// SPDX-License-Identifier: GPL-2.0-or-later /* * Security plug functions * * Copyright (C) 2001 WireX Communications, Inc * Copyright (C) 2001-2002 Greg Kroah-Hartman * Copyright (C) 2001 Networks Associates Technology, Inc * Copyright (C) 2016 Mellanox Technologies */ #define pr_fmt(fmt) "LSM: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_LSM_EVM_XATTR 2 /* How many LSMs were built into the kernel? */ #define LSM_COUNT (__end_lsm_info - __start_lsm_info) #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info) struct security_hook_heads security_hook_heads __lsm_ro_after_init; static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); static struct kmem_cache *lsm_file_cache; static struct kmem_cache *lsm_inode_cache; char *lsm_names; static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; /* Boot-time LSM user choice */ static __initdata const char *chosen_lsm_order; static __initdata const char *chosen_major_lsm; static __initconst const char * const builtin_lsm_order = CONFIG_LSM; /* Ordered list of LSMs to initialize. */ static __initdata struct lsm_info **ordered_lsms; static __initdata struct lsm_info *exclusive; static __initdata bool debug; #define init_debug(...) \ do { \ if (debug) \ pr_info(__VA_ARGS__); \ } while (0) static bool __init is_enabled(struct lsm_info *lsm) { if (!lsm->enabled) return false; return *lsm->enabled; } /* Mark an LSM's enabled flag. */ static int lsm_enabled_true __initdata = 1; static int lsm_enabled_false __initdata = 0; static void __init set_enabled(struct lsm_info *lsm, bool enabled) { /* * When an LSM hasn't configured an enable variable, we can use * a hard-coded location for storing the default enabled state. */ if (!lsm->enabled) { if (enabled) lsm->enabled = &lsm_enabled_true; else lsm->enabled = &lsm_enabled_false; } else if (lsm->enabled == &lsm_enabled_true) { if (!enabled) lsm->enabled = &lsm_enabled_false; } else if (lsm->enabled == &lsm_enabled_false) { if (enabled) lsm->enabled = &lsm_enabled_true; } else { *lsm->enabled = enabled; } } /* Is an LSM already listed in the ordered LSMs list? */ static bool __init exists_ordered_lsm(struct lsm_info *lsm) { struct lsm_info **check; for (check = ordered_lsms; *check; check++) if (*check == lsm) return true; return false; } /* Append an LSM to the list of ordered LSMs to initialize. */ static int last_lsm __initdata; static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) { /* Ignore duplicate selections. */ if (exists_ordered_lsm(lsm)) return; if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) return; /* Enable this LSM, if it is not already set. */ if (!lsm->enabled) lsm->enabled = &lsm_enabled_true; ordered_lsms[last_lsm++] = lsm; init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, is_enabled(lsm) ? "en" : "dis"); } /* Is an LSM allowed to be initialized? */ static bool __init lsm_allowed(struct lsm_info *lsm) { /* Skip if the LSM is disabled. */ if (!is_enabled(lsm)) return false; /* Not allowed if another exclusive LSM already initialized. */ if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { init_debug("exclusive disabled: %s\n", lsm->name); return false; } return true; } static void __init lsm_set_blob_size(int *need, int *lbs) { int offset; if (*need > 0) { offset = *lbs; *lbs += *need; *need = offset; } } static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) { if (!needed) return; lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); /* * The inode blob gets an rcu_head in addition to * what the modules might need. */ if (needed->lbs_inode && blob_sizes.lbs_inode == 0) blob_sizes.lbs_inode = sizeof(struct rcu_head); lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); } /* Prepare LSM for initialization. */ static void __init prepare_lsm(struct lsm_info *lsm) { int enabled = lsm_allowed(lsm); /* Record enablement (to handle any following exclusive LSMs). */ set_enabled(lsm, enabled); /* If enabled, do pre-initialization work. */ if (enabled) { if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { exclusive = lsm; init_debug("exclusive chosen: %s\n", lsm->name); } lsm_set_blob_sizes(lsm->blobs); } } /* Initialize a given LSM, if it is enabled. */ static void __init initialize_lsm(struct lsm_info *lsm) { if (is_enabled(lsm)) { int ret; init_debug("initializing %s\n", lsm->name); ret = lsm->init(); WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); } } /* Populate ordered LSMs list from comma-separated LSM name list. */ static void __init ordered_lsm_parse(const char *order, const char *origin) { struct lsm_info *lsm; char *sep, *name, *next; /* LSM_ORDER_FIRST is always first. */ for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (lsm->order == LSM_ORDER_FIRST) append_ordered_lsm(lsm, "first"); } /* Process "security=", if given. */ if (chosen_major_lsm) { struct lsm_info *major; /* * To match the original "security=" behavior, this * explicitly does NOT fallback to another Legacy Major * if the selected one was separately disabled: disable * all non-matching Legacy Major LSMs. */ for (major = __start_lsm_info; major < __end_lsm_info; major++) { if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && strcmp(major->name, chosen_major_lsm) != 0) { set_enabled(major, false); init_debug("security=%s disabled: %s\n", chosen_major_lsm, major->name); } } } sep = kstrdup(order, GFP_KERNEL); next = sep; /* Walk the list, looking for matching LSMs. */ while ((name = strsep(&next, ",")) != NULL) { bool found = false; for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (lsm->order == LSM_ORDER_MUTABLE && strcmp(lsm->name, name) == 0) { append_ordered_lsm(lsm, origin); found = true; } } if (!found) init_debug("%s ignored: %s\n", origin, name); } /* Process "security=", if given. */ if (chosen_major_lsm) { for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (exists_ordered_lsm(lsm)) continue; if (strcmp(lsm->name, chosen_major_lsm) == 0) append_ordered_lsm(lsm, "security="); } } /* Disable all LSMs not in the ordered list. */ for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (exists_ordered_lsm(lsm)) continue; set_enabled(lsm, false); init_debug("%s disabled: %s\n", origin, lsm->name); } kfree(sep); } static void __init lsm_early_cred(struct cred *cred); static void __init lsm_early_task(struct task_struct *task); static int lsm_append(const char *new, char **result); static void __init ordered_lsm_init(void) { struct lsm_info **lsm; ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), GFP_KERNEL); if (chosen_lsm_order) { if (chosen_major_lsm) { pr_info("security= is ignored because it is superseded by lsm=\n"); chosen_major_lsm = NULL; } ordered_lsm_parse(chosen_lsm_order, "cmdline"); } else ordered_lsm_parse(builtin_lsm_order, "builtin"); for (lsm = ordered_lsms; *lsm; lsm++) prepare_lsm(*lsm); init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); init_debug("file blob size = %d\n", blob_sizes.lbs_file); init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); init_debug("task blob size = %d\n", blob_sizes.lbs_task); /* * Create any kmem_caches needed for blobs */ if (blob_sizes.lbs_file) lsm_file_cache = kmem_cache_create("lsm_file_cache", blob_sizes.lbs_file, 0, SLAB_PANIC, NULL); if (blob_sizes.lbs_inode) lsm_inode_cache = kmem_cache_create("lsm_inode_cache", blob_sizes.lbs_inode, 0, SLAB_PANIC, NULL); lsm_early_cred((struct cred *) current->cred); lsm_early_task(current); for (lsm = ordered_lsms; *lsm; lsm++) initialize_lsm(*lsm); kfree(ordered_lsms); } int __init early_security_init(void) { int i; struct hlist_head *list = (struct hlist_head *) &security_hook_heads; struct lsm_info *lsm; for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); i++) INIT_HLIST_HEAD(&list[i]); for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { if (!lsm->enabled) lsm->enabled = &lsm_enabled_true; prepare_lsm(lsm); initialize_lsm(lsm); } return 0; } /** * security_init - initializes the security framework * * This should be called early in the kernel initialization sequence. */ int __init security_init(void) { struct lsm_info *lsm; pr_info("Security Framework initializing\n"); /* * Append the names of the early LSM modules now that kmalloc() is * available */ for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { if (lsm->enabled) lsm_append(lsm->name, &lsm_names); } /* Load LSMs in specified order. */ ordered_lsm_init(); return 0; } /* Save user chosen LSM */ static int __init choose_major_lsm(char *str) { chosen_major_lsm = str; return 1; } __setup("security=", choose_major_lsm); /* Explicitly choose LSM initialization order. */ static int __init choose_lsm_order(char *str) { chosen_lsm_order = str; return 1; } __setup("lsm=", choose_lsm_order); /* Enable LSM order debugging. */ static int __init enable_debug(char *str) { debug = true; return 1; } __setup("lsm.debug", enable_debug); static bool match_last_lsm(const char *list, const char *lsm) { const char *last; if (WARN_ON(!list || !lsm)) return false; last = strrchr(list, ','); if (last) /* Pass the comma, strcmp() will check for '\0' */ last++; else last = list; return !strcmp(last, lsm); } static int lsm_append(const char *new, char **result) { char *cp; if (*result == NULL) { *result = kstrdup(new, GFP_KERNEL); if (*result == NULL) return -ENOMEM; } else { /* Check if it is the last registered name */ if (match_last_lsm(*result, new)) return 0; cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); if (cp == NULL) return -ENOMEM; kfree(*result); *result = cp; } return 0; } /** * security_add_hooks - Add a modules hooks to the hook lists. * @hooks: the hooks to add * @count: the number of hooks to add * @lsm: the name of the security module * * Each LSM has to register its hooks with the infrastructure. */ void __init security_add_hooks(struct security_hook_list *hooks, int count, char *lsm) { int i; for (i = 0; i < count; i++) { hooks[i].lsm = lsm; hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); } /* * Don't try to append during early_security_init(), we'll come back * and fix this up afterwards. */ if (slab_is_available()) { if (lsm_append(lsm, &lsm_names) < 0) panic("%s - Cannot get early memory.\n", __func__); } } int call_blocking_lsm_notifier(enum lsm_event event, void *data) { return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, event, data); } EXPORT_SYMBOL(call_blocking_lsm_notifier); int register_blocking_lsm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, nb); } EXPORT_SYMBOL(register_blocking_lsm_notifier); int unregister_blocking_lsm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, nb); } EXPORT_SYMBOL(unregister_blocking_lsm_notifier); /** * lsm_cred_alloc - allocate a composite cred blob * @cred: the cred that needs a blob * @gfp: allocation type * * Allocate the cred blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) { if (blob_sizes.lbs_cred == 0) { cred->security = NULL; return 0; } cred->security = kzalloc(blob_sizes.lbs_cred, gfp); if (cred->security == NULL) return -ENOMEM; return 0; } /** * lsm_early_cred - during initialization allocate a composite cred blob * @cred: the cred that needs a blob * * Allocate the cred blob for all the modules */ static void __init lsm_early_cred(struct cred *cred) { int rc = lsm_cred_alloc(cred, GFP_KERNEL); if (rc) panic("%s: Early cred alloc failed.\n", __func__); } /** * lsm_file_alloc - allocate a composite file blob * @file: the file that needs a blob * * Allocate the file blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_file_alloc(struct file *file) { if (!lsm_file_cache) { file->f_security = NULL; return 0; } file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); if (file->f_security == NULL) return -ENOMEM; return 0; } /** * lsm_inode_alloc - allocate a composite inode blob * @inode: the inode that needs a blob * * Allocate the inode blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ int lsm_inode_alloc(struct inode *inode) { if (!lsm_inode_cache) { inode->i_security = NULL; return 0; } inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); if (inode->i_security == NULL) return -ENOMEM; return 0; } /** * lsm_task_alloc - allocate a composite task blob * @task: the task that needs a blob * * Allocate the task blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_task_alloc(struct task_struct *task) { if (blob_sizes.lbs_task == 0) { task->security = NULL; return 0; } task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); if (task->security == NULL) return -ENOMEM; return 0; } /** * lsm_ipc_alloc - allocate a composite ipc blob * @kip: the ipc that needs a blob * * Allocate the ipc blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_ipc_alloc(struct kern_ipc_perm *kip) { if (blob_sizes.lbs_ipc == 0) { kip->security = NULL; return 0; } kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); if (kip->security == NULL) return -ENOMEM; return 0; } /** * lsm_msg_msg_alloc - allocate a composite msg_msg blob * @mp: the msg_msg that needs a blob * * Allocate the ipc blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_msg_msg_alloc(struct msg_msg *mp) { if (blob_sizes.lbs_msg_msg == 0) { mp->security = NULL; return 0; } mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); if (mp->security == NULL) return -ENOMEM; return 0; } /** * lsm_early_task - during initialization allocate a composite task blob * @task: the task that needs a blob * * Allocate the task blob for all the modules */ static void __init lsm_early_task(struct task_struct *task) { int rc = lsm_task_alloc(task); if (rc) panic("%s: Early task alloc failed.\n", __func__); } /* * Hook list operation macros. * * call_void_hook: * This is a hook that does not return a value. * * call_int_hook: * This is a hook that returns a value. */ #define call_void_hook(FUNC, ...) \ do { \ struct security_hook_list *P; \ \ hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ P->hook.FUNC(__VA_ARGS__); \ } while (0) #define call_int_hook(FUNC, IRC, ...) ({ \ int RC = IRC; \ do { \ struct security_hook_list *P; \ \ hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ RC = P->hook.FUNC(__VA_ARGS__); \ if (RC != 0) \ break; \ } \ } while (0); \ RC; \ }) /* Security operations */ int security_binder_set_context_mgr(struct task_struct *mgr) { return call_int_hook(binder_set_context_mgr, 0, mgr); } int security_binder_transaction(struct task_struct *from, struct task_struct *to) { return call_int_hook(binder_transaction, 0, from, to); } int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to) { return call_int_hook(binder_transfer_binder, 0, from, to); } int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file) { return call_int_hook(binder_transfer_file, 0, from, to, file); } int security_ptrace_access_check(struct task_struct *child, unsigned int mode) { return call_int_hook(ptrace_access_check, 0, child, mode); } int security_ptrace_traceme(struct task_struct *parent) { return call_int_hook(ptrace_traceme, 0, parent); } int security_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return call_int_hook(capget, 0, target, effective, inheritable, permitted); } int security_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { return call_int_hook(capset, 0, new, old, effective, inheritable, permitted); } int security_capable(const struct cred *cred, struct user_namespace *ns, int cap, unsigned int opts) { return call_int_hook(capable, 0, cred, ns, cap, opts); } int security_quotactl(int cmds, int type, int id, struct super_block *sb) { return call_int_hook(quotactl, 0, cmds, type, id, sb); } int security_quota_on(struct dentry *dentry) { return call_int_hook(quota_on, 0, dentry); } int security_syslog(int type) { return call_int_hook(syslog, 0, type); } int security_settime64(const struct timespec64 *ts, const struct timezone *tz) { return call_int_hook(settime, 0, ts, tz); } int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) { struct security_hook_list *hp; int cap_sys_admin = 1; int rc; /* * The module will respond with a positive value if * it thinks the __vm_enough_memory() call should be * made with the cap_sys_admin set. If all of the modules * agree that it should be set it will. If any module * thinks it should not be set it won't. */ hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { rc = hp->hook.vm_enough_memory(mm, pages); if (rc <= 0) { cap_sys_admin = 0; break; } } return __vm_enough_memory(mm, pages, cap_sys_admin); } int security_bprm_set_creds(struct linux_binprm *bprm) { return call_int_hook(bprm_set_creds, 0, bprm); } int security_bprm_check(struct linux_binprm *bprm) { int ret; ret = call_int_hook(bprm_check_security, 0, bprm); if (ret) return ret; return ima_bprm_check(bprm); } void security_bprm_committing_creds(struct linux_binprm *bprm) { call_void_hook(bprm_committing_creds, bprm); } void security_bprm_committed_creds(struct linux_binprm *bprm) { call_void_hook(bprm_committed_creds, bprm); } int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { return call_int_hook(fs_context_dup, 0, fc, src_fc); } int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) { return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); } int security_sb_alloc(struct super_block *sb) { return call_int_hook(sb_alloc_security, 0, sb); } void security_sb_free(struct super_block *sb) { call_void_hook(sb_free_security, sb); } void security_free_mnt_opts(void **mnt_opts) { if (!*mnt_opts) return; call_void_hook(sb_free_mnt_opts, *mnt_opts); *mnt_opts = NULL; } EXPORT_SYMBOL(security_free_mnt_opts); int security_sb_eat_lsm_opts(char *options, void **mnt_opts) { return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); } EXPORT_SYMBOL(security_sb_eat_lsm_opts); int security_sb_remount(struct super_block *sb, void *mnt_opts) { return call_int_hook(sb_remount, 0, sb, mnt_opts); } EXPORT_SYMBOL(security_sb_remount); int security_sb_kern_mount(struct super_block *sb) { return call_int_hook(sb_kern_mount, 0, sb); } int security_sb_show_options(struct seq_file *m, struct super_block *sb) { return call_int_hook(sb_show_options, 0, m, sb); } int security_sb_statfs(struct dentry *dentry) { return call_int_hook(sb_statfs, 0, dentry); } int security_sb_mount(const char *dev_name, const struct path *path, const char *type, unsigned long flags, void *data) { return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); } int security_sb_umount(struct vfsmount *mnt, int flags) { return call_int_hook(sb_umount, 0, mnt, flags); } int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) { return call_int_hook(sb_pivotroot, 0, old_path, new_path); } int security_sb_set_mnt_opts(struct super_block *sb, void *mnt_opts, unsigned long kern_flags, unsigned long *set_kern_flags) { return call_int_hook(sb_set_mnt_opts, mnt_opts ? -EOPNOTSUPP : 0, sb, mnt_opts, kern_flags, set_kern_flags); } EXPORT_SYMBOL(security_sb_set_mnt_opts); int security_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb, unsigned long kern_flags, unsigned long *set_kern_flags) { return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, kern_flags, set_kern_flags); } EXPORT_SYMBOL(security_sb_clone_mnt_opts); int security_add_mnt_opt(const char *option, const char *val, int len, void **mnt_opts) { return call_int_hook(sb_add_mnt_opt, -EINVAL, option, val, len, mnt_opts); } EXPORT_SYMBOL(security_add_mnt_opt); int security_move_mount(const struct path *from_path, const struct path *to_path) { return call_int_hook(move_mount, 0, from_path, to_path); } int security_path_notify(const struct path *path, u64 mask, unsigned int obj_type) { return call_int_hook(path_notify, 0, path, mask, obj_type); } int security_inode_alloc(struct inode *inode) { int rc = lsm_inode_alloc(inode); if (unlikely(rc)) return rc; rc = call_int_hook(inode_alloc_security, 0, inode); if (unlikely(rc)) security_inode_free(inode); return rc; } static void inode_free_by_rcu(struct rcu_head *head) { /* * The rcu head is at the start of the inode blob */ kmem_cache_free(lsm_inode_cache, head); } void security_inode_free(struct inode *inode) { integrity_inode_free(inode); call_void_hook(inode_free_security, inode); /* * The inode may still be referenced in a path walk and * a call to security_inode_permission() can be made * after inode_free_security() is called. Ideally, the VFS * wouldn't do this, but fixing that is a much harder * job. For now, simply free the i_security via RCU, and * leave the current inode->i_security pointer intact. * The inode will be freed after the RCU grace period too. */ if (inode->i_security) call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu); } int security_dentry_init_security(struct dentry *dentry, int mode, const struct qstr *name, void **ctx, u32 *ctxlen) { return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, name, ctx, ctxlen); } EXPORT_SYMBOL(security_dentry_init_security); int security_dentry_create_files_as(struct dentry *dentry, int mode, struct qstr *name, const struct cred *old, struct cred *new) { return call_int_hook(dentry_create_files_as, 0, dentry, mode, name, old, new); } EXPORT_SYMBOL(security_dentry_create_files_as); int security_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, const initxattrs initxattrs, void *fs_data) { struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; struct xattr *lsm_xattr, *evm_xattr, *xattr; int ret; if (unlikely(IS_PRIVATE(inode))) return 0; if (!initxattrs) return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, NULL, NULL, NULL); memset(new_xattrs, 0, sizeof(new_xattrs)); lsm_xattr = new_xattrs; ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, &lsm_xattr->name, &lsm_xattr->value, &lsm_xattr->value_len); if (ret) goto out; evm_xattr = lsm_xattr + 1; ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); if (ret) goto out; ret = initxattrs(inode, new_xattrs, fs_data); out: for (xattr = new_xattrs; xattr->value != NULL; xattr++) kfree(xattr->value); return (ret == -EOPNOTSUPP) ? 0 : ret; } EXPORT_SYMBOL(security_inode_init_security); int security_old_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, const char **name, void **value, size_t *len) { if (unlikely(IS_PRIVATE(inode))) return -EOPNOTSUPP; return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, name, value, len); } EXPORT_SYMBOL(security_old_inode_init_security); #ifdef CONFIG_SECURITY_PATH int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, unsigned int dev) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); } EXPORT_SYMBOL(security_path_mknod); int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_mkdir, 0, dir, dentry, mode); } EXPORT_SYMBOL(security_path_mkdir); int security_path_rmdir(const struct path *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_rmdir, 0, dir, dentry); } int security_path_unlink(const struct path *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_unlink, 0, dir, dentry); } EXPORT_SYMBOL(security_path_unlink); int security_path_symlink(const struct path *dir, struct dentry *dentry, const char *old_name) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_symlink, 0, dir, dentry, old_name); } int security_path_link(struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) return 0; return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); } int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry, unsigned int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) return 0; if (flags & RENAME_EXCHANGE) { int err = call_int_hook(path_rename, 0, new_dir, new_dentry, old_dir, old_dentry); if (err) return err; } return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, new_dentry); } EXPORT_SYMBOL(security_path_rename); int security_path_truncate(const struct path *path) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_truncate, 0, path); } int security_path_chmod(const struct path *path, umode_t mode) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_chmod, 0, path, mode); } int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_chown, 0, path, uid, gid); } EXPORT_SYMBOL(security_path_chown); int security_path_chroot(const struct path *path) { return call_int_hook(path_chroot, 0, path); } #endif int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_create, 0, dir, dentry, mode); } EXPORT_SYMBOL_GPL(security_inode_create); int security_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) return 0; return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); } int security_inode_unlink(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_unlink, 0, dir, dentry); } int security_inode_symlink(struct inode *dir, struct dentry *dentry, const char *old_name) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_symlink, 0, dir, dentry, old_name); } int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_mkdir, 0, dir, dentry, mode); } EXPORT_SYMBOL_GPL(security_inode_mkdir); int security_inode_rmdir(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_rmdir, 0, dir, dentry); } int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); } int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) return 0; if (flags & RENAME_EXCHANGE) { int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, old_dir, old_dentry); if (err) return err; } return call_int_hook(inode_rename, 0, old_dir, old_dentry, new_dir, new_dentry); } int security_inode_readlink(struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_readlink, 0, dentry); } int security_inode_follow_link(struct dentry *dentry, struct inode *inode, bool rcu) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); } int security_inode_permission(struct inode *inode, int mask) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_permission, 0, inode, mask); } int security_inode_setattr(struct dentry *dentry, struct iattr *attr) { int ret; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; ret = call_int_hook(inode_setattr, 0, dentry, attr); if (ret) return ret; return evm_inode_setattr(dentry, attr); } EXPORT_SYMBOL_GPL(security_inode_setattr); int security_inode_getattr(const struct path *path) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(inode_getattr, 0, path); } int security_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { int ret; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; /* * SELinux and Smack integrate the cap call, * so assume that all LSMs supplying this call do so. */ ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, flags); if (ret == 1) ret = cap_inode_setxattr(dentry, name, value, size, flags); if (ret) return ret; ret = ima_inode_setxattr(dentry, name, value, size); if (ret) return ret; return evm_inode_setxattr(dentry, name, value, size); } void security_inode_post_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); evm_inode_post_setxattr(dentry, name, value, size); } int security_inode_getxattr(struct dentry *dentry, const char *name) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_getxattr, 0, dentry, name); } int security_inode_listxattr(struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_listxattr, 0, dentry); } int security_inode_removexattr(struct dentry *dentry, const char *name) { int ret; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; /* * SELinux and Smack integrate the cap call, * so assume that all LSMs supplying this call do so. */ ret = call_int_hook(inode_removexattr, 1, dentry, name); if (ret == 1) ret = cap_inode_removexattr(dentry, name); if (ret) return ret; ret = ima_inode_removexattr(dentry, name); if (ret) return ret; return evm_inode_removexattr(dentry, name); } int security_inode_need_killpriv(struct dentry *dentry) { return call_int_hook(inode_need_killpriv, 0, dentry); } int security_inode_killpriv(struct dentry *dentry) { return call_int_hook(inode_killpriv, 0, dentry); } int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) { struct security_hook_list *hp; int rc; if (unlikely(IS_PRIVATE(inode))) return -EOPNOTSUPP; /* * Only one module will provide an attribute with a given name. */ hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); if (rc != -EOPNOTSUPP) return rc; } return -EOPNOTSUPP; } int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct security_hook_list *hp; int rc; if (unlikely(IS_PRIVATE(inode))) return -EOPNOTSUPP; /* * Only one module will provide an attribute with a given name. */ hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { rc = hp->hook.inode_setsecurity(inode, name, value, size, flags); if (rc != -EOPNOTSUPP) return rc; } return -EOPNOTSUPP; } int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); } EXPORT_SYMBOL(security_inode_listsecurity); void security_inode_getsecid(struct inode *inode, u32 *secid) { call_void_hook(inode_getsecid, inode, secid); } int security_inode_copy_up(struct dentry *src, struct cred **new) { return call_int_hook(inode_copy_up, 0, src, new); } EXPORT_SYMBOL(security_inode_copy_up); int security_inode_copy_up_xattr(const char *name) { return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); } EXPORT_SYMBOL(security_inode_copy_up_xattr); int security_kernfs_init_security(struct kernfs_node *kn_dir, struct kernfs_node *kn) { return call_int_hook(kernfs_init_security, 0, kn_dir, kn); } int security_file_permission(struct file *file, int mask) { int ret; ret = call_int_hook(file_permission, 0, file, mask); if (ret) return ret; return fsnotify_perm(file, mask); } int security_file_alloc(struct file *file) { int rc = lsm_file_alloc(file); if (rc) return rc; rc = call_int_hook(file_alloc_security, 0, file); if (unlikely(rc)) security_file_free(file); return rc; } void security_file_free(struct file *file) { void *blob; call_void_hook(file_free_security, file); blob = file->f_security; if (blob) { file->f_security = NULL; kmem_cache_free(lsm_file_cache, blob); } } int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_ioctl, 0, file, cmd, arg); } static inline unsigned long mmap_prot(struct file *file, unsigned long prot) { /* * Does we have PROT_READ and does the application expect * it to imply PROT_EXEC? If not, nothing to talk about... */ if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) return prot; if (!(current->personality & READ_IMPLIES_EXEC)) return prot; /* * if that's an anonymous mapping, let it. */ if (!file) return prot | PROT_EXEC; /* * ditto if it's not on noexec mount, except that on !MMU we need * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case */ if (!path_noexec(&file->f_path)) { #ifndef CONFIG_MMU if (file->f_op->mmap_capabilities) { unsigned caps = file->f_op->mmap_capabilities(file); if (!(caps & NOMMU_MAP_EXEC)) return prot; } #endif return prot | PROT_EXEC; } /* anything on noexec mount won't get PROT_EXEC */ return prot; } int security_mmap_file(struct file *file, unsigned long prot, unsigned long flags) { int ret; ret = call_int_hook(mmap_file, 0, file, prot, mmap_prot(file, prot), flags); if (ret) return ret; return ima_file_mmap(file, prot); } int security_mmap_addr(unsigned long addr) { return call_int_hook(mmap_addr, 0, addr); } int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { return call_int_hook(file_mprotect, 0, vma, reqprot, prot); } int security_file_lock(struct file *file, unsigned int cmd) { return call_int_hook(file_lock, 0, file, cmd); } int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_fcntl, 0, file, cmd, arg); } void security_file_set_fowner(struct file *file) { call_void_hook(file_set_fowner, file); } int security_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int sig) { return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); } int security_file_receive(struct file *file) { return call_int_hook(file_receive, 0, file); } int security_file_open(struct file *file) { int ret; ret = call_int_hook(file_open, 0, file); if (ret) return ret; return fsnotify_perm(file, MAY_OPEN); } int security_task_alloc(struct task_struct *task, unsigned long clone_flags) { int rc = lsm_task_alloc(task); if (rc) return rc; rc = call_int_hook(task_alloc, 0, task, clone_flags); if (unlikely(rc)) security_task_free(task); return rc; } void security_task_free(struct task_struct *task) { call_void_hook(task_free, task); kfree(task->security); task->security = NULL; } int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) { int rc = lsm_cred_alloc(cred, gfp); if (rc) return rc; rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); if (unlikely(rc)) security_cred_free(cred); return rc; } void security_cred_free(struct cred *cred) { /* * There is a failure case in prepare_creds() that * may result in a call here with ->security being NULL. */ if (unlikely(cred->security == NULL)) return; call_void_hook(cred_free, cred); kfree(cred->security); cred->security = NULL; } int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) { int rc = lsm_cred_alloc(new, gfp); if (rc) return rc; rc = call_int_hook(cred_prepare, 0, new, old, gfp); if (unlikely(rc)) security_cred_free(new); return rc; } void security_transfer_creds(struct cred *new, const struct cred *old) { call_void_hook(cred_transfer, new, old); } void security_cred_getsecid(const struct cred *c, u32 *secid) { *secid = 0; call_void_hook(cred_getsecid, c, secid); } EXPORT_SYMBOL(security_cred_getsecid); int security_kernel_act_as(struct cred *new, u32 secid) { return call_int_hook(kernel_act_as, 0, new, secid); } int security_kernel_create_files_as(struct cred *new, struct inode *inode) { return call_int_hook(kernel_create_files_as, 0, new, inode); } int security_kernel_module_request(char *kmod_name) { int ret; ret = call_int_hook(kernel_module_request, 0, kmod_name); if (ret) return ret; return integrity_kernel_module_request(kmod_name); } int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) { int ret; ret = call_int_hook(kernel_read_file, 0, file, id); if (ret) return ret; return ima_read_file(file, id); } EXPORT_SYMBOL_GPL(security_kernel_read_file); int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, enum kernel_read_file_id id) { int ret; ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); if (ret) return ret; return ima_post_read_file(file, buf, size, id); } EXPORT_SYMBOL_GPL(security_kernel_post_read_file); int security_kernel_load_data(enum kernel_load_data_id id) { int ret; ret = call_int_hook(kernel_load_data, 0, id); if (ret) return ret; return ima_load_data(id); } EXPORT_SYMBOL_GPL(security_kernel_load_data); int security_task_fix_setuid(struct cred *new, const struct cred *old, int flags) { return call_int_hook(task_fix_setuid, 0, new, old, flags); } int security_task_setpgid(struct task_struct *p, pid_t pgid) { return call_int_hook(task_setpgid, 0, p, pgid); } int security_task_getpgid(struct task_struct *p) { return call_int_hook(task_getpgid, 0, p); } int security_task_getsid(struct task_struct *p) { return call_int_hook(task_getsid, 0, p); } void security_task_getsecid(struct task_struct *p, u32 *secid) { *secid = 0; call_void_hook(task_getsecid, p, secid); } EXPORT_SYMBOL(security_task_getsecid); int security_task_setnice(struct task_struct *p, int nice) { return call_int_hook(task_setnice, 0, p, nice); } int security_task_setioprio(struct task_struct *p, int ioprio) { return call_int_hook(task_setioprio, 0, p, ioprio); } int security_task_getioprio(struct task_struct *p) { return call_int_hook(task_getioprio, 0, p); } int security_task_prlimit(const struct cred *cred, const struct cred *tcred, unsigned int flags) { return call_int_hook(task_prlimit, 0, cred, tcred, flags); } int security_task_setrlimit(struct task_struct *p, unsigned int resource, struct rlimit *new_rlim) { return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); } int security_task_setscheduler(struct task_struct *p) { return call_int_hook(task_setscheduler, 0, p); } int security_task_getscheduler(struct task_struct *p) { return call_int_hook(task_getscheduler, 0, p); } int security_task_movememory(struct task_struct *p) { return call_int_hook(task_movememory, 0, p); } int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, int sig, const struct cred *cred) { return call_int_hook(task_kill, 0, p, info, sig, cred); } int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { int thisrc; int rc = -ENOSYS; struct security_hook_list *hp; hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); if (thisrc != -ENOSYS) { rc = thisrc; if (thisrc != 0) break; } } return rc; } void security_task_to_inode(struct task_struct *p, struct inode *inode) { call_void_hook(task_to_inode, p, inode); } int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) { return call_int_hook(ipc_permission, 0, ipcp, flag); } void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) { *secid = 0; call_void_hook(ipc_getsecid, ipcp, secid); } int security_msg_msg_alloc(struct msg_msg *msg) { int rc = lsm_msg_msg_alloc(msg); if (unlikely(rc)) return rc; rc = call_int_hook(msg_msg_alloc_security, 0, msg); if (unlikely(rc)) security_msg_msg_free(msg); return rc; } void security_msg_msg_free(struct msg_msg *msg) { call_void_hook(msg_msg_free_security, msg); kfree(msg->security); msg->security = NULL; } int security_msg_queue_alloc(struct kern_ipc_perm *msq) { int rc = lsm_ipc_alloc(msq); if (unlikely(rc)) return rc; rc = call_int_hook(msg_queue_alloc_security, 0, msq); if (unlikely(rc)) security_msg_queue_free(msq); return rc; } void security_msg_queue_free(struct kern_ipc_perm *msq) { call_void_hook(msg_queue_free_security, msq); kfree(msq->security); msq->security = NULL; } int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) { return call_int_hook(msg_queue_associate, 0, msq, msqflg); } int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) { return call_int_hook(msg_queue_msgctl, 0, msq, cmd); } int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) { return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); } int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode) { return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); } int security_shm_alloc(struct kern_ipc_perm *shp) { int rc = lsm_ipc_alloc(shp); if (unlikely(rc)) return rc; rc = call_int_hook(shm_alloc_security, 0, shp); if (unlikely(rc)) security_shm_free(shp); return rc; } void security_shm_free(struct kern_ipc_perm *shp) { call_void_hook(shm_free_security, shp); kfree(shp->security); shp->security = NULL; } int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) { return call_int_hook(shm_associate, 0, shp, shmflg); } int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) { return call_int_hook(shm_shmctl, 0, shp, cmd); } int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) { return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); } int security_sem_alloc(struct kern_ipc_perm *sma) { int rc = lsm_ipc_alloc(sma); if (unlikely(rc)) return rc; rc = call_int_hook(sem_alloc_security, 0, sma); if (unlikely(rc)) security_sem_free(sma); return rc; } void security_sem_free(struct kern_ipc_perm *sma) { call_void_hook(sem_free_security, sma); kfree(sma->security); sma->security = NULL; } int security_sem_associate(struct kern_ipc_perm *sma, int semflg) { return call_int_hook(sem_associate, 0, sma, semflg); } int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) { return call_int_hook(sem_semctl, 0, sma, cmd); } int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, unsigned nsops, int alter) { return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); } void security_d_instantiate(struct dentry *dentry, struct inode *inode) { if (unlikely(inode && IS_PRIVATE(inode))) return; call_void_hook(d_instantiate, dentry, inode); } EXPORT_SYMBOL(security_d_instantiate); int security_getprocattr(struct task_struct *p, const char *lsm, char *name, char **value) { struct security_hook_list *hp; hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { if (lsm != NULL && strcmp(lsm, hp->lsm)) continue; return hp->hook.getprocattr(p, name, value); } return -EINVAL; } int security_setprocattr(const char *lsm, const char *name, void *value, size_t size) { struct security_hook_list *hp; hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { if (lsm != NULL && strcmp(lsm, hp->lsm)) continue; return hp->hook.setprocattr(name, value, size); } return -EINVAL; } int security_netlink_send(struct sock *sk, struct sk_buff *skb) { return call_int_hook(netlink_send, 0, sk, skb); } int security_ismaclabel(const char *name) { return call_int_hook(ismaclabel, 0, name); } EXPORT_SYMBOL(security_ismaclabel); int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, seclen); } EXPORT_SYMBOL(security_secid_to_secctx); int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) { *secid = 0; return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); } EXPORT_SYMBOL(security_secctx_to_secid); void security_release_secctx(char *secdata, u32 seclen) { call_void_hook(release_secctx, secdata, seclen); } EXPORT_SYMBOL(security_release_secctx); void security_inode_invalidate_secctx(struct inode *inode) { call_void_hook(inode_invalidate_secctx, inode); } EXPORT_SYMBOL(security_inode_invalidate_secctx); int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) { return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_notifysecctx); int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) { return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_setsecctx); int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) { return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_getsecctx); #ifdef CONFIG_SECURITY_NETWORK int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) { return call_int_hook(unix_stream_connect, 0, sock, other, newsk); } EXPORT_SYMBOL(security_unix_stream_connect); int security_unix_may_send(struct socket *sock, struct socket *other) { return call_int_hook(unix_may_send, 0, sock, other); } EXPORT_SYMBOL(security_unix_may_send); int security_socket_create(int family, int type, int protocol, int kern) { return call_int_hook(socket_create, 0, family, type, protocol, kern); } int security_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { return call_int_hook(socket_post_create, 0, sock, family, type, protocol, kern); } int security_socket_socketpair(struct socket *socka, struct socket *sockb) { return call_int_hook(socket_socketpair, 0, socka, sockb); } EXPORT_SYMBOL(security_socket_socketpair); int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { return call_int_hook(socket_bind, 0, sock, address, addrlen); } int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { return call_int_hook(socket_connect, 0, sock, address, addrlen); } int security_socket_listen(struct socket *sock, int backlog) { return call_int_hook(socket_listen, 0, sock, backlog); } int security_socket_accept(struct socket *sock, struct socket *newsock) { return call_int_hook(socket_accept, 0, sock, newsock); } int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return call_int_hook(socket_sendmsg, 0, sock, msg, size); } int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); } int security_socket_getsockname(struct socket *sock) { return call_int_hook(socket_getsockname, 0, sock); } int security_socket_getpeername(struct socket *sock) { return call_int_hook(socket_getpeername, 0, sock); } int security_socket_getsockopt(struct socket *sock, int level, int optname) { return call_int_hook(socket_getsockopt, 0, sock, level, optname); } int security_socket_setsockopt(struct socket *sock, int level, int optname) { return call_int_hook(socket_setsockopt, 0, sock, level, optname); } int security_socket_shutdown(struct socket *sock, int how) { return call_int_hook(socket_shutdown, 0, sock, how); } int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); } EXPORT_SYMBOL(security_sock_rcv_skb); int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned len) { return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, optval, optlen, len); } int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, skb, secid); } EXPORT_SYMBOL(security_socket_getpeersec_dgram); int security_sk_alloc(struct sock *sk, int family, gfp_t priority) { return call_int_hook(sk_alloc_security, 0, sk, family, priority); } void security_sk_free(struct sock *sk) { call_void_hook(sk_free_security, sk); } void security_sk_clone(const struct sock *sk, struct sock *newsk) { call_void_hook(sk_clone_security, sk, newsk); } EXPORT_SYMBOL(security_sk_clone); void security_sk_classify_flow(struct sock *sk, struct flowi *fl) { call_void_hook(sk_getsecid, sk, &fl->flowi_secid); } EXPORT_SYMBOL(security_sk_classify_flow); void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) { call_void_hook(req_classify_flow, req, fl); } EXPORT_SYMBOL(security_req_classify_flow); void security_sock_graft(struct sock *sk, struct socket *parent) { call_void_hook(sock_graft, sk, parent); } EXPORT_SYMBOL(security_sock_graft); int security_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { return call_int_hook(inet_conn_request, 0, sk, skb, req); } EXPORT_SYMBOL(security_inet_conn_request); void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { call_void_hook(inet_csk_clone, newsk, req); } void security_inet_conn_established(struct sock *sk, struct sk_buff *skb) { call_void_hook(inet_conn_established, sk, skb); } EXPORT_SYMBOL(security_inet_conn_established); int security_secmark_relabel_packet(u32 secid) { return call_int_hook(secmark_relabel_packet, 0, secid); } EXPORT_SYMBOL(security_secmark_relabel_packet); void security_secmark_refcount_inc(void) { call_void_hook(secmark_refcount_inc); } EXPORT_SYMBOL(security_secmark_refcount_inc); void security_secmark_refcount_dec(void) { call_void_hook(secmark_refcount_dec); } EXPORT_SYMBOL(security_secmark_refcount_dec); int security_tun_dev_alloc_security(void **security) { return call_int_hook(tun_dev_alloc_security, 0, security); } EXPORT_SYMBOL(security_tun_dev_alloc_security); void security_tun_dev_free_security(void *security) { call_void_hook(tun_dev_free_security, security); } EXPORT_SYMBOL(security_tun_dev_free_security); int security_tun_dev_create(void) { return call_int_hook(tun_dev_create, 0); } EXPORT_SYMBOL(security_tun_dev_create); int security_tun_dev_attach_queue(void *security) { return call_int_hook(tun_dev_attach_queue, 0, security); } EXPORT_SYMBOL(security_tun_dev_attach_queue); int security_tun_dev_attach(struct sock *sk, void *security) { return call_int_hook(tun_dev_attach, 0, sk, security); } EXPORT_SYMBOL(security_tun_dev_attach); int security_tun_dev_open(void *security) { return call_int_hook(tun_dev_open, 0, security); } EXPORT_SYMBOL(security_tun_dev_open); int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) { return call_int_hook(sctp_assoc_request, 0, ep, skb); } EXPORT_SYMBOL(security_sctp_assoc_request); int security_sctp_bind_connect(struct sock *sk, int optname, struct sockaddr *address, int addrlen) { return call_int_hook(sctp_bind_connect, 0, sk, optname, address, addrlen); } EXPORT_SYMBOL(security_sctp_bind_connect); void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, struct sock *newsk) { call_void_hook(sctp_sk_clone, ep, sk, newsk); } EXPORT_SYMBOL(security_sctp_sk_clone); #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_INFINIBAND int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) { return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); } EXPORT_SYMBOL(security_ib_pkey_access); int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) { return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); } EXPORT_SYMBOL(security_ib_endport_manage_subnet); int security_ib_alloc_security(void **sec) { return call_int_hook(ib_alloc_security, 0, sec); } EXPORT_SYMBOL(security_ib_alloc_security); void security_ib_free_security(void *sec) { call_void_hook(ib_free_security, sec); } EXPORT_SYMBOL(security_ib_free_security); #endif /* CONFIG_SECURITY_INFINIBAND */ #ifdef CONFIG_SECURITY_NETWORK_XFRM int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx, gfp_t gfp) { return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); } EXPORT_SYMBOL(security_xfrm_policy_alloc); int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp) { return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); } void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) { call_void_hook(xfrm_policy_free_security, ctx); } EXPORT_SYMBOL(security_xfrm_policy_free); int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) { return call_int_hook(xfrm_policy_delete_security, 0, ctx); } int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) { return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); } EXPORT_SYMBOL(security_xfrm_state_alloc); int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid) { return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); } int security_xfrm_state_delete(struct xfrm_state *x) { return call_int_hook(xfrm_state_delete_security, 0, x); } EXPORT_SYMBOL(security_xfrm_state_delete); void security_xfrm_state_free(struct xfrm_state *x) { call_void_hook(xfrm_state_free_security, x); } int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) { return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); } int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, const struct flowi *fl) { struct security_hook_list *hp; int rc = 1; /* * Since this function is expected to return 0 or 1, the judgment * becomes difficult if multiple LSMs supply this call. Fortunately, * we can use the first LSM's judgment because currently only SELinux * supplies this call. * * For speed optimization, we explicitly break the loop rather than * using the macro */ hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, list) { rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); break; } return rc; } int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) { return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); } void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) { int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 0); BUG_ON(rc); } EXPORT_SYMBOL(security_skb_classify_flow); #endif /* CONFIG_SECURITY_NETWORK_XFRM */ #ifdef CONFIG_KEYS int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags) { return call_int_hook(key_alloc, 0, key, cred, flags); } void security_key_free(struct key *key) { call_void_hook(key_free, key); } int security_key_permission(key_ref_t key_ref, const struct cred *cred, unsigned perm) { return call_int_hook(key_permission, 0, key_ref, cred, perm); } int security_key_getsecurity(struct key *key, char **_buffer) { *_buffer = NULL; return call_int_hook(key_getsecurity, 0, key, _buffer); } #endif /* CONFIG_KEYS */ #ifdef CONFIG_AUDIT int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) { return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); } int security_audit_rule_known(struct audit_krule *krule) { return call_int_hook(audit_rule_known, 0, krule); } void security_audit_rule_free(void *lsmrule) { call_void_hook(audit_rule_free, lsmrule); } int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) { return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_BPF_SYSCALL int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) { return call_int_hook(bpf, 0, cmd, attr, size); } int security_bpf_map(struct bpf_map *map, fmode_t fmode) { return call_int_hook(bpf_map, 0, map, fmode); } int security_bpf_prog(struct bpf_prog *prog) { return call_int_hook(bpf_prog, 0, prog); } int security_bpf_map_alloc(struct bpf_map *map) { return call_int_hook(bpf_map_alloc_security, 0, map); } int security_bpf_prog_alloc(struct bpf_prog_aux *aux) { return call_int_hook(bpf_prog_alloc_security, 0, aux); } void security_bpf_map_free(struct bpf_map *map) { call_void_hook(bpf_map_free_security, map); } void security_bpf_prog_free(struct bpf_prog_aux *aux) { call_void_hook(bpf_prog_free_security, aux); } #endif /* CONFIG_BPF_SYSCALL */ int security_locked_down(enum lockdown_reason what) { return call_int_hook(locked_down, 0, what); } EXPORT_SYMBOL(security_locked_down); #ifdef CONFIG_PERF_EVENTS int security_perf_event_open(struct perf_event_attr *attr, int type) { return call_int_hook(perf_event_open, 0, attr, type); } int security_perf_event_alloc(struct perf_event *event) { return call_int_hook(perf_event_alloc, 0, event); } void security_perf_event_free(struct perf_event *event) { call_void_hook(perf_event_free, event); } int security_perf_event_read(struct perf_event *event) { return call_int_hook(perf_event_read, 0, event); } int security_perf_event_write(struct perf_event *event) { return call_int_hook(perf_event_write, 0, event); } #endif /* CONFIG_PERF_EVENTS */