• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 
39 	.reserved.regions	= memblock_reserved_init_regions,
40 	.reserved.cnt		= 1,	/* empty dummy entry */
41 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
42 
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 	.physmem.regions	= memblock_physmem_init_regions,
45 	.physmem.cnt		= 1,	/* empty dummy entry */
46 	.physmem.max		= INIT_PHYSMEM_REGIONS,
47 #endif
48 
49 	.bottom_up		= false,
50 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
51 };
52 
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61 
choose_memblock_flags(void)62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66 
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
memblock_type_name(struct memblock_type * type)69 memblock_type_name(struct memblock_type *type)
70 {
71 	if (type == &memblock.memory)
72 		return "memory";
73 	else if (type == &memblock.reserved)
74 		return "reserved";
75 	else
76 		return "unknown";
77 }
78 
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84 
85 /*
86  * Address comparison utilities
87  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 				       phys_addr_t base2, phys_addr_t size2)
90 {
91 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 					phys_addr_t base, phys_addr_t size)
96 {
97 	unsigned long i;
98 
99 	for (i = 0; i < type->cnt; i++)
100 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 					   type->regions[i].size))
102 			break;
103 	return i < type->cnt;
104 }
105 
106 /*
107  * __memblock_find_range_bottom_up - find free area utility in bottom-up
108  * @start: start of candidate range
109  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110  * @size: size of free area to find
111  * @align: alignment of free area to find
112  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113  * @flags: pick from blocks based on memory attributes
114  *
115  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116  *
117  * RETURNS:
118  * Found address on success, 0 on failure.
119  */
120 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,ulong flags)121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 				phys_addr_t size, phys_addr_t align, int nid,
123 				ulong flags)
124 {
125 	phys_addr_t this_start, this_end, cand;
126 	u64 i;
127 
128 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 		this_start = clamp(this_start, start, end);
130 		this_end = clamp(this_end, start, end);
131 
132 		cand = round_up(this_start, align);
133 		if (cand < this_end && this_end - cand >= size)
134 			return cand;
135 	}
136 
137 	return 0;
138 }
139 
140 /**
141  * __memblock_find_range_top_down - find free area utility, in top-down
142  * @start: start of candidate range
143  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144  * @size: size of free area to find
145  * @align: alignment of free area to find
146  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147  * @flags: pick from blocks based on memory attributes
148  *
149  * Utility called from memblock_find_in_range_node(), find free area top-down.
150  *
151  * RETURNS:
152  * Found address on success, 0 on failure.
153  */
154 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,ulong flags)155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 			       phys_addr_t size, phys_addr_t align, int nid,
157 			       ulong flags)
158 {
159 	phys_addr_t this_start, this_end, cand;
160 	u64 i;
161 
162 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 					NULL) {
164 		this_start = clamp(this_start, start, end);
165 		this_end = clamp(this_end, start, end);
166 
167 		if (this_end < size)
168 			continue;
169 
170 		cand = round_down(this_end - size, align);
171 		if (cand >= this_start)
172 			return cand;
173 	}
174 
175 	return 0;
176 }
177 
178 /**
179  * memblock_find_in_range_node - find free area in given range and node
180  * @size: size of free area to find
181  * @align: alignment of free area to find
182  * @start: start of candidate range
183  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185  * @flags: pick from blocks based on memory attributes
186  *
187  * Find @size free area aligned to @align in the specified range and node.
188  *
189  * When allocation direction is bottom-up, the @start should be greater
190  * than the end of the kernel image. Otherwise, it will be trimmed. The
191  * reason is that we want the bottom-up allocation just near the kernel
192  * image so it is highly likely that the allocated memory and the kernel
193  * will reside in the same node.
194  *
195  * If bottom-up allocation failed, will try to allocate memory top-down.
196  *
197  * RETURNS:
198  * Found address on success, 0 on failure.
199  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,ulong flags)200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 					phys_addr_t align, phys_addr_t start,
202 					phys_addr_t end, int nid, ulong flags)
203 {
204 	phys_addr_t kernel_end, ret;
205 
206 	/* pump up @end */
207 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 		end = memblock.current_limit;
209 
210 	/* avoid allocating the first page */
211 	start = max_t(phys_addr_t, start, PAGE_SIZE);
212 	end = max(start, end);
213 	kernel_end = __pa_symbol(_end);
214 
215 	/*
216 	 * try bottom-up allocation only when bottom-up mode
217 	 * is set and @end is above the kernel image.
218 	 */
219 	if (memblock_bottom_up() && end > kernel_end) {
220 		phys_addr_t bottom_up_start;
221 
222 		/* make sure we will allocate above the kernel */
223 		bottom_up_start = max(start, kernel_end);
224 
225 		/* ok, try bottom-up allocation first */
226 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 						      size, align, nid, flags);
228 		if (ret)
229 			return ret;
230 
231 		/*
232 		 * we always limit bottom-up allocation above the kernel,
233 		 * but top-down allocation doesn't have the limit, so
234 		 * retrying top-down allocation may succeed when bottom-up
235 		 * allocation failed.
236 		 *
237 		 * bottom-up allocation is expected to be fail very rarely,
238 		 * so we use WARN_ONCE() here to see the stack trace if
239 		 * fail happens.
240 		 */
241 		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
242 	}
243 
244 	return __memblock_find_range_top_down(start, end, size, align, nid,
245 					      flags);
246 }
247 
248 /**
249  * memblock_find_in_range - find free area in given range
250  * @start: start of candidate range
251  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252  * @size: size of free area to find
253  * @align: alignment of free area to find
254  *
255  * Find @size free area aligned to @align in the specified range.
256  *
257  * RETURNS:
258  * Found address on success, 0 on failure.
259  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 					phys_addr_t end, phys_addr_t size,
262 					phys_addr_t align)
263 {
264 	phys_addr_t ret;
265 	ulong flags = choose_memblock_flags();
266 
267 again:
268 	ret = memblock_find_in_range_node(size, align, start, end,
269 					    NUMA_NO_NODE, flags);
270 
271 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 			&size);
274 		flags &= ~MEMBLOCK_MIRROR;
275 		goto again;
276 	}
277 
278 	return ret;
279 }
280 
memblock_remove_region(struct memblock_type * type,unsigned long r)281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
282 {
283 	type->total_size -= type->regions[r].size;
284 	memmove(&type->regions[r], &type->regions[r + 1],
285 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
286 	type->cnt--;
287 
288 	/* Special case for empty arrays */
289 	if (type->cnt == 0) {
290 		WARN_ON(type->total_size != 0);
291 		type->cnt = 1;
292 		type->regions[0].base = 0;
293 		type->regions[0].size = 0;
294 		type->regions[0].flags = 0;
295 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
296 	}
297 }
298 
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300 /**
301  * Discard memory and reserved arrays if they were allocated
302  */
memblock_discard(void)303 void __init memblock_discard(void)
304 {
305 	phys_addr_t addr, size;
306 
307 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
308 		addr = __pa(memblock.reserved.regions);
309 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
310 				  memblock.reserved.max);
311 		__memblock_free_late(addr, size);
312 	}
313 
314 	if (memblock.memory.regions != memblock_memory_init_regions) {
315 		addr = __pa(memblock.memory.regions);
316 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
317 				  memblock.memory.max);
318 		__memblock_free_late(addr, size);
319 	}
320 }
321 #endif
322 
323 /**
324  * memblock_double_array - double the size of the memblock regions array
325  * @type: memblock type of the regions array being doubled
326  * @new_area_start: starting address of memory range to avoid overlap with
327  * @new_area_size: size of memory range to avoid overlap with
328  *
329  * Double the size of the @type regions array. If memblock is being used to
330  * allocate memory for a new reserved regions array and there is a previously
331  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
332  * waiting to be reserved, ensure the memory used by the new array does
333  * not overlap.
334  *
335  * RETURNS:
336  * 0 on success, -1 on failure.
337  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)338 static int __init_memblock memblock_double_array(struct memblock_type *type,
339 						phys_addr_t new_area_start,
340 						phys_addr_t new_area_size)
341 {
342 	struct memblock_region *new_array, *old_array;
343 	phys_addr_t old_alloc_size, new_alloc_size;
344 	phys_addr_t old_size, new_size, addr;
345 	int use_slab = slab_is_available();
346 	int *in_slab;
347 
348 	/* We don't allow resizing until we know about the reserved regions
349 	 * of memory that aren't suitable for allocation
350 	 */
351 	if (!memblock_can_resize)
352 		return -1;
353 
354 	/* Calculate new doubled size */
355 	old_size = type->max * sizeof(struct memblock_region);
356 	new_size = old_size << 1;
357 	/*
358 	 * We need to allocated new one align to PAGE_SIZE,
359 	 *   so we can free them completely later.
360 	 */
361 	old_alloc_size = PAGE_ALIGN(old_size);
362 	new_alloc_size = PAGE_ALIGN(new_size);
363 
364 	/* Retrieve the slab flag */
365 	if (type == &memblock.memory)
366 		in_slab = &memblock_memory_in_slab;
367 	else
368 		in_slab = &memblock_reserved_in_slab;
369 
370 	/* Try to find some space for it.
371 	 *
372 	 * WARNING: We assume that either slab_is_available() and we use it or
373 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
374 	 * use when bootmem is currently active (unless bootmem itself is
375 	 * implemented on top of MEMBLOCK which isn't the case yet)
376 	 *
377 	 * This should however not be an issue for now, as we currently only
378 	 * call into MEMBLOCK while it's still active, or much later when slab
379 	 * is active for memory hotplug operations
380 	 */
381 	if (use_slab) {
382 		new_array = kmalloc(new_size, GFP_KERNEL);
383 		addr = new_array ? __pa(new_array) : 0;
384 	} else {
385 		/* only exclude range when trying to double reserved.regions */
386 		if (type != &memblock.reserved)
387 			new_area_start = new_area_size = 0;
388 
389 		addr = memblock_find_in_range(new_area_start + new_area_size,
390 						memblock.current_limit,
391 						new_alloc_size, PAGE_SIZE);
392 		if (!addr && new_area_size)
393 			addr = memblock_find_in_range(0,
394 				min(new_area_start, memblock.current_limit),
395 				new_alloc_size, PAGE_SIZE);
396 
397 		new_array = addr ? __va(addr) : NULL;
398 	}
399 	if (!addr) {
400 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
401 		       memblock_type_name(type), type->max, type->max * 2);
402 		return -1;
403 	}
404 
405 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
406 			memblock_type_name(type), type->max * 2, (u64)addr,
407 			(u64)addr + new_size - 1);
408 
409 	/*
410 	 * Found space, we now need to move the array over before we add the
411 	 * reserved region since it may be our reserved array itself that is
412 	 * full.
413 	 */
414 	memcpy(new_array, type->regions, old_size);
415 	memset(new_array + type->max, 0, old_size);
416 	old_array = type->regions;
417 	type->regions = new_array;
418 	type->max <<= 1;
419 
420 	/* Free old array. We needn't free it if the array is the static one */
421 	if (*in_slab)
422 		kfree(old_array);
423 	else if (old_array != memblock_memory_init_regions &&
424 		 old_array != memblock_reserved_init_regions)
425 		memblock_free(__pa(old_array), old_alloc_size);
426 
427 	/*
428 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
429 	 * needn't do it
430 	 */
431 	if (!use_slab)
432 		BUG_ON(memblock_reserve(addr, new_alloc_size));
433 
434 	/* Update slab flag */
435 	*in_slab = use_slab;
436 
437 	return 0;
438 }
439 
440 /**
441  * memblock_merge_regions - merge neighboring compatible regions
442  * @type: memblock type to scan
443  *
444  * Scan @type and merge neighboring compatible regions.
445  */
memblock_merge_regions(struct memblock_type * type)446 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
447 {
448 	int i = 0;
449 
450 	/* cnt never goes below 1 */
451 	while (i < type->cnt - 1) {
452 		struct memblock_region *this = &type->regions[i];
453 		struct memblock_region *next = &type->regions[i + 1];
454 
455 		if (this->base + this->size != next->base ||
456 		    memblock_get_region_node(this) !=
457 		    memblock_get_region_node(next) ||
458 		    this->flags != next->flags) {
459 			BUG_ON(this->base + this->size > next->base);
460 			i++;
461 			continue;
462 		}
463 
464 		this->size += next->size;
465 		/* move forward from next + 1, index of which is i + 2 */
466 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
467 		type->cnt--;
468 	}
469 }
470 
471 /**
472  * memblock_insert_region - insert new memblock region
473  * @type:	memblock type to insert into
474  * @idx:	index for the insertion point
475  * @base:	base address of the new region
476  * @size:	size of the new region
477  * @nid:	node id of the new region
478  * @flags:	flags of the new region
479  *
480  * Insert new memblock region [@base,@base+@size) into @type at @idx.
481  * @type must already have extra room to accommodate the new region.
482  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,unsigned long flags)483 static void __init_memblock memblock_insert_region(struct memblock_type *type,
484 						   int idx, phys_addr_t base,
485 						   phys_addr_t size,
486 						   int nid, unsigned long flags)
487 {
488 	struct memblock_region *rgn = &type->regions[idx];
489 
490 	BUG_ON(type->cnt >= type->max);
491 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
492 	rgn->base = base;
493 	rgn->size = size;
494 	rgn->flags = flags;
495 	memblock_set_region_node(rgn, nid);
496 	type->cnt++;
497 	type->total_size += size;
498 }
499 
500 /**
501  * memblock_add_range - add new memblock region
502  * @type: memblock type to add new region into
503  * @base: base address of the new region
504  * @size: size of the new region
505  * @nid: nid of the new region
506  * @flags: flags of the new region
507  *
508  * Add new memblock region [@base,@base+@size) into @type.  The new region
509  * is allowed to overlap with existing ones - overlaps don't affect already
510  * existing regions.  @type is guaranteed to be minimal (all neighbouring
511  * compatible regions are merged) after the addition.
512  *
513  * RETURNS:
514  * 0 on success, -errno on failure.
515  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,unsigned long flags)516 int __init_memblock memblock_add_range(struct memblock_type *type,
517 				phys_addr_t base, phys_addr_t size,
518 				int nid, unsigned long flags)
519 {
520 	bool insert = false;
521 	phys_addr_t obase = base;
522 	phys_addr_t end = base + memblock_cap_size(base, &size);
523 	int idx, nr_new;
524 	struct memblock_region *rgn;
525 
526 	if (!size)
527 		return 0;
528 
529 	/* special case for empty array */
530 	if (type->regions[0].size == 0) {
531 		WARN_ON(type->cnt != 1 || type->total_size);
532 		type->regions[0].base = base;
533 		type->regions[0].size = size;
534 		type->regions[0].flags = flags;
535 		memblock_set_region_node(&type->regions[0], nid);
536 		type->total_size = size;
537 		return 0;
538 	}
539 repeat:
540 	/*
541 	 * The following is executed twice.  Once with %false @insert and
542 	 * then with %true.  The first counts the number of regions needed
543 	 * to accommodate the new area.  The second actually inserts them.
544 	 */
545 	base = obase;
546 	nr_new = 0;
547 
548 	for_each_memblock_type(type, rgn) {
549 		phys_addr_t rbase = rgn->base;
550 		phys_addr_t rend = rbase + rgn->size;
551 
552 		if (rbase >= end)
553 			break;
554 		if (rend <= base)
555 			continue;
556 		/*
557 		 * @rgn overlaps.  If it separates the lower part of new
558 		 * area, insert that portion.
559 		 */
560 		if (rbase > base) {
561 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
562 			WARN_ON(nid != memblock_get_region_node(rgn));
563 #endif
564 			WARN_ON(flags != rgn->flags);
565 			nr_new++;
566 			if (insert)
567 				memblock_insert_region(type, idx++, base,
568 						       rbase - base, nid,
569 						       flags);
570 		}
571 		/* area below @rend is dealt with, forget about it */
572 		base = min(rend, end);
573 	}
574 
575 	/* insert the remaining portion */
576 	if (base < end) {
577 		nr_new++;
578 		if (insert)
579 			memblock_insert_region(type, idx, base, end - base,
580 					       nid, flags);
581 	}
582 
583 	if (!nr_new)
584 		return 0;
585 
586 	/*
587 	 * If this was the first round, resize array and repeat for actual
588 	 * insertions; otherwise, merge and return.
589 	 */
590 	if (!insert) {
591 		while (type->cnt + nr_new > type->max)
592 			if (memblock_double_array(type, obase, size) < 0)
593 				return -ENOMEM;
594 		insert = true;
595 		goto repeat;
596 	} else {
597 		memblock_merge_regions(type);
598 		return 0;
599 	}
600 }
601 
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)602 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
603 				       int nid)
604 {
605 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
606 }
607 
memblock_add(phys_addr_t base,phys_addr_t size)608 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
609 {
610 	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
611 		     (unsigned long long)base,
612 		     (unsigned long long)base + size - 1,
613 		     0UL, (void *)_RET_IP_);
614 
615 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
616 }
617 
618 /**
619  * memblock_isolate_range - isolate given range into disjoint memblocks
620  * @type: memblock type to isolate range for
621  * @base: base of range to isolate
622  * @size: size of range to isolate
623  * @start_rgn: out parameter for the start of isolated region
624  * @end_rgn: out parameter for the end of isolated region
625  *
626  * Walk @type and ensure that regions don't cross the boundaries defined by
627  * [@base,@base+@size).  Crossing regions are split at the boundaries,
628  * which may create at most two more regions.  The index of the first
629  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
630  *
631  * RETURNS:
632  * 0 on success, -errno on failure.
633  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)634 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
635 					phys_addr_t base, phys_addr_t size,
636 					int *start_rgn, int *end_rgn)
637 {
638 	phys_addr_t end = base + memblock_cap_size(base, &size);
639 	int idx;
640 	struct memblock_region *rgn;
641 
642 	*start_rgn = *end_rgn = 0;
643 
644 	if (!size)
645 		return 0;
646 
647 	/* we'll create at most two more regions */
648 	while (type->cnt + 2 > type->max)
649 		if (memblock_double_array(type, base, size) < 0)
650 			return -ENOMEM;
651 
652 	for_each_memblock_type(type, rgn) {
653 		phys_addr_t rbase = rgn->base;
654 		phys_addr_t rend = rbase + rgn->size;
655 
656 		if (rbase >= end)
657 			break;
658 		if (rend <= base)
659 			continue;
660 
661 		if (rbase < base) {
662 			/*
663 			 * @rgn intersects from below.  Split and continue
664 			 * to process the next region - the new top half.
665 			 */
666 			rgn->base = base;
667 			rgn->size -= base - rbase;
668 			type->total_size -= base - rbase;
669 			memblock_insert_region(type, idx, rbase, base - rbase,
670 					       memblock_get_region_node(rgn),
671 					       rgn->flags);
672 		} else if (rend > end) {
673 			/*
674 			 * @rgn intersects from above.  Split and redo the
675 			 * current region - the new bottom half.
676 			 */
677 			rgn->base = end;
678 			rgn->size -= end - rbase;
679 			type->total_size -= end - rbase;
680 			memblock_insert_region(type, idx--, rbase, end - rbase,
681 					       memblock_get_region_node(rgn),
682 					       rgn->flags);
683 		} else {
684 			/* @rgn is fully contained, record it */
685 			if (!*end_rgn)
686 				*start_rgn = idx;
687 			*end_rgn = idx + 1;
688 		}
689 	}
690 
691 	return 0;
692 }
693 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)694 static int __init_memblock memblock_remove_range(struct memblock_type *type,
695 					  phys_addr_t base, phys_addr_t size)
696 {
697 	int start_rgn, end_rgn;
698 	int i, ret;
699 
700 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
701 	if (ret)
702 		return ret;
703 
704 	for (i = end_rgn - 1; i >= start_rgn; i--)
705 		memblock_remove_region(type, i);
706 	return 0;
707 }
708 
memblock_remove(phys_addr_t base,phys_addr_t size)709 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
710 {
711 	return memblock_remove_range(&memblock.memory, base, size);
712 }
713 
714 
memblock_free(phys_addr_t base,phys_addr_t size)715 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
716 {
717 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
718 		     (unsigned long long)base,
719 		     (unsigned long long)base + size - 1,
720 		     (void *)_RET_IP_);
721 
722 	kmemleak_free_part_phys(base, size);
723 	return memblock_remove_range(&memblock.reserved, base, size);
724 }
725 
memblock_reserve(phys_addr_t base,phys_addr_t size)726 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
727 {
728 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
729 		     (unsigned long long)base,
730 		     (unsigned long long)base + size - 1,
731 		     0UL, (void *)_RET_IP_);
732 
733 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
734 }
735 
736 /**
737  *
738  * This function isolates region [@base, @base + @size), and sets/clears flag
739  *
740  * Return 0 on success, -errno on failure.
741  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)742 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
743 				phys_addr_t size, int set, int flag)
744 {
745 	struct memblock_type *type = &memblock.memory;
746 	int i, ret, start_rgn, end_rgn;
747 
748 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
749 	if (ret)
750 		return ret;
751 
752 	for (i = start_rgn; i < end_rgn; i++)
753 		if (set)
754 			memblock_set_region_flags(&type->regions[i], flag);
755 		else
756 			memblock_clear_region_flags(&type->regions[i], flag);
757 
758 	memblock_merge_regions(type);
759 	return 0;
760 }
761 
762 /**
763  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
764  * @base: the base phys addr of the region
765  * @size: the size of the region
766  *
767  * Return 0 on success, -errno on failure.
768  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)769 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
770 {
771 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
772 }
773 
774 /**
775  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
776  * @base: the base phys addr of the region
777  * @size: the size of the region
778  *
779  * Return 0 on success, -errno on failure.
780  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)781 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
782 {
783 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
784 }
785 
786 /**
787  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
788  * @base: the base phys addr of the region
789  * @size: the size of the region
790  *
791  * Return 0 on success, -errno on failure.
792  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)793 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
794 {
795 	system_has_some_mirror = true;
796 
797 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
798 }
799 
800 /**
801  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
802  * @base: the base phys addr of the region
803  * @size: the size of the region
804  *
805  * Return 0 on success, -errno on failure.
806  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)807 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
808 {
809 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
810 }
811 
812 /**
813  * __next_reserved_mem_region - next function for for_each_reserved_region()
814  * @idx: pointer to u64 loop variable
815  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
816  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
817  *
818  * Iterate over all reserved memory regions.
819  */
__next_reserved_mem_region(u64 * idx,phys_addr_t * out_start,phys_addr_t * out_end)820 void __init_memblock __next_reserved_mem_region(u64 *idx,
821 					   phys_addr_t *out_start,
822 					   phys_addr_t *out_end)
823 {
824 	struct memblock_type *type = &memblock.reserved;
825 
826 	if (*idx < type->cnt) {
827 		struct memblock_region *r = &type->regions[*idx];
828 		phys_addr_t base = r->base;
829 		phys_addr_t size = r->size;
830 
831 		if (out_start)
832 			*out_start = base;
833 		if (out_end)
834 			*out_end = base + size - 1;
835 
836 		*idx += 1;
837 		return;
838 	}
839 
840 	/* signal end of iteration */
841 	*idx = ULLONG_MAX;
842 }
843 
844 /**
845  * __next__mem_range - next function for for_each_free_mem_range() etc.
846  * @idx: pointer to u64 loop variable
847  * @nid: node selector, %NUMA_NO_NODE for all nodes
848  * @flags: pick from blocks based on memory attributes
849  * @type_a: pointer to memblock_type from where the range is taken
850  * @type_b: pointer to memblock_type which excludes memory from being taken
851  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
852  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
853  * @out_nid: ptr to int for nid of the range, can be %NULL
854  *
855  * Find the first area from *@idx which matches @nid, fill the out
856  * parameters, and update *@idx for the next iteration.  The lower 32bit of
857  * *@idx contains index into type_a and the upper 32bit indexes the
858  * areas before each region in type_b.	For example, if type_b regions
859  * look like the following,
860  *
861  *	0:[0-16), 1:[32-48), 2:[128-130)
862  *
863  * The upper 32bit indexes the following regions.
864  *
865  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
866  *
867  * As both region arrays are sorted, the function advances the two indices
868  * in lockstep and returns each intersection.
869  */
__next_mem_range(u64 * idx,int nid,ulong flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)870 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
871 				      struct memblock_type *type_a,
872 				      struct memblock_type *type_b,
873 				      phys_addr_t *out_start,
874 				      phys_addr_t *out_end, int *out_nid)
875 {
876 	int idx_a = *idx & 0xffffffff;
877 	int idx_b = *idx >> 32;
878 
879 	if (WARN_ONCE(nid == MAX_NUMNODES,
880 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
881 		nid = NUMA_NO_NODE;
882 
883 	for (; idx_a < type_a->cnt; idx_a++) {
884 		struct memblock_region *m = &type_a->regions[idx_a];
885 
886 		phys_addr_t m_start = m->base;
887 		phys_addr_t m_end = m->base + m->size;
888 		int	    m_nid = memblock_get_region_node(m);
889 
890 		/* only memory regions are associated with nodes, check it */
891 		if (nid != NUMA_NO_NODE && nid != m_nid)
892 			continue;
893 
894 		/* skip hotpluggable memory regions if needed */
895 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
896 			continue;
897 
898 		/* if we want mirror memory skip non-mirror memory regions */
899 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
900 			continue;
901 
902 		/* skip nomap memory unless we were asked for it explicitly */
903 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
904 			continue;
905 
906 		if (!type_b) {
907 			if (out_start)
908 				*out_start = m_start;
909 			if (out_end)
910 				*out_end = m_end;
911 			if (out_nid)
912 				*out_nid = m_nid;
913 			idx_a++;
914 			*idx = (u32)idx_a | (u64)idx_b << 32;
915 			return;
916 		}
917 
918 		/* scan areas before each reservation */
919 		for (; idx_b < type_b->cnt + 1; idx_b++) {
920 			struct memblock_region *r;
921 			phys_addr_t r_start;
922 			phys_addr_t r_end;
923 
924 			r = &type_b->regions[idx_b];
925 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
926 			r_end = idx_b < type_b->cnt ?
927 				r->base : ULLONG_MAX;
928 
929 			/*
930 			 * if idx_b advanced past idx_a,
931 			 * break out to advance idx_a
932 			 */
933 			if (r_start >= m_end)
934 				break;
935 			/* if the two regions intersect, we're done */
936 			if (m_start < r_end) {
937 				if (out_start)
938 					*out_start =
939 						max(m_start, r_start);
940 				if (out_end)
941 					*out_end = min(m_end, r_end);
942 				if (out_nid)
943 					*out_nid = m_nid;
944 				/*
945 				 * The region which ends first is
946 				 * advanced for the next iteration.
947 				 */
948 				if (m_end <= r_end)
949 					idx_a++;
950 				else
951 					idx_b++;
952 				*idx = (u32)idx_a | (u64)idx_b << 32;
953 				return;
954 			}
955 		}
956 	}
957 
958 	/* signal end of iteration */
959 	*idx = ULLONG_MAX;
960 }
961 
962 /**
963  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
964  *
965  * Finds the next range from type_a which is not marked as unsuitable
966  * in type_b.
967  *
968  * @idx: pointer to u64 loop variable
969  * @nid: node selector, %NUMA_NO_NODE for all nodes
970  * @flags: pick from blocks based on memory attributes
971  * @type_a: pointer to memblock_type from where the range is taken
972  * @type_b: pointer to memblock_type which excludes memory from being taken
973  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975  * @out_nid: ptr to int for nid of the range, can be %NULL
976  *
977  * Reverse of __next_mem_range().
978  */
__next_mem_range_rev(u64 * idx,int nid,ulong flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)979 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
980 					  struct memblock_type *type_a,
981 					  struct memblock_type *type_b,
982 					  phys_addr_t *out_start,
983 					  phys_addr_t *out_end, int *out_nid)
984 {
985 	int idx_a = *idx & 0xffffffff;
986 	int idx_b = *idx >> 32;
987 
988 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
989 		nid = NUMA_NO_NODE;
990 
991 	if (*idx == (u64)ULLONG_MAX) {
992 		idx_a = type_a->cnt - 1;
993 		if (type_b != NULL)
994 			idx_b = type_b->cnt;
995 		else
996 			idx_b = 0;
997 	}
998 
999 	for (; idx_a >= 0; idx_a--) {
1000 		struct memblock_region *m = &type_a->regions[idx_a];
1001 
1002 		phys_addr_t m_start = m->base;
1003 		phys_addr_t m_end = m->base + m->size;
1004 		int m_nid = memblock_get_region_node(m);
1005 
1006 		/* only memory regions are associated with nodes, check it */
1007 		if (nid != NUMA_NO_NODE && nid != m_nid)
1008 			continue;
1009 
1010 		/* skip hotpluggable memory regions if needed */
1011 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1012 			continue;
1013 
1014 		/* if we want mirror memory skip non-mirror memory regions */
1015 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1016 			continue;
1017 
1018 		/* skip nomap memory unless we were asked for it explicitly */
1019 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1020 			continue;
1021 
1022 		if (!type_b) {
1023 			if (out_start)
1024 				*out_start = m_start;
1025 			if (out_end)
1026 				*out_end = m_end;
1027 			if (out_nid)
1028 				*out_nid = m_nid;
1029 			idx_a--;
1030 			*idx = (u32)idx_a | (u64)idx_b << 32;
1031 			return;
1032 		}
1033 
1034 		/* scan areas before each reservation */
1035 		for (; idx_b >= 0; idx_b--) {
1036 			struct memblock_region *r;
1037 			phys_addr_t r_start;
1038 			phys_addr_t r_end;
1039 
1040 			r = &type_b->regions[idx_b];
1041 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1042 			r_end = idx_b < type_b->cnt ?
1043 				r->base : ULLONG_MAX;
1044 			/*
1045 			 * if idx_b advanced past idx_a,
1046 			 * break out to advance idx_a
1047 			 */
1048 
1049 			if (r_end <= m_start)
1050 				break;
1051 			/* if the two regions intersect, we're done */
1052 			if (m_end > r_start) {
1053 				if (out_start)
1054 					*out_start = max(m_start, r_start);
1055 				if (out_end)
1056 					*out_end = min(m_end, r_end);
1057 				if (out_nid)
1058 					*out_nid = m_nid;
1059 				if (m_start >= r_start)
1060 					idx_a--;
1061 				else
1062 					idx_b--;
1063 				*idx = (u32)idx_a | (u64)idx_b << 32;
1064 				return;
1065 			}
1066 		}
1067 	}
1068 	/* signal end of iteration */
1069 	*idx = ULLONG_MAX;
1070 }
1071 
1072 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1073 /*
1074  * Common iterator interface used to define for_each_mem_range().
1075  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1076 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1077 				unsigned long *out_start_pfn,
1078 				unsigned long *out_end_pfn, int *out_nid)
1079 {
1080 	struct memblock_type *type = &memblock.memory;
1081 	struct memblock_region *r;
1082 
1083 	while (++*idx < type->cnt) {
1084 		r = &type->regions[*idx];
1085 
1086 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1087 			continue;
1088 		if (nid == MAX_NUMNODES || nid == r->nid)
1089 			break;
1090 	}
1091 	if (*idx >= type->cnt) {
1092 		*idx = -1;
1093 		return;
1094 	}
1095 
1096 	if (out_start_pfn)
1097 		*out_start_pfn = PFN_UP(r->base);
1098 	if (out_end_pfn)
1099 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1100 	if (out_nid)
1101 		*out_nid = r->nid;
1102 }
1103 
1104 /**
1105  * memblock_set_node - set node ID on memblock regions
1106  * @base: base of area to set node ID for
1107  * @size: size of area to set node ID for
1108  * @type: memblock type to set node ID for
1109  * @nid: node ID to set
1110  *
1111  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1112  * Regions which cross the area boundaries are split as necessary.
1113  *
1114  * RETURNS:
1115  * 0 on success, -errno on failure.
1116  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1117 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1118 				      struct memblock_type *type, int nid)
1119 {
1120 	int start_rgn, end_rgn;
1121 	int i, ret;
1122 
1123 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1124 	if (ret)
1125 		return ret;
1126 
1127 	for (i = start_rgn; i < end_rgn; i++)
1128 		memblock_set_region_node(&type->regions[i], nid);
1129 
1130 	memblock_merge_regions(type);
1131 	return 0;
1132 }
1133 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1134 
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,ulong flags)1135 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1136 					phys_addr_t align, phys_addr_t start,
1137 					phys_addr_t end, int nid, ulong flags)
1138 {
1139 	phys_addr_t found;
1140 
1141 	if (!align)
1142 		align = SMP_CACHE_BYTES;
1143 
1144 	found = memblock_find_in_range_node(size, align, start, end, nid,
1145 					    flags);
1146 	if (found && !memblock_reserve(found, size)) {
1147 		/*
1148 		 * The min_count is set to 0 so that memblock allocations are
1149 		 * never reported as leaks.
1150 		 */
1151 		kmemleak_alloc_phys(found, size, 0, 0);
1152 		return found;
1153 	}
1154 	return 0;
1155 }
1156 
memblock_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,ulong flags)1157 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1158 					phys_addr_t start, phys_addr_t end,
1159 					ulong flags)
1160 {
1161 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1162 					flags);
1163 }
1164 
memblock_alloc_base_nid(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr,int nid,ulong flags)1165 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1166 					phys_addr_t align, phys_addr_t max_addr,
1167 					int nid, ulong flags)
1168 {
1169 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1170 }
1171 
memblock_alloc_nid(phys_addr_t size,phys_addr_t align,int nid)1172 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1173 {
1174 	ulong flags = choose_memblock_flags();
1175 	phys_addr_t ret;
1176 
1177 again:
1178 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1179 				      nid, flags);
1180 
1181 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1182 		flags &= ~MEMBLOCK_MIRROR;
1183 		goto again;
1184 	}
1185 	return ret;
1186 }
1187 
__memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1188 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1189 {
1190 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1191 				       MEMBLOCK_NONE);
1192 }
1193 
memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1194 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1195 {
1196 	phys_addr_t alloc;
1197 
1198 	alloc = __memblock_alloc_base(size, align, max_addr);
1199 
1200 	if (alloc == 0)
1201 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1202 		      (unsigned long long) size, (unsigned long long) max_addr);
1203 
1204 	return alloc;
1205 }
1206 
memblock_alloc(phys_addr_t size,phys_addr_t align)1207 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1208 {
1209 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1210 }
1211 
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1212 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1213 {
1214 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1215 
1216 	if (res)
1217 		return res;
1218 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1219 }
1220 
1221 /**
1222  * memblock_virt_alloc_internal - allocate boot memory block
1223  * @size: size of memory block to be allocated in bytes
1224  * @align: alignment of the region and block's size
1225  * @min_addr: the lower bound of the memory region to allocate (phys address)
1226  * @max_addr: the upper bound of the memory region to allocate (phys address)
1227  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1228  *
1229  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1230  * will fall back to memory below @min_addr. Also, allocation may fall back
1231  * to any node in the system if the specified node can not
1232  * hold the requested memory.
1233  *
1234  * The allocation is performed from memory region limited by
1235  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1236  *
1237  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1238  *
1239  * The phys address of allocated boot memory block is converted to virtual and
1240  * allocated memory is reset to 0.
1241  *
1242  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1243  * allocated boot memory block, so that it is never reported as leaks.
1244  *
1245  * RETURNS:
1246  * Virtual address of allocated memory block on success, NULL on failure.
1247  */
memblock_virt_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1248 static void * __init memblock_virt_alloc_internal(
1249 				phys_addr_t size, phys_addr_t align,
1250 				phys_addr_t min_addr, phys_addr_t max_addr,
1251 				int nid)
1252 {
1253 	phys_addr_t alloc;
1254 	void *ptr;
1255 	ulong flags = choose_memblock_flags();
1256 
1257 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1258 		nid = NUMA_NO_NODE;
1259 
1260 	/*
1261 	 * Detect any accidental use of these APIs after slab is ready, as at
1262 	 * this moment memblock may be deinitialized already and its
1263 	 * internal data may be destroyed (after execution of free_all_bootmem)
1264 	 */
1265 	if (WARN_ON_ONCE(slab_is_available()))
1266 		return kzalloc_node(size, GFP_NOWAIT, nid);
1267 
1268 	if (!align)
1269 		align = SMP_CACHE_BYTES;
1270 
1271 	if (max_addr > memblock.current_limit)
1272 		max_addr = memblock.current_limit;
1273 
1274 again:
1275 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276 					    nid, flags);
1277 	if (alloc)
1278 		goto done;
1279 
1280 	if (nid != NUMA_NO_NODE) {
1281 		alloc = memblock_find_in_range_node(size, align, min_addr,
1282 						    max_addr, NUMA_NO_NODE,
1283 						    flags);
1284 		if (alloc)
1285 			goto done;
1286 	}
1287 
1288 	if (min_addr) {
1289 		min_addr = 0;
1290 		goto again;
1291 	}
1292 
1293 	if (flags & MEMBLOCK_MIRROR) {
1294 		flags &= ~MEMBLOCK_MIRROR;
1295 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296 			&size);
1297 		goto again;
1298 	}
1299 
1300 	return NULL;
1301 done:
1302 	memblock_reserve(alloc, size);
1303 	ptr = phys_to_virt(alloc);
1304 	memset(ptr, 0, size);
1305 
1306 	/*
1307 	 * The min_count is set to 0 so that bootmem allocated blocks
1308 	 * are never reported as leaks. This is because many of these blocks
1309 	 * are only referred via the physical address which is not
1310 	 * looked up by kmemleak.
1311 	 */
1312 	kmemleak_alloc(ptr, size, 0, 0);
1313 
1314 	return ptr;
1315 }
1316 
1317 /**
1318  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1319  * @size: size of memory block to be allocated in bytes
1320  * @align: alignment of the region and block's size
1321  * @min_addr: the lower bound of the memory region from where the allocation
1322  *	  is preferred (phys address)
1323  * @max_addr: the upper bound of the memory region from where the allocation
1324  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1325  *	      allocate only from memory limited by memblock.current_limit value
1326  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1327  *
1328  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1329  * additional debug information (including caller info), if enabled.
1330  *
1331  * RETURNS:
1332  * Virtual address of allocated memory block on success, NULL on failure.
1333  */
memblock_virt_alloc_try_nid_nopanic(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1334 void * __init memblock_virt_alloc_try_nid_nopanic(
1335 				phys_addr_t size, phys_addr_t align,
1336 				phys_addr_t min_addr, phys_addr_t max_addr,
1337 				int nid)
1338 {
1339 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1340 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1341 		     (u64)max_addr, (void *)_RET_IP_);
1342 	return memblock_virt_alloc_internal(size, align, min_addr,
1343 					     max_addr, nid);
1344 }
1345 
1346 /**
1347  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1348  * @size: size of memory block to be allocated in bytes
1349  * @align: alignment of the region and block's size
1350  * @min_addr: the lower bound of the memory region from where the allocation
1351  *	  is preferred (phys address)
1352  * @max_addr: the upper bound of the memory region from where the allocation
1353  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1354  *	      allocate only from memory limited by memblock.current_limit value
1355  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1356  *
1357  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1358  * which provides debug information (including caller info), if enabled,
1359  * and panics if the request can not be satisfied.
1360  *
1361  * RETURNS:
1362  * Virtual address of allocated memory block on success, NULL on failure.
1363  */
memblock_virt_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1364 void * __init memblock_virt_alloc_try_nid(
1365 			phys_addr_t size, phys_addr_t align,
1366 			phys_addr_t min_addr, phys_addr_t max_addr,
1367 			int nid)
1368 {
1369 	void *ptr;
1370 
1371 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1372 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1373 		     (u64)max_addr, (void *)_RET_IP_);
1374 	ptr = memblock_virt_alloc_internal(size, align,
1375 					   min_addr, max_addr, nid);
1376 	if (ptr)
1377 		return ptr;
1378 
1379 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1380 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1381 	      (u64)max_addr);
1382 	return NULL;
1383 }
1384 
1385 /**
1386  * __memblock_free_early - free boot memory block
1387  * @base: phys starting address of the  boot memory block
1388  * @size: size of the boot memory block in bytes
1389  *
1390  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1391  * The freeing memory will not be released to the buddy allocator.
1392  */
__memblock_free_early(phys_addr_t base,phys_addr_t size)1393 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1394 {
1395 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1396 		     __func__, (u64)base, (u64)base + size - 1,
1397 		     (void *)_RET_IP_);
1398 	kmemleak_free_part_phys(base, size);
1399 	memblock_remove_range(&memblock.reserved, base, size);
1400 }
1401 
1402 /*
1403  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1404  * @addr: phys starting address of the  boot memory block
1405  * @size: size of the boot memory block in bytes
1406  *
1407  * This is only useful when the bootmem allocator has already been torn
1408  * down, but we are still initializing the system.  Pages are released directly
1409  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1410  */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1411 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1412 {
1413 	u64 cursor, end;
1414 
1415 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1416 		     __func__, (u64)base, (u64)base + size - 1,
1417 		     (void *)_RET_IP_);
1418 	kmemleak_free_part_phys(base, size);
1419 	cursor = PFN_UP(base);
1420 	end = PFN_DOWN(base + size);
1421 
1422 	for (; cursor < end; cursor++) {
1423 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1424 		totalram_pages++;
1425 	}
1426 }
1427 
1428 /*
1429  * Remaining API functions
1430  */
1431 
memblock_phys_mem_size(void)1432 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1433 {
1434 	return memblock.memory.total_size;
1435 }
1436 
memblock_reserved_size(void)1437 phys_addr_t __init_memblock memblock_reserved_size(void)
1438 {
1439 	return memblock.reserved.total_size;
1440 }
1441 
memblock_mem_size(unsigned long limit_pfn)1442 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1443 {
1444 	unsigned long pages = 0;
1445 	struct memblock_region *r;
1446 	unsigned long start_pfn, end_pfn;
1447 
1448 	for_each_memblock(memory, r) {
1449 		start_pfn = memblock_region_memory_base_pfn(r);
1450 		end_pfn = memblock_region_memory_end_pfn(r);
1451 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1452 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1453 		pages += end_pfn - start_pfn;
1454 	}
1455 
1456 	return PFN_PHYS(pages);
1457 }
1458 
1459 /* lowest address */
memblock_start_of_DRAM(void)1460 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1461 {
1462 	return memblock.memory.regions[0].base;
1463 }
1464 
memblock_end_of_DRAM(void)1465 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1466 {
1467 	int idx = memblock.memory.cnt - 1;
1468 
1469 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1470 }
1471 
__find_max_addr(phys_addr_t limit)1472 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1473 {
1474 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1475 	struct memblock_region *r;
1476 
1477 	/*
1478 	 * translate the memory @limit size into the max address within one of
1479 	 * the memory memblock regions, if the @limit exceeds the total size
1480 	 * of those regions, max_addr will keep original value ULLONG_MAX
1481 	 */
1482 	for_each_memblock(memory, r) {
1483 		if (limit <= r->size) {
1484 			max_addr = r->base + limit;
1485 			break;
1486 		}
1487 		limit -= r->size;
1488 	}
1489 
1490 	return max_addr;
1491 }
1492 
memblock_enforce_memory_limit(phys_addr_t limit)1493 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1494 {
1495 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1496 
1497 	if (!limit)
1498 		return;
1499 
1500 	max_addr = __find_max_addr(limit);
1501 
1502 	/* @limit exceeds the total size of the memory, do nothing */
1503 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1504 		return;
1505 
1506 	/* truncate both memory and reserved regions */
1507 	memblock_remove_range(&memblock.memory, max_addr,
1508 			      (phys_addr_t)ULLONG_MAX);
1509 	memblock_remove_range(&memblock.reserved, max_addr,
1510 			      (phys_addr_t)ULLONG_MAX);
1511 }
1512 
memblock_mem_limit_remove_map(phys_addr_t limit)1513 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1514 {
1515 	struct memblock_type *type = &memblock.memory;
1516 	phys_addr_t max_addr;
1517 	int i, ret, start_rgn, end_rgn;
1518 
1519 	if (!limit)
1520 		return;
1521 
1522 	max_addr = __find_max_addr(limit);
1523 
1524 	/* @limit exceeds the total size of the memory, do nothing */
1525 	if (max_addr == (phys_addr_t)ULLONG_MAX)
1526 		return;
1527 
1528 	ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1529 				&start_rgn, &end_rgn);
1530 	if (ret)
1531 		return;
1532 
1533 	/* remove all the MAP regions above the limit */
1534 	for (i = end_rgn - 1; i >= start_rgn; i--) {
1535 		if (!memblock_is_nomap(&type->regions[i]))
1536 			memblock_remove_region(type, i);
1537 	}
1538 	/* truncate the reserved regions */
1539 	memblock_remove_range(&memblock.reserved, max_addr,
1540 			      (phys_addr_t)ULLONG_MAX);
1541 }
1542 
memblock_search(struct memblock_type * type,phys_addr_t addr)1543 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1544 {
1545 	unsigned int left = 0, right = type->cnt;
1546 
1547 	do {
1548 		unsigned int mid = (right + left) / 2;
1549 
1550 		if (addr < type->regions[mid].base)
1551 			right = mid;
1552 		else if (addr >= (type->regions[mid].base +
1553 				  type->regions[mid].size))
1554 			left = mid + 1;
1555 		else
1556 			return mid;
1557 	} while (left < right);
1558 	return -1;
1559 }
1560 
memblock_is_reserved(phys_addr_t addr)1561 bool __init memblock_is_reserved(phys_addr_t addr)
1562 {
1563 	return memblock_search(&memblock.reserved, addr) != -1;
1564 }
1565 
memblock_is_memory(phys_addr_t addr)1566 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1567 {
1568 	return memblock_search(&memblock.memory, addr) != -1;
1569 }
1570 
memblock_is_map_memory(phys_addr_t addr)1571 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1572 {
1573 	int i = memblock_search(&memblock.memory, addr);
1574 
1575 	if (i == -1)
1576 		return false;
1577 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1578 }
1579 
1580 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1581 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1582 			 unsigned long *start_pfn, unsigned long *end_pfn)
1583 {
1584 	struct memblock_type *type = &memblock.memory;
1585 	int mid = memblock_search(type, PFN_PHYS(pfn));
1586 
1587 	if (mid == -1)
1588 		return -1;
1589 
1590 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1591 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1592 
1593 	return type->regions[mid].nid;
1594 }
1595 #endif
1596 
1597 /**
1598  * memblock_is_region_memory - check if a region is a subset of memory
1599  * @base: base of region to check
1600  * @size: size of region to check
1601  *
1602  * Check if the region [@base, @base+@size) is a subset of a memory block.
1603  *
1604  * RETURNS:
1605  * 0 if false, non-zero if true
1606  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1607 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1608 {
1609 	int idx = memblock_search(&memblock.memory, base);
1610 	phys_addr_t end = base + memblock_cap_size(base, &size);
1611 
1612 	if (idx == -1)
1613 		return 0;
1614 	return memblock.memory.regions[idx].base <= base &&
1615 		(memblock.memory.regions[idx].base +
1616 		 memblock.memory.regions[idx].size) >= end;
1617 }
1618 
1619 /**
1620  * memblock_is_region_reserved - check if a region intersects reserved memory
1621  * @base: base of region to check
1622  * @size: size of region to check
1623  *
1624  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1625  *
1626  * RETURNS:
1627  * True if they intersect, false if not.
1628  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1629 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1630 {
1631 	memblock_cap_size(base, &size);
1632 	return memblock_overlaps_region(&memblock.reserved, base, size);
1633 }
1634 
memblock_trim_memory(phys_addr_t align)1635 void __init_memblock memblock_trim_memory(phys_addr_t align)
1636 {
1637 	phys_addr_t start, end, orig_start, orig_end;
1638 	struct memblock_region *r;
1639 
1640 	for_each_memblock(memory, r) {
1641 		orig_start = r->base;
1642 		orig_end = r->base + r->size;
1643 		start = round_up(orig_start, align);
1644 		end = round_down(orig_end, align);
1645 
1646 		if (start == orig_start && end == orig_end)
1647 			continue;
1648 
1649 		if (start < end) {
1650 			r->base = start;
1651 			r->size = end - start;
1652 		} else {
1653 			memblock_remove_region(&memblock.memory,
1654 					       r - memblock.memory.regions);
1655 			r--;
1656 		}
1657 	}
1658 }
1659 
memblock_set_current_limit(phys_addr_t limit)1660 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1661 {
1662 	memblock.current_limit = limit;
1663 }
1664 
memblock_get_current_limit(void)1665 phys_addr_t __init_memblock memblock_get_current_limit(void)
1666 {
1667 	return memblock.current_limit;
1668 }
1669 
memblock_dump(struct memblock_type * type,char * name)1670 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1671 {
1672 	unsigned long long base, size;
1673 	unsigned long flags;
1674 	int idx;
1675 	struct memblock_region *rgn;
1676 
1677 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1678 
1679 	for_each_memblock_type(type, rgn) {
1680 		char nid_buf[32] = "";
1681 
1682 		base = rgn->base;
1683 		size = rgn->size;
1684 		flags = rgn->flags;
1685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1686 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1687 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1688 				 memblock_get_region_node(rgn));
1689 #endif
1690 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1691 			name, idx, base, base + size - 1, size, nid_buf, flags);
1692 	}
1693 }
1694 
1695 extern unsigned long __init_memblock
memblock_reserved_memory_within(phys_addr_t start_addr,phys_addr_t end_addr)1696 memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
1697 {
1698 	struct memblock_region *rgn;
1699 	unsigned long size = 0;
1700 	int idx;
1701 
1702 	for_each_memblock_type((&memblock.reserved), rgn) {
1703 		phys_addr_t start, end;
1704 
1705 		if (rgn->base + rgn->size < start_addr)
1706 			continue;
1707 		if (rgn->base > end_addr)
1708 			continue;
1709 
1710 		start = rgn->base;
1711 		end = start + rgn->size;
1712 		size += end - start;
1713 	}
1714 
1715 	return size;
1716 }
1717 
__memblock_dump_all(void)1718 void __init_memblock __memblock_dump_all(void)
1719 {
1720 	pr_info("MEMBLOCK configuration:\n");
1721 	pr_info(" memory size = %#llx reserved size = %#llx\n",
1722 		(unsigned long long)memblock.memory.total_size,
1723 		(unsigned long long)memblock.reserved.total_size);
1724 
1725 	memblock_dump(&memblock.memory, "memory");
1726 	memblock_dump(&memblock.reserved, "reserved");
1727 }
1728 
memblock_allow_resize(void)1729 void __init memblock_allow_resize(void)
1730 {
1731 	memblock_can_resize = 1;
1732 }
1733 
early_memblock(char * p)1734 static int __init early_memblock(char *p)
1735 {
1736 	if (p && strstr(p, "debug"))
1737 		memblock_debug = 1;
1738 	return 0;
1739 }
1740 early_param("memblock", early_memblock);
1741 
1742 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1743 
memblock_debug_show(struct seq_file * m,void * private)1744 static int memblock_debug_show(struct seq_file *m, void *private)
1745 {
1746 	struct memblock_type *type = m->private;
1747 	struct memblock_region *reg;
1748 	int i;
1749 
1750 	for (i = 0; i < type->cnt; i++) {
1751 		reg = &type->regions[i];
1752 		seq_printf(m, "%4d: ", i);
1753 		if (sizeof(phys_addr_t) == 4)
1754 			seq_printf(m, "0x%08lx..0x%08lx\n",
1755 				   (unsigned long)reg->base,
1756 				   (unsigned long)(reg->base + reg->size - 1));
1757 		else
1758 			seq_printf(m, "0x%016llx..0x%016llx\n",
1759 				   (unsigned long long)reg->base,
1760 				   (unsigned long long)(reg->base + reg->size - 1));
1761 
1762 	}
1763 	return 0;
1764 }
1765 
memblock_debug_open(struct inode * inode,struct file * file)1766 static int memblock_debug_open(struct inode *inode, struct file *file)
1767 {
1768 	return single_open(file, memblock_debug_show, inode->i_private);
1769 }
1770 
1771 static const struct file_operations memblock_debug_fops = {
1772 	.open = memblock_debug_open,
1773 	.read = seq_read,
1774 	.llseek = seq_lseek,
1775 	.release = single_release,
1776 };
1777 
memblock_init_debugfs(void)1778 static int __init memblock_init_debugfs(void)
1779 {
1780 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1781 	if (!root)
1782 		return -ENXIO;
1783 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1784 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1785 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1786 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1787 #endif
1788 
1789 	return 0;
1790 }
1791 __initcall(memblock_init_debugfs);
1792 
1793 #endif /* CONFIG_DEBUG_FS */
1794