1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40
bnx2x_add_all_napi_cnic(struct bnx2x * bp)41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 int i;
44
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp, i) {
47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 bnx2x_poll, NAPI_POLL_WEIGHT);
49 }
50 }
51
bnx2x_add_all_napi(struct bnx2x * bp)52 static void bnx2x_add_all_napi(struct bnx2x *bp)
53 {
54 int i;
55
56 /* Add NAPI objects */
57 for_each_eth_queue(bp, i) {
58 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 bnx2x_poll, NAPI_POLL_WEIGHT);
60 }
61 }
62
bnx2x_calc_num_queues(struct bnx2x * bp)63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
64 {
65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
66
67 /* Reduce memory usage in kdump environment by using only one queue */
68 if (is_kdump_kernel())
69 nq = 1;
70
71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 return nq;
73 }
74
75 /**
76 * bnx2x_move_fp - move content of the fastpath structure.
77 *
78 * @bp: driver handle
79 * @from: source FP index
80 * @to: destination FP index
81 *
82 * Makes sure the contents of the bp->fp[to].napi is kept
83 * intact. This is done by first copying the napi struct from
84 * the target to the source, and then mem copying the entire
85 * source onto the target. Update txdata pointers and related
86 * content.
87 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
89 {
90 struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 int old_max_eth_txqs, new_max_eth_txqs;
97 int old_txdata_index = 0, new_txdata_index = 0;
98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
99
100 /* Copy the NAPI object as it has been already initialized */
101 from_fp->napi = to_fp->napi;
102
103 /* Move bnx2x_fastpath contents */
104 memcpy(to_fp, from_fp, sizeof(*to_fp));
105 to_fp->index = to;
106
107 /* Retain the tpa_info of the original `to' version as we don't want
108 * 2 FPs to contain the same tpa_info pointer.
109 */
110 to_fp->tpa_info = old_tpa_info;
111
112 /* move sp_objs contents as well, as their indices match fp ones */
113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
114
115 /* move fp_stats contents as well, as their indices match fp ones */
116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
117
118 /* Update txdata pointers in fp and move txdata content accordingly:
119 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 * decremented by max_cos x delta.
121 */
122
123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 (bp)->max_cos;
126 if (from == FCOE_IDX(bp)) {
127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
129 }
130
131 memcpy(&bp->bnx2x_txq[new_txdata_index],
132 &bp->bnx2x_txq[old_txdata_index],
133 sizeof(struct bnx2x_fp_txdata));
134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
135 }
136
137 /**
138 * bnx2x_fill_fw_str - Fill buffer with FW version string.
139 *
140 * @bp: driver handle
141 * @buf: character buffer to fill with the fw name
142 * @buf_len: length of the above buffer
143 *
144 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
146 {
147 if (IS_PF(bp)) {
148 u8 phy_fw_ver[PHY_FW_VER_LEN];
149
150 phy_fw_ver[0] = '\0';
151 bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 phy_fw_ver, PHY_FW_VER_LEN);
153 strlcpy(buf, bp->fw_ver, buf_len);
154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 "bc %d.%d.%d%s%s",
156 (bp->common.bc_ver & 0xff0000) >> 16,
157 (bp->common.bc_ver & 0xff00) >> 8,
158 (bp->common.bc_ver & 0xff),
159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 } else {
161 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
162 }
163 }
164
165 /**
166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
167 *
168 * @bp: driver handle
169 * @delta: number of eth queues which were not allocated
170 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
172 {
173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
174
175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 * backward along the array could cause memory to be overridden
177 */
178 for (cos = 1; cos < bp->max_cos; cos++) {
179 for (i = 0; i < old_eth_num - delta; i++) {
180 struct bnx2x_fastpath *fp = &bp->fp[i];
181 int new_idx = cos * (old_eth_num - delta) + i;
182
183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 sizeof(struct bnx2x_fp_txdata));
185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
186 }
187 }
188 }
189
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191
192 /* free skb in the packet ring at pos idx
193 * return idx of last bd freed
194 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 u16 idx, unsigned int *pkts_compl,
197 unsigned int *bytes_compl)
198 {
199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 struct eth_tx_start_bd *tx_start_bd;
201 struct eth_tx_bd *tx_data_bd;
202 struct sk_buff *skb = tx_buf->skb;
203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 int nbd;
205 u16 split_bd_len = 0;
206
207 /* prefetch skb end pointer to speedup dev_kfree_skb() */
208 prefetch(&skb->end);
209
210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
211 txdata->txq_index, idx, tx_buf, skb);
212
213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
214
215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 BNX2X_ERR("BAD nbd!\n");
219 bnx2x_panic();
220 }
221 #endif
222 new_cons = nbd + tx_buf->first_bd;
223
224 /* Get the next bd */
225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
226
227 /* Skip a parse bd... */
228 --nbd;
229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
230
231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 /* Skip second parse bd... */
233 --nbd;
234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
235 }
236
237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 --nbd;
242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
243 }
244
245 /* unmap first bd */
246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 DMA_TO_DEVICE);
249
250 /* now free frags */
251 while (nbd > 0) {
252
253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 if (--nbd)
257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
258 }
259
260 /* release skb */
261 WARN_ON(!skb);
262 if (likely(skb)) {
263 (*pkts_compl)++;
264 (*bytes_compl) += skb->len;
265 dev_kfree_skb_any(skb);
266 }
267
268 tx_buf->first_bd = 0;
269 tx_buf->skb = NULL;
270
271 return new_cons;
272 }
273
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
275 {
276 struct netdev_queue *txq;
277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 unsigned int pkts_compl = 0, bytes_compl = 0;
279
280 #ifdef BNX2X_STOP_ON_ERROR
281 if (unlikely(bp->panic))
282 return -1;
283 #endif
284
285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 sw_cons = txdata->tx_pkt_cons;
288
289 while (sw_cons != hw_cons) {
290 u16 pkt_cons;
291
292 pkt_cons = TX_BD(sw_cons);
293
294 DP(NETIF_MSG_TX_DONE,
295 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
296 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
297
298 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
299 &pkts_compl, &bytes_compl);
300
301 sw_cons++;
302 }
303
304 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
305
306 txdata->tx_pkt_cons = sw_cons;
307 txdata->tx_bd_cons = bd_cons;
308
309 /* Need to make the tx_bd_cons update visible to start_xmit()
310 * before checking for netif_tx_queue_stopped(). Without the
311 * memory barrier, there is a small possibility that
312 * start_xmit() will miss it and cause the queue to be stopped
313 * forever.
314 * On the other hand we need an rmb() here to ensure the proper
315 * ordering of bit testing in the following
316 * netif_tx_queue_stopped(txq) call.
317 */
318 smp_mb();
319
320 if (unlikely(netif_tx_queue_stopped(txq))) {
321 /* Taking tx_lock() is needed to prevent re-enabling the queue
322 * while it's empty. This could have happen if rx_action() gets
323 * suspended in bnx2x_tx_int() after the condition before
324 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
325 *
326 * stops the queue->sees fresh tx_bd_cons->releases the queue->
327 * sends some packets consuming the whole queue again->
328 * stops the queue
329 */
330
331 __netif_tx_lock(txq, smp_processor_id());
332
333 if ((netif_tx_queue_stopped(txq)) &&
334 (bp->state == BNX2X_STATE_OPEN) &&
335 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
336 netif_tx_wake_queue(txq);
337
338 __netif_tx_unlock(txq);
339 }
340 return 0;
341 }
342
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
344 u16 idx)
345 {
346 u16 last_max = fp->last_max_sge;
347
348 if (SUB_S16(idx, last_max) > 0)
349 fp->last_max_sge = idx;
350 }
351
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
353 u16 sge_len,
354 struct eth_end_agg_rx_cqe *cqe)
355 {
356 struct bnx2x *bp = fp->bp;
357 u16 last_max, last_elem, first_elem;
358 u16 delta = 0;
359 u16 i;
360
361 if (!sge_len)
362 return;
363
364 /* First mark all used pages */
365 for (i = 0; i < sge_len; i++)
366 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
367 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
368
369 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
370 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
371
372 /* Here we assume that the last SGE index is the biggest */
373 prefetch((void *)(fp->sge_mask));
374 bnx2x_update_last_max_sge(fp,
375 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
376
377 last_max = RX_SGE(fp->last_max_sge);
378 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
379 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
380
381 /* If ring is not full */
382 if (last_elem + 1 != first_elem)
383 last_elem++;
384
385 /* Now update the prod */
386 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
387 if (likely(fp->sge_mask[i]))
388 break;
389
390 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
391 delta += BIT_VEC64_ELEM_SZ;
392 }
393
394 if (delta > 0) {
395 fp->rx_sge_prod += delta;
396 /* clear page-end entries */
397 bnx2x_clear_sge_mask_next_elems(fp);
398 }
399
400 DP(NETIF_MSG_RX_STATUS,
401 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
402 fp->last_max_sge, fp->rx_sge_prod);
403 }
404
405 /* Get Toeplitz hash value in the skb using the value from the
406 * CQE (calculated by HW).
407 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
409 const struct eth_fast_path_rx_cqe *cqe,
410 enum pkt_hash_types *rxhash_type)
411 {
412 /* Get Toeplitz hash from CQE */
413 if ((bp->dev->features & NETIF_F_RXHASH) &&
414 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
415 enum eth_rss_hash_type htype;
416
417 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
418 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
419 (htype == TCP_IPV6_HASH_TYPE)) ?
420 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
421
422 return le32_to_cpu(cqe->rss_hash_result);
423 }
424 *rxhash_type = PKT_HASH_TYPE_NONE;
425 return 0;
426 }
427
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
429 u16 cons, u16 prod,
430 struct eth_fast_path_rx_cqe *cqe)
431 {
432 struct bnx2x *bp = fp->bp;
433 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
434 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
435 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
436 dma_addr_t mapping;
437 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
438 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
439
440 /* print error if current state != stop */
441 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
442 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
443
444 /* Try to map an empty data buffer from the aggregation info */
445 mapping = dma_map_single(&bp->pdev->dev,
446 first_buf->data + NET_SKB_PAD,
447 fp->rx_buf_size, DMA_FROM_DEVICE);
448 /*
449 * ...if it fails - move the skb from the consumer to the producer
450 * and set the current aggregation state as ERROR to drop it
451 * when TPA_STOP arrives.
452 */
453
454 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
455 /* Move the BD from the consumer to the producer */
456 bnx2x_reuse_rx_data(fp, cons, prod);
457 tpa_info->tpa_state = BNX2X_TPA_ERROR;
458 return;
459 }
460
461 /* move empty data from pool to prod */
462 prod_rx_buf->data = first_buf->data;
463 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
464 /* point prod_bd to new data */
465 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
466 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
467
468 /* move partial skb from cons to pool (don't unmap yet) */
469 *first_buf = *cons_rx_buf;
470
471 /* mark bin state as START */
472 tpa_info->parsing_flags =
473 le16_to_cpu(cqe->pars_flags.flags);
474 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
475 tpa_info->tpa_state = BNX2X_TPA_START;
476 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
477 tpa_info->placement_offset = cqe->placement_offset;
478 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
479 if (fp->mode == TPA_MODE_GRO) {
480 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
481 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
482 tpa_info->gro_size = gro_size;
483 }
484
485 #ifdef BNX2X_STOP_ON_ERROR
486 fp->tpa_queue_used |= (1 << queue);
487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
488 fp->tpa_queue_used);
489 #endif
490 }
491
492 /* Timestamp option length allowed for TPA aggregation:
493 *
494 * nop nop kind length echo val
495 */
496 #define TPA_TSTAMP_OPT_LEN 12
497 /**
498 * bnx2x_set_gro_params - compute GRO values
499 *
500 * @skb: packet skb
501 * @parsing_flags: parsing flags from the START CQE
502 * @len_on_bd: total length of the first packet for the
503 * aggregation.
504 * @pkt_len: length of all segments
505 *
506 * Approximate value of the MSS for this aggregation calculated using
507 * the first packet of it.
508 * Compute number of aggregated segments, and gso_type.
509 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
511 u16 len_on_bd, unsigned int pkt_len,
512 u16 num_of_coalesced_segs)
513 {
514 /* TPA aggregation won't have either IP options or TCP options
515 * other than timestamp or IPv6 extension headers.
516 */
517 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
518
519 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
520 PRS_FLAG_OVERETH_IPV6) {
521 hdrs_len += sizeof(struct ipv6hdr);
522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
523 } else {
524 hdrs_len += sizeof(struct iphdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
526 }
527
528 /* Check if there was a TCP timestamp, if there is it's will
529 * always be 12 bytes length: nop nop kind length echo val.
530 *
531 * Otherwise FW would close the aggregation.
532 */
533 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
534 hdrs_len += TPA_TSTAMP_OPT_LEN;
535
536 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
537
538 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
539 * to skb_shinfo(skb)->gso_segs
540 */
541 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
542 }
543
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
545 u16 index, gfp_t gfp_mask)
546 {
547 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
548 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
549 struct bnx2x_alloc_pool *pool = &fp->page_pool;
550 dma_addr_t mapping;
551
552 if (!pool->page || (PAGE_SIZE - pool->offset) < SGE_PAGE_SIZE) {
553
554 /* put page reference used by the memory pool, since we
555 * won't be using this page as the mempool anymore.
556 */
557 if (pool->page)
558 put_page(pool->page);
559
560 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
561 if (unlikely(!pool->page))
562 return -ENOMEM;
563
564 pool->offset = 0;
565 }
566
567 mapping = dma_map_page(&bp->pdev->dev, pool->page,
568 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
569 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
570 BNX2X_ERR("Can't map sge\n");
571 return -ENOMEM;
572 }
573
574 get_page(pool->page);
575 sw_buf->page = pool->page;
576 sw_buf->offset = pool->offset;
577
578 dma_unmap_addr_set(sw_buf, mapping, mapping);
579
580 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
581 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
582
583 pool->offset += SGE_PAGE_SIZE;
584
585 return 0;
586 }
587
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)588 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
589 struct bnx2x_agg_info *tpa_info,
590 u16 pages,
591 struct sk_buff *skb,
592 struct eth_end_agg_rx_cqe *cqe,
593 u16 cqe_idx)
594 {
595 struct sw_rx_page *rx_pg, old_rx_pg;
596 u32 i, frag_len, frag_size;
597 int err, j, frag_id = 0;
598 u16 len_on_bd = tpa_info->len_on_bd;
599 u16 full_page = 0, gro_size = 0;
600
601 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
602
603 if (fp->mode == TPA_MODE_GRO) {
604 gro_size = tpa_info->gro_size;
605 full_page = tpa_info->full_page;
606 }
607
608 /* This is needed in order to enable forwarding support */
609 if (frag_size)
610 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
611 le16_to_cpu(cqe->pkt_len),
612 le16_to_cpu(cqe->num_of_coalesced_segs));
613
614 #ifdef BNX2X_STOP_ON_ERROR
615 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
616 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
617 pages, cqe_idx);
618 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
619 bnx2x_panic();
620 return -EINVAL;
621 }
622 #endif
623
624 /* Run through the SGL and compose the fragmented skb */
625 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
626 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
627
628 /* FW gives the indices of the SGE as if the ring is an array
629 (meaning that "next" element will consume 2 indices) */
630 if (fp->mode == TPA_MODE_GRO)
631 frag_len = min_t(u32, frag_size, (u32)full_page);
632 else /* LRO */
633 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
634
635 rx_pg = &fp->rx_page_ring[sge_idx];
636 old_rx_pg = *rx_pg;
637
638 /* If we fail to allocate a substitute page, we simply stop
639 where we are and drop the whole packet */
640 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
641 if (unlikely(err)) {
642 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
643 return err;
644 }
645
646 dma_unmap_page(&bp->pdev->dev,
647 dma_unmap_addr(&old_rx_pg, mapping),
648 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
649 /* Add one frag and update the appropriate fields in the skb */
650 if (fp->mode == TPA_MODE_LRO)
651 skb_fill_page_desc(skb, j, old_rx_pg.page,
652 old_rx_pg.offset, frag_len);
653 else { /* GRO */
654 int rem;
655 int offset = 0;
656 for (rem = frag_len; rem > 0; rem -= gro_size) {
657 int len = rem > gro_size ? gro_size : rem;
658 skb_fill_page_desc(skb, frag_id++,
659 old_rx_pg.page,
660 old_rx_pg.offset + offset,
661 len);
662 if (offset)
663 get_page(old_rx_pg.page);
664 offset += len;
665 }
666 }
667
668 skb->data_len += frag_len;
669 skb->truesize += SGE_PAGES;
670 skb->len += frag_len;
671
672 frag_size -= frag_len;
673 }
674
675 return 0;
676 }
677
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)678 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
679 {
680 if (fp->rx_frag_size)
681 skb_free_frag(data);
682 else
683 kfree(data);
684 }
685
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)686 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
687 {
688 if (fp->rx_frag_size) {
689 /* GFP_KERNEL allocations are used only during initialization */
690 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
691 return (void *)__get_free_page(gfp_mask);
692
693 return netdev_alloc_frag(fp->rx_frag_size);
694 }
695
696 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
697 }
698
699 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)700 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
701 {
702 const struct iphdr *iph = ip_hdr(skb);
703 struct tcphdr *th;
704
705 skb_set_transport_header(skb, sizeof(struct iphdr));
706 th = tcp_hdr(skb);
707
708 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
709 iph->saddr, iph->daddr, 0);
710 }
711
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)712 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
713 {
714 struct ipv6hdr *iph = ipv6_hdr(skb);
715 struct tcphdr *th;
716
717 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
718 th = tcp_hdr(skb);
719
720 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
721 &iph->saddr, &iph->daddr, 0);
722 }
723
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))724 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
725 void (*gro_func)(struct bnx2x*, struct sk_buff*))
726 {
727 skb_set_network_header(skb, 0);
728 gro_func(bp, skb);
729 tcp_gro_complete(skb);
730 }
731 #endif
732
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)733 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
734 struct sk_buff *skb)
735 {
736 #ifdef CONFIG_INET
737 if (skb_shinfo(skb)->gso_size) {
738 switch (be16_to_cpu(skb->protocol)) {
739 case ETH_P_IP:
740 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
741 break;
742 case ETH_P_IPV6:
743 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
744 break;
745 default:
746 WARN_ONCE(1, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
747 be16_to_cpu(skb->protocol));
748 }
749 }
750 #endif
751 skb_record_rx_queue(skb, fp->rx_queue);
752 napi_gro_receive(&fp->napi, skb);
753 }
754
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)755 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
756 struct bnx2x_agg_info *tpa_info,
757 u16 pages,
758 struct eth_end_agg_rx_cqe *cqe,
759 u16 cqe_idx)
760 {
761 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
762 u8 pad = tpa_info->placement_offset;
763 u16 len = tpa_info->len_on_bd;
764 struct sk_buff *skb = NULL;
765 u8 *new_data, *data = rx_buf->data;
766 u8 old_tpa_state = tpa_info->tpa_state;
767
768 tpa_info->tpa_state = BNX2X_TPA_STOP;
769
770 /* If we there was an error during the handling of the TPA_START -
771 * drop this aggregation.
772 */
773 if (old_tpa_state == BNX2X_TPA_ERROR)
774 goto drop;
775
776 /* Try to allocate the new data */
777 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
778 /* Unmap skb in the pool anyway, as we are going to change
779 pool entry status to BNX2X_TPA_STOP even if new skb allocation
780 fails. */
781 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
782 fp->rx_buf_size, DMA_FROM_DEVICE);
783 if (likely(new_data))
784 skb = build_skb(data, fp->rx_frag_size);
785
786 if (likely(skb)) {
787 #ifdef BNX2X_STOP_ON_ERROR
788 if (pad + len > fp->rx_buf_size) {
789 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
790 pad, len, fp->rx_buf_size);
791 bnx2x_panic();
792 return;
793 }
794 #endif
795
796 skb_reserve(skb, pad + NET_SKB_PAD);
797 skb_put(skb, len);
798 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
799
800 skb->protocol = eth_type_trans(skb, bp->dev);
801 skb->ip_summed = CHECKSUM_UNNECESSARY;
802
803 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
804 skb, cqe, cqe_idx)) {
805 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
807 bnx2x_gro_receive(bp, fp, skb);
808 } else {
809 DP(NETIF_MSG_RX_STATUS,
810 "Failed to allocate new pages - dropping packet!\n");
811 dev_kfree_skb_any(skb);
812 }
813
814 /* put new data in bin */
815 rx_buf->data = new_data;
816
817 return;
818 }
819 if (new_data)
820 bnx2x_frag_free(fp, new_data);
821 drop:
822 /* drop the packet and keep the buffer in the bin */
823 DP(NETIF_MSG_RX_STATUS,
824 "Failed to allocate or map a new skb - dropping packet!\n");
825 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
826 }
827
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)828 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
829 u16 index, gfp_t gfp_mask)
830 {
831 u8 *data;
832 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
833 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
834 dma_addr_t mapping;
835
836 data = bnx2x_frag_alloc(fp, gfp_mask);
837 if (unlikely(data == NULL))
838 return -ENOMEM;
839
840 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
841 fp->rx_buf_size,
842 DMA_FROM_DEVICE);
843 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
844 bnx2x_frag_free(fp, data);
845 BNX2X_ERR("Can't map rx data\n");
846 return -ENOMEM;
847 }
848
849 rx_buf->data = data;
850 dma_unmap_addr_set(rx_buf, mapping, mapping);
851
852 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
853 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
854
855 return 0;
856 }
857
858 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)859 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
860 struct bnx2x_fastpath *fp,
861 struct bnx2x_eth_q_stats *qstats)
862 {
863 /* Do nothing if no L4 csum validation was done.
864 * We do not check whether IP csum was validated. For IPv4 we assume
865 * that if the card got as far as validating the L4 csum, it also
866 * validated the IP csum. IPv6 has no IP csum.
867 */
868 if (cqe->fast_path_cqe.status_flags &
869 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
870 return;
871
872 /* If L4 validation was done, check if an error was found. */
873
874 if (cqe->fast_path_cqe.type_error_flags &
875 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
876 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
877 qstats->hw_csum_err++;
878 else
879 skb->ip_summed = CHECKSUM_UNNECESSARY;
880 }
881
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)882 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
883 {
884 struct bnx2x *bp = fp->bp;
885 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
886 u16 sw_comp_cons, sw_comp_prod;
887 int rx_pkt = 0;
888 union eth_rx_cqe *cqe;
889 struct eth_fast_path_rx_cqe *cqe_fp;
890
891 #ifdef BNX2X_STOP_ON_ERROR
892 if (unlikely(bp->panic))
893 return 0;
894 #endif
895 if (budget <= 0)
896 return rx_pkt;
897
898 bd_cons = fp->rx_bd_cons;
899 bd_prod = fp->rx_bd_prod;
900 bd_prod_fw = bd_prod;
901 sw_comp_cons = fp->rx_comp_cons;
902 sw_comp_prod = fp->rx_comp_prod;
903
904 comp_ring_cons = RCQ_BD(sw_comp_cons);
905 cqe = &fp->rx_comp_ring[comp_ring_cons];
906 cqe_fp = &cqe->fast_path_cqe;
907
908 DP(NETIF_MSG_RX_STATUS,
909 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
910
911 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
912 struct sw_rx_bd *rx_buf = NULL;
913 struct sk_buff *skb;
914 u8 cqe_fp_flags;
915 enum eth_rx_cqe_type cqe_fp_type;
916 u16 len, pad, queue;
917 u8 *data;
918 u32 rxhash;
919 enum pkt_hash_types rxhash_type;
920
921 #ifdef BNX2X_STOP_ON_ERROR
922 if (unlikely(bp->panic))
923 return 0;
924 #endif
925
926 bd_prod = RX_BD(bd_prod);
927 bd_cons = RX_BD(bd_cons);
928
929 /* A rmb() is required to ensure that the CQE is not read
930 * before it is written by the adapter DMA. PCI ordering
931 * rules will make sure the other fields are written before
932 * the marker at the end of struct eth_fast_path_rx_cqe
933 * but without rmb() a weakly ordered processor can process
934 * stale data. Without the barrier TPA state-machine might
935 * enter inconsistent state and kernel stack might be
936 * provided with incorrect packet description - these lead
937 * to various kernel crashed.
938 */
939 rmb();
940
941 cqe_fp_flags = cqe_fp->type_error_flags;
942 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
943
944 DP(NETIF_MSG_RX_STATUS,
945 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
946 CQE_TYPE(cqe_fp_flags),
947 cqe_fp_flags, cqe_fp->status_flags,
948 le32_to_cpu(cqe_fp->rss_hash_result),
949 le16_to_cpu(cqe_fp->vlan_tag),
950 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
951
952 /* is this a slowpath msg? */
953 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
954 bnx2x_sp_event(fp, cqe);
955 goto next_cqe;
956 }
957
958 rx_buf = &fp->rx_buf_ring[bd_cons];
959 data = rx_buf->data;
960
961 if (!CQE_TYPE_FAST(cqe_fp_type)) {
962 struct bnx2x_agg_info *tpa_info;
963 u16 frag_size, pages;
964 #ifdef BNX2X_STOP_ON_ERROR
965 /* sanity check */
966 if (fp->mode == TPA_MODE_DISABLED &&
967 (CQE_TYPE_START(cqe_fp_type) ||
968 CQE_TYPE_STOP(cqe_fp_type)))
969 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
970 CQE_TYPE(cqe_fp_type));
971 #endif
972
973 if (CQE_TYPE_START(cqe_fp_type)) {
974 u16 queue = cqe_fp->queue_index;
975 DP(NETIF_MSG_RX_STATUS,
976 "calling tpa_start on queue %d\n",
977 queue);
978
979 bnx2x_tpa_start(fp, queue,
980 bd_cons, bd_prod,
981 cqe_fp);
982
983 goto next_rx;
984 }
985 queue = cqe->end_agg_cqe.queue_index;
986 tpa_info = &fp->tpa_info[queue];
987 DP(NETIF_MSG_RX_STATUS,
988 "calling tpa_stop on queue %d\n",
989 queue);
990
991 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
992 tpa_info->len_on_bd;
993
994 if (fp->mode == TPA_MODE_GRO)
995 pages = (frag_size + tpa_info->full_page - 1) /
996 tpa_info->full_page;
997 else
998 pages = SGE_PAGE_ALIGN(frag_size) >>
999 SGE_PAGE_SHIFT;
1000
1001 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1002 &cqe->end_agg_cqe, comp_ring_cons);
1003 #ifdef BNX2X_STOP_ON_ERROR
1004 if (bp->panic)
1005 return 0;
1006 #endif
1007
1008 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1009 goto next_cqe;
1010 }
1011 /* non TPA */
1012 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1013 pad = cqe_fp->placement_offset;
1014 dma_sync_single_for_cpu(&bp->pdev->dev,
1015 dma_unmap_addr(rx_buf, mapping),
1016 pad + RX_COPY_THRESH,
1017 DMA_FROM_DEVICE);
1018 pad += NET_SKB_PAD;
1019 prefetch(data + pad); /* speedup eth_type_trans() */
1020 /* is this an error packet? */
1021 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1022 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1023 "ERROR flags %x rx packet %u\n",
1024 cqe_fp_flags, sw_comp_cons);
1025 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1026 goto reuse_rx;
1027 }
1028
1029 /* Since we don't have a jumbo ring
1030 * copy small packets if mtu > 1500
1031 */
1032 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1033 (len <= RX_COPY_THRESH)) {
1034 skb = napi_alloc_skb(&fp->napi, len);
1035 if (skb == NULL) {
1036 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1037 "ERROR packet dropped because of alloc failure\n");
1038 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1039 goto reuse_rx;
1040 }
1041 memcpy(skb->data, data + pad, len);
1042 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1043 } else {
1044 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1045 GFP_ATOMIC) == 0)) {
1046 dma_unmap_single(&bp->pdev->dev,
1047 dma_unmap_addr(rx_buf, mapping),
1048 fp->rx_buf_size,
1049 DMA_FROM_DEVICE);
1050 skb = build_skb(data, fp->rx_frag_size);
1051 if (unlikely(!skb)) {
1052 bnx2x_frag_free(fp, data);
1053 bnx2x_fp_qstats(bp, fp)->
1054 rx_skb_alloc_failed++;
1055 goto next_rx;
1056 }
1057 skb_reserve(skb, pad);
1058 } else {
1059 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1060 "ERROR packet dropped because of alloc failure\n");
1061 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1062 reuse_rx:
1063 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1064 goto next_rx;
1065 }
1066 }
1067
1068 skb_put(skb, len);
1069 skb->protocol = eth_type_trans(skb, bp->dev);
1070
1071 /* Set Toeplitz hash for a none-LRO skb */
1072 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1073 skb_set_hash(skb, rxhash, rxhash_type);
1074
1075 skb_checksum_none_assert(skb);
1076
1077 if (bp->dev->features & NETIF_F_RXCSUM)
1078 bnx2x_csum_validate(skb, cqe, fp,
1079 bnx2x_fp_qstats(bp, fp));
1080
1081 skb_record_rx_queue(skb, fp->rx_queue);
1082
1083 /* Check if this packet was timestamped */
1084 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1085 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1086 bnx2x_set_rx_ts(bp, skb);
1087
1088 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1089 PARSING_FLAGS_VLAN)
1090 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1091 le16_to_cpu(cqe_fp->vlan_tag));
1092
1093 napi_gro_receive(&fp->napi, skb);
1094 next_rx:
1095 rx_buf->data = NULL;
1096
1097 bd_cons = NEXT_RX_IDX(bd_cons);
1098 bd_prod = NEXT_RX_IDX(bd_prod);
1099 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1100 rx_pkt++;
1101 next_cqe:
1102 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1103 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1104
1105 /* mark CQE as free */
1106 BNX2X_SEED_CQE(cqe_fp);
1107
1108 if (rx_pkt == budget)
1109 break;
1110
1111 comp_ring_cons = RCQ_BD(sw_comp_cons);
1112 cqe = &fp->rx_comp_ring[comp_ring_cons];
1113 cqe_fp = &cqe->fast_path_cqe;
1114 } /* while */
1115
1116 fp->rx_bd_cons = bd_cons;
1117 fp->rx_bd_prod = bd_prod_fw;
1118 fp->rx_comp_cons = sw_comp_cons;
1119 fp->rx_comp_prod = sw_comp_prod;
1120
1121 /* Update producers */
1122 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1123 fp->rx_sge_prod);
1124
1125 return rx_pkt;
1126 }
1127
bnx2x_msix_fp_int(int irq,void * fp_cookie)1128 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1129 {
1130 struct bnx2x_fastpath *fp = fp_cookie;
1131 struct bnx2x *bp = fp->bp;
1132 u8 cos;
1133
1134 DP(NETIF_MSG_INTR,
1135 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1136 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1137
1138 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1139
1140 #ifdef BNX2X_STOP_ON_ERROR
1141 if (unlikely(bp->panic))
1142 return IRQ_HANDLED;
1143 #endif
1144
1145 /* Handle Rx and Tx according to MSI-X vector */
1146 for_each_cos_in_tx_queue(fp, cos)
1147 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1148
1149 prefetch(&fp->sb_running_index[SM_RX_ID]);
1150 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1151
1152 return IRQ_HANDLED;
1153 }
1154
1155 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1156 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1157 {
1158 mutex_lock(&bp->port.phy_mutex);
1159
1160 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 }
1162
bnx2x_release_phy_lock(struct bnx2x * bp)1163 void bnx2x_release_phy_lock(struct bnx2x *bp)
1164 {
1165 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1166
1167 mutex_unlock(&bp->port.phy_mutex);
1168 }
1169
1170 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1171 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1172 {
1173 u16 line_speed = bp->link_vars.line_speed;
1174 if (IS_MF(bp)) {
1175 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1176 bp->mf_config[BP_VN(bp)]);
1177
1178 /* Calculate the current MAX line speed limit for the MF
1179 * devices
1180 */
1181 if (IS_MF_PERCENT_BW(bp))
1182 line_speed = (line_speed * maxCfg) / 100;
1183 else { /* SD mode */
1184 u16 vn_max_rate = maxCfg * 100;
1185
1186 if (vn_max_rate < line_speed)
1187 line_speed = vn_max_rate;
1188 }
1189 }
1190
1191 return line_speed;
1192 }
1193
1194 /**
1195 * bnx2x_fill_report_data - fill link report data to report
1196 *
1197 * @bp: driver handle
1198 * @data: link state to update
1199 *
1200 * It uses a none-atomic bit operations because is called under the mutex.
1201 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1202 static void bnx2x_fill_report_data(struct bnx2x *bp,
1203 struct bnx2x_link_report_data *data)
1204 {
1205 memset(data, 0, sizeof(*data));
1206
1207 if (IS_PF(bp)) {
1208 /* Fill the report data: effective line speed */
1209 data->line_speed = bnx2x_get_mf_speed(bp);
1210
1211 /* Link is down */
1212 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1213 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 &data->link_report_flags);
1215
1216 if (!BNX2X_NUM_ETH_QUEUES(bp))
1217 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1218 &data->link_report_flags);
1219
1220 /* Full DUPLEX */
1221 if (bp->link_vars.duplex == DUPLEX_FULL)
1222 __set_bit(BNX2X_LINK_REPORT_FD,
1223 &data->link_report_flags);
1224
1225 /* Rx Flow Control is ON */
1226 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1227 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1228 &data->link_report_flags);
1229
1230 /* Tx Flow Control is ON */
1231 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1232 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1233 &data->link_report_flags);
1234 } else { /* VF */
1235 *data = bp->vf_link_vars;
1236 }
1237 }
1238
1239 /**
1240 * bnx2x_link_report - report link status to OS.
1241 *
1242 * @bp: driver handle
1243 *
1244 * Calls the __bnx2x_link_report() under the same locking scheme
1245 * as a link/PHY state managing code to ensure a consistent link
1246 * reporting.
1247 */
1248
bnx2x_link_report(struct bnx2x * bp)1249 void bnx2x_link_report(struct bnx2x *bp)
1250 {
1251 bnx2x_acquire_phy_lock(bp);
1252 __bnx2x_link_report(bp);
1253 bnx2x_release_phy_lock(bp);
1254 }
1255
1256 /**
1257 * __bnx2x_link_report - report link status to OS.
1258 *
1259 * @bp: driver handle
1260 *
1261 * None atomic implementation.
1262 * Should be called under the phy_lock.
1263 */
__bnx2x_link_report(struct bnx2x * bp)1264 void __bnx2x_link_report(struct bnx2x *bp)
1265 {
1266 struct bnx2x_link_report_data cur_data;
1267
1268 /* reread mf_cfg */
1269 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1270 bnx2x_read_mf_cfg(bp);
1271
1272 /* Read the current link report info */
1273 bnx2x_fill_report_data(bp, &cur_data);
1274
1275 /* Don't report link down or exactly the same link status twice */
1276 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1277 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1278 &bp->last_reported_link.link_report_flags) &&
1279 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1280 &cur_data.link_report_flags)))
1281 return;
1282
1283 bp->link_cnt++;
1284
1285 /* We are going to report a new link parameters now -
1286 * remember the current data for the next time.
1287 */
1288 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1289
1290 /* propagate status to VFs */
1291 if (IS_PF(bp))
1292 bnx2x_iov_link_update(bp);
1293
1294 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 &cur_data.link_report_flags)) {
1296 netif_carrier_off(bp->dev);
1297 netdev_err(bp->dev, "NIC Link is Down\n");
1298 return;
1299 } else {
1300 const char *duplex;
1301 const char *flow;
1302
1303 netif_carrier_on(bp->dev);
1304
1305 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1306 &cur_data.link_report_flags))
1307 duplex = "full";
1308 else
1309 duplex = "half";
1310
1311 /* Handle the FC at the end so that only these flags would be
1312 * possibly set. This way we may easily check if there is no FC
1313 * enabled.
1314 */
1315 if (cur_data.link_report_flags) {
1316 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1317 &cur_data.link_report_flags)) {
1318 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1319 &cur_data.link_report_flags))
1320 flow = "ON - receive & transmit";
1321 else
1322 flow = "ON - receive";
1323 } else {
1324 flow = "ON - transmit";
1325 }
1326 } else {
1327 flow = "none";
1328 }
1329 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1330 cur_data.line_speed, duplex, flow);
1331 }
1332 }
1333
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1334 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1335 {
1336 int i;
1337
1338 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1339 struct eth_rx_sge *sge;
1340
1341 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1342 sge->addr_hi =
1343 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1344 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1345
1346 sge->addr_lo =
1347 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1348 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 }
1350 }
1351
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1352 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1353 struct bnx2x_fastpath *fp, int last)
1354 {
1355 int i;
1356
1357 for (i = 0; i < last; i++) {
1358 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1359 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1360 u8 *data = first_buf->data;
1361
1362 if (data == NULL) {
1363 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1364 continue;
1365 }
1366 if (tpa_info->tpa_state == BNX2X_TPA_START)
1367 dma_unmap_single(&bp->pdev->dev,
1368 dma_unmap_addr(first_buf, mapping),
1369 fp->rx_buf_size, DMA_FROM_DEVICE);
1370 bnx2x_frag_free(fp, data);
1371 first_buf->data = NULL;
1372 }
1373 }
1374
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1375 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1376 {
1377 int j;
1378
1379 for_each_rx_queue_cnic(bp, j) {
1380 struct bnx2x_fastpath *fp = &bp->fp[j];
1381
1382 fp->rx_bd_cons = 0;
1383
1384 /* Activate BD ring */
1385 /* Warning!
1386 * this will generate an interrupt (to the TSTORM)
1387 * must only be done after chip is initialized
1388 */
1389 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1390 fp->rx_sge_prod);
1391 }
1392 }
1393
bnx2x_init_rx_rings(struct bnx2x * bp)1394 void bnx2x_init_rx_rings(struct bnx2x *bp)
1395 {
1396 int func = BP_FUNC(bp);
1397 u16 ring_prod;
1398 int i, j;
1399
1400 /* Allocate TPA resources */
1401 for_each_eth_queue(bp, j) {
1402 struct bnx2x_fastpath *fp = &bp->fp[j];
1403
1404 DP(NETIF_MSG_IFUP,
1405 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1406
1407 if (fp->mode != TPA_MODE_DISABLED) {
1408 /* Fill the per-aggregation pool */
1409 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1410 struct bnx2x_agg_info *tpa_info =
1411 &fp->tpa_info[i];
1412 struct sw_rx_bd *first_buf =
1413 &tpa_info->first_buf;
1414
1415 first_buf->data =
1416 bnx2x_frag_alloc(fp, GFP_KERNEL);
1417 if (!first_buf->data) {
1418 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1419 j);
1420 bnx2x_free_tpa_pool(bp, fp, i);
1421 fp->mode = TPA_MODE_DISABLED;
1422 break;
1423 }
1424 dma_unmap_addr_set(first_buf, mapping, 0);
1425 tpa_info->tpa_state = BNX2X_TPA_STOP;
1426 }
1427
1428 /* "next page" elements initialization */
1429 bnx2x_set_next_page_sgl(fp);
1430
1431 /* set SGEs bit mask */
1432 bnx2x_init_sge_ring_bit_mask(fp);
1433
1434 /* Allocate SGEs and initialize the ring elements */
1435 for (i = 0, ring_prod = 0;
1436 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1437
1438 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1439 GFP_KERNEL) < 0) {
1440 BNX2X_ERR("was only able to allocate %d rx sges\n",
1441 i);
1442 BNX2X_ERR("disabling TPA for queue[%d]\n",
1443 j);
1444 /* Cleanup already allocated elements */
1445 bnx2x_free_rx_sge_range(bp, fp,
1446 ring_prod);
1447 bnx2x_free_tpa_pool(bp, fp,
1448 MAX_AGG_QS(bp));
1449 fp->mode = TPA_MODE_DISABLED;
1450 ring_prod = 0;
1451 break;
1452 }
1453 ring_prod = NEXT_SGE_IDX(ring_prod);
1454 }
1455
1456 fp->rx_sge_prod = ring_prod;
1457 }
1458 }
1459
1460 for_each_eth_queue(bp, j) {
1461 struct bnx2x_fastpath *fp = &bp->fp[j];
1462
1463 fp->rx_bd_cons = 0;
1464
1465 /* Activate BD ring */
1466 /* Warning!
1467 * this will generate an interrupt (to the TSTORM)
1468 * must only be done after chip is initialized
1469 */
1470 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1471 fp->rx_sge_prod);
1472
1473 if (j != 0)
1474 continue;
1475
1476 if (CHIP_IS_E1(bp)) {
1477 REG_WR(bp, BAR_USTRORM_INTMEM +
1478 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1479 U64_LO(fp->rx_comp_mapping));
1480 REG_WR(bp, BAR_USTRORM_INTMEM +
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1482 U64_HI(fp->rx_comp_mapping));
1483 }
1484 }
1485 }
1486
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1487 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1488 {
1489 u8 cos;
1490 struct bnx2x *bp = fp->bp;
1491
1492 for_each_cos_in_tx_queue(fp, cos) {
1493 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1494 unsigned pkts_compl = 0, bytes_compl = 0;
1495
1496 u16 sw_prod = txdata->tx_pkt_prod;
1497 u16 sw_cons = txdata->tx_pkt_cons;
1498
1499 while (sw_cons != sw_prod) {
1500 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1501 &pkts_compl, &bytes_compl);
1502 sw_cons++;
1503 }
1504
1505 netdev_tx_reset_queue(
1506 netdev_get_tx_queue(bp->dev,
1507 txdata->txq_index));
1508 }
1509 }
1510
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1511 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1512 {
1513 int i;
1514
1515 for_each_tx_queue_cnic(bp, i) {
1516 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1517 }
1518 }
1519
bnx2x_free_tx_skbs(struct bnx2x * bp)1520 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1521 {
1522 int i;
1523
1524 for_each_eth_queue(bp, i) {
1525 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1526 }
1527 }
1528
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1529 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1530 {
1531 struct bnx2x *bp = fp->bp;
1532 int i;
1533
1534 /* ring wasn't allocated */
1535 if (fp->rx_buf_ring == NULL)
1536 return;
1537
1538 for (i = 0; i < NUM_RX_BD; i++) {
1539 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1540 u8 *data = rx_buf->data;
1541
1542 if (data == NULL)
1543 continue;
1544 dma_unmap_single(&bp->pdev->dev,
1545 dma_unmap_addr(rx_buf, mapping),
1546 fp->rx_buf_size, DMA_FROM_DEVICE);
1547
1548 rx_buf->data = NULL;
1549 bnx2x_frag_free(fp, data);
1550 }
1551 }
1552
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1553 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1554 {
1555 int j;
1556
1557 for_each_rx_queue_cnic(bp, j) {
1558 bnx2x_free_rx_bds(&bp->fp[j]);
1559 }
1560 }
1561
bnx2x_free_rx_skbs(struct bnx2x * bp)1562 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1563 {
1564 int j;
1565
1566 for_each_eth_queue(bp, j) {
1567 struct bnx2x_fastpath *fp = &bp->fp[j];
1568
1569 bnx2x_free_rx_bds(fp);
1570
1571 if (fp->mode != TPA_MODE_DISABLED)
1572 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1573 }
1574 }
1575
bnx2x_free_skbs_cnic(struct bnx2x * bp)1576 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1577 {
1578 bnx2x_free_tx_skbs_cnic(bp);
1579 bnx2x_free_rx_skbs_cnic(bp);
1580 }
1581
bnx2x_free_skbs(struct bnx2x * bp)1582 void bnx2x_free_skbs(struct bnx2x *bp)
1583 {
1584 bnx2x_free_tx_skbs(bp);
1585 bnx2x_free_rx_skbs(bp);
1586 }
1587
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1588 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1589 {
1590 /* load old values */
1591 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1592
1593 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1594 /* leave all but MAX value */
1595 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1596
1597 /* set new MAX value */
1598 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1599 & FUNC_MF_CFG_MAX_BW_MASK;
1600
1601 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1602 }
1603 }
1604
1605 /**
1606 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1607 *
1608 * @bp: driver handle
1609 * @nvecs: number of vectors to be released
1610 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1611 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1612 {
1613 int i, offset = 0;
1614
1615 if (nvecs == offset)
1616 return;
1617
1618 /* VFs don't have a default SB */
1619 if (IS_PF(bp)) {
1620 free_irq(bp->msix_table[offset].vector, bp->dev);
1621 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1622 bp->msix_table[offset].vector);
1623 offset++;
1624 }
1625
1626 if (CNIC_SUPPORT(bp)) {
1627 if (nvecs == offset)
1628 return;
1629 offset++;
1630 }
1631
1632 for_each_eth_queue(bp, i) {
1633 if (nvecs == offset)
1634 return;
1635 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1636 i, bp->msix_table[offset].vector);
1637
1638 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1639 }
1640 }
1641
bnx2x_free_irq(struct bnx2x * bp)1642 void bnx2x_free_irq(struct bnx2x *bp)
1643 {
1644 if (bp->flags & USING_MSIX_FLAG &&
1645 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1646 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1647
1648 /* vfs don't have a default status block */
1649 if (IS_PF(bp))
1650 nvecs++;
1651
1652 bnx2x_free_msix_irqs(bp, nvecs);
1653 } else {
1654 free_irq(bp->dev->irq, bp->dev);
1655 }
1656 }
1657
bnx2x_enable_msix(struct bnx2x * bp)1658 int bnx2x_enable_msix(struct bnx2x *bp)
1659 {
1660 int msix_vec = 0, i, rc;
1661
1662 /* VFs don't have a default status block */
1663 if (IS_PF(bp)) {
1664 bp->msix_table[msix_vec].entry = msix_vec;
1665 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1666 bp->msix_table[0].entry);
1667 msix_vec++;
1668 }
1669
1670 /* Cnic requires an msix vector for itself */
1671 if (CNIC_SUPPORT(bp)) {
1672 bp->msix_table[msix_vec].entry = msix_vec;
1673 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1674 msix_vec, bp->msix_table[msix_vec].entry);
1675 msix_vec++;
1676 }
1677
1678 /* We need separate vectors for ETH queues only (not FCoE) */
1679 for_each_eth_queue(bp, i) {
1680 bp->msix_table[msix_vec].entry = msix_vec;
1681 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1682 msix_vec, msix_vec, i);
1683 msix_vec++;
1684 }
1685
1686 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1687 msix_vec);
1688
1689 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1690 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1691 /*
1692 * reconfigure number of tx/rx queues according to available
1693 * MSI-X vectors
1694 */
1695 if (rc == -ENOSPC) {
1696 /* Get by with single vector */
1697 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1698 if (rc < 0) {
1699 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1700 rc);
1701 goto no_msix;
1702 }
1703
1704 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1705 bp->flags |= USING_SINGLE_MSIX_FLAG;
1706
1707 BNX2X_DEV_INFO("set number of queues to 1\n");
1708 bp->num_ethernet_queues = 1;
1709 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1710 } else if (rc < 0) {
1711 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1712 goto no_msix;
1713 } else if (rc < msix_vec) {
1714 /* how less vectors we will have? */
1715 int diff = msix_vec - rc;
1716
1717 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1718
1719 /*
1720 * decrease number of queues by number of unallocated entries
1721 */
1722 bp->num_ethernet_queues -= diff;
1723 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1724
1725 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1726 bp->num_queues);
1727 }
1728
1729 bp->flags |= USING_MSIX_FLAG;
1730
1731 return 0;
1732
1733 no_msix:
1734 /* fall to INTx if not enough memory */
1735 if (rc == -ENOMEM)
1736 bp->flags |= DISABLE_MSI_FLAG;
1737
1738 return rc;
1739 }
1740
bnx2x_req_msix_irqs(struct bnx2x * bp)1741 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1742 {
1743 int i, rc, offset = 0;
1744
1745 /* no default status block for vf */
1746 if (IS_PF(bp)) {
1747 rc = request_irq(bp->msix_table[offset++].vector,
1748 bnx2x_msix_sp_int, 0,
1749 bp->dev->name, bp->dev);
1750 if (rc) {
1751 BNX2X_ERR("request sp irq failed\n");
1752 return -EBUSY;
1753 }
1754 }
1755
1756 if (CNIC_SUPPORT(bp))
1757 offset++;
1758
1759 for_each_eth_queue(bp, i) {
1760 struct bnx2x_fastpath *fp = &bp->fp[i];
1761 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1762 bp->dev->name, i);
1763
1764 rc = request_irq(bp->msix_table[offset].vector,
1765 bnx2x_msix_fp_int, 0, fp->name, fp);
1766 if (rc) {
1767 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1768 bp->msix_table[offset].vector, rc);
1769 bnx2x_free_msix_irqs(bp, offset);
1770 return -EBUSY;
1771 }
1772
1773 offset++;
1774 }
1775
1776 i = BNX2X_NUM_ETH_QUEUES(bp);
1777 if (IS_PF(bp)) {
1778 offset = 1 + CNIC_SUPPORT(bp);
1779 netdev_info(bp->dev,
1780 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1781 bp->msix_table[0].vector,
1782 0, bp->msix_table[offset].vector,
1783 i - 1, bp->msix_table[offset + i - 1].vector);
1784 } else {
1785 offset = CNIC_SUPPORT(bp);
1786 netdev_info(bp->dev,
1787 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1788 0, bp->msix_table[offset].vector,
1789 i - 1, bp->msix_table[offset + i - 1].vector);
1790 }
1791 return 0;
1792 }
1793
bnx2x_enable_msi(struct bnx2x * bp)1794 int bnx2x_enable_msi(struct bnx2x *bp)
1795 {
1796 int rc;
1797
1798 rc = pci_enable_msi(bp->pdev);
1799 if (rc) {
1800 BNX2X_DEV_INFO("MSI is not attainable\n");
1801 return -1;
1802 }
1803 bp->flags |= USING_MSI_FLAG;
1804
1805 return 0;
1806 }
1807
bnx2x_req_irq(struct bnx2x * bp)1808 static int bnx2x_req_irq(struct bnx2x *bp)
1809 {
1810 unsigned long flags;
1811 unsigned int irq;
1812
1813 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1814 flags = 0;
1815 else
1816 flags = IRQF_SHARED;
1817
1818 if (bp->flags & USING_MSIX_FLAG)
1819 irq = bp->msix_table[0].vector;
1820 else
1821 irq = bp->pdev->irq;
1822
1823 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1824 }
1825
bnx2x_setup_irqs(struct bnx2x * bp)1826 static int bnx2x_setup_irqs(struct bnx2x *bp)
1827 {
1828 int rc = 0;
1829 if (bp->flags & USING_MSIX_FLAG &&
1830 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1831 rc = bnx2x_req_msix_irqs(bp);
1832 if (rc)
1833 return rc;
1834 } else {
1835 rc = bnx2x_req_irq(bp);
1836 if (rc) {
1837 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1838 return rc;
1839 }
1840 if (bp->flags & USING_MSI_FLAG) {
1841 bp->dev->irq = bp->pdev->irq;
1842 netdev_info(bp->dev, "using MSI IRQ %d\n",
1843 bp->dev->irq);
1844 }
1845 if (bp->flags & USING_MSIX_FLAG) {
1846 bp->dev->irq = bp->msix_table[0].vector;
1847 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1848 bp->dev->irq);
1849 }
1850 }
1851
1852 return 0;
1853 }
1854
bnx2x_napi_enable_cnic(struct bnx2x * bp)1855 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1856 {
1857 int i;
1858
1859 for_each_rx_queue_cnic(bp, i) {
1860 napi_enable(&bnx2x_fp(bp, i, napi));
1861 }
1862 }
1863
bnx2x_napi_enable(struct bnx2x * bp)1864 static void bnx2x_napi_enable(struct bnx2x *bp)
1865 {
1866 int i;
1867
1868 for_each_eth_queue(bp, i) {
1869 napi_enable(&bnx2x_fp(bp, i, napi));
1870 }
1871 }
1872
bnx2x_napi_disable_cnic(struct bnx2x * bp)1873 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1874 {
1875 int i;
1876
1877 for_each_rx_queue_cnic(bp, i) {
1878 napi_disable(&bnx2x_fp(bp, i, napi));
1879 }
1880 }
1881
bnx2x_napi_disable(struct bnx2x * bp)1882 static void bnx2x_napi_disable(struct bnx2x *bp)
1883 {
1884 int i;
1885
1886 for_each_eth_queue(bp, i) {
1887 napi_disable(&bnx2x_fp(bp, i, napi));
1888 }
1889 }
1890
bnx2x_netif_start(struct bnx2x * bp)1891 void bnx2x_netif_start(struct bnx2x *bp)
1892 {
1893 if (netif_running(bp->dev)) {
1894 bnx2x_napi_enable(bp);
1895 if (CNIC_LOADED(bp))
1896 bnx2x_napi_enable_cnic(bp);
1897 bnx2x_int_enable(bp);
1898 if (bp->state == BNX2X_STATE_OPEN)
1899 netif_tx_wake_all_queues(bp->dev);
1900 }
1901 }
1902
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1903 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1904 {
1905 bnx2x_int_disable_sync(bp, disable_hw);
1906 bnx2x_napi_disable(bp);
1907 if (CNIC_LOADED(bp))
1908 bnx2x_napi_disable_cnic(bp);
1909 }
1910
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)1911 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1912 void *accel_priv, select_queue_fallback_t fallback)
1913 {
1914 struct bnx2x *bp = netdev_priv(dev);
1915
1916 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1917 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1918 u16 ether_type = ntohs(hdr->h_proto);
1919
1920 /* Skip VLAN tag if present */
1921 if (ether_type == ETH_P_8021Q) {
1922 struct vlan_ethhdr *vhdr =
1923 (struct vlan_ethhdr *)skb->data;
1924
1925 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1926 }
1927
1928 /* If ethertype is FCoE or FIP - use FCoE ring */
1929 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1930 return bnx2x_fcoe_tx(bp, txq_index);
1931 }
1932
1933 /* select a non-FCoE queue */
1934 return fallback(dev, skb) % (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1935 }
1936
bnx2x_set_num_queues(struct bnx2x * bp)1937 void bnx2x_set_num_queues(struct bnx2x *bp)
1938 {
1939 /* RSS queues */
1940 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1941
1942 /* override in STORAGE SD modes */
1943 if (IS_MF_STORAGE_ONLY(bp))
1944 bp->num_ethernet_queues = 1;
1945
1946 /* Add special queues */
1947 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1948 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1949
1950 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1951 }
1952
1953 /**
1954 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1955 *
1956 * @bp: Driver handle
1957 *
1958 * We currently support for at most 16 Tx queues for each CoS thus we will
1959 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1960 * bp->max_cos.
1961 *
1962 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1963 * index after all ETH L2 indices.
1964 *
1965 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1966 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1967 * 16..31,...) with indices that are not coupled with any real Tx queue.
1968 *
1969 * The proper configuration of skb->queue_mapping is handled by
1970 * bnx2x_select_queue() and __skb_tx_hash().
1971 *
1972 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1973 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1974 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1975 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1976 {
1977 int rc, tx, rx;
1978
1979 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1980 rx = BNX2X_NUM_ETH_QUEUES(bp);
1981
1982 /* account for fcoe queue */
1983 if (include_cnic && !NO_FCOE(bp)) {
1984 rx++;
1985 tx++;
1986 }
1987
1988 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1989 if (rc) {
1990 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1991 return rc;
1992 }
1993 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1994 if (rc) {
1995 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1996 return rc;
1997 }
1998
1999 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2000 tx, rx);
2001
2002 return rc;
2003 }
2004
bnx2x_set_rx_buf_size(struct bnx2x * bp)2005 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2006 {
2007 int i;
2008
2009 for_each_queue(bp, i) {
2010 struct bnx2x_fastpath *fp = &bp->fp[i];
2011 u32 mtu;
2012
2013 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2014 if (IS_FCOE_IDX(i))
2015 /*
2016 * Although there are no IP frames expected to arrive to
2017 * this ring we still want to add an
2018 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2019 * overrun attack.
2020 */
2021 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2022 else
2023 mtu = bp->dev->mtu;
2024 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2025 IP_HEADER_ALIGNMENT_PADDING +
2026 ETH_OVREHEAD +
2027 mtu +
2028 BNX2X_FW_RX_ALIGN_END;
2029 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2030 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2031 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2032 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2033 else
2034 fp->rx_frag_size = 0;
2035 }
2036 }
2037
bnx2x_init_rss(struct bnx2x * bp)2038 static int bnx2x_init_rss(struct bnx2x *bp)
2039 {
2040 int i;
2041 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2042
2043 /* Prepare the initial contents for the indirection table if RSS is
2044 * enabled
2045 */
2046 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2047 bp->rss_conf_obj.ind_table[i] =
2048 bp->fp->cl_id +
2049 ethtool_rxfh_indir_default(i, num_eth_queues);
2050
2051 /*
2052 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2053 * per-port, so if explicit configuration is needed , do it only
2054 * for a PMF.
2055 *
2056 * For 57712 and newer on the other hand it's a per-function
2057 * configuration.
2058 */
2059 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2060 }
2061
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2062 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2063 bool config_hash, bool enable)
2064 {
2065 struct bnx2x_config_rss_params params = {NULL};
2066
2067 /* Although RSS is meaningless when there is a single HW queue we
2068 * still need it enabled in order to have HW Rx hash generated.
2069 *
2070 * if (!is_eth_multi(bp))
2071 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2072 */
2073
2074 params.rss_obj = rss_obj;
2075
2076 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2077
2078 if (enable) {
2079 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2080
2081 /* RSS configuration */
2082 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2083 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2084 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2085 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2086 if (rss_obj->udp_rss_v4)
2087 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2088 if (rss_obj->udp_rss_v6)
2089 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2090
2091 if (!CHIP_IS_E1x(bp)) {
2092 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2093 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2094 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2095
2096 /* valid only for TUNN_MODE_GRE tunnel mode */
2097 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2098 }
2099 } else {
2100 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2101 }
2102
2103 /* Hash bits */
2104 params.rss_result_mask = MULTI_MASK;
2105
2106 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2107
2108 if (config_hash) {
2109 /* RSS keys */
2110 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2111 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2112 }
2113
2114 if (IS_PF(bp))
2115 return bnx2x_config_rss(bp, ¶ms);
2116 else
2117 return bnx2x_vfpf_config_rss(bp, ¶ms);
2118 }
2119
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2120 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2121 {
2122 struct bnx2x_func_state_params func_params = {NULL};
2123
2124 /* Prepare parameters for function state transitions */
2125 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2126
2127 func_params.f_obj = &bp->func_obj;
2128 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2129
2130 func_params.params.hw_init.load_phase = load_code;
2131
2132 return bnx2x_func_state_change(bp, &func_params);
2133 }
2134
2135 /*
2136 * Cleans the object that have internal lists without sending
2137 * ramrods. Should be run when interrupts are disabled.
2138 */
bnx2x_squeeze_objects(struct bnx2x * bp)2139 void bnx2x_squeeze_objects(struct bnx2x *bp)
2140 {
2141 int rc;
2142 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2143 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2144 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2145
2146 /***************** Cleanup MACs' object first *************************/
2147
2148 /* Wait for completion of requested */
2149 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2150 /* Perform a dry cleanup */
2151 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2152
2153 /* Clean ETH primary MAC */
2154 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2155 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2156 &ramrod_flags);
2157 if (rc != 0)
2158 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2159
2160 /* Cleanup UC list */
2161 vlan_mac_flags = 0;
2162 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2163 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2164 &ramrod_flags);
2165 if (rc != 0)
2166 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2167
2168 /***************** Now clean mcast object *****************************/
2169 rparam.mcast_obj = &bp->mcast_obj;
2170 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2171
2172 /* Add a DEL command... - Since we're doing a driver cleanup only,
2173 * we take a lock surrounding both the initial send and the CONTs,
2174 * as we don't want a true completion to disrupt us in the middle.
2175 */
2176 netif_addr_lock_bh(bp->dev);
2177 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2178 if (rc < 0)
2179 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2180 rc);
2181
2182 /* ...and wait until all pending commands are cleared */
2183 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2184 while (rc != 0) {
2185 if (rc < 0) {
2186 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2187 rc);
2188 netif_addr_unlock_bh(bp->dev);
2189 return;
2190 }
2191
2192 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2193 }
2194 netif_addr_unlock_bh(bp->dev);
2195 }
2196
2197 #ifndef BNX2X_STOP_ON_ERROR
2198 #define LOAD_ERROR_EXIT(bp, label) \
2199 do { \
2200 (bp)->state = BNX2X_STATE_ERROR; \
2201 goto label; \
2202 } while (0)
2203
2204 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2205 do { \
2206 bp->cnic_loaded = false; \
2207 goto label; \
2208 } while (0)
2209 #else /*BNX2X_STOP_ON_ERROR*/
2210 #define LOAD_ERROR_EXIT(bp, label) \
2211 do { \
2212 (bp)->state = BNX2X_STATE_ERROR; \
2213 (bp)->panic = 1; \
2214 return -EBUSY; \
2215 } while (0)
2216 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2217 do { \
2218 bp->cnic_loaded = false; \
2219 (bp)->panic = 1; \
2220 return -EBUSY; \
2221 } while (0)
2222 #endif /*BNX2X_STOP_ON_ERROR*/
2223
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2224 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2225 {
2226 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2227 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2228 return;
2229 }
2230
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2231 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2232 {
2233 int num_groups, vf_headroom = 0;
2234 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2235
2236 /* number of queues for statistics is number of eth queues + FCoE */
2237 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2238
2239 /* Total number of FW statistics requests =
2240 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2241 * and fcoe l2 queue) stats + num of queues (which includes another 1
2242 * for fcoe l2 queue if applicable)
2243 */
2244 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2245
2246 /* vf stats appear in the request list, but their data is allocated by
2247 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2248 * it is used to determine where to place the vf stats queries in the
2249 * request struct
2250 */
2251 if (IS_SRIOV(bp))
2252 vf_headroom = bnx2x_vf_headroom(bp);
2253
2254 /* Request is built from stats_query_header and an array of
2255 * stats_query_cmd_group each of which contains
2256 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2257 * configured in the stats_query_header.
2258 */
2259 num_groups =
2260 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2261 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2262 1 : 0));
2263
2264 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2265 bp->fw_stats_num, vf_headroom, num_groups);
2266 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2267 num_groups * sizeof(struct stats_query_cmd_group);
2268
2269 /* Data for statistics requests + stats_counter
2270 * stats_counter holds per-STORM counters that are incremented
2271 * when STORM has finished with the current request.
2272 * memory for FCoE offloaded statistics are counted anyway,
2273 * even if they will not be sent.
2274 * VF stats are not accounted for here as the data of VF stats is stored
2275 * in memory allocated by the VF, not here.
2276 */
2277 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2278 sizeof(struct per_pf_stats) +
2279 sizeof(struct fcoe_statistics_params) +
2280 sizeof(struct per_queue_stats) * num_queue_stats +
2281 sizeof(struct stats_counter);
2282
2283 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2284 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2285 if (!bp->fw_stats)
2286 goto alloc_mem_err;
2287
2288 /* Set shortcuts */
2289 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2290 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2291 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2292 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2293 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2294 bp->fw_stats_req_sz;
2295
2296 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2297 U64_HI(bp->fw_stats_req_mapping),
2298 U64_LO(bp->fw_stats_req_mapping));
2299 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2300 U64_HI(bp->fw_stats_data_mapping),
2301 U64_LO(bp->fw_stats_data_mapping));
2302 return 0;
2303
2304 alloc_mem_err:
2305 bnx2x_free_fw_stats_mem(bp);
2306 BNX2X_ERR("Can't allocate FW stats memory\n");
2307 return -ENOMEM;
2308 }
2309
2310 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2311 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2312 {
2313 u32 param;
2314
2315 /* init fw_seq */
2316 bp->fw_seq =
2317 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2318 DRV_MSG_SEQ_NUMBER_MASK);
2319 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2320
2321 /* Get current FW pulse sequence */
2322 bp->fw_drv_pulse_wr_seq =
2323 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2324 DRV_PULSE_SEQ_MASK);
2325 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2326
2327 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2328
2329 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2330 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2331
2332 /* load request */
2333 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2334
2335 /* if mcp fails to respond we must abort */
2336 if (!(*load_code)) {
2337 BNX2X_ERR("MCP response failure, aborting\n");
2338 return -EBUSY;
2339 }
2340
2341 /* If mcp refused (e.g. other port is in diagnostic mode) we
2342 * must abort
2343 */
2344 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2345 BNX2X_ERR("MCP refused load request, aborting\n");
2346 return -EBUSY;
2347 }
2348 return 0;
2349 }
2350
2351 /* check whether another PF has already loaded FW to chip. In
2352 * virtualized environments a pf from another VM may have already
2353 * initialized the device including loading FW
2354 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2355 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2356 {
2357 /* is another pf loaded on this engine? */
2358 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2359 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2360 /* build my FW version dword */
2361 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2362 (BCM_5710_FW_MINOR_VERSION << 8) +
2363 (BCM_5710_FW_REVISION_VERSION << 16) +
2364 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2365
2366 /* read loaded FW from chip */
2367 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2368
2369 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2370 loaded_fw, my_fw);
2371
2372 /* abort nic load if version mismatch */
2373 if (my_fw != loaded_fw) {
2374 if (print_err)
2375 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2376 loaded_fw, my_fw);
2377 else
2378 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2379 loaded_fw, my_fw);
2380 return -EBUSY;
2381 }
2382 }
2383 return 0;
2384 }
2385
2386 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2387 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2388 {
2389 int path = BP_PATH(bp);
2390
2391 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2392 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2393 bnx2x_load_count[path][2]);
2394 bnx2x_load_count[path][0]++;
2395 bnx2x_load_count[path][1 + port]++;
2396 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2397 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2398 bnx2x_load_count[path][2]);
2399 if (bnx2x_load_count[path][0] == 1)
2400 return FW_MSG_CODE_DRV_LOAD_COMMON;
2401 else if (bnx2x_load_count[path][1 + port] == 1)
2402 return FW_MSG_CODE_DRV_LOAD_PORT;
2403 else
2404 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2405 }
2406
2407 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2408 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2409 {
2410 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2411 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2412 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2413 bp->port.pmf = 1;
2414 /* We need the barrier to ensure the ordering between the
2415 * writing to bp->port.pmf here and reading it from the
2416 * bnx2x_periodic_task().
2417 */
2418 smp_mb();
2419 } else {
2420 bp->port.pmf = 0;
2421 }
2422
2423 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2424 }
2425
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2426 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2427 {
2428 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2429 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2430 (bp->common.shmem2_base)) {
2431 if (SHMEM2_HAS(bp, dcc_support))
2432 SHMEM2_WR(bp, dcc_support,
2433 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2434 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2435 if (SHMEM2_HAS(bp, afex_driver_support))
2436 SHMEM2_WR(bp, afex_driver_support,
2437 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2438 }
2439
2440 /* Set AFEX default VLAN tag to an invalid value */
2441 bp->afex_def_vlan_tag = -1;
2442 }
2443
2444 /**
2445 * bnx2x_bz_fp - zero content of the fastpath structure.
2446 *
2447 * @bp: driver handle
2448 * @index: fastpath index to be zeroed
2449 *
2450 * Makes sure the contents of the bp->fp[index].napi is kept
2451 * intact.
2452 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2453 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2454 {
2455 struct bnx2x_fastpath *fp = &bp->fp[index];
2456 int cos;
2457 struct napi_struct orig_napi = fp->napi;
2458 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2459
2460 /* bzero bnx2x_fastpath contents */
2461 if (fp->tpa_info)
2462 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2463 sizeof(struct bnx2x_agg_info));
2464 memset(fp, 0, sizeof(*fp));
2465
2466 /* Restore the NAPI object as it has been already initialized */
2467 fp->napi = orig_napi;
2468 fp->tpa_info = orig_tpa_info;
2469 fp->bp = bp;
2470 fp->index = index;
2471 if (IS_ETH_FP(fp))
2472 fp->max_cos = bp->max_cos;
2473 else
2474 /* Special queues support only one CoS */
2475 fp->max_cos = 1;
2476
2477 /* Init txdata pointers */
2478 if (IS_FCOE_FP(fp))
2479 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2480 if (IS_ETH_FP(fp))
2481 for_each_cos_in_tx_queue(fp, cos)
2482 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2483 BNX2X_NUM_ETH_QUEUES(bp) + index];
2484
2485 /* set the tpa flag for each queue. The tpa flag determines the queue
2486 * minimal size so it must be set prior to queue memory allocation
2487 */
2488 if (bp->dev->features & NETIF_F_LRO)
2489 fp->mode = TPA_MODE_LRO;
2490 else if (bp->dev->features & NETIF_F_GRO &&
2491 bnx2x_mtu_allows_gro(bp->dev->mtu))
2492 fp->mode = TPA_MODE_GRO;
2493 else
2494 fp->mode = TPA_MODE_DISABLED;
2495
2496 /* We don't want TPA if it's disabled in bp
2497 * or if this is an FCoE L2 ring.
2498 */
2499 if (bp->disable_tpa || IS_FCOE_FP(fp))
2500 fp->mode = TPA_MODE_DISABLED;
2501 }
2502
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2503 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2504 {
2505 u32 cur;
2506
2507 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2508 return;
2509
2510 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2511 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2512 cur, state);
2513
2514 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2515 }
2516
bnx2x_load_cnic(struct bnx2x * bp)2517 int bnx2x_load_cnic(struct bnx2x *bp)
2518 {
2519 int i, rc, port = BP_PORT(bp);
2520
2521 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2522
2523 mutex_init(&bp->cnic_mutex);
2524
2525 if (IS_PF(bp)) {
2526 rc = bnx2x_alloc_mem_cnic(bp);
2527 if (rc) {
2528 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2529 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2530 }
2531 }
2532
2533 rc = bnx2x_alloc_fp_mem_cnic(bp);
2534 if (rc) {
2535 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2536 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2537 }
2538
2539 /* Update the number of queues with the cnic queues */
2540 rc = bnx2x_set_real_num_queues(bp, 1);
2541 if (rc) {
2542 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2543 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2544 }
2545
2546 /* Add all CNIC NAPI objects */
2547 bnx2x_add_all_napi_cnic(bp);
2548 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2549 bnx2x_napi_enable_cnic(bp);
2550
2551 rc = bnx2x_init_hw_func_cnic(bp);
2552 if (rc)
2553 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2554
2555 bnx2x_nic_init_cnic(bp);
2556
2557 if (IS_PF(bp)) {
2558 /* Enable Timer scan */
2559 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2560
2561 /* setup cnic queues */
2562 for_each_cnic_queue(bp, i) {
2563 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2564 if (rc) {
2565 BNX2X_ERR("Queue setup failed\n");
2566 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2567 }
2568 }
2569 }
2570
2571 /* Initialize Rx filter. */
2572 bnx2x_set_rx_mode_inner(bp);
2573
2574 /* re-read iscsi info */
2575 bnx2x_get_iscsi_info(bp);
2576 bnx2x_setup_cnic_irq_info(bp);
2577 bnx2x_setup_cnic_info(bp);
2578 bp->cnic_loaded = true;
2579 if (bp->state == BNX2X_STATE_OPEN)
2580 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2581
2582 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2583
2584 return 0;
2585
2586 #ifndef BNX2X_STOP_ON_ERROR
2587 load_error_cnic2:
2588 /* Disable Timer scan */
2589 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2590
2591 load_error_cnic1:
2592 bnx2x_napi_disable_cnic(bp);
2593 /* Update the number of queues without the cnic queues */
2594 if (bnx2x_set_real_num_queues(bp, 0))
2595 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2596 load_error_cnic0:
2597 BNX2X_ERR("CNIC-related load failed\n");
2598 bnx2x_free_fp_mem_cnic(bp);
2599 bnx2x_free_mem_cnic(bp);
2600 return rc;
2601 #endif /* ! BNX2X_STOP_ON_ERROR */
2602 }
2603
2604 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2605 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2606 {
2607 int port = BP_PORT(bp);
2608 int i, rc = 0, load_code = 0;
2609
2610 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2611 DP(NETIF_MSG_IFUP,
2612 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2613
2614 #ifdef BNX2X_STOP_ON_ERROR
2615 if (unlikely(bp->panic)) {
2616 BNX2X_ERR("Can't load NIC when there is panic\n");
2617 return -EPERM;
2618 }
2619 #endif
2620
2621 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2622
2623 /* zero the structure w/o any lock, before SP handler is initialized */
2624 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2625 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2626 &bp->last_reported_link.link_report_flags);
2627
2628 if (IS_PF(bp))
2629 /* must be called before memory allocation and HW init */
2630 bnx2x_ilt_set_info(bp);
2631
2632 /*
2633 * Zero fastpath structures preserving invariants like napi, which are
2634 * allocated only once, fp index, max_cos, bp pointer.
2635 * Also set fp->mode and txdata_ptr.
2636 */
2637 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2638 for_each_queue(bp, i)
2639 bnx2x_bz_fp(bp, i);
2640 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2641 bp->num_cnic_queues) *
2642 sizeof(struct bnx2x_fp_txdata));
2643
2644 bp->fcoe_init = false;
2645
2646 /* Set the receive queues buffer size */
2647 bnx2x_set_rx_buf_size(bp);
2648
2649 if (IS_PF(bp)) {
2650 rc = bnx2x_alloc_mem(bp);
2651 if (rc) {
2652 BNX2X_ERR("Unable to allocate bp memory\n");
2653 return rc;
2654 }
2655 }
2656
2657 /* need to be done after alloc mem, since it's self adjusting to amount
2658 * of memory available for RSS queues
2659 */
2660 rc = bnx2x_alloc_fp_mem(bp);
2661 if (rc) {
2662 BNX2X_ERR("Unable to allocate memory for fps\n");
2663 LOAD_ERROR_EXIT(bp, load_error0);
2664 }
2665
2666 /* Allocated memory for FW statistics */
2667 if (bnx2x_alloc_fw_stats_mem(bp))
2668 LOAD_ERROR_EXIT(bp, load_error0);
2669
2670 /* request pf to initialize status blocks */
2671 if (IS_VF(bp)) {
2672 rc = bnx2x_vfpf_init(bp);
2673 if (rc)
2674 LOAD_ERROR_EXIT(bp, load_error0);
2675 }
2676
2677 /* As long as bnx2x_alloc_mem() may possibly update
2678 * bp->num_queues, bnx2x_set_real_num_queues() should always
2679 * come after it. At this stage cnic queues are not counted.
2680 */
2681 rc = bnx2x_set_real_num_queues(bp, 0);
2682 if (rc) {
2683 BNX2X_ERR("Unable to set real_num_queues\n");
2684 LOAD_ERROR_EXIT(bp, load_error0);
2685 }
2686
2687 /* configure multi cos mappings in kernel.
2688 * this configuration may be overridden by a multi class queue
2689 * discipline or by a dcbx negotiation result.
2690 */
2691 bnx2x_setup_tc(bp->dev, bp->max_cos);
2692
2693 /* Add all NAPI objects */
2694 bnx2x_add_all_napi(bp);
2695 DP(NETIF_MSG_IFUP, "napi added\n");
2696 bnx2x_napi_enable(bp);
2697
2698 if (IS_PF(bp)) {
2699 /* set pf load just before approaching the MCP */
2700 bnx2x_set_pf_load(bp);
2701
2702 /* if mcp exists send load request and analyze response */
2703 if (!BP_NOMCP(bp)) {
2704 /* attempt to load pf */
2705 rc = bnx2x_nic_load_request(bp, &load_code);
2706 if (rc)
2707 LOAD_ERROR_EXIT(bp, load_error1);
2708
2709 /* what did mcp say? */
2710 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2711 if (rc) {
2712 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2713 LOAD_ERROR_EXIT(bp, load_error2);
2714 }
2715 } else {
2716 load_code = bnx2x_nic_load_no_mcp(bp, port);
2717 }
2718
2719 /* mark pmf if applicable */
2720 bnx2x_nic_load_pmf(bp, load_code);
2721
2722 /* Init Function state controlling object */
2723 bnx2x__init_func_obj(bp);
2724
2725 /* Initialize HW */
2726 rc = bnx2x_init_hw(bp, load_code);
2727 if (rc) {
2728 BNX2X_ERR("HW init failed, aborting\n");
2729 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2730 LOAD_ERROR_EXIT(bp, load_error2);
2731 }
2732 }
2733
2734 bnx2x_pre_irq_nic_init(bp);
2735
2736 /* Connect to IRQs */
2737 rc = bnx2x_setup_irqs(bp);
2738 if (rc) {
2739 BNX2X_ERR("setup irqs failed\n");
2740 if (IS_PF(bp))
2741 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2742 LOAD_ERROR_EXIT(bp, load_error2);
2743 }
2744
2745 /* Init per-function objects */
2746 if (IS_PF(bp)) {
2747 /* Setup NIC internals and enable interrupts */
2748 bnx2x_post_irq_nic_init(bp, load_code);
2749
2750 bnx2x_init_bp_objs(bp);
2751 bnx2x_iov_nic_init(bp);
2752
2753 /* Set AFEX default VLAN tag to an invalid value */
2754 bp->afex_def_vlan_tag = -1;
2755 bnx2x_nic_load_afex_dcc(bp, load_code);
2756 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2757 rc = bnx2x_func_start(bp);
2758 if (rc) {
2759 BNX2X_ERR("Function start failed!\n");
2760 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2761
2762 LOAD_ERROR_EXIT(bp, load_error3);
2763 }
2764
2765 /* Send LOAD_DONE command to MCP */
2766 if (!BP_NOMCP(bp)) {
2767 load_code = bnx2x_fw_command(bp,
2768 DRV_MSG_CODE_LOAD_DONE, 0);
2769 if (!load_code) {
2770 BNX2X_ERR("MCP response failure, aborting\n");
2771 rc = -EBUSY;
2772 LOAD_ERROR_EXIT(bp, load_error3);
2773 }
2774 }
2775
2776 /* initialize FW coalescing state machines in RAM */
2777 bnx2x_update_coalesce(bp);
2778 }
2779
2780 /* setup the leading queue */
2781 rc = bnx2x_setup_leading(bp);
2782 if (rc) {
2783 BNX2X_ERR("Setup leading failed!\n");
2784 LOAD_ERROR_EXIT(bp, load_error3);
2785 }
2786
2787 /* set up the rest of the queues */
2788 for_each_nondefault_eth_queue(bp, i) {
2789 if (IS_PF(bp))
2790 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2791 else /* VF */
2792 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2793 if (rc) {
2794 BNX2X_ERR("Queue %d setup failed\n", i);
2795 LOAD_ERROR_EXIT(bp, load_error3);
2796 }
2797 }
2798
2799 /* setup rss */
2800 rc = bnx2x_init_rss(bp);
2801 if (rc) {
2802 BNX2X_ERR("PF RSS init failed\n");
2803 LOAD_ERROR_EXIT(bp, load_error3);
2804 }
2805
2806 /* Now when Clients are configured we are ready to work */
2807 bp->state = BNX2X_STATE_OPEN;
2808
2809 /* Configure a ucast MAC */
2810 if (IS_PF(bp))
2811 rc = bnx2x_set_eth_mac(bp, true);
2812 else /* vf */
2813 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2814 true);
2815 if (rc) {
2816 BNX2X_ERR("Setting Ethernet MAC failed\n");
2817 LOAD_ERROR_EXIT(bp, load_error3);
2818 }
2819
2820 if (IS_PF(bp) && bp->pending_max) {
2821 bnx2x_update_max_mf_config(bp, bp->pending_max);
2822 bp->pending_max = 0;
2823 }
2824
2825 if (bp->port.pmf) {
2826 rc = bnx2x_initial_phy_init(bp, load_mode);
2827 if (rc)
2828 LOAD_ERROR_EXIT(bp, load_error3);
2829 }
2830 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2831
2832 /* Start fast path */
2833
2834 /* Re-configure vlan filters */
2835 rc = bnx2x_vlan_reconfigure_vid(bp);
2836 if (rc)
2837 LOAD_ERROR_EXIT(bp, load_error3);
2838
2839 /* Initialize Rx filter. */
2840 bnx2x_set_rx_mode_inner(bp);
2841
2842 if (bp->flags & PTP_SUPPORTED) {
2843 bnx2x_init_ptp(bp);
2844 bnx2x_configure_ptp_filters(bp);
2845 }
2846 /* Start Tx */
2847 switch (load_mode) {
2848 case LOAD_NORMAL:
2849 /* Tx queue should be only re-enabled */
2850 netif_tx_wake_all_queues(bp->dev);
2851 break;
2852
2853 case LOAD_OPEN:
2854 netif_tx_start_all_queues(bp->dev);
2855 smp_mb__after_atomic();
2856 break;
2857
2858 case LOAD_DIAG:
2859 case LOAD_LOOPBACK_EXT:
2860 bp->state = BNX2X_STATE_DIAG;
2861 break;
2862
2863 default:
2864 break;
2865 }
2866
2867 if (bp->port.pmf)
2868 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2869 else
2870 bnx2x__link_status_update(bp);
2871
2872 /* start the timer */
2873 mod_timer(&bp->timer, jiffies + bp->current_interval);
2874
2875 if (CNIC_ENABLED(bp))
2876 bnx2x_load_cnic(bp);
2877
2878 if (IS_PF(bp))
2879 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2880
2881 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2882 /* mark driver is loaded in shmem2 */
2883 u32 val;
2884 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2885 val &= ~DRV_FLAGS_MTU_MASK;
2886 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2887 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2888 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2889 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2890 }
2891
2892 /* Wait for all pending SP commands to complete */
2893 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2894 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2895 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2896 return -EBUSY;
2897 }
2898
2899 /* Update driver data for On-Chip MFW dump. */
2900 if (IS_PF(bp))
2901 bnx2x_update_mfw_dump(bp);
2902
2903 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2904 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2905 bnx2x_dcbx_init(bp, false);
2906
2907 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2908 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2909
2910 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2911
2912 return 0;
2913
2914 #ifndef BNX2X_STOP_ON_ERROR
2915 load_error3:
2916 if (IS_PF(bp)) {
2917 bnx2x_int_disable_sync(bp, 1);
2918
2919 /* Clean queueable objects */
2920 bnx2x_squeeze_objects(bp);
2921 }
2922
2923 /* Free SKBs, SGEs, TPA pool and driver internals */
2924 bnx2x_free_skbs(bp);
2925 for_each_rx_queue(bp, i)
2926 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2927
2928 /* Release IRQs */
2929 bnx2x_free_irq(bp);
2930 load_error2:
2931 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2932 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2933 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2934 }
2935
2936 bp->port.pmf = 0;
2937 load_error1:
2938 bnx2x_napi_disable(bp);
2939 bnx2x_del_all_napi(bp);
2940
2941 /* clear pf_load status, as it was already set */
2942 if (IS_PF(bp))
2943 bnx2x_clear_pf_load(bp);
2944 load_error0:
2945 bnx2x_free_fw_stats_mem(bp);
2946 bnx2x_free_fp_mem(bp);
2947 bnx2x_free_mem(bp);
2948
2949 return rc;
2950 #endif /* ! BNX2X_STOP_ON_ERROR */
2951 }
2952
bnx2x_drain_tx_queues(struct bnx2x * bp)2953 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2954 {
2955 u8 rc = 0, cos, i;
2956
2957 /* Wait until tx fastpath tasks complete */
2958 for_each_tx_queue(bp, i) {
2959 struct bnx2x_fastpath *fp = &bp->fp[i];
2960
2961 for_each_cos_in_tx_queue(fp, cos)
2962 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2963 if (rc)
2964 return rc;
2965 }
2966 return 0;
2967 }
2968
2969 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2970 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2971 {
2972 int i;
2973 bool global = false;
2974
2975 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2976
2977 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2978 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2979
2980 /* mark driver is unloaded in shmem2 */
2981 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2982 u32 val;
2983 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2984 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2985 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2986 }
2987
2988 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2989 (bp->state == BNX2X_STATE_CLOSED ||
2990 bp->state == BNX2X_STATE_ERROR)) {
2991 /* We can get here if the driver has been unloaded
2992 * during parity error recovery and is either waiting for a
2993 * leader to complete or for other functions to unload and
2994 * then ifdown has been issued. In this case we want to
2995 * unload and let other functions to complete a recovery
2996 * process.
2997 */
2998 bp->recovery_state = BNX2X_RECOVERY_DONE;
2999 bp->is_leader = 0;
3000 bnx2x_release_leader_lock(bp);
3001 smp_mb();
3002
3003 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3004 BNX2X_ERR("Can't unload in closed or error state\n");
3005 return -EINVAL;
3006 }
3007
3008 /* Nothing to do during unload if previous bnx2x_nic_load()
3009 * have not completed successfully - all resources are released.
3010 *
3011 * we can get here only after unsuccessful ndo_* callback, during which
3012 * dev->IFF_UP flag is still on.
3013 */
3014 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3015 return 0;
3016
3017 /* It's important to set the bp->state to the value different from
3018 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3019 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3020 */
3021 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3022 smp_mb();
3023
3024 /* indicate to VFs that the PF is going down */
3025 bnx2x_iov_channel_down(bp);
3026
3027 if (CNIC_LOADED(bp))
3028 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3029
3030 /* Stop Tx */
3031 bnx2x_tx_disable(bp);
3032 netdev_reset_tc(bp->dev);
3033
3034 bp->rx_mode = BNX2X_RX_MODE_NONE;
3035
3036 del_timer_sync(&bp->timer);
3037
3038 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3039 /* Set ALWAYS_ALIVE bit in shmem */
3040 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3041 bnx2x_drv_pulse(bp);
3042 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3043 bnx2x_save_statistics(bp);
3044 }
3045
3046 /* wait till consumers catch up with producers in all queues.
3047 * If we're recovering, FW can't write to host so no reason
3048 * to wait for the queues to complete all Tx.
3049 */
3050 if (unload_mode != UNLOAD_RECOVERY)
3051 bnx2x_drain_tx_queues(bp);
3052
3053 /* if VF indicate to PF this function is going down (PF will delete sp
3054 * elements and clear initializations
3055 */
3056 if (IS_VF(bp))
3057 bnx2x_vfpf_close_vf(bp);
3058 else if (unload_mode != UNLOAD_RECOVERY)
3059 /* if this is a normal/close unload need to clean up chip*/
3060 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3061 else {
3062 /* Send the UNLOAD_REQUEST to the MCP */
3063 bnx2x_send_unload_req(bp, unload_mode);
3064
3065 /* Prevent transactions to host from the functions on the
3066 * engine that doesn't reset global blocks in case of global
3067 * attention once global blocks are reset and gates are opened
3068 * (the engine which leader will perform the recovery
3069 * last).
3070 */
3071 if (!CHIP_IS_E1x(bp))
3072 bnx2x_pf_disable(bp);
3073
3074 /* Disable HW interrupts, NAPI */
3075 bnx2x_netif_stop(bp, 1);
3076 /* Delete all NAPI objects */
3077 bnx2x_del_all_napi(bp);
3078 if (CNIC_LOADED(bp))
3079 bnx2x_del_all_napi_cnic(bp);
3080 /* Release IRQs */
3081 bnx2x_free_irq(bp);
3082
3083 /* Report UNLOAD_DONE to MCP */
3084 bnx2x_send_unload_done(bp, false);
3085 }
3086
3087 /*
3088 * At this stage no more interrupts will arrive so we may safely clean
3089 * the queueable objects here in case they failed to get cleaned so far.
3090 */
3091 if (IS_PF(bp))
3092 bnx2x_squeeze_objects(bp);
3093
3094 /* There should be no more pending SP commands at this stage */
3095 bp->sp_state = 0;
3096
3097 bp->port.pmf = 0;
3098
3099 /* clear pending work in rtnl task */
3100 bp->sp_rtnl_state = 0;
3101 smp_mb();
3102
3103 /* Free SKBs, SGEs, TPA pool and driver internals */
3104 bnx2x_free_skbs(bp);
3105 if (CNIC_LOADED(bp))
3106 bnx2x_free_skbs_cnic(bp);
3107 for_each_rx_queue(bp, i)
3108 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3109
3110 bnx2x_free_fp_mem(bp);
3111 if (CNIC_LOADED(bp))
3112 bnx2x_free_fp_mem_cnic(bp);
3113
3114 if (IS_PF(bp)) {
3115 if (CNIC_LOADED(bp))
3116 bnx2x_free_mem_cnic(bp);
3117 }
3118 bnx2x_free_mem(bp);
3119
3120 bp->state = BNX2X_STATE_CLOSED;
3121 bp->cnic_loaded = false;
3122
3123 /* Clear driver version indication in shmem */
3124 if (IS_PF(bp) && !BP_NOMCP(bp))
3125 bnx2x_update_mng_version(bp);
3126
3127 /* Check if there are pending parity attentions. If there are - set
3128 * RECOVERY_IN_PROGRESS.
3129 */
3130 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3131 bnx2x_set_reset_in_progress(bp);
3132
3133 /* Set RESET_IS_GLOBAL if needed */
3134 if (global)
3135 bnx2x_set_reset_global(bp);
3136 }
3137
3138 /* The last driver must disable a "close the gate" if there is no
3139 * parity attention or "process kill" pending.
3140 */
3141 if (IS_PF(bp) &&
3142 !bnx2x_clear_pf_load(bp) &&
3143 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3144 bnx2x_disable_close_the_gate(bp);
3145
3146 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3147
3148 return 0;
3149 }
3150
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3151 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3152 {
3153 u16 pmcsr;
3154
3155 /* If there is no power capability, silently succeed */
3156 if (!bp->pdev->pm_cap) {
3157 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3158 return 0;
3159 }
3160
3161 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3162
3163 switch (state) {
3164 case PCI_D0:
3165 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3166 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3167 PCI_PM_CTRL_PME_STATUS));
3168
3169 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3170 /* delay required during transition out of D3hot */
3171 msleep(20);
3172 break;
3173
3174 case PCI_D3hot:
3175 /* If there are other clients above don't
3176 shut down the power */
3177 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3178 return 0;
3179 /* Don't shut down the power for emulation and FPGA */
3180 if (CHIP_REV_IS_SLOW(bp))
3181 return 0;
3182
3183 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3184 pmcsr |= 3;
3185
3186 if (bp->wol)
3187 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3188
3189 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3190 pmcsr);
3191
3192 /* No more memory access after this point until
3193 * device is brought back to D0.
3194 */
3195 break;
3196
3197 default:
3198 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3199 return -EINVAL;
3200 }
3201 return 0;
3202 }
3203
3204 /*
3205 * net_device service functions
3206 */
bnx2x_poll(struct napi_struct * napi,int budget)3207 static int bnx2x_poll(struct napi_struct *napi, int budget)
3208 {
3209 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3210 napi);
3211 struct bnx2x *bp = fp->bp;
3212 int rx_work_done;
3213 u8 cos;
3214
3215 #ifdef BNX2X_STOP_ON_ERROR
3216 if (unlikely(bp->panic)) {
3217 napi_complete(napi);
3218 return 0;
3219 }
3220 #endif
3221 for_each_cos_in_tx_queue(fp, cos)
3222 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3223 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3224
3225 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3226
3227 if (rx_work_done < budget) {
3228 /* No need to update SB for FCoE L2 ring as long as
3229 * it's connected to the default SB and the SB
3230 * has been updated when NAPI was scheduled.
3231 */
3232 if (IS_FCOE_FP(fp)) {
3233 napi_complete(napi);
3234 } else {
3235 bnx2x_update_fpsb_idx(fp);
3236 /* bnx2x_has_rx_work() reads the status block,
3237 * thus we need to ensure that status block indices
3238 * have been actually read (bnx2x_update_fpsb_idx)
3239 * prior to this check (bnx2x_has_rx_work) so that
3240 * we won't write the "newer" value of the status block
3241 * to IGU (if there was a DMA right after
3242 * bnx2x_has_rx_work and if there is no rmb, the memory
3243 * reading (bnx2x_update_fpsb_idx) may be postponed
3244 * to right before bnx2x_ack_sb). In this case there
3245 * will never be another interrupt until there is
3246 * another update of the status block, while there
3247 * is still unhandled work.
3248 */
3249 rmb();
3250
3251 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3252 napi_complete(napi);
3253 /* Re-enable interrupts */
3254 DP(NETIF_MSG_RX_STATUS,
3255 "Update index to %d\n", fp->fp_hc_idx);
3256 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3257 le16_to_cpu(fp->fp_hc_idx),
3258 IGU_INT_ENABLE, 1);
3259 } else {
3260 rx_work_done = budget;
3261 }
3262 }
3263 }
3264
3265 return rx_work_done;
3266 }
3267
3268 /* we split the first BD into headers and data BDs
3269 * to ease the pain of our fellow microcode engineers
3270 * we use one mapping for both BDs
3271 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3272 static u16 bnx2x_tx_split(struct bnx2x *bp,
3273 struct bnx2x_fp_txdata *txdata,
3274 struct sw_tx_bd *tx_buf,
3275 struct eth_tx_start_bd **tx_bd, u16 hlen,
3276 u16 bd_prod)
3277 {
3278 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3279 struct eth_tx_bd *d_tx_bd;
3280 dma_addr_t mapping;
3281 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3282
3283 /* first fix first BD */
3284 h_tx_bd->nbytes = cpu_to_le16(hlen);
3285
3286 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3287 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3288
3289 /* now get a new data BD
3290 * (after the pbd) and fill it */
3291 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3292 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3293
3294 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3295 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3296
3297 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3298 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3299 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3300
3301 /* this marks the BD as one that has no individual mapping */
3302 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3303
3304 DP(NETIF_MSG_TX_QUEUED,
3305 "TSO split data size is %d (%x:%x)\n",
3306 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3307
3308 /* update tx_bd */
3309 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3310
3311 return bd_prod;
3312 }
3313
3314 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3315 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3316 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3317 {
3318 __sum16 tsum = (__force __sum16) csum;
3319
3320 if (fix > 0)
3321 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3322 csum_partial(t_header - fix, fix, 0)));
3323
3324 else if (fix < 0)
3325 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3326 csum_partial(t_header, -fix, 0)));
3327
3328 return bswab16(tsum);
3329 }
3330
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3331 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3332 {
3333 u32 rc;
3334 __u8 prot = 0;
3335 __be16 protocol;
3336
3337 if (skb->ip_summed != CHECKSUM_PARTIAL)
3338 return XMIT_PLAIN;
3339
3340 protocol = vlan_get_protocol(skb);
3341 if (protocol == htons(ETH_P_IPV6)) {
3342 rc = XMIT_CSUM_V6;
3343 prot = ipv6_hdr(skb)->nexthdr;
3344 } else {
3345 rc = XMIT_CSUM_V4;
3346 prot = ip_hdr(skb)->protocol;
3347 }
3348
3349 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3350 if (inner_ip_hdr(skb)->version == 6) {
3351 rc |= XMIT_CSUM_ENC_V6;
3352 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3353 rc |= XMIT_CSUM_TCP;
3354 } else {
3355 rc |= XMIT_CSUM_ENC_V4;
3356 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3357 rc |= XMIT_CSUM_TCP;
3358 }
3359 }
3360 if (prot == IPPROTO_TCP)
3361 rc |= XMIT_CSUM_TCP;
3362
3363 if (skb_is_gso(skb)) {
3364 if (skb_is_gso_v6(skb)) {
3365 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3366 if (rc & XMIT_CSUM_ENC)
3367 rc |= XMIT_GSO_ENC_V6;
3368 } else {
3369 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3370 if (rc & XMIT_CSUM_ENC)
3371 rc |= XMIT_GSO_ENC_V4;
3372 }
3373 }
3374
3375 return rc;
3376 }
3377
3378 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3379 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3380
3381 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3382 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3383
3384 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3385 /* check if packet requires linearization (packet is too fragmented)
3386 no need to check fragmentation if page size > 8K (there will be no
3387 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3388 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3389 u32 xmit_type)
3390 {
3391 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3392 int to_copy = 0, hlen = 0;
3393
3394 if (xmit_type & XMIT_GSO_ENC)
3395 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3396
3397 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3398 if (xmit_type & XMIT_GSO) {
3399 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3400 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3401 /* Number of windows to check */
3402 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3403 int wnd_idx = 0;
3404 int frag_idx = 0;
3405 u32 wnd_sum = 0;
3406
3407 /* Headers length */
3408 if (xmit_type & XMIT_GSO_ENC)
3409 hlen = (int)(skb_inner_transport_header(skb) -
3410 skb->data) +
3411 inner_tcp_hdrlen(skb);
3412 else
3413 hlen = (int)(skb_transport_header(skb) -
3414 skb->data) + tcp_hdrlen(skb);
3415
3416 /* Amount of data (w/o headers) on linear part of SKB*/
3417 first_bd_sz = skb_headlen(skb) - hlen;
3418
3419 wnd_sum = first_bd_sz;
3420
3421 /* Calculate the first sum - it's special */
3422 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3423 wnd_sum +=
3424 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3425
3426 /* If there was data on linear skb data - check it */
3427 if (first_bd_sz > 0) {
3428 if (unlikely(wnd_sum < lso_mss)) {
3429 to_copy = 1;
3430 goto exit_lbl;
3431 }
3432
3433 wnd_sum -= first_bd_sz;
3434 }
3435
3436 /* Others are easier: run through the frag list and
3437 check all windows */
3438 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3439 wnd_sum +=
3440 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3441
3442 if (unlikely(wnd_sum < lso_mss)) {
3443 to_copy = 1;
3444 break;
3445 }
3446 wnd_sum -=
3447 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3448 }
3449 } else {
3450 /* in non-LSO too fragmented packet should always
3451 be linearized */
3452 to_copy = 1;
3453 }
3454 }
3455
3456 exit_lbl:
3457 if (unlikely(to_copy))
3458 DP(NETIF_MSG_TX_QUEUED,
3459 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3460 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3461 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3462
3463 return to_copy;
3464 }
3465 #endif
3466
3467 /**
3468 * bnx2x_set_pbd_gso - update PBD in GSO case.
3469 *
3470 * @skb: packet skb
3471 * @pbd: parse BD
3472 * @xmit_type: xmit flags
3473 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3474 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3475 struct eth_tx_parse_bd_e1x *pbd,
3476 u32 xmit_type)
3477 {
3478 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3479 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3480 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3481
3482 if (xmit_type & XMIT_GSO_V4) {
3483 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3484 pbd->tcp_pseudo_csum =
3485 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3486 ip_hdr(skb)->daddr,
3487 0, IPPROTO_TCP, 0));
3488 } else {
3489 pbd->tcp_pseudo_csum =
3490 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3491 &ipv6_hdr(skb)->daddr,
3492 0, IPPROTO_TCP, 0));
3493 }
3494
3495 pbd->global_data |=
3496 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3497 }
3498
3499 /**
3500 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3501 *
3502 * @bp: driver handle
3503 * @skb: packet skb
3504 * @parsing_data: data to be updated
3505 * @xmit_type: xmit flags
3506 *
3507 * 57712/578xx related, when skb has encapsulation
3508 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3509 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3510 u32 *parsing_data, u32 xmit_type)
3511 {
3512 *parsing_data |=
3513 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3514 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3515 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3516
3517 if (xmit_type & XMIT_CSUM_TCP) {
3518 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3519 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3520 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3521
3522 return skb_inner_transport_header(skb) +
3523 inner_tcp_hdrlen(skb) - skb->data;
3524 }
3525
3526 /* We support checksum offload for TCP and UDP only.
3527 * No need to pass the UDP header length - it's a constant.
3528 */
3529 return skb_inner_transport_header(skb) +
3530 sizeof(struct udphdr) - skb->data;
3531 }
3532
3533 /**
3534 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3535 *
3536 * @bp: driver handle
3537 * @skb: packet skb
3538 * @parsing_data: data to be updated
3539 * @xmit_type: xmit flags
3540 *
3541 * 57712/578xx related
3542 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3543 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3544 u32 *parsing_data, u32 xmit_type)
3545 {
3546 *parsing_data |=
3547 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3548 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3549 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3550
3551 if (xmit_type & XMIT_CSUM_TCP) {
3552 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3553 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3554 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3555
3556 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3557 }
3558 /* We support checksum offload for TCP and UDP only.
3559 * No need to pass the UDP header length - it's a constant.
3560 */
3561 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3562 }
3563
3564 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3565 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3566 struct eth_tx_start_bd *tx_start_bd,
3567 u32 xmit_type)
3568 {
3569 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3570
3571 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3572 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3573
3574 if (!(xmit_type & XMIT_CSUM_TCP))
3575 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3576 }
3577
3578 /**
3579 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3580 *
3581 * @bp: driver handle
3582 * @skb: packet skb
3583 * @pbd: parse BD to be updated
3584 * @xmit_type: xmit flags
3585 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3586 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3587 struct eth_tx_parse_bd_e1x *pbd,
3588 u32 xmit_type)
3589 {
3590 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3591
3592 /* for now NS flag is not used in Linux */
3593 pbd->global_data =
3594 cpu_to_le16(hlen |
3595 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3596 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3597
3598 pbd->ip_hlen_w = (skb_transport_header(skb) -
3599 skb_network_header(skb)) >> 1;
3600
3601 hlen += pbd->ip_hlen_w;
3602
3603 /* We support checksum offload for TCP and UDP only */
3604 if (xmit_type & XMIT_CSUM_TCP)
3605 hlen += tcp_hdrlen(skb) / 2;
3606 else
3607 hlen += sizeof(struct udphdr) / 2;
3608
3609 pbd->total_hlen_w = cpu_to_le16(hlen);
3610 hlen = hlen*2;
3611
3612 if (xmit_type & XMIT_CSUM_TCP) {
3613 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3614
3615 } else {
3616 s8 fix = SKB_CS_OFF(skb); /* signed! */
3617
3618 DP(NETIF_MSG_TX_QUEUED,
3619 "hlen %d fix %d csum before fix %x\n",
3620 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3621
3622 /* HW bug: fixup the CSUM */
3623 pbd->tcp_pseudo_csum =
3624 bnx2x_csum_fix(skb_transport_header(skb),
3625 SKB_CS(skb), fix);
3626
3627 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3628 pbd->tcp_pseudo_csum);
3629 }
3630
3631 return hlen;
3632 }
3633
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3634 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3635 struct eth_tx_parse_bd_e2 *pbd_e2,
3636 struct eth_tx_parse_2nd_bd *pbd2,
3637 u16 *global_data,
3638 u32 xmit_type)
3639 {
3640 u16 hlen_w = 0;
3641 u8 outerip_off, outerip_len = 0;
3642
3643 /* from outer IP to transport */
3644 hlen_w = (skb_inner_transport_header(skb) -
3645 skb_network_header(skb)) >> 1;
3646
3647 /* transport len */
3648 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3649
3650 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3651
3652 /* outer IP header info */
3653 if (xmit_type & XMIT_CSUM_V4) {
3654 struct iphdr *iph = ip_hdr(skb);
3655 u32 csum = (__force u32)(~iph->check) -
3656 (__force u32)iph->tot_len -
3657 (__force u32)iph->frag_off;
3658
3659 outerip_len = iph->ihl << 1;
3660
3661 pbd2->fw_ip_csum_wo_len_flags_frag =
3662 bswab16(csum_fold((__force __wsum)csum));
3663 } else {
3664 pbd2->fw_ip_hdr_to_payload_w =
3665 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3666 pbd_e2->data.tunnel_data.flags |=
3667 ETH_TUNNEL_DATA_IPV6_OUTER;
3668 }
3669
3670 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3671
3672 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3673
3674 /* inner IP header info */
3675 if (xmit_type & XMIT_CSUM_ENC_V4) {
3676 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3677
3678 pbd_e2->data.tunnel_data.pseudo_csum =
3679 bswab16(~csum_tcpudp_magic(
3680 inner_ip_hdr(skb)->saddr,
3681 inner_ip_hdr(skb)->daddr,
3682 0, IPPROTO_TCP, 0));
3683 } else {
3684 pbd_e2->data.tunnel_data.pseudo_csum =
3685 bswab16(~csum_ipv6_magic(
3686 &inner_ipv6_hdr(skb)->saddr,
3687 &inner_ipv6_hdr(skb)->daddr,
3688 0, IPPROTO_TCP, 0));
3689 }
3690
3691 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3692
3693 *global_data |=
3694 outerip_off |
3695 (outerip_len <<
3696 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3697 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3698 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3699
3700 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3701 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3702 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3703 }
3704 }
3705
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3706 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3707 u32 xmit_type)
3708 {
3709 struct ipv6hdr *ipv6;
3710
3711 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3712 return;
3713
3714 if (xmit_type & XMIT_GSO_ENC_V6)
3715 ipv6 = inner_ipv6_hdr(skb);
3716 else /* XMIT_GSO_V6 */
3717 ipv6 = ipv6_hdr(skb);
3718
3719 if (ipv6->nexthdr == NEXTHDR_IPV6)
3720 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3721 }
3722
3723 /* called with netif_tx_lock
3724 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3725 * netif_wake_queue()
3726 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3727 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3728 {
3729 struct bnx2x *bp = netdev_priv(dev);
3730
3731 struct netdev_queue *txq;
3732 struct bnx2x_fp_txdata *txdata;
3733 struct sw_tx_bd *tx_buf;
3734 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3735 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3736 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3737 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3738 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3739 u32 pbd_e2_parsing_data = 0;
3740 u16 pkt_prod, bd_prod;
3741 int nbd, txq_index;
3742 dma_addr_t mapping;
3743 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3744 int i;
3745 u8 hlen = 0;
3746 __le16 pkt_size = 0;
3747 struct ethhdr *eth;
3748 u8 mac_type = UNICAST_ADDRESS;
3749
3750 #ifdef BNX2X_STOP_ON_ERROR
3751 if (unlikely(bp->panic))
3752 return NETDEV_TX_BUSY;
3753 #endif
3754
3755 txq_index = skb_get_queue_mapping(skb);
3756 txq = netdev_get_tx_queue(dev, txq_index);
3757
3758 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3759
3760 txdata = &bp->bnx2x_txq[txq_index];
3761
3762 /* enable this debug print to view the transmission queue being used
3763 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3764 txq_index, fp_index, txdata_index); */
3765
3766 /* enable this debug print to view the transmission details
3767 DP(NETIF_MSG_TX_QUEUED,
3768 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3769 txdata->cid, fp_index, txdata_index, txdata, fp); */
3770
3771 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3772 skb_shinfo(skb)->nr_frags +
3773 BDS_PER_TX_PKT +
3774 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3775 /* Handle special storage cases separately */
3776 if (txdata->tx_ring_size == 0) {
3777 struct bnx2x_eth_q_stats *q_stats =
3778 bnx2x_fp_qstats(bp, txdata->parent_fp);
3779 q_stats->driver_filtered_tx_pkt++;
3780 dev_kfree_skb(skb);
3781 return NETDEV_TX_OK;
3782 }
3783 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3784 netif_tx_stop_queue(txq);
3785 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3786
3787 return NETDEV_TX_BUSY;
3788 }
3789
3790 DP(NETIF_MSG_TX_QUEUED,
3791 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3792 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3793 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3794 skb->len);
3795
3796 eth = (struct ethhdr *)skb->data;
3797
3798 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3799 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3800 if (is_broadcast_ether_addr(eth->h_dest))
3801 mac_type = BROADCAST_ADDRESS;
3802 else
3803 mac_type = MULTICAST_ADDRESS;
3804 }
3805
3806 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3807 /* First, check if we need to linearize the skb (due to FW
3808 restrictions). No need to check fragmentation if page size > 8K
3809 (there will be no violation to FW restrictions) */
3810 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3811 /* Statistics of linearization */
3812 bp->lin_cnt++;
3813 if (skb_linearize(skb) != 0) {
3814 DP(NETIF_MSG_TX_QUEUED,
3815 "SKB linearization failed - silently dropping this SKB\n");
3816 dev_kfree_skb_any(skb);
3817 return NETDEV_TX_OK;
3818 }
3819 }
3820 #endif
3821 /* Map skb linear data for DMA */
3822 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3823 skb_headlen(skb), DMA_TO_DEVICE);
3824 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3825 DP(NETIF_MSG_TX_QUEUED,
3826 "SKB mapping failed - silently dropping this SKB\n");
3827 dev_kfree_skb_any(skb);
3828 return NETDEV_TX_OK;
3829 }
3830 /*
3831 Please read carefully. First we use one BD which we mark as start,
3832 then we have a parsing info BD (used for TSO or xsum),
3833 and only then we have the rest of the TSO BDs.
3834 (don't forget to mark the last one as last,
3835 and to unmap only AFTER you write to the BD ...)
3836 And above all, all pdb sizes are in words - NOT DWORDS!
3837 */
3838
3839 /* get current pkt produced now - advance it just before sending packet
3840 * since mapping of pages may fail and cause packet to be dropped
3841 */
3842 pkt_prod = txdata->tx_pkt_prod;
3843 bd_prod = TX_BD(txdata->tx_bd_prod);
3844
3845 /* get a tx_buf and first BD
3846 * tx_start_bd may be changed during SPLIT,
3847 * but first_bd will always stay first
3848 */
3849 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3850 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3851 first_bd = tx_start_bd;
3852
3853 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3854
3855 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3856 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3857 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3858 } else if (bp->ptp_tx_skb) {
3859 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3860 } else {
3861 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3862 /* schedule check for Tx timestamp */
3863 bp->ptp_tx_skb = skb_get(skb);
3864 bp->ptp_tx_start = jiffies;
3865 schedule_work(&bp->ptp_task);
3866 }
3867 }
3868
3869 /* header nbd: indirectly zero other flags! */
3870 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3871
3872 /* remember the first BD of the packet */
3873 tx_buf->first_bd = txdata->tx_bd_prod;
3874 tx_buf->skb = skb;
3875 tx_buf->flags = 0;
3876
3877 DP(NETIF_MSG_TX_QUEUED,
3878 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3879 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3880
3881 if (skb_vlan_tag_present(skb)) {
3882 tx_start_bd->vlan_or_ethertype =
3883 cpu_to_le16(skb_vlan_tag_get(skb));
3884 tx_start_bd->bd_flags.as_bitfield |=
3885 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3886 } else {
3887 /* when transmitting in a vf, start bd must hold the ethertype
3888 * for fw to enforce it
3889 */
3890 u16 vlan_tci = 0;
3891 #ifndef BNX2X_STOP_ON_ERROR
3892 if (IS_VF(bp)) {
3893 #endif
3894 /* Still need to consider inband vlan for enforced */
3895 if (__vlan_get_tag(skb, &vlan_tci)) {
3896 tx_start_bd->vlan_or_ethertype =
3897 cpu_to_le16(ntohs(eth->h_proto));
3898 } else {
3899 tx_start_bd->bd_flags.as_bitfield |=
3900 (X_ETH_INBAND_VLAN <<
3901 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3902 tx_start_bd->vlan_or_ethertype =
3903 cpu_to_le16(vlan_tci);
3904 }
3905 #ifndef BNX2X_STOP_ON_ERROR
3906 } else {
3907 /* used by FW for packet accounting */
3908 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3909 }
3910 #endif
3911 }
3912
3913 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3914
3915 /* turn on parsing and get a BD */
3916 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3917
3918 if (xmit_type & XMIT_CSUM)
3919 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3920
3921 if (!CHIP_IS_E1x(bp)) {
3922 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3923 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3924
3925 if (xmit_type & XMIT_CSUM_ENC) {
3926 u16 global_data = 0;
3927
3928 /* Set PBD in enc checksum offload case */
3929 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3930 &pbd_e2_parsing_data,
3931 xmit_type);
3932
3933 /* turn on 2nd parsing and get a BD */
3934 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3935
3936 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3937
3938 memset(pbd2, 0, sizeof(*pbd2));
3939
3940 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3941 (skb_inner_network_header(skb) -
3942 skb->data) >> 1;
3943
3944 if (xmit_type & XMIT_GSO_ENC)
3945 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3946 &global_data,
3947 xmit_type);
3948
3949 pbd2->global_data = cpu_to_le16(global_data);
3950
3951 /* add addition parse BD indication to start BD */
3952 SET_FLAG(tx_start_bd->general_data,
3953 ETH_TX_START_BD_PARSE_NBDS, 1);
3954 /* set encapsulation flag in start BD */
3955 SET_FLAG(tx_start_bd->general_data,
3956 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3957
3958 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3959
3960 nbd++;
3961 } else if (xmit_type & XMIT_CSUM) {
3962 /* Set PBD in checksum offload case w/o encapsulation */
3963 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3964 &pbd_e2_parsing_data,
3965 xmit_type);
3966 }
3967
3968 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3969 /* Add the macs to the parsing BD if this is a vf or if
3970 * Tx Switching is enabled.
3971 */
3972 if (IS_VF(bp)) {
3973 /* override GRE parameters in BD */
3974 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3975 &pbd_e2->data.mac_addr.src_mid,
3976 &pbd_e2->data.mac_addr.src_lo,
3977 eth->h_source);
3978
3979 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3980 &pbd_e2->data.mac_addr.dst_mid,
3981 &pbd_e2->data.mac_addr.dst_lo,
3982 eth->h_dest);
3983 } else {
3984 if (bp->flags & TX_SWITCHING)
3985 bnx2x_set_fw_mac_addr(
3986 &pbd_e2->data.mac_addr.dst_hi,
3987 &pbd_e2->data.mac_addr.dst_mid,
3988 &pbd_e2->data.mac_addr.dst_lo,
3989 eth->h_dest);
3990 #ifdef BNX2X_STOP_ON_ERROR
3991 /* Enforce security is always set in Stop on Error -
3992 * source mac should be present in the parsing BD
3993 */
3994 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3995 &pbd_e2->data.mac_addr.src_mid,
3996 &pbd_e2->data.mac_addr.src_lo,
3997 eth->h_source);
3998 #endif
3999 }
4000
4001 SET_FLAG(pbd_e2_parsing_data,
4002 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4003 } else {
4004 u16 global_data = 0;
4005 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4006 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4007 /* Set PBD in checksum offload case */
4008 if (xmit_type & XMIT_CSUM)
4009 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4010
4011 SET_FLAG(global_data,
4012 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4013 pbd_e1x->global_data |= cpu_to_le16(global_data);
4014 }
4015
4016 /* Setup the data pointer of the first BD of the packet */
4017 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4018 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4019 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4020 pkt_size = tx_start_bd->nbytes;
4021
4022 DP(NETIF_MSG_TX_QUEUED,
4023 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4024 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4025 le16_to_cpu(tx_start_bd->nbytes),
4026 tx_start_bd->bd_flags.as_bitfield,
4027 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4028
4029 if (xmit_type & XMIT_GSO) {
4030
4031 DP(NETIF_MSG_TX_QUEUED,
4032 "TSO packet len %d hlen %d total len %d tso size %d\n",
4033 skb->len, hlen, skb_headlen(skb),
4034 skb_shinfo(skb)->gso_size);
4035
4036 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4037
4038 if (unlikely(skb_headlen(skb) > hlen)) {
4039 nbd++;
4040 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4041 &tx_start_bd, hlen,
4042 bd_prod);
4043 }
4044 if (!CHIP_IS_E1x(bp))
4045 pbd_e2_parsing_data |=
4046 (skb_shinfo(skb)->gso_size <<
4047 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4048 ETH_TX_PARSE_BD_E2_LSO_MSS;
4049 else
4050 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4051 }
4052
4053 /* Set the PBD's parsing_data field if not zero
4054 * (for the chips newer than 57711).
4055 */
4056 if (pbd_e2_parsing_data)
4057 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4058
4059 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4060
4061 /* Handle fragmented skb */
4062 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4063 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4064
4065 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4066 skb_frag_size(frag), DMA_TO_DEVICE);
4067 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4068 unsigned int pkts_compl = 0, bytes_compl = 0;
4069
4070 DP(NETIF_MSG_TX_QUEUED,
4071 "Unable to map page - dropping packet...\n");
4072
4073 /* we need unmap all buffers already mapped
4074 * for this SKB;
4075 * first_bd->nbd need to be properly updated
4076 * before call to bnx2x_free_tx_pkt
4077 */
4078 first_bd->nbd = cpu_to_le16(nbd);
4079 bnx2x_free_tx_pkt(bp, txdata,
4080 TX_BD(txdata->tx_pkt_prod),
4081 &pkts_compl, &bytes_compl);
4082 return NETDEV_TX_OK;
4083 }
4084
4085 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4086 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4087 if (total_pkt_bd == NULL)
4088 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4089
4090 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4091 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4092 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4093 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4094 nbd++;
4095
4096 DP(NETIF_MSG_TX_QUEUED,
4097 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4098 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4099 le16_to_cpu(tx_data_bd->nbytes));
4100 }
4101
4102 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4103
4104 /* update with actual num BDs */
4105 first_bd->nbd = cpu_to_le16(nbd);
4106
4107 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4108
4109 /* now send a tx doorbell, counting the next BD
4110 * if the packet contains or ends with it
4111 */
4112 if (TX_BD_POFF(bd_prod) < nbd)
4113 nbd++;
4114
4115 /* total_pkt_bytes should be set on the first data BD if
4116 * it's not an LSO packet and there is more than one
4117 * data BD. In this case pkt_size is limited by an MTU value.
4118 * However we prefer to set it for an LSO packet (while we don't
4119 * have to) in order to save some CPU cycles in a none-LSO
4120 * case, when we much more care about them.
4121 */
4122 if (total_pkt_bd != NULL)
4123 total_pkt_bd->total_pkt_bytes = pkt_size;
4124
4125 if (pbd_e1x)
4126 DP(NETIF_MSG_TX_QUEUED,
4127 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4128 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4129 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4130 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4131 le16_to_cpu(pbd_e1x->total_hlen_w));
4132 if (pbd_e2)
4133 DP(NETIF_MSG_TX_QUEUED,
4134 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4135 pbd_e2,
4136 pbd_e2->data.mac_addr.dst_hi,
4137 pbd_e2->data.mac_addr.dst_mid,
4138 pbd_e2->data.mac_addr.dst_lo,
4139 pbd_e2->data.mac_addr.src_hi,
4140 pbd_e2->data.mac_addr.src_mid,
4141 pbd_e2->data.mac_addr.src_lo,
4142 pbd_e2->parsing_data);
4143 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4144
4145 netdev_tx_sent_queue(txq, skb->len);
4146
4147 skb_tx_timestamp(skb);
4148
4149 txdata->tx_pkt_prod++;
4150 /*
4151 * Make sure that the BD data is updated before updating the producer
4152 * since FW might read the BD right after the producer is updated.
4153 * This is only applicable for weak-ordered memory model archs such
4154 * as IA-64. The following barrier is also mandatory since FW will
4155 * assumes packets must have BDs.
4156 */
4157 wmb();
4158
4159 txdata->tx_db.data.prod += nbd;
4160 barrier();
4161
4162 DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4163
4164 mmiowb();
4165
4166 txdata->tx_bd_prod += nbd;
4167
4168 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4169 netif_tx_stop_queue(txq);
4170
4171 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4172 * ordering of set_bit() in netif_tx_stop_queue() and read of
4173 * fp->bd_tx_cons */
4174 smp_mb();
4175
4176 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4177 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4178 netif_tx_wake_queue(txq);
4179 }
4180 txdata->tx_pkt++;
4181
4182 return NETDEV_TX_OK;
4183 }
4184
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4185 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4186 {
4187 int mfw_vn = BP_FW_MB_IDX(bp);
4188 u32 tmp;
4189
4190 /* If the shmem shouldn't affect configuration, reflect */
4191 if (!IS_MF_BD(bp)) {
4192 int i;
4193
4194 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4195 c2s_map[i] = i;
4196 *c2s_default = 0;
4197
4198 return;
4199 }
4200
4201 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4202 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4203 c2s_map[0] = tmp & 0xff;
4204 c2s_map[1] = (tmp >> 8) & 0xff;
4205 c2s_map[2] = (tmp >> 16) & 0xff;
4206 c2s_map[3] = (tmp >> 24) & 0xff;
4207
4208 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4209 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4210 c2s_map[4] = tmp & 0xff;
4211 c2s_map[5] = (tmp >> 8) & 0xff;
4212 c2s_map[6] = (tmp >> 16) & 0xff;
4213 c2s_map[7] = (tmp >> 24) & 0xff;
4214
4215 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4216 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4217 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4218 }
4219
4220 /**
4221 * bnx2x_setup_tc - routine to configure net_device for multi tc
4222 *
4223 * @netdev: net device to configure
4224 * @tc: number of traffic classes to enable
4225 *
4226 * callback connected to the ndo_setup_tc function pointer
4227 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4228 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4229 {
4230 struct bnx2x *bp = netdev_priv(dev);
4231 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4232 int cos, prio, count, offset;
4233
4234 /* setup tc must be called under rtnl lock */
4235 ASSERT_RTNL();
4236
4237 /* no traffic classes requested. Aborting */
4238 if (!num_tc) {
4239 netdev_reset_tc(dev);
4240 return 0;
4241 }
4242
4243 /* requested to support too many traffic classes */
4244 if (num_tc > bp->max_cos) {
4245 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4246 num_tc, bp->max_cos);
4247 return -EINVAL;
4248 }
4249
4250 /* declare amount of supported traffic classes */
4251 if (netdev_set_num_tc(dev, num_tc)) {
4252 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4253 return -EINVAL;
4254 }
4255
4256 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4257
4258 /* configure priority to traffic class mapping */
4259 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4260 int outer_prio = c2s_map[prio];
4261
4262 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4263 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4264 "mapping priority %d to tc %d\n",
4265 outer_prio, bp->prio_to_cos[outer_prio]);
4266 }
4267
4268 /* Use this configuration to differentiate tc0 from other COSes
4269 This can be used for ets or pfc, and save the effort of setting
4270 up a multio class queue disc or negotiating DCBX with a switch
4271 netdev_set_prio_tc_map(dev, 0, 0);
4272 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4273 for (prio = 1; prio < 16; prio++) {
4274 netdev_set_prio_tc_map(dev, prio, 1);
4275 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4276 } */
4277
4278 /* configure traffic class to transmission queue mapping */
4279 for (cos = 0; cos < bp->max_cos; cos++) {
4280 count = BNX2X_NUM_ETH_QUEUES(bp);
4281 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4282 netdev_set_tc_queue(dev, cos, count, offset);
4283 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4284 "mapping tc %d to offset %d count %d\n",
4285 cos, offset, count);
4286 }
4287
4288 return 0;
4289 }
4290
__bnx2x_setup_tc(struct net_device * dev,u32 handle,__be16 proto,struct tc_to_netdev * tc)4291 int __bnx2x_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
4292 struct tc_to_netdev *tc)
4293 {
4294 if (tc->type != TC_SETUP_MQPRIO)
4295 return -EINVAL;
4296 return bnx2x_setup_tc(dev, tc->tc);
4297 }
4298
4299 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4300 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4301 {
4302 struct sockaddr *addr = p;
4303 struct bnx2x *bp = netdev_priv(dev);
4304 int rc = 0;
4305
4306 if (!is_valid_ether_addr(addr->sa_data)) {
4307 BNX2X_ERR("Requested MAC address is not valid\n");
4308 return -EINVAL;
4309 }
4310
4311 if (IS_MF_STORAGE_ONLY(bp)) {
4312 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4313 return -EINVAL;
4314 }
4315
4316 if (netif_running(dev)) {
4317 rc = bnx2x_set_eth_mac(bp, false);
4318 if (rc)
4319 return rc;
4320 }
4321
4322 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4323
4324 if (netif_running(dev))
4325 rc = bnx2x_set_eth_mac(bp, true);
4326
4327 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4328 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4329
4330 return rc;
4331 }
4332
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4333 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4334 {
4335 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4336 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4337 u8 cos;
4338
4339 /* Common */
4340
4341 if (IS_FCOE_IDX(fp_index)) {
4342 memset(sb, 0, sizeof(union host_hc_status_block));
4343 fp->status_blk_mapping = 0;
4344 } else {
4345 /* status blocks */
4346 if (!CHIP_IS_E1x(bp))
4347 BNX2X_PCI_FREE(sb->e2_sb,
4348 bnx2x_fp(bp, fp_index,
4349 status_blk_mapping),
4350 sizeof(struct host_hc_status_block_e2));
4351 else
4352 BNX2X_PCI_FREE(sb->e1x_sb,
4353 bnx2x_fp(bp, fp_index,
4354 status_blk_mapping),
4355 sizeof(struct host_hc_status_block_e1x));
4356 }
4357
4358 /* Rx */
4359 if (!skip_rx_queue(bp, fp_index)) {
4360 bnx2x_free_rx_bds(fp);
4361
4362 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4363 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4364 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4365 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4366 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4367
4368 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4369 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4370 sizeof(struct eth_fast_path_rx_cqe) *
4371 NUM_RCQ_BD);
4372
4373 /* SGE ring */
4374 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4375 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4376 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4377 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4378 }
4379
4380 /* Tx */
4381 if (!skip_tx_queue(bp, fp_index)) {
4382 /* fastpath tx rings: tx_buf tx_desc */
4383 for_each_cos_in_tx_queue(fp, cos) {
4384 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4385
4386 DP(NETIF_MSG_IFDOWN,
4387 "freeing tx memory of fp %d cos %d cid %d\n",
4388 fp_index, cos, txdata->cid);
4389
4390 BNX2X_FREE(txdata->tx_buf_ring);
4391 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4392 txdata->tx_desc_mapping,
4393 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4394 }
4395 }
4396 /* end of fastpath */
4397 }
4398
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4399 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4400 {
4401 int i;
4402 for_each_cnic_queue(bp, i)
4403 bnx2x_free_fp_mem_at(bp, i);
4404 }
4405
bnx2x_free_fp_mem(struct bnx2x * bp)4406 void bnx2x_free_fp_mem(struct bnx2x *bp)
4407 {
4408 int i;
4409 for_each_eth_queue(bp, i)
4410 bnx2x_free_fp_mem_at(bp, i);
4411 }
4412
set_sb_shortcuts(struct bnx2x * bp,int index)4413 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4414 {
4415 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4416 if (!CHIP_IS_E1x(bp)) {
4417 bnx2x_fp(bp, index, sb_index_values) =
4418 (__le16 *)status_blk.e2_sb->sb.index_values;
4419 bnx2x_fp(bp, index, sb_running_index) =
4420 (__le16 *)status_blk.e2_sb->sb.running_index;
4421 } else {
4422 bnx2x_fp(bp, index, sb_index_values) =
4423 (__le16 *)status_blk.e1x_sb->sb.index_values;
4424 bnx2x_fp(bp, index, sb_running_index) =
4425 (__le16 *)status_blk.e1x_sb->sb.running_index;
4426 }
4427 }
4428
4429 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4430 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4431 int rx_ring_size)
4432 {
4433 struct bnx2x *bp = fp->bp;
4434 u16 ring_prod, cqe_ring_prod;
4435 int i, failure_cnt = 0;
4436
4437 fp->rx_comp_cons = 0;
4438 cqe_ring_prod = ring_prod = 0;
4439
4440 /* This routine is called only during fo init so
4441 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4442 */
4443 for (i = 0; i < rx_ring_size; i++) {
4444 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4445 failure_cnt++;
4446 continue;
4447 }
4448 ring_prod = NEXT_RX_IDX(ring_prod);
4449 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4450 WARN_ON(ring_prod <= (i - failure_cnt));
4451 }
4452
4453 if (failure_cnt)
4454 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4455 i - failure_cnt, fp->index);
4456
4457 fp->rx_bd_prod = ring_prod;
4458 /* Limit the CQE producer by the CQE ring size */
4459 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4460 cqe_ring_prod);
4461
4462 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4463
4464 return i - failure_cnt;
4465 }
4466
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4467 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4468 {
4469 int i;
4470
4471 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4472 struct eth_rx_cqe_next_page *nextpg;
4473
4474 nextpg = (struct eth_rx_cqe_next_page *)
4475 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4476 nextpg->addr_hi =
4477 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4478 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4479 nextpg->addr_lo =
4480 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4481 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4482 }
4483 }
4484
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4485 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4486 {
4487 union host_hc_status_block *sb;
4488 struct bnx2x_fastpath *fp = &bp->fp[index];
4489 int ring_size = 0;
4490 u8 cos;
4491 int rx_ring_size = 0;
4492
4493 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4494 rx_ring_size = MIN_RX_SIZE_NONTPA;
4495 bp->rx_ring_size = rx_ring_size;
4496 } else if (!bp->rx_ring_size) {
4497 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4498
4499 if (CHIP_IS_E3(bp)) {
4500 u32 cfg = SHMEM_RD(bp,
4501 dev_info.port_hw_config[BP_PORT(bp)].
4502 default_cfg);
4503
4504 /* Decrease ring size for 1G functions */
4505 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4506 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4507 rx_ring_size /= 10;
4508 }
4509
4510 /* allocate at least number of buffers required by FW */
4511 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4512 MIN_RX_SIZE_TPA, rx_ring_size);
4513
4514 bp->rx_ring_size = rx_ring_size;
4515 } else /* if rx_ring_size specified - use it */
4516 rx_ring_size = bp->rx_ring_size;
4517
4518 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4519
4520 /* Common */
4521 sb = &bnx2x_fp(bp, index, status_blk);
4522
4523 if (!IS_FCOE_IDX(index)) {
4524 /* status blocks */
4525 if (!CHIP_IS_E1x(bp)) {
4526 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4527 sizeof(struct host_hc_status_block_e2));
4528 if (!sb->e2_sb)
4529 goto alloc_mem_err;
4530 } else {
4531 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4532 sizeof(struct host_hc_status_block_e1x));
4533 if (!sb->e1x_sb)
4534 goto alloc_mem_err;
4535 }
4536 }
4537
4538 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4539 * set shortcuts for it.
4540 */
4541 if (!IS_FCOE_IDX(index))
4542 set_sb_shortcuts(bp, index);
4543
4544 /* Tx */
4545 if (!skip_tx_queue(bp, index)) {
4546 /* fastpath tx rings: tx_buf tx_desc */
4547 for_each_cos_in_tx_queue(fp, cos) {
4548 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4549
4550 DP(NETIF_MSG_IFUP,
4551 "allocating tx memory of fp %d cos %d\n",
4552 index, cos);
4553
4554 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4555 sizeof(struct sw_tx_bd),
4556 GFP_KERNEL);
4557 if (!txdata->tx_buf_ring)
4558 goto alloc_mem_err;
4559 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4560 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4561 if (!txdata->tx_desc_ring)
4562 goto alloc_mem_err;
4563 }
4564 }
4565
4566 /* Rx */
4567 if (!skip_rx_queue(bp, index)) {
4568 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4569 bnx2x_fp(bp, index, rx_buf_ring) =
4570 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4571 if (!bnx2x_fp(bp, index, rx_buf_ring))
4572 goto alloc_mem_err;
4573 bnx2x_fp(bp, index, rx_desc_ring) =
4574 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4575 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4576 if (!bnx2x_fp(bp, index, rx_desc_ring))
4577 goto alloc_mem_err;
4578
4579 /* Seed all CQEs by 1s */
4580 bnx2x_fp(bp, index, rx_comp_ring) =
4581 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4582 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4583 if (!bnx2x_fp(bp, index, rx_comp_ring))
4584 goto alloc_mem_err;
4585
4586 /* SGE ring */
4587 bnx2x_fp(bp, index, rx_page_ring) =
4588 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4589 GFP_KERNEL);
4590 if (!bnx2x_fp(bp, index, rx_page_ring))
4591 goto alloc_mem_err;
4592 bnx2x_fp(bp, index, rx_sge_ring) =
4593 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4594 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4595 if (!bnx2x_fp(bp, index, rx_sge_ring))
4596 goto alloc_mem_err;
4597 /* RX BD ring */
4598 bnx2x_set_next_page_rx_bd(fp);
4599
4600 /* CQ ring */
4601 bnx2x_set_next_page_rx_cq(fp);
4602
4603 /* BDs */
4604 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4605 if (ring_size < rx_ring_size)
4606 goto alloc_mem_err;
4607 }
4608
4609 return 0;
4610
4611 /* handles low memory cases */
4612 alloc_mem_err:
4613 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4614 index, ring_size);
4615 /* FW will drop all packets if queue is not big enough,
4616 * In these cases we disable the queue
4617 * Min size is different for OOO, TPA and non-TPA queues
4618 */
4619 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4620 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4621 /* release memory allocated for this queue */
4622 bnx2x_free_fp_mem_at(bp, index);
4623 return -ENOMEM;
4624 }
4625 return 0;
4626 }
4627
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4628 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4629 {
4630 if (!NO_FCOE(bp))
4631 /* FCoE */
4632 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4633 /* we will fail load process instead of mark
4634 * NO_FCOE_FLAG
4635 */
4636 return -ENOMEM;
4637
4638 return 0;
4639 }
4640
bnx2x_alloc_fp_mem(struct bnx2x * bp)4641 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4642 {
4643 int i;
4644
4645 /* 1. Allocate FP for leading - fatal if error
4646 * 2. Allocate RSS - fix number of queues if error
4647 */
4648
4649 /* leading */
4650 if (bnx2x_alloc_fp_mem_at(bp, 0))
4651 return -ENOMEM;
4652
4653 /* RSS */
4654 for_each_nondefault_eth_queue(bp, i)
4655 if (bnx2x_alloc_fp_mem_at(bp, i))
4656 break;
4657
4658 /* handle memory failures */
4659 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4660 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4661
4662 WARN_ON(delta < 0);
4663 bnx2x_shrink_eth_fp(bp, delta);
4664 if (CNIC_SUPPORT(bp))
4665 /* move non eth FPs next to last eth FP
4666 * must be done in that order
4667 * FCOE_IDX < FWD_IDX < OOO_IDX
4668 */
4669
4670 /* move FCoE fp even NO_FCOE_FLAG is on */
4671 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4672 bp->num_ethernet_queues -= delta;
4673 bp->num_queues = bp->num_ethernet_queues +
4674 bp->num_cnic_queues;
4675 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4676 bp->num_queues + delta, bp->num_queues);
4677 }
4678
4679 return 0;
4680 }
4681
bnx2x_free_mem_bp(struct bnx2x * bp)4682 void bnx2x_free_mem_bp(struct bnx2x *bp)
4683 {
4684 int i;
4685
4686 for (i = 0; i < bp->fp_array_size; i++)
4687 kfree(bp->fp[i].tpa_info);
4688 kfree(bp->fp);
4689 kfree(bp->sp_objs);
4690 kfree(bp->fp_stats);
4691 kfree(bp->bnx2x_txq);
4692 kfree(bp->msix_table);
4693 kfree(bp->ilt);
4694 }
4695
bnx2x_alloc_mem_bp(struct bnx2x * bp)4696 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4697 {
4698 struct bnx2x_fastpath *fp;
4699 struct msix_entry *tbl;
4700 struct bnx2x_ilt *ilt;
4701 int msix_table_size = 0;
4702 int fp_array_size, txq_array_size;
4703 int i;
4704
4705 /*
4706 * The biggest MSI-X table we might need is as a maximum number of fast
4707 * path IGU SBs plus default SB (for PF only).
4708 */
4709 msix_table_size = bp->igu_sb_cnt;
4710 if (IS_PF(bp))
4711 msix_table_size++;
4712 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4713
4714 /* fp array: RSS plus CNIC related L2 queues */
4715 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4716 bp->fp_array_size = fp_array_size;
4717 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4718
4719 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4720 if (!fp)
4721 goto alloc_err;
4722 for (i = 0; i < bp->fp_array_size; i++) {
4723 fp[i].tpa_info =
4724 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4725 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4726 if (!(fp[i].tpa_info))
4727 goto alloc_err;
4728 }
4729
4730 bp->fp = fp;
4731
4732 /* allocate sp objs */
4733 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4734 GFP_KERNEL);
4735 if (!bp->sp_objs)
4736 goto alloc_err;
4737
4738 /* allocate fp_stats */
4739 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4740 GFP_KERNEL);
4741 if (!bp->fp_stats)
4742 goto alloc_err;
4743
4744 /* Allocate memory for the transmission queues array */
4745 txq_array_size =
4746 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4747 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4748
4749 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4750 GFP_KERNEL);
4751 if (!bp->bnx2x_txq)
4752 goto alloc_err;
4753
4754 /* msix table */
4755 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4756 if (!tbl)
4757 goto alloc_err;
4758 bp->msix_table = tbl;
4759
4760 /* ilt */
4761 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4762 if (!ilt)
4763 goto alloc_err;
4764 bp->ilt = ilt;
4765
4766 return 0;
4767 alloc_err:
4768 bnx2x_free_mem_bp(bp);
4769 return -ENOMEM;
4770 }
4771
bnx2x_reload_if_running(struct net_device * dev)4772 int bnx2x_reload_if_running(struct net_device *dev)
4773 {
4774 struct bnx2x *bp = netdev_priv(dev);
4775
4776 if (unlikely(!netif_running(dev)))
4777 return 0;
4778
4779 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4780 return bnx2x_nic_load(bp, LOAD_NORMAL);
4781 }
4782
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4783 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4784 {
4785 u32 sel_phy_idx = 0;
4786 if (bp->link_params.num_phys <= 1)
4787 return INT_PHY;
4788
4789 if (bp->link_vars.link_up) {
4790 sel_phy_idx = EXT_PHY1;
4791 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4792 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4793 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4794 sel_phy_idx = EXT_PHY2;
4795 } else {
4796
4797 switch (bnx2x_phy_selection(&bp->link_params)) {
4798 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4799 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4800 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4801 sel_phy_idx = EXT_PHY1;
4802 break;
4803 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4804 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4805 sel_phy_idx = EXT_PHY2;
4806 break;
4807 }
4808 }
4809
4810 return sel_phy_idx;
4811 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4812 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4813 {
4814 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4815 /*
4816 * The selected activated PHY is always after swapping (in case PHY
4817 * swapping is enabled). So when swapping is enabled, we need to reverse
4818 * the configuration
4819 */
4820
4821 if (bp->link_params.multi_phy_config &
4822 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4823 if (sel_phy_idx == EXT_PHY1)
4824 sel_phy_idx = EXT_PHY2;
4825 else if (sel_phy_idx == EXT_PHY2)
4826 sel_phy_idx = EXT_PHY1;
4827 }
4828 return LINK_CONFIG_IDX(sel_phy_idx);
4829 }
4830
4831 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4832 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4833 {
4834 struct bnx2x *bp = netdev_priv(dev);
4835 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4836
4837 switch (type) {
4838 case NETDEV_FCOE_WWNN:
4839 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4840 cp->fcoe_wwn_node_name_lo);
4841 break;
4842 case NETDEV_FCOE_WWPN:
4843 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4844 cp->fcoe_wwn_port_name_lo);
4845 break;
4846 default:
4847 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4848 return -EINVAL;
4849 }
4850
4851 return 0;
4852 }
4853 #endif
4854
4855 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4856 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4857 {
4858 struct bnx2x *bp = netdev_priv(dev);
4859
4860 if (pci_num_vf(bp->pdev)) {
4861 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4862 return -EPERM;
4863 }
4864
4865 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4866 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4867 return -EAGAIN;
4868 }
4869
4870 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
4871 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
4872 BNX2X_ERR("Can't support requested MTU size\n");
4873 return -EINVAL;
4874 }
4875
4876 /* This does not race with packet allocation
4877 * because the actual alloc size is
4878 * only updated as part of load
4879 */
4880 dev->mtu = new_mtu;
4881
4882 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4883 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4884
4885 return bnx2x_reload_if_running(dev);
4886 }
4887
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4888 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4889 netdev_features_t features)
4890 {
4891 struct bnx2x *bp = netdev_priv(dev);
4892
4893 if (pci_num_vf(bp->pdev)) {
4894 netdev_features_t changed = dev->features ^ features;
4895
4896 /* Revert the requested changes in features if they
4897 * would require internal reload of PF in bnx2x_set_features().
4898 */
4899 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4900 features &= ~NETIF_F_RXCSUM;
4901 features |= dev->features & NETIF_F_RXCSUM;
4902 }
4903
4904 if (changed & NETIF_F_LOOPBACK) {
4905 features &= ~NETIF_F_LOOPBACK;
4906 features |= dev->features & NETIF_F_LOOPBACK;
4907 }
4908 }
4909
4910 /* TPA requires Rx CSUM offloading */
4911 if (!(features & NETIF_F_RXCSUM)) {
4912 features &= ~NETIF_F_LRO;
4913 features &= ~NETIF_F_GRO;
4914 }
4915
4916 return features;
4917 }
4918
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4919 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4920 {
4921 struct bnx2x *bp = netdev_priv(dev);
4922 netdev_features_t changes = features ^ dev->features;
4923 bool bnx2x_reload = false;
4924 int rc;
4925
4926 /* VFs or non SRIOV PFs should be able to change loopback feature */
4927 if (!pci_num_vf(bp->pdev)) {
4928 if (features & NETIF_F_LOOPBACK) {
4929 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4930 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4931 bnx2x_reload = true;
4932 }
4933 } else {
4934 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4935 bp->link_params.loopback_mode = LOOPBACK_NONE;
4936 bnx2x_reload = true;
4937 }
4938 }
4939 }
4940
4941 /* if GRO is changed while LRO is enabled, don't force a reload */
4942 if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO))
4943 changes &= ~NETIF_F_GRO;
4944
4945 /* if GRO is changed while HW TPA is off, don't force a reload */
4946 if ((changes & NETIF_F_GRO) && bp->disable_tpa)
4947 changes &= ~NETIF_F_GRO;
4948
4949 if (changes)
4950 bnx2x_reload = true;
4951
4952 if (bnx2x_reload) {
4953 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4954 dev->features = features;
4955 rc = bnx2x_reload_if_running(dev);
4956 return rc ? rc : 1;
4957 }
4958 /* else: bnx2x_nic_load() will be called at end of recovery */
4959 }
4960
4961 return 0;
4962 }
4963
bnx2x_tx_timeout(struct net_device * dev)4964 void bnx2x_tx_timeout(struct net_device *dev)
4965 {
4966 struct bnx2x *bp = netdev_priv(dev);
4967
4968 #ifdef BNX2X_STOP_ON_ERROR
4969 if (!bp->panic)
4970 bnx2x_panic();
4971 #endif
4972
4973 /* This allows the netif to be shutdown gracefully before resetting */
4974 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4975 }
4976
bnx2x_suspend(struct pci_dev * pdev,pm_message_t state)4977 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4978 {
4979 struct net_device *dev = pci_get_drvdata(pdev);
4980 struct bnx2x *bp;
4981
4982 if (!dev) {
4983 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4984 return -ENODEV;
4985 }
4986 bp = netdev_priv(dev);
4987
4988 rtnl_lock();
4989
4990 pci_save_state(pdev);
4991
4992 if (!netif_running(dev)) {
4993 rtnl_unlock();
4994 return 0;
4995 }
4996
4997 netif_device_detach(dev);
4998
4999 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5000
5001 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5002
5003 rtnl_unlock();
5004
5005 return 0;
5006 }
5007
bnx2x_resume(struct pci_dev * pdev)5008 int bnx2x_resume(struct pci_dev *pdev)
5009 {
5010 struct net_device *dev = pci_get_drvdata(pdev);
5011 struct bnx2x *bp;
5012 int rc;
5013
5014 if (!dev) {
5015 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5016 return -ENODEV;
5017 }
5018 bp = netdev_priv(dev);
5019
5020 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5021 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5022 return -EAGAIN;
5023 }
5024
5025 rtnl_lock();
5026
5027 pci_restore_state(pdev);
5028
5029 if (!netif_running(dev)) {
5030 rtnl_unlock();
5031 return 0;
5032 }
5033
5034 bnx2x_set_power_state(bp, PCI_D0);
5035 netif_device_attach(dev);
5036
5037 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5038
5039 rtnl_unlock();
5040
5041 return rc;
5042 }
5043
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5044 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5045 u32 cid)
5046 {
5047 if (!cxt) {
5048 BNX2X_ERR("bad context pointer %p\n", cxt);
5049 return;
5050 }
5051
5052 /* ustorm cxt validation */
5053 cxt->ustorm_ag_context.cdu_usage =
5054 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5055 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5056 /* xcontext validation */
5057 cxt->xstorm_ag_context.cdu_reserved =
5058 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5059 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5060 }
5061
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5062 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5063 u8 fw_sb_id, u8 sb_index,
5064 u8 ticks)
5065 {
5066 u32 addr = BAR_CSTRORM_INTMEM +
5067 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5068 REG_WR8(bp, addr, ticks);
5069 DP(NETIF_MSG_IFUP,
5070 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5071 port, fw_sb_id, sb_index, ticks);
5072 }
5073
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5074 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5075 u16 fw_sb_id, u8 sb_index,
5076 u8 disable)
5077 {
5078 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5079 u32 addr = BAR_CSTRORM_INTMEM +
5080 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5081 u8 flags = REG_RD8(bp, addr);
5082 /* clear and set */
5083 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5084 flags |= enable_flag;
5085 REG_WR8(bp, addr, flags);
5086 DP(NETIF_MSG_IFUP,
5087 "port %x fw_sb_id %d sb_index %d disable %d\n",
5088 port, fw_sb_id, sb_index, disable);
5089 }
5090
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5091 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5092 u8 sb_index, u8 disable, u16 usec)
5093 {
5094 int port = BP_PORT(bp);
5095 u8 ticks = usec / BNX2X_BTR;
5096
5097 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5098
5099 disable = disable ? 1 : (usec ? 0 : 1);
5100 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5101 }
5102
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5103 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5104 u32 verbose)
5105 {
5106 smp_mb__before_atomic();
5107 set_bit(flag, &bp->sp_rtnl_state);
5108 smp_mb__after_atomic();
5109 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5110 flag);
5111 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5112 }
5113