3026 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3027 		return;
3028 
3029 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3030 
3031 	/*
3032 	 * The XOFF flag must be set before checking the dql_avail below,
3033 	 * because in netdev_tx_completed_queue we update the dql_completed
3034 	 * before checking the XOFF flag.
3035 	 */
3036 	smp_mb();
3037 
3038 	/* check again in case another CPU has just made room avail */
3039 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3040 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3041 #endif
3042 }
3043 
3044 /**
3045  * 	netdev_sent_queue - report the number of bytes queued to hardware
3046  * 	@dev: network device
3047  * 	@bytes: number of bytes queued to the hardware device queue
3048  *
3049  * 	Report the number of bytes queued for sending/completion to the network
3050  * 	device hardware queue. @bytes should be a good approximation and should
3051  * 	exactly match netdev_completed_queue() @bytes
3052  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3053 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3054 {
3055 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3056 }
3057 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3058 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3059 					     unsigned int pkts, unsigned int bytes)
3060 {
3061 #ifdef CONFIG_BQL
3062 	if (unlikely(!bytes))
3063 		return;
3064 
3065 	dql_completed(&dev_queue->dql, bytes);
3066 
3067 	/*
3068 	 * Without the memory barrier there is a small possiblity that
3069 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3070 	 * be stopped forever
3071 	 */
3072 	smp_mb();
3073 
3074 	if (dql_avail(&dev_queue->dql) < 0)
3075 		return;
3076 
3077 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3078 		netif_schedule_queue(dev_queue);
3079 #endif
3080 }
3081 
3082 /**
3083  * 	netdev_completed_queue - report bytes and packets completed by device
3084  * 	@dev: network device
3085  * 	@pkts: actual number of packets sent over the medium
3086  * 	@bytes: actual number of bytes sent over the medium
3087  *
3088  * 	Report the number of bytes and packets transmitted by the network device
3089  * 	hardware queue over the physical medium, @bytes must exactly match the
3090  * 	@bytes amount passed to netdev_sent_queue()
3091  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3092 static inline void netdev_completed_queue(struct net_device *dev,
3093 					  unsigned int pkts, unsigned int bytes)
3094 {
3095 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3096 }
3097 
netdev_tx_reset_queue(struct netdev_queue * q)3098 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3099 {
3100 #ifdef CONFIG_BQL
3101 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3102 	dql_reset(&q->dql);
3103 #endif
3104 }
3105 
3106 /**
3107  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3108  * 	@dev_queue: network device
3109  *
3110  * 	Reset the bytes and packet count of a network device and clear the
3111  * 	software flow control OFF bit for this network device
3112  */
netdev_reset_queue(struct net_device * dev_queue)3113 static inline void netdev_reset_queue(struct net_device *dev_queue)
3114 {
3115 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3116 }
3117 
3118 /**
3119  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3120  * 	@dev: network device
3121  * 	@queue_index: given tx queue index
3122  *
3123  * 	Returns 0 if given tx queue index >= number of device tx queues,
3124  * 	otherwise returns the originally passed tx queue index.
3125  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3126 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3127 {
3128 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3129 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3130 				     dev->name, queue_index,
3131 				     dev->real_num_tx_queues);
3132 		return 0;
3133 	}
3134 
3135 	return queue_index;
3136 }
3137 
3138 /**
3139  *	netif_running - test if up
3140  *	@dev: network device
3141  *
3142  *	Test if the device has been brought up.
3143  */
netif_running(const struct net_device * dev)3144 static inline bool netif_running(const struct net_device *dev)
3145 {
3146 	return test_bit(__LINK_STATE_START, &dev->state);
3147 }
3148 
3149 /*
3150  * Routines to manage the subqueues on a device.  We only need start,
3151  * stop, and a check if it's stopped.  All other device management is
3152  * done at the overall netdevice level.
3153  * Also test the device if we're multiqueue.
3154  */
3155 
3156 /**
3157  *	netif_start_subqueue - allow sending packets on subqueue
3158  *	@dev: network device
3159  *	@queue_index: sub queue index
3160  *
3161  * Start individual transmit queue of a device with multiple transmit queues.
3162  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3163 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3164 {
3165 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3166 
3167 	netif_tx_start_queue(txq);
3168 }
3169 
3170 /**
3171  *	netif_stop_subqueue - stop sending packets on subqueue
3172  *	@dev: network device
3173  *	@queue_index: sub queue index
3174  *
3175  * Stop individual transmit queue of a device with multiple transmit queues.
3176  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3177 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3178 {
3179 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3180 	netif_tx_stop_queue(txq);
3181 }
3182 
3183 /**
3184  *	netif_subqueue_stopped - test status of subqueue
3185  *	@dev: network device
3186  *	@queue_index: sub queue index
3187  *
3188  * Check individual transmit queue of a device with multiple transmit queues.
3189  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3190 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3191 					    u16 queue_index)
3192 {
3193 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3194 
3195 	return netif_tx_queue_stopped(txq);
3196 }
3197 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3198 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3199 					  struct sk_buff *skb)
3200 {
3201 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3202 }
3203 
3204 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3205 
3206 #ifdef CONFIG_XPS
3207 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3208 			u16 index);
3209 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3210 static inline int netif_set_xps_queue(struct net_device *dev,
3211 				      const struct cpumask *mask,
3212 				      u16 index)
3213 {
3214 	return 0;
3215 }
3216 #endif
3217 
3218 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3219 		  unsigned int num_tx_queues);
3220 
3221 /*
3222  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3223  * as a distribution range limit for the returned value.
3224  */
skb_tx_hash(const struct net_device * dev,struct sk_buff * skb)3225 static inline u16 skb_tx_hash(const struct net_device *dev,
3226 			      struct sk_buff *skb)
3227 {
3228 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3229 }
3230 
3231 /**
3232  *	netif_is_multiqueue - test if device has multiple transmit queues
3233  *	@dev: network device
3234  *
3235  * Check if device has multiple transmit queues
3236  */
netif_is_multiqueue(const struct net_device * dev)3237 static inline bool netif_is_multiqueue(const struct net_device *dev)
3238 {
3239 	return dev->num_tx_queues > 1;
3240 }
3241 
3242 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3243 
3244 #ifdef CONFIG_SYSFS
3245 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3246 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3247 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3248 						unsigned int rxq)
3249 {
3250 	return 0;
3251 }
3252 #endif
3253 
3254 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3255 static inline unsigned int get_netdev_rx_queue_index(
3256 		struct netdev_rx_queue *queue)
3257 {
3258 	struct net_device *dev = queue->dev;
3259 	int index = queue - dev->_rx;
3260 
3261 	BUG_ON(index >= dev->num_rx_queues);
3262 	return index;
3263 }
3264 #endif
3265 
3266 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3267 int netif_get_num_default_rss_queues(void);
3268 
3269 enum skb_free_reason {
3270 	SKB_REASON_CONSUMED,
3271 	SKB_REASON_DROPPED,
3272 };
3273 
3274 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3275 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3276 
3277 /*
3278  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3279  * interrupt context or with hardware interrupts being disabled.
3280  * (in_irq() || irqs_disabled())
3281  *
3282  * We provide four helpers that can be used in following contexts :
3283  *
3284  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3285  *  replacing kfree_skb(skb)
3286  *
3287  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3288  *  Typically used in place of consume_skb(skb) in TX completion path
3289  *
3290  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3291  *  replacing kfree_skb(skb)
3292  *
3293  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3294  *  and consumed a packet. Used in place of consume_skb(skb)
3295  */
dev_kfree_skb_irq(struct sk_buff * skb)3296 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3297 {
3298 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3299 }
3300 
dev_consume_skb_irq(struct sk_buff * skb)3301 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3302 {
3303 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3304 }
3305 
dev_kfree_skb_any(struct sk_buff * skb)3306 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3307 {
3308 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3309 }
3310 
dev_consume_skb_any(struct sk_buff * skb)3311 static inline void dev_consume_skb_any(struct sk_buff *skb)
3312 {
3313 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3314 }
3315 
3316 int netif_rx(struct sk_buff *skb);
3317 int netif_rx_ni(struct sk_buff *skb);
3318 int netif_receive_skb(struct sk_buff *skb);
3319 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3320 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3321 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3322 gro_result_t napi_gro_frags(struct napi_struct *napi);
3323 struct packet_offload *gro_find_receive_by_type(__be16 type);
3324 struct packet_offload *gro_find_complete_by_type(__be16 type);
3325 
napi_free_frags(struct napi_struct * napi)3326 static inline void napi_free_frags(struct napi_struct *napi)
3327 {
3328 	kfree_skb(napi->skb);
3329 	napi->skb = NULL;
3330 }
3331 
3332 bool netdev_is_rx_handler_busy(struct net_device *dev);
3333 int netdev_rx_handler_register(struct net_device *dev,
3334 			       rx_handler_func_t *rx_handler,
3335 			       void *rx_handler_data);
3336 void netdev_rx_handler_unregister(struct net_device *dev);
3337 
3338 bool dev_valid_name(const char *name);
3339 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3340 int dev_ethtool(struct net *net, struct ifreq *);
3341 unsigned int dev_get_flags(const struct net_device *);
3342 int __dev_change_flags(struct net_device *, unsigned int flags);
3343 int dev_change_flags(struct net_device *, unsigned int);
3344 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3345 			unsigned int gchanges);
3346 int dev_change_name(struct net_device *, const char *);
3347 int dev_set_alias(struct net_device *, const char *, size_t);
3348 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3349 int dev_set_mtu(struct net_device *, int);
3350 void dev_set_group(struct net_device *, int);
3351 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3352 int dev_change_carrier(struct net_device *, bool new_carrier);
3353 int dev_get_phys_port_id(struct net_device *dev,
3354 			 struct netdev_phys_item_id *ppid);
3355 int dev_get_phys_port_name(struct net_device *dev,
3356 			   char *name, size_t len);
3357 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3358 int dev_change_xdp_fd(struct net_device *dev, int fd);
3359 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3360 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3361 				    struct netdev_queue *txq, int *ret);
3362 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3363 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3364 bool is_skb_forwardable(const struct net_device *dev,
3365 			const struct sk_buff *skb);
3366 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3367 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3368 					       struct sk_buff *skb)
3369 {
3370 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3371 	    unlikely(!is_skb_forwardable(dev, skb))) {
3372 		atomic_long_inc(&dev->rx_dropped);
3373 		kfree_skb(skb);
3374 		return NET_RX_DROP;
3375 	}
3376 
3377 	skb_scrub_packet(skb, true);
3378 	skb->priority = 0;
3379 	return 0;
3380 }
3381 
3382 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3383 
3384 extern int		netdev_budget;
3385 
3386 /* Called by rtnetlink.c:rtnl_unlock() */
3387 void netdev_run_todo(void);
3388 
3389 /**
3390  *	dev_put - release reference to device
3391  *	@dev: network device
3392  *
3393  * Release reference to device to allow it to be freed.
3394  */
dev_put(struct net_device * dev)3395 static inline void dev_put(struct net_device *dev)
3396 {
3397 	this_cpu_dec(*dev->pcpu_refcnt);
3398 }
3399 
3400 /**
3401  *	dev_hold - get reference to device
3402  *	@dev: network device
3403  *
3404  * Hold reference to device to keep it from being freed.
3405  */
dev_hold(struct net_device * dev)3406 static inline void dev_hold(struct net_device *dev)
3407 {
3408 	this_cpu_inc(*dev->pcpu_refcnt);
3409 }
3410 
3411 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3412  * and _off may be called from IRQ context, but it is caller
3413  * who is responsible for serialization of these calls.
3414  *
3415  * The name carrier is inappropriate, these functions should really be
3416  * called netif_lowerlayer_*() because they represent the state of any
3417  * kind of lower layer not just hardware media.
3418  */
3419 
3420 void linkwatch_init_dev(struct net_device *dev);
3421 void linkwatch_fire_event(struct net_device *dev);
3422 void linkwatch_forget_dev(struct net_device *dev);
3423 
3424 /**
3425  *	netif_carrier_ok - test if carrier present
3426  *	@dev: network device
3427  *
3428  * Check if carrier is present on device
3429  */
netif_carrier_ok(const struct net_device * dev)3430 static inline bool netif_carrier_ok(const struct net_device *dev)
3431 {
3432 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3433 }
3434 
3435 unsigned long dev_trans_start(struct net_device *dev);
3436 
3437 void __netdev_watchdog_up(struct net_device *dev);
3438 
3439 void netif_carrier_on(struct net_device *dev);
3440 
3441 void netif_carrier_off(struct net_device *dev);
3442 
3443 /**
3444  *	netif_dormant_on - mark device as dormant.
3445  *	@dev: network device
3446  *
3447  * Mark device as dormant (as per RFC2863).
3448  *
3449  * The dormant state indicates that the relevant interface is not
3450  * actually in a condition to pass packets (i.e., it is not 'up') but is
3451  * in a "pending" state, waiting for some external event.  For "on-
3452  * demand" interfaces, this new state identifies the situation where the
3453  * interface is waiting for events to place it in the up state.
3454  */
netif_dormant_on(struct net_device * dev)3455 static inline void netif_dormant_on(struct net_device *dev)
3456 {
3457 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3458 		linkwatch_fire_event(dev);
3459 }
3460 
3461 /**
3462  *	netif_dormant_off - set device as not dormant.
3463  *	@dev: network device
3464  *
3465  * Device is not in dormant state.
3466  */
netif_dormant_off(struct net_device * dev)3467 static inline void netif_dormant_off(struct net_device *dev)
3468 {
3469 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3470 		linkwatch_fire_event(dev);
3471 }
3472 
3473 /**
3474  *	netif_dormant - test if carrier present
3475  *	@dev: network device
3476  *
3477  * Check if carrier is present on device
3478  */
netif_dormant(const struct net_device * dev)3479 static inline bool netif_dormant(const struct net_device *dev)
3480 {
3481 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3482 }
3483 
3484 
3485 /**
3486  *	netif_oper_up - test if device is operational
3487  *	@dev: network device
3488  *
3489  * Check if carrier is operational
3490  */
netif_oper_up(const struct net_device * dev)3491 static inline bool netif_oper_up(const struct net_device *dev)
3492 {
3493 	return (dev->operstate == IF_OPER_UP ||
3494 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3495 }
3496 
3497 /**
3498  *	netif_device_present - is device available or removed
3499  *	@dev: network device
3500  *
3501  * Check if device has not been removed from system.
3502  */
netif_device_present(struct net_device * dev)3503 static inline bool netif_device_present(struct net_device *dev)
3504 {
3505 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3506 }
3507 
3508 void netif_device_detach(struct net_device *dev);
3509 
3510 void netif_device_attach(struct net_device *dev);
3511 
3512 /*
3513  * Network interface message level settings
3514  */
3515 
3516 enum {
3517 	NETIF_MSG_DRV		= 0x0001,
3518 	NETIF_MSG_PROBE		= 0x0002,
3519 	NETIF_MSG_LINK		= 0x0004,
3520 	NETIF_MSG_TIMER		= 0x0008,
3521 	NETIF_MSG_IFDOWN	= 0x0010,
3522 	NETIF_MSG_IFUP		= 0x0020,
3523 	NETIF_MSG_RX_ERR	= 0x0040,
3524 	NETIF_MSG_TX_ERR	= 0x0080,
3525 	NETIF_MSG_TX_QUEUED	= 0x0100,
3526 	NETIF_MSG_INTR		= 0x0200,
3527 	NETIF_MSG_TX_DONE	= 0x0400,
3528 	NETIF_MSG_RX_STATUS	= 0x0800,
3529 	NETIF_MSG_PKTDATA	= 0x1000,
3530 	NETIF_MSG_HW		= 0x2000,
3531 	NETIF_MSG_WOL		= 0x4000,
3532 };
3533 
3534 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3535 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3536 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3537 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3538 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3539 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3540 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3541 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3542 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3543 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3544 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3545 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3546 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3547 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3548 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3549 
netif_msg_init(int debug_value,int default_msg_enable_bits)3550 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3551 {
3552 	/* use default */
3553 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3554 		return default_msg_enable_bits;
3555 	if (debug_value == 0)	/* no output */
3556 		return 0;
3557 	/* set low N bits */
3558 	return (1 << debug_value) - 1;
3559 }
3560 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3561 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3562 {
3563 	spin_lock(&txq->_xmit_lock);
3564 	txq->xmit_lock_owner = cpu;
3565 }
3566 
__netif_tx_lock_bh(struct netdev_queue * txq)3567 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3568 {
3569 	spin_lock_bh(&txq->_xmit_lock);
3570 	txq->xmit_lock_owner = smp_processor_id();
3571 }
3572 
__netif_tx_trylock(struct netdev_queue * txq)3573 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3574 {
3575 	bool ok = spin_trylock(&txq->_xmit_lock);
3576 	if (likely(ok))
3577 		txq->xmit_lock_owner = smp_processor_id();
3578 	return ok;
3579 }
3580 
__netif_tx_unlock(struct netdev_queue * txq)3581 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3582 {
3583 	txq->xmit_lock_owner = -1;
3584 	spin_unlock(&txq->_xmit_lock);
3585 }
3586 
__netif_tx_unlock_bh(struct netdev_queue * txq)3587 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3588 {
3589 	txq->xmit_lock_owner = -1;
3590 	spin_unlock_bh(&txq->_xmit_lock);
3591 }
3592 
txq_trans_update(struct netdev_queue * txq)3593 static inline void txq_trans_update(struct netdev_queue *txq)
3594 {
3595 	if (txq->xmit_lock_owner != -1)
3596 		txq->trans_start = jiffies;
3597 }
3598 
3599 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)3600 static inline void netif_trans_update(struct net_device *dev)
3601 {
3602 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3603 
3604 	if (txq->trans_start != jiffies)
3605 		txq->trans_start = jiffies;
3606 }
3607 
3608 /**
3609  *	netif_tx_lock - grab network device transmit lock
3610  *	@dev: network device
3611  *
3612  * Get network device transmit lock
3613  */
netif_tx_lock(struct net_device * dev)3614 static inline void netif_tx_lock(struct net_device *dev)
3615 {
3616 	unsigned int i;
3617 	int cpu;
3618 
3619 	spin_lock(&dev->tx_global_lock);
3620 	cpu = smp_processor_id();
3621 	for (i = 0; i < dev->num_tx_queues; i++) {
3622 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3623 
3624 		/* We are the only thread of execution doing a
3625 		 * freeze, but we have to grab the _xmit_lock in
3626 		 * order to synchronize with threads which are in
3627 		 * the ->hard_start_xmit() handler and already
3628 		 * checked the frozen bit.
3629 		 */
3630 		__netif_tx_lock(txq, cpu);
3631 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3632 		__netif_tx_unlock(txq);
3633 	}
3634 }
3635 
netif_tx_lock_bh(struct net_device * dev)3636 static inline void netif_tx_lock_bh(struct net_device *dev)
3637 {
3638 	local_bh_disable();
3639 	netif_tx_lock(dev);
3640 }
3641 
netif_tx_unlock(struct net_device * dev)3642 static inline void netif_tx_unlock(struct net_device *dev)
3643 {
3644 	unsigned int i;
3645 
3646 	for (i = 0; i < dev->num_tx_queues; i++) {
3647 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3648 
3649 		/* No need to grab the _xmit_lock here.  If the
3650 		 * queue is not stopped for another reason, we
3651 		 * force a schedule.
3652 		 */
3653 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3654 		netif_schedule_queue(txq);
3655 	}
3656 	spin_unlock(&dev->tx_global_lock);
3657 }
3658 
netif_tx_unlock_bh(struct net_device * dev)3659 static inline void netif_tx_unlock_bh(struct net_device *dev)
3660 {
3661 	netif_tx_unlock(dev);
3662 	local_bh_enable();
3663 }
3664 
3665 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3666 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3667 		__netif_tx_lock(txq, cpu);		\
3668 	}						\
3669 }
3670 
3671 #define HARD_TX_TRYLOCK(dev, txq)			\
3672 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3673 		__netif_tx_trylock(txq) :		\
3674 		true )
3675 
3676 #define HARD_TX_UNLOCK(dev, txq) {			\
3677 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3678 		__netif_tx_unlock(txq);			\
3679 	}						\
3680 }
3681 
netif_tx_disable(struct net_device * dev)3682 static inline void netif_tx_disable(struct net_device *dev)
3683 {
3684 	unsigned int i;
3685 	int cpu;
3686 
3687 	local_bh_disable();
3688 	cpu = smp_processor_id();
3689 	for (i = 0; i < dev->num_tx_queues; i++) {
3690 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3691 
3692 		__netif_tx_lock(txq, cpu);
3693 		netif_tx_stop_queue(txq);
3694 		__netif_tx_unlock(txq);
3695 	}
3696 	local_bh_enable();
3697 }
3698 
netif_addr_lock(struct net_device * dev)3699 static inline void netif_addr_lock(struct net_device *dev)
3700 {
3701 	spin_lock(&dev->addr_list_lock);
3702 }
3703 
netif_addr_lock_nested(struct net_device * dev)3704 static inline void netif_addr_lock_nested(struct net_device *dev)
3705 {
3706 	int subclass = SINGLE_DEPTH_NESTING;
3707 
3708 	if (dev->netdev_ops->ndo_get_lock_subclass)
3709 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3710 
3711 	spin_lock_nested(&dev->addr_list_lock, subclass);
3712 }
3713 
netif_addr_lock_bh(struct net_device * dev)3714 static inline void netif_addr_lock_bh(struct net_device *dev)
3715 {
3716 	spin_lock_bh(&dev->addr_list_lock);
3717 }
3718 
netif_addr_unlock(struct net_device * dev)3719 static inline void netif_addr_unlock(struct net_device *dev)
3720 {
3721 	spin_unlock(&dev->addr_list_lock);
3722 }
3723 
netif_addr_unlock_bh(struct net_device * dev)3724 static inline void netif_addr_unlock_bh(struct net_device *dev)
3725 {
3726 	spin_unlock_bh(&dev->addr_list_lock);
3727 }
3728 
3729 /*
3730  * dev_addrs walker. Should be used only for read access. Call with
3731  * rcu_read_lock held.
3732  */
3733 #define for_each_dev_addr(dev, ha) \
3734 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3735 
3736 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3737 
3738 void ether_setup(struct net_device *dev);
3739 
3740 /* Support for loadable net-drivers */
3741 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3742 				    unsigned char name_assign_type,
3743 				    void (*setup)(struct net_device *),
3744 				    unsigned int txqs, unsigned int rxqs);
3745 int dev_get_valid_name(struct net *net, struct net_device *dev,
3746 		       const char *name);
3747 
3748 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3749 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3750 
3751 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3752 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3753 			 count)
3754 
3755 int register_netdev(struct net_device *dev);
3756 void unregister_netdev(struct net_device *dev);
3757 
3758 /* General hardware address lists handling functions */
3759 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3760 		   struct netdev_hw_addr_list *from_list, int addr_len);
3761 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3762 		      struct netdev_hw_addr_list *from_list, int addr_len);
3763 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3764 		       struct net_device *dev,
3765 		       int (*sync)(struct net_device *, const unsigned char *),
3766 		       int (*unsync)(struct net_device *,
3767 				     const unsigned char *));
3768 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3769 			  struct net_device *dev,
3770 			  int (*unsync)(struct net_device *,
3771 					const unsigned char *));
3772 void __hw_addr_init(struct netdev_hw_addr_list *list);
3773 
3774 /* Functions used for device addresses handling */
3775 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3776 		 unsigned char addr_type);
3777 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3778 		 unsigned char addr_type);
3779 void dev_addr_flush(struct net_device *dev);
3780 int dev_addr_init(struct net_device *dev);
3781 
3782 /* Functions used for unicast addresses handling */
3783 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3784 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3785 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3786 int dev_uc_sync(struct net_device *to, struct net_device *from);
3787 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3788 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3789 void dev_uc_flush(struct net_device *dev);
3790 void dev_uc_init(struct net_device *dev);
3791 
3792 /**
3793  *  __dev_uc_sync - Synchonize device's unicast list
3794  *  @dev:  device to sync
3795  *  @sync: function to call if address should be added
3796  *  @unsync: function to call if address should be removed
3797  *
3798  *  Add newly added addresses to the interface, and release
3799  *  addresses that have been deleted.
3800  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3801 static inline int __dev_uc_sync(struct net_device *dev,
3802 				int (*sync)(struct net_device *,
3803 					    const unsigned char *),
3804 				int (*unsync)(struct net_device *,
3805 					      const unsigned char *))
3806 {
3807 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3808 }
3809 
3810 /**
3811  *  __dev_uc_unsync - Remove synchronized addresses from device
3812  *  @dev:  device to sync
3813  *  @unsync: function to call if address should be removed
3814  *
3815  *  Remove all addresses that were added to the device by dev_uc_sync().
3816  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3817 static inline void __dev_uc_unsync(struct net_device *dev,
3818 				   int (*unsync)(struct net_device *,
3819 						 const unsigned char *))
3820 {
3821 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3822 }
3823 
3824 /* Functions used for multicast addresses handling */
3825 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3826 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3827 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3828 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3829 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3830 int dev_mc_sync(struct net_device *to, struct net_device *from);
3831 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3832 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3833 void dev_mc_flush(struct net_device *dev);
3834 void dev_mc_init(struct net_device *dev);
3835 
3836 /**
3837  *  __dev_mc_sync - Synchonize device's multicast list
3838  *  @dev:  device to sync
3839  *  @sync: function to call if address should be added
3840  *  @unsync: function to call if address should be removed
3841  *
3842  *  Add newly added addresses to the interface, and release
3843  *  addresses that have been deleted.
3844  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3845 static inline int __dev_mc_sync(struct net_device *dev,
3846 				int (*sync)(struct net_device *,
3847 					    const unsigned char *),
3848 				int (*unsync)(struct net_device *,
3849 					      const unsigned char *))
3850 {
3851 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3852 }
3853 
3854 /**
3855  *  __dev_mc_unsync - Remove synchronized addresses from device
3856  *  @dev:  device to sync
3857  *  @unsync: function to call if address should be removed
3858  *
3859  *  Remove all addresses that were added to the device by dev_mc_sync().
3860  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3861 static inline void __dev_mc_unsync(struct net_device *dev,
3862 				   int (*unsync)(struct net_device *,
3863 						 const unsigned char *))
3864 {
3865 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3866 }
3867 
3868 /* Functions used for secondary unicast and multicast support */
3869 void dev_set_rx_mode(struct net_device *dev);
3870 void __dev_set_rx_mode(struct net_device *dev);
3871 int dev_set_promiscuity(struct net_device *dev, int inc);
3872 int dev_set_allmulti(struct net_device *dev, int inc);
3873 void netdev_state_change(struct net_device *dev);
3874 void netdev_notify_peers(struct net_device *dev);
3875 void netdev_features_change(struct net_device *dev);
3876 /* Load a device via the kmod */
3877 void dev_load(struct net *net, const char *name);
3878 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3879 					struct rtnl_link_stats64 *storage);
3880 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3881 			     const struct net_device_stats *netdev_stats);
3882 
3883 extern int		netdev_max_backlog;
3884 extern int		netdev_tstamp_prequeue;
3885 extern int		weight_p;
3886 
3887 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3888 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3889 						     struct list_head **iter);
3890 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3891 						     struct list_head **iter);
3892 
3893 /* iterate through upper list, must be called under RCU read lock */
3894 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3895 	for (iter = &(dev)->adj_list.upper, \
3896 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3897 	     updev; \
3898 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3899 
3900 /* iterate through upper list, must be called under RCU read lock */
3901 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3902 	for (iter = &(dev)->all_adj_list.upper, \
3903 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3904 	     updev; \
3905 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3906 
3907 bool netdev_has_any_upper_dev(struct net_device *dev);
3908 
3909 void *netdev_lower_get_next_private(struct net_device *dev,
3910 				    struct list_head **iter);
3911 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3912 					struct list_head **iter);
3913 
3914 #define netdev_for_each_lower_private(dev, priv, iter) \
3915 	for (iter = (dev)->adj_list.lower.next, \
3916 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3917 	     priv; \
3918 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3919 
3920 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3921 	for (iter = &(dev)->adj_list.lower, \
3922 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3923 	     priv; \
3924 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3925 
3926 void *netdev_lower_get_next(struct net_device *dev,
3927 				struct list_head **iter);
3928 
3929 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3930 	for (iter = (dev)->adj_list.lower.next, \
3931 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3932 	     ldev; \
3933 	     ldev = netdev_lower_get_next(dev, &(iter)))
3934 
3935 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3936 					     struct list_head **iter);
3937 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3938 						 struct list_head **iter);
3939 
3940 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3941 	for (iter = (dev)->all_adj_list.lower.next, \
3942 	     ldev = netdev_all_lower_get_next(dev, &(iter)); \
3943 	     ldev; \
3944 	     ldev = netdev_all_lower_get_next(dev, &(iter)))
3945 
3946 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3947 	for (iter = &(dev)->all_adj_list.lower, \
3948 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3949 	     ldev; \
3950 	     ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3951 
3952 void *netdev_adjacent_get_private(struct list_head *adj_list);
3953 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3954 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3955 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3956 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3957 int netdev_master_upper_dev_link(struct net_device *dev,
3958 				 struct net_device *upper_dev,
3959 				 void *upper_priv, void *upper_info);
3960 void netdev_upper_dev_unlink(struct net_device *dev,
3961 			     struct net_device *upper_dev);
3962 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3963 void *netdev_lower_dev_get_private(struct net_device *dev,
3964 				   struct net_device *lower_dev);
3965 void netdev_lower_state_changed(struct net_device *lower_dev,
3966 				void *lower_state_info);
3967 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3968 					   struct neighbour *n);
3969 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3970 					  struct neighbour *n);
3971 
3972 /* RSS keys are 40 or 52 bytes long */
3973 #define NETDEV_RSS_KEY_LEN 52
3974 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3975 void netdev_rss_key_fill(void *buffer, size_t len);
3976 
3977 int dev_get_nest_level(struct net_device *dev);
3978 int skb_checksum_help(struct sk_buff *skb);
3979 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3980 				  netdev_features_t features, bool tx_path);
3981 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3982 				    netdev_features_t features);
3983 
3984 struct netdev_bonding_info {
3985 	ifslave	slave;
3986 	ifbond	master;
3987 };
3988 
3989 struct netdev_notifier_bonding_info {
3990 	struct netdev_notifier_info info; /* must be first */
3991 	struct netdev_bonding_info  bonding_info;
3992 };
3993 
3994 void netdev_bonding_info_change(struct net_device *dev,
3995 				struct netdev_bonding_info *bonding_info);
3996 
3997 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)3998 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3999 {
4000 	return __skb_gso_segment(skb, features, true);
4001 }
4002 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4003 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4004 static inline bool can_checksum_protocol(netdev_features_t features,
4005 					 __be16 protocol)
4006 {
4007 	if (protocol == htons(ETH_P_FCOE))
4008 		return !!(features & NETIF_F_FCOE_CRC);
4009 
4010 	/* Assume this is an IP checksum (not SCTP CRC) */
4011 
4012 	if (features & NETIF_F_HW_CSUM) {
4013 		/* Can checksum everything */
4014 		return true;
4015 	}
4016 
4017 	switch (protocol) {
4018 	case htons(ETH_P_IP):
4019 		return !!(features & NETIF_F_IP_CSUM);
4020 	case htons(ETH_P_IPV6):
4021 		return !!(features & NETIF_F_IPV6_CSUM);
4022 	default:
4023 		return false;
4024 	}
4025 }
4026 
4027 /* Map an ethertype into IP protocol if possible */
eproto_to_ipproto(int eproto)4028 static inline int eproto_to_ipproto(int eproto)
4029 {
4030 	switch (eproto) {
4031 	case htons(ETH_P_IP):
4032 		return IPPROTO_IP;
4033 	case htons(ETH_P_IPV6):
4034 		return IPPROTO_IPV6;
4035 	default:
4036 		return -1;
4037 	}
4038 }
4039 
4040 #ifdef CONFIG_BUG
4041 void netdev_rx_csum_fault(struct net_device *dev);
4042 #else
netdev_rx_csum_fault(struct net_device * dev)4043 static inline void netdev_rx_csum_fault(struct net_device *dev)
4044 {
4045 }
4046 #endif
4047 /* rx skb timestamps */
4048 void net_enable_timestamp(void);
4049 void net_disable_timestamp(void);
4050 
4051 #ifdef CONFIG_PROC_FS
4052 int __init dev_proc_init(void);
4053 #else
4054 #define dev_proc_init() 0
4055 #endif
4056 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4057 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4058 					      struct sk_buff *skb, struct net_device *dev,
4059 					      bool more)
4060 {
4061 	skb->xmit_more = more ? 1 : 0;
4062 	return ops->ndo_start_xmit(skb, dev);
4063 }
4064 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4065 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4066 					    struct netdev_queue *txq, bool more)
4067 {
4068 	const struct net_device_ops *ops = dev->netdev_ops;
4069 	int rc;
4070 
4071 	rc = __netdev_start_xmit(ops, skb, dev, more);
4072 	if (rc == NETDEV_TX_OK)
4073 		txq_trans_update(txq);
4074 
4075 	return rc;
4076 }
4077 
4078 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4079 				const void *ns);
4080 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4081 				 const void *ns);
4082 
netdev_class_create_file(struct class_attribute * class_attr)4083 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4084 {
4085 	return netdev_class_create_file_ns(class_attr, NULL);
4086 }
4087 
netdev_class_remove_file(struct class_attribute * class_attr)4088 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4089 {
4090 	netdev_class_remove_file_ns(class_attr, NULL);
4091 }
4092 
4093 extern struct kobj_ns_type_operations net_ns_type_operations;
4094 
4095 const char *netdev_drivername(const struct net_device *dev);
4096 
4097 void linkwatch_run_queue(void);
4098 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4099 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4100 							  netdev_features_t f2)
4101 {
4102 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4103 		if (f1 & NETIF_F_HW_CSUM)
4104 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4105 		else
4106 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4107 	}
4108 
4109 	return f1 & f2;
4110 }
4111 
netdev_get_wanted_features(struct net_device * dev)4112 static inline netdev_features_t netdev_get_wanted_features(
4113 	struct net_device *dev)
4114 {
4115 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4116 }
4117 netdev_features_t netdev_increment_features(netdev_features_t all,
4118 	netdev_features_t one, netdev_features_t mask);
4119 
4120 /* Allow TSO being used on stacked device :
4121  * Performing the GSO segmentation before last device
4122  * is a performance improvement.
4123  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4124 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4125 							netdev_features_t mask)
4126 {
4127 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4128 }
4129 
4130 int __netdev_update_features(struct net_device *dev);
4131 void netdev_update_features(struct net_device *dev);
4132 void netdev_change_features(struct net_device *dev);
4133 
4134 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4135 					struct net_device *dev);
4136 
4137 netdev_features_t passthru_features_check(struct sk_buff *skb,
4138 					  struct net_device *dev,
4139 					  netdev_features_t features);
4140 netdev_features_t netif_skb_features(struct sk_buff *skb);
4141 
net_gso_ok(netdev_features_t features,int gso_type)4142 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4143 {
4144 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4145 
4146 	/* check flags correspondence */
4147 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4148 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4149 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4150 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4151 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4152 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4153 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4154 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4155 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4156 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4157 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4158 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4159 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4160 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4161 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4162 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4163 
4164 	return (features & feature) == feature;
4165 }
4166 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4167 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4168 {
4169 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4170 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4171 }
4172 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4173 static inline bool netif_needs_gso(struct sk_buff *skb,
4174 				   netdev_features_t features)
4175 {
4176 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4177 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4178 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4179 }
4180 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4181 static inline void netif_set_gso_max_size(struct net_device *dev,
4182 					  unsigned int size)
4183 {
4184 	dev->gso_max_size = size;
4185 }
4186 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4187 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4188 					int pulled_hlen, u16 mac_offset,
4189 					int mac_len)
4190 {
4191 	skb->protocol = protocol;
4192 	skb->encapsulation = 1;
4193 	skb_push(skb, pulled_hlen);
4194 	skb_reset_transport_header(skb);
4195 	skb->mac_header = mac_offset;
4196 	skb->network_header = skb->mac_header + mac_len;
4197 	skb->mac_len = mac_len;
4198 }
4199 
netif_is_macsec(const struct net_device * dev)4200 static inline bool netif_is_macsec(const struct net_device *dev)
4201 {
4202 	return dev->priv_flags & IFF_MACSEC;
4203 }
4204 
netif_is_macvlan(const struct net_device * dev)4205 static inline bool netif_is_macvlan(const struct net_device *dev)
4206 {
4207 	return dev->priv_flags & IFF_MACVLAN;
4208 }
4209 
netif_is_macvlan_port(const struct net_device * dev)4210 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4211 {
4212 	return dev->priv_flags & IFF_MACVLAN_PORT;
4213 }
4214 
netif_is_ipvlan(const struct net_device * dev)4215 static inline bool netif_is_ipvlan(const struct net_device *dev)
4216 {
4217 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4218 }
4219 
netif_is_ipvlan_port(const struct net_device * dev)4220 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4221 {
4222 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4223 }
4224 
netif_is_bond_master(const struct net_device * dev)4225 static inline bool netif_is_bond_master(const struct net_device *dev)
4226 {
4227 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4228 }
4229 
netif_is_bond_slave(const struct net_device * dev)4230 static inline bool netif_is_bond_slave(const struct net_device *dev)
4231 {
4232 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4233 }
4234 
netif_supports_nofcs(struct net_device * dev)4235 static inline bool netif_supports_nofcs(struct net_device *dev)
4236 {
4237 	return dev->priv_flags & IFF_SUPP_NOFCS;
4238 }
4239 
netif_is_l3_master(const struct net_device * dev)4240 static inline bool netif_is_l3_master(const struct net_device *dev)
4241 {
4242 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4243 }
4244 
netif_is_l3_slave(const struct net_device * dev)4245 static inline bool netif_is_l3_slave(const struct net_device *dev)
4246 {
4247 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4248 }
4249 
netif_is_bridge_master(const struct net_device * dev)4250 static inline bool netif_is_bridge_master(const struct net_device *dev)
4251 {
4252 	return dev->priv_flags & IFF_EBRIDGE;
4253 }
4254 
netif_is_bridge_port(const struct net_device * dev)4255 static inline bool netif_is_bridge_port(const struct net_device *dev)
4256 {
4257 	return dev->priv_flags & IFF_BRIDGE_PORT;
4258 }
4259 
netif_is_ovs_master(const struct net_device * dev)4260 static inline bool netif_is_ovs_master(const struct net_device *dev)
4261 {
4262 	return dev->priv_flags & IFF_OPENVSWITCH;
4263 }
4264 
netif_is_team_master(const struct net_device * dev)4265 static inline bool netif_is_team_master(const struct net_device *dev)
4266 {
4267 	return dev->priv_flags & IFF_TEAM;
4268 }
4269 
netif_is_team_port(const struct net_device * dev)4270 static inline bool netif_is_team_port(const struct net_device *dev)
4271 {
4272 	return dev->priv_flags & IFF_TEAM_PORT;
4273 }
4274 
netif_is_lag_master(const struct net_device * dev)4275 static inline bool netif_is_lag_master(const struct net_device *dev)
4276 {
4277 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4278 }
4279 
netif_is_lag_port(const struct net_device * dev)4280 static inline bool netif_is_lag_port(const struct net_device *dev)
4281 {
4282 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4283 }
4284 
netif_is_rxfh_configured(const struct net_device * dev)4285 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4286 {
4287 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4288 }
4289 
4290 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)4291 static inline void netif_keep_dst(struct net_device *dev)
4292 {
4293 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4294 }
4295 
4296 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)4297 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4298 {
4299 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4300 	return dev->priv_flags & IFF_MACSEC;
4301 }
4302 
4303 extern struct pernet_operations __net_initdata loopback_net_ops;
4304 
4305 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4306 
4307 /* netdev_printk helpers, similar to dev_printk */
4308 
netdev_name(const struct net_device * dev)4309 static inline const char *netdev_name(const struct net_device *dev)
4310 {
4311 	if (!dev->name[0] || strchr(dev->name, '%'))
4312 		return "(unnamed net_device)";
4313 	return dev->name;
4314 }
4315 
netdev_reg_state(const struct net_device * dev)4316 static inline const char *netdev_reg_state(const struct net_device *dev)
4317 {
4318 	switch (dev->reg_state) {
4319 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4320 	case NETREG_REGISTERED: return "";
4321 	case NETREG_UNREGISTERING: return " (unregistering)";
4322 	case NETREG_UNREGISTERED: return " (unregistered)";
4323 	case NETREG_RELEASED: return " (released)";
4324 	case NETREG_DUMMY: return " (dummy)";
4325 	}
4326 
4327 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4328 	return " (unknown)";
4329 }
4330 
4331 __printf(3, 4)
4332 void netdev_printk(const char *level, const struct net_device *dev,
4333 		   const char *format, ...);
4334 __printf(2, 3)
4335 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4336 __printf(2, 3)
4337 void netdev_alert(const struct net_device *dev, const char *format, ...);
4338 __printf(2, 3)
4339 void netdev_crit(const struct net_device *dev, const char *format, ...);
4340 __printf(2, 3)
4341 void netdev_err(const struct net_device *dev, const char *format, ...);
4342 __printf(2, 3)
4343 void netdev_warn(const struct net_device *dev, const char *format, ...);
4344 __printf(2, 3)
4345 void netdev_notice(const struct net_device *dev, const char *format, ...);
4346 __printf(2, 3)
4347 void netdev_info(const struct net_device *dev, const char *format, ...);
4348 
4349 #define MODULE_ALIAS_NETDEV(device) \
4350 	MODULE_ALIAS("netdev-" device)
4351 
4352 #if defined(CONFIG_DYNAMIC_DEBUG)
4353 #define netdev_dbg(__dev, format, args...)			\
4354 do {								\
4355 	dynamic_netdev_dbg(__dev, format, ##args);		\
4356 } while (0)
4357 #elif defined(DEBUG)
4358 #define netdev_dbg(__dev, format, args...)			\
4359 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4360 #else
4361 #define netdev_dbg(__dev, format, args...)			\
4362 ({								\
4363 	if (0)							\
4364 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4365 })
4366 #endif
4367 
4368 #if defined(VERBOSE_DEBUG)
4369 #define netdev_vdbg	netdev_dbg
4370 #else
4371 
4372 #define netdev_vdbg(dev, format, args...)			\
4373 ({								\
4374 	if (0)							\
4375 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4376 	0;							\
4377 })
4378 #endif
4379 
4380 /*
4381  * netdev_WARN() acts like dev_printk(), but with the key difference
4382  * of using a WARN/WARN_ON to get the message out, including the
4383  * file/line information and a backtrace.
4384  */
4385 #define netdev_WARN(dev, format, args...)			\
4386 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4387 	     netdev_reg_state(dev), ##args)
4388 
4389 /* netif printk helpers, similar to netdev_printk */
4390 
4391 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4392 do {					  			\
4393 	if (netif_msg_##type(priv))				\
4394 		netdev_printk(level, (dev), fmt, ##args);	\
4395 } while (0)
4396 
4397 #define netif_level(level, priv, type, dev, fmt, args...)	\
4398 do {								\
4399 	if (netif_msg_##type(priv))				\
4400 		netdev_##level(dev, fmt, ##args);		\
4401 } while (0)
4402 
4403 #define netif_emerg(priv, type, dev, fmt, args...)		\
4404 	netif_level(emerg, priv, type, dev, fmt, ##args)
4405 #define netif_alert(priv, type, dev, fmt, args...)		\
4406 	netif_level(alert, priv, type, dev, fmt, ##args)
4407 #define netif_crit(priv, type, dev, fmt, args...)		\
4408 	netif_level(crit, priv, type, dev, fmt, ##args)
4409 #define netif_err(priv, type, dev, fmt, args...)		\
4410 	netif_level(err, priv, type, dev, fmt, ##args)
4411 #define netif_warn(priv, type, dev, fmt, args...)		\
4412 	netif_level(warn, priv, type, dev, fmt, ##args)
4413 #define netif_notice(priv, type, dev, fmt, args...)		\
4414 	netif_level(notice, priv, type, dev, fmt, ##args)
4415 #define netif_info(priv, type, dev, fmt, args...)		\
4416 	netif_level(info, priv, type, dev, fmt, ##args)
4417 
4418 #if defined(CONFIG_DYNAMIC_DEBUG)
4419 #define netif_dbg(priv, type, netdev, format, args...)		\
4420 do {								\
4421 	if (netif_msg_##type(priv))				\
4422 		dynamic_netdev_dbg(netdev, format, ##args);	\
4423 } while (0)
4424 #elif defined(DEBUG)
4425 #define netif_dbg(priv, type, dev, format, args...)		\
4426 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4427 #else
4428 #define netif_dbg(priv, type, dev, format, args...)			\
4429 ({									\
4430 	if (0)								\
4431 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4432 	0;								\
4433 })
4434 #endif
4435 
4436 #if defined(VERBOSE_DEBUG)
4437 #define netif_vdbg	netif_dbg
4438 #else
4439 #define netif_vdbg(priv, type, dev, format, args...)		\
4440 ({								\
4441 	if (0)							\
4442 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4443 	0;							\
4444 })
4445 #endif
4446 
4447 /*
4448  *	The list of packet types we will receive (as opposed to discard)
4449  *	and the routines to invoke.
4450  *
4451  *	Why 16. Because with 16 the only overlap we get on a hash of the
4452  *	low nibble of the protocol value is RARP/SNAP/X.25.
4453  *
4454  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4455  *             sure which should go first, but I bet it won't make much
4456  *             difference if we are running VLANs.  The good news is that
4457  *             this protocol won't be in the list unless compiled in, so
4458  *             the average user (w/out VLANs) will not be adversely affected.
4459  *             --BLG
4460  *
4461  *		0800	IP
4462  *		8100    802.1Q VLAN
4463  *		0001	802.3
4464  *		0002	AX.25
4465  *		0004	802.2
4466  *		8035	RARP
4467  *		0005	SNAP
4468  *		0805	X.25
4469  *		0806	ARP
4470  *		8137	IPX
4471  *		0009	Localtalk
4472  *		86DD	IPv6
4473  */
4474 #define PTYPE_HASH_SIZE	(16)
4475 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4476 
4477 #endif	/* _LINUX_NETDEVICE_H */
4478