// SPDX-License-Identifier: GPL-2.0-only /* * (c) 2005-2016 Advanced Micro Devices, Inc. * * Written by Jacob Shin - AMD, Inc. * Maintained by: Borislav Petkov * * All MC4_MISCi registers are shared between cores on a node. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define NR_BLOCKS 5 #define THRESHOLD_MAX 0xFFF #define INT_TYPE_APIC 0x00020000 #define MASK_VALID_HI 0x80000000 #define MASK_CNTP_HI 0x40000000 #define MASK_LOCKED_HI 0x20000000 #define MASK_LVTOFF_HI 0x00F00000 #define MASK_COUNT_EN_HI 0x00080000 #define MASK_INT_TYPE_HI 0x00060000 #define MASK_OVERFLOW_HI 0x00010000 #define MASK_ERR_COUNT_HI 0x00000FFF #define MASK_BLKPTR_LO 0xFF000000 #define MCG_XBLK_ADDR 0xC0000400 /* Deferred error settings */ #define MSR_CU_DEF_ERR 0xC0000410 #define MASK_DEF_LVTOFF 0x000000F0 #define MASK_DEF_INT_TYPE 0x00000006 #define DEF_LVT_OFF 0x2 #define DEF_INT_TYPE_APIC 0x2 /* Scalable MCA: */ /* Threshold LVT offset is at MSR0xC0000410[15:12] */ #define SMCA_THR_LVT_OFF 0xF000 static bool thresholding_irq_en; static const char * const th_names[] = { "load_store", "insn_fetch", "combined_unit", "decode_unit", "northbridge", "execution_unit", }; static const char * const smca_umc_block_names[] = { "dram_ecc", "misc_umc" }; struct smca_bank_name { const char *name; /* Short name for sysfs */ const char *long_name; /* Long name for pretty-printing */ }; static struct smca_bank_name smca_names[] = { [SMCA_LS] = { "load_store", "Load Store Unit" }, [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" }, [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" }, [SMCA_DE] = { "decode_unit", "Decode Unit" }, [SMCA_RESERVED] = { "reserved", "Reserved" }, [SMCA_EX] = { "execution_unit", "Execution Unit" }, [SMCA_FP] = { "floating_point", "Floating Point Unit" }, [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" }, [SMCA_CS] = { "coherent_slave", "Coherent Slave" }, [SMCA_CS_V2] = { "coherent_slave", "Coherent Slave" }, [SMCA_PIE] = { "pie", "Power, Interrupts, etc." }, [SMCA_UMC] = { "umc", "Unified Memory Controller" }, [SMCA_PB] = { "param_block", "Parameter Block" }, [SMCA_PSP] = { "psp", "Platform Security Processor" }, [SMCA_PSP_V2] = { "psp", "Platform Security Processor" }, [SMCA_SMU] = { "smu", "System Management Unit" }, [SMCA_SMU_V2] = { "smu", "System Management Unit" }, [SMCA_MP5] = { "mp5", "Microprocessor 5 Unit" }, [SMCA_NBIO] = { "nbio", "Northbridge IO Unit" }, [SMCA_PCIE] = { "pcie", "PCI Express Unit" }, }; static const char *smca_get_name(enum smca_bank_types t) { if (t >= N_SMCA_BANK_TYPES) return NULL; return smca_names[t].name; } const char *smca_get_long_name(enum smca_bank_types t) { if (t >= N_SMCA_BANK_TYPES) return NULL; return smca_names[t].long_name; } EXPORT_SYMBOL_GPL(smca_get_long_name); static enum smca_bank_types smca_get_bank_type(unsigned int bank) { struct smca_bank *b; if (bank >= MAX_NR_BANKS) return N_SMCA_BANK_TYPES; b = &smca_banks[bank]; if (!b->hwid) return N_SMCA_BANK_TYPES; return b->hwid->bank_type; } static struct smca_hwid smca_hwid_mcatypes[] = { /* { bank_type, hwid_mcatype, xec_bitmap } */ /* Reserved type */ { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 }, /* ZN Core (HWID=0xB0) MCA types */ { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFFF }, { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF }, { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF }, { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF }, /* HWID 0xB0 MCATYPE 0x4 is Reserved */ { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0xFFF }, { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F }, { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF }, /* Data Fabric MCA types */ { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF }, { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0x1F }, { SMCA_CS_V2, HWID_MCATYPE(0x2E, 0x2), 0x3FFF }, /* Unified Memory Controller MCA type */ { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0xFF }, /* Parameter Block MCA type */ { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 }, /* Platform Security Processor MCA type */ { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 }, { SMCA_PSP_V2, HWID_MCATYPE(0xFF, 0x1), 0x3FFFF }, /* System Management Unit MCA type */ { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 }, { SMCA_SMU_V2, HWID_MCATYPE(0x01, 0x1), 0x7FF }, /* Microprocessor 5 Unit MCA type */ { SMCA_MP5, HWID_MCATYPE(0x01, 0x2), 0x3FF }, /* Northbridge IO Unit MCA type */ { SMCA_NBIO, HWID_MCATYPE(0x18, 0x0), 0x1F }, /* PCI Express Unit MCA type */ { SMCA_PCIE, HWID_MCATYPE(0x46, 0x0), 0x1F }, }; struct smca_bank smca_banks[MAX_NR_BANKS]; EXPORT_SYMBOL_GPL(smca_banks); /* * In SMCA enabled processors, we can have multiple banks for a given IP type. * So to define a unique name for each bank, we use a temp c-string to append * the MCA_IPID[InstanceId] to type's name in get_name(). * * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN * is greater than 8 plus 1 (for underscore) plus length of longest type name. */ #define MAX_MCATYPE_NAME_LEN 30 static char buf_mcatype[MAX_MCATYPE_NAME_LEN]; static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks); static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */ /* Map of banks that have more than MCA_MISC0 available. */ static DEFINE_PER_CPU(u32, smca_misc_banks_map); static void amd_threshold_interrupt(void); static void amd_deferred_error_interrupt(void); static void default_deferred_error_interrupt(void) { pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR); } void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt; static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu) { u32 low, high; /* * For SMCA enabled processors, BLKPTR field of the first MISC register * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4). */ if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high)) return; if (!(low & MCI_CONFIG_MCAX)) return; if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high)) return; if (low & MASK_BLKPTR_LO) per_cpu(smca_misc_banks_map, cpu) |= BIT(bank); } static void smca_configure(unsigned int bank, unsigned int cpu) { unsigned int i, hwid_mcatype; struct smca_hwid *s_hwid; u32 high, low; u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank); /* Set appropriate bits in MCA_CONFIG */ if (!rdmsr_safe(smca_config, &low, &high)) { /* * OS is required to set the MCAX bit to acknowledge that it is * now using the new MSR ranges and new registers under each * bank. It also means that the OS will configure deferred * errors in the new MCx_CONFIG register. If the bit is not set, * uncorrectable errors will cause a system panic. * * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.) */ high |= BIT(0); /* * SMCA sets the Deferred Error Interrupt type per bank. * * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us * if the DeferredIntType bit field is available. * * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the * high portion of the MSR). OS should set this to 0x1 to enable * APIC based interrupt. First, check that no interrupt has been * set. */ if ((low & BIT(5)) && !((high >> 5) & 0x3)) high |= BIT(5); wrmsr(smca_config, low, high); } smca_set_misc_banks_map(bank, cpu); /* Return early if this bank was already initialized. */ if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0) return; if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) { pr_warn("Failed to read MCA_IPID for bank %d\n", bank); return; } hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID, (high & MCI_IPID_MCATYPE) >> 16); for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) { s_hwid = &smca_hwid_mcatypes[i]; if (hwid_mcatype == s_hwid->hwid_mcatype) { smca_banks[bank].hwid = s_hwid; smca_banks[bank].id = low; smca_banks[bank].sysfs_id = s_hwid->count++; break; } } } struct thresh_restart { struct threshold_block *b; int reset; int set_lvt_off; int lvt_off; u16 old_limit; }; static inline bool is_shared_bank(int bank) { /* * Scalable MCA provides for only one core to have access to the MSRs of * a shared bank. */ if (mce_flags.smca) return false; /* Bank 4 is for northbridge reporting and is thus shared */ return (bank == 4); } static const char *bank4_names(const struct threshold_block *b) { switch (b->address) { /* MSR4_MISC0 */ case 0x00000413: return "dram"; case 0xc0000408: return "ht_links"; case 0xc0000409: return "l3_cache"; default: WARN(1, "Funny MSR: 0x%08x\n", b->address); return ""; } }; static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits) { /* * bank 4 supports APIC LVT interrupts implicitly since forever. */ if (bank == 4) return true; /* * IntP: interrupt present; if this bit is set, the thresholding * bank can generate APIC LVT interrupts */ return msr_high_bits & BIT(28); } static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi) { int msr = (hi & MASK_LVTOFF_HI) >> 20; if (apic < 0) { pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt " "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu, b->bank, b->block, b->address, hi, lo); return 0; } if (apic != msr) { /* * On SMCA CPUs, LVT offset is programmed at a different MSR, and * the BIOS provides the value. The original field where LVT offset * was set is reserved. Return early here: */ if (mce_flags.smca) return 0; pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d " "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu, apic, b->bank, b->block, b->address, hi, lo); return 0; } return 1; }; /* Reprogram MCx_MISC MSR behind this threshold bank. */ static void threshold_restart_bank(void *_tr) { struct thresh_restart *tr = _tr; u32 hi, lo; rdmsr(tr->b->address, lo, hi); if (tr->b->threshold_limit < (hi & THRESHOLD_MAX)) tr->reset = 1; /* limit cannot be lower than err count */ if (tr->reset) { /* reset err count and overflow bit */ hi = (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) | (THRESHOLD_MAX - tr->b->threshold_limit); } else if (tr->old_limit) { /* change limit w/o reset */ int new_count = (hi & THRESHOLD_MAX) + (tr->old_limit - tr->b->threshold_limit); hi = (hi & ~MASK_ERR_COUNT_HI) | (new_count & THRESHOLD_MAX); } /* clear IntType */ hi &= ~MASK_INT_TYPE_HI; if (!tr->b->interrupt_capable) goto done; if (tr->set_lvt_off) { if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) { /* set new lvt offset */ hi &= ~MASK_LVTOFF_HI; hi |= tr->lvt_off << 20; } } if (tr->b->interrupt_enable) hi |= INT_TYPE_APIC; done: hi |= MASK_COUNT_EN_HI; wrmsr(tr->b->address, lo, hi); } static void mce_threshold_block_init(struct threshold_block *b, int offset) { struct thresh_restart tr = { .b = b, .set_lvt_off = 1, .lvt_off = offset, }; b->threshold_limit = THRESHOLD_MAX; threshold_restart_bank(&tr); }; static int setup_APIC_mce_threshold(int reserved, int new) { if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR, APIC_EILVT_MSG_FIX, 0)) return new; return reserved; } static int setup_APIC_deferred_error(int reserved, int new) { if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR, APIC_EILVT_MSG_FIX, 0)) return new; return reserved; } static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c) { u32 low = 0, high = 0; int def_offset = -1, def_new; if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high)) return; def_new = (low & MASK_DEF_LVTOFF) >> 4; if (!(low & MASK_DEF_LVTOFF)) { pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n"); def_new = DEF_LVT_OFF; low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4); } def_offset = setup_APIC_deferred_error(def_offset, def_new); if ((def_offset == def_new) && (deferred_error_int_vector != amd_deferred_error_interrupt)) deferred_error_int_vector = amd_deferred_error_interrupt; if (!mce_flags.smca) low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC; wrmsr(MSR_CU_DEF_ERR, low, high); } static u32 smca_get_block_address(unsigned int bank, unsigned int block, unsigned int cpu) { if (!block) return MSR_AMD64_SMCA_MCx_MISC(bank); if (!(per_cpu(smca_misc_banks_map, cpu) & BIT(bank))) return 0; return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1); } static u32 get_block_address(u32 current_addr, u32 low, u32 high, unsigned int bank, unsigned int block, unsigned int cpu) { u32 addr = 0, offset = 0; if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS)) return addr; if (mce_flags.smca) return smca_get_block_address(bank, block, cpu); /* Fall back to method we used for older processors: */ switch (block) { case 0: addr = msr_ops.misc(bank); break; case 1: offset = ((low & MASK_BLKPTR_LO) >> 21); if (offset) addr = MCG_XBLK_ADDR + offset; break; default: addr = ++current_addr; } return addr; } static int prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr, int offset, u32 misc_high) { unsigned int cpu = smp_processor_id(); u32 smca_low, smca_high; struct threshold_block b; int new; if (!block) per_cpu(bank_map, cpu) |= (1 << bank); memset(&b, 0, sizeof(b)); b.cpu = cpu; b.bank = bank; b.block = block; b.address = addr; b.interrupt_capable = lvt_interrupt_supported(bank, misc_high); if (!b.interrupt_capable) goto done; b.interrupt_enable = 1; if (!mce_flags.smca) { new = (misc_high & MASK_LVTOFF_HI) >> 20; goto set_offset; } /* Gather LVT offset for thresholding: */ if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high)) goto out; new = (smca_low & SMCA_THR_LVT_OFF) >> 12; set_offset: offset = setup_APIC_mce_threshold(offset, new); if (offset == new) thresholding_irq_en = true; done: mce_threshold_block_init(&b, offset); out: return offset; } bool amd_filter_mce(struct mce *m) { enum smca_bank_types bank_type = smca_get_bank_type(m->bank); struct cpuinfo_x86 *c = &boot_cpu_data; u8 xec = (m->status >> 16) & 0x3F; /* See Family 17h Models 10h-2Fh Erratum #1114. */ if (c->x86 == 0x17 && c->x86_model >= 0x10 && c->x86_model <= 0x2F && bank_type == SMCA_IF && xec == 10) return true; return false; } /* * Turn off thresholding banks for the following conditions: * - MC4_MISC thresholding is not supported on Family 0x15. * - Prevent possible spurious interrupts from the IF bank on Family 0x17 * Models 0x10-0x2F due to Erratum #1114. */ void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank) { int i, num_msrs; u64 hwcr; bool need_toggle; u32 msrs[NR_BLOCKS]; if (c->x86 == 0x15 && bank == 4) { msrs[0] = 0x00000413; /* MC4_MISC0 */ msrs[1] = 0xc0000408; /* MC4_MISC1 */ num_msrs = 2; } else if (c->x86 == 0x17 && (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) { if (smca_get_bank_type(bank) != SMCA_IF) return; msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank); num_msrs = 1; } else { return; } rdmsrl(MSR_K7_HWCR, hwcr); /* McStatusWrEn has to be set */ need_toggle = !(hwcr & BIT(18)); if (need_toggle) wrmsrl(MSR_K7_HWCR, hwcr | BIT(18)); /* Clear CntP bit safely */ for (i = 0; i < num_msrs; i++) msr_clear_bit(msrs[i], 62); /* restore old settings */ if (need_toggle) wrmsrl(MSR_K7_HWCR, hwcr); } /* cpu init entry point, called from mce.c with preempt off */ void mce_amd_feature_init(struct cpuinfo_x86 *c) { unsigned int bank, block, cpu = smp_processor_id(); u32 low = 0, high = 0, address = 0; int offset = -1; for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) { if (mce_flags.smca) smca_configure(bank, cpu); disable_err_thresholding(c, bank); for (block = 0; block < NR_BLOCKS; ++block) { address = get_block_address(address, low, high, bank, block, cpu); if (!address) break; if (rdmsr_safe(address, &low, &high)) break; if (!(high & MASK_VALID_HI)) continue; if (!(high & MASK_CNTP_HI) || (high & MASK_LOCKED_HI)) continue; offset = prepare_threshold_block(bank, block, address, offset, high); } } if (mce_flags.succor) deferred_error_interrupt_enable(c); } int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr) { u64 dram_base_addr, dram_limit_addr, dram_hole_base; /* We start from the normalized address */ u64 ret_addr = norm_addr; u32 tmp; u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask; u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets; u8 intlv_addr_sel, intlv_addr_bit; u8 num_intlv_bits, hashed_bit; u8 lgcy_mmio_hole_en, base = 0; u8 cs_mask, cs_id = 0; bool hash_enabled = false; /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */ if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp)) goto out_err; /* Remove HiAddrOffset from normalized address, if enabled: */ if (tmp & BIT(0)) { u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8; if (norm_addr >= hi_addr_offset) { ret_addr -= hi_addr_offset; base = 1; } } /* Read D18F0x110 (DramBaseAddress). */ if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp)) goto out_err; /* Check if address range is valid. */ if (!(tmp & BIT(0))) { pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n", __func__, tmp); goto out_err; } lgcy_mmio_hole_en = tmp & BIT(1); intlv_num_chan = (tmp >> 4) & 0xF; intlv_addr_sel = (tmp >> 8) & 0x7; dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16; /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */ if (intlv_addr_sel > 3) { pr_err("%s: Invalid interleave address select %d.\n", __func__, intlv_addr_sel); goto out_err; } /* Read D18F0x114 (DramLimitAddress). */ if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp)) goto out_err; intlv_num_sockets = (tmp >> 8) & 0x1; intlv_num_dies = (tmp >> 10) & 0x3; dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0); intlv_addr_bit = intlv_addr_sel + 8; /* Re-use intlv_num_chan by setting it equal to log2(#channels) */ switch (intlv_num_chan) { case 0: intlv_num_chan = 0; break; case 1: intlv_num_chan = 1; break; case 3: intlv_num_chan = 2; break; case 5: intlv_num_chan = 3; break; case 7: intlv_num_chan = 4; break; case 8: intlv_num_chan = 1; hash_enabled = true; break; default: pr_err("%s: Invalid number of interleaved channels %d.\n", __func__, intlv_num_chan); goto out_err; } num_intlv_bits = intlv_num_chan; if (intlv_num_dies > 2) { pr_err("%s: Invalid number of interleaved nodes/dies %d.\n", __func__, intlv_num_dies); goto out_err; } num_intlv_bits += intlv_num_dies; /* Add a bit if sockets are interleaved. */ num_intlv_bits += intlv_num_sockets; /* Assert num_intlv_bits <= 4 */ if (num_intlv_bits > 4) { pr_err("%s: Invalid interleave bits %d.\n", __func__, num_intlv_bits); goto out_err; } if (num_intlv_bits > 0) { u64 temp_addr_x, temp_addr_i, temp_addr_y; u8 die_id_bit, sock_id_bit, cs_fabric_id; /* * Read FabricBlockInstanceInformation3_CS[BlockFabricID]. * This is the fabric id for this coherent slave. Use * umc/channel# as instance id of the coherent slave * for FICAA. */ if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp)) goto out_err; cs_fabric_id = (tmp >> 8) & 0xFF; die_id_bit = 0; /* If interleaved over more than 1 channel: */ if (intlv_num_chan) { die_id_bit = intlv_num_chan; cs_mask = (1 << die_id_bit) - 1; cs_id = cs_fabric_id & cs_mask; } sock_id_bit = die_id_bit; /* Read D18F1x208 (SystemFabricIdMask). */ if (intlv_num_dies || intlv_num_sockets) if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp)) goto out_err; /* If interleaved over more than 1 die. */ if (intlv_num_dies) { sock_id_bit = die_id_bit + intlv_num_dies; die_id_shift = (tmp >> 24) & 0xF; die_id_mask = (tmp >> 8) & 0xFF; cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit; } /* If interleaved over more than 1 socket. */ if (intlv_num_sockets) { socket_id_shift = (tmp >> 28) & 0xF; socket_id_mask = (tmp >> 16) & 0xFF; cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit; } /* * The pre-interleaved address consists of XXXXXXIIIYYYYY * where III is the ID for this CS, and XXXXXXYYYYY are the * address bits from the post-interleaved address. * "num_intlv_bits" has been calculated to tell us how many "I" * bits there are. "intlv_addr_bit" tells us how many "Y" bits * there are (where "I" starts). */ temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0); temp_addr_i = (cs_id << intlv_addr_bit); temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits; ret_addr = temp_addr_x | temp_addr_i | temp_addr_y; } /* Add dram base address */ ret_addr += dram_base_addr; /* If legacy MMIO hole enabled */ if (lgcy_mmio_hole_en) { if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp)) goto out_err; dram_hole_base = tmp & GENMASK(31, 24); if (ret_addr >= dram_hole_base) ret_addr += (BIT_ULL(32) - dram_hole_base); } if (hash_enabled) { /* Save some parentheses and grab ls-bit at the end. */ hashed_bit = (ret_addr >> 12) ^ (ret_addr >> 18) ^ (ret_addr >> 21) ^ (ret_addr >> 30) ^ cs_id; hashed_bit &= BIT(0); if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0))) ret_addr ^= BIT(intlv_addr_bit); } /* Is calculated system address is above DRAM limit address? */ if (ret_addr > dram_limit_addr) goto out_err; *sys_addr = ret_addr; return 0; out_err: return -EINVAL; } EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr); bool amd_mce_is_memory_error(struct mce *m) { /* ErrCodeExt[20:16] */ u8 xec = (m->status >> 16) & 0x1f; if (mce_flags.smca) return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0; return m->bank == 4 && xec == 0x8; } static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc) { struct mce m; mce_setup(&m); m.status = status; m.misc = misc; m.bank = bank; m.tsc = rdtsc(); if (m.status & MCI_STATUS_ADDRV) { m.addr = addr; /* * Extract [55:] where lsb is the least significant * *valid* bit of the address bits. */ if (mce_flags.smca) { u8 lsb = (m.addr >> 56) & 0x3f; m.addr &= GENMASK_ULL(55, lsb); } } if (mce_flags.smca) { rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid); if (m.status & MCI_STATUS_SYNDV) rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd); } mce_log(&m); } asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs) { entering_irq(); trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR); inc_irq_stat(irq_deferred_error_count); deferred_error_int_vector(); trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR); exiting_ack_irq(); } /* * Returns true if the logged error is deferred. False, otherwise. */ static inline bool _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc) { u64 status, addr = 0; rdmsrl(msr_stat, status); if (!(status & MCI_STATUS_VAL)) return false; if (status & MCI_STATUS_ADDRV) rdmsrl(msr_addr, addr); __log_error(bank, status, addr, misc); wrmsrl(msr_stat, 0); return status & MCI_STATUS_DEFERRED; } /* * We have three scenarios for checking for Deferred errors: * * 1) Non-SMCA systems check MCA_STATUS and log error if found. * 2) SMCA systems check MCA_STATUS. If error is found then log it and also * clear MCA_DESTAT. * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and * log it. */ static void log_error_deferred(unsigned int bank) { bool defrd; defrd = _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), 0); if (!mce_flags.smca) return; /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */ if (defrd) { wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0); return; } /* * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check * for a valid error. */ _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank), MSR_AMD64_SMCA_MCx_DEADDR(bank), 0); } /* APIC interrupt handler for deferred errors */ static void amd_deferred_error_interrupt(void) { unsigned int bank; for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) log_error_deferred(bank); } static void log_error_thresholding(unsigned int bank, u64 misc) { _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc); } static void log_and_reset_block(struct threshold_block *block) { struct thresh_restart tr; u32 low = 0, high = 0; if (!block) return; if (rdmsr_safe(block->address, &low, &high)) return; if (!(high & MASK_OVERFLOW_HI)) return; /* Log the MCE which caused the threshold event. */ log_error_thresholding(block->bank, ((u64)high << 32) | low); /* Reset threshold block after logging error. */ memset(&tr, 0, sizeof(tr)); tr.b = block; threshold_restart_bank(&tr); } /* * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt * goes off when error_count reaches threshold_limit. */ static void amd_threshold_interrupt(void) { struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL; unsigned int bank, cpu = smp_processor_id(); for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) { if (!(per_cpu(bank_map, cpu) & (1 << bank))) continue; first_block = per_cpu(threshold_banks, cpu)[bank]->blocks; if (!first_block) continue; /* * The first block is also the head of the list. Check it first * before iterating over the rest. */ log_and_reset_block(first_block); list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj) log_and_reset_block(block); } } /* * Sysfs Interface */ struct threshold_attr { struct attribute attr; ssize_t (*show) (struct threshold_block *, char *); ssize_t (*store) (struct threshold_block *, const char *, size_t count); }; #define SHOW_FIELDS(name) \ static ssize_t show_ ## name(struct threshold_block *b, char *buf) \ { \ return sprintf(buf, "%lu\n", (unsigned long) b->name); \ } SHOW_FIELDS(interrupt_enable) SHOW_FIELDS(threshold_limit) static ssize_t store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size) { struct thresh_restart tr; unsigned long new; if (!b->interrupt_capable) return -EINVAL; if (kstrtoul(buf, 0, &new) < 0) return -EINVAL; b->interrupt_enable = !!new; memset(&tr, 0, sizeof(tr)); tr.b = b; smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1); return size; } static ssize_t store_threshold_limit(struct threshold_block *b, const char *buf, size_t size) { struct thresh_restart tr; unsigned long new; if (kstrtoul(buf, 0, &new) < 0) return -EINVAL; if (new > THRESHOLD_MAX) new = THRESHOLD_MAX; if (new < 1) new = 1; memset(&tr, 0, sizeof(tr)); tr.old_limit = b->threshold_limit; b->threshold_limit = new; tr.b = b; smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1); return size; } static ssize_t show_error_count(struct threshold_block *b, char *buf) { u32 lo, hi; rdmsr_on_cpu(b->cpu, b->address, &lo, &hi); return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) - (THRESHOLD_MAX - b->threshold_limit))); } static struct threshold_attr error_count = { .attr = {.name = __stringify(error_count), .mode = 0444 }, .show = show_error_count, }; #define RW_ATTR(val) \ static struct threshold_attr val = { \ .attr = {.name = __stringify(val), .mode = 0644 }, \ .show = show_## val, \ .store = store_## val, \ }; RW_ATTR(interrupt_enable); RW_ATTR(threshold_limit); static struct attribute *default_attrs[] = { &threshold_limit.attr, &error_count.attr, NULL, /* possibly interrupt_enable if supported, see below */ NULL, }; #define to_block(k) container_of(k, struct threshold_block, kobj) #define to_attr(a) container_of(a, struct threshold_attr, attr) static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) { struct threshold_block *b = to_block(kobj); struct threshold_attr *a = to_attr(attr); ssize_t ret; ret = a->show ? a->show(b, buf) : -EIO; return ret; } static ssize_t store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct threshold_block *b = to_block(kobj); struct threshold_attr *a = to_attr(attr); ssize_t ret; ret = a->store ? a->store(b, buf, count) : -EIO; return ret; } static const struct sysfs_ops threshold_ops = { .show = show, .store = store, }; static struct kobj_type threshold_ktype = { .sysfs_ops = &threshold_ops, .default_attrs = default_attrs, }; static const char *get_name(unsigned int bank, struct threshold_block *b) { enum smca_bank_types bank_type; if (!mce_flags.smca) { if (b && bank == 4) return bank4_names(b); return th_names[bank]; } bank_type = smca_get_bank_type(bank); if (bank_type >= N_SMCA_BANK_TYPES) return NULL; if (b && bank_type == SMCA_UMC) { if (b->block < ARRAY_SIZE(smca_umc_block_names)) return smca_umc_block_names[b->block]; return NULL; } if (smca_banks[bank].hwid->count == 1) return smca_get_name(bank_type); snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN, "%s_%x", smca_get_name(bank_type), smca_banks[bank].sysfs_id); return buf_mcatype; } static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank, unsigned int block, u32 address) { struct threshold_block *b = NULL; u32 low, high; int err; if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS)) return 0; if (rdmsr_safe_on_cpu(cpu, address, &low, &high)) return 0; if (!(high & MASK_VALID_HI)) { if (block) goto recurse; else return 0; } if (!(high & MASK_CNTP_HI) || (high & MASK_LOCKED_HI)) goto recurse; b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL); if (!b) return -ENOMEM; b->block = block; b->bank = bank; b->cpu = cpu; b->address = address; b->interrupt_enable = 0; b->interrupt_capable = lvt_interrupt_supported(bank, high); b->threshold_limit = THRESHOLD_MAX; if (b->interrupt_capable) { threshold_ktype.default_attrs[2] = &interrupt_enable.attr; b->interrupt_enable = 1; } else { threshold_ktype.default_attrs[2] = NULL; } INIT_LIST_HEAD(&b->miscj); if (per_cpu(threshold_banks, cpu)[bank]->blocks) { list_add(&b->miscj, &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj); } else { per_cpu(threshold_banks, cpu)[bank]->blocks = b; } err = kobject_init_and_add(&b->kobj, &threshold_ktype, per_cpu(threshold_banks, cpu)[bank]->kobj, get_name(bank, b)); if (err) goto out_free; recurse: address = get_block_address(address, low, high, bank, ++block, cpu); if (!address) return 0; err = allocate_threshold_blocks(cpu, bank, block, address); if (err) goto out_free; if (b) kobject_uevent(&b->kobj, KOBJ_ADD); return err; out_free: if (b) { kobject_put(&b->kobj); list_del(&b->miscj); kfree(b); } return err; } static int __threshold_add_blocks(struct threshold_bank *b) { struct list_head *head = &b->blocks->miscj; struct threshold_block *pos = NULL; struct threshold_block *tmp = NULL; int err = 0; err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name); if (err) return err; list_for_each_entry_safe(pos, tmp, head, miscj) { err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name); if (err) { list_for_each_entry_safe_reverse(pos, tmp, head, miscj) kobject_del(&pos->kobj); return err; } } return err; } static int threshold_create_bank(unsigned int cpu, unsigned int bank) { struct device *dev = per_cpu(mce_device, cpu); struct amd_northbridge *nb = NULL; struct threshold_bank *b = NULL; const char *name = get_name(bank, NULL); int err = 0; if (!dev) return -ENODEV; if (is_shared_bank(bank)) { nb = node_to_amd_nb(amd_get_nb_id(cpu)); /* threshold descriptor already initialized on this node? */ if (nb && nb->bank4) { /* yes, use it */ b = nb->bank4; err = kobject_add(b->kobj, &dev->kobj, name); if (err) goto out; per_cpu(threshold_banks, cpu)[bank] = b; refcount_inc(&b->cpus); err = __threshold_add_blocks(b); goto out; } } b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL); if (!b) { err = -ENOMEM; goto out; } b->kobj = kobject_create_and_add(name, &dev->kobj); if (!b->kobj) { err = -EINVAL; goto out_free; } per_cpu(threshold_banks, cpu)[bank] = b; if (is_shared_bank(bank)) { refcount_set(&b->cpus, 1); /* nb is already initialized, see above */ if (nb) { WARN_ON(nb->bank4); nb->bank4 = b; } } err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank)); if (!err) goto out; out_free: kfree(b); out: return err; } static void deallocate_threshold_block(unsigned int cpu, unsigned int bank) { struct threshold_block *pos = NULL; struct threshold_block *tmp = NULL; struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank]; if (!head) return; list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) { kobject_put(&pos->kobj); list_del(&pos->miscj); kfree(pos); } kfree(per_cpu(threshold_banks, cpu)[bank]->blocks); per_cpu(threshold_banks, cpu)[bank]->blocks = NULL; } static void __threshold_remove_blocks(struct threshold_bank *b) { struct threshold_block *pos = NULL; struct threshold_block *tmp = NULL; kobject_del(b->kobj); list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj) kobject_del(&pos->kobj); } static void threshold_remove_bank(unsigned int cpu, int bank) { struct amd_northbridge *nb; struct threshold_bank *b; b = per_cpu(threshold_banks, cpu)[bank]; if (!b) return; if (!b->blocks) goto free_out; if (is_shared_bank(bank)) { if (!refcount_dec_and_test(&b->cpus)) { __threshold_remove_blocks(b); per_cpu(threshold_banks, cpu)[bank] = NULL; return; } else { /* * the last CPU on this node using the shared bank is * going away, remove that bank now. */ nb = node_to_amd_nb(amd_get_nb_id(cpu)); nb->bank4 = NULL; } } deallocate_threshold_block(cpu, bank); free_out: kobject_del(b->kobj); kobject_put(b->kobj); kfree(b); per_cpu(threshold_banks, cpu)[bank] = NULL; } int mce_threshold_remove_device(unsigned int cpu) { unsigned int bank; for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) { if (!(per_cpu(bank_map, cpu) & (1 << bank))) continue; threshold_remove_bank(cpu, bank); } kfree(per_cpu(threshold_banks, cpu)); per_cpu(threshold_banks, cpu) = NULL; return 0; } /* create dir/files for all valid threshold banks */ int mce_threshold_create_device(unsigned int cpu) { unsigned int bank; struct threshold_bank **bp; int err = 0; bp = per_cpu(threshold_banks, cpu); if (bp) return 0; bp = kcalloc(per_cpu(mce_num_banks, cpu), sizeof(struct threshold_bank *), GFP_KERNEL); if (!bp) return -ENOMEM; per_cpu(threshold_banks, cpu) = bp; for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) { if (!(per_cpu(bank_map, cpu) & (1 << bank))) continue; err = threshold_create_bank(cpu, bank); if (err) goto err; } return err; err: mce_threshold_remove_device(cpu); return err; } static __init int threshold_init_device(void) { unsigned lcpu = 0; /* to hit CPUs online before the notifier is up */ for_each_online_cpu(lcpu) { int err = mce_threshold_create_device(lcpu); if (err) return err; } if (thresholding_irq_en) mce_threshold_vector = amd_threshold_interrupt; return 0; } /* * there are 3 funcs which need to be _initcalled in a logic sequence: * 1. xen_late_init_mcelog * 2. mcheck_init_device * 3. threshold_init_device * * xen_late_init_mcelog must register xen_mce_chrdev_device before * native mce_chrdev_device registration if running under xen platform; * * mcheck_init_device should be inited before threshold_init_device to * initialize mce_device, otherwise a NULL ptr dereference will cause panic. * * so we use following _initcalls * 1. device_initcall(xen_late_init_mcelog); * 2. device_initcall_sync(mcheck_init_device); * 3. late_initcall(threshold_init_device); * * when running under xen, the initcall order is 1,2,3; * on baremetal, we skip 1 and we do only 2 and 3. */ late_initcall(threshold_init_device);