• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 /*
39  * By default transparent hugepage support is disabled in order that avoid
40  * to risk increase the memory footprint of applications without a guaranteed
41  * benefit. When transparent hugepage support is enabled, is for all mappings,
42  * and khugepaged scans all mappings.
43  * Defrag is invoked by khugepaged hugepage allocations and by page faults
44  * for all hugepage allocations.
45  */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56 
57 static struct shrinker deferred_split_shrinker;
58 
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61 
get_huge_zero_page(void)62 static struct page *get_huge_zero_page(void)
63 {
64 	struct page *zero_page;
65 retry:
66 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 		return READ_ONCE(huge_zero_page);
68 
69 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 			HPAGE_PMD_ORDER);
71 	if (!zero_page) {
72 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 		return NULL;
74 	}
75 	count_vm_event(THP_ZERO_PAGE_ALLOC);
76 	preempt_disable();
77 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 		preempt_enable();
79 		__free_pages(zero_page, compound_order(zero_page));
80 		goto retry;
81 	}
82 
83 	/* We take additional reference here. It will be put back by shrinker */
84 	atomic_set(&huge_zero_refcount, 2);
85 	preempt_enable();
86 	return READ_ONCE(huge_zero_page);
87 }
88 
put_huge_zero_page(void)89 static void put_huge_zero_page(void)
90 {
91 	/*
92 	 * Counter should never go to zero here. Only shrinker can put
93 	 * last reference.
94 	 */
95 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97 
mm_get_huge_zero_page(struct mm_struct * mm)98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 		return READ_ONCE(huge_zero_page);
102 
103 	if (!get_huge_zero_page())
104 		return NULL;
105 
106 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 		put_huge_zero_page();
108 
109 	return READ_ONCE(huge_zero_page);
110 }
111 
mm_put_huge_zero_page(struct mm_struct * mm)112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 		put_huge_zero_page();
116 }
117 
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 					struct shrink_control *sc)
120 {
121 	/* we can free zero page only if last reference remains */
122 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124 
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 				       struct shrink_control *sc)
127 {
128 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 		struct page *zero_page = xchg(&huge_zero_page, NULL);
130 		BUG_ON(zero_page == NULL);
131 		__free_pages(zero_page, compound_order(zero_page));
132 		return HPAGE_PMD_NR;
133 	}
134 
135 	return 0;
136 }
137 
138 static struct shrinker huge_zero_page_shrinker = {
139 	.count_objects = shrink_huge_zero_page_count,
140 	.scan_objects = shrink_huge_zero_page_scan,
141 	.seeks = DEFAULT_SEEKS,
142 };
143 
144 #ifdef CONFIG_SYSFS
145 
triple_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag enabled,enum transparent_hugepage_flag deferred,enum transparent_hugepage_flag req_madv)146 static ssize_t triple_flag_store(struct kobject *kobj,
147 				 struct kobj_attribute *attr,
148 				 const char *buf, size_t count,
149 				 enum transparent_hugepage_flag enabled,
150 				 enum transparent_hugepage_flag deferred,
151 				 enum transparent_hugepage_flag req_madv)
152 {
153 	if (!memcmp("defer", buf,
154 		    min(sizeof("defer")-1, count))) {
155 		if (enabled == deferred)
156 			return -EINVAL;
157 		clear_bit(enabled, &transparent_hugepage_flags);
158 		clear_bit(req_madv, &transparent_hugepage_flags);
159 		set_bit(deferred, &transparent_hugepage_flags);
160 	} else if (!memcmp("always", buf,
161 		    min(sizeof("always")-1, count))) {
162 		clear_bit(deferred, &transparent_hugepage_flags);
163 		clear_bit(req_madv, &transparent_hugepage_flags);
164 		set_bit(enabled, &transparent_hugepage_flags);
165 	} else if (!memcmp("madvise", buf,
166 			   min(sizeof("madvise")-1, count))) {
167 		clear_bit(enabled, &transparent_hugepage_flags);
168 		clear_bit(deferred, &transparent_hugepage_flags);
169 		set_bit(req_madv, &transparent_hugepage_flags);
170 	} else if (!memcmp("never", buf,
171 			   min(sizeof("never")-1, count))) {
172 		clear_bit(enabled, &transparent_hugepage_flags);
173 		clear_bit(req_madv, &transparent_hugepage_flags);
174 		clear_bit(deferred, &transparent_hugepage_flags);
175 	} else
176 		return -EINVAL;
177 
178 	return count;
179 }
180 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)181 static ssize_t enabled_show(struct kobject *kobj,
182 			    struct kobj_attribute *attr, char *buf)
183 {
184 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 		return sprintf(buf, "[always] madvise never\n");
186 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 		return sprintf(buf, "always [madvise] never\n");
188 	else
189 		return sprintf(buf, "always madvise [never]\n");
190 }
191 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)192 static ssize_t enabled_store(struct kobject *kobj,
193 			     struct kobj_attribute *attr,
194 			     const char *buf, size_t count)
195 {
196 	ssize_t ret;
197 
198 	ret = triple_flag_store(kobj, attr, buf, count,
199 				TRANSPARENT_HUGEPAGE_FLAG,
200 				TRANSPARENT_HUGEPAGE_FLAG,
201 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202 
203 	if (ret > 0) {
204 		int err = start_stop_khugepaged();
205 		if (err)
206 			ret = err;
207 	}
208 
209 	return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 	__ATTR(enabled, 0644, enabled_show, enabled_store);
213 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 				struct kobj_attribute *attr, char *buf,
216 				enum transparent_hugepage_flag flag)
217 {
218 	return sprintf(buf, "%d\n",
219 		       !!test_bit(flag, &transparent_hugepage_flags));
220 }
221 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 				 struct kobj_attribute *attr,
224 				 const char *buf, size_t count,
225 				 enum transparent_hugepage_flag flag)
226 {
227 	unsigned long value;
228 	int ret;
229 
230 	ret = kstrtoul(buf, 10, &value);
231 	if (ret < 0)
232 		return ret;
233 	if (value > 1)
234 		return -EINVAL;
235 
236 	if (value)
237 		set_bit(flag, &transparent_hugepage_flags);
238 	else
239 		clear_bit(flag, &transparent_hugepage_flags);
240 
241 	return count;
242 }
243 
244 /*
245  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247  * memory just to allocate one more hugepage.
248  */
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)249 static ssize_t defrag_show(struct kobject *kobj,
250 			   struct kobj_attribute *attr, char *buf)
251 {
252 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 		return sprintf(buf, "[always] defer madvise never\n");
254 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 		return sprintf(buf, "always [defer] madvise never\n");
256 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 		return sprintf(buf, "always defer [madvise] never\n");
258 	else
259 		return sprintf(buf, "always defer madvise [never]\n");
260 
261 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)262 static ssize_t defrag_store(struct kobject *kobj,
263 			    struct kobj_attribute *attr,
264 			    const char *buf, size_t count)
265 {
266 	return triple_flag_store(kobj, attr, buf, count,
267 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 	__ATTR(defrag, 0644, defrag_show, defrag_store);
273 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 		struct kobj_attribute *attr, char *buf)
276 {
277 	return single_hugepage_flag_show(kobj, attr, buf,
278 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 		struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 	return single_hugepage_flag_store(kobj, attr, buf, count,
284 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 #ifdef CONFIG_DEBUG_VM
debug_cow_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)289 static ssize_t debug_cow_show(struct kobject *kobj,
290 				struct kobj_attribute *attr, char *buf)
291 {
292 	return single_hugepage_flag_show(kobj, attr, buf,
293 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294 }
debug_cow_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)295 static ssize_t debug_cow_store(struct kobject *kobj,
296 			       struct kobj_attribute *attr,
297 			       const char *buf, size_t count)
298 {
299 	return single_hugepage_flag_store(kobj, attr, buf, count,
300 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301 }
302 static struct kobj_attribute debug_cow_attr =
303 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
305 
306 static struct attribute *hugepage_attr[] = {
307 	&enabled_attr.attr,
308 	&defrag_attr.attr,
309 	&use_zero_page_attr.attr,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 	&shmem_enabled_attr.attr,
312 #endif
313 #ifdef CONFIG_DEBUG_VM
314 	&debug_cow_attr.attr,
315 #endif
316 	NULL,
317 };
318 
319 static struct attribute_group hugepage_attr_group = {
320 	.attrs = hugepage_attr,
321 };
322 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)323 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
324 {
325 	int err;
326 
327 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
328 	if (unlikely(!*hugepage_kobj)) {
329 		pr_err("failed to create transparent hugepage kobject\n");
330 		return -ENOMEM;
331 	}
332 
333 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
334 	if (err) {
335 		pr_err("failed to register transparent hugepage group\n");
336 		goto delete_obj;
337 	}
338 
339 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
340 	if (err) {
341 		pr_err("failed to register transparent hugepage group\n");
342 		goto remove_hp_group;
343 	}
344 
345 	return 0;
346 
347 remove_hp_group:
348 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
349 delete_obj:
350 	kobject_put(*hugepage_kobj);
351 	return err;
352 }
353 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)354 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
355 {
356 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
357 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
358 	kobject_put(hugepage_kobj);
359 }
360 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)361 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
362 {
363 	return 0;
364 }
365 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)366 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 }
369 #endif /* CONFIG_SYSFS */
370 
hugepage_init(void)371 static int __init hugepage_init(void)
372 {
373 	int err;
374 	struct kobject *hugepage_kobj;
375 
376 	if (!has_transparent_hugepage()) {
377 		transparent_hugepage_flags = 0;
378 		return -EINVAL;
379 	}
380 
381 	/*
382 	 * hugepages can't be allocated by the buddy allocator
383 	 */
384 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
385 	/*
386 	 * we use page->mapping and page->index in second tail page
387 	 * as list_head: assuming THP order >= 2
388 	 */
389 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
390 
391 	err = hugepage_init_sysfs(&hugepage_kobj);
392 	if (err)
393 		goto err_sysfs;
394 
395 	err = khugepaged_init();
396 	if (err)
397 		goto err_slab;
398 
399 	err = register_shrinker(&huge_zero_page_shrinker);
400 	if (err)
401 		goto err_hzp_shrinker;
402 	err = register_shrinker(&deferred_split_shrinker);
403 	if (err)
404 		goto err_split_shrinker;
405 
406 	/*
407 	 * By default disable transparent hugepages on smaller systems,
408 	 * where the extra memory used could hurt more than TLB overhead
409 	 * is likely to save.  The admin can still enable it through /sys.
410 	 */
411 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412 		transparent_hugepage_flags = 0;
413 		return 0;
414 	}
415 
416 	err = start_stop_khugepaged();
417 	if (err)
418 		goto err_khugepaged;
419 
420 	return 0;
421 err_khugepaged:
422 	unregister_shrinker(&deferred_split_shrinker);
423 err_split_shrinker:
424 	unregister_shrinker(&huge_zero_page_shrinker);
425 err_hzp_shrinker:
426 	khugepaged_destroy();
427 err_slab:
428 	hugepage_exit_sysfs(hugepage_kobj);
429 err_sysfs:
430 	return err;
431 }
432 subsys_initcall(hugepage_init);
433 
setup_transparent_hugepage(char * str)434 static int __init setup_transparent_hugepage(char *str)
435 {
436 	int ret = 0;
437 	if (!str)
438 		goto out;
439 	if (!strcmp(str, "always")) {
440 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
441 			&transparent_hugepage_flags);
442 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
443 			  &transparent_hugepage_flags);
444 		ret = 1;
445 	} else if (!strcmp(str, "madvise")) {
446 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
447 			  &transparent_hugepage_flags);
448 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
449 			&transparent_hugepage_flags);
450 		ret = 1;
451 	} else if (!strcmp(str, "never")) {
452 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			  &transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	}
458 out:
459 	if (!ret)
460 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 	return ret;
462 }
463 __setup("transparent_hugepage=", setup_transparent_hugepage);
464 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)465 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
466 {
467 	if (likely(vma->vm_flags & VM_WRITE))
468 		pmd = pmd_mkwrite(pmd);
469 	return pmd;
470 }
471 
page_deferred_list(struct page * page)472 static inline struct list_head *page_deferred_list(struct page *page)
473 {
474 	/*
475 	 * ->lru in the tail pages is occupied by compound_head.
476 	 * Let's use ->mapping + ->index in the second tail page as list_head.
477 	 */
478 	return (struct list_head *)&page[2].mapping;
479 }
480 
prep_transhuge_page(struct page * page)481 void prep_transhuge_page(struct page *page)
482 {
483 	/*
484 	 * we use page->mapping and page->indexlru in second tail page
485 	 * as list_head: assuming THP order >= 2
486 	 */
487 
488 	INIT_LIST_HEAD(page_deferred_list(page));
489 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
490 }
491 
__thp_get_unmapped_area(struct file * filp,unsigned long len,loff_t off,unsigned long flags,unsigned long size)492 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
493 		loff_t off, unsigned long flags, unsigned long size)
494 {
495 	unsigned long addr;
496 	loff_t off_end = off + len;
497 	loff_t off_align = round_up(off, size);
498 	unsigned long len_pad;
499 
500 	if (off_end <= off_align || (off_end - off_align) < size)
501 		return 0;
502 
503 	len_pad = len + size;
504 	if (len_pad < len || (off + len_pad) < off)
505 		return 0;
506 
507 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
508 					      off >> PAGE_SHIFT, flags);
509 	if (IS_ERR_VALUE(addr))
510 		return 0;
511 
512 	addr += (off - addr) & (size - 1);
513 	return addr;
514 }
515 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)516 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
517 		unsigned long len, unsigned long pgoff, unsigned long flags)
518 {
519 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
520 
521 	if (addr)
522 		goto out;
523 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
524 		goto out;
525 
526 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
527 	if (addr)
528 		return addr;
529 
530  out:
531 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
532 }
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
534 
__do_huge_pmd_anonymous_page(struct fault_env * fe,struct page * page,gfp_t gfp)535 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
536 		gfp_t gfp)
537 {
538 	struct vm_area_struct *vma = fe->vma;
539 	struct mem_cgroup *memcg;
540 	pgtable_t pgtable;
541 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
542 
543 	VM_BUG_ON_PAGE(!PageCompound(page), page);
544 
545 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 		put_page(page);
547 		count_vm_event(THP_FAULT_FALLBACK);
548 		return VM_FAULT_FALLBACK;
549 	}
550 
551 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
552 	if (unlikely(!pgtable)) {
553 		mem_cgroup_cancel_charge(page, memcg, true);
554 		put_page(page);
555 		return VM_FAULT_OOM;
556 	}
557 
558 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
559 	/*
560 	 * The memory barrier inside __SetPageUptodate makes sure that
561 	 * clear_huge_page writes become visible before the set_pmd_at()
562 	 * write.
563 	 */
564 	__SetPageUptodate(page);
565 
566 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
567 	if (unlikely(!pmd_none(*fe->pmd))) {
568 		spin_unlock(fe->ptl);
569 		mem_cgroup_cancel_charge(page, memcg, true);
570 		put_page(page);
571 		pte_free(vma->vm_mm, pgtable);
572 	} else {
573 		pmd_t entry;
574 
575 		/* Deliver the page fault to userland */
576 		if (userfaultfd_missing(vma)) {
577 			int ret;
578 
579 			spin_unlock(fe->ptl);
580 			mem_cgroup_cancel_charge(page, memcg, true);
581 			put_page(page);
582 			pte_free(vma->vm_mm, pgtable);
583 			ret = handle_userfault(fe, VM_UFFD_MISSING);
584 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
585 			return ret;
586 		}
587 
588 		entry = mk_huge_pmd(page, vma->vm_page_prot);
589 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590 		page_add_new_anon_rmap(page, vma, haddr, true);
591 		mem_cgroup_commit_charge(page, memcg, false, true);
592 		lru_cache_add_active_or_unevictable(page, vma);
593 		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
594 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
595 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
596 		atomic_long_inc(&vma->vm_mm->nr_ptes);
597 		spin_unlock(fe->ptl);
598 		count_vm_event(THP_FAULT_ALLOC);
599 	}
600 
601 	return 0;
602 }
603 
604 /*
605  * If THP defrag is set to always then directly reclaim/compact as necessary
606  * If set to defer then do only background reclaim/compact and defer to khugepaged
607  * If set to madvise and the VMA is flagged then directly reclaim/compact
608  * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
609  */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)610 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
611 {
612 	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
613 
614 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
615 				&transparent_hugepage_flags) && vma_madvised)
616 		return GFP_TRANSHUGE;
617 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
618 						&transparent_hugepage_flags))
619 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
620 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
621 						&transparent_hugepage_flags))
622 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
623 
624 	return GFP_TRANSHUGE_LIGHT;
625 }
626 
627 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)628 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630 		struct page *zero_page)
631 {
632 	pmd_t entry;
633 	if (!pmd_none(*pmd))
634 		return false;
635 	entry = mk_pmd(zero_page, vma->vm_page_prot);
636 	entry = pmd_mkhuge(entry);
637 	if (pgtable)
638 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
639 	set_pmd_at(mm, haddr, pmd, entry);
640 	atomic_long_inc(&mm->nr_ptes);
641 	return true;
642 }
643 
do_huge_pmd_anonymous_page(struct fault_env * fe)644 int do_huge_pmd_anonymous_page(struct fault_env *fe)
645 {
646 	struct vm_area_struct *vma = fe->vma;
647 	gfp_t gfp;
648 	struct page *page;
649 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
650 
651 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652 		return VM_FAULT_FALLBACK;
653 	if (unlikely(anon_vma_prepare(vma)))
654 		return VM_FAULT_OOM;
655 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656 		return VM_FAULT_OOM;
657 	if (!(fe->flags & FAULT_FLAG_WRITE) &&
658 			!mm_forbids_zeropage(vma->vm_mm) &&
659 			transparent_hugepage_use_zero_page()) {
660 		pgtable_t pgtable;
661 		struct page *zero_page;
662 		bool set;
663 		int ret;
664 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
665 		if (unlikely(!pgtable))
666 			return VM_FAULT_OOM;
667 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
668 		if (unlikely(!zero_page)) {
669 			pte_free(vma->vm_mm, pgtable);
670 			count_vm_event(THP_FAULT_FALLBACK);
671 			return VM_FAULT_FALLBACK;
672 		}
673 		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 		ret = 0;
675 		set = false;
676 		if (pmd_none(*fe->pmd)) {
677 			if (userfaultfd_missing(vma)) {
678 				spin_unlock(fe->ptl);
679 				ret = handle_userfault(fe, VM_UFFD_MISSING);
680 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
681 			} else {
682 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
683 						   haddr, fe->pmd, zero_page);
684 				spin_unlock(fe->ptl);
685 				set = true;
686 			}
687 		} else
688 			spin_unlock(fe->ptl);
689 		if (!set)
690 			pte_free(vma->vm_mm, pgtable);
691 		return ret;
692 	}
693 	gfp = alloc_hugepage_direct_gfpmask(vma);
694 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 	if (unlikely(!page)) {
696 		count_vm_event(THP_FAULT_FALLBACK);
697 		return VM_FAULT_FALLBACK;
698 	}
699 	prep_transhuge_page(page);
700 	return __do_huge_pmd_anonymous_page(fe, page, gfp);
701 }
702 
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write)703 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
705 {
706 	struct mm_struct *mm = vma->vm_mm;
707 	pmd_t entry;
708 	spinlock_t *ptl;
709 
710 	ptl = pmd_lock(mm, pmd);
711 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
712 	if (pfn_t_devmap(pfn))
713 		entry = pmd_mkdevmap(entry);
714 	if (write) {
715 		entry = pmd_mkyoung(pmd_mkdirty(entry));
716 		entry = maybe_pmd_mkwrite(entry, vma);
717 	}
718 	set_pmd_at(mm, addr, pmd, entry);
719 	update_mmu_cache_pmd(vma, addr, pmd);
720 	spin_unlock(ptl);
721 }
722 
vmf_insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,bool write)723 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724 			pmd_t *pmd, pfn_t pfn, bool write)
725 {
726 	pgprot_t pgprot = vma->vm_page_prot;
727 	/*
728 	 * If we had pmd_special, we could avoid all these restrictions,
729 	 * but we need to be consistent with PTEs and architectures that
730 	 * can't support a 'special' bit.
731 	 */
732 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
733 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
734 						(VM_PFNMAP|VM_MIXEDMAP));
735 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736 	BUG_ON(!pfn_t_devmap(pfn));
737 
738 	if (addr < vma->vm_start || addr >= vma->vm_end)
739 		return VM_FAULT_SIGBUS;
740 	if (track_pfn_insert(vma, &pgprot, pfn))
741 		return VM_FAULT_SIGBUS;
742 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
743 	return VM_FAULT_NOPAGE;
744 }
745 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
746 
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)747 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
748 		pmd_t *pmd, int flags)
749 {
750 	pmd_t _pmd;
751 
752 	_pmd = pmd_mkyoung(*pmd);
753 	if (flags & FOLL_WRITE)
754 		_pmd = pmd_mkdirty(_pmd);
755 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
756 				pmd, _pmd, flags & FOLL_WRITE))
757 		update_mmu_cache_pmd(vma, addr, pmd);
758 }
759 
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)760 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
761 		pmd_t *pmd, int flags)
762 {
763 	unsigned long pfn = pmd_pfn(*pmd);
764 	struct mm_struct *mm = vma->vm_mm;
765 	struct dev_pagemap *pgmap;
766 	struct page *page;
767 
768 	assert_spin_locked(pmd_lockptr(mm, pmd));
769 
770 	/*
771 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
772 	 * not be in this function with `flags & FOLL_COW` set.
773 	 */
774 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
775 
776 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
777 		return NULL;
778 
779 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
780 		/* pass */;
781 	else
782 		return NULL;
783 
784 	if (flags & FOLL_TOUCH)
785 		touch_pmd(vma, addr, pmd, flags);
786 
787 	/*
788 	 * device mapped pages can only be returned if the
789 	 * caller will manage the page reference count.
790 	 */
791 	if (!(flags & FOLL_GET))
792 		return ERR_PTR(-EEXIST);
793 
794 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
795 	pgmap = get_dev_pagemap(pfn, NULL);
796 	if (!pgmap)
797 		return ERR_PTR(-EFAULT);
798 	page = pfn_to_page(pfn);
799 	get_page(page);
800 	put_dev_pagemap(pgmap);
801 
802 	return page;
803 }
804 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)805 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
806 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
807 		  struct vm_area_struct *vma)
808 {
809 	spinlock_t *dst_ptl, *src_ptl;
810 	struct page *src_page;
811 	pmd_t pmd;
812 	pgtable_t pgtable = NULL;
813 	int ret = -ENOMEM;
814 
815 	/* Skip if can be re-fill on fault */
816 	if (!vma_is_anonymous(vma))
817 		return 0;
818 
819 	pgtable = pte_alloc_one(dst_mm, addr);
820 	if (unlikely(!pgtable))
821 		goto out;
822 
823 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
824 	src_ptl = pmd_lockptr(src_mm, src_pmd);
825 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
826 
827 	ret = -EAGAIN;
828 	pmd = *src_pmd;
829 	if (unlikely(!pmd_trans_huge(pmd))) {
830 		pte_free(dst_mm, pgtable);
831 		goto out_unlock;
832 	}
833 	/*
834 	 * When page table lock is held, the huge zero pmd should not be
835 	 * under splitting since we don't split the page itself, only pmd to
836 	 * a page table.
837 	 */
838 	if (is_huge_zero_pmd(pmd)) {
839 		struct page *zero_page;
840 		/*
841 		 * get_huge_zero_page() will never allocate a new page here,
842 		 * since we already have a zero page to copy. It just takes a
843 		 * reference.
844 		 */
845 		zero_page = mm_get_huge_zero_page(dst_mm);
846 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
847 				zero_page);
848 		ret = 0;
849 		goto out_unlock;
850 	}
851 
852 	src_page = pmd_page(pmd);
853 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
854 	get_page(src_page);
855 	page_dup_rmap(src_page, true);
856 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
857 	atomic_long_inc(&dst_mm->nr_ptes);
858 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
859 
860 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
861 	pmd = pmd_mkold(pmd_wrprotect(pmd));
862 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
863 
864 	ret = 0;
865 out_unlock:
866 	spin_unlock(src_ptl);
867 	spin_unlock(dst_ptl);
868 out:
869 	return ret;
870 }
871 
huge_pmd_set_accessed(struct fault_env * fe,pmd_t orig_pmd)872 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
873 {
874 	pmd_t entry;
875 	unsigned long haddr;
876 	bool write = fe->flags & FAULT_FLAG_WRITE;
877 
878 	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
879 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
880 		goto unlock;
881 
882 	entry = pmd_mkyoung(orig_pmd);
883 	if (write)
884 		entry = pmd_mkdirty(entry);
885 	haddr = fe->address & HPAGE_PMD_MASK;
886 	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry, write))
887 		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
888 
889 unlock:
890 	spin_unlock(fe->ptl);
891 }
892 
do_huge_pmd_wp_page_fallback(struct fault_env * fe,pmd_t orig_pmd,struct page * page)893 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
894 		struct page *page)
895 {
896 	struct vm_area_struct *vma = fe->vma;
897 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
898 	struct mem_cgroup *memcg;
899 	pgtable_t pgtable;
900 	pmd_t _pmd;
901 	int ret = 0, i;
902 	struct page **pages;
903 	unsigned long mmun_start;	/* For mmu_notifiers */
904 	unsigned long mmun_end;		/* For mmu_notifiers */
905 
906 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
907 			GFP_KERNEL);
908 	if (unlikely(!pages)) {
909 		ret |= VM_FAULT_OOM;
910 		goto out;
911 	}
912 
913 	for (i = 0; i < HPAGE_PMD_NR; i++) {
914 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
915 					       __GFP_OTHER_NODE, vma,
916 					       fe->address, page_to_nid(page));
917 		if (unlikely(!pages[i] ||
918 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
919 				     GFP_KERNEL, &memcg, false))) {
920 			if (pages[i])
921 				put_page(pages[i]);
922 			while (--i >= 0) {
923 				memcg = (void *)page_private(pages[i]);
924 				set_page_private(pages[i], 0);
925 				mem_cgroup_cancel_charge(pages[i], memcg,
926 						false);
927 				put_page(pages[i]);
928 			}
929 			kfree(pages);
930 			ret |= VM_FAULT_OOM;
931 			goto out;
932 		}
933 		set_page_private(pages[i], (unsigned long)memcg);
934 	}
935 
936 	for (i = 0; i < HPAGE_PMD_NR; i++) {
937 		copy_user_highpage(pages[i], page + i,
938 				   haddr + PAGE_SIZE * i, vma);
939 		__SetPageUptodate(pages[i]);
940 		cond_resched();
941 	}
942 
943 	mmun_start = haddr;
944 	mmun_end   = haddr + HPAGE_PMD_SIZE;
945 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
946 
947 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
948 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
949 		goto out_free_pages;
950 	VM_BUG_ON_PAGE(!PageHead(page), page);
951 
952 	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
953 	/* leave pmd empty until pte is filled */
954 
955 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
956 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
957 
958 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
959 		pte_t entry;
960 		entry = mk_pte(pages[i], vma->vm_page_prot);
961 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
962 		memcg = (void *)page_private(pages[i]);
963 		set_page_private(pages[i], 0);
964 		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
965 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
966 		lru_cache_add_active_or_unevictable(pages[i], vma);
967 		fe->pte = pte_offset_map(&_pmd, haddr);
968 		VM_BUG_ON(!pte_none(*fe->pte));
969 		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
970 		pte_unmap(fe->pte);
971 	}
972 	kfree(pages);
973 
974 	smp_wmb(); /* make pte visible before pmd */
975 	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
976 	page_remove_rmap(page, true);
977 	spin_unlock(fe->ptl);
978 
979 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
980 
981 	ret |= VM_FAULT_WRITE;
982 	put_page(page);
983 
984 out:
985 	return ret;
986 
987 out_free_pages:
988 	spin_unlock(fe->ptl);
989 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
990 	for (i = 0; i < HPAGE_PMD_NR; i++) {
991 		memcg = (void *)page_private(pages[i]);
992 		set_page_private(pages[i], 0);
993 		mem_cgroup_cancel_charge(pages[i], memcg, false);
994 		put_page(pages[i]);
995 	}
996 	kfree(pages);
997 	goto out;
998 }
999 
do_huge_pmd_wp_page(struct fault_env * fe,pmd_t orig_pmd)1000 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1001 {
1002 	struct vm_area_struct *vma = fe->vma;
1003 	struct page *page = NULL, *new_page;
1004 	struct mem_cgroup *memcg;
1005 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1006 	unsigned long mmun_start;	/* For mmu_notifiers */
1007 	unsigned long mmun_end;		/* For mmu_notifiers */
1008 	gfp_t huge_gfp;			/* for allocation and charge */
1009 	int ret = 0;
1010 
1011 	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1012 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1013 	if (is_huge_zero_pmd(orig_pmd))
1014 		goto alloc;
1015 	spin_lock(fe->ptl);
1016 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1017 		goto out_unlock;
1018 
1019 	page = pmd_page(orig_pmd);
1020 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1021 	/*
1022 	 * We can only reuse the page if nobody else maps the huge page or it's
1023 	 * part.
1024 	 */
1025 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1026 		pmd_t entry;
1027 		entry = pmd_mkyoung(orig_pmd);
1028 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1029 		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
1030 			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1031 		ret |= VM_FAULT_WRITE;
1032 		goto out_unlock;
1033 	}
1034 	get_page(page);
1035 	spin_unlock(fe->ptl);
1036 alloc:
1037 	if (transparent_hugepage_enabled(vma) &&
1038 	    !transparent_hugepage_debug_cow()) {
1039 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1040 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1041 	} else
1042 		new_page = NULL;
1043 
1044 	if (likely(new_page)) {
1045 		prep_transhuge_page(new_page);
1046 	} else {
1047 		if (!page) {
1048 			split_huge_pmd(vma, fe->pmd, fe->address);
1049 			ret |= VM_FAULT_FALLBACK;
1050 		} else {
1051 			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1052 			if (ret & VM_FAULT_OOM) {
1053 				split_huge_pmd(vma, fe->pmd, fe->address);
1054 				ret |= VM_FAULT_FALLBACK;
1055 			}
1056 			put_page(page);
1057 		}
1058 		count_vm_event(THP_FAULT_FALLBACK);
1059 		goto out;
1060 	}
1061 
1062 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1063 					huge_gfp, &memcg, true))) {
1064 		put_page(new_page);
1065 		split_huge_pmd(vma, fe->pmd, fe->address);
1066 		if (page)
1067 			put_page(page);
1068 		ret |= VM_FAULT_FALLBACK;
1069 		count_vm_event(THP_FAULT_FALLBACK);
1070 		goto out;
1071 	}
1072 
1073 	count_vm_event(THP_FAULT_ALLOC);
1074 
1075 	if (!page)
1076 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1077 	else
1078 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1079 	__SetPageUptodate(new_page);
1080 
1081 	mmun_start = haddr;
1082 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1083 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1084 
1085 	spin_lock(fe->ptl);
1086 	if (page)
1087 		put_page(page);
1088 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1089 		spin_unlock(fe->ptl);
1090 		mem_cgroup_cancel_charge(new_page, memcg, true);
1091 		put_page(new_page);
1092 		goto out_mn;
1093 	} else {
1094 		pmd_t entry;
1095 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1096 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1097 		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1098 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1099 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1100 		lru_cache_add_active_or_unevictable(new_page, vma);
1101 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1102 		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1103 		if (!page) {
1104 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1105 		} else {
1106 			VM_BUG_ON_PAGE(!PageHead(page), page);
1107 			page_remove_rmap(page, true);
1108 			put_page(page);
1109 		}
1110 		ret |= VM_FAULT_WRITE;
1111 	}
1112 	spin_unlock(fe->ptl);
1113 out_mn:
1114 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1115 out:
1116 	return ret;
1117 out_unlock:
1118 	spin_unlock(fe->ptl);
1119 	return ret;
1120 }
1121 
1122 /*
1123  * FOLL_FORCE can write to even unwritable pmd's, but only
1124  * after we've gone through a COW cycle and they are dirty.
1125  */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1126 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1127 {
1128 	return pmd_write(pmd) ||
1129 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1130 }
1131 
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1132 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1133 				   unsigned long addr,
1134 				   pmd_t *pmd,
1135 				   unsigned int flags)
1136 {
1137 	struct mm_struct *mm = vma->vm_mm;
1138 	struct page *page = NULL;
1139 
1140 	assert_spin_locked(pmd_lockptr(mm, pmd));
1141 
1142 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1143 		goto out;
1144 
1145 	/* Avoid dumping huge zero page */
1146 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1147 		return ERR_PTR(-EFAULT);
1148 
1149 	/* Full NUMA hinting faults to serialise migration in fault paths */
1150 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1151 		goto out;
1152 
1153 	page = pmd_page(*pmd);
1154 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1155 	if (flags & FOLL_TOUCH)
1156 		touch_pmd(vma, addr, pmd, flags);
1157 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1158 		/*
1159 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1160 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1161 		 *
1162 		 * For anon THP:
1163 		 *
1164 		 * In most cases the pmd is the only mapping of the page as we
1165 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1166 		 * writable private mappings in populate_vma_page_range().
1167 		 *
1168 		 * The only scenario when we have the page shared here is if we
1169 		 * mlocking read-only mapping shared over fork(). We skip
1170 		 * mlocking such pages.
1171 		 *
1172 		 * For file THP:
1173 		 *
1174 		 * We can expect PageDoubleMap() to be stable under page lock:
1175 		 * for file pages we set it in page_add_file_rmap(), which
1176 		 * requires page to be locked.
1177 		 */
1178 
1179 		if (PageAnon(page) && compound_mapcount(page) != 1)
1180 			goto skip_mlock;
1181 		if (PageDoubleMap(page) || !page->mapping)
1182 			goto skip_mlock;
1183 		if (!trylock_page(page))
1184 			goto skip_mlock;
1185 		lru_add_drain();
1186 		if (page->mapping && !PageDoubleMap(page))
1187 			mlock_vma_page(page);
1188 		unlock_page(page);
1189 	}
1190 skip_mlock:
1191 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1192 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1193 	if (flags & FOLL_GET)
1194 		get_page(page);
1195 
1196 out:
1197 	return page;
1198 }
1199 
1200 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct fault_env * fe,pmd_t pmd)1201 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1202 {
1203 	struct vm_area_struct *vma = fe->vma;
1204 	struct anon_vma *anon_vma = NULL;
1205 	struct page *page;
1206 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1207 	int page_nid = -1, this_nid = numa_node_id();
1208 	int target_nid, last_cpupid = -1;
1209 	bool page_locked;
1210 	bool migrated = false;
1211 	bool was_writable;
1212 	int flags = 0;
1213 
1214 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1215 	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1216 		goto out_unlock;
1217 
1218 	/*
1219 	 * If there are potential migrations, wait for completion and retry
1220 	 * without disrupting NUMA hinting information. Do not relock and
1221 	 * check_same as the page may no longer be mapped.
1222 	 */
1223 	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1224 		page = pmd_page(*fe->pmd);
1225 		if (!get_page_unless_zero(page))
1226 			goto out_unlock;
1227 		spin_unlock(fe->ptl);
1228 		wait_on_page_locked(page);
1229 		put_page(page);
1230 		goto out;
1231 	}
1232 
1233 	page = pmd_page(pmd);
1234 	BUG_ON(is_huge_zero_page(page));
1235 	page_nid = page_to_nid(page);
1236 	last_cpupid = page_cpupid_last(page);
1237 	count_vm_numa_event(NUMA_HINT_FAULTS);
1238 	if (page_nid == this_nid) {
1239 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1240 		flags |= TNF_FAULT_LOCAL;
1241 	}
1242 
1243 	/* See similar comment in do_numa_page for explanation */
1244 	if (!pmd_write(pmd))
1245 		flags |= TNF_NO_GROUP;
1246 
1247 	/*
1248 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1249 	 * page_table_lock if at all possible
1250 	 */
1251 	page_locked = trylock_page(page);
1252 	target_nid = mpol_misplaced(page, vma, haddr);
1253 	if (target_nid == -1) {
1254 		/* If the page was locked, there are no parallel migrations */
1255 		if (page_locked)
1256 			goto clear_pmdnuma;
1257 	}
1258 
1259 	/* Migration could have started since the pmd_trans_migrating check */
1260 	if (!page_locked) {
1261 		if (!get_page_unless_zero(page))
1262 			goto out_unlock;
1263 		spin_unlock(fe->ptl);
1264 		wait_on_page_locked(page);
1265 		put_page(page);
1266 		page_nid = -1;
1267 		goto out;
1268 	}
1269 
1270 	/*
1271 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1272 	 * to serialises splits
1273 	 */
1274 	get_page(page);
1275 	spin_unlock(fe->ptl);
1276 	anon_vma = page_lock_anon_vma_read(page);
1277 
1278 	/* Confirm the PMD did not change while page_table_lock was released */
1279 	spin_lock(fe->ptl);
1280 	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1281 		unlock_page(page);
1282 		put_page(page);
1283 		page_nid = -1;
1284 		goto out_unlock;
1285 	}
1286 
1287 	/* Bail if we fail to protect against THP splits for any reason */
1288 	if (unlikely(!anon_vma)) {
1289 		put_page(page);
1290 		page_nid = -1;
1291 		goto clear_pmdnuma;
1292 	}
1293 
1294 	/*
1295 	 * Migrate the THP to the requested node, returns with page unlocked
1296 	 * and access rights restored.
1297 	 */
1298 	spin_unlock(fe->ptl);
1299 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1300 				fe->pmd, pmd, fe->address, page, target_nid);
1301 	if (migrated) {
1302 		flags |= TNF_MIGRATED;
1303 		page_nid = target_nid;
1304 	} else
1305 		flags |= TNF_MIGRATE_FAIL;
1306 
1307 	goto out;
1308 clear_pmdnuma:
1309 	BUG_ON(!PageLocked(page));
1310 	was_writable = pmd_write(pmd);
1311 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1312 	pmd = pmd_mkyoung(pmd);
1313 	if (was_writable)
1314 		pmd = pmd_mkwrite(pmd);
1315 	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1316 	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1317 	unlock_page(page);
1318 out_unlock:
1319 	spin_unlock(fe->ptl);
1320 
1321 out:
1322 	if (anon_vma)
1323 		page_unlock_anon_vma_read(anon_vma);
1324 
1325 	if (page_nid != -1)
1326 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1327 
1328 	return 0;
1329 }
1330 
1331 /*
1332  * Return true if we do MADV_FREE successfully on entire pmd page.
1333  * Otherwise, return false.
1334  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1335 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1336 		pmd_t *pmd, unsigned long addr, unsigned long next)
1337 {
1338 	spinlock_t *ptl;
1339 	pmd_t orig_pmd;
1340 	struct page *page;
1341 	struct mm_struct *mm = tlb->mm;
1342 	bool ret = false;
1343 
1344 	ptl = pmd_trans_huge_lock(pmd, vma);
1345 	if (!ptl)
1346 		goto out_unlocked;
1347 
1348 	orig_pmd = *pmd;
1349 	if (is_huge_zero_pmd(orig_pmd))
1350 		goto out;
1351 
1352 	page = pmd_page(orig_pmd);
1353 	/*
1354 	 * If other processes are mapping this page, we couldn't discard
1355 	 * the page unless they all do MADV_FREE so let's skip the page.
1356 	 */
1357 	if (page_mapcount(page) != 1)
1358 		goto out;
1359 
1360 	if (!trylock_page(page))
1361 		goto out;
1362 
1363 	/*
1364 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1365 	 * will deactivate only them.
1366 	 */
1367 	if (next - addr != HPAGE_PMD_SIZE) {
1368 		get_page(page);
1369 		spin_unlock(ptl);
1370 		split_huge_page(page);
1371 		unlock_page(page);
1372 		put_page(page);
1373 		goto out_unlocked;
1374 	}
1375 
1376 	if (PageDirty(page))
1377 		ClearPageDirty(page);
1378 	unlock_page(page);
1379 
1380 	if (PageActive(page))
1381 		deactivate_page(page);
1382 
1383 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1384 		pmdp_invalidate(vma, addr, pmd);
1385 		orig_pmd = pmd_mkold(orig_pmd);
1386 		orig_pmd = pmd_mkclean(orig_pmd);
1387 
1388 		set_pmd_at(mm, addr, pmd, orig_pmd);
1389 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1390 	}
1391 	ret = true;
1392 out:
1393 	spin_unlock(ptl);
1394 out_unlocked:
1395 	return ret;
1396 }
1397 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1398 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1399 		 pmd_t *pmd, unsigned long addr)
1400 {
1401 	pmd_t orig_pmd;
1402 	spinlock_t *ptl;
1403 
1404 	ptl = __pmd_trans_huge_lock(pmd, vma);
1405 	if (!ptl)
1406 		return 0;
1407 	/*
1408 	 * For architectures like ppc64 we look at deposited pgtable
1409 	 * when calling pmdp_huge_get_and_clear. So do the
1410 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1411 	 * operations.
1412 	 */
1413 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1414 			tlb->fullmm);
1415 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1416 	if (vma_is_dax(vma)) {
1417 		spin_unlock(ptl);
1418 		if (is_huge_zero_pmd(orig_pmd))
1419 			tlb_remove_page(tlb, pmd_page(orig_pmd));
1420 	} else if (is_huge_zero_pmd(orig_pmd)) {
1421 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1422 		atomic_long_dec(&tlb->mm->nr_ptes);
1423 		spin_unlock(ptl);
1424 		tlb_remove_page(tlb, pmd_page(orig_pmd));
1425 	} else {
1426 		struct page *page = pmd_page(orig_pmd);
1427 		page_remove_rmap(page, true);
1428 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1429 		VM_BUG_ON_PAGE(!PageHead(page), page);
1430 		if (PageAnon(page)) {
1431 			pgtable_t pgtable;
1432 			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1433 			pte_free(tlb->mm, pgtable);
1434 			atomic_long_dec(&tlb->mm->nr_ptes);
1435 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1436 		} else {
1437 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1438 		}
1439 		spin_unlock(ptl);
1440 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1441 	}
1442 	return 1;
1443 }
1444 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,unsigned long old_end,pmd_t * old_pmd,pmd_t * new_pmd,bool * need_flush)1445 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1446 		  unsigned long new_addr, unsigned long old_end,
1447 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1448 {
1449 	spinlock_t *old_ptl, *new_ptl;
1450 	pmd_t pmd;
1451 	struct mm_struct *mm = vma->vm_mm;
1452 	bool force_flush = false;
1453 
1454 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1455 	    (new_addr & ~HPAGE_PMD_MASK) ||
1456 	    old_end - old_addr < HPAGE_PMD_SIZE)
1457 		return false;
1458 
1459 	/*
1460 	 * The destination pmd shouldn't be established, free_pgtables()
1461 	 * should have release it.
1462 	 */
1463 	if (WARN_ON(!pmd_none(*new_pmd))) {
1464 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1465 		return false;
1466 	}
1467 
1468 	/*
1469 	 * We don't have to worry about the ordering of src and dst
1470 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1471 	 */
1472 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1473 	if (old_ptl) {
1474 		new_ptl = pmd_lockptr(mm, new_pmd);
1475 		if (new_ptl != old_ptl)
1476 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1477 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1478 		if (pmd_present(pmd) && pmd_dirty(pmd))
1479 			force_flush = true;
1480 		VM_BUG_ON(!pmd_none(*new_pmd));
1481 
1482 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1483 				vma_is_anonymous(vma)) {
1484 			pgtable_t pgtable;
1485 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1486 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1487 		}
1488 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1489 		if (new_ptl != old_ptl)
1490 			spin_unlock(new_ptl);
1491 		if (force_flush)
1492 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1493 		else
1494 			*need_flush = true;
1495 		spin_unlock(old_ptl);
1496 		return true;
1497 	}
1498 	return false;
1499 }
1500 
1501 /*
1502  * Returns
1503  *  - 0 if PMD could not be locked
1504  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1505  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1506  */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,int prot_numa)1507 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1508 		unsigned long addr, pgprot_t newprot, int prot_numa)
1509 {
1510 	struct mm_struct *mm = vma->vm_mm;
1511 	spinlock_t *ptl;
1512 	pmd_t entry;
1513 	bool preserve_write;
1514 	int ret;
1515 
1516 	ptl = __pmd_trans_huge_lock(pmd, vma);
1517 	if (!ptl)
1518 		return 0;
1519 
1520 	preserve_write = prot_numa && pmd_write(*pmd);
1521 	ret = 1;
1522 
1523 	/*
1524 	 * Avoid trapping faults against the zero page. The read-only
1525 	 * data is likely to be read-cached on the local CPU and
1526 	 * local/remote hits to the zero page are not interesting.
1527 	 */
1528 	if (prot_numa && is_huge_zero_pmd(*pmd))
1529 		goto unlock;
1530 
1531 	if (prot_numa && pmd_protnone(*pmd))
1532 		goto unlock;
1533 
1534 	/*
1535 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1536 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1537 	 * which is also under down_read(mmap_sem):
1538 	 *
1539 	 *	CPU0:				CPU1:
1540 	 *				change_huge_pmd(prot_numa=1)
1541 	 *				 pmdp_huge_get_and_clear_notify()
1542 	 * madvise_dontneed()
1543 	 *  zap_pmd_range()
1544 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1545 	 *   // skip the pmd
1546 	 *				 set_pmd_at();
1547 	 *				 // pmd is re-established
1548 	 *
1549 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1550 	 * which may break userspace.
1551 	 *
1552 	 * pmdp_invalidate() is required to make sure we don't miss
1553 	 * dirty/young flags set by hardware.
1554 	 */
1555 	entry = *pmd;
1556 	pmdp_invalidate(vma, addr, pmd);
1557 
1558 	/*
1559 	 * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1560 	 * corrupt them.
1561 	 */
1562 	if (pmd_dirty(*pmd))
1563 		entry = pmd_mkdirty(entry);
1564 	if (pmd_young(*pmd))
1565 		entry = pmd_mkyoung(entry);
1566 
1567 	entry = pmd_modify(entry, newprot);
1568 	if (preserve_write)
1569 		entry = pmd_mkwrite(entry);
1570 	ret = HPAGE_PMD_NR;
1571 	set_pmd_at(mm, addr, pmd, entry);
1572 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1573 unlock:
1574 	spin_unlock(ptl);
1575 	return ret;
1576 }
1577 
1578 /*
1579  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1580  *
1581  * Note that if it returns page table lock pointer, this routine returns without
1582  * unlocking page table lock. So callers must unlock it.
1583  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1584 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1585 {
1586 	spinlock_t *ptl;
1587 	ptl = pmd_lock(vma->vm_mm, pmd);
1588 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1589 		return ptl;
1590 	spin_unlock(ptl);
1591 	return NULL;
1592 }
1593 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)1594 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1595 		unsigned long haddr, pmd_t *pmd)
1596 {
1597 	struct mm_struct *mm = vma->vm_mm;
1598 	pgtable_t pgtable;
1599 	pmd_t _pmd;
1600 	int i;
1601 
1602 	/* leave pmd empty until pte is filled */
1603 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1604 
1605 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1606 	pmd_populate(mm, &_pmd, pgtable);
1607 
1608 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1609 		pte_t *pte, entry;
1610 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1611 		entry = pte_mkspecial(entry);
1612 		pte = pte_offset_map(&_pmd, haddr);
1613 		VM_BUG_ON(!pte_none(*pte));
1614 		set_pte_at(mm, haddr, pte, entry);
1615 		pte_unmap(pte);
1616 	}
1617 	smp_wmb(); /* make pte visible before pmd */
1618 	pmd_populate(mm, pmd, pgtable);
1619 }
1620 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)1621 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1622 		unsigned long haddr, bool freeze)
1623 {
1624 	struct mm_struct *mm = vma->vm_mm;
1625 	struct page *page;
1626 	pgtable_t pgtable;
1627 	pmd_t _pmd;
1628 	bool young, write, dirty, soft_dirty;
1629 	unsigned long addr;
1630 	int i;
1631 
1632 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1633 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1634 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1635 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1636 
1637 	count_vm_event(THP_SPLIT_PMD);
1638 
1639 	if (!vma_is_anonymous(vma)) {
1640 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1641 		if (vma_is_dax(vma))
1642 			return;
1643 		page = pmd_page(_pmd);
1644 		if (!PageReferenced(page) && pmd_young(_pmd))
1645 			SetPageReferenced(page);
1646 		page_remove_rmap(page, true);
1647 		put_page(page);
1648 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1649 		return;
1650 	} else if (is_huge_zero_pmd(*pmd)) {
1651 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1652 	}
1653 
1654 	page = pmd_page(*pmd);
1655 	VM_BUG_ON_PAGE(!page_count(page), page);
1656 	page_ref_add(page, HPAGE_PMD_NR - 1);
1657 	write = pmd_write(*pmd);
1658 	young = pmd_young(*pmd);
1659 	dirty = pmd_dirty(*pmd);
1660 	soft_dirty = pmd_soft_dirty(*pmd);
1661 
1662 	pmdp_huge_split_prepare(vma, haddr, pmd);
1663 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1664 	pmd_populate(mm, &_pmd, pgtable);
1665 
1666 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1667 		pte_t entry, *pte;
1668 		/*
1669 		 * Note that NUMA hinting access restrictions are not
1670 		 * transferred to avoid any possibility of altering
1671 		 * permissions across VMAs.
1672 		 */
1673 		if (freeze) {
1674 			swp_entry_t swp_entry;
1675 			swp_entry = make_migration_entry(page + i, write);
1676 			entry = swp_entry_to_pte(swp_entry);
1677 			if (soft_dirty)
1678 				entry = pte_swp_mksoft_dirty(entry);
1679 		} else {
1680 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1681 			entry = maybe_mkwrite(entry, vma);
1682 			if (!write)
1683 				entry = pte_wrprotect(entry);
1684 			if (!young)
1685 				entry = pte_mkold(entry);
1686 			if (soft_dirty)
1687 				entry = pte_mksoft_dirty(entry);
1688 		}
1689 		if (dirty)
1690 			SetPageDirty(page + i);
1691 		pte = pte_offset_map(&_pmd, addr);
1692 		BUG_ON(!pte_none(*pte));
1693 		set_pte_at(mm, addr, pte, entry);
1694 		atomic_inc(&page[i]._mapcount);
1695 		pte_unmap(pte);
1696 	}
1697 
1698 	/*
1699 	 * Set PG_double_map before dropping compound_mapcount to avoid
1700 	 * false-negative page_mapped().
1701 	 */
1702 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1703 		for (i = 0; i < HPAGE_PMD_NR; i++)
1704 			atomic_inc(&page[i]._mapcount);
1705 	}
1706 
1707 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1708 		/* Last compound_mapcount is gone. */
1709 		__dec_node_page_state(page, NR_ANON_THPS);
1710 		if (TestClearPageDoubleMap(page)) {
1711 			/* No need in mapcount reference anymore */
1712 			for (i = 0; i < HPAGE_PMD_NR; i++)
1713 				atomic_dec(&page[i]._mapcount);
1714 		}
1715 	}
1716 
1717 	smp_wmb(); /* make pte visible before pmd */
1718 	/*
1719 	 * Up to this point the pmd is present and huge and userland has the
1720 	 * whole access to the hugepage during the split (which happens in
1721 	 * place). If we overwrite the pmd with the not-huge version pointing
1722 	 * to the pte here (which of course we could if all CPUs were bug
1723 	 * free), userland could trigger a small page size TLB miss on the
1724 	 * small sized TLB while the hugepage TLB entry is still established in
1725 	 * the huge TLB. Some CPU doesn't like that.
1726 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1727 	 * 383 on page 93. Intel should be safe but is also warns that it's
1728 	 * only safe if the permission and cache attributes of the two entries
1729 	 * loaded in the two TLB is identical (which should be the case here).
1730 	 * But it is generally safer to never allow small and huge TLB entries
1731 	 * for the same virtual address to be loaded simultaneously. So instead
1732 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1733 	 * current pmd notpresent (atomically because here the pmd_trans_huge
1734 	 * and pmd_trans_splitting must remain set at all times on the pmd
1735 	 * until the split is complete for this pmd), then we flush the SMP TLB
1736 	 * and finally we write the non-huge version of the pmd entry with
1737 	 * pmd_populate.
1738 	 */
1739 	pmdp_invalidate(vma, haddr, pmd);
1740 	pmd_populate(mm, pmd, pgtable);
1741 
1742 	if (freeze) {
1743 		for (i = 0; i < HPAGE_PMD_NR; i++) {
1744 			page_remove_rmap(page + i, false);
1745 			put_page(page + i);
1746 		}
1747 	}
1748 }
1749 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)1750 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1751 		unsigned long address, bool freeze, struct page *page)
1752 {
1753 	spinlock_t *ptl;
1754 	struct mm_struct *mm = vma->vm_mm;
1755 	unsigned long haddr = address & HPAGE_PMD_MASK;
1756 
1757 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1758 	ptl = pmd_lock(mm, pmd);
1759 
1760 	/*
1761 	 * If caller asks to setup a migration entries, we need a page to check
1762 	 * pmd against. Otherwise we can end up replacing wrong page.
1763 	 */
1764 	VM_BUG_ON(freeze && !page);
1765 	if (page && page != pmd_page(*pmd))
1766 	        goto out;
1767 
1768 	if (pmd_trans_huge(*pmd)) {
1769 		page = pmd_page(*pmd);
1770 		if (PageMlocked(page))
1771 			clear_page_mlock(page);
1772 	} else if (!pmd_devmap(*pmd))
1773 		goto out;
1774 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1775 out:
1776 	spin_unlock(ptl);
1777 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1778 }
1779 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)1780 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1781 		bool freeze, struct page *page)
1782 {
1783 	pgd_t *pgd;
1784 	pud_t *pud;
1785 	pmd_t *pmd;
1786 
1787 	pgd = pgd_offset(vma->vm_mm, address);
1788 	if (!pgd_present(*pgd))
1789 		return;
1790 
1791 	pud = pud_offset(pgd, address);
1792 	if (!pud_present(*pud))
1793 		return;
1794 
1795 	pmd = pmd_offset(pud, address);
1796 
1797 	__split_huge_pmd(vma, pmd, address, freeze, page);
1798 }
1799 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)1800 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1801 			     unsigned long start,
1802 			     unsigned long end,
1803 			     long adjust_next)
1804 {
1805 	/*
1806 	 * If the new start address isn't hpage aligned and it could
1807 	 * previously contain an hugepage: check if we need to split
1808 	 * an huge pmd.
1809 	 */
1810 	if (start & ~HPAGE_PMD_MASK &&
1811 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1812 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1813 		split_huge_pmd_address(vma, start, false, NULL);
1814 
1815 	/*
1816 	 * If the new end address isn't hpage aligned and it could
1817 	 * previously contain an hugepage: check if we need to split
1818 	 * an huge pmd.
1819 	 */
1820 	if (end & ~HPAGE_PMD_MASK &&
1821 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1822 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1823 		split_huge_pmd_address(vma, end, false, NULL);
1824 
1825 	/*
1826 	 * If we're also updating the vma->vm_next->vm_start, if the new
1827 	 * vm_next->vm_start isn't page aligned and it could previously
1828 	 * contain an hugepage: check if we need to split an huge pmd.
1829 	 */
1830 	if (adjust_next > 0) {
1831 		struct vm_area_struct *next = vma->vm_next;
1832 		unsigned long nstart = next->vm_start;
1833 		nstart += adjust_next << PAGE_SHIFT;
1834 		if (nstart & ~HPAGE_PMD_MASK &&
1835 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1836 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1837 			split_huge_pmd_address(next, nstart, false, NULL);
1838 	}
1839 }
1840 
freeze_page(struct page * page)1841 static void freeze_page(struct page *page)
1842 {
1843 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1844 		TTU_RMAP_LOCKED;
1845 	int i, ret;
1846 
1847 	VM_BUG_ON_PAGE(!PageHead(page), page);
1848 
1849 	if (PageAnon(page))
1850 		ttu_flags |= TTU_MIGRATION;
1851 
1852 	/* We only need TTU_SPLIT_HUGE_PMD once */
1853 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1854 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1855 		/* Cut short if the page is unmapped */
1856 		if (page_count(page) == 1)
1857 			return;
1858 
1859 		ret = try_to_unmap(page + i, ttu_flags);
1860 	}
1861 	VM_BUG_ON_PAGE(ret, page + i - 1);
1862 }
1863 
unfreeze_page(struct page * page)1864 static void unfreeze_page(struct page *page)
1865 {
1866 	int i;
1867 
1868 	for (i = 0; i < HPAGE_PMD_NR; i++)
1869 		remove_migration_ptes(page + i, page + i, true);
1870 }
1871 
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)1872 static void __split_huge_page_tail(struct page *head, int tail,
1873 		struct lruvec *lruvec, struct list_head *list)
1874 {
1875 	struct page *page_tail = head + tail;
1876 
1877 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1878 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1879 
1880 	/*
1881 	 * tail_page->_refcount is zero and not changing from under us. But
1882 	 * get_page_unless_zero() may be running from under us on the
1883 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1884 	 * atomic_add(), we would then run atomic_set() concurrently with
1885 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
1886 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
1887 	 * because of PPro errata 66, 92, so unless somebody can guarantee
1888 	 * atomic_set() here would be safe on all archs (and not only on x86),
1889 	 * it's safer to use atomic_inc()/atomic_add().
1890 	 */
1891 	if (PageAnon(head)) {
1892 		page_ref_inc(page_tail);
1893 	} else {
1894 		/* Additional pin to radix tree */
1895 		page_ref_add(page_tail, 2);
1896 	}
1897 
1898 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1899 	page_tail->flags |= (head->flags &
1900 			((1L << PG_referenced) |
1901 			 (1L << PG_swapbacked) |
1902 			 (1L << PG_mlocked) |
1903 			 (1L << PG_uptodate) |
1904 			 (1L << PG_active) |
1905 			 (1L << PG_locked) |
1906 			 (1L << PG_unevictable) |
1907 			 (1L << PG_dirty)));
1908 
1909 	/*
1910 	 * After clearing PageTail the gup refcount can be released.
1911 	 * Page flags also must be visible before we make the page non-compound.
1912 	 */
1913 	smp_wmb();
1914 
1915 	clear_compound_head(page_tail);
1916 
1917 	if (page_is_young(head))
1918 		set_page_young(page_tail);
1919 	if (page_is_idle(head))
1920 		set_page_idle(page_tail);
1921 
1922 	/* ->mapping in first tail page is compound_mapcount */
1923 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1924 			page_tail);
1925 	page_tail->mapping = head->mapping;
1926 
1927 	page_tail->index = head->index + tail;
1928 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1929 	lru_add_page_tail(head, page_tail, lruvec, list);
1930 }
1931 
__split_huge_page(struct page * page,struct list_head * list,unsigned long flags)1932 static void __split_huge_page(struct page *page, struct list_head *list,
1933 		unsigned long flags)
1934 {
1935 	struct page *head = compound_head(page);
1936 	struct zone *zone = page_zone(head);
1937 	struct lruvec *lruvec;
1938 	pgoff_t end = -1;
1939 	int i;
1940 
1941 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1942 
1943 	/* complete memcg works before add pages to LRU */
1944 	mem_cgroup_split_huge_fixup(head);
1945 
1946 	if (!PageAnon(page))
1947 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1948 
1949 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1950 		__split_huge_page_tail(head, i, lruvec, list);
1951 		/* Some pages can be beyond i_size: drop them from page cache */
1952 		if (head[i].index >= end) {
1953 			__ClearPageDirty(head + i);
1954 			__delete_from_page_cache(head + i, NULL);
1955 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1956 				shmem_uncharge(head->mapping->host, 1);
1957 			put_page(head + i);
1958 		}
1959 	}
1960 
1961 	ClearPageCompound(head);
1962 	/* See comment in __split_huge_page_tail() */
1963 	if (PageAnon(head)) {
1964 		page_ref_inc(head);
1965 	} else {
1966 		/* Additional pin to radix tree */
1967 		page_ref_add(head, 2);
1968 		spin_unlock(&head->mapping->tree_lock);
1969 	}
1970 
1971 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1972 
1973 	unfreeze_page(head);
1974 
1975 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1976 		struct page *subpage = head + i;
1977 		if (subpage == page)
1978 			continue;
1979 		unlock_page(subpage);
1980 
1981 		/*
1982 		 * Subpages may be freed if there wasn't any mapping
1983 		 * like if add_to_swap() is running on a lru page that
1984 		 * had its mapping zapped. And freeing these pages
1985 		 * requires taking the lru_lock so we do the put_page
1986 		 * of the tail pages after the split is complete.
1987 		 */
1988 		put_page(subpage);
1989 	}
1990 }
1991 
total_mapcount(struct page * page)1992 int total_mapcount(struct page *page)
1993 {
1994 	int i, compound, ret;
1995 
1996 	VM_BUG_ON_PAGE(PageTail(page), page);
1997 
1998 	if (likely(!PageCompound(page)))
1999 		return atomic_read(&page->_mapcount) + 1;
2000 
2001 	compound = compound_mapcount(page);
2002 	if (PageHuge(page))
2003 		return compound;
2004 	ret = compound;
2005 	for (i = 0; i < HPAGE_PMD_NR; i++)
2006 		ret += atomic_read(&page[i]._mapcount) + 1;
2007 	/* File pages has compound_mapcount included in _mapcount */
2008 	if (!PageAnon(page))
2009 		return ret - compound * HPAGE_PMD_NR;
2010 	if (PageDoubleMap(page))
2011 		ret -= HPAGE_PMD_NR;
2012 	return ret;
2013 }
2014 
2015 /*
2016  * This calculates accurately how many mappings a transparent hugepage
2017  * has (unlike page_mapcount() which isn't fully accurate). This full
2018  * accuracy is primarily needed to know if copy-on-write faults can
2019  * reuse the page and change the mapping to read-write instead of
2020  * copying them. At the same time this returns the total_mapcount too.
2021  *
2022  * The function returns the highest mapcount any one of the subpages
2023  * has. If the return value is one, even if different processes are
2024  * mapping different subpages of the transparent hugepage, they can
2025  * all reuse it, because each process is reusing a different subpage.
2026  *
2027  * The total_mapcount is instead counting all virtual mappings of the
2028  * subpages. If the total_mapcount is equal to "one", it tells the
2029  * caller all mappings belong to the same "mm" and in turn the
2030  * anon_vma of the transparent hugepage can become the vma->anon_vma
2031  * local one as no other process may be mapping any of the subpages.
2032  *
2033  * It would be more accurate to replace page_mapcount() with
2034  * page_trans_huge_mapcount(), however we only use
2035  * page_trans_huge_mapcount() in the copy-on-write faults where we
2036  * need full accuracy to avoid breaking page pinning, because
2037  * page_trans_huge_mapcount() is slower than page_mapcount().
2038  */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2039 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2040 {
2041 	int i, ret, _total_mapcount, mapcount;
2042 
2043 	/* hugetlbfs shouldn't call it */
2044 	VM_BUG_ON_PAGE(PageHuge(page), page);
2045 
2046 	if (likely(!PageTransCompound(page))) {
2047 		mapcount = atomic_read(&page->_mapcount) + 1;
2048 		if (total_mapcount)
2049 			*total_mapcount = mapcount;
2050 		return mapcount;
2051 	}
2052 
2053 	page = compound_head(page);
2054 
2055 	_total_mapcount = ret = 0;
2056 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2057 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2058 		ret = max(ret, mapcount);
2059 		_total_mapcount += mapcount;
2060 	}
2061 	if (PageDoubleMap(page)) {
2062 		ret -= 1;
2063 		_total_mapcount -= HPAGE_PMD_NR;
2064 	}
2065 	mapcount = compound_mapcount(page);
2066 	ret += mapcount;
2067 	_total_mapcount += mapcount;
2068 	if (total_mapcount)
2069 		*total_mapcount = _total_mapcount;
2070 	return ret;
2071 }
2072 
2073 /*
2074  * This function splits huge page into normal pages. @page can point to any
2075  * subpage of huge page to split. Split doesn't change the position of @page.
2076  *
2077  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2078  * The huge page must be locked.
2079  *
2080  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2081  *
2082  * Both head page and tail pages will inherit mapping, flags, and so on from
2083  * the hugepage.
2084  *
2085  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2086  * they are not mapped.
2087  *
2088  * Returns 0 if the hugepage is split successfully.
2089  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2090  * us.
2091  */
split_huge_page_to_list(struct page * page,struct list_head * list)2092 int split_huge_page_to_list(struct page *page, struct list_head *list)
2093 {
2094 	struct page *head = compound_head(page);
2095 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2096 	struct anon_vma *anon_vma = NULL;
2097 	struct address_space *mapping = NULL;
2098 	int count, mapcount, extra_pins, ret;
2099 	bool mlocked;
2100 	unsigned long flags;
2101 
2102 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2103 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2104 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2105 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2106 
2107 	if (PageAnon(head)) {
2108 		/*
2109 		 * The caller does not necessarily hold an mmap_sem that would
2110 		 * prevent the anon_vma disappearing so we first we take a
2111 		 * reference to it and then lock the anon_vma for write. This
2112 		 * is similar to page_lock_anon_vma_read except the write lock
2113 		 * is taken to serialise against parallel split or collapse
2114 		 * operations.
2115 		 */
2116 		anon_vma = page_get_anon_vma(head);
2117 		if (!anon_vma) {
2118 			ret = -EBUSY;
2119 			goto out;
2120 		}
2121 		extra_pins = 0;
2122 		mapping = NULL;
2123 		anon_vma_lock_write(anon_vma);
2124 	} else {
2125 		mapping = head->mapping;
2126 
2127 		/* Truncated ? */
2128 		if (!mapping) {
2129 			ret = -EBUSY;
2130 			goto out;
2131 		}
2132 
2133 		/* Addidional pins from radix tree */
2134 		extra_pins = HPAGE_PMD_NR;
2135 		anon_vma = NULL;
2136 		i_mmap_lock_read(mapping);
2137 	}
2138 
2139 	/*
2140 	 * Racy check if we can split the page, before freeze_page() will
2141 	 * split PMDs
2142 	 */
2143 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2144 		ret = -EBUSY;
2145 		goto out_unlock;
2146 	}
2147 
2148 	mlocked = PageMlocked(page);
2149 	freeze_page(head);
2150 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2151 
2152 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2153 	if (mlocked)
2154 		lru_add_drain();
2155 
2156 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2157 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2158 
2159 	if (mapping) {
2160 		void **pslot;
2161 
2162 		spin_lock(&mapping->tree_lock);
2163 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2164 				page_index(head));
2165 		/*
2166 		 * Check if the head page is present in radix tree.
2167 		 * We assume all tail are present too, if head is there.
2168 		 */
2169 		if (radix_tree_deref_slot_protected(pslot,
2170 					&mapping->tree_lock) != head)
2171 			goto fail;
2172 	}
2173 
2174 	/* Prevent deferred_split_scan() touching ->_refcount */
2175 	spin_lock(&pgdata->split_queue_lock);
2176 	count = page_count(head);
2177 	mapcount = total_mapcount(head);
2178 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2179 		if (!list_empty(page_deferred_list(head))) {
2180 			pgdata->split_queue_len--;
2181 			list_del(page_deferred_list(head));
2182 		}
2183 		if (mapping)
2184 			__dec_node_page_state(page, NR_SHMEM_THPS);
2185 		spin_unlock(&pgdata->split_queue_lock);
2186 		__split_huge_page(page, list, flags);
2187 		ret = 0;
2188 	} else {
2189 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2190 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2191 					mapcount, count);
2192 			if (PageTail(page))
2193 				dump_page(head, NULL);
2194 			dump_page(page, "total_mapcount(head) > 0");
2195 			BUG();
2196 		}
2197 		spin_unlock(&pgdata->split_queue_lock);
2198 fail:		if (mapping)
2199 			spin_unlock(&mapping->tree_lock);
2200 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2201 		unfreeze_page(head);
2202 		ret = -EBUSY;
2203 	}
2204 
2205 out_unlock:
2206 	if (anon_vma) {
2207 		anon_vma_unlock_write(anon_vma);
2208 		put_anon_vma(anon_vma);
2209 	}
2210 	if (mapping)
2211 		i_mmap_unlock_read(mapping);
2212 out:
2213 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2214 	return ret;
2215 }
2216 
free_transhuge_page(struct page * page)2217 void free_transhuge_page(struct page *page)
2218 {
2219 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2220 	unsigned long flags;
2221 
2222 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2223 	if (!list_empty(page_deferred_list(page))) {
2224 		pgdata->split_queue_len--;
2225 		list_del(page_deferred_list(page));
2226 	}
2227 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2228 	free_compound_page(page);
2229 }
2230 
deferred_split_huge_page(struct page * page)2231 void deferred_split_huge_page(struct page *page)
2232 {
2233 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2234 	unsigned long flags;
2235 
2236 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2237 
2238 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2239 	if (list_empty(page_deferred_list(page))) {
2240 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2241 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2242 		pgdata->split_queue_len++;
2243 	}
2244 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2245 }
2246 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2247 static unsigned long deferred_split_count(struct shrinker *shrink,
2248 		struct shrink_control *sc)
2249 {
2250 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2251 	return ACCESS_ONCE(pgdata->split_queue_len);
2252 }
2253 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2254 static unsigned long deferred_split_scan(struct shrinker *shrink,
2255 		struct shrink_control *sc)
2256 {
2257 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2258 	unsigned long flags;
2259 	LIST_HEAD(list), *pos, *next;
2260 	struct page *page;
2261 	int split = 0;
2262 
2263 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2264 	/* Take pin on all head pages to avoid freeing them under us */
2265 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2266 		page = list_entry((void *)pos, struct page, mapping);
2267 		page = compound_head(page);
2268 		if (get_page_unless_zero(page)) {
2269 			list_move(page_deferred_list(page), &list);
2270 		} else {
2271 			/* We lost race with put_compound_page() */
2272 			list_del_init(page_deferred_list(page));
2273 			pgdata->split_queue_len--;
2274 		}
2275 		if (!--sc->nr_to_scan)
2276 			break;
2277 	}
2278 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2279 
2280 	list_for_each_safe(pos, next, &list) {
2281 		page = list_entry((void *)pos, struct page, mapping);
2282 		if (!trylock_page(page))
2283 			goto next;
2284 		/* split_huge_page() removes page from list on success */
2285 		if (!split_huge_page(page))
2286 			split++;
2287 		unlock_page(page);
2288 next:
2289 		put_page(page);
2290 	}
2291 
2292 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2293 	list_splice_tail(&list, &pgdata->split_queue);
2294 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2295 
2296 	/*
2297 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2298 	 * This can happen if pages were freed under us.
2299 	 */
2300 	if (!split && list_empty(&pgdata->split_queue))
2301 		return SHRINK_STOP;
2302 	return split;
2303 }
2304 
2305 static struct shrinker deferred_split_shrinker = {
2306 	.count_objects = deferred_split_count,
2307 	.scan_objects = deferred_split_scan,
2308 	.seeks = DEFAULT_SEEKS,
2309 	.flags = SHRINKER_NUMA_AWARE,
2310 };
2311 
2312 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)2313 static int split_huge_pages_set(void *data, u64 val)
2314 {
2315 	struct zone *zone;
2316 	struct page *page;
2317 	unsigned long pfn, max_zone_pfn;
2318 	unsigned long total = 0, split = 0;
2319 
2320 	if (val != 1)
2321 		return -EINVAL;
2322 
2323 	for_each_populated_zone(zone) {
2324 		max_zone_pfn = zone_end_pfn(zone);
2325 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2326 			if (!pfn_valid(pfn))
2327 				continue;
2328 
2329 			page = pfn_to_page(pfn);
2330 			if (!get_page_unless_zero(page))
2331 				continue;
2332 
2333 			if (zone != page_zone(page))
2334 				goto next;
2335 
2336 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2337 				goto next;
2338 
2339 			total++;
2340 			lock_page(page);
2341 			if (!split_huge_page(page))
2342 				split++;
2343 			unlock_page(page);
2344 next:
2345 			put_page(page);
2346 		}
2347 	}
2348 
2349 	pr_info("%lu of %lu THP split\n", split, total);
2350 
2351 	return 0;
2352 }
2353 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2354 		"%llu\n");
2355 
split_huge_pages_debugfs(void)2356 static int __init split_huge_pages_debugfs(void)
2357 {
2358 	void *ret;
2359 
2360 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2361 			&split_huge_pages_fops);
2362 	if (!ret)
2363 		pr_warn("Failed to create split_huge_pages in debugfs");
2364 	return 0;
2365 }
2366 late_initcall(split_huge_pages_debugfs);
2367 #endif
2368