• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/phy/phy.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/otg.h>
45 #include <linux/usb/phy.h>
46 #include "hw.h"
47 
48 /*
49  * Suggested defines for tracers:
50  * - no_printk:    Disable tracing
51  * - pr_info:      Print this info to the console
52  * - trace_printk: Print this info to trace buffer (good for verbose logging)
53  */
54 
55 #define DWC2_TRACE_SCHEDULER		no_printk
56 #define DWC2_TRACE_SCHEDULER_VB		no_printk
57 
58 /* Detailed scheduler tracing, but won't overwhelm console */
59 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
60 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
61 			     dev_name(hsotg->dev), ##__VA_ARGS__)
62 
63 /* Verbose scheduler tracing */
64 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
65 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
66 				dev_name(hsotg->dev), ##__VA_ARGS__)
67 
68 /* Maximum number of Endpoints/HostChannels */
69 #define MAX_EPS_CHANNELS	16
70 
71 /* dwc2-hsotg declarations */
72 static const char * const dwc2_hsotg_supply_names[] = {
73 	"vusb_d",               /* digital USB supply, 1.2V */
74 	"vusb_a",               /* analog USB supply, 1.1V */
75 };
76 
77 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
78 
79 /*
80  * EP0_MPS_LIMIT
81  *
82  * Unfortunately there seems to be a limit of the amount of data that can
83  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
84  * packets (which practically means 1 packet and 63 bytes of data) when the
85  * MPS is set to 64.
86  *
87  * This means if we are wanting to move >127 bytes of data, we need to
88  * split the transactions up, but just doing one packet at a time does
89  * not work (this may be an implicit DATA0 PID on first packet of the
90  * transaction) and doing 2 packets is outside the controller's limits.
91  *
92  * If we try to lower the MPS size for EP0, then no transfers work properly
93  * for EP0, and the system will fail basic enumeration. As no cause for this
94  * has currently been found, we cannot support any large IN transfers for
95  * EP0.
96  */
97 #define EP0_MPS_LIMIT   64
98 
99 struct dwc2_hsotg;
100 struct dwc2_hsotg_req;
101 
102 /**
103  * struct dwc2_hsotg_ep - driver endpoint definition.
104  * @ep: The gadget layer representation of the endpoint.
105  * @name: The driver generated name for the endpoint.
106  * @queue: Queue of requests for this endpoint.
107  * @parent: Reference back to the parent device structure.
108  * @req: The current request that the endpoint is processing. This is
109  *       used to indicate an request has been loaded onto the endpoint
110  *       and has yet to be completed (maybe due to data move, or simply
111  *       awaiting an ack from the core all the data has been completed).
112  * @debugfs: File entry for debugfs file for this endpoint.
113  * @dir_in: Set to true if this endpoint is of the IN direction, which
114  *          means that it is sending data to the Host.
115  * @index: The index for the endpoint registers.
116  * @mc: Multi Count - number of transactions per microframe
117  * @interval: Interval for periodic endpoints, in frames or microframes.
118  * @name: The name array passed to the USB core.
119  * @halted: Set if the endpoint has been halted.
120  * @periodic: Set if this is a periodic ep, such as Interrupt
121  * @isochronous: Set if this is a isochronous ep
122  * @send_zlp: Set if we need to send a zero-length packet.
123  * @desc_list_dma: The DMA address of descriptor chain currently in use.
124  * @desc_list: Pointer to descriptor DMA chain head currently in use.
125  * @desc_count: Count of entries within the DMA descriptor chain of EP.
126  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
127  * @compl_desc: index of next descriptor to be completed by xFerComplete
128  * @total_data: The total number of data bytes done.
129  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
130  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
131  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
132  * @last_load: The offset of data for the last start of request.
133  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
134  * @target_frame: Targeted frame num to setup next ISOC transfer
135  * @frame_overrun: Indicates SOF number overrun in DSTS
136  *
137  * This is the driver's state for each registered enpoint, allowing it
138  * to keep track of transactions that need doing. Each endpoint has a
139  * lock to protect the state, to try and avoid using an overall lock
140  * for the host controller as much as possible.
141  *
142  * For periodic IN endpoints, we have fifo_size and fifo_load to try
143  * and keep track of the amount of data in the periodic FIFO for each
144  * of these as we don't have a status register that tells us how much
145  * is in each of them. (note, this may actually be useless information
146  * as in shared-fifo mode periodic in acts like a single-frame packet
147  * buffer than a fifo)
148  */
149 struct dwc2_hsotg_ep {
150 	struct usb_ep           ep;
151 	struct list_head        queue;
152 	struct dwc2_hsotg       *parent;
153 	struct dwc2_hsotg_req    *req;
154 	struct dentry           *debugfs;
155 
156 	unsigned long           total_data;
157 	unsigned int            size_loaded;
158 	unsigned int            last_load;
159 	unsigned int            fifo_load;
160 	unsigned short          fifo_size;
161 	unsigned short		fifo_index;
162 
163 	unsigned char           dir_in;
164 	unsigned char           index;
165 	unsigned char           mc;
166 	u16                     interval;
167 
168 	unsigned int            halted:1;
169 	unsigned int            periodic:1;
170 	unsigned int            isochronous:1;
171 	unsigned int            send_zlp:1;
172 	unsigned int            target_frame;
173 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
174 	bool			frame_overrun;
175 
176 	dma_addr_t		desc_list_dma;
177 	struct dwc2_dma_desc	*desc_list;
178 	u8			desc_count;
179 
180 	unsigned int		next_desc;
181 	unsigned int		compl_desc;
182 
183 	char                    name[10];
184 };
185 
186 /**
187  * struct dwc2_hsotg_req - data transfer request
188  * @req: The USB gadget request
189  * @queue: The list of requests for the endpoint this is queued for.
190  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
191  */
192 struct dwc2_hsotg_req {
193 	struct usb_request      req;
194 	struct list_head        queue;
195 	void *saved_req_buf;
196 };
197 
198 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
199 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
200 #define call_gadget(_hs, _entry) \
201 do { \
202 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
203 		(_hs)->driver && (_hs)->driver->_entry) { \
204 		spin_unlock(&_hs->lock); \
205 		(_hs)->driver->_entry(&(_hs)->gadget); \
206 		spin_lock(&_hs->lock); \
207 	} \
208 } while (0)
209 #else
210 #define call_gadget(_hs, _entry)	do {} while (0)
211 #endif
212 
213 struct dwc2_hsotg;
214 struct dwc2_host_chan;
215 
216 /* Device States */
217 enum dwc2_lx_state {
218 	DWC2_L0,	/* On state */
219 	DWC2_L1,	/* LPM sleep state */
220 	DWC2_L2,	/* USB suspend state */
221 	DWC2_L3,	/* Off state */
222 };
223 
224 /* Gadget ep0 states */
225 enum dwc2_ep0_state {
226 	DWC2_EP0_SETUP,
227 	DWC2_EP0_DATA_IN,
228 	DWC2_EP0_DATA_OUT,
229 	DWC2_EP0_STATUS_IN,
230 	DWC2_EP0_STATUS_OUT,
231 };
232 
233 /**
234  * struct dwc2_core_params - Parameters for configuring the core
235  *
236  * @otg_cap:            Specifies the OTG capabilities.
237  *                       0 - HNP and SRP capable
238  *                       1 - SRP Only capable
239  *                       2 - No HNP/SRP capable (always available)
240  *                      Defaults to best available option (0, 1, then 2)
241  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
242  *                      the data FIFOs. The driver will automatically detect the
243  *                      value for this parameter if none is specified.
244  *                       0 - Slave (always available)
245  *                       1 - DMA (default, if available)
246  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
247  *                      address DMA mode or descriptor DMA mode for accessing
248  *                      the data FIFOs. The driver will automatically detect the
249  *                      value for this if none is specified.
250  *                       0 - Address DMA
251  *                       1 - Descriptor DMA (default, if available)
252  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
253  *                      address DMA mode or descriptor DMA mode for accessing
254  *                      the data FIFOs in Full Speed mode only. The driver
255  *                      will automatically detect the value for this if none is
256  *                      specified.
257  *                       0 - Address DMA
258  *                       1 - Descriptor DMA in FS (default, if available)
259  * @speed:              Specifies the maximum speed of operation in host and
260  *                      device mode. The actual speed depends on the speed of
261  *                      the attached device and the value of phy_type.
262  *                       0 - High Speed
263  *                           (default when phy_type is UTMI+ or ULPI)
264  *                       1 - Full Speed
265  *                           (default when phy_type is Full Speed)
266  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
267  *                       1 - Allow dynamic FIFO sizing (default, if available)
268  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
269  *                      are enabled for non-periodic IN endpoints in device
270  *                      mode.
271  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
272  *                      dynamic FIFO sizing is enabled
273  *                       16 to 32768
274  *                      Actual maximum value is autodetected and also
275  *                      the default.
276  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
277  *                      in host mode when dynamic FIFO sizing is enabled
278  *                       16 to 32768
279  *                      Actual maximum value is autodetected and also
280  *                      the default.
281  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
282  *                      host mode when dynamic FIFO sizing is enabled
283  *                       16 to 32768
284  *                      Actual maximum value is autodetected and also
285  *                      the default.
286  * @max_transfer_size:  The maximum transfer size supported, in bytes
287  *                       2047 to 65,535
288  *                      Actual maximum value is autodetected and also
289  *                      the default.
290  * @max_packet_count:   The maximum number of packets in a transfer
291  *                       15 to 511
292  *                      Actual maximum value is autodetected and also
293  *                      the default.
294  * @host_channels:      The number of host channel registers to use
295  *                       1 to 16
296  *                      Actual maximum value is autodetected and also
297  *                      the default.
298  * @phy_type:           Specifies the type of PHY interface to use. By default,
299  *                      the driver will automatically detect the phy_type.
300  *                       0 - Full Speed Phy
301  *                       1 - UTMI+ Phy
302  *                       2 - ULPI Phy
303  *                      Defaults to best available option (2, 1, then 0)
304  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
305  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
306  *                      ULPI phy_type, this parameter indicates the data width
307  *                      between the MAC and the ULPI Wrapper.) Also, this
308  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
309  *                      parameter was set to "8 and 16 bits", meaning that the
310  *                      core has been configured to work at either data path
311  *                      width.
312  *                       8 or 16 (default 16 if available)
313  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
314  *                      data rate. This parameter is only applicable if phy_type
315  *                      is ULPI.
316  *                       0 - single data rate ULPI interface with 8 bit wide
317  *                           data bus (default)
318  *                       1 - double data rate ULPI interface with 4 bit wide
319  *                           data bus
320  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
321  *                      external supply to drive the VBus
322  *                       0 - Internal supply (default)
323  *                       1 - External supply
324  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
325  *                      speed PHY. This parameter is only applicable if phy_type
326  *                      is FS.
327  *                       0 - No (default)
328  *                       1 - Yes
329  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
330  *                       0 - Disable (default)
331  *                       1 - Enable
332  * @acg_enable:		For enabling Active Clock Gating in the controller
333  *                       0 - No
334  *                       1 - Yes
335  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
336  *                       0 - No (default)
337  *                       1 - Yes
338  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
339  *                      when attached to a Full Speed or Low Speed device in
340  *                      host mode.
341  *                       0 - Don't support low power mode (default)
342  *                       1 - Support low power mode
343  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
344  *                      when connected to a Low Speed device in host
345  *                      mode. This parameter is applicable only if
346  *                      host_support_fs_ls_low_power is enabled.
347  *                       0 - 48 MHz
348  *                           (default when phy_type is UTMI+ or ULPI)
349  *                       1 - 6 MHz
350  *                           (default when phy_type is Full Speed)
351  * @oc_disable:		Flag to disable overcurrent condition.
352  *			0 - Allow overcurrent condition to get detected
353  *			1 - Disable overcurrent condtion to get detected
354  * @ts_dline:           Enable Term Select Dline pulsing
355  *                       0 - No (default)
356  *                       1 - Yes
357  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
358  *                       0 - No (default for core < 2.92a)
359  *                       1 - Yes (default for core >= 2.92a)
360  * @ahbcfg:             This field allows the default value of the GAHBCFG
361  *                      register to be overridden
362  *                       -1         - GAHBCFG value will be set to 0x06
363  *                                    (INCR, default)
364  *                       all others - GAHBCFG value will be overridden with
365  *                                    this value
366  *                      Not all bits can be controlled like this, the
367  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
368  *                      by the driver and are ignored in this
369  *                      configuration value.
370  * @uframe_sched:       True to enable the microframe scheduler
371  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
372  *                      Disable CONIDSTSCHNG controller interrupt in such
373  *                      case.
374  *                      0 - No (default)
375  *                      1 - Yes
376  * @power_down:         Specifies whether the controller support power_down.
377  *			If power_down is enabled, the controller will enter
378  *			power_down in both peripheral and host mode when
379  *			needed.
380  *			0 - No (default)
381  *			1 - Partial power down
382  *			2 - Hibernation
383  * @lpm:		Enable LPM support.
384  *			0 - No
385  *			1 - Yes
386  * @lpm_clock_gating:		Enable core PHY clock gating.
387  *			0 - No
388  *			1 - Yes
389  * @besl:		Enable LPM Errata support.
390  *			0 - No
391  *			1 - Yes
392  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
393  *			0 - No
394  *			1 - Yes
395  * @hird_threshold:	Value of BESL or HIRD Threshold.
396  * @ref_clk_per:        Indicates in terms of pico seconds the period
397  *                      of ref_clk.
398  *			62500 - 16MHz
399  *                      58823 - 17MHz
400  *                      52083 - 19.2MHz
401  *			50000 - 20MHz
402  *			41666 - 24MHz
403  *			33333 - 30MHz (default)
404  *			25000 - 40MHz
405  * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
406  *                      the controller should generate an interrupt if the
407  *                      device had been in L1 state until that period.
408  *                      This is used by SW to initiate Remote WakeUp in the
409  *                      controller so as to sync to the uF number from the host.
410  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
411  *			register.
412  *			0 - Deactivate the transceiver (default)
413  *			1 - Activate the transceiver
414  * @g_dma:              Enables gadget dma usage (default: autodetect).
415  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
416  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
417  *			DWORDS from 16-32768 (default: 2048 if
418  *			possible, otherwise autodetect).
419  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
420  *			DWORDS from 16-32768 (default: 1024 if
421  *			possible, otherwise autodetect).
422  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
423  *			mode. Each value corresponds to one EP
424  *			starting from EP1 (max 15 values). Sizes are
425  *			in DWORDS with possible values from from
426  *			16-32768 (default: 256, 256, 256, 256, 768,
427  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
428  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
429  *                      while full&low speed device connect. And change speed
430  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
431  *			0 - No (default)
432  *			1 - Yes
433  * @service_interval:   Enable service interval based scheduling.
434  *                      0 - No
435  *                      1 - Yes
436  *
437  * The following parameters may be specified when starting the module. These
438  * parameters define how the DWC_otg controller should be configured. A
439  * value of -1 (or any other out of range value) for any parameter means
440  * to read the value from hardware (if possible) or use the builtin
441  * default described above.
442  */
443 struct dwc2_core_params {
444 	u8 otg_cap;
445 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
446 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
447 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
448 
449 	u8 phy_type;
450 #define DWC2_PHY_TYPE_PARAM_FS		0
451 #define DWC2_PHY_TYPE_PARAM_UTMI	1
452 #define DWC2_PHY_TYPE_PARAM_ULPI	2
453 
454 	u8 speed;
455 #define DWC2_SPEED_PARAM_HIGH	0
456 #define DWC2_SPEED_PARAM_FULL	1
457 #define DWC2_SPEED_PARAM_LOW	2
458 
459 	u8 phy_utmi_width;
460 	bool phy_ulpi_ddr;
461 	bool phy_ulpi_ext_vbus;
462 	bool enable_dynamic_fifo;
463 	bool en_multiple_tx_fifo;
464 	bool i2c_enable;
465 	bool acg_enable;
466 	bool ulpi_fs_ls;
467 	bool ts_dline;
468 	bool reload_ctl;
469 	bool uframe_sched;
470 	bool external_id_pin_ctl;
471 
472 	int power_down;
473 #define DWC2_POWER_DOWN_PARAM_NONE		0
474 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
475 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
476 
477 	bool lpm;
478 	bool lpm_clock_gating;
479 	bool besl;
480 	bool hird_threshold_en;
481 	bool service_interval;
482 	u8 hird_threshold;
483 	bool activate_stm_fs_transceiver;
484 	bool ipg_isoc_en;
485 	u16 max_packet_count;
486 	u32 max_transfer_size;
487 	u32 ahbcfg;
488 
489 	/* GREFCLK parameters */
490 	u32 ref_clk_per;
491 	u16 sof_cnt_wkup_alert;
492 
493 	/* Host parameters */
494 	bool host_dma;
495 	bool dma_desc_enable;
496 	bool dma_desc_fs_enable;
497 	bool host_support_fs_ls_low_power;
498 	bool host_ls_low_power_phy_clk;
499 	bool oc_disable;
500 
501 	u8 host_channels;
502 	u16 host_rx_fifo_size;
503 	u16 host_nperio_tx_fifo_size;
504 	u16 host_perio_tx_fifo_size;
505 
506 	/* Gadget parameters */
507 	bool g_dma;
508 	bool g_dma_desc;
509 	u32 g_rx_fifo_size;
510 	u32 g_np_tx_fifo_size;
511 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
512 
513 	bool change_speed_quirk;
514 };
515 
516 /**
517  * struct dwc2_hw_params - Autodetected parameters.
518  *
519  * These parameters are the various parameters read from hardware
520  * registers during initialization. They typically contain the best
521  * supported or maximum value that can be configured in the
522  * corresponding dwc2_core_params value.
523  *
524  * The values that are not in dwc2_core_params are documented below.
525  *
526  * @op_mode:             Mode of Operation
527  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
528  *                       1 - SRP-Capable OTG (Host & Device)
529  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
530  *                       3 - SRP-Capable Device
531  *                       4 - Non-OTG Device
532  *                       5 - SRP-Capable Host
533  *                       6 - Non-OTG Host
534  * @arch:                Architecture
535  *                       0 - Slave only
536  *                       1 - External DMA
537  *                       2 - Internal DMA
538  * @ipg_isoc_en:        This feature indicates that the controller supports
539  *                      the worst-case scenario of Rx followed by Rx
540  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
541  *                      specification for any token following ISOC OUT token.
542  *                       0 - Don't support
543  *                       1 - Support
544  * @power_optimized:    Are power optimizations enabled?
545  * @num_dev_ep:         Number of device endpoints available
546  * @num_dev_in_eps:     Number of device IN endpoints available
547  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
548  *                       available
549  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
550  *                      Depth
551  *                       0 to 30
552  * @host_perio_tx_q_depth:
553  *                      Host Mode Periodic Request Queue Depth
554  *                       2, 4 or 8
555  * @nperio_tx_q_depth:
556  *                      Non-Periodic Request Queue Depth
557  *                       2, 4 or 8
558  * @hs_phy_type:         High-speed PHY interface type
559  *                       0 - High-speed interface not supported
560  *                       1 - UTMI+
561  *                       2 - ULPI
562  *                       3 - UTMI+ and ULPI
563  * @fs_phy_type:         Full-speed PHY interface type
564  *                       0 - Full speed interface not supported
565  *                       1 - Dedicated full speed interface
566  *                       2 - FS pins shared with UTMI+ pins
567  *                       3 - FS pins shared with ULPI pins
568  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
569  * @hibernation:	Is hibernation enabled?
570  * @utmi_phy_data_width: UTMI+ PHY data width
571  *                       0 - 8 bits
572  *                       1 - 16 bits
573  *                       2 - 8 or 16 bits
574  * @snpsid:             Value from SNPSID register
575  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
576  * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
577  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
578  *                      address DMA mode or descriptor DMA mode for accessing
579  *                      the data FIFOs. The driver will automatically detect the
580  *                      value for this if none is specified.
581  *                       0 - Address DMA
582  *                       1 - Descriptor DMA (default, if available)
583  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
584  *                       1 - Allow dynamic FIFO sizing (default, if available)
585  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
586  *                      are enabled for non-periodic IN endpoints in device
587  *                      mode.
588  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
589  *                      in host mode when dynamic FIFO sizing is enabled
590  *                       16 to 32768
591  *                      Actual maximum value is autodetected and also
592  *                      the default.
593  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
594  *                      host mode when dynamic FIFO sizing is enabled
595  *                       16 to 32768
596  *                      Actual maximum value is autodetected and also
597  *                      the default.
598  * @max_transfer_size:  The maximum transfer size supported, in bytes
599  *                       2047 to 65,535
600  *                      Actual maximum value is autodetected and also
601  *                      the default.
602  * @max_packet_count:   The maximum number of packets in a transfer
603  *                       15 to 511
604  *                      Actual maximum value is autodetected and also
605  *                      the default.
606  * @host_channels:      The number of host channel registers to use
607  *                       1 to 16
608  *                      Actual maximum value is autodetected and also
609  *                      the default.
610  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
611  *			     in device mode when dynamic FIFO sizing is enabled
612  *			     16 to 32768
613  *			     Actual maximum value is autodetected and also
614  *			     the default.
615  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
616  *                      speed PHY. This parameter is only applicable if phy_type
617  *                      is FS.
618  *                       0 - No (default)
619  *                       1 - Yes
620  * @acg_enable:		For enabling Active Clock Gating in the controller
621  *                       0 - Disable
622  *                       1 - Enable
623  * @lpm_mode:		For enabling Link Power Management in the controller
624  *                       0 - Disable
625  *                       1 - Enable
626  * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
627  *			FIFO sizing is enabled 16 to 32768
628  *			Actual maximum value is autodetected and also
629  *			the default.
630  * @service_interval_mode: For enabling service interval based scheduling in the
631  *                         controller.
632  *                           0 - Disable
633  *                           1 - Enable
634  */
635 struct dwc2_hw_params {
636 	unsigned op_mode:3;
637 	unsigned arch:2;
638 	unsigned dma_desc_enable:1;
639 	unsigned enable_dynamic_fifo:1;
640 	unsigned en_multiple_tx_fifo:1;
641 	unsigned rx_fifo_size:16;
642 	unsigned host_nperio_tx_fifo_size:16;
643 	unsigned dev_nperio_tx_fifo_size:16;
644 	unsigned host_perio_tx_fifo_size:16;
645 	unsigned nperio_tx_q_depth:3;
646 	unsigned host_perio_tx_q_depth:3;
647 	unsigned dev_token_q_depth:5;
648 	unsigned max_transfer_size:26;
649 	unsigned max_packet_count:11;
650 	unsigned host_channels:5;
651 	unsigned hs_phy_type:2;
652 	unsigned fs_phy_type:2;
653 	unsigned i2c_enable:1;
654 	unsigned acg_enable:1;
655 	unsigned num_dev_ep:4;
656 	unsigned num_dev_in_eps : 4;
657 	unsigned num_dev_perio_in_ep:4;
658 	unsigned total_fifo_size:16;
659 	unsigned power_optimized:1;
660 	unsigned hibernation:1;
661 	unsigned utmi_phy_data_width:2;
662 	unsigned lpm_mode:1;
663 	unsigned ipg_isoc_en:1;
664 	unsigned service_interval_mode:1;
665 	u32 snpsid;
666 	u32 dev_ep_dirs;
667 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
668 };
669 
670 /* Size of control and EP0 buffers */
671 #define DWC2_CTRL_BUFF_SIZE 8
672 
673 /**
674  * struct dwc2_gregs_backup - Holds global registers state before
675  * entering partial power down
676  * @gotgctl:		Backup of GOTGCTL register
677  * @gintmsk:		Backup of GINTMSK register
678  * @gahbcfg:		Backup of GAHBCFG register
679  * @gusbcfg:		Backup of GUSBCFG register
680  * @grxfsiz:		Backup of GRXFSIZ register
681  * @gnptxfsiz:		Backup of GNPTXFSIZ register
682  * @gi2cctl:		Backup of GI2CCTL register
683  * @glpmcfg:		Backup of GLPMCFG register
684  * @gdfifocfg:		Backup of GDFIFOCFG register
685  * @pcgcctl:		Backup of PCGCCTL register
686  * @pcgcctl1:		Backup of PCGCCTL1 register
687  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
688  * @gpwrdn:		Backup of GPWRDN register
689  * @valid:		True if registers values backuped.
690  */
691 struct dwc2_gregs_backup {
692 	u32 gotgctl;
693 	u32 gintmsk;
694 	u32 gahbcfg;
695 	u32 gusbcfg;
696 	u32 grxfsiz;
697 	u32 gnptxfsiz;
698 	u32 gi2cctl;
699 	u32 glpmcfg;
700 	u32 pcgcctl;
701 	u32 pcgcctl1;
702 	u32 gdfifocfg;
703 	u32 gpwrdn;
704 	bool valid;
705 };
706 
707 /**
708  * struct dwc2_dregs_backup - Holds device registers state before
709  * entering partial power down
710  * @dcfg:		Backup of DCFG register
711  * @dctl:		Backup of DCTL register
712  * @daintmsk:		Backup of DAINTMSK register
713  * @diepmsk:		Backup of DIEPMSK register
714  * @doepmsk:		Backup of DOEPMSK register
715  * @diepctl:		Backup of DIEPCTL register
716  * @dieptsiz:		Backup of DIEPTSIZ register
717  * @diepdma:		Backup of DIEPDMA register
718  * @doepctl:		Backup of DOEPCTL register
719  * @doeptsiz:		Backup of DOEPTSIZ register
720  * @doepdma:		Backup of DOEPDMA register
721  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
722  * @valid:      True if registers values backuped.
723  */
724 struct dwc2_dregs_backup {
725 	u32 dcfg;
726 	u32 dctl;
727 	u32 daintmsk;
728 	u32 diepmsk;
729 	u32 doepmsk;
730 	u32 diepctl[MAX_EPS_CHANNELS];
731 	u32 dieptsiz[MAX_EPS_CHANNELS];
732 	u32 diepdma[MAX_EPS_CHANNELS];
733 	u32 doepctl[MAX_EPS_CHANNELS];
734 	u32 doeptsiz[MAX_EPS_CHANNELS];
735 	u32 doepdma[MAX_EPS_CHANNELS];
736 	u32 dtxfsiz[MAX_EPS_CHANNELS];
737 	bool valid;
738 };
739 
740 /**
741  * struct dwc2_hregs_backup - Holds host registers state before
742  * entering partial power down
743  * @hcfg:		Backup of HCFG register
744  * @haintmsk:		Backup of HAINTMSK register
745  * @hcintmsk:		Backup of HCINTMSK register
746  * @hprt0:		Backup of HPTR0 register
747  * @hfir:		Backup of HFIR register
748  * @hptxfsiz:		Backup of HPTXFSIZ register
749  * @valid:      True if registers values backuped.
750  */
751 struct dwc2_hregs_backup {
752 	u32 hcfg;
753 	u32 haintmsk;
754 	u32 hcintmsk[MAX_EPS_CHANNELS];
755 	u32 hprt0;
756 	u32 hfir;
757 	u32 hptxfsiz;
758 	bool valid;
759 };
760 
761 /*
762  * Constants related to high speed periodic scheduling
763  *
764  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
765  * reservation point of view it's assumed that the schedule goes right back to
766  * the beginning after the end of the schedule.
767  *
768  * What does that mean for scheduling things with a long interval?  It means
769  * we'll reserve time for them in every possible microframe that they could
770  * ever be scheduled in.  ...but we'll still only actually schedule them as
771  * often as they were requested.
772  *
773  * We keep our schedule in a "bitmap" structure.  This simplifies having
774  * to keep track of and merge intervals: we just let the bitmap code do most
775  * of the heavy lifting.  In a way scheduling is much like memory allocation.
776  *
777  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
778  * supposed to schedule for periodic transfers).  That's according to spec.
779  *
780  * Note that though we only schedule 80% of each microframe, the bitmap that we
781  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
782  * space for each uFrame).
783  *
784  * Requirements:
785  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
786  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
787  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
788  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
789  */
790 #define DWC2_US_PER_UFRAME		125
791 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
792 
793 #define DWC2_HS_SCHEDULE_UFRAMES	8
794 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
795 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
796 
797 /*
798  * Constants related to low speed scheduling
799  *
800  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
801  * so we make up a unit called a "slice" that's worth 25us.  There are 40
802  * slices in a full frame and we can schedule 36 of those (90%) for periodic
803  * transfers.
804  *
805  * Our low speed schedule can be as short as 1 frame or could be longer.  When
806  * we only schedule 1 frame it means that we'll need to reserve a time every
807  * frame even for things that only transfer very rarely, so something that runs
808  * every 2048 frames will get time reserved in every frame.  Our low speed
809  * schedule can be longer and we'll be able to handle more overlap, but that
810  * will come at increased memory cost and increased time to schedule.
811  *
812  * Note: one other advantage of a short low speed schedule is that if we mess
813  * up and miss scheduling we can jump in and use any of the slots that we
814  * happened to reserve.
815  *
816  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
817  * the schedule.  There will be one schedule per TT.
818  *
819  * Requirements:
820  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
821  */
822 #define DWC2_US_PER_SLICE	25
823 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
824 
825 #define DWC2_ROUND_US_TO_SLICE(us) \
826 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
827 				 DWC2_US_PER_SLICE)
828 
829 #define DWC2_LS_PERIODIC_US_PER_FRAME \
830 				900
831 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
832 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
833 				 DWC2_US_PER_SLICE)
834 
835 #define DWC2_LS_SCHEDULE_FRAMES	1
836 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
837 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
838 
839 /**
840  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
841  * and periodic schedules
842  *
843  * These are common for both host and peripheral modes:
844  *
845  * @dev:                The struct device pointer
846  * @regs:		Pointer to controller regs
847  * @hw_params:          Parameters that were autodetected from the
848  *                      hardware registers
849  * @params:	Parameters that define how the core should be configured
850  * @op_state:           The operational State, during transitions (a_host=>
851  *                      a_peripheral and b_device=>b_host) this may not match
852  *                      the core, but allows the software to determine
853  *                      transitions
854  * @dr_mode:            Requested mode of operation, one of following:
855  *                      - USB_DR_MODE_PERIPHERAL
856  *                      - USB_DR_MODE_HOST
857  *                      - USB_DR_MODE_OTG
858  * @hcd_enabled:	Host mode sub-driver initialization indicator.
859  * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
860  * @ll_hw_enabled:	Status of low-level hardware resources.
861  * @hibernated:		True if core is hibernated
862  * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
863  *			remote wakeup.
864  * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
865  * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
866  *			suspend if we need USB to wake us up.
867  * @frame_number:       Frame number read from the core. For both device
868  *			and host modes. The value ranges are from 0
869  *			to HFNUM_MAX_FRNUM.
870  * @phy:                The otg phy transceiver structure for phy control.
871  * @uphy:               The otg phy transceiver structure for old USB phy
872  *                      control.
873  * @plat:               The platform specific configuration data. This can be
874  *                      removed once all SoCs support usb transceiver.
875  * @supplies:           Definition of USB power supplies
876  * @vbus_supply:        Regulator supplying vbus.
877  * @lock:		Spinlock that protects all the driver data structures
878  * @priv:		Stores a pointer to the struct usb_hcd
879  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
880  *                      transfer are in process of being queued
881  * @srp_success:        Stores status of SRP request in the case of a FS PHY
882  *                      with an I2C interface
883  * @wq_otg:             Workqueue object used for handling of some interrupts
884  * @wf_otg:             Work object for handling Connector ID Status Change
885  *                      interrupt
886  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
887  * @lx_state:           Lx state of connected device
888  * @gr_backup: Backup of global registers during suspend
889  * @dr_backup: Backup of device registers during suspend
890  * @hr_backup: Backup of host registers during suspend
891  * @needs_byte_swap:		Specifies whether the opposite endianness.
892  *
893  * These are for host mode:
894  *
895  * @flags:              Flags for handling root port state changes
896  * @flags.d32:          Contain all root port flags
897  * @flags.b:            Separate root port flags from each other
898  * @flags.b.port_connect_status_change: True if root port connect status
899  *                      changed
900  * @flags.b.port_connect_status: True if device connected to root port
901  * @flags.b.port_reset_change: True if root port reset status changed
902  * @flags.b.port_enable_change: True if root port enable status changed
903  * @flags.b.port_suspend_change: True if root port suspend status changed
904  * @flags.b.port_over_current_change: True if root port over current state
905  *                       changed.
906  * @flags.b.port_l1_change: True if root port l1 status changed
907  * @flags.b.reserved:   Reserved bits of root port register
908  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
909  *                      Transfers associated with these QHs are not currently
910  *                      assigned to a host channel.
911  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
912  *                      Transfers associated with these QHs are currently
913  *                      assigned to a host channel.
914  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
915  *                      non-periodic schedule
916  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
917  *                      Transfers associated with these QHs are not currently
918  *                      assigned to a host channel.
919  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
920  *                      list of QHs for periodic transfers that are _not_
921  *                      scheduled for the next frame. Each QH in the list has an
922  *                      interval counter that determines when it needs to be
923  *                      scheduled for execution. This scheduling mechanism
924  *                      allows only a simple calculation for periodic bandwidth
925  *                      used (i.e. must assume that all periodic transfers may
926  *                      need to execute in the same frame). However, it greatly
927  *                      simplifies scheduling and should be sufficient for the
928  *                      vast majority of OTG hosts, which need to connect to a
929  *                      small number of peripherals at one time. Items move from
930  *                      this list to periodic_sched_ready when the QH interval
931  *                      counter is 0 at SOF.
932  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
933  *                      the next frame, but have not yet been assigned to host
934  *                      channels. Items move from this list to
935  *                      periodic_sched_assigned as host channels become
936  *                      available during the current frame.
937  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
938  *                      frame that are assigned to host channels. Items move
939  *                      from this list to periodic_sched_queued as the
940  *                      transactions for the QH are queued to the DWC_otg
941  *                      controller.
942  * @periodic_sched_queued: List of periodic QHs that have been queued for
943  *                      execution. Items move from this list to either
944  *                      periodic_sched_inactive or periodic_sched_ready when the
945  *                      channel associated with the transfer is released. If the
946  *                      interval for the QH is 1, the item moves to
947  *                      periodic_sched_ready because it must be rescheduled for
948  *                      the next frame. Otherwise, the item moves to
949  *                      periodic_sched_inactive.
950  * @split_order:        List keeping track of channels doing splits, in order.
951  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
952  *                      This value is in microseconds per (micro)frame. The
953  *                      assumption is that all periodic transfers may occur in
954  *                      the same (micro)frame.
955  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
956  *                      host is in high speed mode; low speed schedules are
957  *                      stored elsewhere since we need one per TT.
958  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
959  *                      SOF enable/disable.
960  * @free_hc_list:       Free host channels in the controller. This is a list of
961  *                      struct dwc2_host_chan items.
962  * @periodic_channels:  Number of host channels assigned to periodic transfers.
963  *                      Currently assuming that there is a dedicated host
964  *                      channel for each periodic transaction and at least one
965  *                      host channel is available for non-periodic transactions.
966  * @non_periodic_channels: Number of host channels assigned to non-periodic
967  *                      transfers
968  * @available_host_channels: Number of host channels available for the
969  *			     microframe scheduler to use
970  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
971  *                      Allows accessing a host channel descriptor given the
972  *                      host channel number. This is useful in interrupt
973  *                      handlers.
974  * @status_buf:         Buffer used for data received during the status phase of
975  *                      a control transfer.
976  * @status_buf_dma:     DMA address for status_buf
977  * @start_work:         Delayed work for handling host A-cable connection
978  * @reset_work:         Delayed work for handling a port reset
979  * @phy_reset_work:     Work structure for doing a PHY reset
980  * @otg_port:           OTG port number
981  * @frame_list:         Frame list
982  * @frame_list_dma:     Frame list DMA address
983  * @frame_list_sz:      Frame list size
984  * @desc_gen_cache:     Kmem cache for generic descriptors
985  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
986  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
987  *
988  * These are for peripheral mode:
989  *
990  * @driver:             USB gadget driver
991  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
992  * @num_of_eps:         Number of available EPs (excluding EP0)
993  * @debug_root:         Root directrory for debugfs.
994  * @ep0_reply:          Request used for ep0 reply.
995  * @ep0_buff:           Buffer for EP0 reply data, if needed.
996  * @ctrl_buff:          Buffer for EP0 control requests.
997  * @ctrl_req:           Request for EP0 control packets.
998  * @ep0_state:          EP0 control transfers state
999  * @delayed_status:		true when gadget driver asks for delayed status
1000  * @test_mode:          USB test mode requested by the host
1001  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1002  *                      remote-wakeup signalling
1003  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1004  * @setup_desc:		EP0 setup stage desc chain pointer
1005  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1006  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1007  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1008  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1009  * @irq:		Interrupt request line number
1010  * @clk:		Pointer to otg clock
1011  * @reset:		Pointer to dwc2 reset controller
1012  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1013  * @regset:		A pointer to a struct debugfs_regset32, which contains
1014  *			a pointer to an array of register definitions, the
1015  *			array size and the base address where the register bank
1016  *			is to be found.
1017  * @bus_suspended:	True if bus is suspended
1018  * @last_frame_num:	Number of last frame. Range from 0 to  32768
1019  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1020  *			defined, for missed SOFs tracking. Array holds that
1021  *			frame numbers, which not equal to last_frame_num +1
1022  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1023  *			    defined, for missed SOFs tracking.
1024  *			    If current_frame_number != last_frame_num+1
1025  *			    then last_frame_num added to this array
1026  * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1027  * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1028  *				0 - if missed SOFs frame numbers not dumbed
1029  * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1030  * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1031  *			then that fifo is used
1032  * @gadget:		Represents a usb slave device
1033  * @connected:		Used in slave mode. True if device connected with host
1034  * @eps_in:		The IN endpoints being supplied to the gadget framework
1035  * @eps_out:		The OUT endpoints being supplied to the gadget framework
1036  * @new_connection:	Used in host mode. True if there are new connected
1037  *			device
1038  * @enabled:		Indicates the enabling state of controller
1039  *
1040  */
1041 struct dwc2_hsotg {
1042 	struct device *dev;
1043 	void __iomem *regs;
1044 	/** Params detected from hardware */
1045 	struct dwc2_hw_params hw_params;
1046 	/** Params to actually use */
1047 	struct dwc2_core_params params;
1048 	enum usb_otg_state op_state;
1049 	enum usb_dr_mode dr_mode;
1050 	unsigned int hcd_enabled:1;
1051 	unsigned int gadget_enabled:1;
1052 	unsigned int ll_hw_enabled:1;
1053 	unsigned int hibernated:1;
1054 	unsigned int reset_phy_on_wake:1;
1055 	unsigned int need_phy_for_wake:1;
1056 	unsigned int phy_off_for_suspend:1;
1057 	u16 frame_number;
1058 
1059 	struct phy *phy;
1060 	struct usb_phy *uphy;
1061 	struct dwc2_hsotg_plat *plat;
1062 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1063 	struct regulator *vbus_supply;
1064 
1065 	spinlock_t lock;
1066 	void *priv;
1067 	int     irq;
1068 	struct clk *clk;
1069 	struct reset_control *reset;
1070 	struct reset_control *reset_ecc;
1071 
1072 	unsigned int queuing_high_bandwidth:1;
1073 	unsigned int srp_success:1;
1074 
1075 	struct workqueue_struct *wq_otg;
1076 	struct work_struct wf_otg;
1077 	struct timer_list wkp_timer;
1078 	enum dwc2_lx_state lx_state;
1079 	struct dwc2_gregs_backup gr_backup;
1080 	struct dwc2_dregs_backup dr_backup;
1081 	struct dwc2_hregs_backup hr_backup;
1082 
1083 	struct dentry *debug_root;
1084 	struct debugfs_regset32 *regset;
1085 	bool needs_byte_swap;
1086 
1087 	/* DWC OTG HW Release versions */
1088 #define DWC2_CORE_REV_2_71a	0x4f54271a
1089 #define DWC2_CORE_REV_2_72a     0x4f54272a
1090 #define DWC2_CORE_REV_2_80a	0x4f54280a
1091 #define DWC2_CORE_REV_2_90a	0x4f54290a
1092 #define DWC2_CORE_REV_2_91a	0x4f54291a
1093 #define DWC2_CORE_REV_2_92a	0x4f54292a
1094 #define DWC2_CORE_REV_2_94a	0x4f54294a
1095 #define DWC2_CORE_REV_3_00a	0x4f54300a
1096 #define DWC2_CORE_REV_3_10a	0x4f54310a
1097 #define DWC2_CORE_REV_4_00a	0x4f54400a
1098 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
1099 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
1100 
1101 	/* DWC OTG HW Core ID */
1102 #define DWC2_OTG_ID		0x4f540000
1103 #define DWC2_FS_IOT_ID		0x55310000
1104 #define DWC2_HS_IOT_ID		0x55320000
1105 
1106 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1107 	union dwc2_hcd_internal_flags {
1108 		u32 d32;
1109 		struct {
1110 			unsigned port_connect_status_change:1;
1111 			unsigned port_connect_status:1;
1112 			unsigned port_reset_change:1;
1113 			unsigned port_enable_change:1;
1114 			unsigned port_suspend_change:1;
1115 			unsigned port_over_current_change:1;
1116 			unsigned port_l1_change:1;
1117 			unsigned reserved:25;
1118 		} b;
1119 	} flags;
1120 
1121 	struct list_head non_periodic_sched_inactive;
1122 	struct list_head non_periodic_sched_waiting;
1123 	struct list_head non_periodic_sched_active;
1124 	struct list_head *non_periodic_qh_ptr;
1125 	struct list_head periodic_sched_inactive;
1126 	struct list_head periodic_sched_ready;
1127 	struct list_head periodic_sched_assigned;
1128 	struct list_head periodic_sched_queued;
1129 	struct list_head split_order;
1130 	u16 periodic_usecs;
1131 	unsigned long hs_periodic_bitmap[
1132 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1133 	u16 periodic_qh_count;
1134 	bool bus_suspended;
1135 	bool new_connection;
1136 
1137 	u16 last_frame_num;
1138 
1139 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1140 #define FRAME_NUM_ARRAY_SIZE 1000
1141 	u16 *frame_num_array;
1142 	u16 *last_frame_num_array;
1143 	int frame_num_idx;
1144 	int dumped_frame_num_array;
1145 #endif
1146 
1147 	struct list_head free_hc_list;
1148 	int periodic_channels;
1149 	int non_periodic_channels;
1150 	int available_host_channels;
1151 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1152 	u8 *status_buf;
1153 	dma_addr_t status_buf_dma;
1154 #define DWC2_HCD_STATUS_BUF_SIZE 64
1155 
1156 	struct delayed_work start_work;
1157 	struct delayed_work reset_work;
1158 	struct work_struct phy_reset_work;
1159 	u8 otg_port;
1160 	u32 *frame_list;
1161 	dma_addr_t frame_list_dma;
1162 	u32 frame_list_sz;
1163 	struct kmem_cache *desc_gen_cache;
1164 	struct kmem_cache *desc_hsisoc_cache;
1165 	struct kmem_cache *unaligned_cache;
1166 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1167 
1168 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1169 
1170 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1171 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1172 	/* Gadget structures */
1173 	struct usb_gadget_driver *driver;
1174 	int fifo_mem;
1175 	unsigned int dedicated_fifos:1;
1176 	unsigned char num_of_eps;
1177 	u32 fifo_map;
1178 
1179 	struct usb_request *ep0_reply;
1180 	struct usb_request *ctrl_req;
1181 	void *ep0_buff;
1182 	void *ctrl_buff;
1183 	enum dwc2_ep0_state ep0_state;
1184 	unsigned delayed_status : 1;
1185 	u8 test_mode;
1186 
1187 	dma_addr_t setup_desc_dma[2];
1188 	struct dwc2_dma_desc *setup_desc[2];
1189 	dma_addr_t ctrl_in_desc_dma;
1190 	struct dwc2_dma_desc *ctrl_in_desc;
1191 	dma_addr_t ctrl_out_desc_dma;
1192 	struct dwc2_dma_desc *ctrl_out_desc;
1193 
1194 	struct usb_gadget gadget;
1195 	unsigned int enabled:1;
1196 	unsigned int connected:1;
1197 	unsigned int remote_wakeup_allowed:1;
1198 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1199 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1200 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1201 };
1202 
1203 /* Normal architectures just use readl/write */
dwc2_readl(struct dwc2_hsotg * hsotg,u32 offset)1204 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1205 {
1206 	u32 val;
1207 
1208 	val = readl(hsotg->regs + offset);
1209 	if (hsotg->needs_byte_swap)
1210 		return swab32(val);
1211 	else
1212 		return val;
1213 }
1214 
dwc2_writel(struct dwc2_hsotg * hsotg,u32 value,u32 offset)1215 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1216 {
1217 	if (hsotg->needs_byte_swap)
1218 		writel(swab32(value), hsotg->regs + offset);
1219 	else
1220 		writel(value, hsotg->regs + offset);
1221 
1222 #ifdef DWC2_LOG_WRITES
1223 	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1224 #endif
1225 }
1226 
dwc2_readl_rep(struct dwc2_hsotg * hsotg,u32 offset,void * buffer,unsigned int count)1227 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1228 				  void *buffer, unsigned int count)
1229 {
1230 	if (count) {
1231 		u32 *buf = buffer;
1232 
1233 		do {
1234 			u32 x = dwc2_readl(hsotg, offset);
1235 			*buf++ = x;
1236 		} while (--count);
1237 	}
1238 }
1239 
dwc2_writel_rep(struct dwc2_hsotg * hsotg,u32 offset,const void * buffer,unsigned int count)1240 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1241 				   const void *buffer, unsigned int count)
1242 {
1243 	if (count) {
1244 		const u32 *buf = buffer;
1245 
1246 		do {
1247 			dwc2_writel(hsotg, *buf++, offset);
1248 		} while (--count);
1249 	}
1250 }
1251 
1252 /* Reasons for halting a host channel */
1253 enum dwc2_halt_status {
1254 	DWC2_HC_XFER_NO_HALT_STATUS,
1255 	DWC2_HC_XFER_COMPLETE,
1256 	DWC2_HC_XFER_URB_COMPLETE,
1257 	DWC2_HC_XFER_ACK,
1258 	DWC2_HC_XFER_NAK,
1259 	DWC2_HC_XFER_NYET,
1260 	DWC2_HC_XFER_STALL,
1261 	DWC2_HC_XFER_XACT_ERR,
1262 	DWC2_HC_XFER_FRAME_OVERRUN,
1263 	DWC2_HC_XFER_BABBLE_ERR,
1264 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1265 	DWC2_HC_XFER_AHB_ERR,
1266 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1267 	DWC2_HC_XFER_URB_DEQUEUE,
1268 };
1269 
1270 /* Core version information */
dwc2_is_iot(struct dwc2_hsotg * hsotg)1271 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1272 {
1273 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1274 }
1275 
dwc2_is_fs_iot(struct dwc2_hsotg * hsotg)1276 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1277 {
1278 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1279 }
1280 
dwc2_is_hs_iot(struct dwc2_hsotg * hsotg)1281 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1282 {
1283 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1284 }
1285 
1286 /*
1287  * The following functions support initialization of the core driver component
1288  * and the DWC_otg controller
1289  */
1290 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1291 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1292 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
1293 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1294 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1295 		int reset, int is_host);
1296 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1297 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1298 
1299 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1300 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1301 
1302 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1303 
1304 /*
1305  * Common core Functions.
1306  * The following functions support managing the DWC_otg controller in either
1307  * device or host mode.
1308  */
1309 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1310 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1311 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1312 
1313 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1314 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1315 
1316 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1317 			     int is_host);
1318 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1319 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1320 
1321 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1322 
1323 /* This function should be called on every hardware interrupt. */
1324 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1325 
1326 /* The device ID match table */
1327 extern const struct of_device_id dwc2_of_match_table[];
1328 
1329 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1330 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1331 
1332 /* Common polling functions */
1333 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1334 			    u32 timeout);
1335 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1336 			      u32 timeout);
1337 /* Parameters */
1338 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1339 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1340 
1341 /*
1342  * The following functions check the controller's OTG operation mode
1343  * capability (GHWCFG2.OTG_MODE).
1344  *
1345  * These functions can be used before the internal hsotg->hw_params
1346  * are read in and cached so they always read directly from the
1347  * GHWCFG2 register.
1348  */
1349 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1350 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1351 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1352 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1353 
1354 /*
1355  * Returns the mode of operation, host or device
1356  */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)1357 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1358 {
1359 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1360 }
1361 
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)1362 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1363 {
1364 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1365 }
1366 
1367 /*
1368  * Dump core registers and SPRAM
1369  */
1370 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1371 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1372 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1373 
1374 /* Gadget defines */
1375 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1376 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1377 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1378 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1379 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1380 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1381 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1382 				       bool reset);
1383 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1384 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1385 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1386 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1387 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1388 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1389 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1390 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1391 				 int rem_wakeup, int reset);
1392 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1393 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1394 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1395 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1396 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1397 #else
dwc2_hsotg_remove(struct dwc2_hsotg * dwc2)1398 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1399 { return 0; }
dwc2_hsotg_suspend(struct dwc2_hsotg * dwc2)1400 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1401 { return 0; }
dwc2_hsotg_resume(struct dwc2_hsotg * dwc2)1402 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1403 { return 0; }
dwc2_gadget_init(struct dwc2_hsotg * hsotg)1404 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1405 { return 0; }
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * dwc2,bool reset)1406 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1407 						     bool reset) {}
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)1408 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_disconnect(struct dwc2_hsotg * dwc2)1409 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1410 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1411 					   int testmode)
1412 { return 0; }
1413 #define dwc2_is_device_connected(hsotg) (0)
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)1414 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1415 { return 0; }
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg,int remote_wakeup)1416 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1417 						int remote_wakeup)
1418 { return 0; }
dwc2_gadget_enter_hibernation(struct dwc2_hsotg * hsotg)1419 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1420 { return 0; }
dwc2_gadget_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1421 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1422 					       int rem_wakeup, int reset)
1423 { return 0; }
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)1424 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1425 { return 0; }
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)1426 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1427 { return 0; }
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)1428 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1429 { return 0; }
dwc2_gadget_init_lpm(struct dwc2_hsotg * hsotg)1430 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
dwc2_gadget_program_ref_clk(struct dwc2_hsotg * hsotg)1431 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1432 #endif
1433 
1434 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1435 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1436 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1437 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1438 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1439 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1440 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1441 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1442 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1443 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1444 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1445 			       int rem_wakeup, int reset);
1446 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1447 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1448 { schedule_work(&hsotg->phy_reset_work); }
1449 #else
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)1450 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1451 { return 0; }
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)1452 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1453 						   int us)
1454 { return 0; }
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1455 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1456 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1457 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)1458 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)1459 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1460 { return 0; }
dwc2_hcd_init(struct dwc2_hsotg * hsotg)1461 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1462 { return 0; }
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)1463 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1464 { return 0; }
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)1465 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1466 { return 0; }
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)1467 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1468 { return 0; }
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1469 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1470 					     int rem_wakeup, int reset)
1471 { return 0; }
dwc2_host_can_poweroff_phy(struct dwc2_hsotg * dwc2)1472 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1473 { return false; }
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1474 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1475 
1476 #endif
1477 
1478 #endif /* __DWC2_CORE_H__ */
1479