1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "mdio-i2c.h"
20 #include "sfp.h"
21 #include "swphy.h"
22
23 enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_DOWN,
40 SFP_E_DEV_UP,
41 SFP_E_TX_FAULT,
42 SFP_E_TX_CLEAR,
43 SFP_E_LOS_HIGH,
44 SFP_E_LOS_LOW,
45 SFP_E_TIMEOUT,
46
47 SFP_MOD_EMPTY = 0,
48 SFP_MOD_PROBE,
49 SFP_MOD_HPOWER,
50 SFP_MOD_PRESENT,
51 SFP_MOD_ERROR,
52
53 SFP_DEV_DOWN = 0,
54 SFP_DEV_UP,
55
56 SFP_S_DOWN = 0,
57 SFP_S_INIT,
58 SFP_S_WAIT_LOS,
59 SFP_S_LINK_UP,
60 SFP_S_TX_FAULT,
61 SFP_S_REINIT,
62 SFP_S_TX_DISABLE,
63 };
64
65 static const char * const mod_state_strings[] = {
66 [SFP_MOD_EMPTY] = "empty",
67 [SFP_MOD_PROBE] = "probe",
68 [SFP_MOD_HPOWER] = "hpower",
69 [SFP_MOD_PRESENT] = "present",
70 [SFP_MOD_ERROR] = "error",
71 };
72
mod_state_to_str(unsigned short mod_state)73 static const char *mod_state_to_str(unsigned short mod_state)
74 {
75 if (mod_state >= ARRAY_SIZE(mod_state_strings))
76 return "Unknown module state";
77 return mod_state_strings[mod_state];
78 }
79
80 static const char * const dev_state_strings[] = {
81 [SFP_DEV_DOWN] = "down",
82 [SFP_DEV_UP] = "up",
83 };
84
dev_state_to_str(unsigned short dev_state)85 static const char *dev_state_to_str(unsigned short dev_state)
86 {
87 if (dev_state >= ARRAY_SIZE(dev_state_strings))
88 return "Unknown device state";
89 return dev_state_strings[dev_state];
90 }
91
92 static const char * const event_strings[] = {
93 [SFP_E_INSERT] = "insert",
94 [SFP_E_REMOVE] = "remove",
95 [SFP_E_DEV_DOWN] = "dev_down",
96 [SFP_E_DEV_UP] = "dev_up",
97 [SFP_E_TX_FAULT] = "tx_fault",
98 [SFP_E_TX_CLEAR] = "tx_clear",
99 [SFP_E_LOS_HIGH] = "los_high",
100 [SFP_E_LOS_LOW] = "los_low",
101 [SFP_E_TIMEOUT] = "timeout",
102 };
103
event_to_str(unsigned short event)104 static const char *event_to_str(unsigned short event)
105 {
106 if (event >= ARRAY_SIZE(event_strings))
107 return "Unknown event";
108 return event_strings[event];
109 }
110
111 static const char * const sm_state_strings[] = {
112 [SFP_S_DOWN] = "down",
113 [SFP_S_INIT] = "init",
114 [SFP_S_WAIT_LOS] = "wait_los",
115 [SFP_S_LINK_UP] = "link_up",
116 [SFP_S_TX_FAULT] = "tx_fault",
117 [SFP_S_REINIT] = "reinit",
118 [SFP_S_TX_DISABLE] = "rx_disable",
119 };
120
sm_state_to_str(unsigned short sm_state)121 static const char *sm_state_to_str(unsigned short sm_state)
122 {
123 if (sm_state >= ARRAY_SIZE(sm_state_strings))
124 return "Unknown state";
125 return sm_state_strings[sm_state];
126 }
127
128 static const char *gpio_of_names[] = {
129 "mod-def0",
130 "los",
131 "tx-fault",
132 "tx-disable",
133 "rate-select0",
134 };
135
136 static const enum gpiod_flags gpio_flags[] = {
137 GPIOD_IN,
138 GPIOD_IN,
139 GPIOD_IN,
140 GPIOD_ASIS,
141 GPIOD_ASIS,
142 };
143
144 #define T_INIT_JIFFIES msecs_to_jiffies(300)
145 #define T_RESET_US 10
146 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
147
148 /* SFP module presence detection is poor: the three MOD DEF signals are
149 * the same length on the PCB, which means it's possible for MOD DEF 0 to
150 * connect before the I2C bus on MOD DEF 1/2.
151 *
152 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
153 * be deasserted) but makes no mention of the earliest time before we can
154 * access the I2C EEPROM. However, Avago modules require 300ms.
155 */
156 #define T_PROBE_INIT msecs_to_jiffies(300)
157 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
158 #define T_PROBE_RETRY msecs_to_jiffies(100)
159
160 /* SFP modules appear to always have their PHY configured for bus address
161 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
162 */
163 #define SFP_PHY_ADDR 22
164
165 /* Give this long for the PHY to reset. */
166 #define T_PHY_RESET_MS 50
167
168 struct sff_data {
169 unsigned int gpios;
170 bool (*module_supported)(const struct sfp_eeprom_id *id);
171 };
172
173 struct sfp {
174 struct device *dev;
175 struct i2c_adapter *i2c;
176 struct mii_bus *i2c_mii;
177 struct sfp_bus *sfp_bus;
178 struct phy_device *mod_phy;
179 const struct sff_data *type;
180 u32 max_power_mW;
181
182 unsigned int (*get_state)(struct sfp *);
183 void (*set_state)(struct sfp *, unsigned int);
184 int (*read)(struct sfp *, bool, u8, void *, size_t);
185 int (*write)(struct sfp *, bool, u8, void *, size_t);
186
187 struct gpio_desc *gpio[GPIO_MAX];
188 int gpio_irq[GPIO_MAX];
189
190 bool attached;
191 struct mutex st_mutex; /* Protects state */
192 unsigned int state;
193 struct delayed_work poll;
194 struct delayed_work timeout;
195 struct mutex sm_mutex; /* Protects state machine */
196 unsigned char sm_mod_state;
197 unsigned char sm_dev_state;
198 unsigned short sm_state;
199 unsigned int sm_retries;
200
201 struct sfp_eeprom_id id;
202 #if IS_ENABLED(CONFIG_HWMON)
203 struct sfp_diag diag;
204 struct device *hwmon_dev;
205 char *hwmon_name;
206 #endif
207
208 };
209
sff_module_supported(const struct sfp_eeprom_id * id)210 static bool sff_module_supported(const struct sfp_eeprom_id *id)
211 {
212 return id->base.phys_id == SFP_PHYS_ID_SFF &&
213 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
214 }
215
216 static const struct sff_data sff_data = {
217 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
218 .module_supported = sff_module_supported,
219 };
220
sfp_module_supported(const struct sfp_eeprom_id * id)221 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
222 {
223 return id->base.phys_id == SFP_PHYS_ID_SFP &&
224 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
225 }
226
227 static const struct sff_data sfp_data = {
228 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
229 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
230 .module_supported = sfp_module_supported,
231 };
232
233 static const struct of_device_id sfp_of_match[] = {
234 { .compatible = "sff,sff", .data = &sff_data, },
235 { .compatible = "sff,sfp", .data = &sfp_data, },
236 { },
237 };
238 MODULE_DEVICE_TABLE(of, sfp_of_match);
239
240 static unsigned long poll_jiffies;
241
sfp_gpio_get_state(struct sfp * sfp)242 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
243 {
244 unsigned int i, state, v;
245
246 for (i = state = 0; i < GPIO_MAX; i++) {
247 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
248 continue;
249
250 v = gpiod_get_value_cansleep(sfp->gpio[i]);
251 if (v)
252 state |= BIT(i);
253 }
254
255 return state;
256 }
257
sff_gpio_get_state(struct sfp * sfp)258 static unsigned int sff_gpio_get_state(struct sfp *sfp)
259 {
260 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
261 }
262
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)263 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
264 {
265 if (state & SFP_F_PRESENT) {
266 /* If the module is present, drive the signals */
267 if (sfp->gpio[GPIO_TX_DISABLE])
268 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
269 state & SFP_F_TX_DISABLE);
270 if (state & SFP_F_RATE_SELECT)
271 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
272 state & SFP_F_RATE_SELECT);
273 } else {
274 /* Otherwise, let them float to the pull-ups */
275 if (sfp->gpio[GPIO_TX_DISABLE])
276 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
277 if (state & SFP_F_RATE_SELECT)
278 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
279 }
280 }
281
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)282 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
283 size_t len)
284 {
285 struct i2c_msg msgs[2];
286 u8 bus_addr = a2 ? 0x51 : 0x50;
287 size_t this_len;
288 int ret;
289
290 msgs[0].addr = bus_addr;
291 msgs[0].flags = 0;
292 msgs[0].len = 1;
293 msgs[0].buf = &dev_addr;
294 msgs[1].addr = bus_addr;
295 msgs[1].flags = I2C_M_RD;
296 msgs[1].len = len;
297 msgs[1].buf = buf;
298
299 while (len) {
300 this_len = len;
301 if (this_len > 16)
302 this_len = 16;
303
304 msgs[1].len = this_len;
305
306 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
307 if (ret < 0)
308 return ret;
309
310 if (ret != ARRAY_SIZE(msgs))
311 break;
312
313 msgs[1].buf += this_len;
314 dev_addr += this_len;
315 len -= this_len;
316 }
317
318 return msgs[1].buf - (u8 *)buf;
319 }
320
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)321 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
322 size_t len)
323 {
324 struct i2c_msg msgs[1];
325 u8 bus_addr = a2 ? 0x51 : 0x50;
326 int ret;
327
328 msgs[0].addr = bus_addr;
329 msgs[0].flags = 0;
330 msgs[0].len = 1 + len;
331 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
332 if (!msgs[0].buf)
333 return -ENOMEM;
334
335 msgs[0].buf[0] = dev_addr;
336 memcpy(&msgs[0].buf[1], buf, len);
337
338 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
339
340 kfree(msgs[0].buf);
341
342 if (ret < 0)
343 return ret;
344
345 return ret == ARRAY_SIZE(msgs) ? len : 0;
346 }
347
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)348 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
349 {
350 struct mii_bus *i2c_mii;
351 int ret;
352
353 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
354 return -EINVAL;
355
356 sfp->i2c = i2c;
357 sfp->read = sfp_i2c_read;
358 sfp->write = sfp_i2c_write;
359
360 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
361 if (IS_ERR(i2c_mii))
362 return PTR_ERR(i2c_mii);
363
364 i2c_mii->name = "SFP I2C Bus";
365 i2c_mii->phy_mask = ~0;
366
367 ret = mdiobus_register(i2c_mii);
368 if (ret < 0) {
369 mdiobus_free(i2c_mii);
370 return ret;
371 }
372
373 sfp->i2c_mii = i2c_mii;
374
375 return 0;
376 }
377
378 /* Interface */
sfp_get_state(struct sfp * sfp)379 static unsigned int sfp_get_state(struct sfp *sfp)
380 {
381 return sfp->get_state(sfp);
382 }
383
sfp_set_state(struct sfp * sfp,unsigned int state)384 static void sfp_set_state(struct sfp *sfp, unsigned int state)
385 {
386 sfp->set_state(sfp, state);
387 }
388
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)389 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
390 {
391 return sfp->read(sfp, a2, addr, buf, len);
392 }
393
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)394 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
395 {
396 return sfp->write(sfp, a2, addr, buf, len);
397 }
398
sfp_check(void * buf,size_t len)399 static unsigned int sfp_check(void *buf, size_t len)
400 {
401 u8 *p, check;
402
403 for (p = buf, check = 0; len; p++, len--)
404 check += *p;
405
406 return check;
407 }
408
409 /* hwmon */
410 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)411 static umode_t sfp_hwmon_is_visible(const void *data,
412 enum hwmon_sensor_types type,
413 u32 attr, int channel)
414 {
415 const struct sfp *sfp = data;
416
417 switch (type) {
418 case hwmon_temp:
419 switch (attr) {
420 case hwmon_temp_min_alarm:
421 case hwmon_temp_max_alarm:
422 case hwmon_temp_lcrit_alarm:
423 case hwmon_temp_crit_alarm:
424 case hwmon_temp_min:
425 case hwmon_temp_max:
426 case hwmon_temp_lcrit:
427 case hwmon_temp_crit:
428 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
429 return 0;
430 /* fall through */
431 case hwmon_temp_input:
432 case hwmon_temp_label:
433 return 0444;
434 default:
435 return 0;
436 }
437 case hwmon_in:
438 switch (attr) {
439 case hwmon_in_min_alarm:
440 case hwmon_in_max_alarm:
441 case hwmon_in_lcrit_alarm:
442 case hwmon_in_crit_alarm:
443 case hwmon_in_min:
444 case hwmon_in_max:
445 case hwmon_in_lcrit:
446 case hwmon_in_crit:
447 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
448 return 0;
449 /* fall through */
450 case hwmon_in_input:
451 case hwmon_in_label:
452 return 0444;
453 default:
454 return 0;
455 }
456 case hwmon_curr:
457 switch (attr) {
458 case hwmon_curr_min_alarm:
459 case hwmon_curr_max_alarm:
460 case hwmon_curr_lcrit_alarm:
461 case hwmon_curr_crit_alarm:
462 case hwmon_curr_min:
463 case hwmon_curr_max:
464 case hwmon_curr_lcrit:
465 case hwmon_curr_crit:
466 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
467 return 0;
468 /* fall through */
469 case hwmon_curr_input:
470 case hwmon_curr_label:
471 return 0444;
472 default:
473 return 0;
474 }
475 case hwmon_power:
476 /* External calibration of receive power requires
477 * floating point arithmetic. Doing that in the kernel
478 * is not easy, so just skip it. If the module does
479 * not require external calibration, we can however
480 * show receiver power, since FP is then not needed.
481 */
482 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
483 channel == 1)
484 return 0;
485 switch (attr) {
486 case hwmon_power_min_alarm:
487 case hwmon_power_max_alarm:
488 case hwmon_power_lcrit_alarm:
489 case hwmon_power_crit_alarm:
490 case hwmon_power_min:
491 case hwmon_power_max:
492 case hwmon_power_lcrit:
493 case hwmon_power_crit:
494 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
495 return 0;
496 /* fall through */
497 case hwmon_power_input:
498 case hwmon_power_label:
499 return 0444;
500 default:
501 return 0;
502 }
503 default:
504 return 0;
505 }
506 }
507
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)508 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
509 {
510 __be16 val;
511 int err;
512
513 err = sfp_read(sfp, true, reg, &val, sizeof(val));
514 if (err < 0)
515 return err;
516
517 *value = be16_to_cpu(val);
518
519 return 0;
520 }
521
sfp_hwmon_to_rx_power(long * value)522 static void sfp_hwmon_to_rx_power(long *value)
523 {
524 *value = DIV_ROUND_CLOSEST(*value, 10);
525 }
526
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)527 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
528 long *value)
529 {
530 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
531 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
532 }
533
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)534 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
535 {
536 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
537 be16_to_cpu(sfp->diag.cal_t_offset), value);
538
539 if (*value >= 0x8000)
540 *value -= 0x10000;
541
542 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
543 }
544
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)545 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
546 {
547 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
548 be16_to_cpu(sfp->diag.cal_v_offset), value);
549
550 *value = DIV_ROUND_CLOSEST(*value, 10);
551 }
552
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)553 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
554 {
555 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
556 be16_to_cpu(sfp->diag.cal_txi_offset), value);
557
558 *value = DIV_ROUND_CLOSEST(*value, 500);
559 }
560
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)561 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
562 {
563 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
564 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
565
566 *value = DIV_ROUND_CLOSEST(*value, 10);
567 }
568
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)569 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
570 {
571 int err;
572
573 err = sfp_hwmon_read_sensor(sfp, reg, value);
574 if (err < 0)
575 return err;
576
577 sfp_hwmon_calibrate_temp(sfp, value);
578
579 return 0;
580 }
581
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)582 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
583 {
584 int err;
585
586 err = sfp_hwmon_read_sensor(sfp, reg, value);
587 if (err < 0)
588 return err;
589
590 sfp_hwmon_calibrate_vcc(sfp, value);
591
592 return 0;
593 }
594
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)595 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
596 {
597 int err;
598
599 err = sfp_hwmon_read_sensor(sfp, reg, value);
600 if (err < 0)
601 return err;
602
603 sfp_hwmon_calibrate_bias(sfp, value);
604
605 return 0;
606 }
607
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)608 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
609 {
610 int err;
611
612 err = sfp_hwmon_read_sensor(sfp, reg, value);
613 if (err < 0)
614 return err;
615
616 sfp_hwmon_calibrate_tx_power(sfp, value);
617
618 return 0;
619 }
620
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)621 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
622 {
623 int err;
624
625 err = sfp_hwmon_read_sensor(sfp, reg, value);
626 if (err < 0)
627 return err;
628
629 sfp_hwmon_to_rx_power(value);
630
631 return 0;
632 }
633
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)634 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
635 {
636 u8 status;
637 int err;
638
639 switch (attr) {
640 case hwmon_temp_input:
641 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
642
643 case hwmon_temp_lcrit:
644 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
645 sfp_hwmon_calibrate_temp(sfp, value);
646 return 0;
647
648 case hwmon_temp_min:
649 *value = be16_to_cpu(sfp->diag.temp_low_warn);
650 sfp_hwmon_calibrate_temp(sfp, value);
651 return 0;
652 case hwmon_temp_max:
653 *value = be16_to_cpu(sfp->diag.temp_high_warn);
654 sfp_hwmon_calibrate_temp(sfp, value);
655 return 0;
656
657 case hwmon_temp_crit:
658 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
659 sfp_hwmon_calibrate_temp(sfp, value);
660 return 0;
661
662 case hwmon_temp_lcrit_alarm:
663 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
664 if (err < 0)
665 return err;
666
667 *value = !!(status & SFP_ALARM0_TEMP_LOW);
668 return 0;
669
670 case hwmon_temp_min_alarm:
671 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
672 if (err < 0)
673 return err;
674
675 *value = !!(status & SFP_WARN0_TEMP_LOW);
676 return 0;
677
678 case hwmon_temp_max_alarm:
679 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
680 if (err < 0)
681 return err;
682
683 *value = !!(status & SFP_WARN0_TEMP_HIGH);
684 return 0;
685
686 case hwmon_temp_crit_alarm:
687 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
688 if (err < 0)
689 return err;
690
691 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
692 return 0;
693 default:
694 return -EOPNOTSUPP;
695 }
696
697 return -EOPNOTSUPP;
698 }
699
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)700 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
701 {
702 u8 status;
703 int err;
704
705 switch (attr) {
706 case hwmon_in_input:
707 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
708
709 case hwmon_in_lcrit:
710 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
711 sfp_hwmon_calibrate_vcc(sfp, value);
712 return 0;
713
714 case hwmon_in_min:
715 *value = be16_to_cpu(sfp->diag.volt_low_warn);
716 sfp_hwmon_calibrate_vcc(sfp, value);
717 return 0;
718
719 case hwmon_in_max:
720 *value = be16_to_cpu(sfp->diag.volt_high_warn);
721 sfp_hwmon_calibrate_vcc(sfp, value);
722 return 0;
723
724 case hwmon_in_crit:
725 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
726 sfp_hwmon_calibrate_vcc(sfp, value);
727 return 0;
728
729 case hwmon_in_lcrit_alarm:
730 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
731 if (err < 0)
732 return err;
733
734 *value = !!(status & SFP_ALARM0_VCC_LOW);
735 return 0;
736
737 case hwmon_in_min_alarm:
738 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
739 if (err < 0)
740 return err;
741
742 *value = !!(status & SFP_WARN0_VCC_LOW);
743 return 0;
744
745 case hwmon_in_max_alarm:
746 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
747 if (err < 0)
748 return err;
749
750 *value = !!(status & SFP_WARN0_VCC_HIGH);
751 return 0;
752
753 case hwmon_in_crit_alarm:
754 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
755 if (err < 0)
756 return err;
757
758 *value = !!(status & SFP_ALARM0_VCC_HIGH);
759 return 0;
760 default:
761 return -EOPNOTSUPP;
762 }
763
764 return -EOPNOTSUPP;
765 }
766
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)767 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
768 {
769 u8 status;
770 int err;
771
772 switch (attr) {
773 case hwmon_curr_input:
774 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
775
776 case hwmon_curr_lcrit:
777 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
778 sfp_hwmon_calibrate_bias(sfp, value);
779 return 0;
780
781 case hwmon_curr_min:
782 *value = be16_to_cpu(sfp->diag.bias_low_warn);
783 sfp_hwmon_calibrate_bias(sfp, value);
784 return 0;
785
786 case hwmon_curr_max:
787 *value = be16_to_cpu(sfp->diag.bias_high_warn);
788 sfp_hwmon_calibrate_bias(sfp, value);
789 return 0;
790
791 case hwmon_curr_crit:
792 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
793 sfp_hwmon_calibrate_bias(sfp, value);
794 return 0;
795
796 case hwmon_curr_lcrit_alarm:
797 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
798 if (err < 0)
799 return err;
800
801 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
802 return 0;
803
804 case hwmon_curr_min_alarm:
805 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
806 if (err < 0)
807 return err;
808
809 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
810 return 0;
811
812 case hwmon_curr_max_alarm:
813 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
814 if (err < 0)
815 return err;
816
817 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
818 return 0;
819
820 case hwmon_curr_crit_alarm:
821 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
822 if (err < 0)
823 return err;
824
825 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
826 return 0;
827 default:
828 return -EOPNOTSUPP;
829 }
830
831 return -EOPNOTSUPP;
832 }
833
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)834 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
835 {
836 u8 status;
837 int err;
838
839 switch (attr) {
840 case hwmon_power_input:
841 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
842
843 case hwmon_power_lcrit:
844 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
845 sfp_hwmon_calibrate_tx_power(sfp, value);
846 return 0;
847
848 case hwmon_power_min:
849 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
850 sfp_hwmon_calibrate_tx_power(sfp, value);
851 return 0;
852
853 case hwmon_power_max:
854 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
855 sfp_hwmon_calibrate_tx_power(sfp, value);
856 return 0;
857
858 case hwmon_power_crit:
859 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
860 sfp_hwmon_calibrate_tx_power(sfp, value);
861 return 0;
862
863 case hwmon_power_lcrit_alarm:
864 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
865 if (err < 0)
866 return err;
867
868 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
869 return 0;
870
871 case hwmon_power_min_alarm:
872 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
873 if (err < 0)
874 return err;
875
876 *value = !!(status & SFP_WARN0_TXPWR_LOW);
877 return 0;
878
879 case hwmon_power_max_alarm:
880 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
881 if (err < 0)
882 return err;
883
884 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
885 return 0;
886
887 case hwmon_power_crit_alarm:
888 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
889 if (err < 0)
890 return err;
891
892 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
893 return 0;
894 default:
895 return -EOPNOTSUPP;
896 }
897
898 return -EOPNOTSUPP;
899 }
900
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)901 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
902 {
903 u8 status;
904 int err;
905
906 switch (attr) {
907 case hwmon_power_input:
908 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
909
910 case hwmon_power_lcrit:
911 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
912 sfp_hwmon_to_rx_power(value);
913 return 0;
914
915 case hwmon_power_min:
916 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
917 sfp_hwmon_to_rx_power(value);
918 return 0;
919
920 case hwmon_power_max:
921 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
922 sfp_hwmon_to_rx_power(value);
923 return 0;
924
925 case hwmon_power_crit:
926 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
927 sfp_hwmon_to_rx_power(value);
928 return 0;
929
930 case hwmon_power_lcrit_alarm:
931 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
932 if (err < 0)
933 return err;
934
935 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
936 return 0;
937
938 case hwmon_power_min_alarm:
939 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
940 if (err < 0)
941 return err;
942
943 *value = !!(status & SFP_WARN1_RXPWR_LOW);
944 return 0;
945
946 case hwmon_power_max_alarm:
947 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
948 if (err < 0)
949 return err;
950
951 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
952 return 0;
953
954 case hwmon_power_crit_alarm:
955 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
956 if (err < 0)
957 return err;
958
959 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
960 return 0;
961 default:
962 return -EOPNOTSUPP;
963 }
964
965 return -EOPNOTSUPP;
966 }
967
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)968 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
969 u32 attr, int channel, long *value)
970 {
971 struct sfp *sfp = dev_get_drvdata(dev);
972
973 switch (type) {
974 case hwmon_temp:
975 return sfp_hwmon_temp(sfp, attr, value);
976 case hwmon_in:
977 return sfp_hwmon_vcc(sfp, attr, value);
978 case hwmon_curr:
979 return sfp_hwmon_bias(sfp, attr, value);
980 case hwmon_power:
981 switch (channel) {
982 case 0:
983 return sfp_hwmon_tx_power(sfp, attr, value);
984 case 1:
985 return sfp_hwmon_rx_power(sfp, attr, value);
986 default:
987 return -EOPNOTSUPP;
988 }
989 default:
990 return -EOPNOTSUPP;
991 }
992 }
993
994 static const char *const sfp_hwmon_power_labels[] = {
995 "TX_power",
996 "RX_power",
997 };
998
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)999 static int sfp_hwmon_read_string(struct device *dev,
1000 enum hwmon_sensor_types type,
1001 u32 attr, int channel, const char **str)
1002 {
1003 switch (type) {
1004 case hwmon_curr:
1005 switch (attr) {
1006 case hwmon_curr_label:
1007 *str = "bias";
1008 return 0;
1009 default:
1010 return -EOPNOTSUPP;
1011 }
1012 break;
1013 case hwmon_temp:
1014 switch (attr) {
1015 case hwmon_temp_label:
1016 *str = "temperature";
1017 return 0;
1018 default:
1019 return -EOPNOTSUPP;
1020 }
1021 break;
1022 case hwmon_in:
1023 switch (attr) {
1024 case hwmon_in_label:
1025 *str = "VCC";
1026 return 0;
1027 default:
1028 return -EOPNOTSUPP;
1029 }
1030 break;
1031 case hwmon_power:
1032 switch (attr) {
1033 case hwmon_power_label:
1034 *str = sfp_hwmon_power_labels[channel];
1035 return 0;
1036 default:
1037 return -EOPNOTSUPP;
1038 }
1039 break;
1040 default:
1041 return -EOPNOTSUPP;
1042 }
1043
1044 return -EOPNOTSUPP;
1045 }
1046
1047 static const struct hwmon_ops sfp_hwmon_ops = {
1048 .is_visible = sfp_hwmon_is_visible,
1049 .read = sfp_hwmon_read,
1050 .read_string = sfp_hwmon_read_string,
1051 };
1052
1053 static u32 sfp_hwmon_chip_config[] = {
1054 HWMON_C_REGISTER_TZ,
1055 0,
1056 };
1057
1058 static const struct hwmon_channel_info sfp_hwmon_chip = {
1059 .type = hwmon_chip,
1060 .config = sfp_hwmon_chip_config,
1061 };
1062
1063 static u32 sfp_hwmon_temp_config[] = {
1064 HWMON_T_INPUT |
1065 HWMON_T_MAX | HWMON_T_MIN |
1066 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1067 HWMON_T_CRIT | HWMON_T_LCRIT |
1068 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1069 HWMON_T_LABEL,
1070 0,
1071 };
1072
1073 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1074 .type = hwmon_temp,
1075 .config = sfp_hwmon_temp_config,
1076 };
1077
1078 static u32 sfp_hwmon_vcc_config[] = {
1079 HWMON_I_INPUT |
1080 HWMON_I_MAX | HWMON_I_MIN |
1081 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1082 HWMON_I_CRIT | HWMON_I_LCRIT |
1083 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1084 HWMON_I_LABEL,
1085 0,
1086 };
1087
1088 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1089 .type = hwmon_in,
1090 .config = sfp_hwmon_vcc_config,
1091 };
1092
1093 static u32 sfp_hwmon_bias_config[] = {
1094 HWMON_C_INPUT |
1095 HWMON_C_MAX | HWMON_C_MIN |
1096 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1097 HWMON_C_CRIT | HWMON_C_LCRIT |
1098 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1099 HWMON_C_LABEL,
1100 0,
1101 };
1102
1103 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1104 .type = hwmon_curr,
1105 .config = sfp_hwmon_bias_config,
1106 };
1107
1108 static u32 sfp_hwmon_power_config[] = {
1109 /* Transmit power */
1110 HWMON_P_INPUT |
1111 HWMON_P_MAX | HWMON_P_MIN |
1112 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1113 HWMON_P_CRIT | HWMON_P_LCRIT |
1114 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1115 HWMON_P_LABEL,
1116 /* Receive power */
1117 HWMON_P_INPUT |
1118 HWMON_P_MAX | HWMON_P_MIN |
1119 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1120 HWMON_P_CRIT | HWMON_P_LCRIT |
1121 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1122 HWMON_P_LABEL,
1123 0,
1124 };
1125
1126 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1127 .type = hwmon_power,
1128 .config = sfp_hwmon_power_config,
1129 };
1130
1131 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1132 &sfp_hwmon_chip,
1133 &sfp_hwmon_vcc_channel_info,
1134 &sfp_hwmon_temp_channel_info,
1135 &sfp_hwmon_bias_channel_info,
1136 &sfp_hwmon_power_channel_info,
1137 NULL,
1138 };
1139
1140 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1141 .ops = &sfp_hwmon_ops,
1142 .info = sfp_hwmon_info,
1143 };
1144
sfp_hwmon_insert(struct sfp * sfp)1145 static int sfp_hwmon_insert(struct sfp *sfp)
1146 {
1147 int err, i;
1148
1149 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1150 return 0;
1151
1152 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1153 return 0;
1154
1155 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1156 /* This driver in general does not support address
1157 * change.
1158 */
1159 return 0;
1160
1161 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1162 if (err < 0)
1163 return err;
1164
1165 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1166 if (!sfp->hwmon_name)
1167 return -ENODEV;
1168
1169 for (i = 0; sfp->hwmon_name[i]; i++)
1170 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1171 sfp->hwmon_name[i] = '_';
1172
1173 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1174 sfp->hwmon_name, sfp,
1175 &sfp_hwmon_chip_info,
1176 NULL);
1177
1178 return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1179 }
1180
sfp_hwmon_remove(struct sfp * sfp)1181 static void sfp_hwmon_remove(struct sfp *sfp)
1182 {
1183 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1184 hwmon_device_unregister(sfp->hwmon_dev);
1185 sfp->hwmon_dev = NULL;
1186 kfree(sfp->hwmon_name);
1187 }
1188 }
1189 #else
sfp_hwmon_insert(struct sfp * sfp)1190 static int sfp_hwmon_insert(struct sfp *sfp)
1191 {
1192 return 0;
1193 }
1194
sfp_hwmon_remove(struct sfp * sfp)1195 static void sfp_hwmon_remove(struct sfp *sfp)
1196 {
1197 }
1198 #endif
1199
1200 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1201 static void sfp_module_tx_disable(struct sfp *sfp)
1202 {
1203 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1204 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1205 sfp->state |= SFP_F_TX_DISABLE;
1206 sfp_set_state(sfp, sfp->state);
1207 }
1208
sfp_module_tx_enable(struct sfp * sfp)1209 static void sfp_module_tx_enable(struct sfp *sfp)
1210 {
1211 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1212 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1213 sfp->state &= ~SFP_F_TX_DISABLE;
1214 sfp_set_state(sfp, sfp->state);
1215 }
1216
sfp_module_tx_fault_reset(struct sfp * sfp)1217 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1218 {
1219 unsigned int state = sfp->state;
1220
1221 if (state & SFP_F_TX_DISABLE)
1222 return;
1223
1224 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1225
1226 udelay(T_RESET_US);
1227
1228 sfp_set_state(sfp, state);
1229 }
1230
1231 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1232 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1233 {
1234 if (timeout)
1235 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1236 timeout);
1237 else
1238 cancel_delayed_work(&sfp->timeout);
1239 }
1240
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1241 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1242 unsigned int timeout)
1243 {
1244 sfp->sm_state = state;
1245 sfp_sm_set_timer(sfp, timeout);
1246 }
1247
sfp_sm_ins_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1248 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1249 unsigned int timeout)
1250 {
1251 sfp->sm_mod_state = state;
1252 sfp_sm_set_timer(sfp, timeout);
1253 }
1254
sfp_sm_phy_detach(struct sfp * sfp)1255 static void sfp_sm_phy_detach(struct sfp *sfp)
1256 {
1257 phy_stop(sfp->mod_phy);
1258 sfp_remove_phy(sfp->sfp_bus);
1259 phy_device_remove(sfp->mod_phy);
1260 phy_device_free(sfp->mod_phy);
1261 sfp->mod_phy = NULL;
1262 }
1263
sfp_sm_probe_phy(struct sfp * sfp)1264 static void sfp_sm_probe_phy(struct sfp *sfp)
1265 {
1266 struct phy_device *phy;
1267 int err;
1268
1269 msleep(T_PHY_RESET_MS);
1270
1271 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1272 if (phy == ERR_PTR(-ENODEV)) {
1273 dev_info(sfp->dev, "no PHY detected\n");
1274 return;
1275 }
1276 if (IS_ERR(phy)) {
1277 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1278 return;
1279 }
1280
1281 err = sfp_add_phy(sfp->sfp_bus, phy);
1282 if (err) {
1283 phy_device_remove(phy);
1284 phy_device_free(phy);
1285 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1286 return;
1287 }
1288
1289 sfp->mod_phy = phy;
1290 phy_start(phy);
1291 }
1292
sfp_sm_link_up(struct sfp * sfp)1293 static void sfp_sm_link_up(struct sfp *sfp)
1294 {
1295 sfp_link_up(sfp->sfp_bus);
1296 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1297 }
1298
sfp_sm_link_down(struct sfp * sfp)1299 static void sfp_sm_link_down(struct sfp *sfp)
1300 {
1301 sfp_link_down(sfp->sfp_bus);
1302 }
1303
sfp_sm_link_check_los(struct sfp * sfp)1304 static void sfp_sm_link_check_los(struct sfp *sfp)
1305 {
1306 unsigned int los = sfp->state & SFP_F_LOS;
1307
1308 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1309 * are set, we assume that no LOS signal is available.
1310 */
1311 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1312 los ^= SFP_F_LOS;
1313 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1314 los = 0;
1315
1316 if (los)
1317 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1318 else
1319 sfp_sm_link_up(sfp);
1320 }
1321
sfp_los_event_active(struct sfp * sfp,unsigned int event)1322 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1323 {
1324 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1325 event == SFP_E_LOS_LOW) ||
1326 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1327 event == SFP_E_LOS_HIGH);
1328 }
1329
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1330 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1331 {
1332 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1333 event == SFP_E_LOS_HIGH) ||
1334 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1335 event == SFP_E_LOS_LOW);
1336 }
1337
sfp_sm_fault(struct sfp * sfp,bool warn)1338 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1339 {
1340 if (sfp->sm_retries && !--sfp->sm_retries) {
1341 dev_err(sfp->dev,
1342 "module persistently indicates fault, disabling\n");
1343 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1344 } else {
1345 if (warn)
1346 dev_err(sfp->dev, "module transmit fault indicated\n");
1347
1348 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1349 }
1350 }
1351
sfp_sm_mod_init(struct sfp * sfp)1352 static void sfp_sm_mod_init(struct sfp *sfp)
1353 {
1354 sfp_module_tx_enable(sfp);
1355
1356 /* Wait t_init before indicating that the link is up, provided the
1357 * current state indicates no TX_FAULT. If TX_FAULT clears before
1358 * this time, that's fine too.
1359 */
1360 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1361 sfp->sm_retries = 5;
1362
1363 /* Setting the serdes link mode is guesswork: there's no
1364 * field in the EEPROM which indicates what mode should
1365 * be used.
1366 *
1367 * If it's a gigabit-only fiber module, it probably does
1368 * not have a PHY, so switch to 802.3z negotiation mode.
1369 * Otherwise, switch to SGMII mode (which is required to
1370 * support non-gigabit speeds) and probe for a PHY.
1371 */
1372 if (sfp->id.base.e1000_base_t ||
1373 sfp->id.base.e100_base_lx ||
1374 sfp->id.base.e100_base_fx)
1375 sfp_sm_probe_phy(sfp);
1376 }
1377
sfp_sm_mod_hpower(struct sfp * sfp)1378 static int sfp_sm_mod_hpower(struct sfp *sfp)
1379 {
1380 u32 power;
1381 u8 val;
1382 int err;
1383
1384 power = 1000;
1385 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1386 power = 1500;
1387 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1388 power = 2000;
1389
1390 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1391 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1392 SFP_DIAGMON_DDM) {
1393 /* The module appears not to implement bus address 0xa2,
1394 * or requires an address change sequence, so assume that
1395 * the module powers up in the indicated power mode.
1396 */
1397 if (power > sfp->max_power_mW) {
1398 dev_err(sfp->dev,
1399 "Host does not support %u.%uW modules\n",
1400 power / 1000, (power / 100) % 10);
1401 return -EINVAL;
1402 }
1403 return 0;
1404 }
1405
1406 if (power > sfp->max_power_mW) {
1407 dev_warn(sfp->dev,
1408 "Host does not support %u.%uW modules, module left in power mode 1\n",
1409 power / 1000, (power / 100) % 10);
1410 return 0;
1411 }
1412
1413 if (power <= 1000)
1414 return 0;
1415
1416 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1417 if (err != sizeof(val)) {
1418 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1419 err = -EAGAIN;
1420 goto err;
1421 }
1422
1423 val |= BIT(0);
1424
1425 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1426 if (err != sizeof(val)) {
1427 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1428 err = -EAGAIN;
1429 goto err;
1430 }
1431
1432 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1433 power / 1000, (power / 100) % 10);
1434 return T_HPOWER_LEVEL;
1435
1436 err:
1437 return err;
1438 }
1439
sfp_sm_mod_probe(struct sfp * sfp)1440 static int sfp_sm_mod_probe(struct sfp *sfp)
1441 {
1442 /* SFP module inserted - read I2C data */
1443 struct sfp_eeprom_id id;
1444 bool cotsworks;
1445 u8 check;
1446 int ret;
1447
1448 ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1449 if (ret < 0) {
1450 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1451 return -EAGAIN;
1452 }
1453
1454 if (ret != sizeof(id)) {
1455 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1456 return -EAGAIN;
1457 }
1458
1459 /* Cotsworks do not seem to update the checksums when they
1460 * do the final programming with the final module part number,
1461 * serial number and date code.
1462 */
1463 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1464
1465 /* Validate the checksum over the base structure */
1466 check = sfp_check(&id.base, sizeof(id.base) - 1);
1467 if (check != id.base.cc_base) {
1468 if (cotsworks) {
1469 dev_warn(sfp->dev,
1470 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1471 check, id.base.cc_base);
1472 } else {
1473 dev_err(sfp->dev,
1474 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1475 check, id.base.cc_base);
1476 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1477 16, 1, &id, sizeof(id), true);
1478 return -EINVAL;
1479 }
1480 }
1481
1482 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1483 if (check != id.ext.cc_ext) {
1484 if (cotsworks) {
1485 dev_warn(sfp->dev,
1486 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1487 check, id.ext.cc_ext);
1488 } else {
1489 dev_err(sfp->dev,
1490 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1491 check, id.ext.cc_ext);
1492 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1493 16, 1, &id, sizeof(id), true);
1494 memset(&id.ext, 0, sizeof(id.ext));
1495 }
1496 }
1497
1498 sfp->id = id;
1499
1500 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1501 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1502 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1503 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1504 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1505 (int)sizeof(id.ext.datecode), id.ext.datecode);
1506
1507 /* Check whether we support this module */
1508 if (!sfp->type->module_supported(&sfp->id)) {
1509 dev_err(sfp->dev,
1510 "module is not supported - phys id 0x%02x 0x%02x\n",
1511 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1512 return -EINVAL;
1513 }
1514
1515 /* If the module requires address swap mode, warn about it */
1516 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1517 dev_warn(sfp->dev,
1518 "module address swap to access page 0xA2 is not supported.\n");
1519
1520 ret = sfp_hwmon_insert(sfp);
1521 if (ret < 0)
1522 return ret;
1523
1524 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1525 if (ret < 0)
1526 return ret;
1527
1528 return sfp_sm_mod_hpower(sfp);
1529 }
1530
sfp_sm_mod_remove(struct sfp * sfp)1531 static void sfp_sm_mod_remove(struct sfp *sfp)
1532 {
1533 sfp_module_remove(sfp->sfp_bus);
1534
1535 sfp_hwmon_remove(sfp);
1536
1537 if (sfp->mod_phy)
1538 sfp_sm_phy_detach(sfp);
1539
1540 sfp_module_tx_disable(sfp);
1541
1542 memset(&sfp->id, 0, sizeof(sfp->id));
1543
1544 dev_info(sfp->dev, "module removed\n");
1545 }
1546
sfp_sm_event(struct sfp * sfp,unsigned int event)1547 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1548 {
1549 mutex_lock(&sfp->sm_mutex);
1550
1551 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1552 mod_state_to_str(sfp->sm_mod_state),
1553 dev_state_to_str(sfp->sm_dev_state),
1554 sm_state_to_str(sfp->sm_state),
1555 event_to_str(event));
1556
1557 /* This state machine tracks the insert/remove state of
1558 * the module, and handles probing the on-board EEPROM.
1559 */
1560 switch (sfp->sm_mod_state) {
1561 default:
1562 if (event == SFP_E_INSERT && sfp->attached) {
1563 sfp_module_tx_disable(sfp);
1564 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1565 }
1566 break;
1567
1568 case SFP_MOD_PROBE:
1569 if (event == SFP_E_REMOVE) {
1570 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1571 } else if (event == SFP_E_TIMEOUT) {
1572 int val = sfp_sm_mod_probe(sfp);
1573
1574 if (val == 0)
1575 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1576 else if (val > 0)
1577 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1578 else if (val != -EAGAIN)
1579 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1580 else
1581 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1582 }
1583 break;
1584
1585 case SFP_MOD_HPOWER:
1586 if (event == SFP_E_TIMEOUT) {
1587 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1588 break;
1589 }
1590 /* fallthrough */
1591 case SFP_MOD_PRESENT:
1592 case SFP_MOD_ERROR:
1593 if (event == SFP_E_REMOVE) {
1594 sfp_sm_mod_remove(sfp);
1595 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1596 }
1597 break;
1598 }
1599
1600 /* This state machine tracks the netdev up/down state */
1601 switch (sfp->sm_dev_state) {
1602 default:
1603 if (event == SFP_E_DEV_UP)
1604 sfp->sm_dev_state = SFP_DEV_UP;
1605 break;
1606
1607 case SFP_DEV_UP:
1608 if (event == SFP_E_DEV_DOWN) {
1609 /* If the module has a PHY, avoid raising TX disable
1610 * as this resets the PHY. Otherwise, raise it to
1611 * turn the laser off.
1612 */
1613 if (!sfp->mod_phy)
1614 sfp_module_tx_disable(sfp);
1615 sfp->sm_dev_state = SFP_DEV_DOWN;
1616 }
1617 break;
1618 }
1619
1620 /* Some events are global */
1621 if (sfp->sm_state != SFP_S_DOWN &&
1622 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1623 sfp->sm_dev_state != SFP_DEV_UP)) {
1624 if (sfp->sm_state == SFP_S_LINK_UP &&
1625 sfp->sm_dev_state == SFP_DEV_UP)
1626 sfp_sm_link_down(sfp);
1627 if (sfp->mod_phy)
1628 sfp_sm_phy_detach(sfp);
1629 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1630 mutex_unlock(&sfp->sm_mutex);
1631 return;
1632 }
1633
1634 /* The main state machine */
1635 switch (sfp->sm_state) {
1636 case SFP_S_DOWN:
1637 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1638 sfp->sm_dev_state == SFP_DEV_UP)
1639 sfp_sm_mod_init(sfp);
1640 break;
1641
1642 case SFP_S_INIT:
1643 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1644 sfp_sm_fault(sfp, true);
1645 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1646 sfp_sm_link_check_los(sfp);
1647 break;
1648
1649 case SFP_S_WAIT_LOS:
1650 if (event == SFP_E_TX_FAULT)
1651 sfp_sm_fault(sfp, true);
1652 else if (sfp_los_event_inactive(sfp, event))
1653 sfp_sm_link_up(sfp);
1654 break;
1655
1656 case SFP_S_LINK_UP:
1657 if (event == SFP_E_TX_FAULT) {
1658 sfp_sm_link_down(sfp);
1659 sfp_sm_fault(sfp, true);
1660 } else if (sfp_los_event_active(sfp, event)) {
1661 sfp_sm_link_down(sfp);
1662 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1663 }
1664 break;
1665
1666 case SFP_S_TX_FAULT:
1667 if (event == SFP_E_TIMEOUT) {
1668 sfp_module_tx_fault_reset(sfp);
1669 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1670 }
1671 break;
1672
1673 case SFP_S_REINIT:
1674 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1675 sfp_sm_fault(sfp, false);
1676 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1677 dev_info(sfp->dev, "module transmit fault recovered\n");
1678 sfp_sm_link_check_los(sfp);
1679 }
1680 break;
1681
1682 case SFP_S_TX_DISABLE:
1683 break;
1684 }
1685
1686 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1687 mod_state_to_str(sfp->sm_mod_state),
1688 dev_state_to_str(sfp->sm_dev_state),
1689 sm_state_to_str(sfp->sm_state));
1690
1691 mutex_unlock(&sfp->sm_mutex);
1692 }
1693
sfp_attach(struct sfp * sfp)1694 static void sfp_attach(struct sfp *sfp)
1695 {
1696 sfp->attached = true;
1697 if (sfp->state & SFP_F_PRESENT)
1698 sfp_sm_event(sfp, SFP_E_INSERT);
1699 }
1700
sfp_detach(struct sfp * sfp)1701 static void sfp_detach(struct sfp *sfp)
1702 {
1703 sfp->attached = false;
1704 sfp_sm_event(sfp, SFP_E_REMOVE);
1705 }
1706
sfp_start(struct sfp * sfp)1707 static void sfp_start(struct sfp *sfp)
1708 {
1709 sfp_sm_event(sfp, SFP_E_DEV_UP);
1710 }
1711
sfp_stop(struct sfp * sfp)1712 static void sfp_stop(struct sfp *sfp)
1713 {
1714 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1715 }
1716
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)1717 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1718 {
1719 /* locking... and check module is present */
1720
1721 if (sfp->id.ext.sff8472_compliance &&
1722 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1723 modinfo->type = ETH_MODULE_SFF_8472;
1724 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1725 } else {
1726 modinfo->type = ETH_MODULE_SFF_8079;
1727 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1728 }
1729 return 0;
1730 }
1731
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)1732 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1733 u8 *data)
1734 {
1735 unsigned int first, last, len;
1736 int ret;
1737
1738 if (ee->len == 0)
1739 return -EINVAL;
1740
1741 first = ee->offset;
1742 last = ee->offset + ee->len;
1743 if (first < ETH_MODULE_SFF_8079_LEN) {
1744 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1745 len -= first;
1746
1747 ret = sfp_read(sfp, false, first, data, len);
1748 if (ret < 0)
1749 return ret;
1750
1751 first += len;
1752 data += len;
1753 }
1754 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1755 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1756 len -= first;
1757 first -= ETH_MODULE_SFF_8079_LEN;
1758
1759 ret = sfp_read(sfp, true, first, data, len);
1760 if (ret < 0)
1761 return ret;
1762 }
1763 return 0;
1764 }
1765
1766 static const struct sfp_socket_ops sfp_module_ops = {
1767 .attach = sfp_attach,
1768 .detach = sfp_detach,
1769 .start = sfp_start,
1770 .stop = sfp_stop,
1771 .module_info = sfp_module_info,
1772 .module_eeprom = sfp_module_eeprom,
1773 };
1774
sfp_timeout(struct work_struct * work)1775 static void sfp_timeout(struct work_struct *work)
1776 {
1777 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1778
1779 rtnl_lock();
1780 sfp_sm_event(sfp, SFP_E_TIMEOUT);
1781 rtnl_unlock();
1782 }
1783
sfp_check_state(struct sfp * sfp)1784 static void sfp_check_state(struct sfp *sfp)
1785 {
1786 unsigned int state, i, changed;
1787
1788 mutex_lock(&sfp->st_mutex);
1789 state = sfp_get_state(sfp);
1790 changed = state ^ sfp->state;
1791 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1792
1793 for (i = 0; i < GPIO_MAX; i++)
1794 if (changed & BIT(i))
1795 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1796 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1797
1798 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1799 sfp->state = state;
1800
1801 rtnl_lock();
1802 if (changed & SFP_F_PRESENT)
1803 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1804 SFP_E_INSERT : SFP_E_REMOVE);
1805
1806 if (changed & SFP_F_TX_FAULT)
1807 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1808 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1809
1810 if (changed & SFP_F_LOS)
1811 sfp_sm_event(sfp, state & SFP_F_LOS ?
1812 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1813 rtnl_unlock();
1814 mutex_unlock(&sfp->st_mutex);
1815 }
1816
sfp_irq(int irq,void * data)1817 static irqreturn_t sfp_irq(int irq, void *data)
1818 {
1819 struct sfp *sfp = data;
1820
1821 sfp_check_state(sfp);
1822
1823 return IRQ_HANDLED;
1824 }
1825
sfp_poll(struct work_struct * work)1826 static void sfp_poll(struct work_struct *work)
1827 {
1828 struct sfp *sfp = container_of(work, struct sfp, poll.work);
1829
1830 sfp_check_state(sfp);
1831 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1832 }
1833
sfp_alloc(struct device * dev)1834 static struct sfp *sfp_alloc(struct device *dev)
1835 {
1836 struct sfp *sfp;
1837
1838 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1839 if (!sfp)
1840 return ERR_PTR(-ENOMEM);
1841
1842 sfp->dev = dev;
1843
1844 mutex_init(&sfp->sm_mutex);
1845 mutex_init(&sfp->st_mutex);
1846 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1847 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1848
1849 return sfp;
1850 }
1851
sfp_cleanup(void * data)1852 static void sfp_cleanup(void *data)
1853 {
1854 struct sfp *sfp = data;
1855
1856 cancel_delayed_work_sync(&sfp->poll);
1857 cancel_delayed_work_sync(&sfp->timeout);
1858 if (sfp->i2c_mii) {
1859 mdiobus_unregister(sfp->i2c_mii);
1860 mdiobus_free(sfp->i2c_mii);
1861 }
1862 if (sfp->i2c)
1863 i2c_put_adapter(sfp->i2c);
1864 kfree(sfp);
1865 }
1866
sfp_probe(struct platform_device * pdev)1867 static int sfp_probe(struct platform_device *pdev)
1868 {
1869 const struct sff_data *sff;
1870 struct i2c_adapter *i2c;
1871 struct sfp *sfp;
1872 bool poll = false;
1873 int err, i;
1874
1875 sfp = sfp_alloc(&pdev->dev);
1876 if (IS_ERR(sfp))
1877 return PTR_ERR(sfp);
1878
1879 platform_set_drvdata(pdev, sfp);
1880
1881 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1882 if (err < 0)
1883 return err;
1884
1885 sff = sfp->type = &sfp_data;
1886
1887 if (pdev->dev.of_node) {
1888 struct device_node *node = pdev->dev.of_node;
1889 const struct of_device_id *id;
1890 struct device_node *np;
1891
1892 id = of_match_node(sfp_of_match, node);
1893 if (WARN_ON(!id))
1894 return -EINVAL;
1895
1896 sff = sfp->type = id->data;
1897
1898 np = of_parse_phandle(node, "i2c-bus", 0);
1899 if (!np) {
1900 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1901 return -ENODEV;
1902 }
1903
1904 i2c = of_find_i2c_adapter_by_node(np);
1905 of_node_put(np);
1906 } else if (has_acpi_companion(&pdev->dev)) {
1907 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1908 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1909 struct fwnode_reference_args args;
1910 struct acpi_handle *acpi_handle;
1911 int ret;
1912
1913 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1914 if (ret || !is_acpi_device_node(args.fwnode)) {
1915 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1916 return -ENODEV;
1917 }
1918
1919 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1920 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1921 } else {
1922 return -EINVAL;
1923 }
1924
1925 if (!i2c)
1926 return -EPROBE_DEFER;
1927
1928 err = sfp_i2c_configure(sfp, i2c);
1929 if (err < 0) {
1930 i2c_put_adapter(i2c);
1931 return err;
1932 }
1933
1934 for (i = 0; i < GPIO_MAX; i++)
1935 if (sff->gpios & BIT(i)) {
1936 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1937 gpio_of_names[i], gpio_flags[i]);
1938 if (IS_ERR(sfp->gpio[i]))
1939 return PTR_ERR(sfp->gpio[i]);
1940 }
1941
1942 sfp->get_state = sfp_gpio_get_state;
1943 sfp->set_state = sfp_gpio_set_state;
1944
1945 /* Modules that have no detect signal are always present */
1946 if (!(sfp->gpio[GPIO_MODDEF0]))
1947 sfp->get_state = sff_gpio_get_state;
1948
1949 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1950 &sfp->max_power_mW);
1951 if (!sfp->max_power_mW)
1952 sfp->max_power_mW = 1000;
1953
1954 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1955 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1956
1957 /* Get the initial state, and always signal TX disable,
1958 * since the network interface will not be up.
1959 */
1960 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1961
1962 if (sfp->gpio[GPIO_RATE_SELECT] &&
1963 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1964 sfp->state |= SFP_F_RATE_SELECT;
1965 sfp_set_state(sfp, sfp->state);
1966 sfp_module_tx_disable(sfp);
1967
1968 for (i = 0; i < GPIO_MAX; i++) {
1969 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1970 continue;
1971
1972 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
1973 if (!sfp->gpio_irq[i]) {
1974 poll = true;
1975 continue;
1976 }
1977
1978 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
1979 NULL, sfp_irq,
1980 IRQF_ONESHOT |
1981 IRQF_TRIGGER_RISING |
1982 IRQF_TRIGGER_FALLING,
1983 dev_name(sfp->dev), sfp);
1984 if (err) {
1985 sfp->gpio_irq[i] = 0;
1986 poll = true;
1987 }
1988 }
1989
1990 if (poll)
1991 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1992
1993 /* We could have an issue in cases no Tx disable pin is available or
1994 * wired as modules using a laser as their light source will continue to
1995 * be active when the fiber is removed. This could be a safety issue and
1996 * we should at least warn the user about that.
1997 */
1998 if (!sfp->gpio[GPIO_TX_DISABLE])
1999 dev_warn(sfp->dev,
2000 "No tx_disable pin: SFP modules will always be emitting.\n");
2001
2002 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2003 if (!sfp->sfp_bus)
2004 return -ENOMEM;
2005
2006 return 0;
2007 }
2008
sfp_remove(struct platform_device * pdev)2009 static int sfp_remove(struct platform_device *pdev)
2010 {
2011 struct sfp *sfp = platform_get_drvdata(pdev);
2012
2013 sfp_unregister_socket(sfp->sfp_bus);
2014
2015 return 0;
2016 }
2017
sfp_shutdown(struct platform_device * pdev)2018 static void sfp_shutdown(struct platform_device *pdev)
2019 {
2020 struct sfp *sfp = platform_get_drvdata(pdev);
2021 int i;
2022
2023 for (i = 0; i < GPIO_MAX; i++) {
2024 if (!sfp->gpio_irq[i])
2025 continue;
2026
2027 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2028 }
2029
2030 cancel_delayed_work_sync(&sfp->poll);
2031 cancel_delayed_work_sync(&sfp->timeout);
2032 }
2033
2034 static struct platform_driver sfp_driver = {
2035 .probe = sfp_probe,
2036 .remove = sfp_remove,
2037 .shutdown = sfp_shutdown,
2038 .driver = {
2039 .name = "sfp",
2040 .of_match_table = sfp_of_match,
2041 },
2042 };
2043
sfp_init(void)2044 static int sfp_init(void)
2045 {
2046 poll_jiffies = msecs_to_jiffies(100);
2047
2048 return platform_driver_register(&sfp_driver);
2049 }
2050 module_init(sfp_init);
2051
sfp_exit(void)2052 static void sfp_exit(void)
2053 {
2054 platform_driver_unregister(&sfp_driver);
2055 }
2056 module_exit(sfp_exit);
2057
2058 MODULE_ALIAS("platform:sfp");
2059 MODULE_AUTHOR("Russell King");
2060 MODULE_LICENSE("GPL v2");
2061