1 /*
2 * auxtrace.c: AUX area trace support
3 * Copyright (c) 2013-2015, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/mman.h>
18 #include <stdbool.h>
19 #include <ctype.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "symbol/kallsyms.h"
50 #include "auxtrace.h"
51
52 #include <linux/hash.h>
53
54 #include "event.h"
55 #include "session.h"
56 #include "debug.h"
57 #include <subcmd/parse-options.h>
58
59 #include "intel-pt.h"
60 #include "intel-bts.h"
61
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)62 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
63 struct auxtrace_mmap_params *mp,
64 void *userpg, int fd)
65 {
66 struct perf_event_mmap_page *pc = userpg;
67
68 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
69
70 mm->userpg = userpg;
71 mm->mask = mp->mask;
72 mm->len = mp->len;
73 mm->prev = 0;
74 mm->idx = mp->idx;
75 mm->tid = mp->tid;
76 mm->cpu = mp->cpu;
77
78 if (!mp->len) {
79 mm->base = NULL;
80 return 0;
81 }
82
83 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
84 pr_err("Cannot use AUX area tracing mmaps\n");
85 return -1;
86 #endif
87
88 pc->aux_offset = mp->offset;
89 pc->aux_size = mp->len;
90
91 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
92 if (mm->base == MAP_FAILED) {
93 pr_debug2("failed to mmap AUX area\n");
94 mm->base = NULL;
95 return -1;
96 }
97
98 return 0;
99 }
100
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)101 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
102 {
103 if (mm->base) {
104 munmap(mm->base, mm->len);
105 mm->base = NULL;
106 }
107 }
108
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)109 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
110 off_t auxtrace_offset,
111 unsigned int auxtrace_pages,
112 bool auxtrace_overwrite)
113 {
114 if (auxtrace_pages) {
115 mp->offset = auxtrace_offset;
116 mp->len = auxtrace_pages * (size_t)page_size;
117 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
118 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
119 pr_debug2("AUX area mmap length %zu\n", mp->len);
120 } else {
121 mp->len = 0;
122 }
123 }
124
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct perf_evlist * evlist,int idx,bool per_cpu)125 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
126 struct perf_evlist *evlist, int idx,
127 bool per_cpu)
128 {
129 mp->idx = idx;
130
131 if (per_cpu) {
132 mp->cpu = evlist->cpus->map[idx];
133 if (evlist->threads)
134 mp->tid = thread_map__pid(evlist->threads, 0);
135 else
136 mp->tid = -1;
137 } else {
138 mp->cpu = -1;
139 mp->tid = thread_map__pid(evlist->threads, idx);
140 }
141 }
142
143 #define AUXTRACE_INIT_NR_QUEUES 32
144
auxtrace_alloc_queue_array(unsigned int nr_queues)145 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
146 {
147 struct auxtrace_queue *queue_array;
148 unsigned int max_nr_queues, i;
149
150 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
151 if (nr_queues > max_nr_queues)
152 return NULL;
153
154 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
155 if (!queue_array)
156 return NULL;
157
158 for (i = 0; i < nr_queues; i++) {
159 INIT_LIST_HEAD(&queue_array[i].head);
160 queue_array[i].priv = NULL;
161 }
162
163 return queue_array;
164 }
165
auxtrace_queues__init(struct auxtrace_queues * queues)166 int auxtrace_queues__init(struct auxtrace_queues *queues)
167 {
168 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
169 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
170 if (!queues->queue_array)
171 return -ENOMEM;
172 return 0;
173 }
174
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)175 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
176 unsigned int new_nr_queues)
177 {
178 unsigned int nr_queues = queues->nr_queues;
179 struct auxtrace_queue *queue_array;
180 unsigned int i;
181
182 if (!nr_queues)
183 nr_queues = AUXTRACE_INIT_NR_QUEUES;
184
185 while (nr_queues && nr_queues < new_nr_queues)
186 nr_queues <<= 1;
187
188 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
189 return -EINVAL;
190
191 queue_array = auxtrace_alloc_queue_array(nr_queues);
192 if (!queue_array)
193 return -ENOMEM;
194
195 for (i = 0; i < queues->nr_queues; i++) {
196 list_splice_tail(&queues->queue_array[i].head,
197 &queue_array[i].head);
198 queue_array[i].priv = queues->queue_array[i].priv;
199 }
200
201 queues->nr_queues = nr_queues;
202 queues->queue_array = queue_array;
203
204 return 0;
205 }
206
auxtrace_copy_data(u64 size,struct perf_session * session)207 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
208 {
209 int fd = perf_data_file__fd(session->file);
210 void *p;
211 ssize_t ret;
212
213 if (size > SSIZE_MAX)
214 return NULL;
215
216 p = malloc(size);
217 if (!p)
218 return NULL;
219
220 ret = readn(fd, p, size);
221 if (ret != (ssize_t)size) {
222 free(p);
223 return NULL;
224 }
225
226 return p;
227 }
228
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)229 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
230 unsigned int idx,
231 struct auxtrace_buffer *buffer)
232 {
233 struct auxtrace_queue *queue;
234 int err;
235
236 if (idx >= queues->nr_queues) {
237 err = auxtrace_queues__grow(queues, idx + 1);
238 if (err)
239 return err;
240 }
241
242 queue = &queues->queue_array[idx];
243
244 if (!queue->set) {
245 queue->set = true;
246 queue->tid = buffer->tid;
247 queue->cpu = buffer->cpu;
248 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
249 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
250 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
251 return -EINVAL;
252 }
253
254 buffer->buffer_nr = queues->next_buffer_nr++;
255
256 list_add_tail(&buffer->list, &queue->head);
257
258 queues->new_data = true;
259 queues->populated = true;
260
261 return 0;
262 }
263
264 /* Limit buffers to 32MiB on 32-bit */
265 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
266
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)267 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
268 unsigned int idx,
269 struct auxtrace_buffer *buffer)
270 {
271 u64 sz = buffer->size;
272 bool consecutive = false;
273 struct auxtrace_buffer *b;
274 int err;
275
276 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
277 b = memdup(buffer, sizeof(struct auxtrace_buffer));
278 if (!b)
279 return -ENOMEM;
280 b->size = BUFFER_LIMIT_FOR_32_BIT;
281 b->consecutive = consecutive;
282 err = auxtrace_queues__add_buffer(queues, idx, b);
283 if (err) {
284 auxtrace_buffer__free(b);
285 return err;
286 }
287 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
288 sz -= BUFFER_LIMIT_FOR_32_BIT;
289 consecutive = true;
290 }
291
292 buffer->size = sz;
293 buffer->consecutive = consecutive;
294
295 return 0;
296 }
297
auxtrace_queues__add_event_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer)298 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
299 struct perf_session *session,
300 unsigned int idx,
301 struct auxtrace_buffer *buffer)
302 {
303 if (session->one_mmap) {
304 buffer->data = buffer->data_offset - session->one_mmap_offset +
305 session->one_mmap_addr;
306 } else if (perf_data_file__is_pipe(session->file)) {
307 buffer->data = auxtrace_copy_data(buffer->size, session);
308 if (!buffer->data)
309 return -ENOMEM;
310 buffer->data_needs_freeing = true;
311 } else if (BITS_PER_LONG == 32 &&
312 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
313 int err;
314
315 err = auxtrace_queues__split_buffer(queues, idx, buffer);
316 if (err)
317 return err;
318 }
319
320 return auxtrace_queues__add_buffer(queues, idx, buffer);
321 }
322
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)323 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
324 struct perf_session *session,
325 union perf_event *event, off_t data_offset,
326 struct auxtrace_buffer **buffer_ptr)
327 {
328 struct auxtrace_buffer *buffer;
329 unsigned int idx;
330 int err;
331
332 buffer = zalloc(sizeof(struct auxtrace_buffer));
333 if (!buffer)
334 return -ENOMEM;
335
336 buffer->pid = -1;
337 buffer->tid = event->auxtrace.tid;
338 buffer->cpu = event->auxtrace.cpu;
339 buffer->data_offset = data_offset;
340 buffer->offset = event->auxtrace.offset;
341 buffer->reference = event->auxtrace.reference;
342 buffer->size = event->auxtrace.size;
343 idx = event->auxtrace.idx;
344
345 err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
346 if (err)
347 goto out_err;
348
349 if (buffer_ptr)
350 *buffer_ptr = buffer;
351
352 return 0;
353
354 out_err:
355 auxtrace_buffer__free(buffer);
356 return err;
357 }
358
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)359 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
360 struct perf_session *session,
361 off_t file_offset, size_t sz)
362 {
363 union perf_event *event;
364 int err;
365 char buf[PERF_SAMPLE_MAX_SIZE];
366
367 err = perf_session__peek_event(session, file_offset, buf,
368 PERF_SAMPLE_MAX_SIZE, &event, NULL);
369 if (err)
370 return err;
371
372 if (event->header.type == PERF_RECORD_AUXTRACE) {
373 if (event->header.size < sizeof(struct auxtrace_event) ||
374 event->header.size != sz) {
375 err = -EINVAL;
376 goto out;
377 }
378 file_offset += event->header.size;
379 err = auxtrace_queues__add_event(queues, session, event,
380 file_offset, NULL);
381 }
382 out:
383 return err;
384 }
385
auxtrace_queues__free(struct auxtrace_queues * queues)386 void auxtrace_queues__free(struct auxtrace_queues *queues)
387 {
388 unsigned int i;
389
390 for (i = 0; i < queues->nr_queues; i++) {
391 while (!list_empty(&queues->queue_array[i].head)) {
392 struct auxtrace_buffer *buffer;
393
394 buffer = list_entry(queues->queue_array[i].head.next,
395 struct auxtrace_buffer, list);
396 list_del(&buffer->list);
397 auxtrace_buffer__free(buffer);
398 }
399 }
400
401 zfree(&queues->queue_array);
402 queues->nr_queues = 0;
403 }
404
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)405 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
406 unsigned int pos, unsigned int queue_nr,
407 u64 ordinal)
408 {
409 unsigned int parent;
410
411 while (pos) {
412 parent = (pos - 1) >> 1;
413 if (heap_array[parent].ordinal <= ordinal)
414 break;
415 heap_array[pos] = heap_array[parent];
416 pos = parent;
417 }
418 heap_array[pos].queue_nr = queue_nr;
419 heap_array[pos].ordinal = ordinal;
420 }
421
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)422 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
423 u64 ordinal)
424 {
425 struct auxtrace_heap_item *heap_array;
426
427 if (queue_nr >= heap->heap_sz) {
428 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
429
430 while (heap_sz <= queue_nr)
431 heap_sz <<= 1;
432 heap_array = realloc(heap->heap_array,
433 heap_sz * sizeof(struct auxtrace_heap_item));
434 if (!heap_array)
435 return -ENOMEM;
436 heap->heap_array = heap_array;
437 heap->heap_sz = heap_sz;
438 }
439
440 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
441
442 return 0;
443 }
444
auxtrace_heap__free(struct auxtrace_heap * heap)445 void auxtrace_heap__free(struct auxtrace_heap *heap)
446 {
447 zfree(&heap->heap_array);
448 heap->heap_cnt = 0;
449 heap->heap_sz = 0;
450 }
451
auxtrace_heap__pop(struct auxtrace_heap * heap)452 void auxtrace_heap__pop(struct auxtrace_heap *heap)
453 {
454 unsigned int pos, last, heap_cnt = heap->heap_cnt;
455 struct auxtrace_heap_item *heap_array;
456
457 if (!heap_cnt)
458 return;
459
460 heap->heap_cnt -= 1;
461
462 heap_array = heap->heap_array;
463
464 pos = 0;
465 while (1) {
466 unsigned int left, right;
467
468 left = (pos << 1) + 1;
469 if (left >= heap_cnt)
470 break;
471 right = left + 1;
472 if (right >= heap_cnt) {
473 heap_array[pos] = heap_array[left];
474 return;
475 }
476 if (heap_array[left].ordinal < heap_array[right].ordinal) {
477 heap_array[pos] = heap_array[left];
478 pos = left;
479 } else {
480 heap_array[pos] = heap_array[right];
481 pos = right;
482 }
483 }
484
485 last = heap_cnt - 1;
486 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
487 heap_array[last].ordinal);
488 }
489
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct perf_evlist * evlist)490 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
491 struct perf_evlist *evlist)
492 {
493 if (itr)
494 return itr->info_priv_size(itr, evlist);
495 return 0;
496 }
497
auxtrace_not_supported(void)498 static int auxtrace_not_supported(void)
499 {
500 pr_err("AUX area tracing is not supported on this architecture\n");
501 return -EINVAL;
502 }
503
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct auxtrace_info_event * auxtrace_info,size_t priv_size)504 int auxtrace_record__info_fill(struct auxtrace_record *itr,
505 struct perf_session *session,
506 struct auxtrace_info_event *auxtrace_info,
507 size_t priv_size)
508 {
509 if (itr)
510 return itr->info_fill(itr, session, auxtrace_info, priv_size);
511 return auxtrace_not_supported();
512 }
513
auxtrace_record__free(struct auxtrace_record * itr)514 void auxtrace_record__free(struct auxtrace_record *itr)
515 {
516 if (itr)
517 itr->free(itr);
518 }
519
auxtrace_record__snapshot_start(struct auxtrace_record * itr)520 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
521 {
522 if (itr && itr->snapshot_start)
523 return itr->snapshot_start(itr);
524 return 0;
525 }
526
auxtrace_record__snapshot_finish(struct auxtrace_record * itr)527 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
528 {
529 if (itr && itr->snapshot_finish)
530 return itr->snapshot_finish(itr);
531 return 0;
532 }
533
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)534 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
535 struct auxtrace_mmap *mm,
536 unsigned char *data, u64 *head, u64 *old)
537 {
538 if (itr && itr->find_snapshot)
539 return itr->find_snapshot(itr, idx, mm, data, head, old);
540 return 0;
541 }
542
auxtrace_record__options(struct auxtrace_record * itr,struct perf_evlist * evlist,struct record_opts * opts)543 int auxtrace_record__options(struct auxtrace_record *itr,
544 struct perf_evlist *evlist,
545 struct record_opts *opts)
546 {
547 if (itr)
548 return itr->recording_options(itr, evlist, opts);
549 return 0;
550 }
551
auxtrace_record__reference(struct auxtrace_record * itr)552 u64 auxtrace_record__reference(struct auxtrace_record *itr)
553 {
554 if (itr)
555 return itr->reference(itr);
556 return 0;
557 }
558
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)559 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
560 struct record_opts *opts, const char *str)
561 {
562 if (!str)
563 return 0;
564
565 if (itr)
566 return itr->parse_snapshot_options(itr, opts, str);
567
568 pr_err("No AUX area tracing to snapshot\n");
569 return -EINVAL;
570 }
571
572 struct auxtrace_record *__weak
auxtrace_record__init(struct perf_evlist * evlist __maybe_unused,int * err)573 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
574 {
575 *err = 0;
576 return NULL;
577 }
578
auxtrace_index__alloc(struct list_head * head)579 static int auxtrace_index__alloc(struct list_head *head)
580 {
581 struct auxtrace_index *auxtrace_index;
582
583 auxtrace_index = malloc(sizeof(struct auxtrace_index));
584 if (!auxtrace_index)
585 return -ENOMEM;
586
587 auxtrace_index->nr = 0;
588 INIT_LIST_HEAD(&auxtrace_index->list);
589
590 list_add_tail(&auxtrace_index->list, head);
591
592 return 0;
593 }
594
auxtrace_index__free(struct list_head * head)595 void auxtrace_index__free(struct list_head *head)
596 {
597 struct auxtrace_index *auxtrace_index, *n;
598
599 list_for_each_entry_safe(auxtrace_index, n, head, list) {
600 list_del(&auxtrace_index->list);
601 free(auxtrace_index);
602 }
603 }
604
auxtrace_index__last(struct list_head * head)605 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
606 {
607 struct auxtrace_index *auxtrace_index;
608 int err;
609
610 if (list_empty(head)) {
611 err = auxtrace_index__alloc(head);
612 if (err)
613 return NULL;
614 }
615
616 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
617
618 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
619 err = auxtrace_index__alloc(head);
620 if (err)
621 return NULL;
622 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
623 list);
624 }
625
626 return auxtrace_index;
627 }
628
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)629 int auxtrace_index__auxtrace_event(struct list_head *head,
630 union perf_event *event, off_t file_offset)
631 {
632 struct auxtrace_index *auxtrace_index;
633 size_t nr;
634
635 auxtrace_index = auxtrace_index__last(head);
636 if (!auxtrace_index)
637 return -ENOMEM;
638
639 nr = auxtrace_index->nr;
640 auxtrace_index->entries[nr].file_offset = file_offset;
641 auxtrace_index->entries[nr].sz = event->header.size;
642 auxtrace_index->nr += 1;
643
644 return 0;
645 }
646
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)647 static int auxtrace_index__do_write(int fd,
648 struct auxtrace_index *auxtrace_index)
649 {
650 struct auxtrace_index_entry ent;
651 size_t i;
652
653 for (i = 0; i < auxtrace_index->nr; i++) {
654 ent.file_offset = auxtrace_index->entries[i].file_offset;
655 ent.sz = auxtrace_index->entries[i].sz;
656 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
657 return -errno;
658 }
659 return 0;
660 }
661
auxtrace_index__write(int fd,struct list_head * head)662 int auxtrace_index__write(int fd, struct list_head *head)
663 {
664 struct auxtrace_index *auxtrace_index;
665 u64 total = 0;
666 int err;
667
668 list_for_each_entry(auxtrace_index, head, list)
669 total += auxtrace_index->nr;
670
671 if (writen(fd, &total, sizeof(total)) != sizeof(total))
672 return -errno;
673
674 list_for_each_entry(auxtrace_index, head, list) {
675 err = auxtrace_index__do_write(fd, auxtrace_index);
676 if (err)
677 return err;
678 }
679
680 return 0;
681 }
682
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)683 static int auxtrace_index__process_entry(int fd, struct list_head *head,
684 bool needs_swap)
685 {
686 struct auxtrace_index *auxtrace_index;
687 struct auxtrace_index_entry ent;
688 size_t nr;
689
690 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
691 return -1;
692
693 auxtrace_index = auxtrace_index__last(head);
694 if (!auxtrace_index)
695 return -1;
696
697 nr = auxtrace_index->nr;
698 if (needs_swap) {
699 auxtrace_index->entries[nr].file_offset =
700 bswap_64(ent.file_offset);
701 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
702 } else {
703 auxtrace_index->entries[nr].file_offset = ent.file_offset;
704 auxtrace_index->entries[nr].sz = ent.sz;
705 }
706
707 auxtrace_index->nr = nr + 1;
708
709 return 0;
710 }
711
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)712 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
713 bool needs_swap)
714 {
715 struct list_head *head = &session->auxtrace_index;
716 u64 nr;
717
718 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
719 return -1;
720
721 if (needs_swap)
722 nr = bswap_64(nr);
723
724 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
725 return -1;
726
727 while (nr--) {
728 int err;
729
730 err = auxtrace_index__process_entry(fd, head, needs_swap);
731 if (err)
732 return -1;
733 }
734
735 return 0;
736 }
737
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)738 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
739 struct perf_session *session,
740 struct auxtrace_index_entry *ent)
741 {
742 return auxtrace_queues__add_indexed_event(queues, session,
743 ent->file_offset, ent->sz);
744 }
745
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)746 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
747 struct perf_session *session)
748 {
749 struct auxtrace_index *auxtrace_index;
750 struct auxtrace_index_entry *ent;
751 size_t i;
752 int err;
753
754 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
755 for (i = 0; i < auxtrace_index->nr; i++) {
756 ent = &auxtrace_index->entries[i];
757 err = auxtrace_queues__process_index_entry(queues,
758 session,
759 ent);
760 if (err)
761 return err;
762 }
763 }
764 return 0;
765 }
766
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)767 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
768 struct auxtrace_buffer *buffer)
769 {
770 if (buffer) {
771 if (list_is_last(&buffer->list, &queue->head))
772 return NULL;
773 return list_entry(buffer->list.next, struct auxtrace_buffer,
774 list);
775 } else {
776 if (list_empty(&queue->head))
777 return NULL;
778 return list_entry(queue->head.next, struct auxtrace_buffer,
779 list);
780 }
781 }
782
auxtrace_buffer__get_data(struct auxtrace_buffer * buffer,int fd)783 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
784 {
785 size_t adj = buffer->data_offset & (page_size - 1);
786 size_t size = buffer->size + adj;
787 off_t file_offset = buffer->data_offset - adj;
788 void *addr;
789
790 if (buffer->data)
791 return buffer->data;
792
793 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
794 if (addr == MAP_FAILED)
795 return NULL;
796
797 buffer->mmap_addr = addr;
798 buffer->mmap_size = size;
799
800 buffer->data = addr + adj;
801
802 return buffer->data;
803 }
804
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)805 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
806 {
807 if (!buffer->data || !buffer->mmap_addr)
808 return;
809 munmap(buffer->mmap_addr, buffer->mmap_size);
810 buffer->mmap_addr = NULL;
811 buffer->mmap_size = 0;
812 buffer->data = NULL;
813 buffer->use_data = NULL;
814 }
815
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)816 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
817 {
818 auxtrace_buffer__put_data(buffer);
819 if (buffer->data_needs_freeing) {
820 buffer->data_needs_freeing = false;
821 zfree(&buffer->data);
822 buffer->use_data = NULL;
823 buffer->size = 0;
824 }
825 }
826
auxtrace_buffer__free(struct auxtrace_buffer * buffer)827 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
828 {
829 auxtrace_buffer__drop_data(buffer);
830 free(buffer);
831 }
832
auxtrace_synth_error(struct auxtrace_error_event * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg)833 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
834 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
835 const char *msg)
836 {
837 size_t size;
838
839 memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
840
841 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
842 auxtrace_error->type = type;
843 auxtrace_error->code = code;
844 auxtrace_error->cpu = cpu;
845 auxtrace_error->pid = pid;
846 auxtrace_error->tid = tid;
847 auxtrace_error->ip = ip;
848 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
849
850 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
851 strlen(auxtrace_error->msg) + 1;
852 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
853 }
854
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)855 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
856 struct perf_tool *tool,
857 struct perf_session *session,
858 perf_event__handler_t process)
859 {
860 union perf_event *ev;
861 size_t priv_size;
862 int err;
863
864 pr_debug2("Synthesizing auxtrace information\n");
865 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
866 ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
867 if (!ev)
868 return -ENOMEM;
869
870 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
871 ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
872 priv_size;
873 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
874 priv_size);
875 if (err)
876 goto out_free;
877
878 err = process(tool, ev, NULL, NULL);
879 out_free:
880 free(ev);
881 return err;
882 }
883
auxtrace__dont_decode(struct perf_session * session)884 static bool auxtrace__dont_decode(struct perf_session *session)
885 {
886 return !session->itrace_synth_opts ||
887 session->itrace_synth_opts->dont_decode;
888 }
889
perf_event__process_auxtrace_info(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_session * session)890 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
891 union perf_event *event,
892 struct perf_session *session)
893 {
894 enum auxtrace_type type = event->auxtrace_info.type;
895
896 if (dump_trace)
897 fprintf(stdout, " type: %u\n", type);
898
899 switch (type) {
900 case PERF_AUXTRACE_INTEL_PT:
901 return intel_pt_process_auxtrace_info(event, session);
902 case PERF_AUXTRACE_INTEL_BTS:
903 return intel_bts_process_auxtrace_info(event, session);
904 case PERF_AUXTRACE_CS_ETM:
905 case PERF_AUXTRACE_UNKNOWN:
906 default:
907 return -EINVAL;
908 }
909 }
910
perf_event__process_auxtrace(struct perf_tool * tool,union perf_event * event,struct perf_session * session)911 s64 perf_event__process_auxtrace(struct perf_tool *tool,
912 union perf_event *event,
913 struct perf_session *session)
914 {
915 s64 err;
916
917 if (dump_trace)
918 fprintf(stdout, " size: %#"PRIx64" offset: %#"PRIx64" ref: %#"PRIx64" idx: %u tid: %d cpu: %d\n",
919 event->auxtrace.size, event->auxtrace.offset,
920 event->auxtrace.reference, event->auxtrace.idx,
921 event->auxtrace.tid, event->auxtrace.cpu);
922
923 if (auxtrace__dont_decode(session))
924 return event->auxtrace.size;
925
926 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
927 return -EINVAL;
928
929 err = session->auxtrace->process_auxtrace_event(session, event, tool);
930 if (err < 0)
931 return err;
932
933 return event->auxtrace.size;
934 }
935
936 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
937 #define PERF_ITRACE_DEFAULT_PERIOD 100000
938 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
939 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
940 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
941 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
942
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts)943 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
944 {
945 synth_opts->instructions = true;
946 synth_opts->branches = true;
947 synth_opts->transactions = true;
948 synth_opts->errors = true;
949 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
950 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
951 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
952 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
953 synth_opts->initial_skip = 0;
954 }
955
956 /*
957 * Please check tools/perf/Documentation/perf-script.txt for information
958 * about the options parsed here, which is introduced after this cset,
959 * when support in 'perf script' for these options is introduced.
960 */
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)961 int itrace_parse_synth_opts(const struct option *opt, const char *str,
962 int unset)
963 {
964 struct itrace_synth_opts *synth_opts = opt->value;
965 const char *p;
966 char *endptr;
967 bool period_type_set = false;
968 bool period_set = false;
969
970 synth_opts->set = true;
971
972 if (unset) {
973 synth_opts->dont_decode = true;
974 return 0;
975 }
976
977 if (!str) {
978 itrace_synth_opts__set_default(synth_opts);
979 return 0;
980 }
981
982 for (p = str; *p;) {
983 switch (*p++) {
984 case 'i':
985 synth_opts->instructions = true;
986 while (*p == ' ' || *p == ',')
987 p += 1;
988 if (isdigit(*p)) {
989 synth_opts->period = strtoull(p, &endptr, 10);
990 period_set = true;
991 p = endptr;
992 while (*p == ' ' || *p == ',')
993 p += 1;
994 switch (*p++) {
995 case 'i':
996 synth_opts->period_type =
997 PERF_ITRACE_PERIOD_INSTRUCTIONS;
998 period_type_set = true;
999 break;
1000 case 't':
1001 synth_opts->period_type =
1002 PERF_ITRACE_PERIOD_TICKS;
1003 period_type_set = true;
1004 break;
1005 case 'm':
1006 synth_opts->period *= 1000;
1007 /* Fall through */
1008 case 'u':
1009 synth_opts->period *= 1000;
1010 /* Fall through */
1011 case 'n':
1012 if (*p++ != 's')
1013 goto out_err;
1014 synth_opts->period_type =
1015 PERF_ITRACE_PERIOD_NANOSECS;
1016 period_type_set = true;
1017 break;
1018 case '\0':
1019 goto out;
1020 default:
1021 goto out_err;
1022 }
1023 }
1024 break;
1025 case 'b':
1026 synth_opts->branches = true;
1027 break;
1028 case 'x':
1029 synth_opts->transactions = true;
1030 break;
1031 case 'e':
1032 synth_opts->errors = true;
1033 break;
1034 case 'd':
1035 synth_opts->log = true;
1036 break;
1037 case 'c':
1038 synth_opts->branches = true;
1039 synth_opts->calls = true;
1040 break;
1041 case 'r':
1042 synth_opts->branches = true;
1043 synth_opts->returns = true;
1044 break;
1045 case 'g':
1046 synth_opts->callchain = true;
1047 synth_opts->callchain_sz =
1048 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1049 while (*p == ' ' || *p == ',')
1050 p += 1;
1051 if (isdigit(*p)) {
1052 unsigned int val;
1053
1054 val = strtoul(p, &endptr, 10);
1055 p = endptr;
1056 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1057 goto out_err;
1058 synth_opts->callchain_sz = val;
1059 }
1060 break;
1061 case 'l':
1062 synth_opts->last_branch = true;
1063 synth_opts->last_branch_sz =
1064 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1065 while (*p == ' ' || *p == ',')
1066 p += 1;
1067 if (isdigit(*p)) {
1068 unsigned int val;
1069
1070 val = strtoul(p, &endptr, 10);
1071 p = endptr;
1072 if (!val ||
1073 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1074 goto out_err;
1075 synth_opts->last_branch_sz = val;
1076 }
1077 break;
1078 case 's':
1079 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1080 if (p == endptr)
1081 goto out_err;
1082 p = endptr;
1083 break;
1084 case ' ':
1085 case ',':
1086 break;
1087 default:
1088 goto out_err;
1089 }
1090 }
1091 out:
1092 if (synth_opts->instructions) {
1093 if (!period_type_set)
1094 synth_opts->period_type =
1095 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1096 if (!period_set)
1097 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1098 }
1099
1100 return 0;
1101
1102 out_err:
1103 pr_err("Bad Instruction Tracing options '%s'\n", str);
1104 return -EINVAL;
1105 }
1106
1107 static const char * const auxtrace_error_type_name[] = {
1108 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1109 };
1110
auxtrace_error_name(int type)1111 static const char *auxtrace_error_name(int type)
1112 {
1113 const char *error_type_name = NULL;
1114
1115 if (type < PERF_AUXTRACE_ERROR_MAX)
1116 error_type_name = auxtrace_error_type_name[type];
1117 if (!error_type_name)
1118 error_type_name = "unknown AUX";
1119 return error_type_name;
1120 }
1121
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1122 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1123 {
1124 struct auxtrace_error_event *e = &event->auxtrace_error;
1125 int ret;
1126
1127 ret = fprintf(fp, " %s error type %u",
1128 auxtrace_error_name(e->type), e->type);
1129 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1130 e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1131 return ret;
1132 }
1133
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1134 void perf_session__auxtrace_error_inc(struct perf_session *session,
1135 union perf_event *event)
1136 {
1137 struct auxtrace_error_event *e = &event->auxtrace_error;
1138
1139 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1140 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1141 }
1142
events_stats__auxtrace_error_warn(const struct events_stats * stats)1143 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1144 {
1145 int i;
1146
1147 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1148 if (!stats->nr_auxtrace_errors[i])
1149 continue;
1150 ui__warning("%u %s errors\n",
1151 stats->nr_auxtrace_errors[i],
1152 auxtrace_error_name(i));
1153 }
1154 }
1155
perf_event__process_auxtrace_error(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_session * session)1156 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1157 union perf_event *event,
1158 struct perf_session *session)
1159 {
1160 if (auxtrace__dont_decode(session))
1161 return 0;
1162
1163 perf_event__fprintf_auxtrace_error(event, stdout);
1164 return 0;
1165 }
1166
__auxtrace_mmap__read(struct auxtrace_mmap * mm,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1167 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1168 struct auxtrace_record *itr,
1169 struct perf_tool *tool, process_auxtrace_t fn,
1170 bool snapshot, size_t snapshot_size)
1171 {
1172 u64 head, old = mm->prev, offset, ref;
1173 unsigned char *data = mm->base;
1174 size_t size, head_off, old_off, len1, len2, padding;
1175 union perf_event ev;
1176 void *data1, *data2;
1177
1178 if (snapshot) {
1179 head = auxtrace_mmap__read_snapshot_head(mm);
1180 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1181 &head, &old))
1182 return -1;
1183 } else {
1184 head = auxtrace_mmap__read_head(mm);
1185 }
1186
1187 if (old == head)
1188 return 0;
1189
1190 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1191 mm->idx, old, head, head - old);
1192
1193 if (mm->mask) {
1194 head_off = head & mm->mask;
1195 old_off = old & mm->mask;
1196 } else {
1197 head_off = head % mm->len;
1198 old_off = old % mm->len;
1199 }
1200
1201 if (head_off > old_off)
1202 size = head_off - old_off;
1203 else
1204 size = mm->len - (old_off - head_off);
1205
1206 if (snapshot && size > snapshot_size)
1207 size = snapshot_size;
1208
1209 ref = auxtrace_record__reference(itr);
1210
1211 if (head > old || size <= head || mm->mask) {
1212 offset = head - size;
1213 } else {
1214 /*
1215 * When the buffer size is not a power of 2, 'head' wraps at the
1216 * highest multiple of the buffer size, so we have to subtract
1217 * the remainder here.
1218 */
1219 u64 rem = (0ULL - mm->len) % mm->len;
1220
1221 offset = head - size - rem;
1222 }
1223
1224 if (size > head_off) {
1225 len1 = size - head_off;
1226 data1 = &data[mm->len - len1];
1227 len2 = head_off;
1228 data2 = &data[0];
1229 } else {
1230 len1 = size;
1231 data1 = &data[head_off - len1];
1232 len2 = 0;
1233 data2 = NULL;
1234 }
1235
1236 if (itr->alignment) {
1237 unsigned int unwanted = len1 % itr->alignment;
1238
1239 len1 -= unwanted;
1240 size -= unwanted;
1241 }
1242
1243 /* padding must be written by fn() e.g. record__process_auxtrace() */
1244 padding = size & 7;
1245 if (padding)
1246 padding = 8 - padding;
1247
1248 memset(&ev, 0, sizeof(ev));
1249 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1250 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1251 ev.auxtrace.size = size + padding;
1252 ev.auxtrace.offset = offset;
1253 ev.auxtrace.reference = ref;
1254 ev.auxtrace.idx = mm->idx;
1255 ev.auxtrace.tid = mm->tid;
1256 ev.auxtrace.cpu = mm->cpu;
1257
1258 if (fn(tool, &ev, data1, len1, data2, len2))
1259 return -1;
1260
1261 mm->prev = head;
1262
1263 if (!snapshot) {
1264 auxtrace_mmap__write_tail(mm, head);
1265 if (itr->read_finish) {
1266 int err;
1267
1268 err = itr->read_finish(itr, mm->idx);
1269 if (err < 0)
1270 return err;
1271 }
1272 }
1273
1274 return 1;
1275 }
1276
auxtrace_mmap__read(struct auxtrace_mmap * mm,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn)1277 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1278 struct perf_tool *tool, process_auxtrace_t fn)
1279 {
1280 return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1281 }
1282
auxtrace_mmap__read_snapshot(struct auxtrace_mmap * mm,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1283 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1284 struct auxtrace_record *itr,
1285 struct perf_tool *tool, process_auxtrace_t fn,
1286 size_t snapshot_size)
1287 {
1288 return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1289 }
1290
1291 /**
1292 * struct auxtrace_cache - hash table to implement a cache
1293 * @hashtable: the hashtable
1294 * @sz: hashtable size (number of hlists)
1295 * @entry_size: size of an entry
1296 * @limit: limit the number of entries to this maximum, when reached the cache
1297 * is dropped and caching begins again with an empty cache
1298 * @cnt: current number of entries
1299 * @bits: hashtable size (@sz = 2^@bits)
1300 */
1301 struct auxtrace_cache {
1302 struct hlist_head *hashtable;
1303 size_t sz;
1304 size_t entry_size;
1305 size_t limit;
1306 size_t cnt;
1307 unsigned int bits;
1308 };
1309
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1310 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1311 unsigned int limit_percent)
1312 {
1313 struct auxtrace_cache *c;
1314 struct hlist_head *ht;
1315 size_t sz, i;
1316
1317 c = zalloc(sizeof(struct auxtrace_cache));
1318 if (!c)
1319 return NULL;
1320
1321 sz = 1UL << bits;
1322
1323 ht = calloc(sz, sizeof(struct hlist_head));
1324 if (!ht)
1325 goto out_free;
1326
1327 for (i = 0; i < sz; i++)
1328 INIT_HLIST_HEAD(&ht[i]);
1329
1330 c->hashtable = ht;
1331 c->sz = sz;
1332 c->entry_size = entry_size;
1333 c->limit = (c->sz * limit_percent) / 100;
1334 c->bits = bits;
1335
1336 return c;
1337
1338 out_free:
1339 free(c);
1340 return NULL;
1341 }
1342
auxtrace_cache__drop(struct auxtrace_cache * c)1343 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1344 {
1345 struct auxtrace_cache_entry *entry;
1346 struct hlist_node *tmp;
1347 size_t i;
1348
1349 if (!c)
1350 return;
1351
1352 for (i = 0; i < c->sz; i++) {
1353 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1354 hlist_del(&entry->hash);
1355 auxtrace_cache__free_entry(c, entry);
1356 }
1357 }
1358
1359 c->cnt = 0;
1360 }
1361
auxtrace_cache__free(struct auxtrace_cache * c)1362 void auxtrace_cache__free(struct auxtrace_cache *c)
1363 {
1364 if (!c)
1365 return;
1366
1367 auxtrace_cache__drop(c);
1368 free(c->hashtable);
1369 free(c);
1370 }
1371
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)1372 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1373 {
1374 return malloc(c->entry_size);
1375 }
1376
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)1377 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1378 void *entry)
1379 {
1380 free(entry);
1381 }
1382
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)1383 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1384 struct auxtrace_cache_entry *entry)
1385 {
1386 if (c->limit && ++c->cnt > c->limit)
1387 auxtrace_cache__drop(c);
1388
1389 entry->key = key;
1390 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1391
1392 return 0;
1393 }
1394
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)1395 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1396 {
1397 struct auxtrace_cache_entry *entry;
1398 struct hlist_head *hlist;
1399
1400 if (!c)
1401 return NULL;
1402
1403 hlist = &c->hashtable[hash_32(key, c->bits)];
1404 hlist_for_each_entry(entry, hlist, hash) {
1405 if (entry->key == key)
1406 return entry;
1407 }
1408
1409 return NULL;
1410 }
1411
addr_filter__free_str(struct addr_filter * filt)1412 static void addr_filter__free_str(struct addr_filter *filt)
1413 {
1414 free(filt->str);
1415 filt->action = NULL;
1416 filt->sym_from = NULL;
1417 filt->sym_to = NULL;
1418 filt->filename = NULL;
1419 filt->str = NULL;
1420 }
1421
addr_filter__new(void)1422 static struct addr_filter *addr_filter__new(void)
1423 {
1424 struct addr_filter *filt = zalloc(sizeof(*filt));
1425
1426 if (filt)
1427 INIT_LIST_HEAD(&filt->list);
1428
1429 return filt;
1430 }
1431
addr_filter__free(struct addr_filter * filt)1432 static void addr_filter__free(struct addr_filter *filt)
1433 {
1434 if (filt)
1435 addr_filter__free_str(filt);
1436 free(filt);
1437 }
1438
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)1439 static void addr_filters__add(struct addr_filters *filts,
1440 struct addr_filter *filt)
1441 {
1442 list_add_tail(&filt->list, &filts->head);
1443 filts->cnt += 1;
1444 }
1445
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)1446 static void addr_filters__del(struct addr_filters *filts,
1447 struct addr_filter *filt)
1448 {
1449 list_del_init(&filt->list);
1450 filts->cnt -= 1;
1451 }
1452
addr_filters__init(struct addr_filters * filts)1453 void addr_filters__init(struct addr_filters *filts)
1454 {
1455 INIT_LIST_HEAD(&filts->head);
1456 filts->cnt = 0;
1457 }
1458
addr_filters__exit(struct addr_filters * filts)1459 void addr_filters__exit(struct addr_filters *filts)
1460 {
1461 struct addr_filter *filt, *n;
1462
1463 list_for_each_entry_safe(filt, n, &filts->head, list) {
1464 addr_filters__del(filts, filt);
1465 addr_filter__free(filt);
1466 }
1467 }
1468
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)1469 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1470 const char *str_delim)
1471 {
1472 *inp += strspn(*inp, " ");
1473
1474 if (isdigit(**inp)) {
1475 char *endptr;
1476
1477 if (!num)
1478 return -EINVAL;
1479 errno = 0;
1480 *num = strtoull(*inp, &endptr, 0);
1481 if (errno)
1482 return -errno;
1483 if (endptr == *inp)
1484 return -EINVAL;
1485 *inp = endptr;
1486 } else {
1487 size_t n;
1488
1489 if (!str)
1490 return -EINVAL;
1491 *inp += strspn(*inp, " ");
1492 *str = *inp;
1493 n = strcspn(*inp, str_delim);
1494 if (!n)
1495 return -EINVAL;
1496 *inp += n;
1497 if (**inp) {
1498 **inp = '\0';
1499 *inp += 1;
1500 }
1501 }
1502 return 0;
1503 }
1504
parse_action(struct addr_filter * filt)1505 static int parse_action(struct addr_filter *filt)
1506 {
1507 if (!strcmp(filt->action, "filter")) {
1508 filt->start = true;
1509 filt->range = true;
1510 } else if (!strcmp(filt->action, "start")) {
1511 filt->start = true;
1512 } else if (!strcmp(filt->action, "stop")) {
1513 filt->start = false;
1514 } else if (!strcmp(filt->action, "tracestop")) {
1515 filt->start = false;
1516 filt->range = true;
1517 filt->action += 5; /* Change 'tracestop' to 'stop' */
1518 } else {
1519 return -EINVAL;
1520 }
1521 return 0;
1522 }
1523
parse_sym_idx(char ** inp,int * idx)1524 static int parse_sym_idx(char **inp, int *idx)
1525 {
1526 *idx = -1;
1527
1528 *inp += strspn(*inp, " ");
1529
1530 if (**inp != '#')
1531 return 0;
1532
1533 *inp += 1;
1534
1535 if (**inp == 'g' || **inp == 'G') {
1536 *inp += 1;
1537 *idx = 0;
1538 } else {
1539 unsigned long num;
1540 char *endptr;
1541
1542 errno = 0;
1543 num = strtoul(*inp, &endptr, 0);
1544 if (errno)
1545 return -errno;
1546 if (endptr == *inp || num > INT_MAX)
1547 return -EINVAL;
1548 *inp = endptr;
1549 *idx = num;
1550 }
1551
1552 return 0;
1553 }
1554
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)1555 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1556 {
1557 int err = parse_num_or_str(inp, num, str, " ");
1558
1559 if (!err && *str)
1560 err = parse_sym_idx(inp, idx);
1561
1562 return err;
1563 }
1564
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)1565 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1566 {
1567 char *fstr;
1568 int err;
1569
1570 filt->str = fstr = strdup(*filter_inp);
1571 if (!fstr)
1572 return -ENOMEM;
1573
1574 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1575 if (err)
1576 goto out_err;
1577
1578 err = parse_action(filt);
1579 if (err)
1580 goto out_err;
1581
1582 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1583 &filt->sym_from_idx);
1584 if (err)
1585 goto out_err;
1586
1587 fstr += strspn(fstr, " ");
1588
1589 if (*fstr == '/') {
1590 fstr += 1;
1591 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1592 &filt->sym_to_idx);
1593 if (err)
1594 goto out_err;
1595 filt->range = true;
1596 }
1597
1598 fstr += strspn(fstr, " ");
1599
1600 if (*fstr == '@') {
1601 fstr += 1;
1602 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1603 if (err)
1604 goto out_err;
1605 }
1606
1607 fstr += strspn(fstr, " ,");
1608
1609 *filter_inp += fstr - filt->str;
1610
1611 return 0;
1612
1613 out_err:
1614 addr_filter__free_str(filt);
1615
1616 return err;
1617 }
1618
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)1619 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1620 const char *filter)
1621 {
1622 struct addr_filter *filt;
1623 const char *fstr = filter;
1624 int err;
1625
1626 while (*fstr) {
1627 filt = addr_filter__new();
1628 err = parse_one_filter(filt, &fstr);
1629 if (err) {
1630 addr_filter__free(filt);
1631 addr_filters__exit(filts);
1632 return err;
1633 }
1634 addr_filters__add(filts, filt);
1635 }
1636
1637 return 0;
1638 }
1639
1640 struct sym_args {
1641 const char *name;
1642 u64 start;
1643 u64 size;
1644 int idx;
1645 int cnt;
1646 bool started;
1647 bool global;
1648 bool selected;
1649 bool duplicate;
1650 bool near;
1651 };
1652
kern_sym_match(struct sym_args * args,const char * name,char type)1653 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1654 {
1655 /* A function with the same name, and global or the n'th found or any */
1656 return symbol_type__is_a(type, MAP__FUNCTION) &&
1657 !strcmp(name, args->name) &&
1658 ((args->global && isupper(type)) ||
1659 (args->selected && ++(args->cnt) == args->idx) ||
1660 (!args->global && !args->selected));
1661 }
1662
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)1663 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1664 {
1665 struct sym_args *args = arg;
1666
1667 if (args->started) {
1668 if (!args->size)
1669 args->size = start - args->start;
1670 if (args->selected) {
1671 if (args->size)
1672 return 1;
1673 } else if (kern_sym_match(args, name, type)) {
1674 args->duplicate = true;
1675 return 1;
1676 }
1677 } else if (kern_sym_match(args, name, type)) {
1678 args->started = true;
1679 args->start = start;
1680 }
1681
1682 return 0;
1683 }
1684
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)1685 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1686 {
1687 struct sym_args *args = arg;
1688
1689 if (kern_sym_match(args, name, type)) {
1690 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1691 ++args->cnt, start, type, name);
1692 args->near = true;
1693 } else if (args->near) {
1694 args->near = false;
1695 pr_err("\t\twhich is near\t\t%s\n", name);
1696 }
1697
1698 return 0;
1699 }
1700
sym_not_found_error(const char * sym_name,int idx)1701 static int sym_not_found_error(const char *sym_name, int idx)
1702 {
1703 if (idx > 0) {
1704 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1705 idx, sym_name);
1706 } else if (!idx) {
1707 pr_err("Global symbol '%s' not found.\n", sym_name);
1708 } else {
1709 pr_err("Symbol '%s' not found.\n", sym_name);
1710 }
1711 pr_err("Note that symbols must be functions.\n");
1712
1713 return -EINVAL;
1714 }
1715
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)1716 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1717 {
1718 struct sym_args args = {
1719 .name = sym_name,
1720 .idx = idx,
1721 .global = !idx,
1722 .selected = idx > 0,
1723 };
1724 int err;
1725
1726 *start = 0;
1727 *size = 0;
1728
1729 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1730 if (err < 0) {
1731 pr_err("Failed to parse /proc/kallsyms\n");
1732 return err;
1733 }
1734
1735 if (args.duplicate) {
1736 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1737 args.cnt = 0;
1738 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1739 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1740 sym_name);
1741 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1742 return -EINVAL;
1743 }
1744
1745 if (!args.started) {
1746 pr_err("Kernel symbol lookup: ");
1747 return sym_not_found_error(sym_name, idx);
1748 }
1749
1750 *start = args.start;
1751 *size = args.size;
1752
1753 return 0;
1754 }
1755
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)1756 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1757 char type, u64 start)
1758 {
1759 struct sym_args *args = arg;
1760
1761 if (!symbol_type__is_a(type, MAP__FUNCTION))
1762 return 0;
1763
1764 if (!args->started) {
1765 args->started = true;
1766 args->start = start;
1767 }
1768 /* Don't know exactly where the kernel ends, so we add a page */
1769 args->size = round_up(start, page_size) + page_size - args->start;
1770
1771 return 0;
1772 }
1773
addr_filter__entire_kernel(struct addr_filter * filt)1774 static int addr_filter__entire_kernel(struct addr_filter *filt)
1775 {
1776 struct sym_args args = { .started = false };
1777 int err;
1778
1779 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1780 if (err < 0 || !args.started) {
1781 pr_err("Failed to parse /proc/kallsyms\n");
1782 return err;
1783 }
1784
1785 filt->addr = args.start;
1786 filt->size = args.size;
1787
1788 return 0;
1789 }
1790
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)1791 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1792 {
1793 if (start + size >= filt->addr)
1794 return 0;
1795
1796 if (filt->sym_from) {
1797 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1798 filt->sym_to, start, filt->sym_from, filt->addr);
1799 } else {
1800 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1801 filt->sym_to, start, filt->addr);
1802 }
1803
1804 return -EINVAL;
1805 }
1806
addr_filter__resolve_kernel_syms(struct addr_filter * filt)1807 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1808 {
1809 bool no_size = false;
1810 u64 start, size;
1811 int err;
1812
1813 if (symbol_conf.kptr_restrict) {
1814 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1815 return -EINVAL;
1816 }
1817
1818 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1819 return addr_filter__entire_kernel(filt);
1820
1821 if (filt->sym_from) {
1822 err = find_kern_sym(filt->sym_from, &start, &size,
1823 filt->sym_from_idx);
1824 if (err)
1825 return err;
1826 filt->addr = start;
1827 if (filt->range && !filt->size && !filt->sym_to) {
1828 filt->size = size;
1829 no_size = !size;
1830 }
1831 }
1832
1833 if (filt->sym_to) {
1834 err = find_kern_sym(filt->sym_to, &start, &size,
1835 filt->sym_to_idx);
1836 if (err)
1837 return err;
1838
1839 err = check_end_after_start(filt, start, size);
1840 if (err)
1841 return err;
1842 filt->size = start + size - filt->addr;
1843 no_size = !size;
1844 }
1845
1846 /* The very last symbol in kallsyms does not imply a particular size */
1847 if (no_size) {
1848 pr_err("Cannot determine size of symbol '%s'\n",
1849 filt->sym_to ? filt->sym_to : filt->sym_from);
1850 return -EINVAL;
1851 }
1852
1853 return 0;
1854 }
1855
load_dso(const char * name)1856 static struct dso *load_dso(const char *name)
1857 {
1858 struct map *map;
1859 struct dso *dso;
1860
1861 map = dso__new_map(name);
1862 if (!map)
1863 return NULL;
1864
1865 map__load(map);
1866
1867 dso = dso__get(map->dso);
1868
1869 map__put(map);
1870
1871 return dso;
1872 }
1873
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)1874 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1875 int idx)
1876 {
1877 /* Same name, and global or the n'th found or any */
1878 return !arch__compare_symbol_names(name, sym->name) &&
1879 ((!idx && sym->binding == STB_GLOBAL) ||
1880 (idx > 0 && ++*cnt == idx) ||
1881 idx < 0);
1882 }
1883
print_duplicate_syms(struct dso * dso,const char * sym_name)1884 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1885 {
1886 struct symbol *sym;
1887 bool near = false;
1888 int cnt = 0;
1889
1890 pr_err("Multiple symbols with name '%s'\n", sym_name);
1891
1892 sym = dso__first_symbol(dso, MAP__FUNCTION);
1893 while (sym) {
1894 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1895 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1896 ++cnt, sym->start,
1897 sym->binding == STB_GLOBAL ? 'g' :
1898 sym->binding == STB_LOCAL ? 'l' : 'w',
1899 sym->name);
1900 near = true;
1901 } else if (near) {
1902 near = false;
1903 pr_err("\t\twhich is near\t\t%s\n", sym->name);
1904 }
1905 sym = dso__next_symbol(sym);
1906 }
1907
1908 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1909 sym_name);
1910 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1911 }
1912
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)1913 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1914 u64 *size, int idx)
1915 {
1916 struct symbol *sym;
1917 int cnt = 0;
1918
1919 *start = 0;
1920 *size = 0;
1921
1922 sym = dso__first_symbol(dso, MAP__FUNCTION);
1923 while (sym) {
1924 if (*start) {
1925 if (!*size)
1926 *size = sym->start - *start;
1927 if (idx > 0) {
1928 if (*size)
1929 return 1;
1930 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1931 print_duplicate_syms(dso, sym_name);
1932 return -EINVAL;
1933 }
1934 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1935 *start = sym->start;
1936 *size = sym->end - sym->start;
1937 }
1938 sym = dso__next_symbol(sym);
1939 }
1940
1941 if (!*start)
1942 return sym_not_found_error(sym_name, idx);
1943
1944 return 0;
1945 }
1946
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)1947 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1948 {
1949 struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1950 struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1951
1952 if (!first_sym || !last_sym) {
1953 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1954 filt->filename);
1955 return -EINVAL;
1956 }
1957
1958 filt->addr = first_sym->start;
1959 filt->size = last_sym->end - first_sym->start;
1960
1961 return 0;
1962 }
1963
addr_filter__resolve_syms(struct addr_filter * filt)1964 static int addr_filter__resolve_syms(struct addr_filter *filt)
1965 {
1966 u64 start, size;
1967 struct dso *dso;
1968 int err = 0;
1969
1970 if (!filt->sym_from && !filt->sym_to)
1971 return 0;
1972
1973 if (!filt->filename)
1974 return addr_filter__resolve_kernel_syms(filt);
1975
1976 dso = load_dso(filt->filename);
1977 if (!dso) {
1978 pr_err("Failed to load symbols from: %s\n", filt->filename);
1979 return -EINVAL;
1980 }
1981
1982 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
1983 err = addr_filter__entire_dso(filt, dso);
1984 goto put_dso;
1985 }
1986
1987 if (filt->sym_from) {
1988 err = find_dso_sym(dso, filt->sym_from, &start, &size,
1989 filt->sym_from_idx);
1990 if (err)
1991 goto put_dso;
1992 filt->addr = start;
1993 if (filt->range && !filt->size && !filt->sym_to)
1994 filt->size = size;
1995 }
1996
1997 if (filt->sym_to) {
1998 err = find_dso_sym(dso, filt->sym_to, &start, &size,
1999 filt->sym_to_idx);
2000 if (err)
2001 goto put_dso;
2002
2003 err = check_end_after_start(filt, start, size);
2004 if (err)
2005 return err;
2006
2007 filt->size = start + size - filt->addr;
2008 }
2009
2010 put_dso:
2011 dso__put(dso);
2012
2013 return err;
2014 }
2015
addr_filter__to_str(struct addr_filter * filt)2016 static char *addr_filter__to_str(struct addr_filter *filt)
2017 {
2018 char filename_buf[PATH_MAX];
2019 const char *at = "";
2020 const char *fn = "";
2021 char *filter;
2022 int err;
2023
2024 if (filt->filename) {
2025 at = "@";
2026 fn = realpath(filt->filename, filename_buf);
2027 if (!fn)
2028 return NULL;
2029 }
2030
2031 if (filt->range) {
2032 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2033 filt->action, filt->addr, filt->size, at, fn);
2034 } else {
2035 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2036 filt->action, filt->addr, at, fn);
2037 }
2038
2039 return err < 0 ? NULL : filter;
2040 }
2041
parse_addr_filter(struct perf_evsel * evsel,const char * filter,int max_nr)2042 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2043 int max_nr)
2044 {
2045 struct addr_filters filts;
2046 struct addr_filter *filt;
2047 int err;
2048
2049 addr_filters__init(&filts);
2050
2051 err = addr_filters__parse_bare_filter(&filts, filter);
2052 if (err)
2053 goto out_exit;
2054
2055 if (filts.cnt > max_nr) {
2056 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2057 filts.cnt, max_nr);
2058 err = -EINVAL;
2059 goto out_exit;
2060 }
2061
2062 list_for_each_entry(filt, &filts.head, list) {
2063 char *new_filter;
2064
2065 err = addr_filter__resolve_syms(filt);
2066 if (err)
2067 goto out_exit;
2068
2069 new_filter = addr_filter__to_str(filt);
2070 if (!new_filter) {
2071 err = -ENOMEM;
2072 goto out_exit;
2073 }
2074
2075 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2076 err = -ENOMEM;
2077 goto out_exit;
2078 }
2079 }
2080
2081 out_exit:
2082 addr_filters__exit(&filts);
2083
2084 if (err) {
2085 pr_err("Failed to parse address filter: '%s'\n", filter);
2086 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2087 pr_err("Where multiple filters are separated by space or comma.\n");
2088 }
2089
2090 return err;
2091 }
2092
perf_evsel__find_pmu(struct perf_evsel * evsel)2093 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2094 {
2095 struct perf_pmu *pmu = NULL;
2096
2097 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2098 if (pmu->type == evsel->attr.type)
2099 break;
2100 }
2101
2102 return pmu;
2103 }
2104
perf_evsel__nr_addr_filter(struct perf_evsel * evsel)2105 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2106 {
2107 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2108 int nr_addr_filters = 0;
2109
2110 if (!pmu)
2111 return 0;
2112
2113 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2114
2115 return nr_addr_filters;
2116 }
2117
auxtrace_parse_filters(struct perf_evlist * evlist)2118 int auxtrace_parse_filters(struct perf_evlist *evlist)
2119 {
2120 struct perf_evsel *evsel;
2121 char *filter;
2122 int err, max_nr;
2123
2124 evlist__for_each_entry(evlist, evsel) {
2125 filter = evsel->filter;
2126 max_nr = perf_evsel__nr_addr_filter(evsel);
2127 if (!filter || !max_nr)
2128 continue;
2129 evsel->filter = NULL;
2130 err = parse_addr_filter(evsel, filter, max_nr);
2131 free(filter);
2132 if (err)
2133 return err;
2134 pr_debug("Address filter: %s\n", evsel->filter);
2135 }
2136
2137 return 0;
2138 }
2139