1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186 #if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189 #endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230 };
231
232 /**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_policy: flow policy
243 * @sk_receive_queue: incoming packets
244 * @sk_wmem_alloc: transmit queue bytes committed
245 * @sk_write_queue: Packet sending queue
246 * @sk_omem_alloc: "o" is "option" or "other"
247 * @sk_wmem_queued: persistent queue size
248 * @sk_forward_alloc: space allocated forward
249 * @sk_napi_id: id of the last napi context to receive data for sk
250 * @sk_ll_usec: usecs to busypoll when there is no data
251 * @sk_allocation: allocation mode
252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254 * @sk_sndbuf: size of send buffer in bytes
255 * @sk_padding: unused element for alignment
256 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257 * @sk_no_check_rx: allow zero checksum in RX packets
258 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261 * @sk_gso_max_size: Maximum GSO segment size to build
262 * @sk_gso_max_segs: Maximum number of GSO segments
263 * @sk_lingertime: %SO_LINGER l_linger setting
264 * @sk_backlog: always used with the per-socket spinlock held
265 * @sk_callback_lock: used with the callbacks in the end of this struct
266 * @sk_error_queue: rarely used
267 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268 * IPV6_ADDRFORM for instance)
269 * @sk_err: last error
270 * @sk_err_soft: errors that don't cause failure but are the cause of a
271 * persistent failure not just 'timed out'
272 * @sk_drops: raw/udp drops counter
273 * @sk_ack_backlog: current listen backlog
274 * @sk_max_ack_backlog: listen backlog set in listen()
275 * @sk_priority: %SO_PRIORITY setting
276 * @sk_type: socket type (%SOCK_STREAM, etc)
277 * @sk_protocol: which protocol this socket belongs in this network family
278 * @sk_peer_pid: &struct pid for this socket's peer
279 * @sk_peer_cred: %SO_PEERCRED setting
280 * @sk_rcvlowat: %SO_RCVLOWAT setting
281 * @sk_rcvtimeo: %SO_RCVTIMEO setting
282 * @sk_sndtimeo: %SO_SNDTIMEO setting
283 * @sk_txhash: computed flow hash for use on transmit
284 * @sk_filter: socket filtering instructions
285 * @sk_timer: sock cleanup timer
286 * @sk_stamp: time stamp of last packet received
287 * @sk_tsflags: SO_TIMESTAMPING socket options
288 * @sk_tskey: counter to disambiguate concurrent tstamp requests
289 * @sk_socket: Identd and reporting IO signals
290 * @sk_user_data: RPC layer private data
291 * @sk_frag: cached page frag
292 * @sk_peek_off: current peek_offset value
293 * @sk_send_head: front of stuff to transmit
294 * @sk_security: used by security modules
295 * @sk_mark: generic packet mark
296 * @sk_cgrp_data: cgroup data for this cgroup
297 * @sk_memcg: this socket's memory cgroup association
298 * @sk_write_pending: a write to stream socket waits to start
299 * @sk_state_change: callback to indicate change in the state of the sock
300 * @sk_data_ready: callback to indicate there is data to be processed
301 * @sk_write_space: callback to indicate there is bf sending space available
302 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303 * @sk_backlog_rcv: callback to process the backlog
304 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305 * @sk_reuseport_cb: reuseport group container
306 * @sk_rcu: used during RCU grace period
307 */
308 struct sock {
309 /*
310 * Now struct inet_timewait_sock also uses sock_common, so please just
311 * don't add nothing before this first member (__sk_common) --acme
312 */
313 struct sock_common __sk_common;
314 #define sk_node __sk_common.skc_node
315 #define sk_nulls_node __sk_common.skc_nulls_node
316 #define sk_refcnt __sk_common.skc_refcnt
317 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
318
319 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
321 #define sk_hash __sk_common.skc_hash
322 #define sk_portpair __sk_common.skc_portpair
323 #define sk_num __sk_common.skc_num
324 #define sk_dport __sk_common.skc_dport
325 #define sk_addrpair __sk_common.skc_addrpair
326 #define sk_daddr __sk_common.skc_daddr
327 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
328 #define sk_family __sk_common.skc_family
329 #define sk_state __sk_common.skc_state
330 #define sk_reuse __sk_common.skc_reuse
331 #define sk_reuseport __sk_common.skc_reuseport
332 #define sk_ipv6only __sk_common.skc_ipv6only
333 #define sk_net_refcnt __sk_common.skc_net_refcnt
334 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
335 #define sk_bind_node __sk_common.skc_bind_node
336 #define sk_prot __sk_common.skc_prot
337 #define sk_net __sk_common.skc_net
338 #define sk_v6_daddr __sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
340 #define sk_cookie __sk_common.skc_cookie
341 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
342 #define sk_flags __sk_common.skc_flags
343 #define sk_rxhash __sk_common.skc_rxhash
344
345 socket_lock_t sk_lock;
346 struct sk_buff_head sk_receive_queue;
347 /*
348 * The backlog queue is special, it is always used with
349 * the per-socket spinlock held and requires low latency
350 * access. Therefore we special case it's implementation.
351 * Note : rmem_alloc is in this structure to fill a hole
352 * on 64bit arches, not because its logically part of
353 * backlog.
354 */
355 struct {
356 atomic_t rmem_alloc;
357 int len;
358 struct sk_buff *head;
359 struct sk_buff *tail;
360 } sk_backlog;
361 #define sk_rmem_alloc sk_backlog.rmem_alloc
362 int sk_forward_alloc;
363
364 __u32 sk_txhash;
365 #ifdef CONFIG_NET_RX_BUSY_POLL
366 unsigned int sk_napi_id;
367 unsigned int sk_ll_usec;
368 #endif
369 atomic_t sk_drops;
370 int sk_rcvbuf;
371
372 struct sk_filter __rcu *sk_filter;
373 union {
374 struct socket_wq __rcu *sk_wq;
375 struct socket_wq *sk_wq_raw;
376 };
377 #ifdef CONFIG_XFRM
378 struct xfrm_policy __rcu *sk_policy[2];
379 #endif
380 struct dst_entry *sk_rx_dst;
381 struct dst_entry __rcu *sk_dst_cache;
382 /* Note: 32bit hole on 64bit arches */
383 atomic_t sk_wmem_alloc;
384 atomic_t sk_omem_alloc;
385 int sk_sndbuf;
386 struct sk_buff_head sk_write_queue;
387
388 /*
389 * Because of non atomicity rules, all
390 * changes are protected by socket lock.
391 */
392 kmemcheck_bitfield_begin(flags);
393 unsigned int sk_padding : 2,
394 sk_no_check_tx : 1,
395 sk_no_check_rx : 1,
396 sk_userlocks : 4,
397 sk_protocol : 8,
398 sk_type : 16;
399 #define SK_PROTOCOL_MAX U8_MAX
400 kmemcheck_bitfield_end(flags);
401
402 int sk_wmem_queued;
403 gfp_t sk_allocation;
404 u32 sk_pacing_rate; /* bytes per second */
405 u32 sk_max_pacing_rate;
406 netdev_features_t sk_route_caps;
407 netdev_features_t sk_route_nocaps;
408 int sk_gso_type;
409 unsigned int sk_gso_max_size;
410 u16 sk_gso_max_segs;
411 int sk_rcvlowat;
412 unsigned long sk_lingertime;
413 struct sk_buff_head sk_error_queue;
414 struct proto *sk_prot_creator;
415 rwlock_t sk_callback_lock;
416 int sk_err,
417 sk_err_soft;
418 u32 sk_ack_backlog;
419 u32 sk_max_ack_backlog;
420 __u32 sk_priority;
421 __u32 sk_mark;
422 kuid_t sk_uid;
423 struct pid *sk_peer_pid;
424 const struct cred *sk_peer_cred;
425 long sk_rcvtimeo;
426 long sk_sndtimeo;
427 struct timer_list sk_timer;
428 ktime_t sk_stamp;
429 u16 sk_tsflags;
430 u8 sk_shutdown;
431 u32 sk_tskey;
432 struct socket *sk_socket;
433 void *sk_user_data;
434 struct page_frag sk_frag;
435 struct sk_buff *sk_send_head;
436 __s32 sk_peek_off;
437 int sk_write_pending;
438 #ifdef CONFIG_SECURITY
439 void *sk_security;
440 #endif
441 struct sock_cgroup_data sk_cgrp_data;
442 struct mem_cgroup *sk_memcg;
443 void (*sk_state_change)(struct sock *sk);
444 void (*sk_data_ready)(struct sock *sk);
445 void (*sk_write_space)(struct sock *sk);
446 void (*sk_error_report)(struct sock *sk);
447 int (*sk_backlog_rcv)(struct sock *sk,
448 struct sk_buff *skb);
449 void (*sk_destruct)(struct sock *sk);
450 struct sock_reuseport __rcu *sk_reuseport_cb;
451 struct rcu_head sk_rcu;
452 };
453
454 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
455
456 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
457 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
458
459 /*
460 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
461 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
462 * on a socket means that the socket will reuse everybody else's port
463 * without looking at the other's sk_reuse value.
464 */
465
466 #define SK_NO_REUSE 0
467 #define SK_CAN_REUSE 1
468 #define SK_FORCE_REUSE 2
469
470 int sk_set_peek_off(struct sock *sk, int val);
471
sk_peek_offset(struct sock * sk,int flags)472 static inline int sk_peek_offset(struct sock *sk, int flags)
473 {
474 if (unlikely(flags & MSG_PEEK)) {
475 s32 off = READ_ONCE(sk->sk_peek_off);
476 if (off >= 0)
477 return off;
478 }
479
480 return 0;
481 }
482
sk_peek_offset_bwd(struct sock * sk,int val)483 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
484 {
485 s32 off = READ_ONCE(sk->sk_peek_off);
486
487 if (unlikely(off >= 0)) {
488 off = max_t(s32, off - val, 0);
489 WRITE_ONCE(sk->sk_peek_off, off);
490 }
491 }
492
sk_peek_offset_fwd(struct sock * sk,int val)493 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
494 {
495 sk_peek_offset_bwd(sk, -val);
496 }
497
498 /*
499 * Hashed lists helper routines
500 */
sk_entry(const struct hlist_node * node)501 static inline struct sock *sk_entry(const struct hlist_node *node)
502 {
503 return hlist_entry(node, struct sock, sk_node);
504 }
505
__sk_head(const struct hlist_head * head)506 static inline struct sock *__sk_head(const struct hlist_head *head)
507 {
508 return hlist_entry(head->first, struct sock, sk_node);
509 }
510
sk_head(const struct hlist_head * head)511 static inline struct sock *sk_head(const struct hlist_head *head)
512 {
513 return hlist_empty(head) ? NULL : __sk_head(head);
514 }
515
__sk_nulls_head(const struct hlist_nulls_head * head)516 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
517 {
518 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
519 }
520
sk_nulls_head(const struct hlist_nulls_head * head)521 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
522 {
523 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
524 }
525
sk_next(const struct sock * sk)526 static inline struct sock *sk_next(const struct sock *sk)
527 {
528 return sk->sk_node.next ?
529 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
530 }
531
sk_nulls_next(const struct sock * sk)532 static inline struct sock *sk_nulls_next(const struct sock *sk)
533 {
534 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
535 hlist_nulls_entry(sk->sk_nulls_node.next,
536 struct sock, sk_nulls_node) :
537 NULL;
538 }
539
sk_unhashed(const struct sock * sk)540 static inline bool sk_unhashed(const struct sock *sk)
541 {
542 return hlist_unhashed(&sk->sk_node);
543 }
544
sk_hashed(const struct sock * sk)545 static inline bool sk_hashed(const struct sock *sk)
546 {
547 return !sk_unhashed(sk);
548 }
549
sk_node_init(struct hlist_node * node)550 static inline void sk_node_init(struct hlist_node *node)
551 {
552 node->pprev = NULL;
553 }
554
sk_nulls_node_init(struct hlist_nulls_node * node)555 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
556 {
557 node->pprev = NULL;
558 }
559
__sk_del_node(struct sock * sk)560 static inline void __sk_del_node(struct sock *sk)
561 {
562 __hlist_del(&sk->sk_node);
563 }
564
565 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)566 static inline bool __sk_del_node_init(struct sock *sk)
567 {
568 if (sk_hashed(sk)) {
569 __sk_del_node(sk);
570 sk_node_init(&sk->sk_node);
571 return true;
572 }
573 return false;
574 }
575
576 /* Grab socket reference count. This operation is valid only
577 when sk is ALREADY grabbed f.e. it is found in hash table
578 or a list and the lookup is made under lock preventing hash table
579 modifications.
580 */
581
sock_hold(struct sock * sk)582 static __always_inline void sock_hold(struct sock *sk)
583 {
584 atomic_inc(&sk->sk_refcnt);
585 }
586
587 /* Ungrab socket in the context, which assumes that socket refcnt
588 cannot hit zero, f.e. it is true in context of any socketcall.
589 */
__sock_put(struct sock * sk)590 static __always_inline void __sock_put(struct sock *sk)
591 {
592 atomic_dec(&sk->sk_refcnt);
593 }
594
sk_del_node_init(struct sock * sk)595 static inline bool sk_del_node_init(struct sock *sk)
596 {
597 bool rc = __sk_del_node_init(sk);
598
599 if (rc) {
600 /* paranoid for a while -acme */
601 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
602 __sock_put(sk);
603 }
604 return rc;
605 }
606 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
607
__sk_nulls_del_node_init_rcu(struct sock * sk)608 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
609 {
610 if (sk_hashed(sk)) {
611 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
612 return true;
613 }
614 return false;
615 }
616
sk_nulls_del_node_init_rcu(struct sock * sk)617 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
618 {
619 bool rc = __sk_nulls_del_node_init_rcu(sk);
620
621 if (rc) {
622 /* paranoid for a while -acme */
623 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
624 __sock_put(sk);
625 }
626 return rc;
627 }
628
__sk_add_node(struct sock * sk,struct hlist_head * list)629 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
630 {
631 hlist_add_head(&sk->sk_node, list);
632 }
633
sk_add_node(struct sock * sk,struct hlist_head * list)634 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
635 {
636 sock_hold(sk);
637 __sk_add_node(sk, list);
638 }
639
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)640 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
641 {
642 sock_hold(sk);
643 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
644 sk->sk_family == AF_INET6)
645 hlist_add_tail_rcu(&sk->sk_node, list);
646 else
647 hlist_add_head_rcu(&sk->sk_node, list);
648 }
649
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)650 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 {
652 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
653 }
654
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)655 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
656 {
657 sock_hold(sk);
658 __sk_nulls_add_node_rcu(sk, list);
659 }
660
__sk_del_bind_node(struct sock * sk)661 static inline void __sk_del_bind_node(struct sock *sk)
662 {
663 __hlist_del(&sk->sk_bind_node);
664 }
665
sk_add_bind_node(struct sock * sk,struct hlist_head * list)666 static inline void sk_add_bind_node(struct sock *sk,
667 struct hlist_head *list)
668 {
669 hlist_add_head(&sk->sk_bind_node, list);
670 }
671
672 #define sk_for_each(__sk, list) \
673 hlist_for_each_entry(__sk, list, sk_node)
674 #define sk_for_each_rcu(__sk, list) \
675 hlist_for_each_entry_rcu(__sk, list, sk_node)
676 #define sk_nulls_for_each(__sk, node, list) \
677 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
678 #define sk_nulls_for_each_rcu(__sk, node, list) \
679 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
680 #define sk_for_each_from(__sk) \
681 hlist_for_each_entry_from(__sk, sk_node)
682 #define sk_nulls_for_each_from(__sk, node) \
683 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
684 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
685 #define sk_for_each_safe(__sk, tmp, list) \
686 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
687 #define sk_for_each_bound(__sk, list) \
688 hlist_for_each_entry(__sk, list, sk_bind_node)
689
690 /**
691 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
692 * @tpos: the type * to use as a loop cursor.
693 * @pos: the &struct hlist_node to use as a loop cursor.
694 * @head: the head for your list.
695 * @offset: offset of hlist_node within the struct.
696 *
697 */
698 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
699 for (pos = rcu_dereference((head)->first); \
700 pos != NULL && \
701 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
702 pos = rcu_dereference(pos->next))
703
sk_user_ns(struct sock * sk)704 static inline struct user_namespace *sk_user_ns(struct sock *sk)
705 {
706 /* Careful only use this in a context where these parameters
707 * can not change and must all be valid, such as recvmsg from
708 * userspace.
709 */
710 return sk->sk_socket->file->f_cred->user_ns;
711 }
712
713 /* Sock flags */
714 enum sock_flags {
715 SOCK_DEAD,
716 SOCK_DONE,
717 SOCK_URGINLINE,
718 SOCK_KEEPOPEN,
719 SOCK_LINGER,
720 SOCK_DESTROY,
721 SOCK_BROADCAST,
722 SOCK_TIMESTAMP,
723 SOCK_ZAPPED,
724 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
725 SOCK_DBG, /* %SO_DEBUG setting */
726 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
727 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
728 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
729 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
730 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
731 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
732 SOCK_FASYNC, /* fasync() active */
733 SOCK_RXQ_OVFL,
734 SOCK_ZEROCOPY, /* buffers from userspace */
735 SOCK_WIFI_STATUS, /* push wifi status to userspace */
736 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
737 * Will use last 4 bytes of packet sent from
738 * user-space instead.
739 */
740 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
741 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
742 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
743 };
744
745 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
746
sock_copy_flags(struct sock * nsk,struct sock * osk)747 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
748 {
749 nsk->sk_flags = osk->sk_flags;
750 }
751
sock_set_flag(struct sock * sk,enum sock_flags flag)752 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
753 {
754 __set_bit(flag, &sk->sk_flags);
755 }
756
sock_reset_flag(struct sock * sk,enum sock_flags flag)757 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
758 {
759 __clear_bit(flag, &sk->sk_flags);
760 }
761
sock_flag(const struct sock * sk,enum sock_flags flag)762 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
763 {
764 return test_bit(flag, &sk->sk_flags);
765 }
766
767 #ifdef CONFIG_NET
768 extern struct static_key memalloc_socks;
sk_memalloc_socks(void)769 static inline int sk_memalloc_socks(void)
770 {
771 return static_key_false(&memalloc_socks);
772 }
773 #else
774
sk_memalloc_socks(void)775 static inline int sk_memalloc_socks(void)
776 {
777 return 0;
778 }
779
780 #endif
781
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)782 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
783 {
784 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
785 }
786
sk_acceptq_removed(struct sock * sk)787 static inline void sk_acceptq_removed(struct sock *sk)
788 {
789 sk->sk_ack_backlog--;
790 }
791
sk_acceptq_added(struct sock * sk)792 static inline void sk_acceptq_added(struct sock *sk)
793 {
794 sk->sk_ack_backlog++;
795 }
796
sk_acceptq_is_full(const struct sock * sk)797 static inline bool sk_acceptq_is_full(const struct sock *sk)
798 {
799 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
800 }
801
802 /*
803 * Compute minimal free write space needed to queue new packets.
804 */
sk_stream_min_wspace(const struct sock * sk)805 static inline int sk_stream_min_wspace(const struct sock *sk)
806 {
807 return sk->sk_wmem_queued >> 1;
808 }
809
sk_stream_wspace(const struct sock * sk)810 static inline int sk_stream_wspace(const struct sock *sk)
811 {
812 return sk->sk_sndbuf - sk->sk_wmem_queued;
813 }
814
815 void sk_stream_write_space(struct sock *sk);
816
817 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)818 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
819 {
820 /* dont let skb dst not refcounted, we are going to leave rcu lock */
821 skb_dst_force_safe(skb);
822
823 if (!sk->sk_backlog.tail)
824 sk->sk_backlog.head = skb;
825 else
826 sk->sk_backlog.tail->next = skb;
827
828 sk->sk_backlog.tail = skb;
829 skb->next = NULL;
830 }
831
832 /*
833 * Take into account size of receive queue and backlog queue
834 * Do not take into account this skb truesize,
835 * to allow even a single big packet to come.
836 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)837 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
838 {
839 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
840
841 return qsize > limit;
842 }
843
844 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)845 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
846 unsigned int limit)
847 {
848 if (sk_rcvqueues_full(sk, limit))
849 return -ENOBUFS;
850
851 /*
852 * If the skb was allocated from pfmemalloc reserves, only
853 * allow SOCK_MEMALLOC sockets to use it as this socket is
854 * helping free memory
855 */
856 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
857 return -ENOMEM;
858
859 __sk_add_backlog(sk, skb);
860 sk->sk_backlog.len += skb->truesize;
861 return 0;
862 }
863
864 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
865
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)866 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
867 {
868 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
869 return __sk_backlog_rcv(sk, skb);
870
871 return sk->sk_backlog_rcv(sk, skb);
872 }
873
sk_incoming_cpu_update(struct sock * sk)874 static inline void sk_incoming_cpu_update(struct sock *sk)
875 {
876 sk->sk_incoming_cpu = raw_smp_processor_id();
877 }
878
sock_rps_record_flow_hash(__u32 hash)879 static inline void sock_rps_record_flow_hash(__u32 hash)
880 {
881 #ifdef CONFIG_RPS
882 struct rps_sock_flow_table *sock_flow_table;
883
884 rcu_read_lock();
885 sock_flow_table = rcu_dereference(rps_sock_flow_table);
886 rps_record_sock_flow(sock_flow_table, hash);
887 rcu_read_unlock();
888 #endif
889 }
890
sock_rps_record_flow(const struct sock * sk)891 static inline void sock_rps_record_flow(const struct sock *sk)
892 {
893 #ifdef CONFIG_RPS
894 sock_rps_record_flow_hash(sk->sk_rxhash);
895 #endif
896 }
897
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)898 static inline void sock_rps_save_rxhash(struct sock *sk,
899 const struct sk_buff *skb)
900 {
901 #ifdef CONFIG_RPS
902 if (unlikely(sk->sk_rxhash != skb->hash))
903 sk->sk_rxhash = skb->hash;
904 #endif
905 }
906
sock_rps_reset_rxhash(struct sock * sk)907 static inline void sock_rps_reset_rxhash(struct sock *sk)
908 {
909 #ifdef CONFIG_RPS
910 sk->sk_rxhash = 0;
911 #endif
912 }
913
914 #define sk_wait_event(__sk, __timeo, __condition) \
915 ({ int __rc; \
916 release_sock(__sk); \
917 __rc = __condition; \
918 if (!__rc) { \
919 *(__timeo) = schedule_timeout(*(__timeo)); \
920 } \
921 sched_annotate_sleep(); \
922 lock_sock(__sk); \
923 __rc = __condition; \
924 __rc; \
925 })
926
927 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
928 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
929 void sk_stream_wait_close(struct sock *sk, long timeo_p);
930 int sk_stream_error(struct sock *sk, int flags, int err);
931 void sk_stream_kill_queues(struct sock *sk);
932 void sk_set_memalloc(struct sock *sk);
933 void sk_clear_memalloc(struct sock *sk);
934
935 void __sk_flush_backlog(struct sock *sk);
936
sk_flush_backlog(struct sock * sk)937 static inline bool sk_flush_backlog(struct sock *sk)
938 {
939 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
940 __sk_flush_backlog(sk);
941 return true;
942 }
943 return false;
944 }
945
946 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
947
948 struct request_sock_ops;
949 struct timewait_sock_ops;
950 struct inet_hashinfo;
951 struct raw_hashinfo;
952 struct module;
953
954 /*
955 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
956 * un-modified. Special care is taken when initializing object to zero.
957 */
sk_prot_clear_nulls(struct sock * sk,int size)958 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
959 {
960 if (offsetof(struct sock, sk_node.next) != 0)
961 memset(sk, 0, offsetof(struct sock, sk_node.next));
962 memset(&sk->sk_node.pprev, 0,
963 size - offsetof(struct sock, sk_node.pprev));
964 }
965
966 /* Networking protocol blocks we attach to sockets.
967 * socket layer -> transport layer interface
968 */
969 struct proto {
970 void (*close)(struct sock *sk,
971 long timeout);
972 int (*connect)(struct sock *sk,
973 struct sockaddr *uaddr,
974 int addr_len);
975 int (*disconnect)(struct sock *sk, int flags);
976
977 struct sock * (*accept)(struct sock *sk, int flags, int *err);
978
979 int (*ioctl)(struct sock *sk, int cmd,
980 unsigned long arg);
981 int (*init)(struct sock *sk);
982 void (*destroy)(struct sock *sk);
983 void (*shutdown)(struct sock *sk, int how);
984 int (*setsockopt)(struct sock *sk, int level,
985 int optname, char __user *optval,
986 unsigned int optlen);
987 int (*getsockopt)(struct sock *sk, int level,
988 int optname, char __user *optval,
989 int __user *option);
990 #ifdef CONFIG_COMPAT
991 int (*compat_setsockopt)(struct sock *sk,
992 int level,
993 int optname, char __user *optval,
994 unsigned int optlen);
995 int (*compat_getsockopt)(struct sock *sk,
996 int level,
997 int optname, char __user *optval,
998 int __user *option);
999 int (*compat_ioctl)(struct sock *sk,
1000 unsigned int cmd, unsigned long arg);
1001 #endif
1002 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1003 size_t len);
1004 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1005 size_t len, int noblock, int flags,
1006 int *addr_len);
1007 int (*sendpage)(struct sock *sk, struct page *page,
1008 int offset, size_t size, int flags);
1009 int (*bind)(struct sock *sk,
1010 struct sockaddr *uaddr, int addr_len);
1011
1012 int (*backlog_rcv) (struct sock *sk,
1013 struct sk_buff *skb);
1014
1015 void (*release_cb)(struct sock *sk);
1016
1017 /* Keeping track of sk's, looking them up, and port selection methods. */
1018 int (*hash)(struct sock *sk);
1019 void (*unhash)(struct sock *sk);
1020 void (*rehash)(struct sock *sk);
1021 int (*get_port)(struct sock *sk, unsigned short snum);
1022
1023 /* Keeping track of sockets in use */
1024 #ifdef CONFIG_PROC_FS
1025 unsigned int inuse_idx;
1026 #endif
1027
1028 bool (*stream_memory_free)(const struct sock *sk);
1029 /* Memory pressure */
1030 void (*enter_memory_pressure)(struct sock *sk);
1031 atomic_long_t *memory_allocated; /* Current allocated memory. */
1032 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1033 /*
1034 * Pressure flag: try to collapse.
1035 * Technical note: it is used by multiple contexts non atomically.
1036 * All the __sk_mem_schedule() is of this nature: accounting
1037 * is strict, actions are advisory and have some latency.
1038 */
1039 int *memory_pressure;
1040 long *sysctl_mem;
1041 int *sysctl_wmem;
1042 int *sysctl_rmem;
1043 int max_header;
1044 bool no_autobind;
1045
1046 struct kmem_cache *slab;
1047 unsigned int obj_size;
1048 int slab_flags;
1049
1050 struct percpu_counter *orphan_count;
1051
1052 struct request_sock_ops *rsk_prot;
1053 struct timewait_sock_ops *twsk_prot;
1054
1055 union {
1056 struct inet_hashinfo *hashinfo;
1057 struct udp_table *udp_table;
1058 struct raw_hashinfo *raw_hash;
1059 } h;
1060
1061 struct module *owner;
1062
1063 char name[32];
1064
1065 struct list_head node;
1066 #ifdef SOCK_REFCNT_DEBUG
1067 atomic_t socks;
1068 #endif
1069 int (*diag_destroy)(struct sock *sk, int err);
1070 };
1071
1072 int proto_register(struct proto *prot, int alloc_slab);
1073 void proto_unregister(struct proto *prot);
1074
1075 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1076 static inline void sk_refcnt_debug_inc(struct sock *sk)
1077 {
1078 atomic_inc(&sk->sk_prot->socks);
1079 }
1080
sk_refcnt_debug_dec(struct sock * sk)1081 static inline void sk_refcnt_debug_dec(struct sock *sk)
1082 {
1083 atomic_dec(&sk->sk_prot->socks);
1084 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1085 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1086 }
1087
sk_refcnt_debug_release(const struct sock * sk)1088 static inline void sk_refcnt_debug_release(const struct sock *sk)
1089 {
1090 if (atomic_read(&sk->sk_refcnt) != 1)
1091 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1092 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1093 }
1094 #else /* SOCK_REFCNT_DEBUG */
1095 #define sk_refcnt_debug_inc(sk) do { } while (0)
1096 #define sk_refcnt_debug_dec(sk) do { } while (0)
1097 #define sk_refcnt_debug_release(sk) do { } while (0)
1098 #endif /* SOCK_REFCNT_DEBUG */
1099
sk_stream_memory_free(const struct sock * sk)1100 static inline bool sk_stream_memory_free(const struct sock *sk)
1101 {
1102 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1103 return false;
1104
1105 return sk->sk_prot->stream_memory_free ?
1106 sk->sk_prot->stream_memory_free(sk) : true;
1107 }
1108
sk_stream_is_writeable(const struct sock * sk)1109 static inline bool sk_stream_is_writeable(const struct sock *sk)
1110 {
1111 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1112 sk_stream_memory_free(sk);
1113 }
1114
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1115 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1116 struct cgroup *ancestor)
1117 {
1118 #ifdef CONFIG_SOCK_CGROUP_DATA
1119 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1120 ancestor);
1121 #else
1122 return -ENOTSUPP;
1123 #endif
1124 }
1125
sk_has_memory_pressure(const struct sock * sk)1126 static inline bool sk_has_memory_pressure(const struct sock *sk)
1127 {
1128 return sk->sk_prot->memory_pressure != NULL;
1129 }
1130
sk_under_memory_pressure(const struct sock * sk)1131 static inline bool sk_under_memory_pressure(const struct sock *sk)
1132 {
1133 if (!sk->sk_prot->memory_pressure)
1134 return false;
1135
1136 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1137 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1138 return true;
1139
1140 return !!*sk->sk_prot->memory_pressure;
1141 }
1142
sk_leave_memory_pressure(struct sock * sk)1143 static inline void sk_leave_memory_pressure(struct sock *sk)
1144 {
1145 int *memory_pressure = sk->sk_prot->memory_pressure;
1146
1147 if (!memory_pressure)
1148 return;
1149
1150 if (*memory_pressure)
1151 *memory_pressure = 0;
1152 }
1153
sk_enter_memory_pressure(struct sock * sk)1154 static inline void sk_enter_memory_pressure(struct sock *sk)
1155 {
1156 if (!sk->sk_prot->enter_memory_pressure)
1157 return;
1158
1159 sk->sk_prot->enter_memory_pressure(sk);
1160 }
1161
sk_prot_mem_limits(const struct sock * sk,int index)1162 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1163 {
1164 return sk->sk_prot->sysctl_mem[index];
1165 }
1166
1167 static inline long
sk_memory_allocated(const struct sock * sk)1168 sk_memory_allocated(const struct sock *sk)
1169 {
1170 return atomic_long_read(sk->sk_prot->memory_allocated);
1171 }
1172
1173 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1174 sk_memory_allocated_add(struct sock *sk, int amt)
1175 {
1176 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1177 }
1178
1179 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1180 sk_memory_allocated_sub(struct sock *sk, int amt)
1181 {
1182 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1183 }
1184
sk_sockets_allocated_dec(struct sock * sk)1185 static inline void sk_sockets_allocated_dec(struct sock *sk)
1186 {
1187 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1188 }
1189
sk_sockets_allocated_inc(struct sock * sk)1190 static inline void sk_sockets_allocated_inc(struct sock *sk)
1191 {
1192 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1193 }
1194
1195 static inline int
sk_sockets_allocated_read_positive(struct sock * sk)1196 sk_sockets_allocated_read_positive(struct sock *sk)
1197 {
1198 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1199 }
1200
1201 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1202 proto_sockets_allocated_sum_positive(struct proto *prot)
1203 {
1204 return percpu_counter_sum_positive(prot->sockets_allocated);
1205 }
1206
1207 static inline long
proto_memory_allocated(struct proto * prot)1208 proto_memory_allocated(struct proto *prot)
1209 {
1210 return atomic_long_read(prot->memory_allocated);
1211 }
1212
1213 static inline bool
proto_memory_pressure(struct proto * prot)1214 proto_memory_pressure(struct proto *prot)
1215 {
1216 if (!prot->memory_pressure)
1217 return false;
1218 return !!*prot->memory_pressure;
1219 }
1220
1221
1222 #ifdef CONFIG_PROC_FS
1223 /* Called with local bh disabled */
1224 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1225 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1226 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1227 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1228 int inc)
1229 {
1230 }
1231 #endif
1232
1233
1234 /* With per-bucket locks this operation is not-atomic, so that
1235 * this version is not worse.
1236 */
__sk_prot_rehash(struct sock * sk)1237 static inline int __sk_prot_rehash(struct sock *sk)
1238 {
1239 sk->sk_prot->unhash(sk);
1240 return sk->sk_prot->hash(sk);
1241 }
1242
1243 /* About 10 seconds */
1244 #define SOCK_DESTROY_TIME (10*HZ)
1245
1246 /* Sockets 0-1023 can't be bound to unless you are superuser */
1247 #define PROT_SOCK 1024
1248
1249 #define SHUTDOWN_MASK 3
1250 #define RCV_SHUTDOWN 1
1251 #define SEND_SHUTDOWN 2
1252
1253 #define SOCK_SNDBUF_LOCK 1
1254 #define SOCK_RCVBUF_LOCK 2
1255 #define SOCK_BINDADDR_LOCK 4
1256 #define SOCK_BINDPORT_LOCK 8
1257
1258 struct socket_alloc {
1259 struct socket socket;
1260 struct inode vfs_inode;
1261 };
1262
SOCKET_I(struct inode * inode)1263 static inline struct socket *SOCKET_I(struct inode *inode)
1264 {
1265 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1266 }
1267
SOCK_INODE(struct socket * socket)1268 static inline struct inode *SOCK_INODE(struct socket *socket)
1269 {
1270 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1271 }
1272
1273 /*
1274 * Functions for memory accounting
1275 */
1276 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1277 void __sk_mem_reclaim(struct sock *sk, int amount);
1278
1279 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1280 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1281 #define SK_MEM_SEND 0
1282 #define SK_MEM_RECV 1
1283
sk_mem_pages(int amt)1284 static inline int sk_mem_pages(int amt)
1285 {
1286 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1287 }
1288
sk_has_account(struct sock * sk)1289 static inline bool sk_has_account(struct sock *sk)
1290 {
1291 /* return true if protocol supports memory accounting */
1292 return !!sk->sk_prot->memory_allocated;
1293 }
1294
sk_wmem_schedule(struct sock * sk,int size)1295 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1296 {
1297 if (!sk_has_account(sk))
1298 return true;
1299 return size <= sk->sk_forward_alloc ||
1300 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1301 }
1302
1303 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1304 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1305 {
1306 if (!sk_has_account(sk))
1307 return true;
1308 return size<= sk->sk_forward_alloc ||
1309 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1310 skb_pfmemalloc(skb);
1311 }
1312
sk_mem_reclaim(struct sock * sk)1313 static inline void sk_mem_reclaim(struct sock *sk)
1314 {
1315 if (!sk_has_account(sk))
1316 return;
1317 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1318 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1319 }
1320
sk_mem_reclaim_partial(struct sock * sk)1321 static inline void sk_mem_reclaim_partial(struct sock *sk)
1322 {
1323 if (!sk_has_account(sk))
1324 return;
1325 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1326 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1327 }
1328
sk_mem_charge(struct sock * sk,int size)1329 static inline void sk_mem_charge(struct sock *sk, int size)
1330 {
1331 if (!sk_has_account(sk))
1332 return;
1333 sk->sk_forward_alloc -= size;
1334 }
1335
sk_mem_uncharge(struct sock * sk,int size)1336 static inline void sk_mem_uncharge(struct sock *sk, int size)
1337 {
1338 if (!sk_has_account(sk))
1339 return;
1340 sk->sk_forward_alloc += size;
1341
1342 /* Avoid a possible overflow.
1343 * TCP send queues can make this happen, if sk_mem_reclaim()
1344 * is not called and more than 2 GBytes are released at once.
1345 *
1346 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1347 * no need to hold that much forward allocation anyway.
1348 */
1349 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1350 __sk_mem_reclaim(sk, 1 << 20);
1351 }
1352
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1353 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1354 {
1355 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1356 sk->sk_wmem_queued -= skb->truesize;
1357 sk_mem_uncharge(sk, skb->truesize);
1358 __kfree_skb(skb);
1359 }
1360
sock_release_ownership(struct sock * sk)1361 static inline void sock_release_ownership(struct sock *sk)
1362 {
1363 if (sk->sk_lock.owned) {
1364 sk->sk_lock.owned = 0;
1365
1366 /* The sk_lock has mutex_unlock() semantics: */
1367 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1368 }
1369 }
1370
1371 /*
1372 * Macro so as to not evaluate some arguments when
1373 * lockdep is not enabled.
1374 *
1375 * Mark both the sk_lock and the sk_lock.slock as a
1376 * per-address-family lock class.
1377 */
1378 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1379 do { \
1380 sk->sk_lock.owned = 0; \
1381 init_waitqueue_head(&sk->sk_lock.wq); \
1382 spin_lock_init(&(sk)->sk_lock.slock); \
1383 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1384 sizeof((sk)->sk_lock)); \
1385 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1386 (skey), (sname)); \
1387 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1388 } while (0)
1389
1390 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * csk)1391 static inline bool lockdep_sock_is_held(const struct sock *csk)
1392 {
1393 struct sock *sk = (struct sock *)csk;
1394
1395 return lockdep_is_held(&sk->sk_lock) ||
1396 lockdep_is_held(&sk->sk_lock.slock);
1397 }
1398 #endif
1399
1400 void lock_sock_nested(struct sock *sk, int subclass);
1401
lock_sock(struct sock * sk)1402 static inline void lock_sock(struct sock *sk)
1403 {
1404 lock_sock_nested(sk, 0);
1405 }
1406
1407 void release_sock(struct sock *sk);
1408
1409 /* BH context may only use the following locking interface. */
1410 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1411 #define bh_lock_sock_nested(__sk) \
1412 spin_lock_nested(&((__sk)->sk_lock.slock), \
1413 SINGLE_DEPTH_NESTING)
1414 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1415
1416 bool lock_sock_fast(struct sock *sk);
1417 /**
1418 * unlock_sock_fast - complement of lock_sock_fast
1419 * @sk: socket
1420 * @slow: slow mode
1421 *
1422 * fast unlock socket for user context.
1423 * If slow mode is on, we call regular release_sock()
1424 */
unlock_sock_fast(struct sock * sk,bool slow)1425 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1426 {
1427 if (slow)
1428 release_sock(sk);
1429 else
1430 spin_unlock_bh(&sk->sk_lock.slock);
1431 }
1432
1433 /* Used by processes to "lock" a socket state, so that
1434 * interrupts and bottom half handlers won't change it
1435 * from under us. It essentially blocks any incoming
1436 * packets, so that we won't get any new data or any
1437 * packets that change the state of the socket.
1438 *
1439 * While locked, BH processing will add new packets to
1440 * the backlog queue. This queue is processed by the
1441 * owner of the socket lock right before it is released.
1442 *
1443 * Since ~2.3.5 it is also exclusive sleep lock serializing
1444 * accesses from user process context.
1445 */
1446
sock_owned_by_me(const struct sock * sk)1447 static inline void sock_owned_by_me(const struct sock *sk)
1448 {
1449 #ifdef CONFIG_LOCKDEP
1450 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1451 #endif
1452 }
1453
sock_owned_by_user(const struct sock * sk)1454 static inline bool sock_owned_by_user(const struct sock *sk)
1455 {
1456 sock_owned_by_me(sk);
1457 return sk->sk_lock.owned;
1458 }
1459
1460 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1461 static inline bool sock_allow_reclassification(const struct sock *csk)
1462 {
1463 struct sock *sk = (struct sock *)csk;
1464
1465 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1466 }
1467
1468 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1469 struct proto *prot, int kern);
1470 void sk_free(struct sock *sk);
1471 void sk_destruct(struct sock *sk);
1472 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1473
1474 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1475 gfp_t priority);
1476 void __sock_wfree(struct sk_buff *skb);
1477 void sock_wfree(struct sk_buff *skb);
1478 void skb_orphan_partial(struct sk_buff *skb);
1479 void sock_rfree(struct sk_buff *skb);
1480 void sock_efree(struct sk_buff *skb);
1481 #ifdef CONFIG_INET
1482 void sock_edemux(struct sk_buff *skb);
1483 #else
1484 #define sock_edemux(skb) sock_efree(skb)
1485 #endif
1486
1487 int sock_setsockopt(struct socket *sock, int level, int op,
1488 char __user *optval, unsigned int optlen);
1489
1490 int sock_getsockopt(struct socket *sock, int level, int op,
1491 char __user *optval, int __user *optlen);
1492 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1493 int noblock, int *errcode);
1494 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1495 unsigned long data_len, int noblock,
1496 int *errcode, int max_page_order);
1497 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1498 void sock_kfree_s(struct sock *sk, void *mem, int size);
1499 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1500 void sk_send_sigurg(struct sock *sk);
1501
1502 struct sockcm_cookie {
1503 u32 mark;
1504 u16 tsflags;
1505 };
1506
1507 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1508 struct sockcm_cookie *sockc);
1509 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1510 struct sockcm_cookie *sockc);
1511
1512 /*
1513 * Functions to fill in entries in struct proto_ops when a protocol
1514 * does not implement a particular function.
1515 */
1516 int sock_no_bind(struct socket *, struct sockaddr *, int);
1517 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1518 int sock_no_socketpair(struct socket *, struct socket *);
1519 int sock_no_accept(struct socket *, struct socket *, int);
1520 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1521 unsigned int sock_no_poll(struct file *, struct socket *,
1522 struct poll_table_struct *);
1523 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1524 int sock_no_listen(struct socket *, int);
1525 int sock_no_shutdown(struct socket *, int);
1526 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1527 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1528 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1529 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1530 int sock_no_mmap(struct file *file, struct socket *sock,
1531 struct vm_area_struct *vma);
1532 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1533 size_t size, int flags);
1534
1535 /*
1536 * Functions to fill in entries in struct proto_ops when a protocol
1537 * uses the inet style.
1538 */
1539 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1540 char __user *optval, int __user *optlen);
1541 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1542 int flags);
1543 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1544 char __user *optval, unsigned int optlen);
1545 int compat_sock_common_getsockopt(struct socket *sock, int level,
1546 int optname, char __user *optval, int __user *optlen);
1547 int compat_sock_common_setsockopt(struct socket *sock, int level,
1548 int optname, char __user *optval, unsigned int optlen);
1549
1550 void sk_common_release(struct sock *sk);
1551
1552 /*
1553 * Default socket callbacks and setup code
1554 */
1555
1556 /* Initialise core socket variables */
1557 void sock_init_data(struct socket *sock, struct sock *sk);
1558
1559 /*
1560 * Socket reference counting postulates.
1561 *
1562 * * Each user of socket SHOULD hold a reference count.
1563 * * Each access point to socket (an hash table bucket, reference from a list,
1564 * running timer, skb in flight MUST hold a reference count.
1565 * * When reference count hits 0, it means it will never increase back.
1566 * * When reference count hits 0, it means that no references from
1567 * outside exist to this socket and current process on current CPU
1568 * is last user and may/should destroy this socket.
1569 * * sk_free is called from any context: process, BH, IRQ. When
1570 * it is called, socket has no references from outside -> sk_free
1571 * may release descendant resources allocated by the socket, but
1572 * to the time when it is called, socket is NOT referenced by any
1573 * hash tables, lists etc.
1574 * * Packets, delivered from outside (from network or from another process)
1575 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1576 * when they sit in queue. Otherwise, packets will leak to hole, when
1577 * socket is looked up by one cpu and unhasing is made by another CPU.
1578 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1579 * (leak to backlog). Packet socket does all the processing inside
1580 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1581 * use separate SMP lock, so that they are prone too.
1582 */
1583
1584 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1585 static inline void sock_put(struct sock *sk)
1586 {
1587 if (atomic_dec_and_test(&sk->sk_refcnt))
1588 sk_free(sk);
1589 }
1590 /* Generic version of sock_put(), dealing with all sockets
1591 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1592 */
1593 void sock_gen_put(struct sock *sk);
1594
1595 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1596 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1597 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1598 const int nested)
1599 {
1600 return __sk_receive_skb(sk, skb, nested, 1, true);
1601 }
1602
sk_tx_queue_set(struct sock * sk,int tx_queue)1603 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1604 {
1605 sk->sk_tx_queue_mapping = tx_queue;
1606 }
1607
sk_tx_queue_clear(struct sock * sk)1608 static inline void sk_tx_queue_clear(struct sock *sk)
1609 {
1610 sk->sk_tx_queue_mapping = -1;
1611 }
1612
sk_tx_queue_get(const struct sock * sk)1613 static inline int sk_tx_queue_get(const struct sock *sk)
1614 {
1615 return sk ? sk->sk_tx_queue_mapping : -1;
1616 }
1617
sk_set_socket(struct sock * sk,struct socket * sock)1618 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1619 {
1620 sk_tx_queue_clear(sk);
1621 sk->sk_socket = sock;
1622 }
1623
sk_sleep(struct sock * sk)1624 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1625 {
1626 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1627 return &rcu_dereference_raw(sk->sk_wq)->wait;
1628 }
1629 /* Detach socket from process context.
1630 * Announce socket dead, detach it from wait queue and inode.
1631 * Note that parent inode held reference count on this struct sock,
1632 * we do not release it in this function, because protocol
1633 * probably wants some additional cleanups or even continuing
1634 * to work with this socket (TCP).
1635 */
sock_orphan(struct sock * sk)1636 static inline void sock_orphan(struct sock *sk)
1637 {
1638 write_lock_bh(&sk->sk_callback_lock);
1639 sock_set_flag(sk, SOCK_DEAD);
1640 sk_set_socket(sk, NULL);
1641 sk->sk_wq = NULL;
1642 write_unlock_bh(&sk->sk_callback_lock);
1643 }
1644
sock_graft(struct sock * sk,struct socket * parent)1645 static inline void sock_graft(struct sock *sk, struct socket *parent)
1646 {
1647 write_lock_bh(&sk->sk_callback_lock);
1648 sk->sk_wq = parent->wq;
1649 parent->sk = sk;
1650 sk_set_socket(sk, parent);
1651 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1652 security_sock_graft(sk, parent);
1653 write_unlock_bh(&sk->sk_callback_lock);
1654 }
1655
1656 kuid_t sock_i_uid(struct sock *sk);
1657 unsigned long sock_i_ino(struct sock *sk);
1658
sock_net_uid(const struct net * net,const struct sock * sk)1659 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1660 {
1661 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1662 }
1663
net_tx_rndhash(void)1664 static inline u32 net_tx_rndhash(void)
1665 {
1666 u32 v = prandom_u32();
1667
1668 return v ?: 1;
1669 }
1670
sk_set_txhash(struct sock * sk)1671 static inline void sk_set_txhash(struct sock *sk)
1672 {
1673 sk->sk_txhash = net_tx_rndhash();
1674 }
1675
sk_rethink_txhash(struct sock * sk)1676 static inline void sk_rethink_txhash(struct sock *sk)
1677 {
1678 if (sk->sk_txhash)
1679 sk_set_txhash(sk);
1680 }
1681
1682 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1683 __sk_dst_get(struct sock *sk)
1684 {
1685 return rcu_dereference_check(sk->sk_dst_cache,
1686 lockdep_sock_is_held(sk));
1687 }
1688
1689 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1690 sk_dst_get(struct sock *sk)
1691 {
1692 struct dst_entry *dst;
1693
1694 rcu_read_lock();
1695 dst = rcu_dereference(sk->sk_dst_cache);
1696 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1697 dst = NULL;
1698 rcu_read_unlock();
1699 return dst;
1700 }
1701
dst_negative_advice(struct sock * sk)1702 static inline void dst_negative_advice(struct sock *sk)
1703 {
1704 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1705
1706 sk_rethink_txhash(sk);
1707
1708 if (dst && dst->ops->negative_advice) {
1709 ndst = dst->ops->negative_advice(dst);
1710
1711 if (ndst != dst) {
1712 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1713 sk_tx_queue_clear(sk);
1714 }
1715 }
1716 }
1717
1718 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1719 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1720 {
1721 struct dst_entry *old_dst;
1722
1723 sk_tx_queue_clear(sk);
1724 /*
1725 * This can be called while sk is owned by the caller only,
1726 * with no state that can be checked in a rcu_dereference_check() cond
1727 */
1728 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1729 rcu_assign_pointer(sk->sk_dst_cache, dst);
1730 dst_release(old_dst);
1731 }
1732
1733 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1734 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1735 {
1736 struct dst_entry *old_dst;
1737
1738 sk_tx_queue_clear(sk);
1739 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1740 dst_release(old_dst);
1741 }
1742
1743 static inline void
__sk_dst_reset(struct sock * sk)1744 __sk_dst_reset(struct sock *sk)
1745 {
1746 __sk_dst_set(sk, NULL);
1747 }
1748
1749 static inline void
sk_dst_reset(struct sock * sk)1750 sk_dst_reset(struct sock *sk)
1751 {
1752 sk_dst_set(sk, NULL);
1753 }
1754
1755 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1756
1757 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1758
1759 bool sk_mc_loop(struct sock *sk);
1760
sk_can_gso(const struct sock * sk)1761 static inline bool sk_can_gso(const struct sock *sk)
1762 {
1763 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1764 }
1765
1766 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1767
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1768 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1769 {
1770 sk->sk_route_nocaps |= flags;
1771 sk->sk_route_caps &= ~flags;
1772 }
1773
sk_check_csum_caps(struct sock * sk)1774 static inline bool sk_check_csum_caps(struct sock *sk)
1775 {
1776 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1777 (sk->sk_family == PF_INET &&
1778 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1779 (sk->sk_family == PF_INET6 &&
1780 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1781 }
1782
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1783 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1784 struct iov_iter *from, char *to,
1785 int copy, int offset)
1786 {
1787 if (skb->ip_summed == CHECKSUM_NONE) {
1788 __wsum csum = 0;
1789 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1790 return -EFAULT;
1791 skb->csum = csum_block_add(skb->csum, csum, offset);
1792 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1793 if (copy_from_iter_nocache(to, copy, from) != copy)
1794 return -EFAULT;
1795 } else if (copy_from_iter(to, copy, from) != copy)
1796 return -EFAULT;
1797
1798 return 0;
1799 }
1800
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)1801 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1802 struct iov_iter *from, int copy)
1803 {
1804 int err, offset = skb->len;
1805
1806 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1807 copy, offset);
1808 if (err)
1809 __skb_trim(skb, offset);
1810
1811 return err;
1812 }
1813
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)1814 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1815 struct sk_buff *skb,
1816 struct page *page,
1817 int off, int copy)
1818 {
1819 int err;
1820
1821 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1822 copy, skb->len);
1823 if (err)
1824 return err;
1825
1826 skb->len += copy;
1827 skb->data_len += copy;
1828 skb->truesize += copy;
1829 sk->sk_wmem_queued += copy;
1830 sk_mem_charge(sk, copy);
1831 return 0;
1832 }
1833
1834 /**
1835 * sk_wmem_alloc_get - returns write allocations
1836 * @sk: socket
1837 *
1838 * Returns sk_wmem_alloc minus initial offset of one
1839 */
sk_wmem_alloc_get(const struct sock * sk)1840 static inline int sk_wmem_alloc_get(const struct sock *sk)
1841 {
1842 return atomic_read(&sk->sk_wmem_alloc) - 1;
1843 }
1844
1845 /**
1846 * sk_rmem_alloc_get - returns read allocations
1847 * @sk: socket
1848 *
1849 * Returns sk_rmem_alloc
1850 */
sk_rmem_alloc_get(const struct sock * sk)1851 static inline int sk_rmem_alloc_get(const struct sock *sk)
1852 {
1853 return atomic_read(&sk->sk_rmem_alloc);
1854 }
1855
1856 /**
1857 * sk_has_allocations - check if allocations are outstanding
1858 * @sk: socket
1859 *
1860 * Returns true if socket has write or read allocations
1861 */
sk_has_allocations(const struct sock * sk)1862 static inline bool sk_has_allocations(const struct sock *sk)
1863 {
1864 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1865 }
1866
1867 /**
1868 * skwq_has_sleeper - check if there are any waiting processes
1869 * @wq: struct socket_wq
1870 *
1871 * Returns true if socket_wq has waiting processes
1872 *
1873 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1874 * barrier call. They were added due to the race found within the tcp code.
1875 *
1876 * Consider following tcp code paths:
1877 *
1878 * CPU1 CPU2
1879 *
1880 * sys_select receive packet
1881 * ... ...
1882 * __add_wait_queue update tp->rcv_nxt
1883 * ... ...
1884 * tp->rcv_nxt check sock_def_readable
1885 * ... {
1886 * schedule rcu_read_lock();
1887 * wq = rcu_dereference(sk->sk_wq);
1888 * if (wq && waitqueue_active(&wq->wait))
1889 * wake_up_interruptible(&wq->wait)
1890 * ...
1891 * }
1892 *
1893 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1894 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1895 * could then endup calling schedule and sleep forever if there are no more
1896 * data on the socket.
1897 *
1898 */
skwq_has_sleeper(struct socket_wq * wq)1899 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1900 {
1901 return wq && wq_has_sleeper(&wq->wait);
1902 }
1903
1904 /**
1905 * sock_poll_wait - place memory barrier behind the poll_wait call.
1906 * @filp: file
1907 * @wait_address: socket wait queue
1908 * @p: poll_table
1909 *
1910 * See the comments in the wq_has_sleeper function.
1911 */
sock_poll_wait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)1912 static inline void sock_poll_wait(struct file *filp,
1913 wait_queue_head_t *wait_address, poll_table *p)
1914 {
1915 if (!poll_does_not_wait(p) && wait_address) {
1916 poll_wait(filp, wait_address, p);
1917 /* We need to be sure we are in sync with the
1918 * socket flags modification.
1919 *
1920 * This memory barrier is paired in the wq_has_sleeper.
1921 */
1922 smp_mb();
1923 }
1924 }
1925
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)1926 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1927 {
1928 if (sk->sk_txhash) {
1929 skb->l4_hash = 1;
1930 skb->hash = sk->sk_txhash;
1931 }
1932 }
1933
1934 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1935
1936 /*
1937 * Queue a received datagram if it will fit. Stream and sequenced
1938 * protocols can't normally use this as they need to fit buffers in
1939 * and play with them.
1940 *
1941 * Inlined as it's very short and called for pretty much every
1942 * packet ever received.
1943 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)1944 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1945 {
1946 skb_orphan(skb);
1947 skb->sk = sk;
1948 skb->destructor = sock_rfree;
1949 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1950 sk_mem_charge(sk, skb->truesize);
1951 }
1952
1953 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1954 unsigned long expires);
1955
1956 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1957
1958 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1959 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1960
1961 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1962 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1963
1964 /*
1965 * Recover an error report and clear atomically
1966 */
1967
sock_error(struct sock * sk)1968 static inline int sock_error(struct sock *sk)
1969 {
1970 int err;
1971 if (likely(!sk->sk_err))
1972 return 0;
1973 err = xchg(&sk->sk_err, 0);
1974 return -err;
1975 }
1976
sock_wspace(struct sock * sk)1977 static inline unsigned long sock_wspace(struct sock *sk)
1978 {
1979 int amt = 0;
1980
1981 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1982 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1983 if (amt < 0)
1984 amt = 0;
1985 }
1986 return amt;
1987 }
1988
1989 /* Note:
1990 * We use sk->sk_wq_raw, from contexts knowing this
1991 * pointer is not NULL and cannot disappear/change.
1992 */
sk_set_bit(int nr,struct sock * sk)1993 static inline void sk_set_bit(int nr, struct sock *sk)
1994 {
1995 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1996 !sock_flag(sk, SOCK_FASYNC))
1997 return;
1998
1999 set_bit(nr, &sk->sk_wq_raw->flags);
2000 }
2001
sk_clear_bit(int nr,struct sock * sk)2002 static inline void sk_clear_bit(int nr, struct sock *sk)
2003 {
2004 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2005 !sock_flag(sk, SOCK_FASYNC))
2006 return;
2007
2008 clear_bit(nr, &sk->sk_wq_raw->flags);
2009 }
2010
sk_wake_async(const struct sock * sk,int how,int band)2011 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2012 {
2013 if (sock_flag(sk, SOCK_FASYNC)) {
2014 rcu_read_lock();
2015 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2016 rcu_read_unlock();
2017 }
2018 }
2019
2020 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2021 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2022 * Note: for send buffers, TCP works better if we can build two skbs at
2023 * minimum.
2024 */
2025 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2026
2027 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2028 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2029
sk_stream_moderate_sndbuf(struct sock * sk)2030 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2031 {
2032 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2033 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2034 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2035 }
2036 }
2037
2038 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2039 bool force_schedule);
2040
2041 /**
2042 * sk_page_frag - return an appropriate page_frag
2043 * @sk: socket
2044 *
2045 * If socket allocation mode allows current thread to sleep, it means its
2046 * safe to use the per task page_frag instead of the per socket one.
2047 */
sk_page_frag(struct sock * sk)2048 static inline struct page_frag *sk_page_frag(struct sock *sk)
2049 {
2050 if (gfpflags_allow_blocking(sk->sk_allocation))
2051 return ¤t->task_frag;
2052
2053 return &sk->sk_frag;
2054 }
2055
2056 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2057
2058 /*
2059 * Default write policy as shown to user space via poll/select/SIGIO
2060 */
sock_writeable(const struct sock * sk)2061 static inline bool sock_writeable(const struct sock *sk)
2062 {
2063 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2064 }
2065
gfp_any(void)2066 static inline gfp_t gfp_any(void)
2067 {
2068 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2069 }
2070
sock_rcvtimeo(const struct sock * sk,bool noblock)2071 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2072 {
2073 return noblock ? 0 : sk->sk_rcvtimeo;
2074 }
2075
sock_sndtimeo(const struct sock * sk,bool noblock)2076 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2077 {
2078 return noblock ? 0 : sk->sk_sndtimeo;
2079 }
2080
sock_rcvlowat(const struct sock * sk,int waitall,int len)2081 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2082 {
2083 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2084 }
2085
2086 /* Alas, with timeout socket operations are not restartable.
2087 * Compare this to poll().
2088 */
sock_intr_errno(long timeo)2089 static inline int sock_intr_errno(long timeo)
2090 {
2091 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2092 }
2093
2094 struct sock_skb_cb {
2095 u32 dropcount;
2096 };
2097
2098 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2099 * using skb->cb[] would keep using it directly and utilize its
2100 * alignement guarantee.
2101 */
2102 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2103 sizeof(struct sock_skb_cb)))
2104
2105 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2106 SOCK_SKB_CB_OFFSET))
2107
2108 #define sock_skb_cb_check_size(size) \
2109 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2110
2111 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2112 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2113 {
2114 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2115 }
2116
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2117 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2118 {
2119 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2120
2121 atomic_add(segs, &sk->sk_drops);
2122 }
2123
2124 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2125 struct sk_buff *skb);
2126 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2127 struct sk_buff *skb);
2128
2129 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2130 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2131 {
2132 ktime_t kt = skb->tstamp;
2133 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2134
2135 /*
2136 * generate control messages if
2137 * - receive time stamping in software requested
2138 * - software time stamp available and wanted
2139 * - hardware time stamps available and wanted
2140 */
2141 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2142 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2143 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2144 (hwtstamps->hwtstamp.tv64 &&
2145 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2146 __sock_recv_timestamp(msg, sk, skb);
2147 else
2148 sk->sk_stamp = kt;
2149
2150 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2151 __sock_recv_wifi_status(msg, sk, skb);
2152 }
2153
2154 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2155 struct sk_buff *skb);
2156
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2157 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2158 struct sk_buff *skb)
2159 {
2160 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2161 (1UL << SOCK_RCVTSTAMP))
2162 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2163 SOF_TIMESTAMPING_RAW_HARDWARE)
2164
2165 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2166 __sock_recv_ts_and_drops(msg, sk, skb);
2167 else
2168 sk->sk_stamp = skb->tstamp;
2169 }
2170
2171 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2172
2173 /**
2174 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2175 * @sk: socket sending this packet
2176 * @tsflags: timestamping flags to use
2177 * @tx_flags: completed with instructions for time stamping
2178 *
2179 * Note : callers should take care of initial *tx_flags value (usually 0)
2180 */
sock_tx_timestamp(const struct sock * sk,__u16 tsflags,__u8 * tx_flags)2181 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2182 __u8 *tx_flags)
2183 {
2184 if (unlikely(tsflags))
2185 __sock_tx_timestamp(tsflags, tx_flags);
2186 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2187 *tx_flags |= SKBTX_WIFI_STATUS;
2188 }
2189
2190 /**
2191 * sk_eat_skb - Release a skb if it is no longer needed
2192 * @sk: socket to eat this skb from
2193 * @skb: socket buffer to eat
2194 *
2195 * This routine must be called with interrupts disabled or with the socket
2196 * locked so that the sk_buff queue operation is ok.
2197 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2198 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2199 {
2200 __skb_unlink(skb, &sk->sk_receive_queue);
2201 __kfree_skb(skb);
2202 }
2203
2204 static inline
sock_net(const struct sock * sk)2205 struct net *sock_net(const struct sock *sk)
2206 {
2207 return read_pnet(&sk->sk_net);
2208 }
2209
2210 static inline
sock_net_set(struct sock * sk,struct net * net)2211 void sock_net_set(struct sock *sk, struct net *net)
2212 {
2213 write_pnet(&sk->sk_net, net);
2214 }
2215
skb_steal_sock(struct sk_buff * skb)2216 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2217 {
2218 if (skb->sk) {
2219 struct sock *sk = skb->sk;
2220
2221 skb->destructor = NULL;
2222 skb->sk = NULL;
2223 return sk;
2224 }
2225 return NULL;
2226 }
2227
2228 /* This helper checks if a socket is a full socket,
2229 * ie _not_ a timewait or request socket.
2230 */
sk_fullsock(const struct sock * sk)2231 static inline bool sk_fullsock(const struct sock *sk)
2232 {
2233 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2234 }
2235
2236 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2237 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2238 */
sk_listener(const struct sock * sk)2239 static inline bool sk_listener(const struct sock *sk)
2240 {
2241 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2242 }
2243
2244 /**
2245 * sk_state_load - read sk->sk_state for lockless contexts
2246 * @sk: socket pointer
2247 *
2248 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2249 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2250 */
sk_state_load(const struct sock * sk)2251 static inline int sk_state_load(const struct sock *sk)
2252 {
2253 return smp_load_acquire(&sk->sk_state);
2254 }
2255
2256 /**
2257 * sk_state_store - update sk->sk_state
2258 * @sk: socket pointer
2259 * @newstate: new state
2260 *
2261 * Paired with sk_state_load(). Should be used in contexts where
2262 * state change might impact lockless readers.
2263 */
sk_state_store(struct sock * sk,int newstate)2264 static inline void sk_state_store(struct sock *sk, int newstate)
2265 {
2266 smp_store_release(&sk->sk_state, newstate);
2267 }
2268
2269 void sock_enable_timestamp(struct sock *sk, int flag);
2270 int sock_get_timestamp(struct sock *, struct timeval __user *);
2271 int sock_get_timestampns(struct sock *, struct timespec __user *);
2272 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2273 int type);
2274
2275 bool sk_ns_capable(const struct sock *sk,
2276 struct user_namespace *user_ns, int cap);
2277 bool sk_capable(const struct sock *sk, int cap);
2278 bool sk_net_capable(const struct sock *sk, int cap);
2279
2280 extern __u32 sysctl_wmem_max;
2281 extern __u32 sysctl_rmem_max;
2282
2283 extern int sysctl_tstamp_allow_data;
2284 extern int sysctl_optmem_max;
2285
2286 extern __u32 sysctl_wmem_default;
2287 extern __u32 sysctl_rmem_default;
2288
2289 #endif /* _SOCK_H */
2290