1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176 #ifdef CONFIG_CPU_QUIET
177 extern u64 nr_running_integral(unsigned int cpu);
178 #endif
179
180 extern void calc_global_load(unsigned long ticks);
181
182 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
183 extern void cpu_load_update_nohz_start(void);
184 extern void cpu_load_update_nohz_stop(void);
185 #else
cpu_load_update_nohz_start(void)186 static inline void cpu_load_update_nohz_start(void) { }
cpu_load_update_nohz_stop(void)187 static inline void cpu_load_update_nohz_stop(void) { }
188 #endif
189
190 extern void dump_cpu_task(int cpu);
191
192 struct seq_file;
193 struct cfs_rq;
194 struct task_group;
195 #ifdef CONFIG_SCHED_DEBUG
196 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
197 extern void proc_sched_set_task(struct task_struct *p);
198 #endif
199
200 /*
201 * Task state bitmask. NOTE! These bits are also
202 * encoded in fs/proc/array.c: get_task_state().
203 *
204 * We have two separate sets of flags: task->state
205 * is about runnability, while task->exit_state are
206 * about the task exiting. Confusing, but this way
207 * modifying one set can't modify the other one by
208 * mistake.
209 */
210 #define TASK_RUNNING 0
211 #define TASK_INTERRUPTIBLE 1
212 #define TASK_UNINTERRUPTIBLE 2
213 #define __TASK_STOPPED 4
214 #define __TASK_TRACED 8
215 /* in tsk->exit_state */
216 #define EXIT_DEAD 16
217 #define EXIT_ZOMBIE 32
218 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
219 /* in tsk->state again */
220 #define TASK_DEAD 64
221 #define TASK_WAKEKILL 128
222 #define TASK_WAKING 256
223 #define TASK_PARKED 512
224 #define TASK_NOLOAD 1024
225 #define TASK_NEW 2048
226 #define TASK_STATE_MAX 4096
227
228 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
229
230 extern char ___assert_task_state[1 - 2*!!(
231 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
232
233 /* Convenience macros for the sake of set_task_state */
234 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
235 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
236 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
237
238 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
239
240 /* Convenience macros for the sake of wake_up */
241 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
242 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
243
244 /* get_task_state() */
245 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
246 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
247 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
248
249 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
250 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
251 #define task_is_stopped_or_traced(task) \
252 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
253 #define task_contributes_to_load(task) \
254 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
255 (task->flags & PF_FROZEN) == 0 && \
256 (task->state & TASK_NOLOAD) == 0)
257
258 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
259
260 #define __set_task_state(tsk, state_value) \
261 do { \
262 (tsk)->task_state_change = _THIS_IP_; \
263 (tsk)->state = (state_value); \
264 } while (0)
265 #define set_task_state(tsk, state_value) \
266 do { \
267 (tsk)->task_state_change = _THIS_IP_; \
268 smp_store_mb((tsk)->state, (state_value)); \
269 } while (0)
270
271 /*
272 * set_current_state() includes a barrier so that the write of current->state
273 * is correctly serialised wrt the caller's subsequent test of whether to
274 * actually sleep:
275 *
276 * set_current_state(TASK_UNINTERRUPTIBLE);
277 * if (do_i_need_to_sleep())
278 * schedule();
279 *
280 * If the caller does not need such serialisation then use __set_current_state()
281 */
282 #define __set_current_state(state_value) \
283 do { \
284 current->task_state_change = _THIS_IP_; \
285 current->state = (state_value); \
286 } while (0)
287 #define set_current_state(state_value) \
288 do { \
289 current->task_state_change = _THIS_IP_; \
290 smp_store_mb(current->state, (state_value)); \
291 } while (0)
292
293 #else
294
295 #define __set_task_state(tsk, state_value) \
296 do { (tsk)->state = (state_value); } while (0)
297 #define set_task_state(tsk, state_value) \
298 smp_store_mb((tsk)->state, (state_value))
299
300 /*
301 * set_current_state() includes a barrier so that the write of current->state
302 * is correctly serialised wrt the caller's subsequent test of whether to
303 * actually sleep:
304 *
305 * set_current_state(TASK_UNINTERRUPTIBLE);
306 * if (do_i_need_to_sleep())
307 * schedule();
308 *
309 * If the caller does not need such serialisation then use __set_current_state()
310 */
311 #define __set_current_state(state_value) \
312 do { current->state = (state_value); } while (0)
313 #define set_current_state(state_value) \
314 smp_store_mb(current->state, (state_value))
315
316 #endif
317
318 /* Task command name length */
319 #define TASK_COMM_LEN 16
320
321 enum task_event {
322 PUT_PREV_TASK = 0,
323 PICK_NEXT_TASK = 1,
324 TASK_WAKE = 2,
325 TASK_MIGRATE = 3,
326 TASK_UPDATE = 4,
327 IRQ_UPDATE = 5,
328 };
329
330 #include <linux/spinlock.h>
331
332 /*
333 * This serializes "schedule()" and also protects
334 * the run-queue from deletions/modifications (but
335 * _adding_ to the beginning of the run-queue has
336 * a separate lock).
337 */
338 extern rwlock_t tasklist_lock;
339 extern spinlock_t mmlist_lock;
340
341 struct task_struct;
342
343 #ifdef CONFIG_PROVE_RCU
344 extern int lockdep_tasklist_lock_is_held(void);
345 #endif /* #ifdef CONFIG_PROVE_RCU */
346
347 extern void sched_init(void);
348 extern void sched_init_smp(void);
349 extern asmlinkage void schedule_tail(struct task_struct *prev);
350 extern void init_idle(struct task_struct *idle, int cpu);
351 extern void init_idle_bootup_task(struct task_struct *idle);
352
353 extern cpumask_var_t cpu_isolated_map;
354
355 extern int runqueue_is_locked(int cpu);
356
357 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
358 extern void nohz_balance_enter_idle(int cpu);
359 extern void set_cpu_sd_state_idle(void);
360 extern int get_nohz_timer_target(void);
361 #else
nohz_balance_enter_idle(int cpu)362 static inline void nohz_balance_enter_idle(int cpu) { }
set_cpu_sd_state_idle(void)363 static inline void set_cpu_sd_state_idle(void) { }
364 #endif
365
366 /*
367 * Only dump TASK_* tasks. (0 for all tasks)
368 */
369 extern void show_state_filter(unsigned long state_filter);
370
show_state(void)371 static inline void show_state(void)
372 {
373 show_state_filter(0);
374 }
375
376 extern void show_regs(struct pt_regs *);
377
378 /*
379 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
380 * task), SP is the stack pointer of the first frame that should be shown in the back
381 * trace (or NULL if the entire call-chain of the task should be shown).
382 */
383 extern void show_stack(struct task_struct *task, unsigned long *sp);
384
385 extern void cpu_init (void);
386 extern void trap_init(void);
387 extern void update_process_times(int user);
388 extern void scheduler_tick(void);
389 extern int sched_cpu_starting(unsigned int cpu);
390 extern int sched_cpu_activate(unsigned int cpu);
391 extern int sched_cpu_deactivate(unsigned int cpu);
392
393 #ifdef CONFIG_HOTPLUG_CPU
394 extern int sched_cpu_dying(unsigned int cpu);
395 #else
396 # define sched_cpu_dying NULL
397 #endif
398
399 extern void sched_show_task(struct task_struct *p);
400
401 #ifdef CONFIG_LOCKUP_DETECTOR
402 extern void touch_softlockup_watchdog_sched(void);
403 extern void touch_softlockup_watchdog(void);
404 extern void touch_softlockup_watchdog_sync(void);
405 extern void touch_all_softlockup_watchdogs(void);
406 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
407 void __user *buffer,
408 size_t *lenp, loff_t *ppos);
409 extern unsigned int softlockup_panic;
410 extern unsigned int hardlockup_panic;
411 void lockup_detector_init(void);
412 #else
touch_softlockup_watchdog_sched(void)413 static inline void touch_softlockup_watchdog_sched(void)
414 {
415 }
touch_softlockup_watchdog(void)416 static inline void touch_softlockup_watchdog(void)
417 {
418 }
touch_softlockup_watchdog_sync(void)419 static inline void touch_softlockup_watchdog_sync(void)
420 {
421 }
touch_all_softlockup_watchdogs(void)422 static inline void touch_all_softlockup_watchdogs(void)
423 {
424 }
lockup_detector_init(void)425 static inline void lockup_detector_init(void)
426 {
427 }
428 #endif
429
430 #ifdef CONFIG_DETECT_HUNG_TASK
431 void reset_hung_task_detector(void);
432 #else
reset_hung_task_detector(void)433 static inline void reset_hung_task_detector(void)
434 {
435 }
436 #endif
437
438 /* Attach to any functions which should be ignored in wchan output. */
439 #define __sched __attribute__((__section__(".sched.text")))
440
441 /* Linker adds these: start and end of __sched functions */
442 extern char __sched_text_start[], __sched_text_end[];
443
444 /* Is this address in the __sched functions? */
445 extern int in_sched_functions(unsigned long addr);
446
447 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
448 extern signed long schedule_timeout(signed long timeout);
449 extern signed long schedule_timeout_interruptible(signed long timeout);
450 extern signed long schedule_timeout_killable(signed long timeout);
451 extern signed long schedule_timeout_uninterruptible(signed long timeout);
452 extern signed long schedule_timeout_idle(signed long timeout);
453 asmlinkage void schedule(void);
454 extern void schedule_preempt_disabled(void);
455
456 extern long io_schedule_timeout(long timeout);
457
io_schedule(void)458 static inline void io_schedule(void)
459 {
460 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
461 }
462
463 void __noreturn do_task_dead(void);
464
465 struct nsproxy;
466 struct user_namespace;
467
468 #ifdef CONFIG_MMU
469 extern void arch_pick_mmap_layout(struct mm_struct *mm);
470 extern unsigned long
471 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
472 unsigned long, unsigned long);
473 extern unsigned long
474 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
475 unsigned long len, unsigned long pgoff,
476 unsigned long flags);
477 #else
arch_pick_mmap_layout(struct mm_struct * mm)478 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
479 #endif
480
481 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
482 #define SUID_DUMP_USER 1 /* Dump as user of process */
483 #define SUID_DUMP_ROOT 2 /* Dump as root */
484
485 /* mm flags */
486
487 /* for SUID_DUMP_* above */
488 #define MMF_DUMPABLE_BITS 2
489 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
490
491 extern void set_dumpable(struct mm_struct *mm, int value);
492 /*
493 * This returns the actual value of the suid_dumpable flag. For things
494 * that are using this for checking for privilege transitions, it must
495 * test against SUID_DUMP_USER rather than treating it as a boolean
496 * value.
497 */
__get_dumpable(unsigned long mm_flags)498 static inline int __get_dumpable(unsigned long mm_flags)
499 {
500 return mm_flags & MMF_DUMPABLE_MASK;
501 }
502
get_dumpable(struct mm_struct * mm)503 static inline int get_dumpable(struct mm_struct *mm)
504 {
505 return __get_dumpable(mm->flags);
506 }
507
508 /* coredump filter bits */
509 #define MMF_DUMP_ANON_PRIVATE 2
510 #define MMF_DUMP_ANON_SHARED 3
511 #define MMF_DUMP_MAPPED_PRIVATE 4
512 #define MMF_DUMP_MAPPED_SHARED 5
513 #define MMF_DUMP_ELF_HEADERS 6
514 #define MMF_DUMP_HUGETLB_PRIVATE 7
515 #define MMF_DUMP_HUGETLB_SHARED 8
516 #define MMF_DUMP_DAX_PRIVATE 9
517 #define MMF_DUMP_DAX_SHARED 10
518
519 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
520 #define MMF_DUMP_FILTER_BITS 9
521 #define MMF_DUMP_FILTER_MASK \
522 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
523 #define MMF_DUMP_FILTER_DEFAULT \
524 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
525 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
526
527 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
528 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
529 #else
530 # define MMF_DUMP_MASK_DEFAULT_ELF 0
531 #endif
532 /* leave room for more dump flags */
533 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
534 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
535 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
536
537 #define MMF_HAS_UPROBES 19 /* has uprobes */
538 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
539 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
540 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
541 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
542
543 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
544
545 struct sighand_struct {
546 atomic_t count;
547 struct k_sigaction action[_NSIG];
548 spinlock_t siglock;
549 wait_queue_head_t signalfd_wqh;
550 };
551
552 struct pacct_struct {
553 int ac_flag;
554 long ac_exitcode;
555 unsigned long ac_mem;
556 cputime_t ac_utime, ac_stime;
557 unsigned long ac_minflt, ac_majflt;
558 };
559
560 struct cpu_itimer {
561 cputime_t expires;
562 cputime_t incr;
563 u32 error;
564 u32 incr_error;
565 };
566
567 /**
568 * struct prev_cputime - snaphsot of system and user cputime
569 * @utime: time spent in user mode
570 * @stime: time spent in system mode
571 * @lock: protects the above two fields
572 *
573 * Stores previous user/system time values such that we can guarantee
574 * monotonicity.
575 */
576 struct prev_cputime {
577 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
578 cputime_t utime;
579 cputime_t stime;
580 raw_spinlock_t lock;
581 #endif
582 };
583
prev_cputime_init(struct prev_cputime * prev)584 static inline void prev_cputime_init(struct prev_cputime *prev)
585 {
586 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
587 prev->utime = prev->stime = 0;
588 raw_spin_lock_init(&prev->lock);
589 #endif
590 }
591
592 /**
593 * struct task_cputime - collected CPU time counts
594 * @utime: time spent in user mode, in &cputime_t units
595 * @stime: time spent in kernel mode, in &cputime_t units
596 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
597 *
598 * This structure groups together three kinds of CPU time that are tracked for
599 * threads and thread groups. Most things considering CPU time want to group
600 * these counts together and treat all three of them in parallel.
601 */
602 struct task_cputime {
603 cputime_t utime;
604 cputime_t stime;
605 unsigned long long sum_exec_runtime;
606 };
607
608 /* Alternate field names when used to cache expirations. */
609 #define virt_exp utime
610 #define prof_exp stime
611 #define sched_exp sum_exec_runtime
612
613 #define INIT_CPUTIME \
614 (struct task_cputime) { \
615 .utime = 0, \
616 .stime = 0, \
617 .sum_exec_runtime = 0, \
618 }
619
620 /*
621 * This is the atomic variant of task_cputime, which can be used for
622 * storing and updating task_cputime statistics without locking.
623 */
624 struct task_cputime_atomic {
625 atomic64_t utime;
626 atomic64_t stime;
627 atomic64_t sum_exec_runtime;
628 };
629
630 #define INIT_CPUTIME_ATOMIC \
631 (struct task_cputime_atomic) { \
632 .utime = ATOMIC64_INIT(0), \
633 .stime = ATOMIC64_INIT(0), \
634 .sum_exec_runtime = ATOMIC64_INIT(0), \
635 }
636
637 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
638
639 /*
640 * Disable preemption until the scheduler is running -- use an unconditional
641 * value so that it also works on !PREEMPT_COUNT kernels.
642 *
643 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
644 */
645 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
646
647 /*
648 * Initial preempt_count value; reflects the preempt_count schedule invariant
649 * which states that during context switches:
650 *
651 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
652 *
653 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
654 * Note: See finish_task_switch().
655 */
656 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
657
658 /**
659 * struct thread_group_cputimer - thread group interval timer counts
660 * @cputime_atomic: atomic thread group interval timers.
661 * @running: true when there are timers running and
662 * @cputime_atomic receives updates.
663 * @checking_timer: true when a thread in the group is in the
664 * process of checking for thread group timers.
665 *
666 * This structure contains the version of task_cputime, above, that is
667 * used for thread group CPU timer calculations.
668 */
669 struct thread_group_cputimer {
670 struct task_cputime_atomic cputime_atomic;
671 bool running;
672 bool checking_timer;
673 };
674
675 #include <linux/rwsem.h>
676 struct autogroup;
677
678 /*
679 * NOTE! "signal_struct" does not have its own
680 * locking, because a shared signal_struct always
681 * implies a shared sighand_struct, so locking
682 * sighand_struct is always a proper superset of
683 * the locking of signal_struct.
684 */
685 struct signal_struct {
686 atomic_t sigcnt;
687 atomic_t live;
688 int nr_threads;
689 struct list_head thread_head;
690
691 wait_queue_head_t wait_chldexit; /* for wait4() */
692
693 /* current thread group signal load-balancing target: */
694 struct task_struct *curr_target;
695
696 /* shared signal handling: */
697 struct sigpending shared_pending;
698
699 /* thread group exit support */
700 int group_exit_code;
701 /* overloaded:
702 * - notify group_exit_task when ->count is equal to notify_count
703 * - everyone except group_exit_task is stopped during signal delivery
704 * of fatal signals, group_exit_task processes the signal.
705 */
706 int notify_count;
707 struct task_struct *group_exit_task;
708
709 /* thread group stop support, overloads group_exit_code too */
710 int group_stop_count;
711 unsigned int flags; /* see SIGNAL_* flags below */
712
713 /*
714 * PR_SET_CHILD_SUBREAPER marks a process, like a service
715 * manager, to re-parent orphan (double-forking) child processes
716 * to this process instead of 'init'. The service manager is
717 * able to receive SIGCHLD signals and is able to investigate
718 * the process until it calls wait(). All children of this
719 * process will inherit a flag if they should look for a
720 * child_subreaper process at exit.
721 */
722 unsigned int is_child_subreaper:1;
723 unsigned int has_child_subreaper:1;
724
725 /* POSIX.1b Interval Timers */
726 int posix_timer_id;
727 struct list_head posix_timers;
728
729 /* ITIMER_REAL timer for the process */
730 struct hrtimer real_timer;
731 struct pid *leader_pid;
732 ktime_t it_real_incr;
733
734 /*
735 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
736 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
737 * values are defined to 0 and 1 respectively
738 */
739 struct cpu_itimer it[2];
740
741 /*
742 * Thread group totals for process CPU timers.
743 * See thread_group_cputimer(), et al, for details.
744 */
745 struct thread_group_cputimer cputimer;
746
747 /* Earliest-expiration cache. */
748 struct task_cputime cputime_expires;
749
750 #ifdef CONFIG_NO_HZ_FULL
751 atomic_t tick_dep_mask;
752 #endif
753
754 struct list_head cpu_timers[3];
755
756 struct pid *tty_old_pgrp;
757
758 /* boolean value for session group leader */
759 int leader;
760
761 struct tty_struct *tty; /* NULL if no tty */
762
763 #ifdef CONFIG_SCHED_AUTOGROUP
764 struct autogroup *autogroup;
765 #endif
766 /*
767 * Cumulative resource counters for dead threads in the group,
768 * and for reaped dead child processes forked by this group.
769 * Live threads maintain their own counters and add to these
770 * in __exit_signal, except for the group leader.
771 */
772 seqlock_t stats_lock;
773 cputime_t utime, stime, cutime, cstime;
774 cputime_t gtime;
775 cputime_t cgtime;
776 struct prev_cputime prev_cputime;
777 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
778 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
779 unsigned long inblock, oublock, cinblock, coublock;
780 unsigned long maxrss, cmaxrss;
781 struct task_io_accounting ioac;
782
783 /*
784 * Cumulative ns of schedule CPU time fo dead threads in the
785 * group, not including a zombie group leader, (This only differs
786 * from jiffies_to_ns(utime + stime) if sched_clock uses something
787 * other than jiffies.)
788 */
789 unsigned long long sum_sched_runtime;
790
791 /*
792 * We don't bother to synchronize most readers of this at all,
793 * because there is no reader checking a limit that actually needs
794 * to get both rlim_cur and rlim_max atomically, and either one
795 * alone is a single word that can safely be read normally.
796 * getrlimit/setrlimit use task_lock(current->group_leader) to
797 * protect this instead of the siglock, because they really
798 * have no need to disable irqs.
799 */
800 struct rlimit rlim[RLIM_NLIMITS];
801
802 #ifdef CONFIG_BSD_PROCESS_ACCT
803 struct pacct_struct pacct; /* per-process accounting information */
804 #endif
805 #ifdef CONFIG_TASKSTATS
806 struct taskstats *stats;
807 #endif
808 #ifdef CONFIG_AUDIT
809 unsigned audit_tty;
810 struct tty_audit_buf *tty_audit_buf;
811 #endif
812
813 /*
814 * Thread is the potential origin of an oom condition; kill first on
815 * oom
816 */
817 bool oom_flag_origin;
818 short oom_score_adj; /* OOM kill score adjustment */
819 short oom_score_adj_min; /* OOM kill score adjustment min value.
820 * Only settable by CAP_SYS_RESOURCE. */
821 struct mm_struct *oom_mm; /* recorded mm when the thread group got
822 * killed by the oom killer */
823
824 struct mutex cred_guard_mutex; /* guard against foreign influences on
825 * credential calculations
826 * (notably. ptrace) */
827 };
828
829 /*
830 * Bits in flags field of signal_struct.
831 */
832 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
833 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
834 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
835 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
836 /*
837 * Pending notifications to parent.
838 */
839 #define SIGNAL_CLD_STOPPED 0x00000010
840 #define SIGNAL_CLD_CONTINUED 0x00000020
841 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
842
843 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
844
845 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
846 SIGNAL_STOP_CONTINUED)
847
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)848 static inline void signal_set_stop_flags(struct signal_struct *sig,
849 unsigned int flags)
850 {
851 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
852 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
853 }
854
855 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)856 static inline int signal_group_exit(const struct signal_struct *sig)
857 {
858 return (sig->flags & SIGNAL_GROUP_EXIT) ||
859 (sig->group_exit_task != NULL);
860 }
861
862 /*
863 * Some day this will be a full-fledged user tracking system..
864 */
865 struct user_struct {
866 atomic_t __count; /* reference count */
867 atomic_t processes; /* How many processes does this user have? */
868 atomic_t sigpending; /* How many pending signals does this user have? */
869 #ifdef CONFIG_INOTIFY_USER
870 atomic_t inotify_watches; /* How many inotify watches does this user have? */
871 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
872 #endif
873 #ifdef CONFIG_FANOTIFY
874 atomic_t fanotify_listeners;
875 #endif
876 #ifdef CONFIG_EPOLL
877 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
878 #endif
879 #ifdef CONFIG_POSIX_MQUEUE
880 /* protected by mq_lock */
881 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
882 #endif
883 unsigned long locked_shm; /* How many pages of mlocked shm ? */
884 unsigned long unix_inflight; /* How many files in flight in unix sockets */
885 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
886
887 #ifdef CONFIG_KEYS
888 struct key *uid_keyring; /* UID specific keyring */
889 struct key *session_keyring; /* UID's default session keyring */
890 #endif
891
892 /* Hash table maintenance information */
893 struct hlist_node uidhash_node;
894 kuid_t uid;
895
896 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
897 atomic_long_t locked_vm;
898 #endif
899 };
900
901 extern int uids_sysfs_init(void);
902
903 extern struct user_struct *find_user(kuid_t);
904
905 extern struct user_struct root_user;
906 #define INIT_USER (&root_user)
907
908
909 struct backing_dev_info;
910 struct reclaim_state;
911
912 #ifdef CONFIG_SCHED_INFO
913 struct sched_info {
914 /* cumulative counters */
915 unsigned long pcount; /* # of times run on this cpu */
916 unsigned long long run_delay; /* time spent waiting on a runqueue */
917
918 /* timestamps */
919 unsigned long long last_arrival,/* when we last ran on a cpu */
920 last_queued; /* when we were last queued to run */
921 };
922 #endif /* CONFIG_SCHED_INFO */
923
924 #ifdef CONFIG_TASK_DELAY_ACCT
925 struct task_delay_info {
926 spinlock_t lock;
927 unsigned int flags; /* Private per-task flags */
928
929 /* For each stat XXX, add following, aligned appropriately
930 *
931 * struct timespec XXX_start, XXX_end;
932 * u64 XXX_delay;
933 * u32 XXX_count;
934 *
935 * Atomicity of updates to XXX_delay, XXX_count protected by
936 * single lock above (split into XXX_lock if contention is an issue).
937 */
938
939 /*
940 * XXX_count is incremented on every XXX operation, the delay
941 * associated with the operation is added to XXX_delay.
942 * XXX_delay contains the accumulated delay time in nanoseconds.
943 */
944 u64 blkio_start; /* Shared by blkio, swapin */
945 u64 blkio_delay; /* wait for sync block io completion */
946 u64 swapin_delay; /* wait for swapin block io completion */
947 u32 blkio_count; /* total count of the number of sync block */
948 /* io operations performed */
949 u32 swapin_count; /* total count of the number of swapin block */
950 /* io operations performed */
951
952 u64 freepages_start;
953 u64 freepages_delay; /* wait for memory reclaim */
954 u32 freepages_count; /* total count of memory reclaim */
955 };
956 #endif /* CONFIG_TASK_DELAY_ACCT */
957
sched_info_on(void)958 static inline int sched_info_on(void)
959 {
960 #ifdef CONFIG_SCHEDSTATS
961 return 1;
962 #elif defined(CONFIG_TASK_DELAY_ACCT)
963 extern int delayacct_on;
964 return delayacct_on;
965 #else
966 return 0;
967 #endif
968 }
969
970 #ifdef CONFIG_SCHEDSTATS
971 void force_schedstat_enabled(void);
972 #endif
973
974 enum cpu_idle_type {
975 CPU_IDLE,
976 CPU_NOT_IDLE,
977 CPU_NEWLY_IDLE,
978 CPU_MAX_IDLE_TYPES
979 };
980
981 /*
982 * Integer metrics need fixed point arithmetic, e.g., sched/fair
983 * has a few: load, load_avg, util_avg, freq, and capacity.
984 *
985 * We define a basic fixed point arithmetic range, and then formalize
986 * all these metrics based on that basic range.
987 */
988 # define SCHED_FIXEDPOINT_SHIFT 10
989 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
990
991 /*
992 * Increase resolution of cpu_capacity calculations
993 */
994 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
995 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
996
997 struct sched_capacity_reqs {
998 unsigned long cfs;
999 unsigned long rt;
1000 unsigned long dl;
1001
1002 unsigned long total;
1003 };
1004
1005 /*
1006 * Wake-queues are lists of tasks with a pending wakeup, whose
1007 * callers have already marked the task as woken internally,
1008 * and can thus carry on. A common use case is being able to
1009 * do the wakeups once the corresponding user lock as been
1010 * released.
1011 *
1012 * We hold reference to each task in the list across the wakeup,
1013 * thus guaranteeing that the memory is still valid by the time
1014 * the actual wakeups are performed in wake_up_q().
1015 *
1016 * One per task suffices, because there's never a need for a task to be
1017 * in two wake queues simultaneously; it is forbidden to abandon a task
1018 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1019 * already in a wake queue, the wakeup will happen soon and the second
1020 * waker can just skip it.
1021 *
1022 * The WAKE_Q macro declares and initializes the list head.
1023 * wake_up_q() does NOT reinitialize the list; it's expected to be
1024 * called near the end of a function, where the fact that the queue is
1025 * not used again will be easy to see by inspection.
1026 *
1027 * Note that this can cause spurious wakeups. schedule() callers
1028 * must ensure the call is done inside a loop, confirming that the
1029 * wakeup condition has in fact occurred.
1030 */
1031 struct wake_q_node {
1032 struct wake_q_node *next;
1033 };
1034
1035 struct wake_q_head {
1036 struct wake_q_node *first;
1037 struct wake_q_node **lastp;
1038 };
1039
1040 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1041
1042 #define WAKE_Q(name) \
1043 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1044
1045 extern void wake_q_add(struct wake_q_head *head,
1046 struct task_struct *task);
1047 extern void wake_up_q(struct wake_q_head *head);
1048
1049 /*
1050 * sched-domains (multiprocessor balancing) declarations:
1051 */
1052 #ifdef CONFIG_SMP
1053 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1054 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1055 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1056 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1057 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1058 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1059 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1060 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1061 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1062 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1063 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1064 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1065 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1066 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1067 #define SD_NUMA 0x4000 /* cross-node balancing */
1068 #define SD_SHARE_CAP_STATES 0x8000 /* Domain members share capacity state */
1069
1070 #ifdef CONFIG_SCHED_SMT
cpu_smt_flags(void)1071 static inline int cpu_smt_flags(void)
1072 {
1073 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1074 }
1075 #endif
1076
1077 #ifdef CONFIG_SCHED_MC
cpu_core_flags(void)1078 static inline int cpu_core_flags(void)
1079 {
1080 return SD_SHARE_PKG_RESOURCES;
1081 }
1082 #endif
1083
1084 #ifdef CONFIG_NUMA
cpu_numa_flags(void)1085 static inline int cpu_numa_flags(void)
1086 {
1087 return SD_NUMA;
1088 }
1089 #endif
1090
1091 struct sched_domain_attr {
1092 int relax_domain_level;
1093 };
1094
1095 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1096 .relax_domain_level = -1, \
1097 }
1098
1099 extern int sched_domain_level_max;
1100
1101 struct capacity_state {
1102 unsigned long cap; /* compute capacity */
1103 unsigned long power; /* power consumption at this compute capacity */
1104 };
1105
1106 struct idle_state {
1107 unsigned long power; /* power consumption in this idle state */
1108 };
1109
1110 struct sched_group_energy {
1111 unsigned int nr_idle_states; /* number of idle states */
1112 struct idle_state *idle_states; /* ptr to idle state array */
1113 unsigned int nr_cap_states; /* number of capacity states */
1114 struct capacity_state *cap_states; /* ptr to capacity state array */
1115 };
1116
1117 unsigned long capacity_curr_of(int cpu);
1118
1119 struct sched_group;
1120
1121 struct eas_stats {
1122 /* select_idle_sibling() stats */
1123 u64 sis_attempts;
1124 u64 sis_idle;
1125 u64 sis_cache_affine;
1126 u64 sis_suff_cap;
1127 u64 sis_idle_cpu;
1128 u64 sis_count;
1129
1130 /* select_energy_cpu_brute() stats */
1131 u64 secb_attempts;
1132 u64 secb_sync;
1133 u64 secb_idle_bt;
1134 u64 secb_insuff_cap;
1135 u64 secb_no_nrg_sav;
1136 u64 secb_nrg_sav;
1137 u64 secb_count;
1138
1139 /* find_best_target() stats */
1140 u64 fbt_attempts;
1141 u64 fbt_no_cpu;
1142 u64 fbt_no_sd;
1143 u64 fbt_pref_idle;
1144 u64 fbt_count;
1145
1146 /* cas */
1147 /* select_task_rq_fair() stats */
1148 u64 cas_attempts;
1149 u64 cas_count;
1150 };
1151
1152 struct sched_domain_shared {
1153 atomic_t ref;
1154 atomic_t nr_busy_cpus;
1155 int has_idle_cores;
1156 };
1157
1158 struct sched_domain {
1159 /* These fields must be setup */
1160 struct sched_domain *parent; /* top domain must be null terminated */
1161 struct sched_domain *child; /* bottom domain must be null terminated */
1162 struct sched_group *groups; /* the balancing groups of the domain */
1163 unsigned long min_interval; /* Minimum balance interval ms */
1164 unsigned long max_interval; /* Maximum balance interval ms */
1165 unsigned int busy_factor; /* less balancing by factor if busy */
1166 unsigned int imbalance_pct; /* No balance until over watermark */
1167 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1168 unsigned int busy_idx;
1169 unsigned int idle_idx;
1170 unsigned int newidle_idx;
1171 unsigned int wake_idx;
1172 unsigned int forkexec_idx;
1173 unsigned int smt_gain;
1174
1175 int nohz_idle; /* NOHZ IDLE status */
1176 int flags; /* See SD_* */
1177 int level;
1178
1179 /* Runtime fields. */
1180 unsigned long last_balance; /* init to jiffies. units in jiffies */
1181 unsigned int balance_interval; /* initialise to 1. units in ms. */
1182 unsigned int nr_balance_failed; /* initialise to 0 */
1183
1184 /* idle_balance() stats */
1185 u64 max_newidle_lb_cost;
1186 unsigned long next_decay_max_lb_cost;
1187
1188 u64 avg_scan_cost; /* select_idle_sibling */
1189
1190 #ifdef CONFIG_SCHEDSTATS
1191 /* load_balance() stats */
1192 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1193 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1194 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1195 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1196 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1197 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1198 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1199 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1200
1201 /* Active load balancing */
1202 unsigned int alb_count;
1203 unsigned int alb_failed;
1204 unsigned int alb_pushed;
1205
1206 /* SD_BALANCE_EXEC stats */
1207 unsigned int sbe_count;
1208 unsigned int sbe_balanced;
1209 unsigned int sbe_pushed;
1210
1211 /* SD_BALANCE_FORK stats */
1212 unsigned int sbf_count;
1213 unsigned int sbf_balanced;
1214 unsigned int sbf_pushed;
1215
1216 /* try_to_wake_up() stats */
1217 unsigned int ttwu_wake_remote;
1218 unsigned int ttwu_move_affine;
1219 unsigned int ttwu_move_balance;
1220
1221 struct eas_stats eas_stats;
1222 #endif
1223 #ifdef CONFIG_SCHED_DEBUG
1224 char *name;
1225 #endif
1226 union {
1227 void *private; /* used during construction */
1228 struct rcu_head rcu; /* used during destruction */
1229 };
1230 struct sched_domain_shared *shared;
1231
1232 unsigned int span_weight;
1233 /*
1234 * Span of all CPUs in this domain.
1235 *
1236 * NOTE: this field is variable length. (Allocated dynamically
1237 * by attaching extra space to the end of the structure,
1238 * depending on how many CPUs the kernel has booted up with)
1239 */
1240 unsigned long span[0];
1241 };
1242
sched_domain_span(struct sched_domain * sd)1243 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1244 {
1245 return to_cpumask(sd->span);
1246 }
1247
1248 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1249 struct sched_domain_attr *dattr_new);
1250
1251 /* Allocate an array of sched domains, for partition_sched_domains(). */
1252 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1253 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1254
1255 bool cpus_share_cache(int this_cpu, int that_cpu);
1256
1257 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1258 typedef int (*sched_domain_flags_f)(void);
1259 typedef
1260 const struct sched_group_energy * const(*sched_domain_energy_f)(int cpu);
1261
1262 #define SDTL_OVERLAP 0x01
1263
1264 struct sd_data {
1265 struct sched_domain **__percpu sd;
1266 struct sched_domain_shared **__percpu sds;
1267 struct sched_group **__percpu sg;
1268 struct sched_group_capacity **__percpu sgc;
1269 };
1270
1271 struct sched_domain_topology_level {
1272 sched_domain_mask_f mask;
1273 sched_domain_flags_f sd_flags;
1274 sched_domain_energy_f energy;
1275 int flags;
1276 int numa_level;
1277 struct sd_data data;
1278 #ifdef CONFIG_SCHED_DEBUG
1279 char *name;
1280 #endif
1281 };
1282
1283 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1284 extern void wake_up_if_idle(int cpu);
1285
1286 #ifdef CONFIG_SCHED_DEBUG
1287 # define SD_INIT_NAME(type) .name = #type
1288 #else
1289 # define SD_INIT_NAME(type)
1290 #endif
1291
1292 #else /* CONFIG_SMP */
1293
1294 struct sched_domain_attr;
1295
1296 static inline void
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1297 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1298 struct sched_domain_attr *dattr_new)
1299 {
1300 }
1301
cpus_share_cache(int this_cpu,int that_cpu)1302 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1303 {
1304 return true;
1305 }
1306
1307 #endif /* !CONFIG_SMP */
1308
1309
1310 struct io_context; /* See blkdev.h */
1311
1312
1313 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1314 extern void prefetch_stack(struct task_struct *t);
1315 #else
prefetch_stack(struct task_struct * t)1316 static inline void prefetch_stack(struct task_struct *t) { }
1317 #endif
1318
1319 struct audit_context; /* See audit.c */
1320 struct mempolicy;
1321 struct pipe_inode_info;
1322 struct uts_namespace;
1323
1324 struct load_weight {
1325 unsigned long weight;
1326 u32 inv_weight;
1327 };
1328
1329 /*
1330 * The load_avg/util_avg accumulates an infinite geometric series
1331 * (see __update_load_avg() in kernel/sched/fair.c).
1332 *
1333 * [load_avg definition]
1334 *
1335 * load_avg = runnable% * scale_load_down(load)
1336 *
1337 * where runnable% is the time ratio that a sched_entity is runnable.
1338 * For cfs_rq, it is the aggregated load_avg of all runnable and
1339 * blocked sched_entities.
1340 *
1341 * load_avg may also take frequency scaling into account:
1342 *
1343 * load_avg = runnable% * scale_load_down(load) * freq%
1344 *
1345 * where freq% is the CPU frequency normalized to the highest frequency.
1346 *
1347 * [util_avg definition]
1348 *
1349 * util_avg = running% * SCHED_CAPACITY_SCALE
1350 *
1351 * where running% is the time ratio that a sched_entity is running on
1352 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1353 * and blocked sched_entities.
1354 *
1355 * util_avg may also factor frequency scaling and CPU capacity scaling:
1356 *
1357 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1358 *
1359 * where freq% is the same as above, and capacity% is the CPU capacity
1360 * normalized to the greatest capacity (due to uarch differences, etc).
1361 *
1362 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1363 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1364 * we therefore scale them to as large a range as necessary. This is for
1365 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1366 *
1367 * [Overflow issue]
1368 *
1369 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1370 * with the highest load (=88761), always runnable on a single cfs_rq,
1371 * and should not overflow as the number already hits PID_MAX_LIMIT.
1372 *
1373 * For all other cases (including 32-bit kernels), struct load_weight's
1374 * weight will overflow first before we do, because:
1375 *
1376 * Max(load_avg) <= Max(load.weight)
1377 *
1378 * Then it is the load_weight's responsibility to consider overflow
1379 * issues.
1380 */
1381 struct sched_avg {
1382 u64 last_update_time, load_sum;
1383 u32 util_sum, period_contrib;
1384 unsigned long load_avg, util_avg;
1385 };
1386
1387 #ifdef CONFIG_SCHEDSTATS
1388 struct sched_statistics {
1389 u64 wait_start;
1390 u64 wait_max;
1391 u64 wait_count;
1392 u64 wait_sum;
1393 u64 iowait_count;
1394 u64 iowait_sum;
1395
1396 u64 sleep_start;
1397 u64 sleep_max;
1398 s64 sum_sleep_runtime;
1399
1400 u64 block_start;
1401 u64 block_max;
1402 u64 exec_max;
1403 u64 slice_max;
1404
1405 u64 nr_migrations_cold;
1406 u64 nr_failed_migrations_affine;
1407 u64 nr_failed_migrations_running;
1408 u64 nr_failed_migrations_hot;
1409 u64 nr_forced_migrations;
1410
1411 u64 nr_wakeups;
1412 u64 nr_wakeups_sync;
1413 u64 nr_wakeups_migrate;
1414 u64 nr_wakeups_local;
1415 u64 nr_wakeups_remote;
1416 u64 nr_wakeups_affine;
1417 u64 nr_wakeups_affine_attempts;
1418 u64 nr_wakeups_passive;
1419 u64 nr_wakeups_idle;
1420
1421 /* select_idle_sibling() */
1422 u64 nr_wakeups_sis_attempts;
1423 u64 nr_wakeups_sis_idle;
1424 u64 nr_wakeups_sis_cache_affine;
1425 u64 nr_wakeups_sis_suff_cap;
1426 u64 nr_wakeups_sis_idle_cpu;
1427 u64 nr_wakeups_sis_count;
1428
1429 /* energy_aware_wake_cpu() */
1430 u64 nr_wakeups_secb_attempts;
1431 u64 nr_wakeups_secb_sync;
1432 u64 nr_wakeups_secb_idle_bt;
1433 u64 nr_wakeups_secb_insuff_cap;
1434 u64 nr_wakeups_secb_no_nrg_sav;
1435 u64 nr_wakeups_secb_nrg_sav;
1436 u64 nr_wakeups_secb_count;
1437
1438 /* find_best_target() */
1439 u64 nr_wakeups_fbt_attempts;
1440 u64 nr_wakeups_fbt_no_cpu;
1441 u64 nr_wakeups_fbt_no_sd;
1442 u64 nr_wakeups_fbt_pref_idle;
1443 u64 nr_wakeups_fbt_count;
1444
1445 /* cas */
1446 /* select_task_rq_fair() */
1447 u64 nr_wakeups_cas_attempts;
1448 u64 nr_wakeups_cas_count;
1449 };
1450 #endif
1451
1452 #ifdef CONFIG_SCHED_WALT
1453 #define RAVG_HIST_SIZE_MAX 5
1454
1455 /* ravg represents frequency scaled cpu-demand of tasks */
1456 struct ravg {
1457 /*
1458 * 'mark_start' marks the beginning of an event (task waking up, task
1459 * starting to execute, task being preempted) within a window
1460 *
1461 * 'sum' represents how runnable a task has been within current
1462 * window. It incorporates both running time and wait time and is
1463 * frequency scaled.
1464 *
1465 * 'sum_history' keeps track of history of 'sum' seen over previous
1466 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
1467 * ignored.
1468 *
1469 * 'demand' represents maximum sum seen over previous
1470 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
1471 * demand for tasks.
1472 *
1473 * 'curr_window' represents task's contribution to cpu busy time
1474 * statistics (rq->curr_runnable_sum) in current window
1475 *
1476 * 'prev_window' represents task's contribution to cpu busy time
1477 * statistics (rq->prev_runnable_sum) in previous window
1478 */
1479 u64 mark_start;
1480 u32 sum, demand;
1481 u32 sum_history[RAVG_HIST_SIZE_MAX];
1482 u32 curr_window, prev_window;
1483 u16 active_windows;
1484 };
1485 #endif
1486
1487 struct sched_entity {
1488 struct load_weight load; /* for load-balancing */
1489 struct rb_node run_node;
1490 struct list_head group_node;
1491 unsigned int on_rq;
1492
1493 u64 exec_start;
1494 u64 sum_exec_runtime;
1495 u64 vruntime;
1496 u64 prev_sum_exec_runtime;
1497
1498 u64 nr_migrations;
1499
1500 #ifdef CONFIG_SCHEDSTATS
1501 struct sched_statistics statistics;
1502 #endif
1503
1504 #ifdef CONFIG_FAIR_GROUP_SCHED
1505 int depth;
1506 struct sched_entity *parent;
1507 /* rq on which this entity is (to be) queued: */
1508 struct cfs_rq *cfs_rq;
1509 /* rq "owned" by this entity/group: */
1510 struct cfs_rq *my_q;
1511 #endif
1512
1513 #ifdef CONFIG_SMP
1514 /*
1515 * Per entity load average tracking.
1516 *
1517 * Put into separate cache line so it does not
1518 * collide with read-mostly values above.
1519 */
1520 struct sched_avg avg ____cacheline_aligned_in_smp;
1521 #endif
1522 };
1523
1524 struct sched_rt_entity {
1525 struct list_head run_list;
1526 unsigned long timeout;
1527 unsigned long watchdog_stamp;
1528 unsigned int time_slice;
1529 unsigned short on_rq;
1530 unsigned short on_list;
1531
1532 struct sched_rt_entity *back;
1533 #ifdef CONFIG_RT_GROUP_SCHED
1534 struct sched_rt_entity *parent;
1535 /* rq on which this entity is (to be) queued: */
1536 struct rt_rq *rt_rq;
1537 /* rq "owned" by this entity/group: */
1538 struct rt_rq *my_q;
1539 #endif
1540 };
1541
1542 struct sched_dl_entity {
1543 struct rb_node rb_node;
1544
1545 /*
1546 * Original scheduling parameters. Copied here from sched_attr
1547 * during sched_setattr(), they will remain the same until
1548 * the next sched_setattr().
1549 */
1550 u64 dl_runtime; /* maximum runtime for each instance */
1551 u64 dl_deadline; /* relative deadline of each instance */
1552 u64 dl_period; /* separation of two instances (period) */
1553 u64 dl_bw; /* dl_runtime / dl_deadline */
1554 u64 dl_density; /* dl_runtime / dl_deadline */
1555
1556 /*
1557 * Actual scheduling parameters. Initialized with the values above,
1558 * they are continously updated during task execution. Note that
1559 * the remaining runtime could be < 0 in case we are in overrun.
1560 */
1561 s64 runtime; /* remaining runtime for this instance */
1562 u64 deadline; /* absolute deadline for this instance */
1563 unsigned int flags; /* specifying the scheduler behaviour */
1564
1565 /*
1566 * Some bool flags:
1567 *
1568 * @dl_throttled tells if we exhausted the runtime. If so, the
1569 * task has to wait for a replenishment to be performed at the
1570 * next firing of dl_timer.
1571 *
1572 * @dl_boosted tells if we are boosted due to DI. If so we are
1573 * outside bandwidth enforcement mechanism (but only until we
1574 * exit the critical section);
1575 *
1576 * @dl_yielded tells if task gave up the cpu before consuming
1577 * all its available runtime during the last job.
1578 */
1579 int dl_throttled, dl_boosted, dl_yielded;
1580
1581 /*
1582 * Bandwidth enforcement timer. Each -deadline task has its
1583 * own bandwidth to be enforced, thus we need one timer per task.
1584 */
1585 struct hrtimer dl_timer;
1586 };
1587
1588 union rcu_special {
1589 struct {
1590 u8 blocked;
1591 u8 need_qs;
1592 u8 exp_need_qs;
1593 u8 pad; /* Otherwise the compiler can store garbage here. */
1594 } b; /* Bits. */
1595 u32 s; /* Set of bits. */
1596 };
1597 struct rcu_node;
1598
1599 enum perf_event_task_context {
1600 perf_invalid_context = -1,
1601 perf_hw_context = 0,
1602 perf_sw_context,
1603 perf_nr_task_contexts,
1604 };
1605
1606 /* Track pages that require TLB flushes */
1607 struct tlbflush_unmap_batch {
1608 /*
1609 * Each bit set is a CPU that potentially has a TLB entry for one of
1610 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1611 */
1612 struct cpumask cpumask;
1613
1614 /* True if any bit in cpumask is set */
1615 bool flush_required;
1616
1617 /*
1618 * If true then the PTE was dirty when unmapped. The entry must be
1619 * flushed before IO is initiated or a stale TLB entry potentially
1620 * allows an update without redirtying the page.
1621 */
1622 bool writable;
1623 };
1624
1625 struct task_struct {
1626 #ifdef CONFIG_THREAD_INFO_IN_TASK
1627 /*
1628 * For reasons of header soup (see current_thread_info()), this
1629 * must be the first element of task_struct.
1630 */
1631 struct thread_info thread_info;
1632 #endif
1633 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1634 void *stack;
1635 atomic_t usage;
1636 unsigned int flags; /* per process flags, defined below */
1637 unsigned int ptrace;
1638
1639 #ifdef CONFIG_SMP
1640 struct llist_node wake_entry;
1641 int on_cpu;
1642 #ifdef CONFIG_THREAD_INFO_IN_TASK
1643 unsigned int cpu; /* current CPU */
1644 #endif
1645 unsigned int wakee_flips;
1646 unsigned long wakee_flip_decay_ts;
1647 struct task_struct *last_wakee;
1648
1649 int wake_cpu;
1650 #endif
1651 int on_rq;
1652
1653 int prio, static_prio, normal_prio;
1654 unsigned int rt_priority;
1655 const struct sched_class *sched_class;
1656 struct sched_entity se;
1657 struct sched_rt_entity rt;
1658 #ifdef CONFIG_SCHED_WALT
1659 struct ravg ravg;
1660 /*
1661 * 'init_load_pct' represents the initial task load assigned to children
1662 * of this task
1663 */
1664 u32 init_load_pct;
1665 u64 last_sleep_ts;
1666 #endif
1667
1668 #ifdef CONFIG_CGROUP_SCHED
1669 struct task_group *sched_task_group;
1670 #endif
1671 struct sched_dl_entity dl;
1672
1673 #ifdef CONFIG_PREEMPT_NOTIFIERS
1674 /* list of struct preempt_notifier: */
1675 struct hlist_head preempt_notifiers;
1676 #endif
1677
1678 #ifdef CONFIG_BLK_DEV_IO_TRACE
1679 unsigned int btrace_seq;
1680 #endif
1681
1682 unsigned int policy;
1683 int nr_cpus_allowed;
1684 cpumask_t cpus_allowed;
1685
1686 #ifdef CONFIG_PREEMPT_RCU
1687 int rcu_read_lock_nesting;
1688 union rcu_special rcu_read_unlock_special;
1689 struct list_head rcu_node_entry;
1690 struct rcu_node *rcu_blocked_node;
1691 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1692 #ifdef CONFIG_TASKS_RCU
1693 unsigned long rcu_tasks_nvcsw;
1694 bool rcu_tasks_holdout;
1695 struct list_head rcu_tasks_holdout_list;
1696 int rcu_tasks_idle_cpu;
1697 #endif /* #ifdef CONFIG_TASKS_RCU */
1698
1699 #ifdef CONFIG_SCHED_INFO
1700 struct sched_info sched_info;
1701 #endif
1702
1703 struct list_head tasks;
1704 #ifdef CONFIG_SMP
1705 struct plist_node pushable_tasks;
1706 struct rb_node pushable_dl_tasks;
1707 #endif
1708
1709 struct mm_struct *mm, *active_mm;
1710 /* per-thread vma caching */
1711 u32 vmacache_seqnum;
1712 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1713 #if defined(SPLIT_RSS_COUNTING)
1714 struct task_rss_stat rss_stat;
1715 #endif
1716 /* task state */
1717 int exit_state;
1718 int exit_code, exit_signal;
1719 int pdeath_signal; /* The signal sent when the parent dies */
1720 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1721
1722 /* Used for emulating ABI behavior of previous Linux versions */
1723 unsigned int personality;
1724
1725 /* scheduler bits, serialized by scheduler locks */
1726 unsigned sched_reset_on_fork:1;
1727 unsigned sched_contributes_to_load:1;
1728 unsigned sched_migrated:1;
1729 unsigned sched_remote_wakeup:1;
1730 unsigned :0; /* force alignment to the next boundary */
1731
1732 /* unserialized, strictly 'current' */
1733 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1734 unsigned in_iowait:1;
1735 #if !defined(TIF_RESTORE_SIGMASK)
1736 unsigned restore_sigmask:1;
1737 #endif
1738 #ifdef CONFIG_MEMCG
1739 unsigned memcg_may_oom:1;
1740 #ifndef CONFIG_SLOB
1741 unsigned memcg_kmem_skip_account:1;
1742 #endif
1743 #endif
1744 #ifdef CONFIG_COMPAT_BRK
1745 unsigned brk_randomized:1;
1746 #endif
1747 #ifdef CONFIG_CGROUPS
1748 /* disallow userland-initiated cgroup migration */
1749 unsigned no_cgroup_migration:1;
1750 #endif
1751
1752 unsigned long atomic_flags; /* Flags needing atomic access. */
1753
1754 struct restart_block restart_block;
1755
1756 pid_t pid;
1757 pid_t tgid;
1758
1759 #ifdef CONFIG_CC_STACKPROTECTOR
1760 /* Canary value for the -fstack-protector gcc feature */
1761 unsigned long stack_canary;
1762 #endif
1763 /*
1764 * pointers to (original) parent process, youngest child, younger sibling,
1765 * older sibling, respectively. (p->father can be replaced with
1766 * p->real_parent->pid)
1767 */
1768 struct task_struct __rcu *real_parent; /* real parent process */
1769 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1770 /*
1771 * children/sibling forms the list of my natural children
1772 */
1773 struct list_head children; /* list of my children */
1774 struct list_head sibling; /* linkage in my parent's children list */
1775 struct task_struct *group_leader; /* threadgroup leader */
1776
1777 /*
1778 * ptraced is the list of tasks this task is using ptrace on.
1779 * This includes both natural children and PTRACE_ATTACH targets.
1780 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1781 */
1782 struct list_head ptraced;
1783 struct list_head ptrace_entry;
1784
1785 /* PID/PID hash table linkage. */
1786 struct pid_link pids[PIDTYPE_MAX];
1787 struct list_head thread_group;
1788 struct list_head thread_node;
1789
1790 struct completion *vfork_done; /* for vfork() */
1791 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1792 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1793
1794 cputime_t utime, stime, utimescaled, stimescaled;
1795 cputime_t gtime;
1796 #ifdef CONFIG_CPU_FREQ_TIMES
1797 u64 *time_in_state;
1798 unsigned int max_state;
1799 #endif
1800 struct prev_cputime prev_cputime;
1801 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1802 seqcount_t vtime_seqcount;
1803 unsigned long long vtime_snap;
1804 enum {
1805 /* Task is sleeping or running in a CPU with VTIME inactive */
1806 VTIME_INACTIVE = 0,
1807 /* Task runs in userspace in a CPU with VTIME active */
1808 VTIME_USER,
1809 /* Task runs in kernelspace in a CPU with VTIME active */
1810 VTIME_SYS,
1811 } vtime_snap_whence;
1812 #endif
1813
1814 #ifdef CONFIG_NO_HZ_FULL
1815 atomic_t tick_dep_mask;
1816 #endif
1817 unsigned long nvcsw, nivcsw; /* context switch counts */
1818 u64 start_time; /* monotonic time in nsec */
1819 u64 real_start_time; /* boot based time in nsec */
1820 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1821 unsigned long min_flt, maj_flt;
1822
1823 struct task_cputime cputime_expires;
1824 struct list_head cpu_timers[3];
1825
1826 /* process credentials */
1827 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1828 const struct cred __rcu *real_cred; /* objective and real subjective task
1829 * credentials (COW) */
1830 const struct cred __rcu *cred; /* effective (overridable) subjective task
1831 * credentials (COW) */
1832 char comm[TASK_COMM_LEN]; /* executable name excluding path
1833 - access with [gs]et_task_comm (which lock
1834 it with task_lock())
1835 - initialized normally by setup_new_exec */
1836 /* file system info */
1837 struct nameidata *nameidata;
1838 #ifdef CONFIG_SYSVIPC
1839 /* ipc stuff */
1840 struct sysv_sem sysvsem;
1841 struct sysv_shm sysvshm;
1842 #endif
1843 #ifdef CONFIG_DETECT_HUNG_TASK
1844 /* hung task detection */
1845 unsigned long last_switch_count;
1846 #endif
1847 /* filesystem information */
1848 struct fs_struct *fs;
1849 /* open file information */
1850 struct files_struct *files;
1851 /* namespaces */
1852 struct nsproxy *nsproxy;
1853 /* signal handlers */
1854 struct signal_struct *signal;
1855 struct sighand_struct *sighand;
1856
1857 sigset_t blocked, real_blocked;
1858 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1859 struct sigpending pending;
1860
1861 unsigned long sas_ss_sp;
1862 size_t sas_ss_size;
1863 unsigned sas_ss_flags;
1864
1865 struct callback_head *task_works;
1866
1867 struct audit_context *audit_context;
1868 #ifdef CONFIG_AUDITSYSCALL
1869 kuid_t loginuid;
1870 unsigned int sessionid;
1871 #endif
1872 struct seccomp seccomp;
1873
1874 /* Thread group tracking */
1875 u32 parent_exec_id;
1876 u32 self_exec_id;
1877 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1878 * mempolicy */
1879 spinlock_t alloc_lock;
1880
1881 /* Protection of the PI data structures: */
1882 raw_spinlock_t pi_lock;
1883
1884 struct wake_q_node wake_q;
1885
1886 #ifdef CONFIG_RT_MUTEXES
1887 /* PI waiters blocked on a rt_mutex held by this task */
1888 struct rb_root pi_waiters;
1889 struct rb_node *pi_waiters_leftmost;
1890 /* Deadlock detection and priority inheritance handling */
1891 struct rt_mutex_waiter *pi_blocked_on;
1892 #endif
1893
1894 #ifdef CONFIG_DEBUG_MUTEXES
1895 /* mutex deadlock detection */
1896 struct mutex_waiter *blocked_on;
1897 #endif
1898 #ifdef CONFIG_TRACE_IRQFLAGS
1899 unsigned int irq_events;
1900 unsigned long hardirq_enable_ip;
1901 unsigned long hardirq_disable_ip;
1902 unsigned int hardirq_enable_event;
1903 unsigned int hardirq_disable_event;
1904 int hardirqs_enabled;
1905 int hardirq_context;
1906 unsigned long softirq_disable_ip;
1907 unsigned long softirq_enable_ip;
1908 unsigned int softirq_disable_event;
1909 unsigned int softirq_enable_event;
1910 int softirqs_enabled;
1911 int softirq_context;
1912 #endif
1913 #ifdef CONFIG_LOCKDEP
1914 # define MAX_LOCK_DEPTH 48UL
1915 u64 curr_chain_key;
1916 int lockdep_depth;
1917 unsigned int lockdep_recursion;
1918 struct held_lock held_locks[MAX_LOCK_DEPTH];
1919 gfp_t lockdep_reclaim_gfp;
1920 #endif
1921 #ifdef CONFIG_UBSAN
1922 unsigned int in_ubsan;
1923 #endif
1924
1925 /* journalling filesystem info */
1926 void *journal_info;
1927
1928 /* stacked block device info */
1929 struct bio_list *bio_list;
1930
1931 #ifdef CONFIG_BLOCK
1932 /* stack plugging */
1933 struct blk_plug *plug;
1934 #endif
1935
1936 /* VM state */
1937 struct reclaim_state *reclaim_state;
1938
1939 struct backing_dev_info *backing_dev_info;
1940
1941 struct io_context *io_context;
1942
1943 unsigned long ptrace_message;
1944 siginfo_t *last_siginfo; /* For ptrace use. */
1945 struct task_io_accounting ioac;
1946 #if defined(CONFIG_TASK_XACCT)
1947 u64 acct_rss_mem1; /* accumulated rss usage */
1948 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1949 cputime_t acct_timexpd; /* stime + utime since last update */
1950 #endif
1951 #ifdef CONFIG_CPUSETS
1952 nodemask_t mems_allowed; /* Protected by alloc_lock */
1953 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1954 int cpuset_mem_spread_rotor;
1955 int cpuset_slab_spread_rotor;
1956 #endif
1957 #ifdef CONFIG_CGROUPS
1958 /* Control Group info protected by css_set_lock */
1959 struct css_set __rcu *cgroups;
1960 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1961 struct list_head cg_list;
1962 #endif
1963 #ifdef CONFIG_FUTEX
1964 struct robust_list_head __user *robust_list;
1965 #ifdef CONFIG_COMPAT
1966 struct compat_robust_list_head __user *compat_robust_list;
1967 #endif
1968 struct list_head pi_state_list;
1969 struct futex_pi_state *pi_state_cache;
1970 #endif
1971 #ifdef CONFIG_PERF_EVENTS
1972 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1973 struct mutex perf_event_mutex;
1974 struct list_head perf_event_list;
1975 #endif
1976 #ifdef CONFIG_DEBUG_PREEMPT
1977 unsigned long preempt_disable_ip;
1978 #endif
1979 #ifdef CONFIG_NUMA
1980 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1981 short il_next;
1982 short pref_node_fork;
1983 #endif
1984 #ifdef CONFIG_NUMA_BALANCING
1985 int numa_scan_seq;
1986 unsigned int numa_scan_period;
1987 unsigned int numa_scan_period_max;
1988 int numa_preferred_nid;
1989 unsigned long numa_migrate_retry;
1990 u64 node_stamp; /* migration stamp */
1991 u64 last_task_numa_placement;
1992 u64 last_sum_exec_runtime;
1993 struct callback_head numa_work;
1994
1995 struct list_head numa_entry;
1996 struct numa_group *numa_group;
1997
1998 /*
1999 * numa_faults is an array split into four regions:
2000 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
2001 * in this precise order.
2002 *
2003 * faults_memory: Exponential decaying average of faults on a per-node
2004 * basis. Scheduling placement decisions are made based on these
2005 * counts. The values remain static for the duration of a PTE scan.
2006 * faults_cpu: Track the nodes the process was running on when a NUMA
2007 * hinting fault was incurred.
2008 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
2009 * during the current scan window. When the scan completes, the counts
2010 * in faults_memory and faults_cpu decay and these values are copied.
2011 */
2012 unsigned long *numa_faults;
2013 unsigned long total_numa_faults;
2014
2015 /*
2016 * numa_faults_locality tracks if faults recorded during the last
2017 * scan window were remote/local or failed to migrate. The task scan
2018 * period is adapted based on the locality of the faults with different
2019 * weights depending on whether they were shared or private faults
2020 */
2021 unsigned long numa_faults_locality[3];
2022
2023 unsigned long numa_pages_migrated;
2024 #endif /* CONFIG_NUMA_BALANCING */
2025
2026 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2027 struct tlbflush_unmap_batch tlb_ubc;
2028 #endif
2029
2030 struct rcu_head rcu;
2031
2032 /*
2033 * cache last used pipe for splice
2034 */
2035 struct pipe_inode_info *splice_pipe;
2036
2037 struct page_frag task_frag;
2038
2039 #ifdef CONFIG_TASK_DELAY_ACCT
2040 struct task_delay_info *delays;
2041 #endif
2042 #ifdef CONFIG_FAULT_INJECTION
2043 int make_it_fail;
2044 #endif
2045 /*
2046 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
2047 * balance_dirty_pages() for some dirty throttling pause
2048 */
2049 int nr_dirtied;
2050 int nr_dirtied_pause;
2051 unsigned long dirty_paused_when; /* start of a write-and-pause period */
2052
2053 #ifdef CONFIG_LATENCYTOP
2054 int latency_record_count;
2055 struct latency_record latency_record[LT_SAVECOUNT];
2056 #endif
2057 /*
2058 * time slack values; these are used to round up poll() and
2059 * select() etc timeout values. These are in nanoseconds.
2060 */
2061 u64 timer_slack_ns;
2062 u64 default_timer_slack_ns;
2063
2064 #ifdef CONFIG_KASAN
2065 unsigned int kasan_depth;
2066 #endif
2067 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2068 /* Index of current stored address in ret_stack */
2069 int curr_ret_stack;
2070 /* Stack of return addresses for return function tracing */
2071 struct ftrace_ret_stack *ret_stack;
2072 /* time stamp for last schedule */
2073 unsigned long long ftrace_timestamp;
2074 /*
2075 * Number of functions that haven't been traced
2076 * because of depth overrun.
2077 */
2078 atomic_t trace_overrun;
2079 /* Pause for the tracing */
2080 atomic_t tracing_graph_pause;
2081 #endif
2082 #ifdef CONFIG_TRACING
2083 /* state flags for use by tracers */
2084 unsigned long trace;
2085 /* bitmask and counter of trace recursion */
2086 unsigned long trace_recursion;
2087 #endif /* CONFIG_TRACING */
2088 #ifdef CONFIG_KCOV
2089 /* Coverage collection mode enabled for this task (0 if disabled). */
2090 enum kcov_mode kcov_mode;
2091 /* Size of the kcov_area. */
2092 unsigned kcov_size;
2093 /* Buffer for coverage collection. */
2094 void *kcov_area;
2095 /* kcov desciptor wired with this task or NULL. */
2096 struct kcov *kcov;
2097 #endif
2098 #ifdef CONFIG_MEMCG
2099 struct mem_cgroup *memcg_in_oom;
2100 gfp_t memcg_oom_gfp_mask;
2101 int memcg_oom_order;
2102
2103 /* number of pages to reclaim on returning to userland */
2104 unsigned int memcg_nr_pages_over_high;
2105 #endif
2106 #ifdef CONFIG_UPROBES
2107 struct uprobe_task *utask;
2108 #endif
2109 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
2110 unsigned int sequential_io;
2111 unsigned int sequential_io_avg;
2112 #endif
2113 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2114 unsigned long task_state_change;
2115 #endif
2116 int pagefault_disabled;
2117 #ifdef CONFIG_MMU
2118 struct task_struct *oom_reaper_list;
2119 #endif
2120 #ifdef CONFIG_VMAP_STACK
2121 struct vm_struct *stack_vm_area;
2122 #endif
2123 #ifdef CONFIG_THREAD_INFO_IN_TASK
2124 /* A live task holds one reference. */
2125 atomic_t stack_refcount;
2126 #endif
2127 /* CPU-specific state of this task */
2128 struct thread_struct thread;
2129 /*
2130 * WARNING: on x86, 'thread_struct' contains a variable-sized
2131 * structure. It *MUST* be at the end of 'task_struct'.
2132 *
2133 * Do not put anything below here!
2134 */
2135 };
2136
2137 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
2138 extern int arch_task_struct_size __read_mostly;
2139 #else
2140 # define arch_task_struct_size (sizeof(struct task_struct))
2141 #endif
2142
2143 #ifdef CONFIG_VMAP_STACK
task_stack_vm_area(const struct task_struct * t)2144 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2145 {
2146 return t->stack_vm_area;
2147 }
2148 #else
task_stack_vm_area(const struct task_struct * t)2149 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2150 {
2151 return NULL;
2152 }
2153 #endif
2154
2155 /* Future-safe accessor for struct task_struct's cpus_allowed. */
2156 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2157
tsk_nr_cpus_allowed(struct task_struct * p)2158 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2159 {
2160 return p->nr_cpus_allowed;
2161 }
2162
2163 #define TNF_MIGRATED 0x01
2164 #define TNF_NO_GROUP 0x02
2165 #define TNF_SHARED 0x04
2166 #define TNF_FAULT_LOCAL 0x08
2167 #define TNF_MIGRATE_FAIL 0x10
2168
in_vfork(struct task_struct * tsk)2169 static inline bool in_vfork(struct task_struct *tsk)
2170 {
2171 bool ret;
2172
2173 /*
2174 * need RCU to access ->real_parent if CLONE_VM was used along with
2175 * CLONE_PARENT.
2176 *
2177 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2178 * imply CLONE_VM
2179 *
2180 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2181 * ->real_parent is not necessarily the task doing vfork(), so in
2182 * theory we can't rely on task_lock() if we want to dereference it.
2183 *
2184 * And in this case we can't trust the real_parent->mm == tsk->mm
2185 * check, it can be false negative. But we do not care, if init or
2186 * another oom-unkillable task does this it should blame itself.
2187 */
2188 rcu_read_lock();
2189 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2190 rcu_read_unlock();
2191
2192 return ret;
2193 }
2194
2195 #ifdef CONFIG_NUMA_BALANCING
2196 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2197 extern pid_t task_numa_group_id(struct task_struct *p);
2198 extern void set_numabalancing_state(bool enabled);
2199 extern void task_numa_free(struct task_struct *p);
2200 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2201 int src_nid, int dst_cpu);
2202 #else
task_numa_fault(int last_node,int node,int pages,int flags)2203 static inline void task_numa_fault(int last_node, int node, int pages,
2204 int flags)
2205 {
2206 }
task_numa_group_id(struct task_struct * p)2207 static inline pid_t task_numa_group_id(struct task_struct *p)
2208 {
2209 return 0;
2210 }
set_numabalancing_state(bool enabled)2211 static inline void set_numabalancing_state(bool enabled)
2212 {
2213 }
task_numa_free(struct task_struct * p)2214 static inline void task_numa_free(struct task_struct *p)
2215 {
2216 }
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)2217 static inline bool should_numa_migrate_memory(struct task_struct *p,
2218 struct page *page, int src_nid, int dst_cpu)
2219 {
2220 return true;
2221 }
2222 #endif
2223
task_pid(struct task_struct * task)2224 static inline struct pid *task_pid(struct task_struct *task)
2225 {
2226 return task->pids[PIDTYPE_PID].pid;
2227 }
2228
task_tgid(struct task_struct * task)2229 static inline struct pid *task_tgid(struct task_struct *task)
2230 {
2231 return task->group_leader->pids[PIDTYPE_PID].pid;
2232 }
2233
2234 /*
2235 * Without tasklist or rcu lock it is not safe to dereference
2236 * the result of task_pgrp/task_session even if task == current,
2237 * we can race with another thread doing sys_setsid/sys_setpgid.
2238 */
task_pgrp(struct task_struct * task)2239 static inline struct pid *task_pgrp(struct task_struct *task)
2240 {
2241 return task->group_leader->pids[PIDTYPE_PGID].pid;
2242 }
2243
task_session(struct task_struct * task)2244 static inline struct pid *task_session(struct task_struct *task)
2245 {
2246 return task->group_leader->pids[PIDTYPE_SID].pid;
2247 }
2248
2249 struct pid_namespace;
2250
2251 /*
2252 * the helpers to get the task's different pids as they are seen
2253 * from various namespaces
2254 *
2255 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2256 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2257 * current.
2258 * task_xid_nr_ns() : id seen from the ns specified;
2259 *
2260 * set_task_vxid() : assigns a virtual id to a task;
2261 *
2262 * see also pid_nr() etc in include/linux/pid.h
2263 */
2264 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2265 struct pid_namespace *ns);
2266
task_pid_nr(struct task_struct * tsk)2267 static inline pid_t task_pid_nr(struct task_struct *tsk)
2268 {
2269 return tsk->pid;
2270 }
2271
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2272 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2273 struct pid_namespace *ns)
2274 {
2275 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2276 }
2277
task_pid_vnr(struct task_struct * tsk)2278 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2279 {
2280 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2281 }
2282
2283
task_tgid_nr(struct task_struct * tsk)2284 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2285 {
2286 return tsk->tgid;
2287 }
2288
2289
2290 static inline int pid_alive(const struct task_struct *p);
2291
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2292 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2293 struct pid_namespace *ns)
2294 {
2295 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2296 }
2297
task_pgrp_vnr(struct task_struct * tsk)2298 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2299 {
2300 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2301 }
2302
2303
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2304 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2305 struct pid_namespace *ns)
2306 {
2307 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2308 }
2309
task_session_vnr(struct task_struct * tsk)2310 static inline pid_t task_session_vnr(struct task_struct *tsk)
2311 {
2312 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2313 }
2314
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2315 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
2316 {
2317 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
2318 }
2319
task_tgid_vnr(struct task_struct * tsk)2320 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2321 {
2322 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
2323 }
2324
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)2325 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2326 {
2327 pid_t pid = 0;
2328
2329 rcu_read_lock();
2330 if (pid_alive(tsk))
2331 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2332 rcu_read_unlock();
2333
2334 return pid;
2335 }
2336
task_ppid_nr(const struct task_struct * tsk)2337 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2338 {
2339 return task_ppid_nr_ns(tsk, &init_pid_ns);
2340 }
2341
2342 /* obsolete, do not use */
task_pgrp_nr(struct task_struct * tsk)2343 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2344 {
2345 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2346 }
2347
2348 /**
2349 * pid_alive - check that a task structure is not stale
2350 * @p: Task structure to be checked.
2351 *
2352 * Test if a process is not yet dead (at most zombie state)
2353 * If pid_alive fails, then pointers within the task structure
2354 * can be stale and must not be dereferenced.
2355 *
2356 * Return: 1 if the process is alive. 0 otherwise.
2357 */
pid_alive(const struct task_struct * p)2358 static inline int pid_alive(const struct task_struct *p)
2359 {
2360 return p->pids[PIDTYPE_PID].pid != NULL;
2361 }
2362
2363 /**
2364 * is_global_init - check if a task structure is init. Since init
2365 * is free to have sub-threads we need to check tgid.
2366 * @tsk: Task structure to be checked.
2367 *
2368 * Check if a task structure is the first user space task the kernel created.
2369 *
2370 * Return: 1 if the task structure is init. 0 otherwise.
2371 */
is_global_init(struct task_struct * tsk)2372 static inline int is_global_init(struct task_struct *tsk)
2373 {
2374 return task_tgid_nr(tsk) == 1;
2375 }
2376
2377 extern struct pid *cad_pid;
2378
2379 extern void free_task(struct task_struct *tsk);
2380 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2381
2382 extern void __put_task_struct(struct task_struct *t);
2383
put_task_struct(struct task_struct * t)2384 static inline void put_task_struct(struct task_struct *t)
2385 {
2386 if (atomic_dec_and_test(&t->usage))
2387 __put_task_struct(t);
2388 }
2389
2390 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2391 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2392
2393 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2394 extern void task_cputime(struct task_struct *t,
2395 cputime_t *utime, cputime_t *stime);
2396 extern void task_cputime_scaled(struct task_struct *t,
2397 cputime_t *utimescaled, cputime_t *stimescaled);
2398 extern cputime_t task_gtime(struct task_struct *t);
2399 #else
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)2400 static inline void task_cputime(struct task_struct *t,
2401 cputime_t *utime, cputime_t *stime)
2402 {
2403 if (utime)
2404 *utime = t->utime;
2405 if (stime)
2406 *stime = t->stime;
2407 }
2408
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)2409 static inline void task_cputime_scaled(struct task_struct *t,
2410 cputime_t *utimescaled,
2411 cputime_t *stimescaled)
2412 {
2413 if (utimescaled)
2414 *utimescaled = t->utimescaled;
2415 if (stimescaled)
2416 *stimescaled = t->stimescaled;
2417 }
2418
task_gtime(struct task_struct * t)2419 static inline cputime_t task_gtime(struct task_struct *t)
2420 {
2421 return t->gtime;
2422 }
2423 #endif
2424 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2425 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2426
2427 /*
2428 * Per process flags
2429 */
2430 #define PF_EXITING 0x00000004 /* getting shut down */
2431 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2432 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2433 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2434 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2435 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2436 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2437 #define PF_DUMPCORE 0x00000200 /* dumped core */
2438 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2439 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2440 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2441 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2442 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2443 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2444 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2445 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2446 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2447 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2448 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2449 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2450 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2451 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2452 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2453 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2454 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2455 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2456 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2457
2458 /*
2459 * Only the _current_ task can read/write to tsk->flags, but other
2460 * tasks can access tsk->flags in readonly mode for example
2461 * with tsk_used_math (like during threaded core dumping).
2462 * There is however an exception to this rule during ptrace
2463 * or during fork: the ptracer task is allowed to write to the
2464 * child->flags of its traced child (same goes for fork, the parent
2465 * can write to the child->flags), because we're guaranteed the
2466 * child is not running and in turn not changing child->flags
2467 * at the same time the parent does it.
2468 */
2469 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2470 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2471 #define clear_used_math() clear_stopped_child_used_math(current)
2472 #define set_used_math() set_stopped_child_used_math(current)
2473 #define conditional_stopped_child_used_math(condition, child) \
2474 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2475 #define conditional_used_math(condition) \
2476 conditional_stopped_child_used_math(condition, current)
2477 #define copy_to_stopped_child_used_math(child) \
2478 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2479 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2480 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2481 #define used_math() tsk_used_math(current)
2482
2483 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2484 * __GFP_FS is also cleared as it implies __GFP_IO.
2485 */
memalloc_noio_flags(gfp_t flags)2486 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2487 {
2488 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2489 flags &= ~(__GFP_IO | __GFP_FS);
2490 return flags;
2491 }
2492
memalloc_noio_save(void)2493 static inline unsigned int memalloc_noio_save(void)
2494 {
2495 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2496 current->flags |= PF_MEMALLOC_NOIO;
2497 return flags;
2498 }
2499
memalloc_noio_restore(unsigned int flags)2500 static inline void memalloc_noio_restore(unsigned int flags)
2501 {
2502 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2503 }
2504
2505 /* Per-process atomic flags. */
2506 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2507 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2508 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2509 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2510
2511
2512 #define TASK_PFA_TEST(name, func) \
2513 static inline bool task_##func(struct task_struct *p) \
2514 { return test_bit(PFA_##name, &p->atomic_flags); }
2515 #define TASK_PFA_SET(name, func) \
2516 static inline void task_set_##func(struct task_struct *p) \
2517 { set_bit(PFA_##name, &p->atomic_flags); }
2518 #define TASK_PFA_CLEAR(name, func) \
2519 static inline void task_clear_##func(struct task_struct *p) \
2520 { clear_bit(PFA_##name, &p->atomic_flags); }
2521
2522 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2523 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2524
2525 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2526 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2527 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2528
2529 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2530 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2531 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2532
2533 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2534 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2535
2536 /*
2537 * task->jobctl flags
2538 */
2539 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2540
2541 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2542 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2543 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2544 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2545 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2546 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2547 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2548
2549 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2550 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2551 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2552 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2553 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2554 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2555 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2556
2557 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2558 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2559
2560 extern bool task_set_jobctl_pending(struct task_struct *task,
2561 unsigned long mask);
2562 extern void task_clear_jobctl_trapping(struct task_struct *task);
2563 extern void task_clear_jobctl_pending(struct task_struct *task,
2564 unsigned long mask);
2565
rcu_copy_process(struct task_struct * p)2566 static inline void rcu_copy_process(struct task_struct *p)
2567 {
2568 #ifdef CONFIG_PREEMPT_RCU
2569 p->rcu_read_lock_nesting = 0;
2570 p->rcu_read_unlock_special.s = 0;
2571 p->rcu_blocked_node = NULL;
2572 INIT_LIST_HEAD(&p->rcu_node_entry);
2573 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2574 #ifdef CONFIG_TASKS_RCU
2575 p->rcu_tasks_holdout = false;
2576 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2577 p->rcu_tasks_idle_cpu = -1;
2578 #endif /* #ifdef CONFIG_TASKS_RCU */
2579 }
2580
tsk_restore_flags(struct task_struct * task,unsigned long orig_flags,unsigned long flags)2581 static inline void tsk_restore_flags(struct task_struct *task,
2582 unsigned long orig_flags, unsigned long flags)
2583 {
2584 task->flags &= ~flags;
2585 task->flags |= orig_flags & flags;
2586 }
2587
2588 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2589 const struct cpumask *trial);
2590 extern int task_can_attach(struct task_struct *p,
2591 const struct cpumask *cs_cpus_allowed);
2592 #ifdef CONFIG_SMP
2593 extern void do_set_cpus_allowed(struct task_struct *p,
2594 const struct cpumask *new_mask);
2595
2596 extern int set_cpus_allowed_ptr(struct task_struct *p,
2597 const struct cpumask *new_mask);
2598 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2599 static inline void do_set_cpus_allowed(struct task_struct *p,
2600 const struct cpumask *new_mask)
2601 {
2602 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2603 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2604 const struct cpumask *new_mask)
2605 {
2606 if (!cpumask_test_cpu(0, new_mask))
2607 return -EINVAL;
2608 return 0;
2609 }
2610 #endif
2611
2612 #ifdef CONFIG_NO_HZ_COMMON
2613 void calc_load_enter_idle(void);
2614 void calc_load_exit_idle(void);
2615 #else
calc_load_enter_idle(void)2616 static inline void calc_load_enter_idle(void) { }
calc_load_exit_idle(void)2617 static inline void calc_load_exit_idle(void) { }
2618 #endif /* CONFIG_NO_HZ_COMMON */
2619
2620 /*
2621 * Do not use outside of architecture code which knows its limitations.
2622 *
2623 * sched_clock() has no promise of monotonicity or bounded drift between
2624 * CPUs, use (which you should not) requires disabling IRQs.
2625 *
2626 * Please use one of the three interfaces below.
2627 */
2628 extern unsigned long long notrace sched_clock(void);
2629 /*
2630 * See the comment in kernel/sched/clock.c
2631 */
2632 extern u64 running_clock(void);
2633 extern u64 sched_clock_cpu(int cpu);
2634
2635
2636 extern void sched_clock_init(void);
2637
2638 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_tick(void)2639 static inline void sched_clock_tick(void)
2640 {
2641 }
2642
sched_clock_idle_sleep_event(void)2643 static inline void sched_clock_idle_sleep_event(void)
2644 {
2645 }
2646
sched_clock_idle_wakeup_event(u64 delta_ns)2647 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2648 {
2649 }
2650
cpu_clock(int cpu)2651 static inline u64 cpu_clock(int cpu)
2652 {
2653 return sched_clock();
2654 }
2655
local_clock(void)2656 static inline u64 local_clock(void)
2657 {
2658 return sched_clock();
2659 }
2660 #else
2661 /*
2662 * Architectures can set this to 1 if they have specified
2663 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2664 * but then during bootup it turns out that sched_clock()
2665 * is reliable after all:
2666 */
2667 extern int sched_clock_stable(void);
2668 extern void set_sched_clock_stable(void);
2669 extern void clear_sched_clock_stable(void);
2670
2671 extern void sched_clock_tick(void);
2672 extern void sched_clock_idle_sleep_event(void);
2673 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2674
2675 /*
2676 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2677 * time source that is monotonic per cpu argument and has bounded drift
2678 * between cpus.
2679 *
2680 * ######################### BIG FAT WARNING ##########################
2681 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2682 * # go backwards !! #
2683 * ####################################################################
2684 */
cpu_clock(int cpu)2685 static inline u64 cpu_clock(int cpu)
2686 {
2687 return sched_clock_cpu(cpu);
2688 }
2689
local_clock(void)2690 static inline u64 local_clock(void)
2691 {
2692 return sched_clock_cpu(raw_smp_processor_id());
2693 }
2694 #endif
2695
2696 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2697 /*
2698 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2699 * The reason for this explicit opt-in is not to have perf penalty with
2700 * slow sched_clocks.
2701 */
2702 extern void enable_sched_clock_irqtime(void);
2703 extern void disable_sched_clock_irqtime(void);
2704 #else
enable_sched_clock_irqtime(void)2705 static inline void enable_sched_clock_irqtime(void) {}
disable_sched_clock_irqtime(void)2706 static inline void disable_sched_clock_irqtime(void) {}
2707 #endif
2708
2709 extern unsigned long long
2710 task_sched_runtime(struct task_struct *task);
2711
2712 /* sched_exec is called by processes performing an exec */
2713 #ifdef CONFIG_SMP
2714 extern void sched_exec(void);
2715 #else
2716 #define sched_exec() {}
2717 #endif
2718
2719 extern void sched_clock_idle_sleep_event(void);
2720 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2721
2722 #ifdef CONFIG_HOTPLUG_CPU
2723 extern void idle_task_exit(void);
2724 #else
idle_task_exit(void)2725 static inline void idle_task_exit(void) {}
2726 #endif
2727
2728 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2729 extern void wake_up_nohz_cpu(int cpu);
2730 #else
wake_up_nohz_cpu(int cpu)2731 static inline void wake_up_nohz_cpu(int cpu) { }
2732 #endif
2733
2734 #ifdef CONFIG_NO_HZ_FULL
2735 extern u64 scheduler_tick_max_deferment(void);
2736 #endif
2737
2738 #ifdef CONFIG_SCHED_AUTOGROUP
2739 extern void sched_autogroup_create_attach(struct task_struct *p);
2740 extern void sched_autogroup_detach(struct task_struct *p);
2741 extern void sched_autogroup_fork(struct signal_struct *sig);
2742 extern void sched_autogroup_exit(struct signal_struct *sig);
2743 extern void sched_autogroup_exit_task(struct task_struct *p);
2744 #ifdef CONFIG_PROC_FS
2745 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2746 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2747 #endif
2748 #else
sched_autogroup_create_attach(struct task_struct * p)2749 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
sched_autogroup_detach(struct task_struct * p)2750 static inline void sched_autogroup_detach(struct task_struct *p) { }
sched_autogroup_fork(struct signal_struct * sig)2751 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
sched_autogroup_exit(struct signal_struct * sig)2752 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
sched_autogroup_exit_task(struct task_struct * p)2753 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2754 #endif
2755
2756 extern int yield_to(struct task_struct *p, bool preempt);
2757 extern void set_user_nice(struct task_struct *p, long nice);
2758 extern int task_prio(const struct task_struct *p);
2759 /**
2760 * task_nice - return the nice value of a given task.
2761 * @p: the task in question.
2762 *
2763 * Return: The nice value [ -20 ... 0 ... 19 ].
2764 */
task_nice(const struct task_struct * p)2765 static inline int task_nice(const struct task_struct *p)
2766 {
2767 return PRIO_TO_NICE((p)->static_prio);
2768 }
2769 extern int can_nice(const struct task_struct *p, const int nice);
2770 extern int task_curr(const struct task_struct *p);
2771 extern int idle_cpu(int cpu);
2772 extern int sched_setscheduler(struct task_struct *, int,
2773 const struct sched_param *);
2774 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2775 const struct sched_param *);
2776 extern int sched_setattr(struct task_struct *,
2777 const struct sched_attr *);
2778 extern struct task_struct *idle_task(int cpu);
2779 /**
2780 * is_idle_task - is the specified task an idle task?
2781 * @p: the task in question.
2782 *
2783 * Return: 1 if @p is an idle task. 0 otherwise.
2784 */
is_idle_task(const struct task_struct * p)2785 static inline bool is_idle_task(const struct task_struct *p)
2786 {
2787 return p->pid == 0;
2788 }
2789 extern struct task_struct *curr_task(int cpu);
2790 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2791
2792 void yield(void);
2793
2794 union thread_union {
2795 #ifndef CONFIG_THREAD_INFO_IN_TASK
2796 struct thread_info thread_info;
2797 #endif
2798 unsigned long stack[THREAD_SIZE/sizeof(long)];
2799 };
2800
2801 #ifndef __HAVE_ARCH_KSTACK_END
kstack_end(void * addr)2802 static inline int kstack_end(void *addr)
2803 {
2804 /* Reliable end of stack detection:
2805 * Some APM bios versions misalign the stack
2806 */
2807 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2808 }
2809 #endif
2810
2811 extern union thread_union init_thread_union;
2812 extern struct task_struct init_task;
2813
2814 extern struct mm_struct init_mm;
2815
2816 extern struct pid_namespace init_pid_ns;
2817
2818 /*
2819 * find a task by one of its numerical ids
2820 *
2821 * find_task_by_pid_ns():
2822 * finds a task by its pid in the specified namespace
2823 * find_task_by_vpid():
2824 * finds a task by its virtual pid
2825 *
2826 * see also find_vpid() etc in include/linux/pid.h
2827 */
2828
2829 extern struct task_struct *find_task_by_vpid(pid_t nr);
2830 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2831 struct pid_namespace *ns);
2832
2833 /* per-UID process charging. */
2834 extern struct user_struct * alloc_uid(kuid_t);
get_uid(struct user_struct * u)2835 static inline struct user_struct *get_uid(struct user_struct *u)
2836 {
2837 atomic_inc(&u->__count);
2838 return u;
2839 }
2840 extern void free_uid(struct user_struct *);
2841
2842 #include <asm/current.h>
2843
2844 extern void xtime_update(unsigned long ticks);
2845
2846 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2847 extern int wake_up_process(struct task_struct *tsk);
2848 extern void wake_up_new_task(struct task_struct *tsk);
2849 #ifdef CONFIG_SMP
2850 extern void kick_process(struct task_struct *tsk);
2851 #else
kick_process(struct task_struct * tsk)2852 static inline void kick_process(struct task_struct *tsk) { }
2853 #endif
2854 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2855 extern void sched_dead(struct task_struct *p);
2856
2857 extern void proc_caches_init(void);
2858 extern void flush_signals(struct task_struct *);
2859 extern void ignore_signals(struct task_struct *);
2860 extern void flush_signal_handlers(struct task_struct *, int force_default);
2861 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2862
kernel_dequeue_signal(siginfo_t * info)2863 static inline int kernel_dequeue_signal(siginfo_t *info)
2864 {
2865 struct task_struct *tsk = current;
2866 siginfo_t __info;
2867 int ret;
2868
2869 spin_lock_irq(&tsk->sighand->siglock);
2870 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2871 spin_unlock_irq(&tsk->sighand->siglock);
2872
2873 return ret;
2874 }
2875
kernel_signal_stop(void)2876 static inline void kernel_signal_stop(void)
2877 {
2878 spin_lock_irq(¤t->sighand->siglock);
2879 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2880 __set_current_state(TASK_STOPPED);
2881 spin_unlock_irq(¤t->sighand->siglock);
2882
2883 schedule();
2884 }
2885
2886 extern void release_task(struct task_struct * p);
2887 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2888 extern int force_sigsegv(int, struct task_struct *);
2889 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2890 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2891 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2892 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2893 const struct cred *, u32);
2894 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2895 extern int kill_pid(struct pid *pid, int sig, int priv);
2896 extern int kill_proc_info(int, struct siginfo *, pid_t);
2897 extern __must_check bool do_notify_parent(struct task_struct *, int);
2898 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2899 extern void force_sig(int, struct task_struct *);
2900 extern int send_sig(int, struct task_struct *, int);
2901 extern int zap_other_threads(struct task_struct *p);
2902 extern struct sigqueue *sigqueue_alloc(void);
2903 extern void sigqueue_free(struct sigqueue *);
2904 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2905 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2906
2907 #ifdef TIF_RESTORE_SIGMASK
2908 /*
2909 * Legacy restore_sigmask accessors. These are inefficient on
2910 * SMP architectures because they require atomic operations.
2911 */
2912
2913 /**
2914 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2915 *
2916 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2917 * will run before returning to user mode, to process the flag. For
2918 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2919 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2920 * arch code will notice on return to user mode, in case those bits
2921 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2922 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2923 */
set_restore_sigmask(void)2924 static inline void set_restore_sigmask(void)
2925 {
2926 set_thread_flag(TIF_RESTORE_SIGMASK);
2927 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2928 }
clear_restore_sigmask(void)2929 static inline void clear_restore_sigmask(void)
2930 {
2931 clear_thread_flag(TIF_RESTORE_SIGMASK);
2932 }
test_restore_sigmask(void)2933 static inline bool test_restore_sigmask(void)
2934 {
2935 return test_thread_flag(TIF_RESTORE_SIGMASK);
2936 }
test_and_clear_restore_sigmask(void)2937 static inline bool test_and_clear_restore_sigmask(void)
2938 {
2939 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2940 }
2941
2942 #else /* TIF_RESTORE_SIGMASK */
2943
2944 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)2945 static inline void set_restore_sigmask(void)
2946 {
2947 current->restore_sigmask = true;
2948 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2949 }
clear_restore_sigmask(void)2950 static inline void clear_restore_sigmask(void)
2951 {
2952 current->restore_sigmask = false;
2953 }
test_restore_sigmask(void)2954 static inline bool test_restore_sigmask(void)
2955 {
2956 return current->restore_sigmask;
2957 }
test_and_clear_restore_sigmask(void)2958 static inline bool test_and_clear_restore_sigmask(void)
2959 {
2960 if (!current->restore_sigmask)
2961 return false;
2962 current->restore_sigmask = false;
2963 return true;
2964 }
2965 #endif
2966
restore_saved_sigmask(void)2967 static inline void restore_saved_sigmask(void)
2968 {
2969 if (test_and_clear_restore_sigmask())
2970 __set_current_blocked(¤t->saved_sigmask);
2971 }
2972
sigmask_to_save(void)2973 static inline sigset_t *sigmask_to_save(void)
2974 {
2975 sigset_t *res = ¤t->blocked;
2976 if (unlikely(test_restore_sigmask()))
2977 res = ¤t->saved_sigmask;
2978 return res;
2979 }
2980
kill_cad_pid(int sig,int priv)2981 static inline int kill_cad_pid(int sig, int priv)
2982 {
2983 return kill_pid(cad_pid, sig, priv);
2984 }
2985
2986 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2987 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2988 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2989 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2990
2991 /*
2992 * True if we are on the alternate signal stack.
2993 */
on_sig_stack(unsigned long sp)2994 static inline int on_sig_stack(unsigned long sp)
2995 {
2996 /*
2997 * If the signal stack is SS_AUTODISARM then, by construction, we
2998 * can't be on the signal stack unless user code deliberately set
2999 * SS_AUTODISARM when we were already on it.
3000 *
3001 * This improves reliability: if user state gets corrupted such that
3002 * the stack pointer points very close to the end of the signal stack,
3003 * then this check will enable the signal to be handled anyway.
3004 */
3005 if (current->sas_ss_flags & SS_AUTODISARM)
3006 return 0;
3007
3008 #ifdef CONFIG_STACK_GROWSUP
3009 return sp >= current->sas_ss_sp &&
3010 sp - current->sas_ss_sp < current->sas_ss_size;
3011 #else
3012 return sp > current->sas_ss_sp &&
3013 sp - current->sas_ss_sp <= current->sas_ss_size;
3014 #endif
3015 }
3016
sas_ss_flags(unsigned long sp)3017 static inline int sas_ss_flags(unsigned long sp)
3018 {
3019 if (!current->sas_ss_size)
3020 return SS_DISABLE;
3021
3022 return on_sig_stack(sp) ? SS_ONSTACK : 0;
3023 }
3024
sas_ss_reset(struct task_struct * p)3025 static inline void sas_ss_reset(struct task_struct *p)
3026 {
3027 p->sas_ss_sp = 0;
3028 p->sas_ss_size = 0;
3029 p->sas_ss_flags = SS_DISABLE;
3030 }
3031
sigsp(unsigned long sp,struct ksignal * ksig)3032 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
3033 {
3034 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
3035 #ifdef CONFIG_STACK_GROWSUP
3036 return current->sas_ss_sp;
3037 #else
3038 return current->sas_ss_sp + current->sas_ss_size;
3039 #endif
3040 return sp;
3041 }
3042
3043 /*
3044 * Routines for handling mm_structs
3045 */
3046 extern struct mm_struct * mm_alloc(void);
3047
3048 /* mmdrop drops the mm and the page tables */
3049 extern void __mmdrop(struct mm_struct *);
mmdrop(struct mm_struct * mm)3050 static inline void mmdrop(struct mm_struct *mm)
3051 {
3052 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
3053 __mmdrop(mm);
3054 }
3055
mmdrop_async_fn(struct work_struct * work)3056 static inline void mmdrop_async_fn(struct work_struct *work)
3057 {
3058 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
3059 __mmdrop(mm);
3060 }
3061
mmdrop_async(struct mm_struct * mm)3062 static inline void mmdrop_async(struct mm_struct *mm)
3063 {
3064 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
3065 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
3066 schedule_work(&mm->async_put_work);
3067 }
3068 }
3069
mmget_not_zero(struct mm_struct * mm)3070 static inline bool mmget_not_zero(struct mm_struct *mm)
3071 {
3072 return atomic_inc_not_zero(&mm->mm_users);
3073 }
3074
3075 /* mmput gets rid of the mappings and all user-space */
3076 extern void mmput(struct mm_struct *);
3077 #ifdef CONFIG_MMU
3078 /* same as above but performs the slow path from the async context. Can
3079 * be called from the atomic context as well
3080 */
3081 extern void mmput_async(struct mm_struct *);
3082 #endif
3083
3084 /* Grab a reference to a task's mm, if it is not already going away */
3085 extern struct mm_struct *get_task_mm(struct task_struct *task);
3086 /*
3087 * Grab a reference to a task's mm, if it is not already going away
3088 * and ptrace_may_access with the mode parameter passed to it
3089 * succeeds.
3090 */
3091 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
3092 /* Remove the current tasks stale references to the old mm_struct */
3093 extern void mm_release(struct task_struct *, struct mm_struct *);
3094
3095 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
3096 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
3097 struct task_struct *, unsigned long);
3098 #else
3099 extern int copy_thread(unsigned long, unsigned long, unsigned long,
3100 struct task_struct *);
3101
3102 /* Architectures that haven't opted into copy_thread_tls get the tls argument
3103 * via pt_regs, so ignore the tls argument passed via C. */
copy_thread_tls(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)3104 static inline int copy_thread_tls(
3105 unsigned long clone_flags, unsigned long sp, unsigned long arg,
3106 struct task_struct *p, unsigned long tls)
3107 {
3108 return copy_thread(clone_flags, sp, arg, p);
3109 }
3110 #endif
3111 extern void flush_thread(void);
3112
3113 #ifdef CONFIG_HAVE_EXIT_THREAD
3114 extern void exit_thread(struct task_struct *tsk);
3115 #else
exit_thread(struct task_struct * tsk)3116 static inline void exit_thread(struct task_struct *tsk)
3117 {
3118 }
3119 #endif
3120
3121 extern void exit_files(struct task_struct *);
3122 extern void __cleanup_sighand(struct sighand_struct *);
3123
3124 extern void exit_itimers(struct signal_struct *);
3125 extern void flush_itimer_signals(void);
3126
3127 extern void do_group_exit(int);
3128
3129 extern int do_execve(struct filename *,
3130 const char __user * const __user *,
3131 const char __user * const __user *);
3132 extern int do_execveat(int, struct filename *,
3133 const char __user * const __user *,
3134 const char __user * const __user *,
3135 int);
3136 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3137 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3138 struct task_struct *fork_idle(int);
3139 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3140
3141 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
set_task_comm(struct task_struct * tsk,const char * from)3142 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3143 {
3144 __set_task_comm(tsk, from, false);
3145 }
3146 extern char *get_task_comm(char *to, struct task_struct *tsk);
3147
3148 #ifdef CONFIG_SMP
3149 void scheduler_ipi(void);
3150 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3151 #else
scheduler_ipi(void)3152 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)3153 static inline unsigned long wait_task_inactive(struct task_struct *p,
3154 long match_state)
3155 {
3156 return 1;
3157 }
3158 #endif
3159
3160 #define tasklist_empty() \
3161 list_empty(&init_task.tasks)
3162
3163 #define next_task(p) \
3164 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3165
3166 #define for_each_process(p) \
3167 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3168
3169 extern bool current_is_single_threaded(void);
3170
3171 /*
3172 * Careful: do_each_thread/while_each_thread is a double loop so
3173 * 'break' will not work as expected - use goto instead.
3174 */
3175 #define do_each_thread(g, t) \
3176 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3177
3178 #define while_each_thread(g, t) \
3179 while ((t = next_thread(t)) != g)
3180
3181 #define __for_each_thread(signal, t) \
3182 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3183
3184 #define for_each_thread(p, t) \
3185 __for_each_thread((p)->signal, t)
3186
3187 /* Careful: this is a double loop, 'break' won't work as expected. */
3188 #define for_each_process_thread(p, t) \
3189 for_each_process(p) for_each_thread(p, t)
3190
get_nr_threads(struct task_struct * tsk)3191 static inline int get_nr_threads(struct task_struct *tsk)
3192 {
3193 return tsk->signal->nr_threads;
3194 }
3195
thread_group_leader(struct task_struct * p)3196 static inline bool thread_group_leader(struct task_struct *p)
3197 {
3198 return p->exit_signal >= 0;
3199 }
3200
3201 /* Do to the insanities of de_thread it is possible for a process
3202 * to have the pid of the thread group leader without actually being
3203 * the thread group leader. For iteration through the pids in proc
3204 * all we care about is that we have a task with the appropriate
3205 * pid, we don't actually care if we have the right task.
3206 */
has_group_leader_pid(struct task_struct * p)3207 static inline bool has_group_leader_pid(struct task_struct *p)
3208 {
3209 return task_pid(p) == p->signal->leader_pid;
3210 }
3211
3212 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)3213 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3214 {
3215 return p1->signal == p2->signal;
3216 }
3217
next_thread(const struct task_struct * p)3218 static inline struct task_struct *next_thread(const struct task_struct *p)
3219 {
3220 return list_entry_rcu(p->thread_group.next,
3221 struct task_struct, thread_group);
3222 }
3223
thread_group_empty(struct task_struct * p)3224 static inline int thread_group_empty(struct task_struct *p)
3225 {
3226 return list_empty(&p->thread_group);
3227 }
3228
3229 #define delay_group_leader(p) \
3230 (thread_group_leader(p) && !thread_group_empty(p))
3231
3232 /*
3233 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3234 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3235 * pins the final release of task.io_context. Also protects ->cpuset and
3236 * ->cgroup.subsys[]. And ->vfork_done.
3237 *
3238 * Nests both inside and outside of read_lock(&tasklist_lock).
3239 * It must not be nested with write_lock_irq(&tasklist_lock),
3240 * neither inside nor outside.
3241 */
task_lock(struct task_struct * p)3242 static inline void task_lock(struct task_struct *p)
3243 {
3244 spin_lock(&p->alloc_lock);
3245 }
3246
task_unlock(struct task_struct * p)3247 static inline void task_unlock(struct task_struct *p)
3248 {
3249 spin_unlock(&p->alloc_lock);
3250 }
3251
3252 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3253 unsigned long *flags);
3254
lock_task_sighand(struct task_struct * tsk,unsigned long * flags)3255 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3256 unsigned long *flags)
3257 {
3258 struct sighand_struct *ret;
3259
3260 ret = __lock_task_sighand(tsk, flags);
3261 (void)__cond_lock(&tsk->sighand->siglock, ret);
3262 return ret;
3263 }
3264
unlock_task_sighand(struct task_struct * tsk,unsigned long * flags)3265 static inline void unlock_task_sighand(struct task_struct *tsk,
3266 unsigned long *flags)
3267 {
3268 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3269 }
3270
3271 /**
3272 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3273 * @tsk: task causing the changes
3274 *
3275 * All operations which modify a threadgroup - a new thread joining the
3276 * group, death of a member thread (the assertion of PF_EXITING) and
3277 * exec(2) dethreading the process and replacing the leader - are wrapped
3278 * by threadgroup_change_{begin|end}(). This is to provide a place which
3279 * subsystems needing threadgroup stability can hook into for
3280 * synchronization.
3281 */
threadgroup_change_begin(struct task_struct * tsk)3282 static inline void threadgroup_change_begin(struct task_struct *tsk)
3283 {
3284 might_sleep();
3285 cgroup_threadgroup_change_begin(tsk);
3286 }
3287
3288 /**
3289 * threadgroup_change_end - mark the end of changes to a threadgroup
3290 * @tsk: task causing the changes
3291 *
3292 * See threadgroup_change_begin().
3293 */
threadgroup_change_end(struct task_struct * tsk)3294 static inline void threadgroup_change_end(struct task_struct *tsk)
3295 {
3296 cgroup_threadgroup_change_end(tsk);
3297 }
3298
3299 #ifdef CONFIG_THREAD_INFO_IN_TASK
3300
task_thread_info(struct task_struct * task)3301 static inline struct thread_info *task_thread_info(struct task_struct *task)
3302 {
3303 return &task->thread_info;
3304 }
3305
3306 /*
3307 * When accessing the stack of a non-current task that might exit, use
3308 * try_get_task_stack() instead. task_stack_page will return a pointer
3309 * that could get freed out from under you.
3310 */
task_stack_page(const struct task_struct * task)3311 static inline void *task_stack_page(const struct task_struct *task)
3312 {
3313 return task->stack;
3314 }
3315
3316 #define setup_thread_stack(new,old) do { } while(0)
3317
end_of_stack(const struct task_struct * task)3318 static inline unsigned long *end_of_stack(const struct task_struct *task)
3319 {
3320 return task->stack;
3321 }
3322
3323 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3324
3325 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
3326 #define task_stack_page(task) ((void *)(task)->stack)
3327
setup_thread_stack(struct task_struct * p,struct task_struct * org)3328 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3329 {
3330 *task_thread_info(p) = *task_thread_info(org);
3331 task_thread_info(p)->task = p;
3332 }
3333
3334 /*
3335 * Return the address of the last usable long on the stack.
3336 *
3337 * When the stack grows down, this is just above the thread
3338 * info struct. Going any lower will corrupt the threadinfo.
3339 *
3340 * When the stack grows up, this is the highest address.
3341 * Beyond that position, we corrupt data on the next page.
3342 */
end_of_stack(struct task_struct * p)3343 static inline unsigned long *end_of_stack(struct task_struct *p)
3344 {
3345 #ifdef CONFIG_STACK_GROWSUP
3346 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3347 #else
3348 return (unsigned long *)(task_thread_info(p) + 1);
3349 #endif
3350 }
3351
3352 #endif
3353
3354 #ifdef CONFIG_THREAD_INFO_IN_TASK
try_get_task_stack(struct task_struct * tsk)3355 static inline void *try_get_task_stack(struct task_struct *tsk)
3356 {
3357 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3358 task_stack_page(tsk) : NULL;
3359 }
3360
3361 extern void put_task_stack(struct task_struct *tsk);
3362 #else
try_get_task_stack(struct task_struct * tsk)3363 static inline void *try_get_task_stack(struct task_struct *tsk)
3364 {
3365 return task_stack_page(tsk);
3366 }
3367
put_task_stack(struct task_struct * tsk)3368 static inline void put_task_stack(struct task_struct *tsk) {}
3369 #endif
3370
3371 #define task_stack_end_corrupted(task) \
3372 (*(end_of_stack(task)) != STACK_END_MAGIC)
3373
object_is_on_stack(void * obj)3374 static inline int object_is_on_stack(void *obj)
3375 {
3376 void *stack = task_stack_page(current);
3377
3378 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3379 }
3380
3381 extern void thread_stack_cache_init(void);
3382
3383 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)3384 static inline unsigned long stack_not_used(struct task_struct *p)
3385 {
3386 unsigned long *n = end_of_stack(p);
3387
3388 do { /* Skip over canary */
3389 # ifdef CONFIG_STACK_GROWSUP
3390 n--;
3391 # else
3392 n++;
3393 # endif
3394 } while (!*n);
3395
3396 # ifdef CONFIG_STACK_GROWSUP
3397 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3398 # else
3399 return (unsigned long)n - (unsigned long)end_of_stack(p);
3400 # endif
3401 }
3402 #endif
3403 extern void set_task_stack_end_magic(struct task_struct *tsk);
3404
3405 /* set thread flags in other task's structures
3406 * - see asm/thread_info.h for TIF_xxxx flags available
3407 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)3408 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3409 {
3410 set_ti_thread_flag(task_thread_info(tsk), flag);
3411 }
3412
clear_tsk_thread_flag(struct task_struct * tsk,int flag)3413 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3414 {
3415 clear_ti_thread_flag(task_thread_info(tsk), flag);
3416 }
3417
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)3418 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3419 {
3420 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3421 }
3422
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)3423 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3424 {
3425 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3426 }
3427
test_tsk_thread_flag(struct task_struct * tsk,int flag)3428 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3429 {
3430 return test_ti_thread_flag(task_thread_info(tsk), flag);
3431 }
3432
set_tsk_need_resched(struct task_struct * tsk)3433 static inline void set_tsk_need_resched(struct task_struct *tsk)
3434 {
3435 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3436 }
3437
clear_tsk_need_resched(struct task_struct * tsk)3438 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3439 {
3440 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3441 }
3442
test_tsk_need_resched(struct task_struct * tsk)3443 static inline int test_tsk_need_resched(struct task_struct *tsk)
3444 {
3445 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3446 }
3447
restart_syscall(void)3448 static inline int restart_syscall(void)
3449 {
3450 set_tsk_thread_flag(current, TIF_SIGPENDING);
3451 return -ERESTARTNOINTR;
3452 }
3453
signal_pending(struct task_struct * p)3454 static inline int signal_pending(struct task_struct *p)
3455 {
3456 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3457 }
3458
__fatal_signal_pending(struct task_struct * p)3459 static inline int __fatal_signal_pending(struct task_struct *p)
3460 {
3461 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3462 }
3463
fatal_signal_pending(struct task_struct * p)3464 static inline int fatal_signal_pending(struct task_struct *p)
3465 {
3466 return signal_pending(p) && __fatal_signal_pending(p);
3467 }
3468
signal_pending_state(long state,struct task_struct * p)3469 static inline int signal_pending_state(long state, struct task_struct *p)
3470 {
3471 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3472 return 0;
3473 if (!signal_pending(p))
3474 return 0;
3475
3476 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3477 }
3478
3479 /*
3480 * cond_resched() and cond_resched_lock(): latency reduction via
3481 * explicit rescheduling in places that are safe. The return
3482 * value indicates whether a reschedule was done in fact.
3483 * cond_resched_lock() will drop the spinlock before scheduling,
3484 * cond_resched_softirq() will enable bhs before scheduling.
3485 */
3486 #ifndef CONFIG_PREEMPT
3487 extern int _cond_resched(void);
3488 #else
_cond_resched(void)3489 static inline int _cond_resched(void) { return 0; }
3490 #endif
3491
3492 #define cond_resched() ({ \
3493 ___might_sleep(__FILE__, __LINE__, 0); \
3494 _cond_resched(); \
3495 })
3496
3497 extern int __cond_resched_lock(spinlock_t *lock);
3498
3499 #define cond_resched_lock(lock) ({ \
3500 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3501 __cond_resched_lock(lock); \
3502 })
3503
3504 extern int __cond_resched_softirq(void);
3505
3506 #define cond_resched_softirq() ({ \
3507 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3508 __cond_resched_softirq(); \
3509 })
3510
cond_resched_rcu(void)3511 static inline void cond_resched_rcu(void)
3512 {
3513 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3514 rcu_read_unlock();
3515 cond_resched();
3516 rcu_read_lock();
3517 #endif
3518 }
3519
get_preempt_disable_ip(struct task_struct * p)3520 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3521 {
3522 #ifdef CONFIG_DEBUG_PREEMPT
3523 return p->preempt_disable_ip;
3524 #else
3525 return 0;
3526 #endif
3527 }
3528
3529 /*
3530 * Does a critical section need to be broken due to another
3531 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3532 * but a general need for low latency)
3533 */
spin_needbreak(spinlock_t * lock)3534 static inline int spin_needbreak(spinlock_t *lock)
3535 {
3536 #ifdef CONFIG_PREEMPT
3537 return spin_is_contended(lock);
3538 #else
3539 return 0;
3540 #endif
3541 }
3542
3543 /*
3544 * Idle thread specific functions to determine the need_resched
3545 * polling state.
3546 */
3547 #ifdef TIF_POLLING_NRFLAG
tsk_is_polling(struct task_struct * p)3548 static inline int tsk_is_polling(struct task_struct *p)
3549 {
3550 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3551 }
3552
__current_set_polling(void)3553 static inline void __current_set_polling(void)
3554 {
3555 set_thread_flag(TIF_POLLING_NRFLAG);
3556 }
3557
current_set_polling_and_test(void)3558 static inline bool __must_check current_set_polling_and_test(void)
3559 {
3560 __current_set_polling();
3561
3562 /*
3563 * Polling state must be visible before we test NEED_RESCHED,
3564 * paired by resched_curr()
3565 */
3566 smp_mb__after_atomic();
3567
3568 return unlikely(tif_need_resched());
3569 }
3570
__current_clr_polling(void)3571 static inline void __current_clr_polling(void)
3572 {
3573 clear_thread_flag(TIF_POLLING_NRFLAG);
3574 }
3575
current_clr_polling_and_test(void)3576 static inline bool __must_check current_clr_polling_and_test(void)
3577 {
3578 __current_clr_polling();
3579
3580 /*
3581 * Polling state must be visible before we test NEED_RESCHED,
3582 * paired by resched_curr()
3583 */
3584 smp_mb__after_atomic();
3585
3586 return unlikely(tif_need_resched());
3587 }
3588
3589 #else
tsk_is_polling(struct task_struct * p)3590 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
__current_set_polling(void)3591 static inline void __current_set_polling(void) { }
__current_clr_polling(void)3592 static inline void __current_clr_polling(void) { }
3593
current_set_polling_and_test(void)3594 static inline bool __must_check current_set_polling_and_test(void)
3595 {
3596 return unlikely(tif_need_resched());
3597 }
current_clr_polling_and_test(void)3598 static inline bool __must_check current_clr_polling_and_test(void)
3599 {
3600 return unlikely(tif_need_resched());
3601 }
3602 #endif
3603
current_clr_polling(void)3604 static inline void current_clr_polling(void)
3605 {
3606 __current_clr_polling();
3607
3608 /*
3609 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3610 * Once the bit is cleared, we'll get IPIs with every new
3611 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3612 * fold.
3613 */
3614 smp_mb(); /* paired with resched_curr() */
3615
3616 preempt_fold_need_resched();
3617 }
3618
need_resched(void)3619 static __always_inline bool need_resched(void)
3620 {
3621 return unlikely(tif_need_resched());
3622 }
3623
3624 /*
3625 * Thread group CPU time accounting.
3626 */
3627 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3628 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3629
3630 /*
3631 * Reevaluate whether the task has signals pending delivery.
3632 * Wake the task if so.
3633 * This is required every time the blocked sigset_t changes.
3634 * callers must hold sighand->siglock.
3635 */
3636 extern void recalc_sigpending_and_wake(struct task_struct *t);
3637 extern void recalc_sigpending(void);
3638
3639 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3640
signal_wake_up(struct task_struct * t,bool resume)3641 static inline void signal_wake_up(struct task_struct *t, bool resume)
3642 {
3643 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3644 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)3645 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3646 {
3647 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3648 }
3649
3650 /*
3651 * Wrappers for p->thread_info->cpu access. No-op on UP.
3652 */
3653 #ifdef CONFIG_SMP
3654
task_cpu(const struct task_struct * p)3655 static inline unsigned int task_cpu(const struct task_struct *p)
3656 {
3657 #ifdef CONFIG_THREAD_INFO_IN_TASK
3658 return p->cpu;
3659 #else
3660 return task_thread_info(p)->cpu;
3661 #endif
3662 }
3663
task_node(const struct task_struct * p)3664 static inline int task_node(const struct task_struct *p)
3665 {
3666 return cpu_to_node(task_cpu(p));
3667 }
3668
3669 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3670
3671 #else
3672
task_cpu(const struct task_struct * p)3673 static inline unsigned int task_cpu(const struct task_struct *p)
3674 {
3675 return 0;
3676 }
3677
set_task_cpu(struct task_struct * p,unsigned int cpu)3678 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3679 {
3680 }
3681
3682 #endif /* CONFIG_SMP */
3683
3684 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3685 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3686
3687 #ifdef CONFIG_CGROUP_SCHED
3688 extern struct task_group root_task_group;
3689 #endif /* CONFIG_CGROUP_SCHED */
3690
3691 extern int task_can_switch_user(struct user_struct *up,
3692 struct task_struct *tsk);
3693
3694 #ifdef CONFIG_TASK_XACCT
add_rchar(struct task_struct * tsk,ssize_t amt)3695 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3696 {
3697 tsk->ioac.rchar += amt;
3698 }
3699
add_wchar(struct task_struct * tsk,ssize_t amt)3700 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3701 {
3702 tsk->ioac.wchar += amt;
3703 }
3704
inc_syscr(struct task_struct * tsk)3705 static inline void inc_syscr(struct task_struct *tsk)
3706 {
3707 tsk->ioac.syscr++;
3708 }
3709
inc_syscw(struct task_struct * tsk)3710 static inline void inc_syscw(struct task_struct *tsk)
3711 {
3712 tsk->ioac.syscw++;
3713 }
3714
inc_syscfs(struct task_struct * tsk)3715 static inline void inc_syscfs(struct task_struct *tsk)
3716 {
3717 tsk->ioac.syscfs++;
3718 }
3719 #else
add_rchar(struct task_struct * tsk,ssize_t amt)3720 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3721 {
3722 }
3723
add_wchar(struct task_struct * tsk,ssize_t amt)3724 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3725 {
3726 }
3727
inc_syscr(struct task_struct * tsk)3728 static inline void inc_syscr(struct task_struct *tsk)
3729 {
3730 }
3731
inc_syscw(struct task_struct * tsk)3732 static inline void inc_syscw(struct task_struct *tsk)
3733 {
3734 }
inc_syscfs(struct task_struct * tsk)3735 static inline void inc_syscfs(struct task_struct *tsk)
3736 {
3737 }
3738 #endif
3739
3740 #ifndef TASK_SIZE_OF
3741 #define TASK_SIZE_OF(tsk) TASK_SIZE
3742 #endif
3743
3744 #ifdef CONFIG_MEMCG
3745 extern void mm_update_next_owner(struct mm_struct *mm);
3746 #else
mm_update_next_owner(struct mm_struct * mm)3747 static inline void mm_update_next_owner(struct mm_struct *mm)
3748 {
3749 }
3750 #endif /* CONFIG_MEMCG */
3751
task_rlimit(const struct task_struct * tsk,unsigned int limit)3752 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3753 unsigned int limit)
3754 {
3755 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3756 }
3757
task_rlimit_max(const struct task_struct * tsk,unsigned int limit)3758 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3759 unsigned int limit)
3760 {
3761 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3762 }
3763
rlimit(unsigned int limit)3764 static inline unsigned long rlimit(unsigned int limit)
3765 {
3766 return task_rlimit(current, limit);
3767 }
3768
rlimit_max(unsigned int limit)3769 static inline unsigned long rlimit_max(unsigned int limit)
3770 {
3771 return task_rlimit_max(current, limit);
3772 }
3773
3774 #define SCHED_CPUFREQ_RT (1U << 0)
3775 #define SCHED_CPUFREQ_DL (1U << 1)
3776 #define SCHED_CPUFREQ_IOWAIT (1U << 2)
3777
3778 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3779
3780 #ifdef CONFIG_CPU_FREQ
3781 struct update_util_data {
3782 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3783 };
3784
3785 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3786 void (*func)(struct update_util_data *data, u64 time,
3787 unsigned int flags));
3788 void cpufreq_remove_update_util_hook(int cpu);
3789 #endif /* CONFIG_CPU_FREQ */
3790
3791 #endif
3792