1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
choose_memblock_flags(void)62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
memblock_type_name(struct memblock_type * type)69 memblock_type_name(struct memblock_type *type)
70 {
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77 }
78
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84
85 /*
86 * Address comparison utilities
87 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
90 {
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
96 {
97 unsigned long i;
98
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
102 break;
103 return i < type->cnt;
104 }
105
106 /*
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
114 *
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116 *
117 * RETURNS:
118 * Found address on success, 0 on failure.
119 */
120 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,ulong flags)121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
124 {
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
127
128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
131
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
135 }
136
137 return 0;
138 }
139
140 /**
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
148 *
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
150 *
151 * RETURNS:
152 * Found address on success, 0 on failure.
153 */
154 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,ulong flags)155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
158 {
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
161
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
166
167 if (this_end < size)
168 continue;
169
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
173 }
174
175 return 0;
176 }
177
178 /**
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
186 *
187 * Find @size free area aligned to @align in the specified range and node.
188 *
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
194 *
195 * If bottom-up allocation failed, will try to allocate memory top-down.
196 *
197 * RETURNS:
198 * Found address on success, 0 on failure.
199 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,ulong flags)200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
202 phys_addr_t end, int nid, ulong flags)
203 {
204 phys_addr_t kernel_end, ret;
205
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
209
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
213 kernel_end = __pa_symbol(_end);
214
215 /*
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
218 */
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
221
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
224
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 size, align, nid, flags);
228 if (ret)
229 return ret;
230
231 /*
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
236 *
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
240 */
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
242 }
243
244 return __memblock_find_range_top_down(start, end, size, align, nid,
245 flags);
246 }
247
248 /**
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
254 *
255 * Find @size free area aligned to @align in the specified range.
256 *
257 * RETURNS:
258 * Found address on success, 0 on failure.
259 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 phys_addr_t end, phys_addr_t size,
262 phys_addr_t align)
263 {
264 phys_addr_t ret;
265 ulong flags = choose_memblock_flags();
266
267 again:
268 ret = memblock_find_in_range_node(size, align, start, end,
269 NUMA_NO_NODE, flags);
270
271 if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 &size);
274 flags &= ~MEMBLOCK_MIRROR;
275 goto again;
276 }
277
278 return ret;
279 }
280
memblock_remove_region(struct memblock_type * type,unsigned long r)281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
282 {
283 type->total_size -= type->regions[r].size;
284 memmove(&type->regions[r], &type->regions[r + 1],
285 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
286 type->cnt--;
287
288 /* Special case for empty arrays */
289 if (type->cnt == 0) {
290 WARN_ON(type->total_size != 0);
291 type->cnt = 1;
292 type->regions[0].base = 0;
293 type->regions[0].size = 0;
294 type->regions[0].flags = 0;
295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
296 }
297 }
298
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300 /**
301 * Discard memory and reserved arrays if they were allocated
302 */
memblock_discard(void)303 void __init memblock_discard(void)
304 {
305 phys_addr_t addr, size;
306
307 if (memblock.reserved.regions != memblock_reserved_init_regions) {
308 addr = __pa(memblock.reserved.regions);
309 size = PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.reserved.max);
311 __memblock_free_late(addr, size);
312 }
313
314 if (memblock.memory.regions != memblock_memory_init_regions) {
315 addr = __pa(memblock.memory.regions);
316 size = PAGE_ALIGN(sizeof(struct memblock_region) *
317 memblock.memory.max);
318 __memblock_free_late(addr, size);
319 }
320 }
321 #endif
322
323 /**
324 * memblock_double_array - double the size of the memblock regions array
325 * @type: memblock type of the regions array being doubled
326 * @new_area_start: starting address of memory range to avoid overlap with
327 * @new_area_size: size of memory range to avoid overlap with
328 *
329 * Double the size of the @type regions array. If memblock is being used to
330 * allocate memory for a new reserved regions array and there is a previously
331 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
332 * waiting to be reserved, ensure the memory used by the new array does
333 * not overlap.
334 *
335 * RETURNS:
336 * 0 on success, -1 on failure.
337 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)338 static int __init_memblock memblock_double_array(struct memblock_type *type,
339 phys_addr_t new_area_start,
340 phys_addr_t new_area_size)
341 {
342 struct memblock_region *new_array, *old_array;
343 phys_addr_t old_alloc_size, new_alloc_size;
344 phys_addr_t old_size, new_size, addr;
345 int use_slab = slab_is_available();
346 int *in_slab;
347
348 /* We don't allow resizing until we know about the reserved regions
349 * of memory that aren't suitable for allocation
350 */
351 if (!memblock_can_resize)
352 return -1;
353
354 /* Calculate new doubled size */
355 old_size = type->max * sizeof(struct memblock_region);
356 new_size = old_size << 1;
357 /*
358 * We need to allocated new one align to PAGE_SIZE,
359 * so we can free them completely later.
360 */
361 old_alloc_size = PAGE_ALIGN(old_size);
362 new_alloc_size = PAGE_ALIGN(new_size);
363
364 /* Retrieve the slab flag */
365 if (type == &memblock.memory)
366 in_slab = &memblock_memory_in_slab;
367 else
368 in_slab = &memblock_reserved_in_slab;
369
370 /* Try to find some space for it.
371 *
372 * WARNING: We assume that either slab_is_available() and we use it or
373 * we use MEMBLOCK for allocations. That means that this is unsafe to
374 * use when bootmem is currently active (unless bootmem itself is
375 * implemented on top of MEMBLOCK which isn't the case yet)
376 *
377 * This should however not be an issue for now, as we currently only
378 * call into MEMBLOCK while it's still active, or much later when slab
379 * is active for memory hotplug operations
380 */
381 if (use_slab) {
382 new_array = kmalloc(new_size, GFP_KERNEL);
383 addr = new_array ? __pa(new_array) : 0;
384 } else {
385 /* only exclude range when trying to double reserved.regions */
386 if (type != &memblock.reserved)
387 new_area_start = new_area_size = 0;
388
389 addr = memblock_find_in_range(new_area_start + new_area_size,
390 memblock.current_limit,
391 new_alloc_size, PAGE_SIZE);
392 if (!addr && new_area_size)
393 addr = memblock_find_in_range(0,
394 min(new_area_start, memblock.current_limit),
395 new_alloc_size, PAGE_SIZE);
396
397 new_array = addr ? __va(addr) : NULL;
398 }
399 if (!addr) {
400 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
401 memblock_type_name(type), type->max, type->max * 2);
402 return -1;
403 }
404
405 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
406 memblock_type_name(type), type->max * 2, (u64)addr,
407 (u64)addr + new_size - 1);
408
409 /*
410 * Found space, we now need to move the array over before we add the
411 * reserved region since it may be our reserved array itself that is
412 * full.
413 */
414 memcpy(new_array, type->regions, old_size);
415 memset(new_array + type->max, 0, old_size);
416 old_array = type->regions;
417 type->regions = new_array;
418 type->max <<= 1;
419
420 /* Free old array. We needn't free it if the array is the static one */
421 if (*in_slab)
422 kfree(old_array);
423 else if (old_array != memblock_memory_init_regions &&
424 old_array != memblock_reserved_init_regions)
425 memblock_free(__pa(old_array), old_alloc_size);
426
427 /*
428 * Reserve the new array if that comes from the memblock. Otherwise, we
429 * needn't do it
430 */
431 if (!use_slab)
432 BUG_ON(memblock_reserve(addr, new_alloc_size));
433
434 /* Update slab flag */
435 *in_slab = use_slab;
436
437 return 0;
438 }
439
440 /**
441 * memblock_merge_regions - merge neighboring compatible regions
442 * @type: memblock type to scan
443 *
444 * Scan @type and merge neighboring compatible regions.
445 */
memblock_merge_regions(struct memblock_type * type)446 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
447 {
448 int i = 0;
449
450 /* cnt never goes below 1 */
451 while (i < type->cnt - 1) {
452 struct memblock_region *this = &type->regions[i];
453 struct memblock_region *next = &type->regions[i + 1];
454
455 if (this->base + this->size != next->base ||
456 memblock_get_region_node(this) !=
457 memblock_get_region_node(next) ||
458 this->flags != next->flags) {
459 BUG_ON(this->base + this->size > next->base);
460 i++;
461 continue;
462 }
463
464 this->size += next->size;
465 /* move forward from next + 1, index of which is i + 2 */
466 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
467 type->cnt--;
468 }
469 }
470
471 /**
472 * memblock_insert_region - insert new memblock region
473 * @type: memblock type to insert into
474 * @idx: index for the insertion point
475 * @base: base address of the new region
476 * @size: size of the new region
477 * @nid: node id of the new region
478 * @flags: flags of the new region
479 *
480 * Insert new memblock region [@base,@base+@size) into @type at @idx.
481 * @type must already have extra room to accommodate the new region.
482 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,unsigned long flags)483 static void __init_memblock memblock_insert_region(struct memblock_type *type,
484 int idx, phys_addr_t base,
485 phys_addr_t size,
486 int nid, unsigned long flags)
487 {
488 struct memblock_region *rgn = &type->regions[idx];
489
490 BUG_ON(type->cnt >= type->max);
491 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
492 rgn->base = base;
493 rgn->size = size;
494 rgn->flags = flags;
495 memblock_set_region_node(rgn, nid);
496 type->cnt++;
497 type->total_size += size;
498 }
499
500 /**
501 * memblock_add_range - add new memblock region
502 * @type: memblock type to add new region into
503 * @base: base address of the new region
504 * @size: size of the new region
505 * @nid: nid of the new region
506 * @flags: flags of the new region
507 *
508 * Add new memblock region [@base,@base+@size) into @type. The new region
509 * is allowed to overlap with existing ones - overlaps don't affect already
510 * existing regions. @type is guaranteed to be minimal (all neighbouring
511 * compatible regions are merged) after the addition.
512 *
513 * RETURNS:
514 * 0 on success, -errno on failure.
515 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,unsigned long flags)516 int __init_memblock memblock_add_range(struct memblock_type *type,
517 phys_addr_t base, phys_addr_t size,
518 int nid, unsigned long flags)
519 {
520 bool insert = false;
521 phys_addr_t obase = base;
522 phys_addr_t end = base + memblock_cap_size(base, &size);
523 int idx, nr_new;
524 struct memblock_region *rgn;
525
526 if (!size)
527 return 0;
528
529 /* special case for empty array */
530 if (type->regions[0].size == 0) {
531 WARN_ON(type->cnt != 1 || type->total_size);
532 type->regions[0].base = base;
533 type->regions[0].size = size;
534 type->regions[0].flags = flags;
535 memblock_set_region_node(&type->regions[0], nid);
536 type->total_size = size;
537 return 0;
538 }
539 repeat:
540 /*
541 * The following is executed twice. Once with %false @insert and
542 * then with %true. The first counts the number of regions needed
543 * to accommodate the new area. The second actually inserts them.
544 */
545 base = obase;
546 nr_new = 0;
547
548 for_each_memblock_type(type, rgn) {
549 phys_addr_t rbase = rgn->base;
550 phys_addr_t rend = rbase + rgn->size;
551
552 if (rbase >= end)
553 break;
554 if (rend <= base)
555 continue;
556 /*
557 * @rgn overlaps. If it separates the lower part of new
558 * area, insert that portion.
559 */
560 if (rbase > base) {
561 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
562 WARN_ON(nid != memblock_get_region_node(rgn));
563 #endif
564 WARN_ON(flags != rgn->flags);
565 nr_new++;
566 if (insert)
567 memblock_insert_region(type, idx++, base,
568 rbase - base, nid,
569 flags);
570 }
571 /* area below @rend is dealt with, forget about it */
572 base = min(rend, end);
573 }
574
575 /* insert the remaining portion */
576 if (base < end) {
577 nr_new++;
578 if (insert)
579 memblock_insert_region(type, idx, base, end - base,
580 nid, flags);
581 }
582
583 if (!nr_new)
584 return 0;
585
586 /*
587 * If this was the first round, resize array and repeat for actual
588 * insertions; otherwise, merge and return.
589 */
590 if (!insert) {
591 while (type->cnt + nr_new > type->max)
592 if (memblock_double_array(type, obase, size) < 0)
593 return -ENOMEM;
594 insert = true;
595 goto repeat;
596 } else {
597 memblock_merge_regions(type);
598 return 0;
599 }
600 }
601
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)602 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
603 int nid)
604 {
605 return memblock_add_range(&memblock.memory, base, size, nid, 0);
606 }
607
memblock_add(phys_addr_t base,phys_addr_t size)608 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
609 {
610 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
611 (unsigned long long)base,
612 (unsigned long long)base + size - 1,
613 0UL, (void *)_RET_IP_);
614
615 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
616 }
617
618 /**
619 * memblock_isolate_range - isolate given range into disjoint memblocks
620 * @type: memblock type to isolate range for
621 * @base: base of range to isolate
622 * @size: size of range to isolate
623 * @start_rgn: out parameter for the start of isolated region
624 * @end_rgn: out parameter for the end of isolated region
625 *
626 * Walk @type and ensure that regions don't cross the boundaries defined by
627 * [@base,@base+@size). Crossing regions are split at the boundaries,
628 * which may create at most two more regions. The index of the first
629 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
630 *
631 * RETURNS:
632 * 0 on success, -errno on failure.
633 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)634 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
635 phys_addr_t base, phys_addr_t size,
636 int *start_rgn, int *end_rgn)
637 {
638 phys_addr_t end = base + memblock_cap_size(base, &size);
639 int idx;
640 struct memblock_region *rgn;
641
642 *start_rgn = *end_rgn = 0;
643
644 if (!size)
645 return 0;
646
647 /* we'll create at most two more regions */
648 while (type->cnt + 2 > type->max)
649 if (memblock_double_array(type, base, size) < 0)
650 return -ENOMEM;
651
652 for_each_memblock_type(type, rgn) {
653 phys_addr_t rbase = rgn->base;
654 phys_addr_t rend = rbase + rgn->size;
655
656 if (rbase >= end)
657 break;
658 if (rend <= base)
659 continue;
660
661 if (rbase < base) {
662 /*
663 * @rgn intersects from below. Split and continue
664 * to process the next region - the new top half.
665 */
666 rgn->base = base;
667 rgn->size -= base - rbase;
668 type->total_size -= base - rbase;
669 memblock_insert_region(type, idx, rbase, base - rbase,
670 memblock_get_region_node(rgn),
671 rgn->flags);
672 } else if (rend > end) {
673 /*
674 * @rgn intersects from above. Split and redo the
675 * current region - the new bottom half.
676 */
677 rgn->base = end;
678 rgn->size -= end - rbase;
679 type->total_size -= end - rbase;
680 memblock_insert_region(type, idx--, rbase, end - rbase,
681 memblock_get_region_node(rgn),
682 rgn->flags);
683 } else {
684 /* @rgn is fully contained, record it */
685 if (!*end_rgn)
686 *start_rgn = idx;
687 *end_rgn = idx + 1;
688 }
689 }
690
691 return 0;
692 }
693
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)694 static int __init_memblock memblock_remove_range(struct memblock_type *type,
695 phys_addr_t base, phys_addr_t size)
696 {
697 int start_rgn, end_rgn;
698 int i, ret;
699
700 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
701 if (ret)
702 return ret;
703
704 for (i = end_rgn - 1; i >= start_rgn; i--)
705 memblock_remove_region(type, i);
706 return 0;
707 }
708
memblock_remove(phys_addr_t base,phys_addr_t size)709 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
710 {
711 return memblock_remove_range(&memblock.memory, base, size);
712 }
713
714
memblock_free(phys_addr_t base,phys_addr_t size)715 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
716 {
717 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
718 (unsigned long long)base,
719 (unsigned long long)base + size - 1,
720 (void *)_RET_IP_);
721
722 kmemleak_free_part_phys(base, size);
723 return memblock_remove_range(&memblock.reserved, base, size);
724 }
725
memblock_reserve(phys_addr_t base,phys_addr_t size)726 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
727 {
728 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
729 (unsigned long long)base,
730 (unsigned long long)base + size - 1,
731 0UL, (void *)_RET_IP_);
732
733 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
734 }
735
736 /**
737 *
738 * This function isolates region [@base, @base + @size), and sets/clears flag
739 *
740 * Return 0 on success, -errno on failure.
741 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)742 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
743 phys_addr_t size, int set, int flag)
744 {
745 struct memblock_type *type = &memblock.memory;
746 int i, ret, start_rgn, end_rgn;
747
748 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
749 if (ret)
750 return ret;
751
752 for (i = start_rgn; i < end_rgn; i++)
753 if (set)
754 memblock_set_region_flags(&type->regions[i], flag);
755 else
756 memblock_clear_region_flags(&type->regions[i], flag);
757
758 memblock_merge_regions(type);
759 return 0;
760 }
761
762 /**
763 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
764 * @base: the base phys addr of the region
765 * @size: the size of the region
766 *
767 * Return 0 on success, -errno on failure.
768 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)769 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
770 {
771 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
772 }
773
774 /**
775 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
776 * @base: the base phys addr of the region
777 * @size: the size of the region
778 *
779 * Return 0 on success, -errno on failure.
780 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)781 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
782 {
783 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
784 }
785
786 /**
787 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
788 * @base: the base phys addr of the region
789 * @size: the size of the region
790 *
791 * Return 0 on success, -errno on failure.
792 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)793 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
794 {
795 system_has_some_mirror = true;
796
797 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
798 }
799
800 /**
801 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
802 * @base: the base phys addr of the region
803 * @size: the size of the region
804 *
805 * Return 0 on success, -errno on failure.
806 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)807 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
808 {
809 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
810 }
811
812 /**
813 * __next_reserved_mem_region - next function for for_each_reserved_region()
814 * @idx: pointer to u64 loop variable
815 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
816 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
817 *
818 * Iterate over all reserved memory regions.
819 */
__next_reserved_mem_region(u64 * idx,phys_addr_t * out_start,phys_addr_t * out_end)820 void __init_memblock __next_reserved_mem_region(u64 *idx,
821 phys_addr_t *out_start,
822 phys_addr_t *out_end)
823 {
824 struct memblock_type *type = &memblock.reserved;
825
826 if (*idx < type->cnt) {
827 struct memblock_region *r = &type->regions[*idx];
828 phys_addr_t base = r->base;
829 phys_addr_t size = r->size;
830
831 if (out_start)
832 *out_start = base;
833 if (out_end)
834 *out_end = base + size - 1;
835
836 *idx += 1;
837 return;
838 }
839
840 /* signal end of iteration */
841 *idx = ULLONG_MAX;
842 }
843
844 /**
845 * __next__mem_range - next function for for_each_free_mem_range() etc.
846 * @idx: pointer to u64 loop variable
847 * @nid: node selector, %NUMA_NO_NODE for all nodes
848 * @flags: pick from blocks based on memory attributes
849 * @type_a: pointer to memblock_type from where the range is taken
850 * @type_b: pointer to memblock_type which excludes memory from being taken
851 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
852 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
853 * @out_nid: ptr to int for nid of the range, can be %NULL
854 *
855 * Find the first area from *@idx which matches @nid, fill the out
856 * parameters, and update *@idx for the next iteration. The lower 32bit of
857 * *@idx contains index into type_a and the upper 32bit indexes the
858 * areas before each region in type_b. For example, if type_b regions
859 * look like the following,
860 *
861 * 0:[0-16), 1:[32-48), 2:[128-130)
862 *
863 * The upper 32bit indexes the following regions.
864 *
865 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
866 *
867 * As both region arrays are sorted, the function advances the two indices
868 * in lockstep and returns each intersection.
869 */
__next_mem_range(u64 * idx,int nid,ulong flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)870 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
871 struct memblock_type *type_a,
872 struct memblock_type *type_b,
873 phys_addr_t *out_start,
874 phys_addr_t *out_end, int *out_nid)
875 {
876 int idx_a = *idx & 0xffffffff;
877 int idx_b = *idx >> 32;
878
879 if (WARN_ONCE(nid == MAX_NUMNODES,
880 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
881 nid = NUMA_NO_NODE;
882
883 for (; idx_a < type_a->cnt; idx_a++) {
884 struct memblock_region *m = &type_a->regions[idx_a];
885
886 phys_addr_t m_start = m->base;
887 phys_addr_t m_end = m->base + m->size;
888 int m_nid = memblock_get_region_node(m);
889
890 /* only memory regions are associated with nodes, check it */
891 if (nid != NUMA_NO_NODE && nid != m_nid)
892 continue;
893
894 /* skip hotpluggable memory regions if needed */
895 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
896 continue;
897
898 /* if we want mirror memory skip non-mirror memory regions */
899 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
900 continue;
901
902 /* skip nomap memory unless we were asked for it explicitly */
903 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
904 continue;
905
906 if (!type_b) {
907 if (out_start)
908 *out_start = m_start;
909 if (out_end)
910 *out_end = m_end;
911 if (out_nid)
912 *out_nid = m_nid;
913 idx_a++;
914 *idx = (u32)idx_a | (u64)idx_b << 32;
915 return;
916 }
917
918 /* scan areas before each reservation */
919 for (; idx_b < type_b->cnt + 1; idx_b++) {
920 struct memblock_region *r;
921 phys_addr_t r_start;
922 phys_addr_t r_end;
923
924 r = &type_b->regions[idx_b];
925 r_start = idx_b ? r[-1].base + r[-1].size : 0;
926 r_end = idx_b < type_b->cnt ?
927 r->base : ULLONG_MAX;
928
929 /*
930 * if idx_b advanced past idx_a,
931 * break out to advance idx_a
932 */
933 if (r_start >= m_end)
934 break;
935 /* if the two regions intersect, we're done */
936 if (m_start < r_end) {
937 if (out_start)
938 *out_start =
939 max(m_start, r_start);
940 if (out_end)
941 *out_end = min(m_end, r_end);
942 if (out_nid)
943 *out_nid = m_nid;
944 /*
945 * The region which ends first is
946 * advanced for the next iteration.
947 */
948 if (m_end <= r_end)
949 idx_a++;
950 else
951 idx_b++;
952 *idx = (u32)idx_a | (u64)idx_b << 32;
953 return;
954 }
955 }
956 }
957
958 /* signal end of iteration */
959 *idx = ULLONG_MAX;
960 }
961
962 /**
963 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
964 *
965 * Finds the next range from type_a which is not marked as unsuitable
966 * in type_b.
967 *
968 * @idx: pointer to u64 loop variable
969 * @nid: node selector, %NUMA_NO_NODE for all nodes
970 * @flags: pick from blocks based on memory attributes
971 * @type_a: pointer to memblock_type from where the range is taken
972 * @type_b: pointer to memblock_type which excludes memory from being taken
973 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975 * @out_nid: ptr to int for nid of the range, can be %NULL
976 *
977 * Reverse of __next_mem_range().
978 */
__next_mem_range_rev(u64 * idx,int nid,ulong flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)979 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
980 struct memblock_type *type_a,
981 struct memblock_type *type_b,
982 phys_addr_t *out_start,
983 phys_addr_t *out_end, int *out_nid)
984 {
985 int idx_a = *idx & 0xffffffff;
986 int idx_b = *idx >> 32;
987
988 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
989 nid = NUMA_NO_NODE;
990
991 if (*idx == (u64)ULLONG_MAX) {
992 idx_a = type_a->cnt - 1;
993 if (type_b != NULL)
994 idx_b = type_b->cnt;
995 else
996 idx_b = 0;
997 }
998
999 for (; idx_a >= 0; idx_a--) {
1000 struct memblock_region *m = &type_a->regions[idx_a];
1001
1002 phys_addr_t m_start = m->base;
1003 phys_addr_t m_end = m->base + m->size;
1004 int m_nid = memblock_get_region_node(m);
1005
1006 /* only memory regions are associated with nodes, check it */
1007 if (nid != NUMA_NO_NODE && nid != m_nid)
1008 continue;
1009
1010 /* skip hotpluggable memory regions if needed */
1011 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1012 continue;
1013
1014 /* if we want mirror memory skip non-mirror memory regions */
1015 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1016 continue;
1017
1018 /* skip nomap memory unless we were asked for it explicitly */
1019 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1020 continue;
1021
1022 if (!type_b) {
1023 if (out_start)
1024 *out_start = m_start;
1025 if (out_end)
1026 *out_end = m_end;
1027 if (out_nid)
1028 *out_nid = m_nid;
1029 idx_a--;
1030 *idx = (u32)idx_a | (u64)idx_b << 32;
1031 return;
1032 }
1033
1034 /* scan areas before each reservation */
1035 for (; idx_b >= 0; idx_b--) {
1036 struct memblock_region *r;
1037 phys_addr_t r_start;
1038 phys_addr_t r_end;
1039
1040 r = &type_b->regions[idx_b];
1041 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1042 r_end = idx_b < type_b->cnt ?
1043 r->base : ULLONG_MAX;
1044 /*
1045 * if idx_b advanced past idx_a,
1046 * break out to advance idx_a
1047 */
1048
1049 if (r_end <= m_start)
1050 break;
1051 /* if the two regions intersect, we're done */
1052 if (m_end > r_start) {
1053 if (out_start)
1054 *out_start = max(m_start, r_start);
1055 if (out_end)
1056 *out_end = min(m_end, r_end);
1057 if (out_nid)
1058 *out_nid = m_nid;
1059 if (m_start >= r_start)
1060 idx_a--;
1061 else
1062 idx_b--;
1063 *idx = (u32)idx_a | (u64)idx_b << 32;
1064 return;
1065 }
1066 }
1067 }
1068 /* signal end of iteration */
1069 *idx = ULLONG_MAX;
1070 }
1071
1072 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1073 /*
1074 * Common iterator interface used to define for_each_mem_range().
1075 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1076 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1077 unsigned long *out_start_pfn,
1078 unsigned long *out_end_pfn, int *out_nid)
1079 {
1080 struct memblock_type *type = &memblock.memory;
1081 struct memblock_region *r;
1082
1083 while (++*idx < type->cnt) {
1084 r = &type->regions[*idx];
1085
1086 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1087 continue;
1088 if (nid == MAX_NUMNODES || nid == r->nid)
1089 break;
1090 }
1091 if (*idx >= type->cnt) {
1092 *idx = -1;
1093 return;
1094 }
1095
1096 if (out_start_pfn)
1097 *out_start_pfn = PFN_UP(r->base);
1098 if (out_end_pfn)
1099 *out_end_pfn = PFN_DOWN(r->base + r->size);
1100 if (out_nid)
1101 *out_nid = r->nid;
1102 }
1103
1104 /**
1105 * memblock_set_node - set node ID on memblock regions
1106 * @base: base of area to set node ID for
1107 * @size: size of area to set node ID for
1108 * @type: memblock type to set node ID for
1109 * @nid: node ID to set
1110 *
1111 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1112 * Regions which cross the area boundaries are split as necessary.
1113 *
1114 * RETURNS:
1115 * 0 on success, -errno on failure.
1116 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1117 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1118 struct memblock_type *type, int nid)
1119 {
1120 int start_rgn, end_rgn;
1121 int i, ret;
1122
1123 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1124 if (ret)
1125 return ret;
1126
1127 for (i = start_rgn; i < end_rgn; i++)
1128 memblock_set_region_node(&type->regions[i], nid);
1129
1130 memblock_merge_regions(type);
1131 return 0;
1132 }
1133 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1134
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,ulong flags)1135 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1136 phys_addr_t align, phys_addr_t start,
1137 phys_addr_t end, int nid, ulong flags)
1138 {
1139 phys_addr_t found;
1140
1141 if (!align)
1142 align = SMP_CACHE_BYTES;
1143
1144 found = memblock_find_in_range_node(size, align, start, end, nid,
1145 flags);
1146 if (found && !memblock_reserve(found, size)) {
1147 /*
1148 * The min_count is set to 0 so that memblock allocations are
1149 * never reported as leaks.
1150 */
1151 kmemleak_alloc_phys(found, size, 0, 0);
1152 return found;
1153 }
1154 return 0;
1155 }
1156
memblock_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,ulong flags)1157 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1158 phys_addr_t start, phys_addr_t end,
1159 ulong flags)
1160 {
1161 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1162 flags);
1163 }
1164
memblock_alloc_base_nid(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr,int nid,ulong flags)1165 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1166 phys_addr_t align, phys_addr_t max_addr,
1167 int nid, ulong flags)
1168 {
1169 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1170 }
1171
memblock_alloc_nid(phys_addr_t size,phys_addr_t align,int nid)1172 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1173 {
1174 ulong flags = choose_memblock_flags();
1175 phys_addr_t ret;
1176
1177 again:
1178 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1179 nid, flags);
1180
1181 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1182 flags &= ~MEMBLOCK_MIRROR;
1183 goto again;
1184 }
1185 return ret;
1186 }
1187
__memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1188 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1189 {
1190 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1191 MEMBLOCK_NONE);
1192 }
1193
memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1194 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1195 {
1196 phys_addr_t alloc;
1197
1198 alloc = __memblock_alloc_base(size, align, max_addr);
1199
1200 if (alloc == 0)
1201 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1202 (unsigned long long) size, (unsigned long long) max_addr);
1203
1204 return alloc;
1205 }
1206
memblock_alloc(phys_addr_t size,phys_addr_t align)1207 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1208 {
1209 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1210 }
1211
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1212 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1213 {
1214 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1215
1216 if (res)
1217 return res;
1218 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1219 }
1220
1221 /**
1222 * memblock_virt_alloc_internal - allocate boot memory block
1223 * @size: size of memory block to be allocated in bytes
1224 * @align: alignment of the region and block's size
1225 * @min_addr: the lower bound of the memory region to allocate (phys address)
1226 * @max_addr: the upper bound of the memory region to allocate (phys address)
1227 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1228 *
1229 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1230 * will fall back to memory below @min_addr. Also, allocation may fall back
1231 * to any node in the system if the specified node can not
1232 * hold the requested memory.
1233 *
1234 * The allocation is performed from memory region limited by
1235 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1236 *
1237 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1238 *
1239 * The phys address of allocated boot memory block is converted to virtual and
1240 * allocated memory is reset to 0.
1241 *
1242 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1243 * allocated boot memory block, so that it is never reported as leaks.
1244 *
1245 * RETURNS:
1246 * Virtual address of allocated memory block on success, NULL on failure.
1247 */
memblock_virt_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1248 static void * __init memblock_virt_alloc_internal(
1249 phys_addr_t size, phys_addr_t align,
1250 phys_addr_t min_addr, phys_addr_t max_addr,
1251 int nid)
1252 {
1253 phys_addr_t alloc;
1254 void *ptr;
1255 ulong flags = choose_memblock_flags();
1256
1257 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1258 nid = NUMA_NO_NODE;
1259
1260 /*
1261 * Detect any accidental use of these APIs after slab is ready, as at
1262 * this moment memblock may be deinitialized already and its
1263 * internal data may be destroyed (after execution of free_all_bootmem)
1264 */
1265 if (WARN_ON_ONCE(slab_is_available()))
1266 return kzalloc_node(size, GFP_NOWAIT, nid);
1267
1268 if (!align)
1269 align = SMP_CACHE_BYTES;
1270
1271 if (max_addr > memblock.current_limit)
1272 max_addr = memblock.current_limit;
1273
1274 again:
1275 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276 nid, flags);
1277 if (alloc)
1278 goto done;
1279
1280 if (nid != NUMA_NO_NODE) {
1281 alloc = memblock_find_in_range_node(size, align, min_addr,
1282 max_addr, NUMA_NO_NODE,
1283 flags);
1284 if (alloc)
1285 goto done;
1286 }
1287
1288 if (min_addr) {
1289 min_addr = 0;
1290 goto again;
1291 }
1292
1293 if (flags & MEMBLOCK_MIRROR) {
1294 flags &= ~MEMBLOCK_MIRROR;
1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296 &size);
1297 goto again;
1298 }
1299
1300 return NULL;
1301 done:
1302 memblock_reserve(alloc, size);
1303 ptr = phys_to_virt(alloc);
1304 memset(ptr, 0, size);
1305
1306 /*
1307 * The min_count is set to 0 so that bootmem allocated blocks
1308 * are never reported as leaks. This is because many of these blocks
1309 * are only referred via the physical address which is not
1310 * looked up by kmemleak.
1311 */
1312 kmemleak_alloc(ptr, size, 0, 0);
1313
1314 return ptr;
1315 }
1316
1317 /**
1318 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1319 * @size: size of memory block to be allocated in bytes
1320 * @align: alignment of the region and block's size
1321 * @min_addr: the lower bound of the memory region from where the allocation
1322 * is preferred (phys address)
1323 * @max_addr: the upper bound of the memory region from where the allocation
1324 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1325 * allocate only from memory limited by memblock.current_limit value
1326 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1327 *
1328 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1329 * additional debug information (including caller info), if enabled.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
memblock_virt_alloc_try_nid_nopanic(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1334 void * __init memblock_virt_alloc_try_nid_nopanic(
1335 phys_addr_t size, phys_addr_t align,
1336 phys_addr_t min_addr, phys_addr_t max_addr,
1337 int nid)
1338 {
1339 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1340 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1341 (u64)max_addr, (void *)_RET_IP_);
1342 return memblock_virt_alloc_internal(size, align, min_addr,
1343 max_addr, nid);
1344 }
1345
1346 /**
1347 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1348 * @size: size of memory block to be allocated in bytes
1349 * @align: alignment of the region and block's size
1350 * @min_addr: the lower bound of the memory region from where the allocation
1351 * is preferred (phys address)
1352 * @max_addr: the upper bound of the memory region from where the allocation
1353 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1354 * allocate only from memory limited by memblock.current_limit value
1355 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1356 *
1357 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1358 * which provides debug information (including caller info), if enabled,
1359 * and panics if the request can not be satisfied.
1360 *
1361 * RETURNS:
1362 * Virtual address of allocated memory block on success, NULL on failure.
1363 */
memblock_virt_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1364 void * __init memblock_virt_alloc_try_nid(
1365 phys_addr_t size, phys_addr_t align,
1366 phys_addr_t min_addr, phys_addr_t max_addr,
1367 int nid)
1368 {
1369 void *ptr;
1370
1371 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1372 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1373 (u64)max_addr, (void *)_RET_IP_);
1374 ptr = memblock_virt_alloc_internal(size, align,
1375 min_addr, max_addr, nid);
1376 if (ptr)
1377 return ptr;
1378
1379 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1380 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1381 (u64)max_addr);
1382 return NULL;
1383 }
1384
1385 /**
1386 * __memblock_free_early - free boot memory block
1387 * @base: phys starting address of the boot memory block
1388 * @size: size of the boot memory block in bytes
1389 *
1390 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1391 * The freeing memory will not be released to the buddy allocator.
1392 */
__memblock_free_early(phys_addr_t base,phys_addr_t size)1393 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1394 {
1395 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1396 __func__, (u64)base, (u64)base + size - 1,
1397 (void *)_RET_IP_);
1398 kmemleak_free_part_phys(base, size);
1399 memblock_remove_range(&memblock.reserved, base, size);
1400 }
1401
1402 /*
1403 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1404 * @addr: phys starting address of the boot memory block
1405 * @size: size of the boot memory block in bytes
1406 *
1407 * This is only useful when the bootmem allocator has already been torn
1408 * down, but we are still initializing the system. Pages are released directly
1409 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1410 */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1411 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1412 {
1413 u64 cursor, end;
1414
1415 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1416 __func__, (u64)base, (u64)base + size - 1,
1417 (void *)_RET_IP_);
1418 kmemleak_free_part_phys(base, size);
1419 cursor = PFN_UP(base);
1420 end = PFN_DOWN(base + size);
1421
1422 for (; cursor < end; cursor++) {
1423 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1424 totalram_pages++;
1425 }
1426 }
1427
1428 /*
1429 * Remaining API functions
1430 */
1431
memblock_phys_mem_size(void)1432 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1433 {
1434 return memblock.memory.total_size;
1435 }
1436
memblock_reserved_size(void)1437 phys_addr_t __init_memblock memblock_reserved_size(void)
1438 {
1439 return memblock.reserved.total_size;
1440 }
1441
memblock_mem_size(unsigned long limit_pfn)1442 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1443 {
1444 unsigned long pages = 0;
1445 struct memblock_region *r;
1446 unsigned long start_pfn, end_pfn;
1447
1448 for_each_memblock(memory, r) {
1449 start_pfn = memblock_region_memory_base_pfn(r);
1450 end_pfn = memblock_region_memory_end_pfn(r);
1451 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1452 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1453 pages += end_pfn - start_pfn;
1454 }
1455
1456 return PFN_PHYS(pages);
1457 }
1458
1459 /* lowest address */
memblock_start_of_DRAM(void)1460 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1461 {
1462 return memblock.memory.regions[0].base;
1463 }
1464
memblock_end_of_DRAM(void)1465 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1466 {
1467 int idx = memblock.memory.cnt - 1;
1468
1469 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1470 }
1471
__find_max_addr(phys_addr_t limit)1472 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1473 {
1474 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1475 struct memblock_region *r;
1476
1477 /*
1478 * translate the memory @limit size into the max address within one of
1479 * the memory memblock regions, if the @limit exceeds the total size
1480 * of those regions, max_addr will keep original value ULLONG_MAX
1481 */
1482 for_each_memblock(memory, r) {
1483 if (limit <= r->size) {
1484 max_addr = r->base + limit;
1485 break;
1486 }
1487 limit -= r->size;
1488 }
1489
1490 return max_addr;
1491 }
1492
memblock_enforce_memory_limit(phys_addr_t limit)1493 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1494 {
1495 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1496
1497 if (!limit)
1498 return;
1499
1500 max_addr = __find_max_addr(limit);
1501
1502 /* @limit exceeds the total size of the memory, do nothing */
1503 if (max_addr == (phys_addr_t)ULLONG_MAX)
1504 return;
1505
1506 /* truncate both memory and reserved regions */
1507 memblock_remove_range(&memblock.memory, max_addr,
1508 (phys_addr_t)ULLONG_MAX);
1509 memblock_remove_range(&memblock.reserved, max_addr,
1510 (phys_addr_t)ULLONG_MAX);
1511 }
1512
memblock_mem_limit_remove_map(phys_addr_t limit)1513 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1514 {
1515 struct memblock_type *type = &memblock.memory;
1516 phys_addr_t max_addr;
1517 int i, ret, start_rgn, end_rgn;
1518
1519 if (!limit)
1520 return;
1521
1522 max_addr = __find_max_addr(limit);
1523
1524 /* @limit exceeds the total size of the memory, do nothing */
1525 if (max_addr == (phys_addr_t)ULLONG_MAX)
1526 return;
1527
1528 ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1529 &start_rgn, &end_rgn);
1530 if (ret)
1531 return;
1532
1533 /* remove all the MAP regions above the limit */
1534 for (i = end_rgn - 1; i >= start_rgn; i--) {
1535 if (!memblock_is_nomap(&type->regions[i]))
1536 memblock_remove_region(type, i);
1537 }
1538 /* truncate the reserved regions */
1539 memblock_remove_range(&memblock.reserved, max_addr,
1540 (phys_addr_t)ULLONG_MAX);
1541 }
1542
memblock_search(struct memblock_type * type,phys_addr_t addr)1543 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1544 {
1545 unsigned int left = 0, right = type->cnt;
1546
1547 do {
1548 unsigned int mid = (right + left) / 2;
1549
1550 if (addr < type->regions[mid].base)
1551 right = mid;
1552 else if (addr >= (type->regions[mid].base +
1553 type->regions[mid].size))
1554 left = mid + 1;
1555 else
1556 return mid;
1557 } while (left < right);
1558 return -1;
1559 }
1560
memblock_is_reserved(phys_addr_t addr)1561 bool __init memblock_is_reserved(phys_addr_t addr)
1562 {
1563 return memblock_search(&memblock.reserved, addr) != -1;
1564 }
1565
memblock_is_memory(phys_addr_t addr)1566 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1567 {
1568 return memblock_search(&memblock.memory, addr) != -1;
1569 }
1570
memblock_is_map_memory(phys_addr_t addr)1571 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1572 {
1573 int i = memblock_search(&memblock.memory, addr);
1574
1575 if (i == -1)
1576 return false;
1577 return !memblock_is_nomap(&memblock.memory.regions[i]);
1578 }
1579
1580 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1581 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1582 unsigned long *start_pfn, unsigned long *end_pfn)
1583 {
1584 struct memblock_type *type = &memblock.memory;
1585 int mid = memblock_search(type, PFN_PHYS(pfn));
1586
1587 if (mid == -1)
1588 return -1;
1589
1590 *start_pfn = PFN_DOWN(type->regions[mid].base);
1591 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1592
1593 return type->regions[mid].nid;
1594 }
1595 #endif
1596
1597 /**
1598 * memblock_is_region_memory - check if a region is a subset of memory
1599 * @base: base of region to check
1600 * @size: size of region to check
1601 *
1602 * Check if the region [@base, @base+@size) is a subset of a memory block.
1603 *
1604 * RETURNS:
1605 * 0 if false, non-zero if true
1606 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1607 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1608 {
1609 int idx = memblock_search(&memblock.memory, base);
1610 phys_addr_t end = base + memblock_cap_size(base, &size);
1611
1612 if (idx == -1)
1613 return 0;
1614 return memblock.memory.regions[idx].base <= base &&
1615 (memblock.memory.regions[idx].base +
1616 memblock.memory.regions[idx].size) >= end;
1617 }
1618
1619 /**
1620 * memblock_is_region_reserved - check if a region intersects reserved memory
1621 * @base: base of region to check
1622 * @size: size of region to check
1623 *
1624 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1625 *
1626 * RETURNS:
1627 * True if they intersect, false if not.
1628 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1629 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1630 {
1631 memblock_cap_size(base, &size);
1632 return memblock_overlaps_region(&memblock.reserved, base, size);
1633 }
1634
memblock_trim_memory(phys_addr_t align)1635 void __init_memblock memblock_trim_memory(phys_addr_t align)
1636 {
1637 phys_addr_t start, end, orig_start, orig_end;
1638 struct memblock_region *r;
1639
1640 for_each_memblock(memory, r) {
1641 orig_start = r->base;
1642 orig_end = r->base + r->size;
1643 start = round_up(orig_start, align);
1644 end = round_down(orig_end, align);
1645
1646 if (start == orig_start && end == orig_end)
1647 continue;
1648
1649 if (start < end) {
1650 r->base = start;
1651 r->size = end - start;
1652 } else {
1653 memblock_remove_region(&memblock.memory,
1654 r - memblock.memory.regions);
1655 r--;
1656 }
1657 }
1658 }
1659
memblock_set_current_limit(phys_addr_t limit)1660 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1661 {
1662 memblock.current_limit = limit;
1663 }
1664
memblock_get_current_limit(void)1665 phys_addr_t __init_memblock memblock_get_current_limit(void)
1666 {
1667 return memblock.current_limit;
1668 }
1669
memblock_dump(struct memblock_type * type,char * name)1670 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1671 {
1672 unsigned long long base, size;
1673 unsigned long flags;
1674 int idx;
1675 struct memblock_region *rgn;
1676
1677 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1678
1679 for_each_memblock_type(type, rgn) {
1680 char nid_buf[32] = "";
1681
1682 base = rgn->base;
1683 size = rgn->size;
1684 flags = rgn->flags;
1685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1686 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1687 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1688 memblock_get_region_node(rgn));
1689 #endif
1690 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1691 name, idx, base, base + size - 1, size, nid_buf, flags);
1692 }
1693 }
1694
1695 extern unsigned long __init_memblock
memblock_reserved_memory_within(phys_addr_t start_addr,phys_addr_t end_addr)1696 memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
1697 {
1698 struct memblock_region *rgn;
1699 unsigned long size = 0;
1700 int idx;
1701
1702 for_each_memblock_type((&memblock.reserved), rgn) {
1703 phys_addr_t start, end;
1704
1705 if (rgn->base + rgn->size < start_addr)
1706 continue;
1707 if (rgn->base > end_addr)
1708 continue;
1709
1710 start = rgn->base;
1711 end = start + rgn->size;
1712 size += end - start;
1713 }
1714
1715 return size;
1716 }
1717
__memblock_dump_all(void)1718 void __init_memblock __memblock_dump_all(void)
1719 {
1720 pr_info("MEMBLOCK configuration:\n");
1721 pr_info(" memory size = %#llx reserved size = %#llx\n",
1722 (unsigned long long)memblock.memory.total_size,
1723 (unsigned long long)memblock.reserved.total_size);
1724
1725 memblock_dump(&memblock.memory, "memory");
1726 memblock_dump(&memblock.reserved, "reserved");
1727 }
1728
memblock_allow_resize(void)1729 void __init memblock_allow_resize(void)
1730 {
1731 memblock_can_resize = 1;
1732 }
1733
early_memblock(char * p)1734 static int __init early_memblock(char *p)
1735 {
1736 if (p && strstr(p, "debug"))
1737 memblock_debug = 1;
1738 return 0;
1739 }
1740 early_param("memblock", early_memblock);
1741
1742 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1743
memblock_debug_show(struct seq_file * m,void * private)1744 static int memblock_debug_show(struct seq_file *m, void *private)
1745 {
1746 struct memblock_type *type = m->private;
1747 struct memblock_region *reg;
1748 int i;
1749
1750 for (i = 0; i < type->cnt; i++) {
1751 reg = &type->regions[i];
1752 seq_printf(m, "%4d: ", i);
1753 if (sizeof(phys_addr_t) == 4)
1754 seq_printf(m, "0x%08lx..0x%08lx\n",
1755 (unsigned long)reg->base,
1756 (unsigned long)(reg->base + reg->size - 1));
1757 else
1758 seq_printf(m, "0x%016llx..0x%016llx\n",
1759 (unsigned long long)reg->base,
1760 (unsigned long long)(reg->base + reg->size - 1));
1761
1762 }
1763 return 0;
1764 }
1765
memblock_debug_open(struct inode * inode,struct file * file)1766 static int memblock_debug_open(struct inode *inode, struct file *file)
1767 {
1768 return single_open(file, memblock_debug_show, inode->i_private);
1769 }
1770
1771 static const struct file_operations memblock_debug_fops = {
1772 .open = memblock_debug_open,
1773 .read = seq_read,
1774 .llseek = seq_lseek,
1775 .release = single_release,
1776 };
1777
memblock_init_debugfs(void)1778 static int __init memblock_init_debugfs(void)
1779 {
1780 struct dentry *root = debugfs_create_dir("memblock", NULL);
1781 if (!root)
1782 return -ENXIO;
1783 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1784 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1785 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1786 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1787 #endif
1788
1789 return 0;
1790 }
1791 __initcall(memblock_init_debugfs);
1792
1793 #endif /* CONFIG_DEBUG_FS */
1794