• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47 
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62 
63 #include <asm/processor.h>
64 
65 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
66 
67 /*
68  * Extended scheduling parameters data structure.
69  *
70  * This is needed because the original struct sched_param can not be
71  * altered without introducing ABI issues with legacy applications
72  * (e.g., in sched_getparam()).
73  *
74  * However, the possibility of specifying more than just a priority for
75  * the tasks may be useful for a wide variety of application fields, e.g.,
76  * multimedia, streaming, automation and control, and many others.
77  *
78  * This variant (sched_attr) is meant at describing a so-called
79  * sporadic time-constrained task. In such model a task is specified by:
80  *  - the activation period or minimum instance inter-arrival time;
81  *  - the maximum (or average, depending on the actual scheduling
82  *    discipline) computation time of all instances, a.k.a. runtime;
83  *  - the deadline (relative to the actual activation time) of each
84  *    instance.
85  * Very briefly, a periodic (sporadic) task asks for the execution of
86  * some specific computation --which is typically called an instance--
87  * (at most) every period. Moreover, each instance typically lasts no more
88  * than the runtime and must be completed by time instant t equal to
89  * the instance activation time + the deadline.
90  *
91  * This is reflected by the actual fields of the sched_attr structure:
92  *
93  *  @size		size of the structure, for fwd/bwd compat.
94  *
95  *  @sched_policy	task's scheduling policy
96  *  @sched_flags	for customizing the scheduler behaviour
97  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
98  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
99  *  @sched_deadline	representative of the task's deadline
100  *  @sched_runtime	representative of the task's runtime
101  *  @sched_period	representative of the task's period
102  *
103  * Given this task model, there are a multiplicity of scheduling algorithms
104  * and policies, that can be used to ensure all the tasks will make their
105  * timing constraints.
106  *
107  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108  * only user of this new interface. More information about the algorithm
109  * available in the scheduling class file or in Documentation/.
110  */
111 struct sched_attr {
112 	u32 size;
113 
114 	u32 sched_policy;
115 	u64 sched_flags;
116 
117 	/* SCHED_NORMAL, SCHED_BATCH */
118 	s32 sched_nice;
119 
120 	/* SCHED_FIFO, SCHED_RR */
121 	u32 sched_priority;
122 
123 	/* SCHED_DEADLINE */
124 	u64 sched_runtime;
125 	u64 sched_deadline;
126 	u64 sched_period;
127 };
128 
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137 
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141 
142 /*
143  * These are the constant used to fake the fixed-point load-average
144  * counting. Some notes:
145  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
146  *    a load-average precision of 10 bits integer + 11 bits fractional
147  *  - if you want to count load-averages more often, you need more
148  *    precision, or rounding will get you. With 2-second counting freq,
149  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
150  *    11 bit fractions.
151  */
152 extern unsigned long avenrun[];		/* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154 
155 #define FSHIFT		11		/* nr of bits of precision */
156 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
157 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
158 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5		2014		/* 1/exp(5sec/5min) */
160 #define EXP_15		2037		/* 1/exp(5sec/15min) */
161 
162 #define CALC_LOAD(load,exp,n) \
163 	load *= exp; \
164 	load += n*(FIXED_1-exp); \
165 	load >>= FSHIFT;
166 
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176 #ifdef CONFIG_CPU_QUIET
177 extern u64 nr_running_integral(unsigned int cpu);
178 #endif
179 
180 extern void calc_global_load(unsigned long ticks);
181 
182 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
183 extern void cpu_load_update_nohz_start(void);
184 extern void cpu_load_update_nohz_stop(void);
185 #else
cpu_load_update_nohz_start(void)186 static inline void cpu_load_update_nohz_start(void) { }
cpu_load_update_nohz_stop(void)187 static inline void cpu_load_update_nohz_stop(void) { }
188 #endif
189 
190 extern void dump_cpu_task(int cpu);
191 
192 struct seq_file;
193 struct cfs_rq;
194 struct task_group;
195 #ifdef CONFIG_SCHED_DEBUG
196 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
197 extern void proc_sched_set_task(struct task_struct *p);
198 #endif
199 
200 /*
201  * Task state bitmask. NOTE! These bits are also
202  * encoded in fs/proc/array.c: get_task_state().
203  *
204  * We have two separate sets of flags: task->state
205  * is about runnability, while task->exit_state are
206  * about the task exiting. Confusing, but this way
207  * modifying one set can't modify the other one by
208  * mistake.
209  */
210 #define TASK_RUNNING		0
211 #define TASK_INTERRUPTIBLE	1
212 #define TASK_UNINTERRUPTIBLE	2
213 #define __TASK_STOPPED		4
214 #define __TASK_TRACED		8
215 /* in tsk->exit_state */
216 #define EXIT_DEAD		16
217 #define EXIT_ZOMBIE		32
218 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
219 /* in tsk->state again */
220 #define TASK_DEAD		64
221 #define TASK_WAKEKILL		128
222 #define TASK_WAKING		256
223 #define TASK_PARKED		512
224 #define TASK_NOLOAD		1024
225 #define TASK_NEW		2048
226 #define TASK_STATE_MAX		4096
227 
228 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
229 
230 extern char ___assert_task_state[1 - 2*!!(
231 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
232 
233 /* Convenience macros for the sake of set_task_state */
234 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
235 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
236 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
237 
238 #define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
239 
240 /* Convenience macros for the sake of wake_up */
241 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
242 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
243 
244 /* get_task_state() */
245 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
246 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
247 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
248 
249 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
250 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
251 #define task_is_stopped_or_traced(task)	\
252 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
253 #define task_contributes_to_load(task)	\
254 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
255 				 (task->flags & PF_FROZEN) == 0 && \
256 				 (task->state & TASK_NOLOAD) == 0)
257 
258 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
259 
260 #define __set_task_state(tsk, state_value)			\
261 	do {							\
262 		(tsk)->task_state_change = _THIS_IP_;		\
263 		(tsk)->state = (state_value);			\
264 	} while (0)
265 #define set_task_state(tsk, state_value)			\
266 	do {							\
267 		(tsk)->task_state_change = _THIS_IP_;		\
268 		smp_store_mb((tsk)->state, (state_value));		\
269 	} while (0)
270 
271 /*
272  * set_current_state() includes a barrier so that the write of current->state
273  * is correctly serialised wrt the caller's subsequent test of whether to
274  * actually sleep:
275  *
276  *	set_current_state(TASK_UNINTERRUPTIBLE);
277  *	if (do_i_need_to_sleep())
278  *		schedule();
279  *
280  * If the caller does not need such serialisation then use __set_current_state()
281  */
282 #define __set_current_state(state_value)			\
283 	do {							\
284 		current->task_state_change = _THIS_IP_;		\
285 		current->state = (state_value);			\
286 	} while (0)
287 #define set_current_state(state_value)				\
288 	do {							\
289 		current->task_state_change = _THIS_IP_;		\
290 		smp_store_mb(current->state, (state_value));		\
291 	} while (0)
292 
293 #else
294 
295 #define __set_task_state(tsk, state_value)		\
296 	do { (tsk)->state = (state_value); } while (0)
297 #define set_task_state(tsk, state_value)		\
298 	smp_store_mb((tsk)->state, (state_value))
299 
300 /*
301  * set_current_state() includes a barrier so that the write of current->state
302  * is correctly serialised wrt the caller's subsequent test of whether to
303  * actually sleep:
304  *
305  *	set_current_state(TASK_UNINTERRUPTIBLE);
306  *	if (do_i_need_to_sleep())
307  *		schedule();
308  *
309  * If the caller does not need such serialisation then use __set_current_state()
310  */
311 #define __set_current_state(state_value)		\
312 	do { current->state = (state_value); } while (0)
313 #define set_current_state(state_value)			\
314 	smp_store_mb(current->state, (state_value))
315 
316 #endif
317 
318 /* Task command name length */
319 #define TASK_COMM_LEN 16
320 
321 enum task_event {
322 	PUT_PREV_TASK   = 0,
323 	PICK_NEXT_TASK  = 1,
324 	TASK_WAKE       = 2,
325 	TASK_MIGRATE    = 3,
326 	TASK_UPDATE     = 4,
327 	IRQ_UPDATE	= 5,
328 };
329 
330 #include <linux/spinlock.h>
331 
332 /*
333  * This serializes "schedule()" and also protects
334  * the run-queue from deletions/modifications (but
335  * _adding_ to the beginning of the run-queue has
336  * a separate lock).
337  */
338 extern rwlock_t tasklist_lock;
339 extern spinlock_t mmlist_lock;
340 
341 struct task_struct;
342 
343 #ifdef CONFIG_PROVE_RCU
344 extern int lockdep_tasklist_lock_is_held(void);
345 #endif /* #ifdef CONFIG_PROVE_RCU */
346 
347 extern void sched_init(void);
348 extern void sched_init_smp(void);
349 extern asmlinkage void schedule_tail(struct task_struct *prev);
350 extern void init_idle(struct task_struct *idle, int cpu);
351 extern void init_idle_bootup_task(struct task_struct *idle);
352 
353 extern cpumask_var_t cpu_isolated_map;
354 
355 extern int runqueue_is_locked(int cpu);
356 
357 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
358 extern void nohz_balance_enter_idle(int cpu);
359 extern void set_cpu_sd_state_idle(void);
360 extern int get_nohz_timer_target(void);
361 #else
nohz_balance_enter_idle(int cpu)362 static inline void nohz_balance_enter_idle(int cpu) { }
set_cpu_sd_state_idle(void)363 static inline void set_cpu_sd_state_idle(void) { }
364 #endif
365 
366 /*
367  * Only dump TASK_* tasks. (0 for all tasks)
368  */
369 extern void show_state_filter(unsigned long state_filter);
370 
show_state(void)371 static inline void show_state(void)
372 {
373 	show_state_filter(0);
374 }
375 
376 extern void show_regs(struct pt_regs *);
377 
378 /*
379  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
380  * task), SP is the stack pointer of the first frame that should be shown in the back
381  * trace (or NULL if the entire call-chain of the task should be shown).
382  */
383 extern void show_stack(struct task_struct *task, unsigned long *sp);
384 
385 extern void cpu_init (void);
386 extern void trap_init(void);
387 extern void update_process_times(int user);
388 extern void scheduler_tick(void);
389 extern int sched_cpu_starting(unsigned int cpu);
390 extern int sched_cpu_activate(unsigned int cpu);
391 extern int sched_cpu_deactivate(unsigned int cpu);
392 
393 #ifdef CONFIG_HOTPLUG_CPU
394 extern int sched_cpu_dying(unsigned int cpu);
395 #else
396 # define sched_cpu_dying	NULL
397 #endif
398 
399 extern void sched_show_task(struct task_struct *p);
400 
401 #ifdef CONFIG_LOCKUP_DETECTOR
402 extern void touch_softlockup_watchdog_sched(void);
403 extern void touch_softlockup_watchdog(void);
404 extern void touch_softlockup_watchdog_sync(void);
405 extern void touch_all_softlockup_watchdogs(void);
406 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
407 				  void __user *buffer,
408 				  size_t *lenp, loff_t *ppos);
409 extern unsigned int  softlockup_panic;
410 extern unsigned int  hardlockup_panic;
411 void lockup_detector_init(void);
412 #else
touch_softlockup_watchdog_sched(void)413 static inline void touch_softlockup_watchdog_sched(void)
414 {
415 }
touch_softlockup_watchdog(void)416 static inline void touch_softlockup_watchdog(void)
417 {
418 }
touch_softlockup_watchdog_sync(void)419 static inline void touch_softlockup_watchdog_sync(void)
420 {
421 }
touch_all_softlockup_watchdogs(void)422 static inline void touch_all_softlockup_watchdogs(void)
423 {
424 }
lockup_detector_init(void)425 static inline void lockup_detector_init(void)
426 {
427 }
428 #endif
429 
430 #ifdef CONFIG_DETECT_HUNG_TASK
431 void reset_hung_task_detector(void);
432 #else
reset_hung_task_detector(void)433 static inline void reset_hung_task_detector(void)
434 {
435 }
436 #endif
437 
438 /* Attach to any functions which should be ignored in wchan output. */
439 #define __sched		__attribute__((__section__(".sched.text")))
440 
441 /* Linker adds these: start and end of __sched functions */
442 extern char __sched_text_start[], __sched_text_end[];
443 
444 /* Is this address in the __sched functions? */
445 extern int in_sched_functions(unsigned long addr);
446 
447 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
448 extern signed long schedule_timeout(signed long timeout);
449 extern signed long schedule_timeout_interruptible(signed long timeout);
450 extern signed long schedule_timeout_killable(signed long timeout);
451 extern signed long schedule_timeout_uninterruptible(signed long timeout);
452 extern signed long schedule_timeout_idle(signed long timeout);
453 asmlinkage void schedule(void);
454 extern void schedule_preempt_disabled(void);
455 
456 extern long io_schedule_timeout(long timeout);
457 
io_schedule(void)458 static inline void io_schedule(void)
459 {
460 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
461 }
462 
463 void __noreturn do_task_dead(void);
464 
465 struct nsproxy;
466 struct user_namespace;
467 
468 #ifdef CONFIG_MMU
469 extern void arch_pick_mmap_layout(struct mm_struct *mm);
470 extern unsigned long
471 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
472 		       unsigned long, unsigned long);
473 extern unsigned long
474 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
475 			  unsigned long len, unsigned long pgoff,
476 			  unsigned long flags);
477 #else
arch_pick_mmap_layout(struct mm_struct * mm)478 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
479 #endif
480 
481 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
482 #define SUID_DUMP_USER		1	/* Dump as user of process */
483 #define SUID_DUMP_ROOT		2	/* Dump as root */
484 
485 /* mm flags */
486 
487 /* for SUID_DUMP_* above */
488 #define MMF_DUMPABLE_BITS 2
489 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
490 
491 extern void set_dumpable(struct mm_struct *mm, int value);
492 /*
493  * This returns the actual value of the suid_dumpable flag. For things
494  * that are using this for checking for privilege transitions, it must
495  * test against SUID_DUMP_USER rather than treating it as a boolean
496  * value.
497  */
__get_dumpable(unsigned long mm_flags)498 static inline int __get_dumpable(unsigned long mm_flags)
499 {
500 	return mm_flags & MMF_DUMPABLE_MASK;
501 }
502 
get_dumpable(struct mm_struct * mm)503 static inline int get_dumpable(struct mm_struct *mm)
504 {
505 	return __get_dumpable(mm->flags);
506 }
507 
508 /* coredump filter bits */
509 #define MMF_DUMP_ANON_PRIVATE	2
510 #define MMF_DUMP_ANON_SHARED	3
511 #define MMF_DUMP_MAPPED_PRIVATE	4
512 #define MMF_DUMP_MAPPED_SHARED	5
513 #define MMF_DUMP_ELF_HEADERS	6
514 #define MMF_DUMP_HUGETLB_PRIVATE 7
515 #define MMF_DUMP_HUGETLB_SHARED  8
516 #define MMF_DUMP_DAX_PRIVATE	9
517 #define MMF_DUMP_DAX_SHARED	10
518 
519 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
520 #define MMF_DUMP_FILTER_BITS	9
521 #define MMF_DUMP_FILTER_MASK \
522 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
523 #define MMF_DUMP_FILTER_DEFAULT \
524 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
525 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
526 
527 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
528 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
529 #else
530 # define MMF_DUMP_MASK_DEFAULT_ELF	0
531 #endif
532 					/* leave room for more dump flags */
533 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
534 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
535 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
536 
537 #define MMF_HAS_UPROBES		19	/* has uprobes */
538 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
539 #define MMF_OOM_SKIP		21	/* mm is of no interest for the OOM killer */
540 #define MMF_UNSTABLE		22	/* mm is unstable for copy_from_user */
541 #define MMF_HUGE_ZERO_PAGE	23      /* mm has ever used the global huge zero page */
542 
543 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
544 
545 struct sighand_struct {
546 	atomic_t		count;
547 	struct k_sigaction	action[_NSIG];
548 	spinlock_t		siglock;
549 	wait_queue_head_t	signalfd_wqh;
550 };
551 
552 struct pacct_struct {
553 	int			ac_flag;
554 	long			ac_exitcode;
555 	unsigned long		ac_mem;
556 	cputime_t		ac_utime, ac_stime;
557 	unsigned long		ac_minflt, ac_majflt;
558 };
559 
560 struct cpu_itimer {
561 	cputime_t expires;
562 	cputime_t incr;
563 	u32 error;
564 	u32 incr_error;
565 };
566 
567 /**
568  * struct prev_cputime - snaphsot of system and user cputime
569  * @utime: time spent in user mode
570  * @stime: time spent in system mode
571  * @lock: protects the above two fields
572  *
573  * Stores previous user/system time values such that we can guarantee
574  * monotonicity.
575  */
576 struct prev_cputime {
577 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
578 	cputime_t utime;
579 	cputime_t stime;
580 	raw_spinlock_t lock;
581 #endif
582 };
583 
prev_cputime_init(struct prev_cputime * prev)584 static inline void prev_cputime_init(struct prev_cputime *prev)
585 {
586 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
587 	prev->utime = prev->stime = 0;
588 	raw_spin_lock_init(&prev->lock);
589 #endif
590 }
591 
592 /**
593  * struct task_cputime - collected CPU time counts
594  * @utime:		time spent in user mode, in &cputime_t units
595  * @stime:		time spent in kernel mode, in &cputime_t units
596  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
597  *
598  * This structure groups together three kinds of CPU time that are tracked for
599  * threads and thread groups.  Most things considering CPU time want to group
600  * these counts together and treat all three of them in parallel.
601  */
602 struct task_cputime {
603 	cputime_t utime;
604 	cputime_t stime;
605 	unsigned long long sum_exec_runtime;
606 };
607 
608 /* Alternate field names when used to cache expirations. */
609 #define virt_exp	utime
610 #define prof_exp	stime
611 #define sched_exp	sum_exec_runtime
612 
613 #define INIT_CPUTIME	\
614 	(struct task_cputime) {					\
615 		.utime = 0,					\
616 		.stime = 0,					\
617 		.sum_exec_runtime = 0,				\
618 	}
619 
620 /*
621  * This is the atomic variant of task_cputime, which can be used for
622  * storing and updating task_cputime statistics without locking.
623  */
624 struct task_cputime_atomic {
625 	atomic64_t utime;
626 	atomic64_t stime;
627 	atomic64_t sum_exec_runtime;
628 };
629 
630 #define INIT_CPUTIME_ATOMIC \
631 	(struct task_cputime_atomic) {				\
632 		.utime = ATOMIC64_INIT(0),			\
633 		.stime = ATOMIC64_INIT(0),			\
634 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
635 	}
636 
637 #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
638 
639 /*
640  * Disable preemption until the scheduler is running -- use an unconditional
641  * value so that it also works on !PREEMPT_COUNT kernels.
642  *
643  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
644  */
645 #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
646 
647 /*
648  * Initial preempt_count value; reflects the preempt_count schedule invariant
649  * which states that during context switches:
650  *
651  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
652  *
653  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
654  * Note: See finish_task_switch().
655  */
656 #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
657 
658 /**
659  * struct thread_group_cputimer - thread group interval timer counts
660  * @cputime_atomic:	atomic thread group interval timers.
661  * @running:		true when there are timers running and
662  *			@cputime_atomic receives updates.
663  * @checking_timer:	true when a thread in the group is in the
664  *			process of checking for thread group timers.
665  *
666  * This structure contains the version of task_cputime, above, that is
667  * used for thread group CPU timer calculations.
668  */
669 struct thread_group_cputimer {
670 	struct task_cputime_atomic cputime_atomic;
671 	bool running;
672 	bool checking_timer;
673 };
674 
675 #include <linux/rwsem.h>
676 struct autogroup;
677 
678 /*
679  * NOTE! "signal_struct" does not have its own
680  * locking, because a shared signal_struct always
681  * implies a shared sighand_struct, so locking
682  * sighand_struct is always a proper superset of
683  * the locking of signal_struct.
684  */
685 struct signal_struct {
686 	atomic_t		sigcnt;
687 	atomic_t		live;
688 	int			nr_threads;
689 	struct list_head	thread_head;
690 
691 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
692 
693 	/* current thread group signal load-balancing target: */
694 	struct task_struct	*curr_target;
695 
696 	/* shared signal handling: */
697 	struct sigpending	shared_pending;
698 
699 	/* thread group exit support */
700 	int			group_exit_code;
701 	/* overloaded:
702 	 * - notify group_exit_task when ->count is equal to notify_count
703 	 * - everyone except group_exit_task is stopped during signal delivery
704 	 *   of fatal signals, group_exit_task processes the signal.
705 	 */
706 	int			notify_count;
707 	struct task_struct	*group_exit_task;
708 
709 	/* thread group stop support, overloads group_exit_code too */
710 	int			group_stop_count;
711 	unsigned int		flags; /* see SIGNAL_* flags below */
712 
713 	/*
714 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
715 	 * manager, to re-parent orphan (double-forking) child processes
716 	 * to this process instead of 'init'. The service manager is
717 	 * able to receive SIGCHLD signals and is able to investigate
718 	 * the process until it calls wait(). All children of this
719 	 * process will inherit a flag if they should look for a
720 	 * child_subreaper process at exit.
721 	 */
722 	unsigned int		is_child_subreaper:1;
723 	unsigned int		has_child_subreaper:1;
724 
725 	/* POSIX.1b Interval Timers */
726 	int			posix_timer_id;
727 	struct list_head	posix_timers;
728 
729 	/* ITIMER_REAL timer for the process */
730 	struct hrtimer real_timer;
731 	struct pid *leader_pid;
732 	ktime_t it_real_incr;
733 
734 	/*
735 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
736 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
737 	 * values are defined to 0 and 1 respectively
738 	 */
739 	struct cpu_itimer it[2];
740 
741 	/*
742 	 * Thread group totals for process CPU timers.
743 	 * See thread_group_cputimer(), et al, for details.
744 	 */
745 	struct thread_group_cputimer cputimer;
746 
747 	/* Earliest-expiration cache. */
748 	struct task_cputime cputime_expires;
749 
750 #ifdef CONFIG_NO_HZ_FULL
751 	atomic_t tick_dep_mask;
752 #endif
753 
754 	struct list_head cpu_timers[3];
755 
756 	struct pid *tty_old_pgrp;
757 
758 	/* boolean value for session group leader */
759 	int leader;
760 
761 	struct tty_struct *tty; /* NULL if no tty */
762 
763 #ifdef CONFIG_SCHED_AUTOGROUP
764 	struct autogroup *autogroup;
765 #endif
766 	/*
767 	 * Cumulative resource counters for dead threads in the group,
768 	 * and for reaped dead child processes forked by this group.
769 	 * Live threads maintain their own counters and add to these
770 	 * in __exit_signal, except for the group leader.
771 	 */
772 	seqlock_t stats_lock;
773 	cputime_t utime, stime, cutime, cstime;
774 	cputime_t gtime;
775 	cputime_t cgtime;
776 	struct prev_cputime prev_cputime;
777 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
778 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
779 	unsigned long inblock, oublock, cinblock, coublock;
780 	unsigned long maxrss, cmaxrss;
781 	struct task_io_accounting ioac;
782 
783 	/*
784 	 * Cumulative ns of schedule CPU time fo dead threads in the
785 	 * group, not including a zombie group leader, (This only differs
786 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
787 	 * other than jiffies.)
788 	 */
789 	unsigned long long sum_sched_runtime;
790 
791 	/*
792 	 * We don't bother to synchronize most readers of this at all,
793 	 * because there is no reader checking a limit that actually needs
794 	 * to get both rlim_cur and rlim_max atomically, and either one
795 	 * alone is a single word that can safely be read normally.
796 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
797 	 * protect this instead of the siglock, because they really
798 	 * have no need to disable irqs.
799 	 */
800 	struct rlimit rlim[RLIM_NLIMITS];
801 
802 #ifdef CONFIG_BSD_PROCESS_ACCT
803 	struct pacct_struct pacct;	/* per-process accounting information */
804 #endif
805 #ifdef CONFIG_TASKSTATS
806 	struct taskstats *stats;
807 #endif
808 #ifdef CONFIG_AUDIT
809 	unsigned audit_tty;
810 	struct tty_audit_buf *tty_audit_buf;
811 #endif
812 
813 	/*
814 	 * Thread is the potential origin of an oom condition; kill first on
815 	 * oom
816 	 */
817 	bool oom_flag_origin;
818 	short oom_score_adj;		/* OOM kill score adjustment */
819 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
820 					 * Only settable by CAP_SYS_RESOURCE. */
821 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
822 					 * killed by the oom killer */
823 
824 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
825 					 * credential calculations
826 					 * (notably. ptrace) */
827 };
828 
829 /*
830  * Bits in flags field of signal_struct.
831  */
832 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
833 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
834 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
835 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
836 /*
837  * Pending notifications to parent.
838  */
839 #define SIGNAL_CLD_STOPPED	0x00000010
840 #define SIGNAL_CLD_CONTINUED	0x00000020
841 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
842 
843 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
844 
845 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
846 			  SIGNAL_STOP_CONTINUED)
847 
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)848 static inline void signal_set_stop_flags(struct signal_struct *sig,
849 					 unsigned int flags)
850 {
851 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
852 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
853 }
854 
855 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)856 static inline int signal_group_exit(const struct signal_struct *sig)
857 {
858 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
859 		(sig->group_exit_task != NULL);
860 }
861 
862 /*
863  * Some day this will be a full-fledged user tracking system..
864  */
865 struct user_struct {
866 	atomic_t __count;	/* reference count */
867 	atomic_t processes;	/* How many processes does this user have? */
868 	atomic_t sigpending;	/* How many pending signals does this user have? */
869 #ifdef CONFIG_INOTIFY_USER
870 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
871 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
872 #endif
873 #ifdef CONFIG_FANOTIFY
874 	atomic_t fanotify_listeners;
875 #endif
876 #ifdef CONFIG_EPOLL
877 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
878 #endif
879 #ifdef CONFIG_POSIX_MQUEUE
880 	/* protected by mq_lock	*/
881 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
882 #endif
883 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
884 	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
885 	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
886 
887 #ifdef CONFIG_KEYS
888 	struct key *uid_keyring;	/* UID specific keyring */
889 	struct key *session_keyring;	/* UID's default session keyring */
890 #endif
891 
892 	/* Hash table maintenance information */
893 	struct hlist_node uidhash_node;
894 	kuid_t uid;
895 
896 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
897 	atomic_long_t locked_vm;
898 #endif
899 };
900 
901 extern int uids_sysfs_init(void);
902 
903 extern struct user_struct *find_user(kuid_t);
904 
905 extern struct user_struct root_user;
906 #define INIT_USER (&root_user)
907 
908 
909 struct backing_dev_info;
910 struct reclaim_state;
911 
912 #ifdef CONFIG_SCHED_INFO
913 struct sched_info {
914 	/* cumulative counters */
915 	unsigned long pcount;	      /* # of times run on this cpu */
916 	unsigned long long run_delay; /* time spent waiting on a runqueue */
917 
918 	/* timestamps */
919 	unsigned long long last_arrival,/* when we last ran on a cpu */
920 			   last_queued;	/* when we were last queued to run */
921 };
922 #endif /* CONFIG_SCHED_INFO */
923 
924 #ifdef CONFIG_TASK_DELAY_ACCT
925 struct task_delay_info {
926 	spinlock_t	lock;
927 	unsigned int	flags;	/* Private per-task flags */
928 
929 	/* For each stat XXX, add following, aligned appropriately
930 	 *
931 	 * struct timespec XXX_start, XXX_end;
932 	 * u64 XXX_delay;
933 	 * u32 XXX_count;
934 	 *
935 	 * Atomicity of updates to XXX_delay, XXX_count protected by
936 	 * single lock above (split into XXX_lock if contention is an issue).
937 	 */
938 
939 	/*
940 	 * XXX_count is incremented on every XXX operation, the delay
941 	 * associated with the operation is added to XXX_delay.
942 	 * XXX_delay contains the accumulated delay time in nanoseconds.
943 	 */
944 	u64 blkio_start;	/* Shared by blkio, swapin */
945 	u64 blkio_delay;	/* wait for sync block io completion */
946 	u64 swapin_delay;	/* wait for swapin block io completion */
947 	u32 blkio_count;	/* total count of the number of sync block */
948 				/* io operations performed */
949 	u32 swapin_count;	/* total count of the number of swapin block */
950 				/* io operations performed */
951 
952 	u64 freepages_start;
953 	u64 freepages_delay;	/* wait for memory reclaim */
954 	u32 freepages_count;	/* total count of memory reclaim */
955 };
956 #endif	/* CONFIG_TASK_DELAY_ACCT */
957 
sched_info_on(void)958 static inline int sched_info_on(void)
959 {
960 #ifdef CONFIG_SCHEDSTATS
961 	return 1;
962 #elif defined(CONFIG_TASK_DELAY_ACCT)
963 	extern int delayacct_on;
964 	return delayacct_on;
965 #else
966 	return 0;
967 #endif
968 }
969 
970 #ifdef CONFIG_SCHEDSTATS
971 void force_schedstat_enabled(void);
972 #endif
973 
974 enum cpu_idle_type {
975 	CPU_IDLE,
976 	CPU_NOT_IDLE,
977 	CPU_NEWLY_IDLE,
978 	CPU_MAX_IDLE_TYPES
979 };
980 
981 /*
982  * Integer metrics need fixed point arithmetic, e.g., sched/fair
983  * has a few: load, load_avg, util_avg, freq, and capacity.
984  *
985  * We define a basic fixed point arithmetic range, and then formalize
986  * all these metrics based on that basic range.
987  */
988 # define SCHED_FIXEDPOINT_SHIFT	10
989 # define SCHED_FIXEDPOINT_SCALE	(1L << SCHED_FIXEDPOINT_SHIFT)
990 
991 /*
992  * Increase resolution of cpu_capacity calculations
993  */
994 #define SCHED_CAPACITY_SHIFT	SCHED_FIXEDPOINT_SHIFT
995 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
996 
997 struct sched_capacity_reqs {
998 	unsigned long cfs;
999 	unsigned long rt;
1000 	unsigned long dl;
1001 
1002 	unsigned long total;
1003 };
1004 
1005 /*
1006  * Wake-queues are lists of tasks with a pending wakeup, whose
1007  * callers have already marked the task as woken internally,
1008  * and can thus carry on. A common use case is being able to
1009  * do the wakeups once the corresponding user lock as been
1010  * released.
1011  *
1012  * We hold reference to each task in the list across the wakeup,
1013  * thus guaranteeing that the memory is still valid by the time
1014  * the actual wakeups are performed in wake_up_q().
1015  *
1016  * One per task suffices, because there's never a need for a task to be
1017  * in two wake queues simultaneously; it is forbidden to abandon a task
1018  * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1019  * already in a wake queue, the wakeup will happen soon and the second
1020  * waker can just skip it.
1021  *
1022  * The WAKE_Q macro declares and initializes the list head.
1023  * wake_up_q() does NOT reinitialize the list; it's expected to be
1024  * called near the end of a function, where the fact that the queue is
1025  * not used again will be easy to see by inspection.
1026  *
1027  * Note that this can cause spurious wakeups. schedule() callers
1028  * must ensure the call is done inside a loop, confirming that the
1029  * wakeup condition has in fact occurred.
1030  */
1031 struct wake_q_node {
1032 	struct wake_q_node *next;
1033 };
1034 
1035 struct wake_q_head {
1036 	struct wake_q_node *first;
1037 	struct wake_q_node **lastp;
1038 };
1039 
1040 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1041 
1042 #define WAKE_Q(name)					\
1043 	struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1044 
1045 extern void wake_q_add(struct wake_q_head *head,
1046 		       struct task_struct *task);
1047 extern void wake_up_q(struct wake_q_head *head);
1048 
1049 /*
1050  * sched-domains (multiprocessor balancing) declarations:
1051  */
1052 #ifdef CONFIG_SMP
1053 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
1054 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
1055 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
1056 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
1057 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
1058 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
1059 #define SD_ASYM_CPUCAPACITY	0x0040  /* Groups have different max cpu capacities */
1060 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu capacity */
1061 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
1062 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
1063 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
1064 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
1065 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
1066 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
1067 #define SD_NUMA			0x4000	/* cross-node balancing */
1068 #define SD_SHARE_CAP_STATES	0x8000  /* Domain members share capacity state */
1069 
1070 #ifdef CONFIG_SCHED_SMT
cpu_smt_flags(void)1071 static inline int cpu_smt_flags(void)
1072 {
1073 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1074 }
1075 #endif
1076 
1077 #ifdef CONFIG_SCHED_MC
cpu_core_flags(void)1078 static inline int cpu_core_flags(void)
1079 {
1080 	return SD_SHARE_PKG_RESOURCES;
1081 }
1082 #endif
1083 
1084 #ifdef CONFIG_NUMA
cpu_numa_flags(void)1085 static inline int cpu_numa_flags(void)
1086 {
1087 	return SD_NUMA;
1088 }
1089 #endif
1090 
1091 struct sched_domain_attr {
1092 	int relax_domain_level;
1093 };
1094 
1095 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
1096 	.relax_domain_level = -1,			\
1097 }
1098 
1099 extern int sched_domain_level_max;
1100 
1101 struct capacity_state {
1102 	unsigned long cap;	/* compute capacity */
1103 	unsigned long power;	/* power consumption at this compute capacity */
1104 };
1105 
1106 struct idle_state {
1107 	unsigned long power;	 /* power consumption in this idle state */
1108 };
1109 
1110 struct sched_group_energy {
1111 	unsigned int nr_idle_states;	/* number of idle states */
1112 	struct idle_state *idle_states;	/* ptr to idle state array */
1113 	unsigned int nr_cap_states;	/* number of capacity states */
1114 	struct capacity_state *cap_states; /* ptr to capacity state array */
1115 };
1116 
1117 unsigned long capacity_curr_of(int cpu);
1118 
1119 struct sched_group;
1120 
1121 struct eas_stats {
1122 	/* select_idle_sibling() stats */
1123 	u64 sis_attempts;
1124 	u64 sis_idle;
1125 	u64 sis_cache_affine;
1126 	u64 sis_suff_cap;
1127 	u64 sis_idle_cpu;
1128 	u64 sis_count;
1129 
1130 	/* select_energy_cpu_brute() stats */
1131 	u64 secb_attempts;
1132 	u64 secb_sync;
1133 	u64 secb_idle_bt;
1134 	u64 secb_insuff_cap;
1135 	u64 secb_no_nrg_sav;
1136 	u64 secb_nrg_sav;
1137 	u64 secb_count;
1138 
1139 	/* find_best_target() stats */
1140 	u64 fbt_attempts;
1141 	u64 fbt_no_cpu;
1142 	u64 fbt_no_sd;
1143 	u64 fbt_pref_idle;
1144 	u64 fbt_count;
1145 
1146 	/* cas */
1147 	/* select_task_rq_fair() stats */
1148 	u64 cas_attempts;
1149 	u64 cas_count;
1150 };
1151 
1152 struct sched_domain_shared {
1153 	atomic_t	ref;
1154 	atomic_t	nr_busy_cpus;
1155 	int		has_idle_cores;
1156 };
1157 
1158 struct sched_domain {
1159 	/* These fields must be setup */
1160 	struct sched_domain *parent;	/* top domain must be null terminated */
1161 	struct sched_domain *child;	/* bottom domain must be null terminated */
1162 	struct sched_group *groups;	/* the balancing groups of the domain */
1163 	unsigned long min_interval;	/* Minimum balance interval ms */
1164 	unsigned long max_interval;	/* Maximum balance interval ms */
1165 	unsigned int busy_factor;	/* less balancing by factor if busy */
1166 	unsigned int imbalance_pct;	/* No balance until over watermark */
1167 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
1168 	unsigned int busy_idx;
1169 	unsigned int idle_idx;
1170 	unsigned int newidle_idx;
1171 	unsigned int wake_idx;
1172 	unsigned int forkexec_idx;
1173 	unsigned int smt_gain;
1174 
1175 	int nohz_idle;			/* NOHZ IDLE status */
1176 	int flags;			/* See SD_* */
1177 	int level;
1178 
1179 	/* Runtime fields. */
1180 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
1181 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
1182 	unsigned int nr_balance_failed; /* initialise to 0 */
1183 
1184 	/* idle_balance() stats */
1185 	u64 max_newidle_lb_cost;
1186 	unsigned long next_decay_max_lb_cost;
1187 
1188 	u64 avg_scan_cost;		/* select_idle_sibling */
1189 
1190 #ifdef CONFIG_SCHEDSTATS
1191 	/* load_balance() stats */
1192 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1193 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1194 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1195 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1196 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1197 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1198 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1199 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1200 
1201 	/* Active load balancing */
1202 	unsigned int alb_count;
1203 	unsigned int alb_failed;
1204 	unsigned int alb_pushed;
1205 
1206 	/* SD_BALANCE_EXEC stats */
1207 	unsigned int sbe_count;
1208 	unsigned int sbe_balanced;
1209 	unsigned int sbe_pushed;
1210 
1211 	/* SD_BALANCE_FORK stats */
1212 	unsigned int sbf_count;
1213 	unsigned int sbf_balanced;
1214 	unsigned int sbf_pushed;
1215 
1216 	/* try_to_wake_up() stats */
1217 	unsigned int ttwu_wake_remote;
1218 	unsigned int ttwu_move_affine;
1219 	unsigned int ttwu_move_balance;
1220 
1221 	struct eas_stats eas_stats;
1222 #endif
1223 #ifdef CONFIG_SCHED_DEBUG
1224 	char *name;
1225 #endif
1226 	union {
1227 		void *private;		/* used during construction */
1228 		struct rcu_head rcu;	/* used during destruction */
1229 	};
1230 	struct sched_domain_shared *shared;
1231 
1232 	unsigned int span_weight;
1233 	/*
1234 	 * Span of all CPUs in this domain.
1235 	 *
1236 	 * NOTE: this field is variable length. (Allocated dynamically
1237 	 * by attaching extra space to the end of the structure,
1238 	 * depending on how many CPUs the kernel has booted up with)
1239 	 */
1240 	unsigned long span[0];
1241 };
1242 
sched_domain_span(struct sched_domain * sd)1243 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1244 {
1245 	return to_cpumask(sd->span);
1246 }
1247 
1248 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1249 				    struct sched_domain_attr *dattr_new);
1250 
1251 /* Allocate an array of sched domains, for partition_sched_domains(). */
1252 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1253 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1254 
1255 bool cpus_share_cache(int this_cpu, int that_cpu);
1256 
1257 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1258 typedef int (*sched_domain_flags_f)(void);
1259 typedef
1260 const struct sched_group_energy * const(*sched_domain_energy_f)(int cpu);
1261 
1262 #define SDTL_OVERLAP	0x01
1263 
1264 struct sd_data {
1265 	struct sched_domain **__percpu sd;
1266 	struct sched_domain_shared **__percpu sds;
1267 	struct sched_group **__percpu sg;
1268 	struct sched_group_capacity **__percpu sgc;
1269 };
1270 
1271 struct sched_domain_topology_level {
1272 	sched_domain_mask_f mask;
1273 	sched_domain_flags_f sd_flags;
1274 	sched_domain_energy_f energy;
1275 	int		    flags;
1276 	int		    numa_level;
1277 	struct sd_data      data;
1278 #ifdef CONFIG_SCHED_DEBUG
1279 	char                *name;
1280 #endif
1281 };
1282 
1283 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1284 extern void wake_up_if_idle(int cpu);
1285 
1286 #ifdef CONFIG_SCHED_DEBUG
1287 # define SD_INIT_NAME(type)		.name = #type
1288 #else
1289 # define SD_INIT_NAME(type)
1290 #endif
1291 
1292 #else /* CONFIG_SMP */
1293 
1294 struct sched_domain_attr;
1295 
1296 static inline void
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1297 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1298 			struct sched_domain_attr *dattr_new)
1299 {
1300 }
1301 
cpus_share_cache(int this_cpu,int that_cpu)1302 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1303 {
1304 	return true;
1305 }
1306 
1307 #endif	/* !CONFIG_SMP */
1308 
1309 
1310 struct io_context;			/* See blkdev.h */
1311 
1312 
1313 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1314 extern void prefetch_stack(struct task_struct *t);
1315 #else
prefetch_stack(struct task_struct * t)1316 static inline void prefetch_stack(struct task_struct *t) { }
1317 #endif
1318 
1319 struct audit_context;		/* See audit.c */
1320 struct mempolicy;
1321 struct pipe_inode_info;
1322 struct uts_namespace;
1323 
1324 struct load_weight {
1325 	unsigned long weight;
1326 	u32 inv_weight;
1327 };
1328 
1329 /*
1330  * The load_avg/util_avg accumulates an infinite geometric series
1331  * (see __update_load_avg() in kernel/sched/fair.c).
1332  *
1333  * [load_avg definition]
1334  *
1335  *   load_avg = runnable% * scale_load_down(load)
1336  *
1337  * where runnable% is the time ratio that a sched_entity is runnable.
1338  * For cfs_rq, it is the aggregated load_avg of all runnable and
1339  * blocked sched_entities.
1340  *
1341  * load_avg may also take frequency scaling into account:
1342  *
1343  *   load_avg = runnable% * scale_load_down(load) * freq%
1344  *
1345  * where freq% is the CPU frequency normalized to the highest frequency.
1346  *
1347  * [util_avg definition]
1348  *
1349  *   util_avg = running% * SCHED_CAPACITY_SCALE
1350  *
1351  * where running% is the time ratio that a sched_entity is running on
1352  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1353  * and blocked sched_entities.
1354  *
1355  * util_avg may also factor frequency scaling and CPU capacity scaling:
1356  *
1357  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1358  *
1359  * where freq% is the same as above, and capacity% is the CPU capacity
1360  * normalized to the greatest capacity (due to uarch differences, etc).
1361  *
1362  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1363  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1364  * we therefore scale them to as large a range as necessary. This is for
1365  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1366  *
1367  * [Overflow issue]
1368  *
1369  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1370  * with the highest load (=88761), always runnable on a single cfs_rq,
1371  * and should not overflow as the number already hits PID_MAX_LIMIT.
1372  *
1373  * For all other cases (including 32-bit kernels), struct load_weight's
1374  * weight will overflow first before we do, because:
1375  *
1376  *    Max(load_avg) <= Max(load.weight)
1377  *
1378  * Then it is the load_weight's responsibility to consider overflow
1379  * issues.
1380  */
1381 struct sched_avg {
1382 	u64 last_update_time, load_sum;
1383 	u32 util_sum, period_contrib;
1384 	unsigned long load_avg, util_avg;
1385 };
1386 
1387 #ifdef CONFIG_SCHEDSTATS
1388 struct sched_statistics {
1389 	u64			wait_start;
1390 	u64			wait_max;
1391 	u64			wait_count;
1392 	u64			wait_sum;
1393 	u64			iowait_count;
1394 	u64			iowait_sum;
1395 
1396 	u64			sleep_start;
1397 	u64			sleep_max;
1398 	s64			sum_sleep_runtime;
1399 
1400 	u64			block_start;
1401 	u64			block_max;
1402 	u64			exec_max;
1403 	u64			slice_max;
1404 
1405 	u64			nr_migrations_cold;
1406 	u64			nr_failed_migrations_affine;
1407 	u64			nr_failed_migrations_running;
1408 	u64			nr_failed_migrations_hot;
1409 	u64			nr_forced_migrations;
1410 
1411 	u64			nr_wakeups;
1412 	u64			nr_wakeups_sync;
1413 	u64			nr_wakeups_migrate;
1414 	u64			nr_wakeups_local;
1415 	u64			nr_wakeups_remote;
1416 	u64			nr_wakeups_affine;
1417 	u64			nr_wakeups_affine_attempts;
1418 	u64			nr_wakeups_passive;
1419 	u64			nr_wakeups_idle;
1420 
1421 	/* select_idle_sibling() */
1422 	u64			nr_wakeups_sis_attempts;
1423 	u64			nr_wakeups_sis_idle;
1424 	u64			nr_wakeups_sis_cache_affine;
1425 	u64			nr_wakeups_sis_suff_cap;
1426 	u64			nr_wakeups_sis_idle_cpu;
1427 	u64			nr_wakeups_sis_count;
1428 
1429 	/* energy_aware_wake_cpu() */
1430 	u64			nr_wakeups_secb_attempts;
1431 	u64			nr_wakeups_secb_sync;
1432 	u64			nr_wakeups_secb_idle_bt;
1433 	u64			nr_wakeups_secb_insuff_cap;
1434 	u64			nr_wakeups_secb_no_nrg_sav;
1435 	u64			nr_wakeups_secb_nrg_sav;
1436 	u64			nr_wakeups_secb_count;
1437 
1438 	/* find_best_target() */
1439 	u64			nr_wakeups_fbt_attempts;
1440 	u64			nr_wakeups_fbt_no_cpu;
1441 	u64			nr_wakeups_fbt_no_sd;
1442 	u64			nr_wakeups_fbt_pref_idle;
1443 	u64			nr_wakeups_fbt_count;
1444 
1445 	/* cas */
1446 	/* select_task_rq_fair() */
1447 	u64			nr_wakeups_cas_attempts;
1448 	u64			nr_wakeups_cas_count;
1449 };
1450 #endif
1451 
1452 #ifdef CONFIG_SCHED_WALT
1453 #define RAVG_HIST_SIZE_MAX  5
1454 
1455 /* ravg represents frequency scaled cpu-demand of tasks */
1456 struct ravg {
1457 	/*
1458 	 * 'mark_start' marks the beginning of an event (task waking up, task
1459 	 * starting to execute, task being preempted) within a window
1460 	 *
1461 	 * 'sum' represents how runnable a task has been within current
1462 	 * window. It incorporates both running time and wait time and is
1463 	 * frequency scaled.
1464 	 *
1465 	 * 'sum_history' keeps track of history of 'sum' seen over previous
1466 	 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
1467 	 * ignored.
1468 	 *
1469 	 * 'demand' represents maximum sum seen over previous
1470 	 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
1471 	 * demand for tasks.
1472 	 *
1473 	 * 'curr_window' represents task's contribution to cpu busy time
1474 	 * statistics (rq->curr_runnable_sum) in current window
1475 	 *
1476 	 * 'prev_window' represents task's contribution to cpu busy time
1477 	 * statistics (rq->prev_runnable_sum) in previous window
1478 	 */
1479 	u64 mark_start;
1480 	u32 sum, demand;
1481 	u32 sum_history[RAVG_HIST_SIZE_MAX];
1482 	u32 curr_window, prev_window;
1483 	u16 active_windows;
1484 };
1485 #endif
1486 
1487 struct sched_entity {
1488 	struct load_weight	load;		/* for load-balancing */
1489 	struct rb_node		run_node;
1490 	struct list_head	group_node;
1491 	unsigned int		on_rq;
1492 
1493 	u64			exec_start;
1494 	u64			sum_exec_runtime;
1495 	u64			vruntime;
1496 	u64			prev_sum_exec_runtime;
1497 
1498 	u64			nr_migrations;
1499 
1500 #ifdef CONFIG_SCHEDSTATS
1501 	struct sched_statistics statistics;
1502 #endif
1503 
1504 #ifdef CONFIG_FAIR_GROUP_SCHED
1505 	int			depth;
1506 	struct sched_entity	*parent;
1507 	/* rq on which this entity is (to be) queued: */
1508 	struct cfs_rq		*cfs_rq;
1509 	/* rq "owned" by this entity/group: */
1510 	struct cfs_rq		*my_q;
1511 #endif
1512 
1513 #ifdef CONFIG_SMP
1514 	/*
1515 	 * Per entity load average tracking.
1516 	 *
1517 	 * Put into separate cache line so it does not
1518 	 * collide with read-mostly values above.
1519 	 */
1520 	struct sched_avg	avg ____cacheline_aligned_in_smp;
1521 #endif
1522 };
1523 
1524 struct sched_rt_entity {
1525 	struct list_head run_list;
1526 	unsigned long timeout;
1527 	unsigned long watchdog_stamp;
1528 	unsigned int time_slice;
1529 	unsigned short on_rq;
1530 	unsigned short on_list;
1531 
1532 	struct sched_rt_entity *back;
1533 #ifdef CONFIG_RT_GROUP_SCHED
1534 	struct sched_rt_entity	*parent;
1535 	/* rq on which this entity is (to be) queued: */
1536 	struct rt_rq		*rt_rq;
1537 	/* rq "owned" by this entity/group: */
1538 	struct rt_rq		*my_q;
1539 #endif
1540 };
1541 
1542 struct sched_dl_entity {
1543 	struct rb_node	rb_node;
1544 
1545 	/*
1546 	 * Original scheduling parameters. Copied here from sched_attr
1547 	 * during sched_setattr(), they will remain the same until
1548 	 * the next sched_setattr().
1549 	 */
1550 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1551 	u64 dl_deadline;	/* relative deadline of each instance	*/
1552 	u64 dl_period;		/* separation of two instances (period) */
1553 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1554 	u64 dl_density;		/* dl_runtime / dl_deadline		*/
1555 
1556 	/*
1557 	 * Actual scheduling parameters. Initialized with the values above,
1558 	 * they are continously updated during task execution. Note that
1559 	 * the remaining runtime could be < 0 in case we are in overrun.
1560 	 */
1561 	s64 runtime;		/* remaining runtime for this instance	*/
1562 	u64 deadline;		/* absolute deadline for this instance	*/
1563 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1564 
1565 	/*
1566 	 * Some bool flags:
1567 	 *
1568 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1569 	 * task has to wait for a replenishment to be performed at the
1570 	 * next firing of dl_timer.
1571 	 *
1572 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1573 	 * outside bandwidth enforcement mechanism (but only until we
1574 	 * exit the critical section);
1575 	 *
1576 	 * @dl_yielded tells if task gave up the cpu before consuming
1577 	 * all its available runtime during the last job.
1578 	 */
1579 	int dl_throttled, dl_boosted, dl_yielded;
1580 
1581 	/*
1582 	 * Bandwidth enforcement timer. Each -deadline task has its
1583 	 * own bandwidth to be enforced, thus we need one timer per task.
1584 	 */
1585 	struct hrtimer dl_timer;
1586 };
1587 
1588 union rcu_special {
1589 	struct {
1590 		u8 blocked;
1591 		u8 need_qs;
1592 		u8 exp_need_qs;
1593 		u8 pad;	/* Otherwise the compiler can store garbage here. */
1594 	} b; /* Bits. */
1595 	u32 s; /* Set of bits. */
1596 };
1597 struct rcu_node;
1598 
1599 enum perf_event_task_context {
1600 	perf_invalid_context = -1,
1601 	perf_hw_context = 0,
1602 	perf_sw_context,
1603 	perf_nr_task_contexts,
1604 };
1605 
1606 /* Track pages that require TLB flushes */
1607 struct tlbflush_unmap_batch {
1608 	/*
1609 	 * Each bit set is a CPU that potentially has a TLB entry for one of
1610 	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1611 	 */
1612 	struct cpumask cpumask;
1613 
1614 	/* True if any bit in cpumask is set */
1615 	bool flush_required;
1616 
1617 	/*
1618 	 * If true then the PTE was dirty when unmapped. The entry must be
1619 	 * flushed before IO is initiated or a stale TLB entry potentially
1620 	 * allows an update without redirtying the page.
1621 	 */
1622 	bool writable;
1623 };
1624 
1625 struct task_struct {
1626 #ifdef CONFIG_THREAD_INFO_IN_TASK
1627 	/*
1628 	 * For reasons of header soup (see current_thread_info()), this
1629 	 * must be the first element of task_struct.
1630 	 */
1631 	struct thread_info thread_info;
1632 #endif
1633 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1634 	void *stack;
1635 	atomic_t usage;
1636 	unsigned int flags;	/* per process flags, defined below */
1637 	unsigned int ptrace;
1638 
1639 #ifdef CONFIG_SMP
1640 	struct llist_node wake_entry;
1641 	int on_cpu;
1642 #ifdef CONFIG_THREAD_INFO_IN_TASK
1643 	unsigned int cpu;	/* current CPU */
1644 #endif
1645 	unsigned int wakee_flips;
1646 	unsigned long wakee_flip_decay_ts;
1647 	struct task_struct *last_wakee;
1648 
1649 	int wake_cpu;
1650 #endif
1651 	int on_rq;
1652 
1653 	int prio, static_prio, normal_prio;
1654 	unsigned int rt_priority;
1655 	const struct sched_class *sched_class;
1656 	struct sched_entity se;
1657 	struct sched_rt_entity rt;
1658 #ifdef CONFIG_SCHED_WALT
1659 	struct ravg ravg;
1660 	/*
1661 	 * 'init_load_pct' represents the initial task load assigned to children
1662 	 * of this task
1663 	 */
1664 	u32 init_load_pct;
1665 	u64 last_sleep_ts;
1666 #endif
1667 
1668 #ifdef CONFIG_CGROUP_SCHED
1669 	struct task_group *sched_task_group;
1670 #endif
1671 	struct sched_dl_entity dl;
1672 
1673 #ifdef CONFIG_PREEMPT_NOTIFIERS
1674 	/* list of struct preempt_notifier: */
1675 	struct hlist_head preempt_notifiers;
1676 #endif
1677 
1678 #ifdef CONFIG_BLK_DEV_IO_TRACE
1679 	unsigned int btrace_seq;
1680 #endif
1681 
1682 	unsigned int policy;
1683 	int nr_cpus_allowed;
1684 	cpumask_t cpus_allowed;
1685 
1686 #ifdef CONFIG_PREEMPT_RCU
1687 	int rcu_read_lock_nesting;
1688 	union rcu_special rcu_read_unlock_special;
1689 	struct list_head rcu_node_entry;
1690 	struct rcu_node *rcu_blocked_node;
1691 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1692 #ifdef CONFIG_TASKS_RCU
1693 	unsigned long rcu_tasks_nvcsw;
1694 	bool rcu_tasks_holdout;
1695 	struct list_head rcu_tasks_holdout_list;
1696 	int rcu_tasks_idle_cpu;
1697 #endif /* #ifdef CONFIG_TASKS_RCU */
1698 
1699 #ifdef CONFIG_SCHED_INFO
1700 	struct sched_info sched_info;
1701 #endif
1702 
1703 	struct list_head tasks;
1704 #ifdef CONFIG_SMP
1705 	struct plist_node pushable_tasks;
1706 	struct rb_node pushable_dl_tasks;
1707 #endif
1708 
1709 	struct mm_struct *mm, *active_mm;
1710 	/* per-thread vma caching */
1711 	u32 vmacache_seqnum;
1712 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1713 #if defined(SPLIT_RSS_COUNTING)
1714 	struct task_rss_stat	rss_stat;
1715 #endif
1716 /* task state */
1717 	int exit_state;
1718 	int exit_code, exit_signal;
1719 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1720 	unsigned long jobctl;	/* JOBCTL_*, siglock protected */
1721 
1722 	/* Used for emulating ABI behavior of previous Linux versions */
1723 	unsigned int personality;
1724 
1725 	/* scheduler bits, serialized by scheduler locks */
1726 	unsigned sched_reset_on_fork:1;
1727 	unsigned sched_contributes_to_load:1;
1728 	unsigned sched_migrated:1;
1729 	unsigned sched_remote_wakeup:1;
1730 	unsigned :0; /* force alignment to the next boundary */
1731 
1732 	/* unserialized, strictly 'current' */
1733 	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1734 	unsigned in_iowait:1;
1735 #if !defined(TIF_RESTORE_SIGMASK)
1736 	unsigned restore_sigmask:1;
1737 #endif
1738 #ifdef CONFIG_MEMCG
1739 	unsigned memcg_may_oom:1;
1740 #ifndef CONFIG_SLOB
1741 	unsigned memcg_kmem_skip_account:1;
1742 #endif
1743 #endif
1744 #ifdef CONFIG_COMPAT_BRK
1745 	unsigned brk_randomized:1;
1746 #endif
1747 #ifdef CONFIG_CGROUPS
1748 	/* disallow userland-initiated cgroup migration */
1749 	unsigned no_cgroup_migration:1;
1750 #endif
1751 
1752 	unsigned long atomic_flags; /* Flags needing atomic access. */
1753 
1754 	struct restart_block restart_block;
1755 
1756 	pid_t pid;
1757 	pid_t tgid;
1758 
1759 #ifdef CONFIG_CC_STACKPROTECTOR
1760 	/* Canary value for the -fstack-protector gcc feature */
1761 	unsigned long stack_canary;
1762 #endif
1763 	/*
1764 	 * pointers to (original) parent process, youngest child, younger sibling,
1765 	 * older sibling, respectively.  (p->father can be replaced with
1766 	 * p->real_parent->pid)
1767 	 */
1768 	struct task_struct __rcu *real_parent; /* real parent process */
1769 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1770 	/*
1771 	 * children/sibling forms the list of my natural children
1772 	 */
1773 	struct list_head children;	/* list of my children */
1774 	struct list_head sibling;	/* linkage in my parent's children list */
1775 	struct task_struct *group_leader;	/* threadgroup leader */
1776 
1777 	/*
1778 	 * ptraced is the list of tasks this task is using ptrace on.
1779 	 * This includes both natural children and PTRACE_ATTACH targets.
1780 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1781 	 */
1782 	struct list_head ptraced;
1783 	struct list_head ptrace_entry;
1784 
1785 	/* PID/PID hash table linkage. */
1786 	struct pid_link pids[PIDTYPE_MAX];
1787 	struct list_head thread_group;
1788 	struct list_head thread_node;
1789 
1790 	struct completion *vfork_done;		/* for vfork() */
1791 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1792 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1793 
1794 	cputime_t utime, stime, utimescaled, stimescaled;
1795 	cputime_t gtime;
1796 #ifdef CONFIG_CPU_FREQ_TIMES
1797 	u64 *time_in_state;
1798 	unsigned int max_state;
1799 #endif
1800 	struct prev_cputime prev_cputime;
1801 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1802 	seqcount_t vtime_seqcount;
1803 	unsigned long long vtime_snap;
1804 	enum {
1805 		/* Task is sleeping or running in a CPU with VTIME inactive */
1806 		VTIME_INACTIVE = 0,
1807 		/* Task runs in userspace in a CPU with VTIME active */
1808 		VTIME_USER,
1809 		/* Task runs in kernelspace in a CPU with VTIME active */
1810 		VTIME_SYS,
1811 	} vtime_snap_whence;
1812 #endif
1813 
1814 #ifdef CONFIG_NO_HZ_FULL
1815 	atomic_t tick_dep_mask;
1816 #endif
1817 	unsigned long nvcsw, nivcsw; /* context switch counts */
1818 	u64 start_time;		/* monotonic time in nsec */
1819 	u64 real_start_time;	/* boot based time in nsec */
1820 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1821 	unsigned long min_flt, maj_flt;
1822 
1823 	struct task_cputime cputime_expires;
1824 	struct list_head cpu_timers[3];
1825 
1826 /* process credentials */
1827 	const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1828 	const struct cred __rcu *real_cred; /* objective and real subjective task
1829 					 * credentials (COW) */
1830 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1831 					 * credentials (COW) */
1832 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1833 				     - access with [gs]et_task_comm (which lock
1834 				       it with task_lock())
1835 				     - initialized normally by setup_new_exec */
1836 /* file system info */
1837 	struct nameidata *nameidata;
1838 #ifdef CONFIG_SYSVIPC
1839 /* ipc stuff */
1840 	struct sysv_sem sysvsem;
1841 	struct sysv_shm sysvshm;
1842 #endif
1843 #ifdef CONFIG_DETECT_HUNG_TASK
1844 /* hung task detection */
1845 	unsigned long last_switch_count;
1846 #endif
1847 /* filesystem information */
1848 	struct fs_struct *fs;
1849 /* open file information */
1850 	struct files_struct *files;
1851 /* namespaces */
1852 	struct nsproxy *nsproxy;
1853 /* signal handlers */
1854 	struct signal_struct *signal;
1855 	struct sighand_struct *sighand;
1856 
1857 	sigset_t blocked, real_blocked;
1858 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1859 	struct sigpending pending;
1860 
1861 	unsigned long sas_ss_sp;
1862 	size_t sas_ss_size;
1863 	unsigned sas_ss_flags;
1864 
1865 	struct callback_head *task_works;
1866 
1867 	struct audit_context *audit_context;
1868 #ifdef CONFIG_AUDITSYSCALL
1869 	kuid_t loginuid;
1870 	unsigned int sessionid;
1871 #endif
1872 	struct seccomp seccomp;
1873 
1874 /* Thread group tracking */
1875    	u32 parent_exec_id;
1876    	u32 self_exec_id;
1877 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1878  * mempolicy */
1879 	spinlock_t alloc_lock;
1880 
1881 	/* Protection of the PI data structures: */
1882 	raw_spinlock_t pi_lock;
1883 
1884 	struct wake_q_node wake_q;
1885 
1886 #ifdef CONFIG_RT_MUTEXES
1887 	/* PI waiters blocked on a rt_mutex held by this task */
1888 	struct rb_root pi_waiters;
1889 	struct rb_node *pi_waiters_leftmost;
1890 	/* Deadlock detection and priority inheritance handling */
1891 	struct rt_mutex_waiter *pi_blocked_on;
1892 #endif
1893 
1894 #ifdef CONFIG_DEBUG_MUTEXES
1895 	/* mutex deadlock detection */
1896 	struct mutex_waiter *blocked_on;
1897 #endif
1898 #ifdef CONFIG_TRACE_IRQFLAGS
1899 	unsigned int irq_events;
1900 	unsigned long hardirq_enable_ip;
1901 	unsigned long hardirq_disable_ip;
1902 	unsigned int hardirq_enable_event;
1903 	unsigned int hardirq_disable_event;
1904 	int hardirqs_enabled;
1905 	int hardirq_context;
1906 	unsigned long softirq_disable_ip;
1907 	unsigned long softirq_enable_ip;
1908 	unsigned int softirq_disable_event;
1909 	unsigned int softirq_enable_event;
1910 	int softirqs_enabled;
1911 	int softirq_context;
1912 #endif
1913 #ifdef CONFIG_LOCKDEP
1914 # define MAX_LOCK_DEPTH 48UL
1915 	u64 curr_chain_key;
1916 	int lockdep_depth;
1917 	unsigned int lockdep_recursion;
1918 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1919 	gfp_t lockdep_reclaim_gfp;
1920 #endif
1921 #ifdef CONFIG_UBSAN
1922 	unsigned int in_ubsan;
1923 #endif
1924 
1925 /* journalling filesystem info */
1926 	void *journal_info;
1927 
1928 /* stacked block device info */
1929 	struct bio_list *bio_list;
1930 
1931 #ifdef CONFIG_BLOCK
1932 /* stack plugging */
1933 	struct blk_plug *plug;
1934 #endif
1935 
1936 /* VM state */
1937 	struct reclaim_state *reclaim_state;
1938 
1939 	struct backing_dev_info *backing_dev_info;
1940 
1941 	struct io_context *io_context;
1942 
1943 	unsigned long ptrace_message;
1944 	siginfo_t *last_siginfo; /* For ptrace use.  */
1945 	struct task_io_accounting ioac;
1946 #if defined(CONFIG_TASK_XACCT)
1947 	u64 acct_rss_mem1;	/* accumulated rss usage */
1948 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1949 	cputime_t acct_timexpd;	/* stime + utime since last update */
1950 #endif
1951 #ifdef CONFIG_CPUSETS
1952 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1953 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1954 	int cpuset_mem_spread_rotor;
1955 	int cpuset_slab_spread_rotor;
1956 #endif
1957 #ifdef CONFIG_CGROUPS
1958 	/* Control Group info protected by css_set_lock */
1959 	struct css_set __rcu *cgroups;
1960 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1961 	struct list_head cg_list;
1962 #endif
1963 #ifdef CONFIG_FUTEX
1964 	struct robust_list_head __user *robust_list;
1965 #ifdef CONFIG_COMPAT
1966 	struct compat_robust_list_head __user *compat_robust_list;
1967 #endif
1968 	struct list_head pi_state_list;
1969 	struct futex_pi_state *pi_state_cache;
1970 #endif
1971 #ifdef CONFIG_PERF_EVENTS
1972 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1973 	struct mutex perf_event_mutex;
1974 	struct list_head perf_event_list;
1975 #endif
1976 #ifdef CONFIG_DEBUG_PREEMPT
1977 	unsigned long preempt_disable_ip;
1978 #endif
1979 #ifdef CONFIG_NUMA
1980 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1981 	short il_next;
1982 	short pref_node_fork;
1983 #endif
1984 #ifdef CONFIG_NUMA_BALANCING
1985 	int numa_scan_seq;
1986 	unsigned int numa_scan_period;
1987 	unsigned int numa_scan_period_max;
1988 	int numa_preferred_nid;
1989 	unsigned long numa_migrate_retry;
1990 	u64 node_stamp;			/* migration stamp  */
1991 	u64 last_task_numa_placement;
1992 	u64 last_sum_exec_runtime;
1993 	struct callback_head numa_work;
1994 
1995 	struct list_head numa_entry;
1996 	struct numa_group *numa_group;
1997 
1998 	/*
1999 	 * numa_faults is an array split into four regions:
2000 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
2001 	 * in this precise order.
2002 	 *
2003 	 * faults_memory: Exponential decaying average of faults on a per-node
2004 	 * basis. Scheduling placement decisions are made based on these
2005 	 * counts. The values remain static for the duration of a PTE scan.
2006 	 * faults_cpu: Track the nodes the process was running on when a NUMA
2007 	 * hinting fault was incurred.
2008 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
2009 	 * during the current scan window. When the scan completes, the counts
2010 	 * in faults_memory and faults_cpu decay and these values are copied.
2011 	 */
2012 	unsigned long *numa_faults;
2013 	unsigned long total_numa_faults;
2014 
2015 	/*
2016 	 * numa_faults_locality tracks if faults recorded during the last
2017 	 * scan window were remote/local or failed to migrate. The task scan
2018 	 * period is adapted based on the locality of the faults with different
2019 	 * weights depending on whether they were shared or private faults
2020 	 */
2021 	unsigned long numa_faults_locality[3];
2022 
2023 	unsigned long numa_pages_migrated;
2024 #endif /* CONFIG_NUMA_BALANCING */
2025 
2026 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2027 	struct tlbflush_unmap_batch tlb_ubc;
2028 #endif
2029 
2030 	struct rcu_head rcu;
2031 
2032 	/*
2033 	 * cache last used pipe for splice
2034 	 */
2035 	struct pipe_inode_info *splice_pipe;
2036 
2037 	struct page_frag task_frag;
2038 
2039 #ifdef	CONFIG_TASK_DELAY_ACCT
2040 	struct task_delay_info *delays;
2041 #endif
2042 #ifdef CONFIG_FAULT_INJECTION
2043 	int make_it_fail;
2044 #endif
2045 	/*
2046 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
2047 	 * balance_dirty_pages() for some dirty throttling pause
2048 	 */
2049 	int nr_dirtied;
2050 	int nr_dirtied_pause;
2051 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
2052 
2053 #ifdef CONFIG_LATENCYTOP
2054 	int latency_record_count;
2055 	struct latency_record latency_record[LT_SAVECOUNT];
2056 #endif
2057 	/*
2058 	 * time slack values; these are used to round up poll() and
2059 	 * select() etc timeout values. These are in nanoseconds.
2060 	 */
2061 	u64 timer_slack_ns;
2062 	u64 default_timer_slack_ns;
2063 
2064 #ifdef CONFIG_KASAN
2065 	unsigned int kasan_depth;
2066 #endif
2067 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2068 	/* Index of current stored address in ret_stack */
2069 	int curr_ret_stack;
2070 	/* Stack of return addresses for return function tracing */
2071 	struct ftrace_ret_stack	*ret_stack;
2072 	/* time stamp for last schedule */
2073 	unsigned long long ftrace_timestamp;
2074 	/*
2075 	 * Number of functions that haven't been traced
2076 	 * because of depth overrun.
2077 	 */
2078 	atomic_t trace_overrun;
2079 	/* Pause for the tracing */
2080 	atomic_t tracing_graph_pause;
2081 #endif
2082 #ifdef CONFIG_TRACING
2083 	/* state flags for use by tracers */
2084 	unsigned long trace;
2085 	/* bitmask and counter of trace recursion */
2086 	unsigned long trace_recursion;
2087 #endif /* CONFIG_TRACING */
2088 #ifdef CONFIG_KCOV
2089 	/* Coverage collection mode enabled for this task (0 if disabled). */
2090 	enum kcov_mode kcov_mode;
2091 	/* Size of the kcov_area. */
2092 	unsigned	kcov_size;
2093 	/* Buffer for coverage collection. */
2094 	void		*kcov_area;
2095 	/* kcov desciptor wired with this task or NULL. */
2096 	struct kcov	*kcov;
2097 #endif
2098 #ifdef CONFIG_MEMCG
2099 	struct mem_cgroup *memcg_in_oom;
2100 	gfp_t memcg_oom_gfp_mask;
2101 	int memcg_oom_order;
2102 
2103 	/* number of pages to reclaim on returning to userland */
2104 	unsigned int memcg_nr_pages_over_high;
2105 #endif
2106 #ifdef CONFIG_UPROBES
2107 	struct uprobe_task *utask;
2108 #endif
2109 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
2110 	unsigned int	sequential_io;
2111 	unsigned int	sequential_io_avg;
2112 #endif
2113 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2114 	unsigned long	task_state_change;
2115 #endif
2116 	int pagefault_disabled;
2117 #ifdef CONFIG_MMU
2118 	struct task_struct *oom_reaper_list;
2119 #endif
2120 #ifdef CONFIG_VMAP_STACK
2121 	struct vm_struct *stack_vm_area;
2122 #endif
2123 #ifdef CONFIG_THREAD_INFO_IN_TASK
2124 	/* A live task holds one reference. */
2125 	atomic_t stack_refcount;
2126 #endif
2127 /* CPU-specific state of this task */
2128 	struct thread_struct thread;
2129 /*
2130  * WARNING: on x86, 'thread_struct' contains a variable-sized
2131  * structure.  It *MUST* be at the end of 'task_struct'.
2132  *
2133  * Do not put anything below here!
2134  */
2135 };
2136 
2137 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
2138 extern int arch_task_struct_size __read_mostly;
2139 #else
2140 # define arch_task_struct_size (sizeof(struct task_struct))
2141 #endif
2142 
2143 #ifdef CONFIG_VMAP_STACK
task_stack_vm_area(const struct task_struct * t)2144 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2145 {
2146 	return t->stack_vm_area;
2147 }
2148 #else
task_stack_vm_area(const struct task_struct * t)2149 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2150 {
2151 	return NULL;
2152 }
2153 #endif
2154 
2155 /* Future-safe accessor for struct task_struct's cpus_allowed. */
2156 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2157 
tsk_nr_cpus_allowed(struct task_struct * p)2158 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2159 {
2160 	return p->nr_cpus_allowed;
2161 }
2162 
2163 #define TNF_MIGRATED	0x01
2164 #define TNF_NO_GROUP	0x02
2165 #define TNF_SHARED	0x04
2166 #define TNF_FAULT_LOCAL	0x08
2167 #define TNF_MIGRATE_FAIL 0x10
2168 
in_vfork(struct task_struct * tsk)2169 static inline bool in_vfork(struct task_struct *tsk)
2170 {
2171 	bool ret;
2172 
2173 	/*
2174 	 * need RCU to access ->real_parent if CLONE_VM was used along with
2175 	 * CLONE_PARENT.
2176 	 *
2177 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2178 	 * imply CLONE_VM
2179 	 *
2180 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2181 	 * ->real_parent is not necessarily the task doing vfork(), so in
2182 	 * theory we can't rely on task_lock() if we want to dereference it.
2183 	 *
2184 	 * And in this case we can't trust the real_parent->mm == tsk->mm
2185 	 * check, it can be false negative. But we do not care, if init or
2186 	 * another oom-unkillable task does this it should blame itself.
2187 	 */
2188 	rcu_read_lock();
2189 	ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2190 	rcu_read_unlock();
2191 
2192 	return ret;
2193 }
2194 
2195 #ifdef CONFIG_NUMA_BALANCING
2196 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2197 extern pid_t task_numa_group_id(struct task_struct *p);
2198 extern void set_numabalancing_state(bool enabled);
2199 extern void task_numa_free(struct task_struct *p);
2200 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2201 					int src_nid, int dst_cpu);
2202 #else
task_numa_fault(int last_node,int node,int pages,int flags)2203 static inline void task_numa_fault(int last_node, int node, int pages,
2204 				   int flags)
2205 {
2206 }
task_numa_group_id(struct task_struct * p)2207 static inline pid_t task_numa_group_id(struct task_struct *p)
2208 {
2209 	return 0;
2210 }
set_numabalancing_state(bool enabled)2211 static inline void set_numabalancing_state(bool enabled)
2212 {
2213 }
task_numa_free(struct task_struct * p)2214 static inline void task_numa_free(struct task_struct *p)
2215 {
2216 }
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)2217 static inline bool should_numa_migrate_memory(struct task_struct *p,
2218 				struct page *page, int src_nid, int dst_cpu)
2219 {
2220 	return true;
2221 }
2222 #endif
2223 
task_pid(struct task_struct * task)2224 static inline struct pid *task_pid(struct task_struct *task)
2225 {
2226 	return task->pids[PIDTYPE_PID].pid;
2227 }
2228 
task_tgid(struct task_struct * task)2229 static inline struct pid *task_tgid(struct task_struct *task)
2230 {
2231 	return task->group_leader->pids[PIDTYPE_PID].pid;
2232 }
2233 
2234 /*
2235  * Without tasklist or rcu lock it is not safe to dereference
2236  * the result of task_pgrp/task_session even if task == current,
2237  * we can race with another thread doing sys_setsid/sys_setpgid.
2238  */
task_pgrp(struct task_struct * task)2239 static inline struct pid *task_pgrp(struct task_struct *task)
2240 {
2241 	return task->group_leader->pids[PIDTYPE_PGID].pid;
2242 }
2243 
task_session(struct task_struct * task)2244 static inline struct pid *task_session(struct task_struct *task)
2245 {
2246 	return task->group_leader->pids[PIDTYPE_SID].pid;
2247 }
2248 
2249 struct pid_namespace;
2250 
2251 /*
2252  * the helpers to get the task's different pids as they are seen
2253  * from various namespaces
2254  *
2255  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
2256  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
2257  *                     current.
2258  * task_xid_nr_ns()  : id seen from the ns specified;
2259  *
2260  * set_task_vxid()   : assigns a virtual id to a task;
2261  *
2262  * see also pid_nr() etc in include/linux/pid.h
2263  */
2264 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2265 			struct pid_namespace *ns);
2266 
task_pid_nr(struct task_struct * tsk)2267 static inline pid_t task_pid_nr(struct task_struct *tsk)
2268 {
2269 	return tsk->pid;
2270 }
2271 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2272 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2273 					struct pid_namespace *ns)
2274 {
2275 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2276 }
2277 
task_pid_vnr(struct task_struct * tsk)2278 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2279 {
2280 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2281 }
2282 
2283 
task_tgid_nr(struct task_struct * tsk)2284 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2285 {
2286 	return tsk->tgid;
2287 }
2288 
2289 
2290 static inline int pid_alive(const struct task_struct *p);
2291 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2292 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2293 					struct pid_namespace *ns)
2294 {
2295 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2296 }
2297 
task_pgrp_vnr(struct task_struct * tsk)2298 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2299 {
2300 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2301 }
2302 
2303 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2304 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2305 					struct pid_namespace *ns)
2306 {
2307 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2308 }
2309 
task_session_vnr(struct task_struct * tsk)2310 static inline pid_t task_session_vnr(struct task_struct *tsk)
2311 {
2312 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2313 }
2314 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2315 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
2316 {
2317 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
2318 }
2319 
task_tgid_vnr(struct task_struct * tsk)2320 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2321 {
2322 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
2323 }
2324 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)2325 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2326 {
2327 	pid_t pid = 0;
2328 
2329 	rcu_read_lock();
2330 	if (pid_alive(tsk))
2331 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2332 	rcu_read_unlock();
2333 
2334 	return pid;
2335 }
2336 
task_ppid_nr(const struct task_struct * tsk)2337 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2338 {
2339 	return task_ppid_nr_ns(tsk, &init_pid_ns);
2340 }
2341 
2342 /* obsolete, do not use */
task_pgrp_nr(struct task_struct * tsk)2343 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2344 {
2345 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
2346 }
2347 
2348 /**
2349  * pid_alive - check that a task structure is not stale
2350  * @p: Task structure to be checked.
2351  *
2352  * Test if a process is not yet dead (at most zombie state)
2353  * If pid_alive fails, then pointers within the task structure
2354  * can be stale and must not be dereferenced.
2355  *
2356  * Return: 1 if the process is alive. 0 otherwise.
2357  */
pid_alive(const struct task_struct * p)2358 static inline int pid_alive(const struct task_struct *p)
2359 {
2360 	return p->pids[PIDTYPE_PID].pid != NULL;
2361 }
2362 
2363 /**
2364  * is_global_init - check if a task structure is init. Since init
2365  * is free to have sub-threads we need to check tgid.
2366  * @tsk: Task structure to be checked.
2367  *
2368  * Check if a task structure is the first user space task the kernel created.
2369  *
2370  * Return: 1 if the task structure is init. 0 otherwise.
2371  */
is_global_init(struct task_struct * tsk)2372 static inline int is_global_init(struct task_struct *tsk)
2373 {
2374 	return task_tgid_nr(tsk) == 1;
2375 }
2376 
2377 extern struct pid *cad_pid;
2378 
2379 extern void free_task(struct task_struct *tsk);
2380 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2381 
2382 extern void __put_task_struct(struct task_struct *t);
2383 
put_task_struct(struct task_struct * t)2384 static inline void put_task_struct(struct task_struct *t)
2385 {
2386 	if (atomic_dec_and_test(&t->usage))
2387 		__put_task_struct(t);
2388 }
2389 
2390 struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2391 struct task_struct *try_get_task_struct(struct task_struct **ptask);
2392 
2393 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2394 extern void task_cputime(struct task_struct *t,
2395 			 cputime_t *utime, cputime_t *stime);
2396 extern void task_cputime_scaled(struct task_struct *t,
2397 				cputime_t *utimescaled, cputime_t *stimescaled);
2398 extern cputime_t task_gtime(struct task_struct *t);
2399 #else
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)2400 static inline void task_cputime(struct task_struct *t,
2401 				cputime_t *utime, cputime_t *stime)
2402 {
2403 	if (utime)
2404 		*utime = t->utime;
2405 	if (stime)
2406 		*stime = t->stime;
2407 }
2408 
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)2409 static inline void task_cputime_scaled(struct task_struct *t,
2410 				       cputime_t *utimescaled,
2411 				       cputime_t *stimescaled)
2412 {
2413 	if (utimescaled)
2414 		*utimescaled = t->utimescaled;
2415 	if (stimescaled)
2416 		*stimescaled = t->stimescaled;
2417 }
2418 
task_gtime(struct task_struct * t)2419 static inline cputime_t task_gtime(struct task_struct *t)
2420 {
2421 	return t->gtime;
2422 }
2423 #endif
2424 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2425 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2426 
2427 /*
2428  * Per process flags
2429  */
2430 #define PF_EXITING	0x00000004	/* getting shut down */
2431 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
2432 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2433 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2434 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2435 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2436 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2437 #define PF_DUMPCORE	0x00000200	/* dumped core */
2438 #define PF_SIGNALED	0x00000400	/* killed by a signal */
2439 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
2440 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2441 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2442 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2443 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2444 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
2445 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2446 #define PF_KSWAPD	0x00040000	/* I am kswapd */
2447 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2448 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2449 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2450 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2451 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
2452 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2453 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2454 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2455 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2456 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2457 
2458 /*
2459  * Only the _current_ task can read/write to tsk->flags, but other
2460  * tasks can access tsk->flags in readonly mode for example
2461  * with tsk_used_math (like during threaded core dumping).
2462  * There is however an exception to this rule during ptrace
2463  * or during fork: the ptracer task is allowed to write to the
2464  * child->flags of its traced child (same goes for fork, the parent
2465  * can write to the child->flags), because we're guaranteed the
2466  * child is not running and in turn not changing child->flags
2467  * at the same time the parent does it.
2468  */
2469 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2470 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2471 #define clear_used_math() clear_stopped_child_used_math(current)
2472 #define set_used_math() set_stopped_child_used_math(current)
2473 #define conditional_stopped_child_used_math(condition, child) \
2474 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2475 #define conditional_used_math(condition) \
2476 	conditional_stopped_child_used_math(condition, current)
2477 #define copy_to_stopped_child_used_math(child) \
2478 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2479 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2480 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2481 #define used_math() tsk_used_math(current)
2482 
2483 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2484  * __GFP_FS is also cleared as it implies __GFP_IO.
2485  */
memalloc_noio_flags(gfp_t flags)2486 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2487 {
2488 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2489 		flags &= ~(__GFP_IO | __GFP_FS);
2490 	return flags;
2491 }
2492 
memalloc_noio_save(void)2493 static inline unsigned int memalloc_noio_save(void)
2494 {
2495 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2496 	current->flags |= PF_MEMALLOC_NOIO;
2497 	return flags;
2498 }
2499 
memalloc_noio_restore(unsigned int flags)2500 static inline void memalloc_noio_restore(unsigned int flags)
2501 {
2502 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2503 }
2504 
2505 /* Per-process atomic flags. */
2506 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2507 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2508 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2509 #define PFA_LMK_WAITING  3      /* Lowmemorykiller is waiting */
2510 
2511 
2512 #define TASK_PFA_TEST(name, func)					\
2513 	static inline bool task_##func(struct task_struct *p)		\
2514 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2515 #define TASK_PFA_SET(name, func)					\
2516 	static inline void task_set_##func(struct task_struct *p)	\
2517 	{ set_bit(PFA_##name, &p->atomic_flags); }
2518 #define TASK_PFA_CLEAR(name, func)					\
2519 	static inline void task_clear_##func(struct task_struct *p)	\
2520 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2521 
2522 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2523 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2524 
2525 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2526 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2527 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2528 
2529 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2530 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2531 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2532 
2533 TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2534 TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2535 
2536 /*
2537  * task->jobctl flags
2538  */
2539 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2540 
2541 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2542 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2543 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2544 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2545 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2546 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2547 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2548 
2549 #define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT)
2550 #define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT)
2551 #define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT)
2552 #define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT)
2553 #define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT)
2554 #define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT)
2555 #define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT)
2556 
2557 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2558 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2559 
2560 extern bool task_set_jobctl_pending(struct task_struct *task,
2561 				    unsigned long mask);
2562 extern void task_clear_jobctl_trapping(struct task_struct *task);
2563 extern void task_clear_jobctl_pending(struct task_struct *task,
2564 				      unsigned long mask);
2565 
rcu_copy_process(struct task_struct * p)2566 static inline void rcu_copy_process(struct task_struct *p)
2567 {
2568 #ifdef CONFIG_PREEMPT_RCU
2569 	p->rcu_read_lock_nesting = 0;
2570 	p->rcu_read_unlock_special.s = 0;
2571 	p->rcu_blocked_node = NULL;
2572 	INIT_LIST_HEAD(&p->rcu_node_entry);
2573 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2574 #ifdef CONFIG_TASKS_RCU
2575 	p->rcu_tasks_holdout = false;
2576 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2577 	p->rcu_tasks_idle_cpu = -1;
2578 #endif /* #ifdef CONFIG_TASKS_RCU */
2579 }
2580 
tsk_restore_flags(struct task_struct * task,unsigned long orig_flags,unsigned long flags)2581 static inline void tsk_restore_flags(struct task_struct *task,
2582 				unsigned long orig_flags, unsigned long flags)
2583 {
2584 	task->flags &= ~flags;
2585 	task->flags |= orig_flags & flags;
2586 }
2587 
2588 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2589 				     const struct cpumask *trial);
2590 extern int task_can_attach(struct task_struct *p,
2591 			   const struct cpumask *cs_cpus_allowed);
2592 #ifdef CONFIG_SMP
2593 extern void do_set_cpus_allowed(struct task_struct *p,
2594 			       const struct cpumask *new_mask);
2595 
2596 extern int set_cpus_allowed_ptr(struct task_struct *p,
2597 				const struct cpumask *new_mask);
2598 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2599 static inline void do_set_cpus_allowed(struct task_struct *p,
2600 				      const struct cpumask *new_mask)
2601 {
2602 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2603 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2604 				       const struct cpumask *new_mask)
2605 {
2606 	if (!cpumask_test_cpu(0, new_mask))
2607 		return -EINVAL;
2608 	return 0;
2609 }
2610 #endif
2611 
2612 #ifdef CONFIG_NO_HZ_COMMON
2613 void calc_load_enter_idle(void);
2614 void calc_load_exit_idle(void);
2615 #else
calc_load_enter_idle(void)2616 static inline void calc_load_enter_idle(void) { }
calc_load_exit_idle(void)2617 static inline void calc_load_exit_idle(void) { }
2618 #endif /* CONFIG_NO_HZ_COMMON */
2619 
2620 /*
2621  * Do not use outside of architecture code which knows its limitations.
2622  *
2623  * sched_clock() has no promise of monotonicity or bounded drift between
2624  * CPUs, use (which you should not) requires disabling IRQs.
2625  *
2626  * Please use one of the three interfaces below.
2627  */
2628 extern unsigned long long notrace sched_clock(void);
2629 /*
2630  * See the comment in kernel/sched/clock.c
2631  */
2632 extern u64 running_clock(void);
2633 extern u64 sched_clock_cpu(int cpu);
2634 
2635 
2636 extern void sched_clock_init(void);
2637 
2638 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_tick(void)2639 static inline void sched_clock_tick(void)
2640 {
2641 }
2642 
sched_clock_idle_sleep_event(void)2643 static inline void sched_clock_idle_sleep_event(void)
2644 {
2645 }
2646 
sched_clock_idle_wakeup_event(u64 delta_ns)2647 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2648 {
2649 }
2650 
cpu_clock(int cpu)2651 static inline u64 cpu_clock(int cpu)
2652 {
2653 	return sched_clock();
2654 }
2655 
local_clock(void)2656 static inline u64 local_clock(void)
2657 {
2658 	return sched_clock();
2659 }
2660 #else
2661 /*
2662  * Architectures can set this to 1 if they have specified
2663  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2664  * but then during bootup it turns out that sched_clock()
2665  * is reliable after all:
2666  */
2667 extern int sched_clock_stable(void);
2668 extern void set_sched_clock_stable(void);
2669 extern void clear_sched_clock_stable(void);
2670 
2671 extern void sched_clock_tick(void);
2672 extern void sched_clock_idle_sleep_event(void);
2673 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2674 
2675 /*
2676  * As outlined in clock.c, provides a fast, high resolution, nanosecond
2677  * time source that is monotonic per cpu argument and has bounded drift
2678  * between cpus.
2679  *
2680  * ######################### BIG FAT WARNING ##########################
2681  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2682  * # go backwards !!                                                  #
2683  * ####################################################################
2684  */
cpu_clock(int cpu)2685 static inline u64 cpu_clock(int cpu)
2686 {
2687 	return sched_clock_cpu(cpu);
2688 }
2689 
local_clock(void)2690 static inline u64 local_clock(void)
2691 {
2692 	return sched_clock_cpu(raw_smp_processor_id());
2693 }
2694 #endif
2695 
2696 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2697 /*
2698  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2699  * The reason for this explicit opt-in is not to have perf penalty with
2700  * slow sched_clocks.
2701  */
2702 extern void enable_sched_clock_irqtime(void);
2703 extern void disable_sched_clock_irqtime(void);
2704 #else
enable_sched_clock_irqtime(void)2705 static inline void enable_sched_clock_irqtime(void) {}
disable_sched_clock_irqtime(void)2706 static inline void disable_sched_clock_irqtime(void) {}
2707 #endif
2708 
2709 extern unsigned long long
2710 task_sched_runtime(struct task_struct *task);
2711 
2712 /* sched_exec is called by processes performing an exec */
2713 #ifdef CONFIG_SMP
2714 extern void sched_exec(void);
2715 #else
2716 #define sched_exec()   {}
2717 #endif
2718 
2719 extern void sched_clock_idle_sleep_event(void);
2720 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2721 
2722 #ifdef CONFIG_HOTPLUG_CPU
2723 extern void idle_task_exit(void);
2724 #else
idle_task_exit(void)2725 static inline void idle_task_exit(void) {}
2726 #endif
2727 
2728 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2729 extern void wake_up_nohz_cpu(int cpu);
2730 #else
wake_up_nohz_cpu(int cpu)2731 static inline void wake_up_nohz_cpu(int cpu) { }
2732 #endif
2733 
2734 #ifdef CONFIG_NO_HZ_FULL
2735 extern u64 scheduler_tick_max_deferment(void);
2736 #endif
2737 
2738 #ifdef CONFIG_SCHED_AUTOGROUP
2739 extern void sched_autogroup_create_attach(struct task_struct *p);
2740 extern void sched_autogroup_detach(struct task_struct *p);
2741 extern void sched_autogroup_fork(struct signal_struct *sig);
2742 extern void sched_autogroup_exit(struct signal_struct *sig);
2743 extern void sched_autogroup_exit_task(struct task_struct *p);
2744 #ifdef CONFIG_PROC_FS
2745 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2746 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2747 #endif
2748 #else
sched_autogroup_create_attach(struct task_struct * p)2749 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
sched_autogroup_detach(struct task_struct * p)2750 static inline void sched_autogroup_detach(struct task_struct *p) { }
sched_autogroup_fork(struct signal_struct * sig)2751 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
sched_autogroup_exit(struct signal_struct * sig)2752 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
sched_autogroup_exit_task(struct task_struct * p)2753 static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2754 #endif
2755 
2756 extern int yield_to(struct task_struct *p, bool preempt);
2757 extern void set_user_nice(struct task_struct *p, long nice);
2758 extern int task_prio(const struct task_struct *p);
2759 /**
2760  * task_nice - return the nice value of a given task.
2761  * @p: the task in question.
2762  *
2763  * Return: The nice value [ -20 ... 0 ... 19 ].
2764  */
task_nice(const struct task_struct * p)2765 static inline int task_nice(const struct task_struct *p)
2766 {
2767 	return PRIO_TO_NICE((p)->static_prio);
2768 }
2769 extern int can_nice(const struct task_struct *p, const int nice);
2770 extern int task_curr(const struct task_struct *p);
2771 extern int idle_cpu(int cpu);
2772 extern int sched_setscheduler(struct task_struct *, int,
2773 			      const struct sched_param *);
2774 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2775 				      const struct sched_param *);
2776 extern int sched_setattr(struct task_struct *,
2777 			 const struct sched_attr *);
2778 extern struct task_struct *idle_task(int cpu);
2779 /**
2780  * is_idle_task - is the specified task an idle task?
2781  * @p: the task in question.
2782  *
2783  * Return: 1 if @p is an idle task. 0 otherwise.
2784  */
is_idle_task(const struct task_struct * p)2785 static inline bool is_idle_task(const struct task_struct *p)
2786 {
2787 	return p->pid == 0;
2788 }
2789 extern struct task_struct *curr_task(int cpu);
2790 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2791 
2792 void yield(void);
2793 
2794 union thread_union {
2795 #ifndef CONFIG_THREAD_INFO_IN_TASK
2796 	struct thread_info thread_info;
2797 #endif
2798 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2799 };
2800 
2801 #ifndef __HAVE_ARCH_KSTACK_END
kstack_end(void * addr)2802 static inline int kstack_end(void *addr)
2803 {
2804 	/* Reliable end of stack detection:
2805 	 * Some APM bios versions misalign the stack
2806 	 */
2807 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2808 }
2809 #endif
2810 
2811 extern union thread_union init_thread_union;
2812 extern struct task_struct init_task;
2813 
2814 extern struct   mm_struct init_mm;
2815 
2816 extern struct pid_namespace init_pid_ns;
2817 
2818 /*
2819  * find a task by one of its numerical ids
2820  *
2821  * find_task_by_pid_ns():
2822  *      finds a task by its pid in the specified namespace
2823  * find_task_by_vpid():
2824  *      finds a task by its virtual pid
2825  *
2826  * see also find_vpid() etc in include/linux/pid.h
2827  */
2828 
2829 extern struct task_struct *find_task_by_vpid(pid_t nr);
2830 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2831 		struct pid_namespace *ns);
2832 
2833 /* per-UID process charging. */
2834 extern struct user_struct * alloc_uid(kuid_t);
get_uid(struct user_struct * u)2835 static inline struct user_struct *get_uid(struct user_struct *u)
2836 {
2837 	atomic_inc(&u->__count);
2838 	return u;
2839 }
2840 extern void free_uid(struct user_struct *);
2841 
2842 #include <asm/current.h>
2843 
2844 extern void xtime_update(unsigned long ticks);
2845 
2846 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2847 extern int wake_up_process(struct task_struct *tsk);
2848 extern void wake_up_new_task(struct task_struct *tsk);
2849 #ifdef CONFIG_SMP
2850  extern void kick_process(struct task_struct *tsk);
2851 #else
kick_process(struct task_struct * tsk)2852  static inline void kick_process(struct task_struct *tsk) { }
2853 #endif
2854 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2855 extern void sched_dead(struct task_struct *p);
2856 
2857 extern void proc_caches_init(void);
2858 extern void flush_signals(struct task_struct *);
2859 extern void ignore_signals(struct task_struct *);
2860 extern void flush_signal_handlers(struct task_struct *, int force_default);
2861 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2862 
kernel_dequeue_signal(siginfo_t * info)2863 static inline int kernel_dequeue_signal(siginfo_t *info)
2864 {
2865 	struct task_struct *tsk = current;
2866 	siginfo_t __info;
2867 	int ret;
2868 
2869 	spin_lock_irq(&tsk->sighand->siglock);
2870 	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2871 	spin_unlock_irq(&tsk->sighand->siglock);
2872 
2873 	return ret;
2874 }
2875 
kernel_signal_stop(void)2876 static inline void kernel_signal_stop(void)
2877 {
2878 	spin_lock_irq(&current->sighand->siglock);
2879 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2880 		__set_current_state(TASK_STOPPED);
2881 	spin_unlock_irq(&current->sighand->siglock);
2882 
2883 	schedule();
2884 }
2885 
2886 extern void release_task(struct task_struct * p);
2887 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2888 extern int force_sigsegv(int, struct task_struct *);
2889 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2890 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2891 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2892 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2893 				const struct cred *, u32);
2894 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2895 extern int kill_pid(struct pid *pid, int sig, int priv);
2896 extern int kill_proc_info(int, struct siginfo *, pid_t);
2897 extern __must_check bool do_notify_parent(struct task_struct *, int);
2898 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2899 extern void force_sig(int, struct task_struct *);
2900 extern int send_sig(int, struct task_struct *, int);
2901 extern int zap_other_threads(struct task_struct *p);
2902 extern struct sigqueue *sigqueue_alloc(void);
2903 extern void sigqueue_free(struct sigqueue *);
2904 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2905 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2906 
2907 #ifdef TIF_RESTORE_SIGMASK
2908 /*
2909  * Legacy restore_sigmask accessors.  These are inefficient on
2910  * SMP architectures because they require atomic operations.
2911  */
2912 
2913 /**
2914  * set_restore_sigmask() - make sure saved_sigmask processing gets done
2915  *
2916  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2917  * will run before returning to user mode, to process the flag.  For
2918  * all callers, TIF_SIGPENDING is already set or it's no harm to set
2919  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
2920  * arch code will notice on return to user mode, in case those bits
2921  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
2922  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2923  */
set_restore_sigmask(void)2924 static inline void set_restore_sigmask(void)
2925 {
2926 	set_thread_flag(TIF_RESTORE_SIGMASK);
2927 	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2928 }
clear_restore_sigmask(void)2929 static inline void clear_restore_sigmask(void)
2930 {
2931 	clear_thread_flag(TIF_RESTORE_SIGMASK);
2932 }
test_restore_sigmask(void)2933 static inline bool test_restore_sigmask(void)
2934 {
2935 	return test_thread_flag(TIF_RESTORE_SIGMASK);
2936 }
test_and_clear_restore_sigmask(void)2937 static inline bool test_and_clear_restore_sigmask(void)
2938 {
2939 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2940 }
2941 
2942 #else	/* TIF_RESTORE_SIGMASK */
2943 
2944 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)2945 static inline void set_restore_sigmask(void)
2946 {
2947 	current->restore_sigmask = true;
2948 	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2949 }
clear_restore_sigmask(void)2950 static inline void clear_restore_sigmask(void)
2951 {
2952 	current->restore_sigmask = false;
2953 }
test_restore_sigmask(void)2954 static inline bool test_restore_sigmask(void)
2955 {
2956 	return current->restore_sigmask;
2957 }
test_and_clear_restore_sigmask(void)2958 static inline bool test_and_clear_restore_sigmask(void)
2959 {
2960 	if (!current->restore_sigmask)
2961 		return false;
2962 	current->restore_sigmask = false;
2963 	return true;
2964 }
2965 #endif
2966 
restore_saved_sigmask(void)2967 static inline void restore_saved_sigmask(void)
2968 {
2969 	if (test_and_clear_restore_sigmask())
2970 		__set_current_blocked(&current->saved_sigmask);
2971 }
2972 
sigmask_to_save(void)2973 static inline sigset_t *sigmask_to_save(void)
2974 {
2975 	sigset_t *res = &current->blocked;
2976 	if (unlikely(test_restore_sigmask()))
2977 		res = &current->saved_sigmask;
2978 	return res;
2979 }
2980 
kill_cad_pid(int sig,int priv)2981 static inline int kill_cad_pid(int sig, int priv)
2982 {
2983 	return kill_pid(cad_pid, sig, priv);
2984 }
2985 
2986 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2987 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2988 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2989 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2990 
2991 /*
2992  * True if we are on the alternate signal stack.
2993  */
on_sig_stack(unsigned long sp)2994 static inline int on_sig_stack(unsigned long sp)
2995 {
2996 	/*
2997 	 * If the signal stack is SS_AUTODISARM then, by construction, we
2998 	 * can't be on the signal stack unless user code deliberately set
2999 	 * SS_AUTODISARM when we were already on it.
3000 	 *
3001 	 * This improves reliability: if user state gets corrupted such that
3002 	 * the stack pointer points very close to the end of the signal stack,
3003 	 * then this check will enable the signal to be handled anyway.
3004 	 */
3005 	if (current->sas_ss_flags & SS_AUTODISARM)
3006 		return 0;
3007 
3008 #ifdef CONFIG_STACK_GROWSUP
3009 	return sp >= current->sas_ss_sp &&
3010 		sp - current->sas_ss_sp < current->sas_ss_size;
3011 #else
3012 	return sp > current->sas_ss_sp &&
3013 		sp - current->sas_ss_sp <= current->sas_ss_size;
3014 #endif
3015 }
3016 
sas_ss_flags(unsigned long sp)3017 static inline int sas_ss_flags(unsigned long sp)
3018 {
3019 	if (!current->sas_ss_size)
3020 		return SS_DISABLE;
3021 
3022 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
3023 }
3024 
sas_ss_reset(struct task_struct * p)3025 static inline void sas_ss_reset(struct task_struct *p)
3026 {
3027 	p->sas_ss_sp = 0;
3028 	p->sas_ss_size = 0;
3029 	p->sas_ss_flags = SS_DISABLE;
3030 }
3031 
sigsp(unsigned long sp,struct ksignal * ksig)3032 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
3033 {
3034 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
3035 #ifdef CONFIG_STACK_GROWSUP
3036 		return current->sas_ss_sp;
3037 #else
3038 		return current->sas_ss_sp + current->sas_ss_size;
3039 #endif
3040 	return sp;
3041 }
3042 
3043 /*
3044  * Routines for handling mm_structs
3045  */
3046 extern struct mm_struct * mm_alloc(void);
3047 
3048 /* mmdrop drops the mm and the page tables */
3049 extern void __mmdrop(struct mm_struct *);
mmdrop(struct mm_struct * mm)3050 static inline void mmdrop(struct mm_struct *mm)
3051 {
3052 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
3053 		__mmdrop(mm);
3054 }
3055 
mmdrop_async_fn(struct work_struct * work)3056 static inline void mmdrop_async_fn(struct work_struct *work)
3057 {
3058 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
3059 	__mmdrop(mm);
3060 }
3061 
mmdrop_async(struct mm_struct * mm)3062 static inline void mmdrop_async(struct mm_struct *mm)
3063 {
3064 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
3065 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
3066 		schedule_work(&mm->async_put_work);
3067 	}
3068 }
3069 
mmget_not_zero(struct mm_struct * mm)3070 static inline bool mmget_not_zero(struct mm_struct *mm)
3071 {
3072 	return atomic_inc_not_zero(&mm->mm_users);
3073 }
3074 
3075 /* mmput gets rid of the mappings and all user-space */
3076 extern void mmput(struct mm_struct *);
3077 #ifdef CONFIG_MMU
3078 /* same as above but performs the slow path from the async context. Can
3079  * be called from the atomic context as well
3080  */
3081 extern void mmput_async(struct mm_struct *);
3082 #endif
3083 
3084 /* Grab a reference to a task's mm, if it is not already going away */
3085 extern struct mm_struct *get_task_mm(struct task_struct *task);
3086 /*
3087  * Grab a reference to a task's mm, if it is not already going away
3088  * and ptrace_may_access with the mode parameter passed to it
3089  * succeeds.
3090  */
3091 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
3092 /* Remove the current tasks stale references to the old mm_struct */
3093 extern void mm_release(struct task_struct *, struct mm_struct *);
3094 
3095 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
3096 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
3097 			struct task_struct *, unsigned long);
3098 #else
3099 extern int copy_thread(unsigned long, unsigned long, unsigned long,
3100 			struct task_struct *);
3101 
3102 /* Architectures that haven't opted into copy_thread_tls get the tls argument
3103  * via pt_regs, so ignore the tls argument passed via C. */
copy_thread_tls(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)3104 static inline int copy_thread_tls(
3105 		unsigned long clone_flags, unsigned long sp, unsigned long arg,
3106 		struct task_struct *p, unsigned long tls)
3107 {
3108 	return copy_thread(clone_flags, sp, arg, p);
3109 }
3110 #endif
3111 extern void flush_thread(void);
3112 
3113 #ifdef CONFIG_HAVE_EXIT_THREAD
3114 extern void exit_thread(struct task_struct *tsk);
3115 #else
exit_thread(struct task_struct * tsk)3116 static inline void exit_thread(struct task_struct *tsk)
3117 {
3118 }
3119 #endif
3120 
3121 extern void exit_files(struct task_struct *);
3122 extern void __cleanup_sighand(struct sighand_struct *);
3123 
3124 extern void exit_itimers(struct signal_struct *);
3125 extern void flush_itimer_signals(void);
3126 
3127 extern void do_group_exit(int);
3128 
3129 extern int do_execve(struct filename *,
3130 		     const char __user * const __user *,
3131 		     const char __user * const __user *);
3132 extern int do_execveat(int, struct filename *,
3133 		       const char __user * const __user *,
3134 		       const char __user * const __user *,
3135 		       int);
3136 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
3137 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
3138 struct task_struct *fork_idle(int);
3139 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
3140 
3141 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
set_task_comm(struct task_struct * tsk,const char * from)3142 static inline void set_task_comm(struct task_struct *tsk, const char *from)
3143 {
3144 	__set_task_comm(tsk, from, false);
3145 }
3146 extern char *get_task_comm(char *to, struct task_struct *tsk);
3147 
3148 #ifdef CONFIG_SMP
3149 void scheduler_ipi(void);
3150 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
3151 #else
scheduler_ipi(void)3152 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)3153 static inline unsigned long wait_task_inactive(struct task_struct *p,
3154 					       long match_state)
3155 {
3156 	return 1;
3157 }
3158 #endif
3159 
3160 #define tasklist_empty() \
3161 	list_empty(&init_task.tasks)
3162 
3163 #define next_task(p) \
3164 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
3165 
3166 #define for_each_process(p) \
3167 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3168 
3169 extern bool current_is_single_threaded(void);
3170 
3171 /*
3172  * Careful: do_each_thread/while_each_thread is a double loop so
3173  *          'break' will not work as expected - use goto instead.
3174  */
3175 #define do_each_thread(g, t) \
3176 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3177 
3178 #define while_each_thread(g, t) \
3179 	while ((t = next_thread(t)) != g)
3180 
3181 #define __for_each_thread(signal, t)	\
3182 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3183 
3184 #define for_each_thread(p, t)		\
3185 	__for_each_thread((p)->signal, t)
3186 
3187 /* Careful: this is a double loop, 'break' won't work as expected. */
3188 #define for_each_process_thread(p, t)	\
3189 	for_each_process(p) for_each_thread(p, t)
3190 
get_nr_threads(struct task_struct * tsk)3191 static inline int get_nr_threads(struct task_struct *tsk)
3192 {
3193 	return tsk->signal->nr_threads;
3194 }
3195 
thread_group_leader(struct task_struct * p)3196 static inline bool thread_group_leader(struct task_struct *p)
3197 {
3198 	return p->exit_signal >= 0;
3199 }
3200 
3201 /* Do to the insanities of de_thread it is possible for a process
3202  * to have the pid of the thread group leader without actually being
3203  * the thread group leader.  For iteration through the pids in proc
3204  * all we care about is that we have a task with the appropriate
3205  * pid, we don't actually care if we have the right task.
3206  */
has_group_leader_pid(struct task_struct * p)3207 static inline bool has_group_leader_pid(struct task_struct *p)
3208 {
3209 	return task_pid(p) == p->signal->leader_pid;
3210 }
3211 
3212 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)3213 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3214 {
3215 	return p1->signal == p2->signal;
3216 }
3217 
next_thread(const struct task_struct * p)3218 static inline struct task_struct *next_thread(const struct task_struct *p)
3219 {
3220 	return list_entry_rcu(p->thread_group.next,
3221 			      struct task_struct, thread_group);
3222 }
3223 
thread_group_empty(struct task_struct * p)3224 static inline int thread_group_empty(struct task_struct *p)
3225 {
3226 	return list_empty(&p->thread_group);
3227 }
3228 
3229 #define delay_group_leader(p) \
3230 		(thread_group_leader(p) && !thread_group_empty(p))
3231 
3232 /*
3233  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3234  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
3235  * pins the final release of task.io_context.  Also protects ->cpuset and
3236  * ->cgroup.subsys[]. And ->vfork_done.
3237  *
3238  * Nests both inside and outside of read_lock(&tasklist_lock).
3239  * It must not be nested with write_lock_irq(&tasklist_lock),
3240  * neither inside nor outside.
3241  */
task_lock(struct task_struct * p)3242 static inline void task_lock(struct task_struct *p)
3243 {
3244 	spin_lock(&p->alloc_lock);
3245 }
3246 
task_unlock(struct task_struct * p)3247 static inline void task_unlock(struct task_struct *p)
3248 {
3249 	spin_unlock(&p->alloc_lock);
3250 }
3251 
3252 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3253 							unsigned long *flags);
3254 
lock_task_sighand(struct task_struct * tsk,unsigned long * flags)3255 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3256 						       unsigned long *flags)
3257 {
3258 	struct sighand_struct *ret;
3259 
3260 	ret = __lock_task_sighand(tsk, flags);
3261 	(void)__cond_lock(&tsk->sighand->siglock, ret);
3262 	return ret;
3263 }
3264 
unlock_task_sighand(struct task_struct * tsk,unsigned long * flags)3265 static inline void unlock_task_sighand(struct task_struct *tsk,
3266 						unsigned long *flags)
3267 {
3268 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3269 }
3270 
3271 /**
3272  * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3273  * @tsk: task causing the changes
3274  *
3275  * All operations which modify a threadgroup - a new thread joining the
3276  * group, death of a member thread (the assertion of PF_EXITING) and
3277  * exec(2) dethreading the process and replacing the leader - are wrapped
3278  * by threadgroup_change_{begin|end}().  This is to provide a place which
3279  * subsystems needing threadgroup stability can hook into for
3280  * synchronization.
3281  */
threadgroup_change_begin(struct task_struct * tsk)3282 static inline void threadgroup_change_begin(struct task_struct *tsk)
3283 {
3284 	might_sleep();
3285 	cgroup_threadgroup_change_begin(tsk);
3286 }
3287 
3288 /**
3289  * threadgroup_change_end - mark the end of changes to a threadgroup
3290  * @tsk: task causing the changes
3291  *
3292  * See threadgroup_change_begin().
3293  */
threadgroup_change_end(struct task_struct * tsk)3294 static inline void threadgroup_change_end(struct task_struct *tsk)
3295 {
3296 	cgroup_threadgroup_change_end(tsk);
3297 }
3298 
3299 #ifdef CONFIG_THREAD_INFO_IN_TASK
3300 
task_thread_info(struct task_struct * task)3301 static inline struct thread_info *task_thread_info(struct task_struct *task)
3302 {
3303 	return &task->thread_info;
3304 }
3305 
3306 /*
3307  * When accessing the stack of a non-current task that might exit, use
3308  * try_get_task_stack() instead.  task_stack_page will return a pointer
3309  * that could get freed out from under you.
3310  */
task_stack_page(const struct task_struct * task)3311 static inline void *task_stack_page(const struct task_struct *task)
3312 {
3313 	return task->stack;
3314 }
3315 
3316 #define setup_thread_stack(new,old)	do { } while(0)
3317 
end_of_stack(const struct task_struct * task)3318 static inline unsigned long *end_of_stack(const struct task_struct *task)
3319 {
3320 	return task->stack;
3321 }
3322 
3323 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3324 
3325 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
3326 #define task_stack_page(task)	((void *)(task)->stack)
3327 
setup_thread_stack(struct task_struct * p,struct task_struct * org)3328 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3329 {
3330 	*task_thread_info(p) = *task_thread_info(org);
3331 	task_thread_info(p)->task = p;
3332 }
3333 
3334 /*
3335  * Return the address of the last usable long on the stack.
3336  *
3337  * When the stack grows down, this is just above the thread
3338  * info struct. Going any lower will corrupt the threadinfo.
3339  *
3340  * When the stack grows up, this is the highest address.
3341  * Beyond that position, we corrupt data on the next page.
3342  */
end_of_stack(struct task_struct * p)3343 static inline unsigned long *end_of_stack(struct task_struct *p)
3344 {
3345 #ifdef CONFIG_STACK_GROWSUP
3346 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3347 #else
3348 	return (unsigned long *)(task_thread_info(p) + 1);
3349 #endif
3350 }
3351 
3352 #endif
3353 
3354 #ifdef CONFIG_THREAD_INFO_IN_TASK
try_get_task_stack(struct task_struct * tsk)3355 static inline void *try_get_task_stack(struct task_struct *tsk)
3356 {
3357 	return atomic_inc_not_zero(&tsk->stack_refcount) ?
3358 		task_stack_page(tsk) : NULL;
3359 }
3360 
3361 extern void put_task_stack(struct task_struct *tsk);
3362 #else
try_get_task_stack(struct task_struct * tsk)3363 static inline void *try_get_task_stack(struct task_struct *tsk)
3364 {
3365 	return task_stack_page(tsk);
3366 }
3367 
put_task_stack(struct task_struct * tsk)3368 static inline void put_task_stack(struct task_struct *tsk) {}
3369 #endif
3370 
3371 #define task_stack_end_corrupted(task) \
3372 		(*(end_of_stack(task)) != STACK_END_MAGIC)
3373 
object_is_on_stack(void * obj)3374 static inline int object_is_on_stack(void *obj)
3375 {
3376 	void *stack = task_stack_page(current);
3377 
3378 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3379 }
3380 
3381 extern void thread_stack_cache_init(void);
3382 
3383 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)3384 static inline unsigned long stack_not_used(struct task_struct *p)
3385 {
3386 	unsigned long *n = end_of_stack(p);
3387 
3388 	do { 	/* Skip over canary */
3389 # ifdef CONFIG_STACK_GROWSUP
3390 		n--;
3391 # else
3392 		n++;
3393 # endif
3394 	} while (!*n);
3395 
3396 # ifdef CONFIG_STACK_GROWSUP
3397 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
3398 # else
3399 	return (unsigned long)n - (unsigned long)end_of_stack(p);
3400 # endif
3401 }
3402 #endif
3403 extern void set_task_stack_end_magic(struct task_struct *tsk);
3404 
3405 /* set thread flags in other task's structures
3406  * - see asm/thread_info.h for TIF_xxxx flags available
3407  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)3408 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3409 {
3410 	set_ti_thread_flag(task_thread_info(tsk), flag);
3411 }
3412 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)3413 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3414 {
3415 	clear_ti_thread_flag(task_thread_info(tsk), flag);
3416 }
3417 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)3418 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3419 {
3420 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3421 }
3422 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)3423 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3424 {
3425 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3426 }
3427 
test_tsk_thread_flag(struct task_struct * tsk,int flag)3428 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3429 {
3430 	return test_ti_thread_flag(task_thread_info(tsk), flag);
3431 }
3432 
set_tsk_need_resched(struct task_struct * tsk)3433 static inline void set_tsk_need_resched(struct task_struct *tsk)
3434 {
3435 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3436 }
3437 
clear_tsk_need_resched(struct task_struct * tsk)3438 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3439 {
3440 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3441 }
3442 
test_tsk_need_resched(struct task_struct * tsk)3443 static inline int test_tsk_need_resched(struct task_struct *tsk)
3444 {
3445 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3446 }
3447 
restart_syscall(void)3448 static inline int restart_syscall(void)
3449 {
3450 	set_tsk_thread_flag(current, TIF_SIGPENDING);
3451 	return -ERESTARTNOINTR;
3452 }
3453 
signal_pending(struct task_struct * p)3454 static inline int signal_pending(struct task_struct *p)
3455 {
3456 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3457 }
3458 
__fatal_signal_pending(struct task_struct * p)3459 static inline int __fatal_signal_pending(struct task_struct *p)
3460 {
3461 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
3462 }
3463 
fatal_signal_pending(struct task_struct * p)3464 static inline int fatal_signal_pending(struct task_struct *p)
3465 {
3466 	return signal_pending(p) && __fatal_signal_pending(p);
3467 }
3468 
signal_pending_state(long state,struct task_struct * p)3469 static inline int signal_pending_state(long state, struct task_struct *p)
3470 {
3471 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3472 		return 0;
3473 	if (!signal_pending(p))
3474 		return 0;
3475 
3476 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3477 }
3478 
3479 /*
3480  * cond_resched() and cond_resched_lock(): latency reduction via
3481  * explicit rescheduling in places that are safe. The return
3482  * value indicates whether a reschedule was done in fact.
3483  * cond_resched_lock() will drop the spinlock before scheduling,
3484  * cond_resched_softirq() will enable bhs before scheduling.
3485  */
3486 #ifndef CONFIG_PREEMPT
3487 extern int _cond_resched(void);
3488 #else
_cond_resched(void)3489 static inline int _cond_resched(void) { return 0; }
3490 #endif
3491 
3492 #define cond_resched() ({			\
3493 	___might_sleep(__FILE__, __LINE__, 0);	\
3494 	_cond_resched();			\
3495 })
3496 
3497 extern int __cond_resched_lock(spinlock_t *lock);
3498 
3499 #define cond_resched_lock(lock) ({				\
3500 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3501 	__cond_resched_lock(lock);				\
3502 })
3503 
3504 extern int __cond_resched_softirq(void);
3505 
3506 #define cond_resched_softirq() ({					\
3507 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
3508 	__cond_resched_softirq();					\
3509 })
3510 
cond_resched_rcu(void)3511 static inline void cond_resched_rcu(void)
3512 {
3513 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3514 	rcu_read_unlock();
3515 	cond_resched();
3516 	rcu_read_lock();
3517 #endif
3518 }
3519 
get_preempt_disable_ip(struct task_struct * p)3520 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3521 {
3522 #ifdef CONFIG_DEBUG_PREEMPT
3523 	return p->preempt_disable_ip;
3524 #else
3525 	return 0;
3526 #endif
3527 }
3528 
3529 /*
3530  * Does a critical section need to be broken due to another
3531  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3532  * but a general need for low latency)
3533  */
spin_needbreak(spinlock_t * lock)3534 static inline int spin_needbreak(spinlock_t *lock)
3535 {
3536 #ifdef CONFIG_PREEMPT
3537 	return spin_is_contended(lock);
3538 #else
3539 	return 0;
3540 #endif
3541 }
3542 
3543 /*
3544  * Idle thread specific functions to determine the need_resched
3545  * polling state.
3546  */
3547 #ifdef TIF_POLLING_NRFLAG
tsk_is_polling(struct task_struct * p)3548 static inline int tsk_is_polling(struct task_struct *p)
3549 {
3550 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3551 }
3552 
__current_set_polling(void)3553 static inline void __current_set_polling(void)
3554 {
3555 	set_thread_flag(TIF_POLLING_NRFLAG);
3556 }
3557 
current_set_polling_and_test(void)3558 static inline bool __must_check current_set_polling_and_test(void)
3559 {
3560 	__current_set_polling();
3561 
3562 	/*
3563 	 * Polling state must be visible before we test NEED_RESCHED,
3564 	 * paired by resched_curr()
3565 	 */
3566 	smp_mb__after_atomic();
3567 
3568 	return unlikely(tif_need_resched());
3569 }
3570 
__current_clr_polling(void)3571 static inline void __current_clr_polling(void)
3572 {
3573 	clear_thread_flag(TIF_POLLING_NRFLAG);
3574 }
3575 
current_clr_polling_and_test(void)3576 static inline bool __must_check current_clr_polling_and_test(void)
3577 {
3578 	__current_clr_polling();
3579 
3580 	/*
3581 	 * Polling state must be visible before we test NEED_RESCHED,
3582 	 * paired by resched_curr()
3583 	 */
3584 	smp_mb__after_atomic();
3585 
3586 	return unlikely(tif_need_resched());
3587 }
3588 
3589 #else
tsk_is_polling(struct task_struct * p)3590 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
__current_set_polling(void)3591 static inline void __current_set_polling(void) { }
__current_clr_polling(void)3592 static inline void __current_clr_polling(void) { }
3593 
current_set_polling_and_test(void)3594 static inline bool __must_check current_set_polling_and_test(void)
3595 {
3596 	return unlikely(tif_need_resched());
3597 }
current_clr_polling_and_test(void)3598 static inline bool __must_check current_clr_polling_and_test(void)
3599 {
3600 	return unlikely(tif_need_resched());
3601 }
3602 #endif
3603 
current_clr_polling(void)3604 static inline void current_clr_polling(void)
3605 {
3606 	__current_clr_polling();
3607 
3608 	/*
3609 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3610 	 * Once the bit is cleared, we'll get IPIs with every new
3611 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3612 	 * fold.
3613 	 */
3614 	smp_mb(); /* paired with resched_curr() */
3615 
3616 	preempt_fold_need_resched();
3617 }
3618 
need_resched(void)3619 static __always_inline bool need_resched(void)
3620 {
3621 	return unlikely(tif_need_resched());
3622 }
3623 
3624 /*
3625  * Thread group CPU time accounting.
3626  */
3627 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3628 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3629 
3630 /*
3631  * Reevaluate whether the task has signals pending delivery.
3632  * Wake the task if so.
3633  * This is required every time the blocked sigset_t changes.
3634  * callers must hold sighand->siglock.
3635  */
3636 extern void recalc_sigpending_and_wake(struct task_struct *t);
3637 extern void recalc_sigpending(void);
3638 
3639 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3640 
signal_wake_up(struct task_struct * t,bool resume)3641 static inline void signal_wake_up(struct task_struct *t, bool resume)
3642 {
3643 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3644 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)3645 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3646 {
3647 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3648 }
3649 
3650 /*
3651  * Wrappers for p->thread_info->cpu access. No-op on UP.
3652  */
3653 #ifdef CONFIG_SMP
3654 
task_cpu(const struct task_struct * p)3655 static inline unsigned int task_cpu(const struct task_struct *p)
3656 {
3657 #ifdef CONFIG_THREAD_INFO_IN_TASK
3658 	return p->cpu;
3659 #else
3660 	return task_thread_info(p)->cpu;
3661 #endif
3662 }
3663 
task_node(const struct task_struct * p)3664 static inline int task_node(const struct task_struct *p)
3665 {
3666 	return cpu_to_node(task_cpu(p));
3667 }
3668 
3669 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3670 
3671 #else
3672 
task_cpu(const struct task_struct * p)3673 static inline unsigned int task_cpu(const struct task_struct *p)
3674 {
3675 	return 0;
3676 }
3677 
set_task_cpu(struct task_struct * p,unsigned int cpu)3678 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3679 {
3680 }
3681 
3682 #endif /* CONFIG_SMP */
3683 
3684 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3685 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3686 
3687 #ifdef CONFIG_CGROUP_SCHED
3688 extern struct task_group root_task_group;
3689 #endif /* CONFIG_CGROUP_SCHED */
3690 
3691 extern int task_can_switch_user(struct user_struct *up,
3692 					struct task_struct *tsk);
3693 
3694 #ifdef CONFIG_TASK_XACCT
add_rchar(struct task_struct * tsk,ssize_t amt)3695 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3696 {
3697 	tsk->ioac.rchar += amt;
3698 }
3699 
add_wchar(struct task_struct * tsk,ssize_t amt)3700 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3701 {
3702 	tsk->ioac.wchar += amt;
3703 }
3704 
inc_syscr(struct task_struct * tsk)3705 static inline void inc_syscr(struct task_struct *tsk)
3706 {
3707 	tsk->ioac.syscr++;
3708 }
3709 
inc_syscw(struct task_struct * tsk)3710 static inline void inc_syscw(struct task_struct *tsk)
3711 {
3712 	tsk->ioac.syscw++;
3713 }
3714 
inc_syscfs(struct task_struct * tsk)3715 static inline void inc_syscfs(struct task_struct *tsk)
3716 {
3717 	tsk->ioac.syscfs++;
3718 }
3719 #else
add_rchar(struct task_struct * tsk,ssize_t amt)3720 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3721 {
3722 }
3723 
add_wchar(struct task_struct * tsk,ssize_t amt)3724 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3725 {
3726 }
3727 
inc_syscr(struct task_struct * tsk)3728 static inline void inc_syscr(struct task_struct *tsk)
3729 {
3730 }
3731 
inc_syscw(struct task_struct * tsk)3732 static inline void inc_syscw(struct task_struct *tsk)
3733 {
3734 }
inc_syscfs(struct task_struct * tsk)3735 static inline void inc_syscfs(struct task_struct *tsk)
3736 {
3737 }
3738 #endif
3739 
3740 #ifndef TASK_SIZE_OF
3741 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3742 #endif
3743 
3744 #ifdef CONFIG_MEMCG
3745 extern void mm_update_next_owner(struct mm_struct *mm);
3746 #else
mm_update_next_owner(struct mm_struct * mm)3747 static inline void mm_update_next_owner(struct mm_struct *mm)
3748 {
3749 }
3750 #endif /* CONFIG_MEMCG */
3751 
task_rlimit(const struct task_struct * tsk,unsigned int limit)3752 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3753 		unsigned int limit)
3754 {
3755 	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3756 }
3757 
task_rlimit_max(const struct task_struct * tsk,unsigned int limit)3758 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3759 		unsigned int limit)
3760 {
3761 	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3762 }
3763 
rlimit(unsigned int limit)3764 static inline unsigned long rlimit(unsigned int limit)
3765 {
3766 	return task_rlimit(current, limit);
3767 }
3768 
rlimit_max(unsigned int limit)3769 static inline unsigned long rlimit_max(unsigned int limit)
3770 {
3771 	return task_rlimit_max(current, limit);
3772 }
3773 
3774 #define SCHED_CPUFREQ_RT	(1U << 0)
3775 #define SCHED_CPUFREQ_DL	(1U << 1)
3776 #define SCHED_CPUFREQ_IOWAIT	(1U << 2)
3777 
3778 #define SCHED_CPUFREQ_RT_DL	(SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3779 
3780 #ifdef CONFIG_CPU_FREQ
3781 struct update_util_data {
3782        void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3783 };
3784 
3785 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3786                        void (*func)(struct update_util_data *data, u64 time,
3787 				    unsigned int flags));
3788 void cpufreq_remove_update_util_hook(int cpu);
3789 #endif /* CONFIG_CPU_FREQ */
3790 
3791 #endif
3792