• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Memory arbiter functions. Allocates bandwidth through the
3  * arbiter and sets up arbiter breakpoints.
4  *
5  * The algorithm first assigns slots to the clients that has specified
6  * bandwidth (e.g. ethernet) and then the remaining slots are divided
7  * on all the active clients.
8  *
9  * Copyright (c) 2004-2007 Axis Communications AB.
10  */
11 
12 #include <hwregs/reg_map.h>
13 #include <hwregs/reg_rdwr.h>
14 #include <hwregs/marb_defs.h>
15 #include <arbiter.h>
16 #include <hwregs/intr_vect.h>
17 #include <linux/interrupt.h>
18 #include <linux/signal.h>
19 #include <linux/errno.h>
20 #include <linux/spinlock.h>
21 #include <asm/io.h>
22 #include <asm/irq_regs.h>
23 
24 struct crisv32_watch_entry {
25 	unsigned long instance;
26 	watch_callback *cb;
27 	unsigned long start;
28 	unsigned long end;
29 	int used;
30 };
31 
32 #define NUMBER_OF_BP 4
33 #define NBR_OF_CLIENTS 14
34 #define NBR_OF_SLOTS 64
35 #define SDRAM_BANDWIDTH 100000000	/* Some kind of expected value */
36 #define INTMEM_BANDWIDTH 400000000
37 #define NBR_OF_REGIONS 2
38 
39 static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
40 	{regi_marb_bp0},
41 	{regi_marb_bp1},
42 	{regi_marb_bp2},
43 	{regi_marb_bp3}
44 };
45 
46 static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
47 static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
48 static int max_bandwidth[NBR_OF_REGIONS] =
49     { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
50 
51 DEFINE_SPINLOCK(arbiter_lock);
52 
53 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
54 
55 /*
56  * "I'm the arbiter, I know the score.
57  *  From square one I'll be watching all 64."
58  * (memory arbiter slots, that is)
59  *
60  *  Or in other words:
61  * Program the memory arbiter slots for "region" according to what's
62  * in requested_slots[] and active_clients[], while minimizing
63  * latency. A caller may pass a non-zero positive amount for
64  * "unused_slots", which must then be the unallocated, remaining
65  * number of slots, free to hand out to any client.
66  */
67 
crisv32_arbiter_config(int region,int unused_slots)68 static void crisv32_arbiter_config(int region, int unused_slots)
69 {
70 	int slot;
71 	int client;
72 	int interval = 0;
73 
74 	/*
75 	 * This vector corresponds to the hardware arbiter slots (see
76 	 * the hardware documentation for semantics). We initialize
77 	 * each slot with a suitable sentinel value outside the valid
78 	 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
79 	 * client indexes. Then it's fed to the hardware.
80 	 */
81 	s8 val[NBR_OF_SLOTS];
82 
83 	for (slot = 0; slot < NBR_OF_SLOTS; slot++)
84 		val[slot] = -1;
85 
86 	for (client = 0; client < NBR_OF_CLIENTS; client++) {
87 		int pos;
88 		/* Allocate the requested non-zero number of slots, but
89 		 * also give clients with zero-requests one slot each
90 		 * while stocks last. We do the latter here, in client
91 		 * order. This makes sure zero-request clients are the
92 		 * first to get to any spare slots, else those slots
93 		 * could, when bandwidth is allocated close to the limit,
94 		 * all be allocated to low-index non-zero-request clients
95 		 * in the default-fill loop below. Another positive but
96 		 * secondary effect is a somewhat better spread of the
97 		 * zero-bandwidth clients in the vector, avoiding some of
98 		 * the latency that could otherwise be caused by the
99 		 * partitioning of non-zero-bandwidth clients at low
100 		 * indexes and zero-bandwidth clients at high
101 		 * indexes. (Note that this spreading can only affect the
102 		 * unallocated bandwidth.)  All the above only matters for
103 		 * memory-intensive situations, of course.
104 		 */
105 		if (!requested_slots[region][client]) {
106 			/*
107 			 * Skip inactive clients. Also skip zero-slot
108 			 * allocations in this pass when there are no known
109 			 * free slots.
110 			 */
111 			if (!active_clients[region][client]
112 			    || unused_slots <= 0)
113 				continue;
114 
115 			unused_slots--;
116 
117 			/* Only allocate one slot for this client. */
118 			interval = NBR_OF_SLOTS;
119 		} else
120 			interval =
121 			    NBR_OF_SLOTS / requested_slots[region][client];
122 
123 		pos = 0;
124 		while (pos < NBR_OF_SLOTS) {
125 			if (val[pos] >= 0)
126 				pos++;
127 			else {
128 				val[pos] = client;
129 				pos += interval;
130 			}
131 		}
132 	}
133 
134 	client = 0;
135 	for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
136 		/*
137 		 * Allocate remaining slots in round-robin
138 		 * client-number order for active clients. For this
139 		 * pass, we ignore requested bandwidth and previous
140 		 * allocations.
141 		 */
142 		if (val[slot] < 0) {
143 			int first = client;
144 			while (!active_clients[region][client]) {
145 				client = (client + 1) % NBR_OF_CLIENTS;
146 				if (client == first)
147 					break;
148 			}
149 			val[slot] = client;
150 			client = (client + 1) % NBR_OF_CLIENTS;
151 		}
152 		if (region == EXT_REGION)
153 			REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
154 					val[slot]);
155 		else if (region == INT_REGION)
156 			REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
157 					val[slot]);
158 	}
159 }
160 
161 extern char _stext, _etext;
162 
crisv32_arbiter_init(void)163 static void crisv32_arbiter_init(void)
164 {
165 	static int initialized;
166 
167 	if (initialized)
168 		return;
169 
170 	initialized = 1;
171 
172 	/*
173 	 * CPU caches are always set to active, but with zero
174 	 * bandwidth allocated. It should be ok to allocate zero
175 	 * bandwidth for the caches, because DMA for other channels
176 	 * will supposedly finish, once their programmed amount is
177 	 * done, and then the caches will get access according to the
178 	 * "fixed scheme" for unclaimed slots. Though, if for some
179 	 * use-case somewhere, there's a maximum CPU latency for
180 	 * e.g. some interrupt, we have to start allocating specific
181 	 * bandwidth for the CPU caches too.
182 	 */
183 	active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
184 	crisv32_arbiter_config(EXT_REGION, 0);
185 	crisv32_arbiter_config(INT_REGION, 0);
186 
187 	if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, 0,
188 			"arbiter", NULL))
189 		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
190 
191 #ifndef CONFIG_ETRAX_KGDB
192 	/* Global watch for writes to kernel text segment. */
193 	crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
194 			      arbiter_all_clients, arbiter_all_write, NULL);
195 #endif
196 }
197 
198 /* Main entry for bandwidth allocation. */
199 
crisv32_arbiter_allocate_bandwidth(int client,int region,unsigned long bandwidth)200 int crisv32_arbiter_allocate_bandwidth(int client, int region,
201 				       unsigned long bandwidth)
202 {
203 	int i;
204 	int total_assigned = 0;
205 	int total_clients = 0;
206 	int req;
207 
208 	crisv32_arbiter_init();
209 
210 	for (i = 0; i < NBR_OF_CLIENTS; i++) {
211 		total_assigned += requested_slots[region][i];
212 		total_clients += active_clients[region][i];
213 	}
214 
215 	/* Avoid division by 0 for 0-bandwidth requests. */
216 	req = bandwidth == 0
217 	    ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
218 
219 	/*
220 	 * We make sure that there are enough slots only for non-zero
221 	 * requests. Requesting 0 bandwidth *may* allocate slots,
222 	 * though if all bandwidth is allocated, such a client won't
223 	 * get any and will have to rely on getting memory access
224 	 * according to the fixed scheme that's the default when one
225 	 * of the slot-allocated clients doesn't claim their slot.
226 	 */
227 	if (total_assigned + req > NBR_OF_SLOTS)
228 		return -ENOMEM;
229 
230 	active_clients[region][client] = 1;
231 	requested_slots[region][client] = req;
232 	crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
233 
234 	return 0;
235 }
236 
237 /*
238  * Main entry for bandwidth deallocation.
239  *
240  * Strictly speaking, for a somewhat constant set of clients where
241  * each client gets a constant bandwidth and is just enabled or
242  * disabled (somewhat dynamically), no action is necessary here to
243  * avoid starvation for non-zero-allocation clients, as the allocated
244  * slots will just be unused. However, handing out those unused slots
245  * to active clients avoids needless latency if the "fixed scheme"
246  * would give unclaimed slots to an eager low-index client.
247  */
248 
crisv32_arbiter_deallocate_bandwidth(int client,int region)249 void crisv32_arbiter_deallocate_bandwidth(int client, int region)
250 {
251 	int i;
252 	int total_assigned = 0;
253 
254 	requested_slots[region][client] = 0;
255 	active_clients[region][client] = 0;
256 
257 	for (i = 0; i < NBR_OF_CLIENTS; i++)
258 		total_assigned += requested_slots[region][i];
259 
260 	crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
261 }
262 
crisv32_arbiter_watch(unsigned long start,unsigned long size,unsigned long clients,unsigned long accesses,watch_callback * cb)263 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
264 			  unsigned long clients, unsigned long accesses,
265 			  watch_callback *cb)
266 {
267 	int i;
268 
269 	crisv32_arbiter_init();
270 
271 	if (start > 0x80000000) {
272 		printk(KERN_ERR "Arbiter: %lX doesn't look like a "
273 			"physical address", start);
274 		return -EFAULT;
275 	}
276 
277 	spin_lock(&arbiter_lock);
278 
279 	for (i = 0; i < NUMBER_OF_BP; i++) {
280 		if (!watches[i].used) {
281 			reg_marb_rw_intr_mask intr_mask =
282 			    REG_RD(marb, regi_marb, rw_intr_mask);
283 
284 			watches[i].used = 1;
285 			watches[i].start = start;
286 			watches[i].end = start + size;
287 			watches[i].cb = cb;
288 
289 			REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
290 				   watches[i].start);
291 			REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
292 				   watches[i].end);
293 			REG_WR_INT(marb_bp, watches[i].instance, rw_op,
294 				   accesses);
295 			REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
296 				   clients);
297 
298 			if (i == 0)
299 				intr_mask.bp0 = regk_marb_yes;
300 			else if (i == 1)
301 				intr_mask.bp1 = regk_marb_yes;
302 			else if (i == 2)
303 				intr_mask.bp2 = regk_marb_yes;
304 			else if (i == 3)
305 				intr_mask.bp3 = regk_marb_yes;
306 
307 			REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
308 			spin_unlock(&arbiter_lock);
309 
310 			return i;
311 		}
312 	}
313 	spin_unlock(&arbiter_lock);
314 	return -ENOMEM;
315 }
316 
crisv32_arbiter_unwatch(int id)317 int crisv32_arbiter_unwatch(int id)
318 {
319 	reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
320 
321 	crisv32_arbiter_init();
322 
323 	spin_lock(&arbiter_lock);
324 
325 	if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
326 		spin_unlock(&arbiter_lock);
327 		return -EINVAL;
328 	}
329 
330 	memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
331 
332 	if (id == 0)
333 		intr_mask.bp0 = regk_marb_no;
334 	else if (id == 1)
335 		intr_mask.bp1 = regk_marb_no;
336 	else if (id == 2)
337 		intr_mask.bp2 = regk_marb_no;
338 	else if (id == 3)
339 		intr_mask.bp3 = regk_marb_no;
340 
341 	REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
342 
343 	spin_unlock(&arbiter_lock);
344 	return 0;
345 }
346 
347 extern void show_registers(struct pt_regs *regs);
348 
crisv32_arbiter_irq(int irq,void * dev_id)349 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
350 {
351 	reg_marb_r_masked_intr masked_intr =
352 	    REG_RD(marb, regi_marb, r_masked_intr);
353 	reg_marb_bp_r_brk_clients r_clients;
354 	reg_marb_bp_r_brk_addr r_addr;
355 	reg_marb_bp_r_brk_op r_op;
356 	reg_marb_bp_r_brk_first_client r_first;
357 	reg_marb_bp_r_brk_size r_size;
358 	reg_marb_bp_rw_ack ack = { 0 };
359 	reg_marb_rw_ack_intr ack_intr = {
360 		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
361 	};
362 	struct crisv32_watch_entry *watch;
363 
364 	if (masked_intr.bp0) {
365 		watch = &watches[0];
366 		ack_intr.bp0 = regk_marb_yes;
367 	} else if (masked_intr.bp1) {
368 		watch = &watches[1];
369 		ack_intr.bp1 = regk_marb_yes;
370 	} else if (masked_intr.bp2) {
371 		watch = &watches[2];
372 		ack_intr.bp2 = regk_marb_yes;
373 	} else if (masked_intr.bp3) {
374 		watch = &watches[3];
375 		ack_intr.bp3 = regk_marb_yes;
376 	} else {
377 		return IRQ_NONE;
378 	}
379 
380 	/* Retrieve all useful information and print it. */
381 	r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
382 	r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
383 	r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
384 	r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
385 	r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
386 
387 	printk(KERN_INFO "Arbiter IRQ\n");
388 	printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
389 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
390 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
391 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
392 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
393 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
394 
395 	REG_WR(marb_bp, watch->instance, rw_ack, ack);
396 	REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
397 
398 	printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp);
399 
400 	if (watch->cb)
401 		watch->cb();
402 
403 	return IRQ_HANDLED;
404 }
405