// SPDX-License-Identifier: GPL-2.0 /* XDP sockets * * AF_XDP sockets allows a channel between XDP programs and userspace * applications. * Copyright(c) 2018 Intel Corporation. * * Author(s): Björn Töpel * Magnus Karlsson */ #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xsk_queue.h" #include "xdp_umem.h" #include "xsk.h" #define TX_BATCH_SIZE 16 bool xsk_is_setup_for_bpf_map(struct xdp_sock *xs) { return READ_ONCE(xs->rx) && READ_ONCE(xs->umem) && READ_ONCE(xs->umem->fq); } bool xsk_umem_has_addrs(struct xdp_umem *umem, u32 cnt) { return xskq_has_addrs(umem->fq, cnt); } EXPORT_SYMBOL(xsk_umem_has_addrs); u64 *xsk_umem_peek_addr(struct xdp_umem *umem, u64 *addr) { return xskq_peek_addr(umem->fq, addr, umem); } EXPORT_SYMBOL(xsk_umem_peek_addr); void xsk_umem_discard_addr(struct xdp_umem *umem) { xskq_discard_addr(umem->fq); } EXPORT_SYMBOL(xsk_umem_discard_addr); void xsk_set_rx_need_wakeup(struct xdp_umem *umem) { if (umem->need_wakeup & XDP_WAKEUP_RX) return; umem->fq->ring->flags |= XDP_RING_NEED_WAKEUP; umem->need_wakeup |= XDP_WAKEUP_RX; } EXPORT_SYMBOL(xsk_set_rx_need_wakeup); void xsk_set_tx_need_wakeup(struct xdp_umem *umem) { struct xdp_sock *xs; if (umem->need_wakeup & XDP_WAKEUP_TX) return; rcu_read_lock(); list_for_each_entry_rcu(xs, &umem->xsk_list, list) { xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP; } rcu_read_unlock(); umem->need_wakeup |= XDP_WAKEUP_TX; } EXPORT_SYMBOL(xsk_set_tx_need_wakeup); void xsk_clear_rx_need_wakeup(struct xdp_umem *umem) { if (!(umem->need_wakeup & XDP_WAKEUP_RX)) return; umem->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP; umem->need_wakeup &= ~XDP_WAKEUP_RX; } EXPORT_SYMBOL(xsk_clear_rx_need_wakeup); void xsk_clear_tx_need_wakeup(struct xdp_umem *umem) { struct xdp_sock *xs; if (!(umem->need_wakeup & XDP_WAKEUP_TX)) return; rcu_read_lock(); list_for_each_entry_rcu(xs, &umem->xsk_list, list) { xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP; } rcu_read_unlock(); umem->need_wakeup &= ~XDP_WAKEUP_TX; } EXPORT_SYMBOL(xsk_clear_tx_need_wakeup); bool xsk_umem_uses_need_wakeup(struct xdp_umem *umem) { return umem->flags & XDP_UMEM_USES_NEED_WAKEUP; } EXPORT_SYMBOL(xsk_umem_uses_need_wakeup); /* If a buffer crosses a page boundary, we need to do 2 memcpy's, one for * each page. This is only required in copy mode. */ static void __xsk_rcv_memcpy(struct xdp_umem *umem, u64 addr, void *from_buf, u32 len, u32 metalen) { void *to_buf = xdp_umem_get_data(umem, addr); addr = xsk_umem_add_offset_to_addr(addr); if (xskq_crosses_non_contig_pg(umem, addr, len + metalen)) { void *next_pg_addr = umem->pages[(addr >> PAGE_SHIFT) + 1].addr; u64 page_start = addr & ~(PAGE_SIZE - 1); u64 first_len = PAGE_SIZE - (addr - page_start); memcpy(to_buf, from_buf, first_len + metalen); memcpy(next_pg_addr, from_buf + first_len, len - first_len); return; } memcpy(to_buf, from_buf, len + metalen); } static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len) { u64 offset = xs->umem->headroom; u64 addr, memcpy_addr; void *from_buf; u32 metalen; int err; if (!xskq_peek_addr(xs->umem->fq, &addr, xs->umem) || len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) { xs->rx_dropped++; return -ENOSPC; } if (unlikely(xdp_data_meta_unsupported(xdp))) { from_buf = xdp->data; metalen = 0; } else { from_buf = xdp->data_meta; metalen = xdp->data - xdp->data_meta; } memcpy_addr = xsk_umem_adjust_offset(xs->umem, addr, offset); __xsk_rcv_memcpy(xs->umem, memcpy_addr, from_buf, len, metalen); offset += metalen; addr = xsk_umem_adjust_offset(xs->umem, addr, offset); err = xskq_produce_batch_desc(xs->rx, addr, len); if (!err) { xskq_discard_addr(xs->umem->fq); xdp_return_buff(xdp); return 0; } xs->rx_dropped++; return err; } static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len) { int err = xskq_produce_batch_desc(xs->rx, (u64)xdp->handle, len); if (err) xs->rx_dropped++; return err; } static bool xsk_is_bound(struct xdp_sock *xs) { if (READ_ONCE(xs->state) == XSK_BOUND) { /* Matches smp_wmb() in bind(). */ smp_rmb(); return true; } return false; } int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) { u32 len; if (!xsk_is_bound(xs)) return -EINVAL; if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) return -EINVAL; len = xdp->data_end - xdp->data; return (xdp->rxq->mem.type == MEM_TYPE_ZERO_COPY) ? __xsk_rcv_zc(xs, xdp, len) : __xsk_rcv(xs, xdp, len); } void xsk_flush(struct xdp_sock *xs) { xskq_produce_flush_desc(xs->rx); xs->sk.sk_data_ready(&xs->sk); } int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp) { u32 metalen = xdp->data - xdp->data_meta; u32 len = xdp->data_end - xdp->data; u64 offset = xs->umem->headroom; void *buffer; u64 addr; int err; spin_lock_bh(&xs->rx_lock); if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index) { err = -EINVAL; goto out_unlock; } if (!xskq_peek_addr(xs->umem->fq, &addr, xs->umem) || len > xs->umem->chunk_size_nohr - XDP_PACKET_HEADROOM) { err = -ENOSPC; goto out_drop; } addr = xsk_umem_adjust_offset(xs->umem, addr, offset); buffer = xdp_umem_get_data(xs->umem, addr); memcpy(buffer, xdp->data_meta, len + metalen); addr = xsk_umem_adjust_offset(xs->umem, addr, metalen); err = xskq_produce_batch_desc(xs->rx, addr, len); if (err) goto out_drop; xskq_discard_addr(xs->umem->fq); xskq_produce_flush_desc(xs->rx); spin_unlock_bh(&xs->rx_lock); xs->sk.sk_data_ready(&xs->sk); return 0; out_drop: xs->rx_dropped++; out_unlock: spin_unlock_bh(&xs->rx_lock); return err; } void xsk_umem_complete_tx(struct xdp_umem *umem, u32 nb_entries) { xskq_produce_flush_addr_n(umem->cq, nb_entries); } EXPORT_SYMBOL(xsk_umem_complete_tx); void xsk_umem_consume_tx_done(struct xdp_umem *umem) { struct xdp_sock *xs; rcu_read_lock(); list_for_each_entry_rcu(xs, &umem->xsk_list, list) { xs->sk.sk_write_space(&xs->sk); } rcu_read_unlock(); } EXPORT_SYMBOL(xsk_umem_consume_tx_done); bool xsk_umem_consume_tx(struct xdp_umem *umem, struct xdp_desc *desc) { struct xdp_sock *xs; rcu_read_lock(); list_for_each_entry_rcu(xs, &umem->xsk_list, list) { if (!xskq_peek_desc(xs->tx, desc, umem)) continue; if (xskq_produce_addr_lazy(umem->cq, desc->addr)) goto out; xskq_discard_desc(xs->tx); rcu_read_unlock(); return true; } out: rcu_read_unlock(); return false; } EXPORT_SYMBOL(xsk_umem_consume_tx); static int xsk_wakeup(struct xdp_sock *xs, u8 flags) { struct net_device *dev = xs->dev; int err; rcu_read_lock(); err = dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags); rcu_read_unlock(); return err; } static int xsk_zc_xmit(struct xdp_sock *xs) { return xsk_wakeup(xs, XDP_WAKEUP_TX); } static void xsk_destruct_skb(struct sk_buff *skb) { u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg; struct xdp_sock *xs = xdp_sk(skb->sk); unsigned long flags; spin_lock_irqsave(&xs->tx_completion_lock, flags); WARN_ON_ONCE(xskq_produce_addr(xs->umem->cq, addr)); spin_unlock_irqrestore(&xs->tx_completion_lock, flags); sock_wfree(skb); } static int xsk_generic_xmit(struct sock *sk) { struct xdp_sock *xs = xdp_sk(sk); u32 max_batch = TX_BATCH_SIZE; bool sent_frame = false; struct xdp_desc desc; struct sk_buff *skb; int err = 0; mutex_lock(&xs->mutex); if (xs->queue_id >= xs->dev->real_num_tx_queues) goto out; while (xskq_peek_desc(xs->tx, &desc, xs->umem)) { char *buffer; u64 addr; u32 len; if (max_batch-- == 0) { err = -EAGAIN; goto out; } len = desc.len; skb = sock_alloc_send_skb(sk, len, 1, &err); if (unlikely(!skb)) { err = -EAGAIN; goto out; } skb_put(skb, len); addr = desc.addr; buffer = xdp_umem_get_data(xs->umem, addr); err = skb_store_bits(skb, 0, buffer, len); if (unlikely(err) || xskq_reserve_addr(xs->umem->cq)) { kfree_skb(skb); goto out; } skb->dev = xs->dev; skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; skb_shinfo(skb)->destructor_arg = (void *)(long)desc.addr; skb->destructor = xsk_destruct_skb; err = dev_direct_xmit(skb, xs->queue_id); xskq_discard_desc(xs->tx); /* Ignore NET_XMIT_CN as packet might have been sent */ if (err == NET_XMIT_DROP || err == NETDEV_TX_BUSY) { /* SKB completed but not sent */ err = -EBUSY; goto out; } sent_frame = true; } out: if (sent_frame) sk->sk_write_space(sk); mutex_unlock(&xs->mutex); return err; } static int __xsk_sendmsg(struct sock *sk) { struct xdp_sock *xs = xdp_sk(sk); if (unlikely(!(xs->dev->flags & IFF_UP))) return -ENETDOWN; if (unlikely(!xs->tx)) return -ENOBUFS; return xs->zc ? xsk_zc_xmit(xs) : xsk_generic_xmit(sk); } static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len) { bool need_wait = !(m->msg_flags & MSG_DONTWAIT); struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); if (unlikely(!xsk_is_bound(xs))) return -ENXIO; if (unlikely(need_wait)) return -EOPNOTSUPP; return __xsk_sendmsg(sk); } static unsigned int xsk_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait) { unsigned int mask = datagram_poll(file, sock, wait); struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); struct xdp_umem *umem; if (unlikely(!xsk_is_bound(xs))) return mask; umem = xs->umem; if (umem->need_wakeup) { if (xs->zc) xsk_wakeup(xs, umem->need_wakeup); else /* Poll needs to drive Tx also in copy mode */ __xsk_sendmsg(sk); } if (xs->rx && !xskq_empty_desc(xs->rx)) mask |= POLLIN | POLLRDNORM; if (xs->tx && !xskq_full_desc(xs->tx)) mask |= POLLOUT | POLLWRNORM; return mask; } static int xsk_init_queue(u32 entries, struct xsk_queue **queue, bool umem_queue) { struct xsk_queue *q; if (entries == 0 || *queue || !is_power_of_2(entries)) return -EINVAL; q = xskq_create(entries, umem_queue); if (!q) return -ENOMEM; /* Make sure queue is ready before it can be seen by others */ smp_wmb(); WRITE_ONCE(*queue, q); return 0; } static void xsk_unbind_dev(struct xdp_sock *xs) { struct net_device *dev = xs->dev; if (xs->state != XSK_BOUND) return; WRITE_ONCE(xs->state, XSK_UNBOUND); /* Wait for driver to stop using the xdp socket. */ xdp_del_sk_umem(xs->umem, xs); xs->dev = NULL; synchronize_net(); dev_put(dev); } static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs, struct xdp_sock ***map_entry) { struct xsk_map *map = NULL; struct xsk_map_node *node; *map_entry = NULL; spin_lock_bh(&xs->map_list_lock); node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node, node); if (node) { WARN_ON(xsk_map_inc(node->map)); map = node->map; *map_entry = node->map_entry; } spin_unlock_bh(&xs->map_list_lock); return map; } static void xsk_delete_from_maps(struct xdp_sock *xs) { /* This function removes the current XDP socket from all the * maps it resides in. We need to take extra care here, due to * the two locks involved. Each map has a lock synchronizing * updates to the entries, and each socket has a lock that * synchronizes access to the list of maps (map_list). For * deadlock avoidance the locks need to be taken in the order * "map lock"->"socket map list lock". We start off by * accessing the socket map list, and take a reference to the * map to guarantee existence between the * xsk_get_map_list_entry() and xsk_map_try_sock_delete() * calls. Then we ask the map to remove the socket, which * tries to remove the socket from the map. Note that there * might be updates to the map between * xsk_get_map_list_entry() and xsk_map_try_sock_delete(). */ struct xdp_sock **map_entry = NULL; struct xsk_map *map; while ((map = xsk_get_map_list_entry(xs, &map_entry))) { xsk_map_try_sock_delete(map, xs, map_entry); xsk_map_put(map); } } static int xsk_release(struct socket *sock) { struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); struct net *net; if (!sk) return 0; net = sock_net(sk); mutex_lock(&net->xdp.lock); sk_del_node_init_rcu(sk); mutex_unlock(&net->xdp.lock); local_bh_disable(); sock_prot_inuse_add(net, sk->sk_prot, -1); local_bh_enable(); xsk_delete_from_maps(xs); mutex_lock(&xs->mutex); xsk_unbind_dev(xs); mutex_unlock(&xs->mutex); xskq_destroy(xs->rx); xskq_destroy(xs->tx); sock_orphan(sk); sock->sk = NULL; sk_refcnt_debug_release(sk); sock_put(sk); return 0; } static struct socket *xsk_lookup_xsk_from_fd(int fd) { struct socket *sock; int err; sock = sockfd_lookup(fd, &err); if (!sock) return ERR_PTR(-ENOTSOCK); if (sock->sk->sk_family != PF_XDP) { sockfd_put(sock); return ERR_PTR(-ENOPROTOOPT); } return sock; } /* Check if umem pages are contiguous. * If zero-copy mode, use the DMA address to do the page contiguity check * For all other modes we use addr (kernel virtual address) * Store the result in the low bits of addr. */ static void xsk_check_page_contiguity(struct xdp_umem *umem, u32 flags) { struct xdp_umem_page *pgs = umem->pages; int i, is_contig; for (i = 0; i < umem->npgs - 1; i++) { is_contig = (flags & XDP_ZEROCOPY) ? (pgs[i].dma + PAGE_SIZE == pgs[i + 1].dma) : (pgs[i].addr + PAGE_SIZE == pgs[i + 1].addr); pgs[i].addr += is_contig << XSK_NEXT_PG_CONTIG_SHIFT; } } static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr; struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); struct net_device *dev; u32 flags, qid; int err = 0; if (addr_len < sizeof(struct sockaddr_xdp)) return -EINVAL; if (sxdp->sxdp_family != AF_XDP) return -EINVAL; flags = sxdp->sxdp_flags; if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY | XDP_USE_NEED_WAKEUP)) return -EINVAL; rtnl_lock(); mutex_lock(&xs->mutex); if (xs->state != XSK_READY) { err = -EBUSY; goto out_release; } dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex); if (!dev) { err = -ENODEV; goto out_release; } if (!xs->rx && !xs->tx) { err = -EINVAL; goto out_unlock; } qid = sxdp->sxdp_queue_id; if (flags & XDP_SHARED_UMEM) { struct xdp_sock *umem_xs; struct socket *sock; if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) || (flags & XDP_USE_NEED_WAKEUP)) { /* Cannot specify flags for shared sockets. */ err = -EINVAL; goto out_unlock; } if (xs->umem) { /* We have already our own. */ err = -EINVAL; goto out_unlock; } sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd); if (IS_ERR(sock)) { err = PTR_ERR(sock); goto out_unlock; } umem_xs = xdp_sk(sock->sk); if (!xsk_is_bound(umem_xs)) { err = -EBADF; sockfd_put(sock); goto out_unlock; } if (umem_xs->dev != dev || umem_xs->queue_id != qid) { err = -EINVAL; sockfd_put(sock); goto out_unlock; } xdp_get_umem(umem_xs->umem); WRITE_ONCE(xs->umem, umem_xs->umem); sockfd_put(sock); } else if (!xs->umem || !xdp_umem_validate_queues(xs->umem)) { err = -EINVAL; goto out_unlock; } else { /* This xsk has its own umem. */ xskq_set_umem(xs->umem->fq, xs->umem->size, xs->umem->chunk_mask); xskq_set_umem(xs->umem->cq, xs->umem->size, xs->umem->chunk_mask); err = xdp_umem_assign_dev(xs->umem, dev, qid, flags); if (err) goto out_unlock; xsk_check_page_contiguity(xs->umem, flags); } xs->dev = dev; xs->zc = xs->umem->zc; xs->queue_id = qid; xskq_set_umem(xs->rx, xs->umem->size, xs->umem->chunk_mask); xskq_set_umem(xs->tx, xs->umem->size, xs->umem->chunk_mask); xdp_add_sk_umem(xs->umem, xs); out_unlock: if (err) { dev_put(dev); } else { /* Matches smp_rmb() in bind() for shared umem * sockets, and xsk_is_bound(). */ smp_wmb(); WRITE_ONCE(xs->state, XSK_BOUND); } out_release: mutex_unlock(&xs->mutex); rtnl_unlock(); return err; } struct xdp_umem_reg_v1 { __u64 addr; /* Start of packet data area */ __u64 len; /* Length of packet data area */ __u32 chunk_size; __u32 headroom; }; static int xsk_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); int err; if (level != SOL_XDP) return -ENOPROTOOPT; switch (optname) { case XDP_RX_RING: case XDP_TX_RING: { struct xsk_queue **q; int entries; if (optlen < sizeof(entries)) return -EINVAL; if (copy_from_user(&entries, optval, sizeof(entries))) return -EFAULT; mutex_lock(&xs->mutex); if (xs->state != XSK_READY) { mutex_unlock(&xs->mutex); return -EBUSY; } q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx; err = xsk_init_queue(entries, q, false); if (!err && optname == XDP_TX_RING) /* Tx needs to be explicitly woken up the first time */ xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP; mutex_unlock(&xs->mutex); return err; } case XDP_UMEM_REG: { size_t mr_size = sizeof(struct xdp_umem_reg); struct xdp_umem_reg mr = {}; struct xdp_umem *umem; if (optlen < sizeof(struct xdp_umem_reg_v1)) return -EINVAL; else if (optlen < sizeof(mr)) mr_size = sizeof(struct xdp_umem_reg_v1); if (copy_from_user(&mr, optval, mr_size)) return -EFAULT; mutex_lock(&xs->mutex); if (xs->state != XSK_READY || xs->umem) { mutex_unlock(&xs->mutex); return -EBUSY; } umem = xdp_umem_create(&mr); if (IS_ERR(umem)) { mutex_unlock(&xs->mutex); return PTR_ERR(umem); } /* Make sure umem is ready before it can be seen by others */ smp_wmb(); WRITE_ONCE(xs->umem, umem); mutex_unlock(&xs->mutex); return 0; } case XDP_UMEM_FILL_RING: case XDP_UMEM_COMPLETION_RING: { struct xsk_queue **q; int entries; if (copy_from_user(&entries, optval, sizeof(entries))) return -EFAULT; mutex_lock(&xs->mutex); if (xs->state != XSK_READY) { mutex_unlock(&xs->mutex); return -EBUSY; } if (!xs->umem) { mutex_unlock(&xs->mutex); return -EINVAL; } q = (optname == XDP_UMEM_FILL_RING) ? &xs->umem->fq : &xs->umem->cq; err = xsk_init_queue(entries, q, true); mutex_unlock(&xs->mutex); return err; } default: break; } return -ENOPROTOOPT; } static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring) { ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer); ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer); ring->desc = offsetof(struct xdp_rxtx_ring, desc); } static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring) { ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer); ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer); ring->desc = offsetof(struct xdp_umem_ring, desc); } static int xsk_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct xdp_sock *xs = xdp_sk(sk); int len; if (level != SOL_XDP) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case XDP_STATISTICS: { struct xdp_statistics stats; if (len < sizeof(stats)) return -EINVAL; mutex_lock(&xs->mutex); stats.rx_dropped = xs->rx_dropped; stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx); stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx); mutex_unlock(&xs->mutex); if (copy_to_user(optval, &stats, sizeof(stats))) return -EFAULT; if (put_user(sizeof(stats), optlen)) return -EFAULT; return 0; } case XDP_MMAP_OFFSETS: { struct xdp_mmap_offsets off; struct xdp_mmap_offsets_v1 off_v1; bool flags_supported = true; void *to_copy; if (len < sizeof(off_v1)) return -EINVAL; else if (len < sizeof(off)) flags_supported = false; if (flags_supported) { /* xdp_ring_offset is identical to xdp_ring_offset_v1 * except for the flags field added to the end. */ xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *) &off.rx); xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *) &off.tx); xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *) &off.fr); xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *) &off.cr); off.rx.flags = offsetof(struct xdp_rxtx_ring, ptrs.flags); off.tx.flags = offsetof(struct xdp_rxtx_ring, ptrs.flags); off.fr.flags = offsetof(struct xdp_umem_ring, ptrs.flags); off.cr.flags = offsetof(struct xdp_umem_ring, ptrs.flags); len = sizeof(off); to_copy = &off; } else { xsk_enter_rxtx_offsets(&off_v1.rx); xsk_enter_rxtx_offsets(&off_v1.tx); xsk_enter_umem_offsets(&off_v1.fr); xsk_enter_umem_offsets(&off_v1.cr); len = sizeof(off_v1); to_copy = &off_v1; } if (copy_to_user(optval, to_copy, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } case XDP_OPTIONS: { struct xdp_options opts = {}; if (len < sizeof(opts)) return -EINVAL; mutex_lock(&xs->mutex); if (xs->zc) opts.flags |= XDP_OPTIONS_ZEROCOPY; mutex_unlock(&xs->mutex); len = sizeof(opts); if (copy_to_user(optval, &opts, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } default: break; } return -EOPNOTSUPP; } static int xsk_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; unsigned long size = vma->vm_end - vma->vm_start; struct xdp_sock *xs = xdp_sk(sock->sk); struct xsk_queue *q = NULL; struct xdp_umem *umem; unsigned long pfn; struct page *qpg; if (READ_ONCE(xs->state) != XSK_READY) return -EBUSY; if (offset == XDP_PGOFF_RX_RING) { q = READ_ONCE(xs->rx); } else if (offset == XDP_PGOFF_TX_RING) { q = READ_ONCE(xs->tx); } else { umem = READ_ONCE(xs->umem); if (!umem) return -EINVAL; /* Matches the smp_wmb() in XDP_UMEM_REG */ smp_rmb(); if (offset == XDP_UMEM_PGOFF_FILL_RING) q = READ_ONCE(umem->fq); else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING) q = READ_ONCE(umem->cq); } if (!q) return -EINVAL; /* Matches the smp_wmb() in xsk_init_queue */ smp_rmb(); qpg = virt_to_head_page(q->ring); if (size > page_size(qpg)) return -EINVAL; pfn = virt_to_phys(q->ring) >> PAGE_SHIFT; return remap_pfn_range(vma, vma->vm_start, pfn, size, vma->vm_page_prot); } static int xsk_notifier(struct notifier_block *this, unsigned long msg, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); struct sock *sk; switch (msg) { case NETDEV_UNREGISTER: mutex_lock(&net->xdp.lock); sk_for_each(sk, &net->xdp.list) { struct xdp_sock *xs = xdp_sk(sk); mutex_lock(&xs->mutex); if (xs->dev == dev) { sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_error_report(sk); xsk_unbind_dev(xs); /* Clear device references in umem. */ xdp_umem_clear_dev(xs->umem); } mutex_unlock(&xs->mutex); } mutex_unlock(&net->xdp.lock); break; } return NOTIFY_DONE; } static struct proto xsk_proto = { .name = "XDP", .owner = THIS_MODULE, .obj_size = sizeof(struct xdp_sock), }; static const struct proto_ops xsk_proto_ops = { .family = PF_XDP, .owner = THIS_MODULE, .release = xsk_release, .bind = xsk_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = xsk_poll, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = xsk_setsockopt, .getsockopt = xsk_getsockopt, .sendmsg = xsk_sendmsg, .recvmsg = sock_no_recvmsg, .mmap = xsk_mmap, .sendpage = sock_no_sendpage, }; static void xsk_destruct(struct sock *sk) { struct xdp_sock *xs = xdp_sk(sk); if (!sock_flag(sk, SOCK_DEAD)) return; xdp_put_umem(xs->umem); sk_refcnt_debug_dec(sk); } static int xsk_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; struct xdp_sock *xs; if (!ns_capable(net->user_ns, CAP_NET_RAW)) return -EPERM; if (sock->type != SOCK_RAW) return -ESOCKTNOSUPPORT; if (protocol) return -EPROTONOSUPPORT; sock->state = SS_UNCONNECTED; sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern); if (!sk) return -ENOBUFS; sock->ops = &xsk_proto_ops; sock_init_data(sock, sk); sk->sk_family = PF_XDP; sk->sk_destruct = xsk_destruct; sk_refcnt_debug_inc(sk); sock_set_flag(sk, SOCK_RCU_FREE); xs = xdp_sk(sk); xs->state = XSK_READY; mutex_init(&xs->mutex); spin_lock_init(&xs->rx_lock); spin_lock_init(&xs->tx_completion_lock); INIT_LIST_HEAD(&xs->map_list); spin_lock_init(&xs->map_list_lock); mutex_lock(&net->xdp.lock); sk_add_node_rcu(sk, &net->xdp.list); mutex_unlock(&net->xdp.lock); local_bh_disable(); sock_prot_inuse_add(net, &xsk_proto, 1); local_bh_enable(); return 0; } static const struct net_proto_family xsk_family_ops = { .family = PF_XDP, .create = xsk_create, .owner = THIS_MODULE, }; static struct notifier_block xsk_netdev_notifier = { .notifier_call = xsk_notifier, }; static int __net_init xsk_net_init(struct net *net) { mutex_init(&net->xdp.lock); INIT_HLIST_HEAD(&net->xdp.list); return 0; } static void __net_exit xsk_net_exit(struct net *net) { WARN_ON_ONCE(!hlist_empty(&net->xdp.list)); } static struct pernet_operations xsk_net_ops = { .init = xsk_net_init, .exit = xsk_net_exit, }; static int __init xsk_init(void) { int err; err = proto_register(&xsk_proto, 0 /* no slab */); if (err) goto out; err = sock_register(&xsk_family_ops); if (err) goto out_proto; err = register_pernet_subsys(&xsk_net_ops); if (err) goto out_sk; err = register_netdevice_notifier(&xsk_netdev_notifier); if (err) goto out_pernet; return 0; out_pernet: unregister_pernet_subsys(&xsk_net_ops); out_sk: sock_unregister(PF_XDP); out_proto: proto_unregister(&xsk_proto); out: return err; } fs_initcall(xsk_init);