1 /*
2 * linux/cgroup-defs.h - basic definitions for cgroup
3 *
4 * This file provides basic type and interface. Include this file directly
5 * only if necessary to avoid cyclic dependencies.
6 */
7 #ifndef _LINUX_CGROUP_DEFS_H
8 #define _LINUX_CGROUP_DEFS_H
9
10 #include <linux/limits.h>
11 #include <linux/list.h>
12 #include <linux/idr.h>
13 #include <linux/wait.h>
14 #include <linux/mutex.h>
15 #include <linux/rcupdate.h>
16 #include <linux/percpu-refcount.h>
17 #include <linux/percpu-rwsem.h>
18 #include <linux/workqueue.h>
19 #include <linux/bpf-cgroup.h>
20
21 #ifdef CONFIG_CGROUPS
22
23 struct cgroup;
24 struct cgroup_root;
25 struct cgroup_subsys;
26 struct cgroup_taskset;
27 struct kernfs_node;
28 struct kernfs_ops;
29 struct kernfs_open_file;
30 struct seq_file;
31
32 #define MAX_CGROUP_TYPE_NAMELEN 32
33 #define MAX_CGROUP_ROOT_NAMELEN 64
34 #define MAX_CFTYPE_NAME 64
35
36 /* define the enumeration of all cgroup subsystems */
37 #define SUBSYS(_x) _x ## _cgrp_id,
38 enum cgroup_subsys_id {
39 #include <linux/cgroup_subsys.h>
40 CGROUP_SUBSYS_COUNT,
41 };
42 #undef SUBSYS
43
44 /* bits in struct cgroup_subsys_state flags field */
45 enum {
46 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
47 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
48 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
49 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
50 CSS_DYING = (1 << 4), /* css is dying */
51 };
52
53 /* bits in struct cgroup flags field */
54 enum {
55 /* Control Group requires release notifications to userspace */
56 CGRP_NOTIFY_ON_RELEASE,
57 /*
58 * Clone the parent's configuration when creating a new child
59 * cpuset cgroup. For historical reasons, this option can be
60 * specified at mount time and thus is implemented here.
61 */
62 CGRP_CPUSET_CLONE_CHILDREN,
63 };
64
65 /* cgroup_root->flags */
66 enum {
67 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
68 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
69 };
70
71 /* cftype->flags */
72 enum {
73 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
74 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
75 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
76 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
77
78 /* internal flags, do not use outside cgroup core proper */
79 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
80 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
81 };
82
83 /*
84 * cgroup_file is the handle for a file instance created in a cgroup which
85 * is used, for example, to generate file changed notifications. This can
86 * be obtained by setting cftype->file_offset.
87 */
88 struct cgroup_file {
89 /* do not access any fields from outside cgroup core */
90 struct kernfs_node *kn;
91 };
92
93 /*
94 * Per-subsystem/per-cgroup state maintained by the system. This is the
95 * fundamental structural building block that controllers deal with.
96 *
97 * Fields marked with "PI:" are public and immutable and may be accessed
98 * directly without synchronization.
99 */
100 struct cgroup_subsys_state {
101 /* PI: the cgroup that this css is attached to */
102 struct cgroup *cgroup;
103
104 /* PI: the cgroup subsystem that this css is attached to */
105 struct cgroup_subsys *ss;
106
107 /* reference count - access via css_[try]get() and css_put() */
108 struct percpu_ref refcnt;
109
110 /* PI: the parent css */
111 struct cgroup_subsys_state *parent;
112
113 /* siblings list anchored at the parent's ->children */
114 struct list_head sibling;
115 struct list_head children;
116
117 /*
118 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
119 * matching css can be looked up using css_from_id().
120 */
121 int id;
122
123 unsigned int flags;
124
125 /*
126 * Monotonically increasing unique serial number which defines a
127 * uniform order among all csses. It's guaranteed that all
128 * ->children lists are in the ascending order of ->serial_nr and
129 * used to allow interrupting and resuming iterations.
130 */
131 u64 serial_nr;
132
133 /*
134 * Incremented by online self and children. Used to guarantee that
135 * parents are not offlined before their children.
136 */
137 atomic_t online_cnt;
138
139 /* percpu_ref killing and RCU release */
140 struct rcu_head rcu_head;
141 struct work_struct destroy_work;
142 };
143
144 /*
145 * A css_set is a structure holding pointers to a set of
146 * cgroup_subsys_state objects. This saves space in the task struct
147 * object and speeds up fork()/exit(), since a single inc/dec and a
148 * list_add()/del() can bump the reference count on the entire cgroup
149 * set for a task.
150 */
151 struct css_set {
152 /* Reference count */
153 atomic_t refcount;
154
155 /*
156 * List running through all cgroup groups in the same hash
157 * slot. Protected by css_set_lock
158 */
159 struct hlist_node hlist;
160
161 /*
162 * Lists running through all tasks using this cgroup group.
163 * mg_tasks lists tasks which belong to this cset but are in the
164 * process of being migrated out or in. Protected by
165 * css_set_rwsem, but, during migration, once tasks are moved to
166 * mg_tasks, it can be read safely while holding cgroup_mutex.
167 */
168 struct list_head tasks;
169 struct list_head mg_tasks;
170
171 /*
172 * List of cgrp_cset_links pointing at cgroups referenced from this
173 * css_set. Protected by css_set_lock.
174 */
175 struct list_head cgrp_links;
176
177 /* the default cgroup associated with this css_set */
178 struct cgroup *dfl_cgrp;
179
180 /*
181 * Set of subsystem states, one for each subsystem. This array is
182 * immutable after creation apart from the init_css_set during
183 * subsystem registration (at boot time).
184 */
185 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
186
187 /*
188 * List of csets participating in the on-going migration either as
189 * source or destination. Protected by cgroup_mutex.
190 */
191 struct list_head mg_preload_node;
192 struct list_head mg_node;
193
194 /*
195 * If this cset is acting as the source of migration the following
196 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
197 * respectively the source and destination cgroups of the on-going
198 * migration. mg_dst_cset is the destination cset the target tasks
199 * on this cset should be migrated to. Protected by cgroup_mutex.
200 */
201 struct cgroup *mg_src_cgrp;
202 struct cgroup *mg_dst_cgrp;
203 struct css_set *mg_dst_cset;
204
205 /*
206 * On the default hierarhcy, ->subsys[ssid] may point to a css
207 * attached to an ancestor instead of the cgroup this css_set is
208 * associated with. The following node is anchored at
209 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
210 * iterate through all css's attached to a given cgroup.
211 */
212 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
213
214 /* all css_task_iters currently walking this cset */
215 struct list_head task_iters;
216
217 /* dead and being drained, ignore for migration */
218 bool dead;
219
220 /* For RCU-protected deletion */
221 struct rcu_head rcu_head;
222 };
223
224 struct cgroup {
225 /* self css with NULL ->ss, points back to this cgroup */
226 struct cgroup_subsys_state self;
227
228 unsigned long flags; /* "unsigned long" so bitops work */
229
230 /*
231 * idr allocated in-hierarchy ID.
232 *
233 * ID 0 is not used, the ID of the root cgroup is always 1, and a
234 * new cgroup will be assigned with a smallest available ID.
235 *
236 * Allocating/Removing ID must be protected by cgroup_mutex.
237 */
238 int id;
239
240 /*
241 * The depth this cgroup is at. The root is at depth zero and each
242 * step down the hierarchy increments the level. This along with
243 * ancestor_ids[] can determine whether a given cgroup is a
244 * descendant of another without traversing the hierarchy.
245 */
246 int level;
247
248 /*
249 * Each non-empty css_set associated with this cgroup contributes
250 * one to populated_cnt. All children with non-zero popuplated_cnt
251 * of their own contribute one. The count is zero iff there's no
252 * task in this cgroup or its subtree.
253 */
254 int populated_cnt;
255
256 struct kernfs_node *kn; /* cgroup kernfs entry */
257 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
258 struct cgroup_file events_file; /* handle for "cgroup.events" */
259
260 /*
261 * The bitmask of subsystems enabled on the child cgroups.
262 * ->subtree_control is the one configured through
263 * "cgroup.subtree_control" while ->child_ss_mask is the effective
264 * one which may have more subsystems enabled. Controller knobs
265 * are made available iff it's enabled in ->subtree_control.
266 */
267 u16 subtree_control;
268 u16 subtree_ss_mask;
269 u16 old_subtree_control;
270 u16 old_subtree_ss_mask;
271
272 /* Private pointers for each registered subsystem */
273 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
274
275 struct cgroup_root *root;
276
277 /*
278 * List of cgrp_cset_links pointing at css_sets with tasks in this
279 * cgroup. Protected by css_set_lock.
280 */
281 struct list_head cset_links;
282
283 /*
284 * On the default hierarchy, a css_set for a cgroup with some
285 * susbsys disabled will point to css's which are associated with
286 * the closest ancestor which has the subsys enabled. The
287 * following lists all css_sets which point to this cgroup's css
288 * for the given subsystem.
289 */
290 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
291
292 /*
293 * list of pidlists, up to two for each namespace (one for procs, one
294 * for tasks); created on demand.
295 */
296 struct list_head pidlists;
297 struct mutex pidlist_mutex;
298
299 /* used to wait for offlining of csses */
300 wait_queue_head_t offline_waitq;
301
302 /* used to schedule release agent */
303 struct work_struct release_agent_work;
304
305 /* used to store eBPF programs */
306 struct cgroup_bpf bpf;
307
308 /* ids of the ancestors at each level including self */
309 int ancestor_ids[];
310 };
311
312 /*
313 * A cgroup_root represents the root of a cgroup hierarchy, and may be
314 * associated with a kernfs_root to form an active hierarchy. This is
315 * internal to cgroup core. Don't access directly from controllers.
316 */
317 struct cgroup_root {
318 struct kernfs_root *kf_root;
319
320 /* The bitmask of subsystems attached to this hierarchy */
321 unsigned int subsys_mask;
322
323 /* Unique id for this hierarchy. */
324 int hierarchy_id;
325
326 /* The root cgroup. Root is destroyed on its release. */
327 struct cgroup cgrp;
328
329 /* for cgrp->ancestor_ids[0] */
330 int cgrp_ancestor_id_storage;
331
332 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
333 atomic_t nr_cgrps;
334
335 /* A list running through the active hierarchies */
336 struct list_head root_list;
337
338 /* Hierarchy-specific flags */
339 unsigned int flags;
340
341 /* IDs for cgroups in this hierarchy */
342 struct idr cgroup_idr;
343
344 /* The path to use for release notifications. */
345 char release_agent_path[PATH_MAX];
346
347 /* The name for this hierarchy - may be empty */
348 char name[MAX_CGROUP_ROOT_NAMELEN];
349 };
350
351 /*
352 * struct cftype: handler definitions for cgroup control files
353 *
354 * When reading/writing to a file:
355 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
356 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
357 */
358 struct cftype {
359 /*
360 * By convention, the name should begin with the name of the
361 * subsystem, followed by a period. Zero length string indicates
362 * end of cftype array.
363 */
364 char name[MAX_CFTYPE_NAME];
365 unsigned long private;
366
367 /*
368 * The maximum length of string, excluding trailing nul, that can
369 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
370 */
371 size_t max_write_len;
372
373 /* CFTYPE_* flags */
374 unsigned int flags;
375
376 /*
377 * If non-zero, should contain the offset from the start of css to
378 * a struct cgroup_file field. cgroup will record the handle of
379 * the created file into it. The recorded handle can be used as
380 * long as the containing css remains accessible.
381 */
382 unsigned int file_offset;
383
384 /*
385 * Fields used for internal bookkeeping. Initialized automatically
386 * during registration.
387 */
388 struct cgroup_subsys *ss; /* NULL for cgroup core files */
389 struct list_head node; /* anchored at ss->cfts */
390 struct kernfs_ops *kf_ops;
391
392 /*
393 * read_u64() is a shortcut for the common case of returning a
394 * single integer. Use it in place of read()
395 */
396 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
397 /*
398 * read_s64() is a signed version of read_u64()
399 */
400 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
401
402 /* generic seq_file read interface */
403 int (*seq_show)(struct seq_file *sf, void *v);
404
405 /* optional ops, implement all or none */
406 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
407 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
408 void (*seq_stop)(struct seq_file *sf, void *v);
409
410 /*
411 * write_u64() is a shortcut for the common case of accepting
412 * a single integer (as parsed by simple_strtoull) from
413 * userspace. Use in place of write(); return 0 or error.
414 */
415 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
416 u64 val);
417 /*
418 * write_s64() is a signed version of write_u64()
419 */
420 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
421 s64 val);
422
423 /*
424 * write() is the generic write callback which maps directly to
425 * kernfs write operation and overrides all other operations.
426 * Maximum write size is determined by ->max_write_len. Use
427 * of_css/cft() to access the associated css and cft.
428 */
429 ssize_t (*write)(struct kernfs_open_file *of,
430 char *buf, size_t nbytes, loff_t off);
431
432 #ifdef CONFIG_DEBUG_LOCK_ALLOC
433 struct lock_class_key lockdep_key;
434 #endif
435 };
436
437 /*
438 * Control Group subsystem type.
439 * See Documentation/cgroups/cgroups.txt for details
440 */
441 struct cgroup_subsys {
442 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
443 int (*css_online)(struct cgroup_subsys_state *css);
444 void (*css_offline)(struct cgroup_subsys_state *css);
445 void (*css_released)(struct cgroup_subsys_state *css);
446 void (*css_free)(struct cgroup_subsys_state *css);
447 void (*css_reset)(struct cgroup_subsys_state *css);
448
449 int (*can_attach)(struct cgroup_taskset *tset);
450 void (*cancel_attach)(struct cgroup_taskset *tset);
451 void (*attach)(struct cgroup_taskset *tset);
452 void (*post_attach)(void);
453 int (*can_fork)(struct task_struct *task);
454 void (*cancel_fork)(struct task_struct *task);
455 void (*fork)(struct task_struct *task);
456 void (*exit)(struct task_struct *task);
457 void (*free)(struct task_struct *task);
458 void (*bind)(struct cgroup_subsys_state *root_css);
459
460 bool early_init:1;
461
462 /*
463 * If %true, the controller, on the default hierarchy, doesn't show
464 * up in "cgroup.controllers" or "cgroup.subtree_control", is
465 * implicitly enabled on all cgroups on the default hierarchy, and
466 * bypasses the "no internal process" constraint. This is for
467 * utility type controllers which is transparent to userland.
468 *
469 * An implicit controller can be stolen from the default hierarchy
470 * anytime and thus must be okay with offline csses from previous
471 * hierarchies coexisting with csses for the current one.
472 */
473 bool implicit_on_dfl:1;
474
475 /*
476 * If %false, this subsystem is properly hierarchical -
477 * configuration, resource accounting and restriction on a parent
478 * cgroup cover those of its children. If %true, hierarchy support
479 * is broken in some ways - some subsystems ignore hierarchy
480 * completely while others are only implemented half-way.
481 *
482 * It's now disallowed to create nested cgroups if the subsystem is
483 * broken and cgroup core will emit a warning message on such
484 * cases. Eventually, all subsystems will be made properly
485 * hierarchical and this will go away.
486 */
487 bool broken_hierarchy:1;
488 bool warned_broken_hierarchy:1;
489
490 /* the following two fields are initialized automtically during boot */
491 int id;
492 const char *name;
493
494 /* optional, initialized automatically during boot if not set */
495 const char *legacy_name;
496
497 /* link to parent, protected by cgroup_lock() */
498 struct cgroup_root *root;
499
500 /* idr for css->id */
501 struct idr css_idr;
502
503 /*
504 * List of cftypes. Each entry is the first entry of an array
505 * terminated by zero length name.
506 */
507 struct list_head cfts;
508
509 /*
510 * Base cftypes which are automatically registered. The two can
511 * point to the same array.
512 */
513 struct cftype *dfl_cftypes; /* for the default hierarchy */
514 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
515
516 /*
517 * A subsystem may depend on other subsystems. When such subsystem
518 * is enabled on a cgroup, the depended-upon subsystems are enabled
519 * together if available. Subsystems enabled due to dependency are
520 * not visible to userland until explicitly enabled. The following
521 * specifies the mask of subsystems that this one depends on.
522 */
523 unsigned int depends_on;
524 };
525
526 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
527
528 /**
529 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
530 * @tsk: target task
531 *
532 * Called from threadgroup_change_begin() and allows cgroup operations to
533 * synchronize against threadgroup changes using a percpu_rw_semaphore.
534 */
cgroup_threadgroup_change_begin(struct task_struct * tsk)535 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
536 {
537 percpu_down_read(&cgroup_threadgroup_rwsem);
538 }
539
540 /**
541 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
542 * @tsk: target task
543 *
544 * Called from threadgroup_change_end(). Counterpart of
545 * cgroup_threadcgroup_change_begin().
546 */
cgroup_threadgroup_change_end(struct task_struct * tsk)547 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
548 {
549 percpu_up_read(&cgroup_threadgroup_rwsem);
550 }
551
552 #else /* CONFIG_CGROUPS */
553
554 #define CGROUP_SUBSYS_COUNT 0
555
cgroup_threadgroup_change_begin(struct task_struct * tsk)556 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) {}
cgroup_threadgroup_change_end(struct task_struct * tsk)557 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
558
559 #endif /* CONFIG_CGROUPS */
560
561 #ifdef CONFIG_SOCK_CGROUP_DATA
562
563 /*
564 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
565 * per-socket cgroup information except for memcg association.
566 *
567 * On legacy hierarchies, net_prio and net_cls controllers directly set
568 * attributes on each sock which can then be tested by the network layer.
569 * On the default hierarchy, each sock is associated with the cgroup it was
570 * created in and the networking layer can match the cgroup directly.
571 *
572 * To avoid carrying all three cgroup related fields separately in sock,
573 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
574 * On boot, sock_cgroup_data records the cgroup that the sock was created
575 * in so that cgroup2 matches can be made; however, once either net_prio or
576 * net_cls starts being used, the area is overriden to carry prioidx and/or
577 * classid. The two modes are distinguished by whether the lowest bit is
578 * set. Clear bit indicates cgroup pointer while set bit prioidx and
579 * classid.
580 *
581 * While userland may start using net_prio or net_cls at any time, once
582 * either is used, cgroup2 matching no longer works. There is no reason to
583 * mix the two and this is in line with how legacy and v2 compatibility is
584 * handled. On mode switch, cgroup references which are already being
585 * pointed to by socks may be leaked. While this can be remedied by adding
586 * synchronization around sock_cgroup_data, given that the number of leaked
587 * cgroups is bound and highly unlikely to be high, this seems to be the
588 * better trade-off.
589 */
590 struct sock_cgroup_data {
591 union {
592 #ifdef __LITTLE_ENDIAN
593 struct {
594 u8 is_data;
595 u8 padding;
596 u16 prioidx;
597 u32 classid;
598 } __packed;
599 #else
600 struct {
601 u32 classid;
602 u16 prioidx;
603 u8 padding;
604 u8 is_data;
605 } __packed;
606 #endif
607 u64 val;
608 };
609 };
610
611 /*
612 * There's a theoretical window where the following accessors race with
613 * updaters and return part of the previous pointer as the prioidx or
614 * classid. Such races are short-lived and the result isn't critical.
615 */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)616 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
617 {
618 /* fallback to 1 which is always the ID of the root cgroup */
619 return (skcd->is_data & 1) ? skcd->prioidx : 1;
620 }
621
sock_cgroup_classid(const struct sock_cgroup_data * skcd)622 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
623 {
624 /* fallback to 0 which is the unconfigured default classid */
625 return (skcd->is_data & 1) ? skcd->classid : 0;
626 }
627
628 /*
629 * If invoked concurrently, the updaters may clobber each other. The
630 * caller is responsible for synchronization.
631 */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)632 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
633 u16 prioidx)
634 {
635 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
636
637 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
638 return;
639
640 if (!(skcd_buf.is_data & 1)) {
641 skcd_buf.val = 0;
642 skcd_buf.is_data = 1;
643 }
644
645 skcd_buf.prioidx = prioidx;
646 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
647 }
648
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)649 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
650 u32 classid)
651 {
652 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
653
654 if (sock_cgroup_classid(&skcd_buf) == classid)
655 return;
656
657 if (!(skcd_buf.is_data & 1)) {
658 skcd_buf.val = 0;
659 skcd_buf.is_data = 1;
660 }
661
662 skcd_buf.classid = classid;
663 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
664 }
665
666 #else /* CONFIG_SOCK_CGROUP_DATA */
667
668 struct sock_cgroup_data {
669 };
670
671 #endif /* CONFIG_SOCK_CGROUP_DATA */
672
673 #endif /* _LINUX_CGROUP_DEFS_H */
674