1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68
69 #include <asm/tlb.h>
70
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
74
75 #include "cpupri.h"
76 #include "cpudeadline.h"
77
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
80 #else
81 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
82 #endif
83
84 struct rq;
85 struct cpuidle_state;
86
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED 1
89 #define TASK_ON_RQ_MIGRATING 2
90
91 extern __read_mostly int scheduler_running;
92
93 extern unsigned long calc_load_update;
94 extern atomic_long_t calc_load_tasks;
95
96 extern void calc_global_load_tick(struct rq *this_rq);
97 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
98
99 /*
100 * Helpers for converting nanosecond timing to jiffy resolution
101 */
102 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103
104 /*
105 * Increase resolution of nice-level calculations for 64-bit architectures.
106 * The extra resolution improves shares distribution and load balancing of
107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108 * hierarchies, especially on larger systems. This is not a user-visible change
109 * and does not change the user-interface for setting shares/weights.
110 *
111 * We increase resolution only if we have enough bits to allow this increased
112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113 * are pretty high and the returns do not justify the increased costs.
114 *
115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116 * increase coverage and consistency always enable it on 64-bit platforms.
117 */
118 #ifdef CONFIG_64BIT
119 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
120 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
121 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
122 #else
123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w) (w)
125 # define scale_load_down(w) (w)
126 #endif
127
128 /*
129 * Task weight (visible to users) and its load (invisible to users) have
130 * independent resolution, but they should be well calibrated. We use
131 * scale_load() and scale_load_down(w) to convert between them. The
132 * following must be true:
133 *
134 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
135 *
136 */
137 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
138
139 /*
140 * Single value that decides SCHED_DEADLINE internal math precision.
141 * 10 -> just above 1us
142 * 9 -> just above 0.5us
143 */
144 #define DL_SCALE 10
145
146 /*
147 * Single value that denotes runtime == period, ie unlimited time.
148 */
149 #define RUNTIME_INF ((u64)~0ULL)
150
idle_policy(int policy)151 static inline int idle_policy(int policy)
152 {
153 return policy == SCHED_IDLE;
154 }
fair_policy(int policy)155 static inline int fair_policy(int policy)
156 {
157 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
158 }
159
rt_policy(int policy)160 static inline int rt_policy(int policy)
161 {
162 return policy == SCHED_FIFO || policy == SCHED_RR;
163 }
164
dl_policy(int policy)165 static inline int dl_policy(int policy)
166 {
167 return policy == SCHED_DEADLINE;
168 }
valid_policy(int policy)169 static inline bool valid_policy(int policy)
170 {
171 return idle_policy(policy) || fair_policy(policy) ||
172 rt_policy(policy) || dl_policy(policy);
173 }
174
task_has_idle_policy(struct task_struct * p)175 static inline int task_has_idle_policy(struct task_struct *p)
176 {
177 return idle_policy(p->policy);
178 }
179
task_has_rt_policy(struct task_struct * p)180 static inline int task_has_rt_policy(struct task_struct *p)
181 {
182 return rt_policy(p->policy);
183 }
184
task_has_dl_policy(struct task_struct * p)185 static inline int task_has_dl_policy(struct task_struct *p)
186 {
187 return dl_policy(p->policy);
188 }
189
190 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191
192 /*
193 * !! For sched_setattr_nocheck() (kernel) only !!
194 *
195 * This is actually gross. :(
196 *
197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198 * tasks, but still be able to sleep. We need this on platforms that cannot
199 * atomically change clock frequency. Remove once fast switching will be
200 * available on such platforms.
201 *
202 * SUGOV stands for SchedUtil GOVernor.
203 */
204 #define SCHED_FLAG_SUGOV 0x10000000
205
dl_entity_is_special(struct sched_dl_entity * dl_se)206 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207 {
208 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210 #else
211 return false;
212 #endif
213 }
214
215 /*
216 * Tells if entity @a should preempt entity @b.
217 */
218 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)219 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
220 {
221 return dl_entity_is_special(a) ||
222 dl_time_before(a->deadline, b->deadline);
223 }
224
225 /*
226 * This is the priority-queue data structure of the RT scheduling class:
227 */
228 struct rt_prio_array {
229 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230 struct list_head queue[MAX_RT_PRIO];
231 };
232
233 struct rt_bandwidth {
234 /* nests inside the rq lock: */
235 raw_spinlock_t rt_runtime_lock;
236 ktime_t rt_period;
237 u64 rt_runtime;
238 struct hrtimer rt_period_timer;
239 unsigned int rt_period_active;
240 };
241
242 void __dl_clear_params(struct task_struct *p);
243
244 /*
245 * To keep the bandwidth of -deadline tasks and groups under control
246 * we need some place where:
247 * - store the maximum -deadline bandwidth of the system (the group);
248 * - cache the fraction of that bandwidth that is currently allocated.
249 *
250 * This is all done in the data structure below. It is similar to the
251 * one used for RT-throttling (rt_bandwidth), with the main difference
252 * that, since here we are only interested in admission control, we
253 * do not decrease any runtime while the group "executes", neither we
254 * need a timer to replenish it.
255 *
256 * With respect to SMP, the bandwidth is given on a per-CPU basis,
257 * meaning that:
258 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259 * - dl_total_bw array contains, in the i-eth element, the currently
260 * allocated bandwidth on the i-eth CPU.
261 * Moreover, groups consume bandwidth on each CPU, while tasks only
262 * consume bandwidth on the CPU they're running on.
263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264 * that will be shown the next time the proc or cgroup controls will
265 * be red. It on its turn can be changed by writing on its own
266 * control.
267 */
268 struct dl_bandwidth {
269 raw_spinlock_t dl_runtime_lock;
270 u64 dl_runtime;
271 u64 dl_period;
272 };
273
dl_bandwidth_enabled(void)274 static inline int dl_bandwidth_enabled(void)
275 {
276 return sysctl_sched_rt_runtime >= 0;
277 }
278
279 struct dl_bw {
280 raw_spinlock_t lock;
281 u64 bw;
282 u64 total_bw;
283 };
284
285 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286
287 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)288 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
289 {
290 dl_b->total_bw -= tsk_bw;
291 __dl_update(dl_b, (s32)tsk_bw / cpus);
292 }
293
294 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)295 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
296 {
297 dl_b->total_bw += tsk_bw;
298 __dl_update(dl_b, -((s32)tsk_bw / cpus));
299 }
300
301 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)302 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303 {
304 return dl_b->bw != -1 &&
305 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306 }
307
308 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
309 extern void init_dl_bw(struct dl_bw *dl_b);
310 extern int sched_dl_global_validate(void);
311 extern void sched_dl_do_global(void);
312 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
313 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315 extern bool __checkparam_dl(const struct sched_attr *attr);
316 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
317 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
319 extern bool dl_cpu_busy(unsigned int cpu);
320
321 #ifdef CONFIG_CGROUP_SCHED
322
323 #include <linux/cgroup.h>
324 #include <linux/psi.h>
325
326 struct cfs_rq;
327 struct rt_rq;
328
329 extern struct list_head task_groups;
330
331 struct cfs_bandwidth {
332 #ifdef CONFIG_CFS_BANDWIDTH
333 raw_spinlock_t lock;
334 ktime_t period;
335 u64 quota;
336 u64 runtime;
337 s64 hierarchical_quota;
338
339 u8 idle;
340 u8 period_active;
341 u8 distribute_running;
342 u8 slack_started;
343 struct hrtimer period_timer;
344 struct hrtimer slack_timer;
345 struct list_head throttled_cfs_rq;
346
347 /* Statistics: */
348 int nr_periods;
349 int nr_throttled;
350 u64 throttled_time;
351 #endif
352 };
353
354 /* Task group related information */
355 struct task_group {
356 struct cgroup_subsys_state css;
357
358 #ifdef CONFIG_FAIR_GROUP_SCHED
359 /* schedulable entities of this group on each CPU */
360 struct sched_entity **se;
361 /* runqueue "owned" by this group on each CPU */
362 struct cfs_rq **cfs_rq;
363 unsigned long shares;
364
365 #ifdef CONFIG_SMP
366 /*
367 * load_avg can be heavily contended at clock tick time, so put
368 * it in its own cacheline separated from the fields above which
369 * will also be accessed at each tick.
370 */
371 atomic_long_t load_avg ____cacheline_aligned;
372 #endif
373 #endif
374
375 #ifdef CONFIG_RT_GROUP_SCHED
376 struct sched_rt_entity **rt_se;
377 struct rt_rq **rt_rq;
378
379 struct rt_bandwidth rt_bandwidth;
380 #endif
381
382 struct rcu_head rcu;
383 struct list_head list;
384
385 struct task_group *parent;
386 struct list_head siblings;
387 struct list_head children;
388
389 #ifdef CONFIG_SCHED_AUTOGROUP
390 struct autogroup *autogroup;
391 #endif
392
393 struct cfs_bandwidth cfs_bandwidth;
394
395 #ifdef CONFIG_UCLAMP_TASK_GROUP
396 /* The two decimal precision [%] value requested from user-space */
397 unsigned int uclamp_pct[UCLAMP_CNT];
398 /* Clamp values requested for a task group */
399 struct uclamp_se uclamp_req[UCLAMP_CNT];
400 /* Effective clamp values used for a task group */
401 struct uclamp_se uclamp[UCLAMP_CNT];
402 /* Latency-sensitive flag used for a task group */
403 unsigned int latency_sensitive;
404 #endif
405
406 };
407
408 #ifdef CONFIG_FAIR_GROUP_SCHED
409 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
410
411 /*
412 * A weight of 0 or 1 can cause arithmetics problems.
413 * A weight of a cfs_rq is the sum of weights of which entities
414 * are queued on this cfs_rq, so a weight of a entity should not be
415 * too large, so as the shares value of a task group.
416 * (The default weight is 1024 - so there's no practical
417 * limitation from this.)
418 */
419 #define MIN_SHARES (1UL << 1)
420 #define MAX_SHARES (1UL << 18)
421 #endif
422
423 typedef int (*tg_visitor)(struct task_group *, void *);
424
425 extern int walk_tg_tree_from(struct task_group *from,
426 tg_visitor down, tg_visitor up, void *data);
427
428 /*
429 * Iterate the full tree, calling @down when first entering a node and @up when
430 * leaving it for the final time.
431 *
432 * Caller must hold rcu_lock or sufficient equivalent.
433 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)434 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
435 {
436 return walk_tg_tree_from(&root_task_group, down, up, data);
437 }
438
439 extern int tg_nop(struct task_group *tg, void *data);
440
441 extern void free_fair_sched_group(struct task_group *tg);
442 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
443 extern void online_fair_sched_group(struct task_group *tg);
444 extern void unregister_fair_sched_group(struct task_group *tg);
445 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
446 struct sched_entity *se, int cpu,
447 struct sched_entity *parent);
448 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
449
450 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
451 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
452 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
453
454 extern void free_rt_sched_group(struct task_group *tg);
455 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
456 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
457 struct sched_rt_entity *rt_se, int cpu,
458 struct sched_rt_entity *parent);
459 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
460 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
461 extern long sched_group_rt_runtime(struct task_group *tg);
462 extern long sched_group_rt_period(struct task_group *tg);
463 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
464
465 extern struct task_group *sched_create_group(struct task_group *parent);
466 extern void sched_online_group(struct task_group *tg,
467 struct task_group *parent);
468 extern void sched_destroy_group(struct task_group *tg);
469 extern void sched_offline_group(struct task_group *tg);
470
471 extern void sched_move_task(struct task_struct *tsk);
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
475
476 #ifdef CONFIG_SMP
477 extern void set_task_rq_fair(struct sched_entity *se,
478 struct cfs_rq *prev, struct cfs_rq *next);
479 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)480 static inline void set_task_rq_fair(struct sched_entity *se,
481 struct cfs_rq *prev, struct cfs_rq *next) { }
482 #endif /* CONFIG_SMP */
483 #endif /* CONFIG_FAIR_GROUP_SCHED */
484
485 #else /* CONFIG_CGROUP_SCHED */
486
487 struct cfs_bandwidth { };
488
489 #endif /* CONFIG_CGROUP_SCHED */
490
491 /* CFS-related fields in a runqueue */
492 struct cfs_rq {
493 struct load_weight load;
494 unsigned long runnable_weight;
495 unsigned int nr_running;
496 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
497 unsigned int idle_h_nr_running; /* SCHED_IDLE */
498
499 u64 exec_clock;
500 u64 min_vruntime;
501 #ifndef CONFIG_64BIT
502 u64 min_vruntime_copy;
503 #endif
504
505 struct rb_root_cached tasks_timeline;
506
507 /*
508 * 'curr' points to currently running entity on this cfs_rq.
509 * It is set to NULL otherwise (i.e when none are currently running).
510 */
511 struct sched_entity *curr;
512 struct sched_entity *next;
513 struct sched_entity *last;
514 struct sched_entity *skip;
515
516 #ifdef CONFIG_SCHED_DEBUG
517 unsigned int nr_spread_over;
518 #endif
519
520 #ifdef CONFIG_SMP
521 /*
522 * CFS load tracking
523 */
524 struct sched_avg avg;
525 #ifndef CONFIG_64BIT
526 u64 load_last_update_time_copy;
527 #endif
528 struct {
529 raw_spinlock_t lock ____cacheline_aligned;
530 int nr;
531 unsigned long load_avg;
532 unsigned long util_avg;
533 unsigned long runnable_sum;
534 } removed;
535
536 #ifdef CONFIG_FAIR_GROUP_SCHED
537 unsigned long tg_load_avg_contrib;
538 long propagate;
539 long prop_runnable_sum;
540
541 /*
542 * h_load = weight * f(tg)
543 *
544 * Where f(tg) is the recursive weight fraction assigned to
545 * this group.
546 */
547 unsigned long h_load;
548 u64 last_h_load_update;
549 struct sched_entity *h_load_next;
550 #endif /* CONFIG_FAIR_GROUP_SCHED */
551 #endif /* CONFIG_SMP */
552
553 #ifdef CONFIG_FAIR_GROUP_SCHED
554 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
555
556 /*
557 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
558 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
559 * (like users, containers etc.)
560 *
561 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
562 * This list is used during load balance.
563 */
564 int on_list;
565 struct list_head leaf_cfs_rq_list;
566 struct task_group *tg; /* group that "owns" this runqueue */
567
568 #ifdef CONFIG_CFS_BANDWIDTH
569 int runtime_enabled;
570 s64 runtime_remaining;
571
572 u64 throttled_clock;
573 u64 throttled_clock_task;
574 u64 throttled_clock_task_time;
575 int throttled;
576 int throttle_count;
577 struct list_head throttled_list;
578 #endif /* CONFIG_CFS_BANDWIDTH */
579 #endif /* CONFIG_FAIR_GROUP_SCHED */
580 };
581
rt_bandwidth_enabled(void)582 static inline int rt_bandwidth_enabled(void)
583 {
584 return sysctl_sched_rt_runtime >= 0;
585 }
586
587 /* RT IPI pull logic requires IRQ_WORK */
588 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
589 # define HAVE_RT_PUSH_IPI
590 #endif
591
592 /* Real-Time classes' related field in a runqueue: */
593 struct rt_rq {
594 struct rt_prio_array active;
595 unsigned int rt_nr_running;
596 unsigned int rr_nr_running;
597 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
598 struct {
599 int curr; /* highest queued rt task prio */
600 #ifdef CONFIG_SMP
601 int next; /* next highest */
602 #endif
603 } highest_prio;
604 #endif
605 #ifdef CONFIG_SMP
606 unsigned long rt_nr_migratory;
607 unsigned long rt_nr_total;
608 int overloaded;
609 struct plist_head pushable_tasks;
610
611 #endif /* CONFIG_SMP */
612 int rt_queued;
613
614 int rt_throttled;
615 u64 rt_time;
616 u64 rt_runtime;
617 /* Nests inside the rq lock: */
618 raw_spinlock_t rt_runtime_lock;
619
620 #ifdef CONFIG_RT_GROUP_SCHED
621 unsigned long rt_nr_boosted;
622
623 struct rq *rq;
624 struct task_group *tg;
625 #endif
626 };
627
rt_rq_is_runnable(struct rt_rq * rt_rq)628 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
629 {
630 return rt_rq->rt_queued && rt_rq->rt_nr_running;
631 }
632
633 /* Deadline class' related fields in a runqueue */
634 struct dl_rq {
635 /* runqueue is an rbtree, ordered by deadline */
636 struct rb_root_cached root;
637
638 unsigned long dl_nr_running;
639
640 #ifdef CONFIG_SMP
641 /*
642 * Deadline values of the currently executing and the
643 * earliest ready task on this rq. Caching these facilitates
644 * the decision whether or not a ready but not running task
645 * should migrate somewhere else.
646 */
647 struct {
648 u64 curr;
649 u64 next;
650 } earliest_dl;
651
652 unsigned long dl_nr_migratory;
653 int overloaded;
654
655 /*
656 * Tasks on this rq that can be pushed away. They are kept in
657 * an rb-tree, ordered by tasks' deadlines, with caching
658 * of the leftmost (earliest deadline) element.
659 */
660 struct rb_root_cached pushable_dl_tasks_root;
661 #else
662 struct dl_bw dl_bw;
663 #endif
664 /*
665 * "Active utilization" for this runqueue: increased when a
666 * task wakes up (becomes TASK_RUNNING) and decreased when a
667 * task blocks
668 */
669 u64 running_bw;
670
671 /*
672 * Utilization of the tasks "assigned" to this runqueue (including
673 * the tasks that are in runqueue and the tasks that executed on this
674 * CPU and blocked). Increased when a task moves to this runqueue, and
675 * decreased when the task moves away (migrates, changes scheduling
676 * policy, or terminates).
677 * This is needed to compute the "inactive utilization" for the
678 * runqueue (inactive utilization = this_bw - running_bw).
679 */
680 u64 this_bw;
681 u64 extra_bw;
682
683 /*
684 * Inverse of the fraction of CPU utilization that can be reclaimed
685 * by the GRUB algorithm.
686 */
687 u64 bw_ratio;
688 };
689
690 #ifdef CONFIG_FAIR_GROUP_SCHED
691 /* An entity is a task if it doesn't "own" a runqueue */
692 #define entity_is_task(se) (!se->my_q)
693 #else
694 #define entity_is_task(se) 1
695 #endif
696
697 #ifdef CONFIG_SMP
698 /*
699 * XXX we want to get rid of these helpers and use the full load resolution.
700 */
se_weight(struct sched_entity * se)701 static inline long se_weight(struct sched_entity *se)
702 {
703 return scale_load_down(se->load.weight);
704 }
705
se_runnable(struct sched_entity * se)706 static inline long se_runnable(struct sched_entity *se)
707 {
708 return scale_load_down(se->runnable_weight);
709 }
710
sched_asym_prefer(int a,int b)711 static inline bool sched_asym_prefer(int a, int b)
712 {
713 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
714 }
715
716 struct perf_domain {
717 struct em_perf_domain *em_pd;
718 struct perf_domain *next;
719 struct rcu_head rcu;
720 };
721
722 struct max_cpu_capacity {
723 raw_spinlock_t lock;
724 unsigned long val;
725 int cpu;
726 };
727
728 /* Scheduling group status flags */
729 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
730 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
731
732 /*
733 * We add the notion of a root-domain which will be used to define per-domain
734 * variables. Each exclusive cpuset essentially defines an island domain by
735 * fully partitioning the member CPUs from any other cpuset. Whenever a new
736 * exclusive cpuset is created, we also create and attach a new root-domain
737 * object.
738 *
739 */
740 struct root_domain {
741 atomic_t refcount;
742 atomic_t rto_count;
743 struct rcu_head rcu;
744 cpumask_var_t span;
745 cpumask_var_t online;
746
747 /*
748 * Indicate pullable load on at least one CPU, e.g:
749 * - More than one runnable task
750 * - Running task is misfit
751 */
752 int overload;
753
754 /* Indicate one or more cpus over-utilized (tipping point) */
755 int overutilized;
756
757 /*
758 * The bit corresponding to a CPU gets set here if such CPU has more
759 * than one runnable -deadline task (as it is below for RT tasks).
760 */
761 cpumask_var_t dlo_mask;
762 atomic_t dlo_count;
763 struct dl_bw dl_bw;
764 struct cpudl cpudl;
765
766 #ifdef HAVE_RT_PUSH_IPI
767 /*
768 * For IPI pull requests, loop across the rto_mask.
769 */
770 struct irq_work rto_push_work;
771 raw_spinlock_t rto_lock;
772 /* These are only updated and read within rto_lock */
773 int rto_loop;
774 int rto_cpu;
775 /* These atomics are updated outside of a lock */
776 atomic_t rto_loop_next;
777 atomic_t rto_loop_start;
778 #endif
779 /*
780 * The "RT overload" flag: it gets set if a CPU has more than
781 * one runnable RT task.
782 */
783 cpumask_var_t rto_mask;
784 struct cpupri cpupri;
785
786 /* Maximum cpu capacity in the system. */
787 struct max_cpu_capacity max_cpu_capacity;
788
789 /*
790 * NULL-terminated list of performance domains intersecting with the
791 * CPUs of the rd. Protected by RCU.
792 */
793 struct perf_domain __rcu *pd;
794 };
795
796 extern void init_defrootdomain(void);
797 extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
798 extern int sched_init_domains(const struct cpumask *cpu_map);
799 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
800 extern void sched_get_rd(struct root_domain *rd);
801 extern void sched_put_rd(struct root_domain *rd);
802
803 #ifdef HAVE_RT_PUSH_IPI
804 extern void rto_push_irq_work_func(struct irq_work *work);
805 #endif
806 #endif /* CONFIG_SMP */
807
808 #ifdef CONFIG_UCLAMP_TASK
809 /*
810 * struct uclamp_bucket - Utilization clamp bucket
811 * @value: utilization clamp value for tasks on this clamp bucket
812 * @tasks: number of RUNNABLE tasks on this clamp bucket
813 *
814 * Keep track of how many tasks are RUNNABLE for a given utilization
815 * clamp value.
816 */
817 struct uclamp_bucket {
818 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
819 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
820 };
821
822 /*
823 * struct uclamp_rq - rq's utilization clamp
824 * @value: currently active clamp values for a rq
825 * @bucket: utilization clamp buckets affecting a rq
826 *
827 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
828 * A clamp value is affecting a rq when there is at least one task RUNNABLE
829 * (or actually running) with that value.
830 *
831 * There are up to UCLAMP_CNT possible different clamp values, currently there
832 * are only two: minimum utilization and maximum utilization.
833 *
834 * All utilization clamping values are MAX aggregated, since:
835 * - for util_min: we want to run the CPU at least at the max of the minimum
836 * utilization required by its currently RUNNABLE tasks.
837 * - for util_max: we want to allow the CPU to run up to the max of the
838 * maximum utilization allowed by its currently RUNNABLE tasks.
839 *
840 * Since on each system we expect only a limited number of different
841 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
842 * the metrics required to compute all the per-rq utilization clamp values.
843 */
844 struct uclamp_rq {
845 unsigned int value;
846 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
847 };
848 #endif /* CONFIG_UCLAMP_TASK */
849
850 /*
851 * This is the main, per-CPU runqueue data structure.
852 *
853 * Locking rule: those places that want to lock multiple runqueues
854 * (such as the load balancing or the thread migration code), lock
855 * acquire operations must be ordered by ascending &runqueue.
856 */
857 struct rq {
858 /* runqueue lock: */
859 raw_spinlock_t lock;
860
861 /*
862 * nr_running and cpu_load should be in the same cacheline because
863 * remote CPUs use both these fields when doing load calculation.
864 */
865 unsigned int nr_running;
866 #ifdef CONFIG_NUMA_BALANCING
867 unsigned int nr_numa_running;
868 unsigned int nr_preferred_running;
869 unsigned int numa_migrate_on;
870 #endif
871 #ifdef CONFIG_NO_HZ_COMMON
872 #ifdef CONFIG_SMP
873 unsigned long last_load_update_tick;
874 unsigned long last_blocked_load_update_tick;
875 unsigned int has_blocked_load;
876 #endif /* CONFIG_SMP */
877 unsigned int nohz_tick_stopped;
878 atomic_t nohz_flags;
879 #endif /* CONFIG_NO_HZ_COMMON */
880
881 unsigned long nr_load_updates;
882 u64 nr_switches;
883
884 #ifdef CONFIG_UCLAMP_TASK
885 /* Utilization clamp values based on CPU's RUNNABLE tasks */
886 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
887 unsigned int uclamp_flags;
888 #define UCLAMP_FLAG_IDLE 0x01
889 #endif
890
891 struct cfs_rq cfs;
892 struct rt_rq rt;
893 struct dl_rq dl;
894
895 #ifdef CONFIG_FAIR_GROUP_SCHED
896 /* list of leaf cfs_rq on this CPU: */
897 struct list_head leaf_cfs_rq_list;
898 struct list_head *tmp_alone_branch;
899 #endif /* CONFIG_FAIR_GROUP_SCHED */
900
901 /*
902 * This is part of a global counter where only the total sum
903 * over all CPUs matters. A task can increase this counter on
904 * one CPU and if it got migrated afterwards it may decrease
905 * it on another CPU. Always updated under the runqueue lock:
906 */
907 unsigned long nr_uninterruptible;
908
909 struct task_struct *curr;
910 struct task_struct *idle;
911 struct task_struct *stop;
912 unsigned long next_balance;
913 struct mm_struct *prev_mm;
914
915 unsigned int clock_update_flags;
916 u64 clock;
917 /* Ensure that all clocks are in the same cache line */
918 u64 clock_task ____cacheline_aligned;
919 u64 clock_pelt;
920 unsigned long lost_idle_time;
921
922 atomic_t nr_iowait;
923
924 #ifdef CONFIG_MEMBARRIER
925 int membarrier_state;
926 #endif
927
928 #ifdef CONFIG_SMP
929 struct root_domain *rd;
930 struct sched_domain __rcu *sd;
931
932 unsigned long cpu_capacity;
933 unsigned long cpu_capacity_orig;
934
935 struct callback_head *balance_callback;
936
937 unsigned char idle_balance;
938
939 unsigned long misfit_task_load;
940
941 /* For active balancing */
942 int active_balance;
943 int push_cpu;
944 struct cpu_stop_work active_balance_work;
945
946 /* CPU of this runqueue: */
947 int cpu;
948 int online;
949
950 struct list_head cfs_tasks;
951
952 struct sched_avg avg_rt;
953 struct sched_avg avg_dl;
954 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
955 struct sched_avg avg_irq;
956 #endif
957 u64 idle_stamp;
958 u64 avg_idle;
959
960 /* This is used to determine avg_idle's max value */
961 u64 max_idle_balance_cost;
962 #endif
963
964 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
965 u64 prev_irq_time;
966 #endif
967 #ifdef CONFIG_PARAVIRT
968 u64 prev_steal_time;
969 #endif
970 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
971 u64 prev_steal_time_rq;
972 #endif
973
974 /* calc_load related fields */
975 unsigned long calc_load_update;
976 long calc_load_active;
977
978 #ifdef CONFIG_SCHED_HRTICK
979 #ifdef CONFIG_SMP
980 int hrtick_csd_pending;
981 call_single_data_t hrtick_csd;
982 #endif
983 struct hrtimer hrtick_timer;
984 #endif
985
986 #ifdef CONFIG_SCHEDSTATS
987 /* latency stats */
988 struct sched_info rq_sched_info;
989 unsigned long long rq_cpu_time;
990 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
991
992 /* sys_sched_yield() stats */
993 unsigned int yld_count;
994
995 /* schedule() stats */
996 unsigned int sched_count;
997 unsigned int sched_goidle;
998
999 /* try_to_wake_up() stats */
1000 unsigned int ttwu_count;
1001 unsigned int ttwu_local;
1002 #endif
1003
1004 #ifdef CONFIG_SMP
1005 struct llist_head wake_list;
1006 #endif
1007
1008 #ifdef CONFIG_CPU_IDLE
1009 /* Must be inspected within a rcu lock section */
1010 struct cpuidle_state *idle_state;
1011 #endif
1012 };
1013
1014 #ifdef CONFIG_FAIR_GROUP_SCHED
1015
1016 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1017 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1018 {
1019 return cfs_rq->rq;
1020 }
1021
1022 #else
1023
rq_of(struct cfs_rq * cfs_rq)1024 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1025 {
1026 return container_of(cfs_rq, struct rq, cfs);
1027 }
1028 #endif
1029
cpu_of(struct rq * rq)1030 static inline int cpu_of(struct rq *rq)
1031 {
1032 #ifdef CONFIG_SMP
1033 return rq->cpu;
1034 #else
1035 return 0;
1036 #endif
1037 }
1038
1039
1040 #ifdef CONFIG_SCHED_SMT
1041 extern void __update_idle_core(struct rq *rq);
1042
update_idle_core(struct rq * rq)1043 static inline void update_idle_core(struct rq *rq)
1044 {
1045 if (static_branch_unlikely(&sched_smt_present))
1046 __update_idle_core(rq);
1047 }
1048
1049 #else
update_idle_core(struct rq * rq)1050 static inline void update_idle_core(struct rq *rq) { }
1051 #endif
1052
1053 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1054
1055 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1056 #define this_rq() this_cpu_ptr(&runqueues)
1057 #define task_rq(p) cpu_rq(task_cpu(p))
1058 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1059 #define raw_rq() raw_cpu_ptr(&runqueues)
1060
1061 extern void update_rq_clock(struct rq *rq);
1062
__rq_clock_broken(struct rq * rq)1063 static inline u64 __rq_clock_broken(struct rq *rq)
1064 {
1065 return READ_ONCE(rq->clock);
1066 }
1067
1068 /*
1069 * rq::clock_update_flags bits
1070 *
1071 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1072 * call to __schedule(). This is an optimisation to avoid
1073 * neighbouring rq clock updates.
1074 *
1075 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1076 * in effect and calls to update_rq_clock() are being ignored.
1077 *
1078 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1079 * made to update_rq_clock() since the last time rq::lock was pinned.
1080 *
1081 * If inside of __schedule(), clock_update_flags will have been
1082 * shifted left (a left shift is a cheap operation for the fast path
1083 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1084 *
1085 * if (rq-clock_update_flags >= RQCF_UPDATED)
1086 *
1087 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1088 * one position though, because the next rq_unpin_lock() will shift it
1089 * back.
1090 */
1091 #define RQCF_REQ_SKIP 0x01
1092 #define RQCF_ACT_SKIP 0x02
1093 #define RQCF_UPDATED 0x04
1094
assert_clock_updated(struct rq * rq)1095 static inline void assert_clock_updated(struct rq *rq)
1096 {
1097 /*
1098 * The only reason for not seeing a clock update since the
1099 * last rq_pin_lock() is if we're currently skipping updates.
1100 */
1101 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1102 }
1103
rq_clock(struct rq * rq)1104 static inline u64 rq_clock(struct rq *rq)
1105 {
1106 lockdep_assert_held(&rq->lock);
1107 assert_clock_updated(rq);
1108
1109 return rq->clock;
1110 }
1111
rq_clock_task(struct rq * rq)1112 static inline u64 rq_clock_task(struct rq *rq)
1113 {
1114 lockdep_assert_held(&rq->lock);
1115 assert_clock_updated(rq);
1116
1117 return rq->clock_task;
1118 }
1119
rq_clock_skip_update(struct rq * rq)1120 static inline void rq_clock_skip_update(struct rq *rq)
1121 {
1122 lockdep_assert_held(&rq->lock);
1123 rq->clock_update_flags |= RQCF_REQ_SKIP;
1124 }
1125
1126 /*
1127 * See rt task throttling, which is the only time a skip
1128 * request is cancelled.
1129 */
rq_clock_cancel_skipupdate(struct rq * rq)1130 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1131 {
1132 lockdep_assert_held(&rq->lock);
1133 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1134 }
1135
1136 struct rq_flags {
1137 unsigned long flags;
1138 struct pin_cookie cookie;
1139 #ifdef CONFIG_SCHED_DEBUG
1140 /*
1141 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1142 * current pin context is stashed here in case it needs to be
1143 * restored in rq_repin_lock().
1144 */
1145 unsigned int clock_update_flags;
1146 #endif
1147 };
1148
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1149 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1150 {
1151 rf->cookie = lockdep_pin_lock(&rq->lock);
1152
1153 #ifdef CONFIG_SCHED_DEBUG
1154 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1155 rf->clock_update_flags = 0;
1156 #endif
1157 }
1158
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1159 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1160 {
1161 #ifdef CONFIG_SCHED_DEBUG
1162 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1163 rf->clock_update_flags = RQCF_UPDATED;
1164 #endif
1165
1166 lockdep_unpin_lock(&rq->lock, rf->cookie);
1167 }
1168
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1169 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1170 {
1171 lockdep_repin_lock(&rq->lock, rf->cookie);
1172
1173 #ifdef CONFIG_SCHED_DEBUG
1174 /*
1175 * Restore the value we stashed in @rf for this pin context.
1176 */
1177 rq->clock_update_flags |= rf->clock_update_flags;
1178 #endif
1179 }
1180
1181 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1182 __acquires(rq->lock);
1183
1184 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1185 __acquires(p->pi_lock)
1186 __acquires(rq->lock);
1187
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1188 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1189 __releases(rq->lock)
1190 {
1191 rq_unpin_lock(rq, rf);
1192 raw_spin_unlock(&rq->lock);
1193 }
1194
1195 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1196 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1197 __releases(rq->lock)
1198 __releases(p->pi_lock)
1199 {
1200 rq_unpin_lock(rq, rf);
1201 raw_spin_unlock(&rq->lock);
1202 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1203 }
1204
1205 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1206 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1207 __acquires(rq->lock)
1208 {
1209 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1210 rq_pin_lock(rq, rf);
1211 }
1212
1213 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1214 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1215 __acquires(rq->lock)
1216 {
1217 raw_spin_lock_irq(&rq->lock);
1218 rq_pin_lock(rq, rf);
1219 }
1220
1221 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1222 rq_lock(struct rq *rq, struct rq_flags *rf)
1223 __acquires(rq->lock)
1224 {
1225 raw_spin_lock(&rq->lock);
1226 rq_pin_lock(rq, rf);
1227 }
1228
1229 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1230 rq_relock(struct rq *rq, struct rq_flags *rf)
1231 __acquires(rq->lock)
1232 {
1233 raw_spin_lock(&rq->lock);
1234 rq_repin_lock(rq, rf);
1235 }
1236
1237 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1238 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1239 __releases(rq->lock)
1240 {
1241 rq_unpin_lock(rq, rf);
1242 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1243 }
1244
1245 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1246 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1247 __releases(rq->lock)
1248 {
1249 rq_unpin_lock(rq, rf);
1250 raw_spin_unlock_irq(&rq->lock);
1251 }
1252
1253 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1254 rq_unlock(struct rq *rq, struct rq_flags *rf)
1255 __releases(rq->lock)
1256 {
1257 rq_unpin_lock(rq, rf);
1258 raw_spin_unlock(&rq->lock);
1259 }
1260
1261 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1262 this_rq_lock_irq(struct rq_flags *rf)
1263 __acquires(rq->lock)
1264 {
1265 struct rq *rq;
1266
1267 local_irq_disable();
1268 rq = this_rq();
1269 rq_lock(rq, rf);
1270 return rq;
1271 }
1272
1273 #ifdef CONFIG_NUMA
1274 enum numa_topology_type {
1275 NUMA_DIRECT,
1276 NUMA_GLUELESS_MESH,
1277 NUMA_BACKPLANE,
1278 };
1279 extern enum numa_topology_type sched_numa_topology_type;
1280 extern int sched_max_numa_distance;
1281 extern bool find_numa_distance(int distance);
1282 extern void sched_init_numa(void);
1283 extern void sched_domains_numa_masks_set(unsigned int cpu);
1284 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1285 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1286 #else
sched_init_numa(void)1287 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1288 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1289 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1290 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1291 {
1292 return nr_cpu_ids;
1293 }
1294 #endif
1295
1296 #ifdef CONFIG_NUMA_BALANCING
1297 /* The regions in numa_faults array from task_struct */
1298 enum numa_faults_stats {
1299 NUMA_MEM = 0,
1300 NUMA_CPU,
1301 NUMA_MEMBUF,
1302 NUMA_CPUBUF
1303 };
1304 extern void sched_setnuma(struct task_struct *p, int node);
1305 extern int migrate_task_to(struct task_struct *p, int cpu);
1306 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1307 int cpu, int scpu);
1308 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1309 #else
1310 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1311 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1312 {
1313 }
1314 #endif /* CONFIG_NUMA_BALANCING */
1315
1316 #ifdef CONFIG_SMP
1317
1318 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1319 queue_balance_callback(struct rq *rq,
1320 struct callback_head *head,
1321 void (*func)(struct rq *rq))
1322 {
1323 lockdep_assert_held(&rq->lock);
1324
1325 if (unlikely(head->next))
1326 return;
1327
1328 head->func = (void (*)(struct callback_head *))func;
1329 head->next = rq->balance_callback;
1330 rq->balance_callback = head;
1331 }
1332
1333 extern void sched_ttwu_pending(void);
1334
1335 #define rcu_dereference_check_sched_domain(p) \
1336 rcu_dereference_check((p), \
1337 lockdep_is_held(&sched_domains_mutex))
1338
1339 /*
1340 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1341 * See destroy_sched_domains: call_rcu for details.
1342 *
1343 * The domain tree of any CPU may only be accessed from within
1344 * preempt-disabled sections.
1345 */
1346 #define for_each_domain(cpu, __sd) \
1347 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1348 __sd; __sd = __sd->parent)
1349
1350 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1351
1352 /**
1353 * highest_flag_domain - Return highest sched_domain containing flag.
1354 * @cpu: The CPU whose highest level of sched domain is to
1355 * be returned.
1356 * @flag: The flag to check for the highest sched_domain
1357 * for the given CPU.
1358 *
1359 * Returns the highest sched_domain of a CPU which contains the given flag.
1360 */
highest_flag_domain(int cpu,int flag)1361 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1362 {
1363 struct sched_domain *sd, *hsd = NULL;
1364
1365 for_each_domain(cpu, sd) {
1366 if (!(sd->flags & flag))
1367 break;
1368 hsd = sd;
1369 }
1370
1371 return hsd;
1372 }
1373
lowest_flag_domain(int cpu,int flag)1374 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1375 {
1376 struct sched_domain *sd;
1377
1378 for_each_domain(cpu, sd) {
1379 if (sd->flags & flag)
1380 break;
1381 }
1382
1383 return sd;
1384 }
1385
1386 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1387 DECLARE_PER_CPU(int, sd_llc_size);
1388 DECLARE_PER_CPU(int, sd_llc_id);
1389 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1390 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1391 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1392 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1393 extern struct static_key_false sched_asym_cpucapacity;
1394
1395 struct sched_group_capacity {
1396 atomic_t ref;
1397 /*
1398 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1399 * for a single CPU.
1400 */
1401 unsigned long capacity;
1402 unsigned long min_capacity; /* Min per-CPU capacity in group */
1403 unsigned long max_capacity; /* Max per-CPU capacity in group */
1404 unsigned long next_update;
1405 int imbalance; /* XXX unrelated to capacity but shared group state */
1406
1407 #ifdef CONFIG_SCHED_DEBUG
1408 int id;
1409 #endif
1410
1411 unsigned long cpumask[0]; /* Balance mask */
1412 };
1413
1414 struct sched_group {
1415 struct sched_group *next; /* Must be a circular list */
1416 atomic_t ref;
1417
1418 unsigned int group_weight;
1419 struct sched_group_capacity *sgc;
1420 int asym_prefer_cpu; /* CPU of highest priority in group */
1421
1422 /*
1423 * The CPUs this group covers.
1424 *
1425 * NOTE: this field is variable length. (Allocated dynamically
1426 * by attaching extra space to the end of the structure,
1427 * depending on how many CPUs the kernel has booted up with)
1428 */
1429 unsigned long cpumask[0];
1430 };
1431
sched_group_span(struct sched_group * sg)1432 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1433 {
1434 return to_cpumask(sg->cpumask);
1435 }
1436
1437 /*
1438 * See build_balance_mask().
1439 */
group_balance_mask(struct sched_group * sg)1440 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1441 {
1442 return to_cpumask(sg->sgc->cpumask);
1443 }
1444
1445 /**
1446 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1447 * @group: The group whose first CPU is to be returned.
1448 */
group_first_cpu(struct sched_group * group)1449 static inline unsigned int group_first_cpu(struct sched_group *group)
1450 {
1451 return cpumask_first(sched_group_span(group));
1452 }
1453
1454 extern int group_balance_cpu(struct sched_group *sg);
1455
1456 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1457 void register_sched_domain_sysctl(void);
1458 void dirty_sched_domain_sysctl(int cpu);
1459 void unregister_sched_domain_sysctl(void);
1460 #else
register_sched_domain_sysctl(void)1461 static inline void register_sched_domain_sysctl(void)
1462 {
1463 }
dirty_sched_domain_sysctl(int cpu)1464 static inline void dirty_sched_domain_sysctl(int cpu)
1465 {
1466 }
unregister_sched_domain_sysctl(void)1467 static inline void unregister_sched_domain_sysctl(void)
1468 {
1469 }
1470 #endif
1471
1472 extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
1473
1474 #else
1475
sched_ttwu_pending(void)1476 static inline void sched_ttwu_pending(void) { }
1477
newidle_balance(struct rq * this_rq,struct rq_flags * rf)1478 static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; }
1479
1480 #endif /* CONFIG_SMP */
1481
1482 #include "stats.h"
1483 #include "autogroup.h"
1484
1485 #ifdef CONFIG_CGROUP_SCHED
1486
1487 /*
1488 * Return the group to which this tasks belongs.
1489 *
1490 * We cannot use task_css() and friends because the cgroup subsystem
1491 * changes that value before the cgroup_subsys::attach() method is called,
1492 * therefore we cannot pin it and might observe the wrong value.
1493 *
1494 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1495 * core changes this before calling sched_move_task().
1496 *
1497 * Instead we use a 'copy' which is updated from sched_move_task() while
1498 * holding both task_struct::pi_lock and rq::lock.
1499 */
task_group(struct task_struct * p)1500 static inline struct task_group *task_group(struct task_struct *p)
1501 {
1502 return p->sched_task_group;
1503 }
1504
1505 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1506 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1507 {
1508 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1509 struct task_group *tg = task_group(p);
1510 #endif
1511
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1513 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1514 p->se.cfs_rq = tg->cfs_rq[cpu];
1515 p->se.parent = tg->se[cpu];
1516 #endif
1517
1518 #ifdef CONFIG_RT_GROUP_SCHED
1519 p->rt.rt_rq = tg->rt_rq[cpu];
1520 p->rt.parent = tg->rt_se[cpu];
1521 #endif
1522 }
1523
1524 #else /* CONFIG_CGROUP_SCHED */
1525
set_task_rq(struct task_struct * p,unsigned int cpu)1526 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1527 static inline struct task_group *task_group(struct task_struct *p)
1528 {
1529 return NULL;
1530 }
1531
1532 #endif /* CONFIG_CGROUP_SCHED */
1533
__set_task_cpu(struct task_struct * p,unsigned int cpu)1534 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1535 {
1536 set_task_rq(p, cpu);
1537 #ifdef CONFIG_SMP
1538 /*
1539 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1540 * successfully executed on another CPU. We must ensure that updates of
1541 * per-task data have been completed by this moment.
1542 */
1543 smp_wmb();
1544 #ifdef CONFIG_THREAD_INFO_IN_TASK
1545 WRITE_ONCE(p->cpu, cpu);
1546 #else
1547 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1548 #endif
1549 p->wake_cpu = cpu;
1550 #endif
1551 }
1552
1553 /*
1554 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1555 */
1556 #ifdef CONFIG_SCHED_DEBUG
1557 # include <linux/static_key.h>
1558 # define const_debug __read_mostly
1559 #else
1560 # define const_debug const
1561 #endif
1562
1563 #define SCHED_FEAT(name, enabled) \
1564 __SCHED_FEAT_##name ,
1565
1566 enum {
1567 #include "features.h"
1568 __SCHED_FEAT_NR,
1569 };
1570
1571 #undef SCHED_FEAT
1572
1573 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1574
1575 /*
1576 * To support run-time toggling of sched features, all the translation units
1577 * (but core.c) reference the sysctl_sched_features defined in core.c.
1578 */
1579 extern const_debug unsigned int sysctl_sched_features;
1580
1581 #define SCHED_FEAT(name, enabled) \
1582 static __always_inline bool static_branch_##name(struct static_key *key) \
1583 { \
1584 return static_key_##enabled(key); \
1585 }
1586
1587 #include "features.h"
1588 #undef SCHED_FEAT
1589
1590 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1591 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1592
1593 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1594
1595 /*
1596 * Each translation unit has its own copy of sysctl_sched_features to allow
1597 * constants propagation at compile time and compiler optimization based on
1598 * features default.
1599 */
1600 #define SCHED_FEAT(name, enabled) \
1601 (1UL << __SCHED_FEAT_##name) * enabled |
1602 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1603 #include "features.h"
1604 0;
1605 #undef SCHED_FEAT
1606
1607 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1608
1609 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1610
1611 extern struct static_key_false sched_numa_balancing;
1612 extern struct static_key_false sched_schedstats;
1613
global_rt_period(void)1614 static inline u64 global_rt_period(void)
1615 {
1616 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1617 }
1618
global_rt_runtime(void)1619 static inline u64 global_rt_runtime(void)
1620 {
1621 if (sysctl_sched_rt_runtime < 0)
1622 return RUNTIME_INF;
1623
1624 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1625 }
1626
task_current(struct rq * rq,struct task_struct * p)1627 static inline int task_current(struct rq *rq, struct task_struct *p)
1628 {
1629 return rq->curr == p;
1630 }
1631
task_running(struct rq * rq,struct task_struct * p)1632 static inline int task_running(struct rq *rq, struct task_struct *p)
1633 {
1634 #ifdef CONFIG_SMP
1635 return p->on_cpu;
1636 #else
1637 return task_current(rq, p);
1638 #endif
1639 }
1640
task_on_rq_queued(struct task_struct * p)1641 static inline int task_on_rq_queued(struct task_struct *p)
1642 {
1643 return p->on_rq == TASK_ON_RQ_QUEUED;
1644 }
1645
task_on_rq_migrating(struct task_struct * p)1646 static inline int task_on_rq_migrating(struct task_struct *p)
1647 {
1648 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1649 }
1650
1651 /*
1652 * wake flags
1653 */
1654 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1655 #define WF_FORK 0x02 /* Child wakeup after fork */
1656 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1657
1658 /*
1659 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1660 * of tasks with abnormal "nice" values across CPUs the contribution that
1661 * each task makes to its run queue's load is weighted according to its
1662 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1663 * scaled version of the new time slice allocation that they receive on time
1664 * slice expiry etc.
1665 */
1666
1667 #define WEIGHT_IDLEPRIO 3
1668 #define WMULT_IDLEPRIO 1431655765
1669
1670 extern const int sched_prio_to_weight[40];
1671 extern const u32 sched_prio_to_wmult[40];
1672
1673 /*
1674 * {de,en}queue flags:
1675 *
1676 * DEQUEUE_SLEEP - task is no longer runnable
1677 * ENQUEUE_WAKEUP - task just became runnable
1678 *
1679 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1680 * are in a known state which allows modification. Such pairs
1681 * should preserve as much state as possible.
1682 *
1683 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1684 * in the runqueue.
1685 *
1686 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1687 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1688 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1689 *
1690 */
1691
1692 #define DEQUEUE_SLEEP 0x01
1693 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1694 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1695 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1696
1697 #define ENQUEUE_WAKEUP 0x01
1698 #define ENQUEUE_RESTORE 0x02
1699 #define ENQUEUE_MOVE 0x04
1700 #define ENQUEUE_NOCLOCK 0x08
1701
1702 #define ENQUEUE_HEAD 0x10
1703 #define ENQUEUE_REPLENISH 0x20
1704 #ifdef CONFIG_SMP
1705 #define ENQUEUE_MIGRATED 0x40
1706 #else
1707 #define ENQUEUE_MIGRATED 0x00
1708 #endif
1709
1710 #define RETRY_TASK ((void *)-1UL)
1711
1712 struct sched_class {
1713 const struct sched_class *next;
1714
1715 #ifdef CONFIG_UCLAMP_TASK
1716 int uclamp_enabled;
1717 #endif
1718
1719 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1720 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1721 void (*yield_task) (struct rq *rq);
1722 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1723
1724 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1725
1726 /*
1727 * Both @prev and @rf are optional and may be NULL, in which case the
1728 * caller must already have invoked put_prev_task(rq, prev, rf).
1729 *
1730 * Otherwise it is the responsibility of the pick_next_task() to call
1731 * put_prev_task() on the @prev task or something equivalent, IFF it
1732 * returns a next task.
1733 *
1734 * In that case (@rf != NULL) it may return RETRY_TASK when it finds a
1735 * higher prio class has runnable tasks.
1736 */
1737 struct task_struct * (*pick_next_task)(struct rq *rq,
1738 struct task_struct *prev,
1739 struct rq_flags *rf);
1740 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1741 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1742
1743 #ifdef CONFIG_SMP
1744 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1745 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1746 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1747
1748 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1749
1750 void (*set_cpus_allowed)(struct task_struct *p,
1751 const struct cpumask *newmask);
1752
1753 void (*rq_online)(struct rq *rq);
1754 void (*rq_offline)(struct rq *rq);
1755 #endif
1756
1757 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1758 void (*task_fork)(struct task_struct *p);
1759 void (*task_dead)(struct task_struct *p);
1760
1761 /*
1762 * The switched_from() call is allowed to drop rq->lock, therefore we
1763 * cannot assume the switched_from/switched_to pair is serliazed by
1764 * rq->lock. They are however serialized by p->pi_lock.
1765 */
1766 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1767 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1768 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1769 int oldprio);
1770
1771 unsigned int (*get_rr_interval)(struct rq *rq,
1772 struct task_struct *task);
1773
1774 void (*update_curr)(struct rq *rq);
1775
1776 #define TASK_SET_GROUP 0
1777 #define TASK_MOVE_GROUP 1
1778
1779 #ifdef CONFIG_FAIR_GROUP_SCHED
1780 void (*task_change_group)(struct task_struct *p, int type);
1781 #endif
1782 };
1783
put_prev_task(struct rq * rq,struct task_struct * prev)1784 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1785 {
1786 WARN_ON_ONCE(rq->curr != prev);
1787 prev->sched_class->put_prev_task(rq, prev);
1788 }
1789
set_next_task(struct rq * rq,struct task_struct * next)1790 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1791 {
1792 WARN_ON_ONCE(rq->curr != next);
1793 next->sched_class->set_next_task(rq, next, false);
1794 }
1795
1796 #ifdef CONFIG_SMP
1797 #define sched_class_highest (&stop_sched_class)
1798 #else
1799 #define sched_class_highest (&dl_sched_class)
1800 #endif
1801
1802 #define for_class_range(class, _from, _to) \
1803 for (class = (_from); class != (_to); class = class->next)
1804
1805 #define for_each_class(class) \
1806 for_class_range(class, sched_class_highest, NULL)
1807
1808 extern const struct sched_class stop_sched_class;
1809 extern const struct sched_class dl_sched_class;
1810 extern const struct sched_class rt_sched_class;
1811 extern const struct sched_class fair_sched_class;
1812 extern const struct sched_class idle_sched_class;
1813
sched_stop_runnable(struct rq * rq)1814 static inline bool sched_stop_runnable(struct rq *rq)
1815 {
1816 return rq->stop && task_on_rq_queued(rq->stop);
1817 }
1818
sched_dl_runnable(struct rq * rq)1819 static inline bool sched_dl_runnable(struct rq *rq)
1820 {
1821 return rq->dl.dl_nr_running > 0;
1822 }
1823
sched_rt_runnable(struct rq * rq)1824 static inline bool sched_rt_runnable(struct rq *rq)
1825 {
1826 return rq->rt.rt_queued > 0;
1827 }
1828
sched_fair_runnable(struct rq * rq)1829 static inline bool sched_fair_runnable(struct rq *rq)
1830 {
1831 return rq->cfs.nr_running > 0;
1832 }
1833
1834 #ifdef CONFIG_SMP
1835
1836 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1837
1838 extern void trigger_load_balance(struct rq *rq);
1839
1840 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1841
1842 #endif
1843
1844 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1845 static inline void idle_set_state(struct rq *rq,
1846 struct cpuidle_state *idle_state)
1847 {
1848 rq->idle_state = idle_state;
1849 }
1850
idle_get_state(struct rq * rq)1851 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1852 {
1853 SCHED_WARN_ON(!rcu_read_lock_held());
1854
1855 return rq->idle_state;
1856 }
1857 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1858 static inline void idle_set_state(struct rq *rq,
1859 struct cpuidle_state *idle_state)
1860 {
1861 }
1862
idle_get_state(struct rq * rq)1863 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1864 {
1865 return NULL;
1866 }
1867 #endif
1868
1869 extern void schedule_idle(void);
1870
1871 extern void sysrq_sched_debug_show(void);
1872 extern void sched_init_granularity(void);
1873 extern void update_max_interval(void);
1874
1875 extern void init_sched_dl_class(void);
1876 extern void init_sched_rt_class(void);
1877 extern void init_sched_fair_class(void);
1878
1879 extern void reweight_task(struct task_struct *p, int prio);
1880
1881 extern void resched_curr(struct rq *rq);
1882 extern void resched_cpu(int cpu);
1883
1884 extern struct rt_bandwidth def_rt_bandwidth;
1885 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1886
1887 extern struct dl_bandwidth def_dl_bandwidth;
1888 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1889 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1890 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1891 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1892
1893 #define BW_SHIFT 20
1894 #define BW_UNIT (1 << BW_SHIFT)
1895 #define RATIO_SHIFT 8
1896 unsigned long to_ratio(u64 period, u64 runtime);
1897
1898 extern void init_entity_runnable_average(struct sched_entity *se);
1899 extern void post_init_entity_util_avg(struct task_struct *p);
1900
1901 #ifdef CONFIG_NO_HZ_FULL
1902 extern bool sched_can_stop_tick(struct rq *rq);
1903 extern int __init sched_tick_offload_init(void);
1904
1905 /*
1906 * Tick may be needed by tasks in the runqueue depending on their policy and
1907 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1908 * nohz mode if necessary.
1909 */
sched_update_tick_dependency(struct rq * rq)1910 static inline void sched_update_tick_dependency(struct rq *rq)
1911 {
1912 int cpu;
1913
1914 if (!tick_nohz_full_enabled())
1915 return;
1916
1917 cpu = cpu_of(rq);
1918
1919 if (!tick_nohz_full_cpu(cpu))
1920 return;
1921
1922 if (sched_can_stop_tick(rq))
1923 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1924 else
1925 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1926 }
1927 #else
sched_tick_offload_init(void)1928 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)1929 static inline void sched_update_tick_dependency(struct rq *rq) { }
1930 #endif
1931
add_nr_running(struct rq * rq,unsigned count)1932 static inline void add_nr_running(struct rq *rq, unsigned count)
1933 {
1934 unsigned prev_nr = rq->nr_running;
1935
1936 rq->nr_running = prev_nr + count;
1937
1938 #ifdef CONFIG_SMP
1939 if (prev_nr < 2 && rq->nr_running >= 2) {
1940 if (!READ_ONCE(rq->rd->overload))
1941 WRITE_ONCE(rq->rd->overload, 1);
1942 }
1943 #endif
1944
1945 sched_update_tick_dependency(rq);
1946 }
1947
sub_nr_running(struct rq * rq,unsigned count)1948 static inline void sub_nr_running(struct rq *rq, unsigned count)
1949 {
1950 rq->nr_running -= count;
1951 /* Check if we still need preemption */
1952 sched_update_tick_dependency(rq);
1953 }
1954
1955 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1956 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1957
1958 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1959
1960 extern const_debug unsigned int sysctl_sched_nr_migrate;
1961 extern const_debug unsigned int sysctl_sched_migration_cost;
1962
1963 #ifdef CONFIG_SCHED_HRTICK
1964
1965 /*
1966 * Use hrtick when:
1967 * - enabled by features
1968 * - hrtimer is actually high res
1969 */
hrtick_enabled(struct rq * rq)1970 static inline int hrtick_enabled(struct rq *rq)
1971 {
1972 if (!sched_feat(HRTICK))
1973 return 0;
1974 if (!cpu_active(cpu_of(rq)))
1975 return 0;
1976 return hrtimer_is_hres_active(&rq->hrtick_timer);
1977 }
1978
1979 void hrtick_start(struct rq *rq, u64 delay);
1980
1981 #else
1982
hrtick_enabled(struct rq * rq)1983 static inline int hrtick_enabled(struct rq *rq)
1984 {
1985 return 0;
1986 }
1987
1988 #endif /* CONFIG_SCHED_HRTICK */
1989
1990 #ifndef arch_scale_freq_capacity
1991 static __always_inline
arch_scale_freq_capacity(int cpu)1992 unsigned long arch_scale_freq_capacity(int cpu)
1993 {
1994 return SCHED_CAPACITY_SCALE;
1995 }
1996 #endif
1997
1998 #ifndef arch_scale_max_freq_capacity
1999 struct sched_domain;
2000 static __always_inline
arch_scale_max_freq_capacity(struct sched_domain * sd,int cpu)2001 unsigned long arch_scale_max_freq_capacity(struct sched_domain *sd, int cpu)
2002 {
2003 return SCHED_CAPACITY_SCALE;
2004 }
2005 #endif
2006
2007 #ifdef CONFIG_SMP
2008 #ifdef CONFIG_PREEMPTION
2009
2010 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2011
2012 /*
2013 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2014 * way at the expense of forcing extra atomic operations in all
2015 * invocations. This assures that the double_lock is acquired using the
2016 * same underlying policy as the spinlock_t on this architecture, which
2017 * reduces latency compared to the unfair variant below. However, it
2018 * also adds more overhead and therefore may reduce throughput.
2019 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2020 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2021 __releases(this_rq->lock)
2022 __acquires(busiest->lock)
2023 __acquires(this_rq->lock)
2024 {
2025 raw_spin_unlock(&this_rq->lock);
2026 double_rq_lock(this_rq, busiest);
2027
2028 return 1;
2029 }
2030
2031 #else
2032 /*
2033 * Unfair double_lock_balance: Optimizes throughput at the expense of
2034 * latency by eliminating extra atomic operations when the locks are
2035 * already in proper order on entry. This favors lower CPU-ids and will
2036 * grant the double lock to lower CPUs over higher ids under contention,
2037 * regardless of entry order into the function.
2038 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2039 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2040 __releases(this_rq->lock)
2041 __acquires(busiest->lock)
2042 __acquires(this_rq->lock)
2043 {
2044 int ret = 0;
2045
2046 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2047 if (busiest < this_rq) {
2048 raw_spin_unlock(&this_rq->lock);
2049 raw_spin_lock(&busiest->lock);
2050 raw_spin_lock_nested(&this_rq->lock,
2051 SINGLE_DEPTH_NESTING);
2052 ret = 1;
2053 } else
2054 raw_spin_lock_nested(&busiest->lock,
2055 SINGLE_DEPTH_NESTING);
2056 }
2057 return ret;
2058 }
2059
2060 #endif /* CONFIG_PREEMPTION */
2061
2062 /*
2063 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2064 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2065 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2066 {
2067 if (unlikely(!irqs_disabled())) {
2068 /* printk() doesn't work well under rq->lock */
2069 raw_spin_unlock(&this_rq->lock);
2070 BUG_ON(1);
2071 }
2072
2073 return _double_lock_balance(this_rq, busiest);
2074 }
2075
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2076 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2077 __releases(busiest->lock)
2078 {
2079 raw_spin_unlock(&busiest->lock);
2080 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2081 }
2082
double_lock(spinlock_t * l1,spinlock_t * l2)2083 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2084 {
2085 if (l1 > l2)
2086 swap(l1, l2);
2087
2088 spin_lock(l1);
2089 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2090 }
2091
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2092 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2093 {
2094 if (l1 > l2)
2095 swap(l1, l2);
2096
2097 spin_lock_irq(l1);
2098 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2099 }
2100
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2101 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2102 {
2103 if (l1 > l2)
2104 swap(l1, l2);
2105
2106 raw_spin_lock(l1);
2107 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2108 }
2109
2110 /*
2111 * double_rq_lock - safely lock two runqueues
2112 *
2113 * Note this does not disable interrupts like task_rq_lock,
2114 * you need to do so manually before calling.
2115 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2116 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2117 __acquires(rq1->lock)
2118 __acquires(rq2->lock)
2119 {
2120 BUG_ON(!irqs_disabled());
2121 if (rq1 == rq2) {
2122 raw_spin_lock(&rq1->lock);
2123 __acquire(rq2->lock); /* Fake it out ;) */
2124 } else {
2125 if (rq1 < rq2) {
2126 raw_spin_lock(&rq1->lock);
2127 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2128 } else {
2129 raw_spin_lock(&rq2->lock);
2130 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2131 }
2132 }
2133 }
2134
2135 /*
2136 * double_rq_unlock - safely unlock two runqueues
2137 *
2138 * Note this does not restore interrupts like task_rq_unlock,
2139 * you need to do so manually after calling.
2140 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2141 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2142 __releases(rq1->lock)
2143 __releases(rq2->lock)
2144 {
2145 raw_spin_unlock(&rq1->lock);
2146 if (rq1 != rq2)
2147 raw_spin_unlock(&rq2->lock);
2148 else
2149 __release(rq2->lock);
2150 }
2151
2152 extern void set_rq_online (struct rq *rq);
2153 extern void set_rq_offline(struct rq *rq);
2154 extern bool sched_smp_initialized;
2155
2156 #else /* CONFIG_SMP */
2157
2158 /*
2159 * double_rq_lock - safely lock two runqueues
2160 *
2161 * Note this does not disable interrupts like task_rq_lock,
2162 * you need to do so manually before calling.
2163 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2164 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2165 __acquires(rq1->lock)
2166 __acquires(rq2->lock)
2167 {
2168 BUG_ON(!irqs_disabled());
2169 BUG_ON(rq1 != rq2);
2170 raw_spin_lock(&rq1->lock);
2171 __acquire(rq2->lock); /* Fake it out ;) */
2172 }
2173
2174 /*
2175 * double_rq_unlock - safely unlock two runqueues
2176 *
2177 * Note this does not restore interrupts like task_rq_unlock,
2178 * you need to do so manually after calling.
2179 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2180 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2181 __releases(rq1->lock)
2182 __releases(rq2->lock)
2183 {
2184 BUG_ON(rq1 != rq2);
2185 raw_spin_unlock(&rq1->lock);
2186 __release(rq2->lock);
2187 }
2188
2189 #endif
2190
2191 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2192 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2193
2194 #ifdef CONFIG_SCHED_DEBUG
2195 extern bool sched_debug_enabled;
2196
2197 extern void print_cfs_stats(struct seq_file *m, int cpu);
2198 extern void print_rt_stats(struct seq_file *m, int cpu);
2199 extern void print_dl_stats(struct seq_file *m, int cpu);
2200 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2201 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2202 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2203 #ifdef CONFIG_NUMA_BALANCING
2204 extern void
2205 show_numa_stats(struct task_struct *p, struct seq_file *m);
2206 extern void
2207 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2208 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2209 #endif /* CONFIG_NUMA_BALANCING */
2210 #endif /* CONFIG_SCHED_DEBUG */
2211
2212 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2213 extern void init_rt_rq(struct rt_rq *rt_rq);
2214 extern void init_dl_rq(struct dl_rq *dl_rq);
2215
2216 extern void cfs_bandwidth_usage_inc(void);
2217 extern void cfs_bandwidth_usage_dec(void);
2218
2219 #ifdef CONFIG_NO_HZ_COMMON
2220 #define NOHZ_BALANCE_KICK_BIT 0
2221 #define NOHZ_STATS_KICK_BIT 1
2222
2223 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2224 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2225
2226 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2227
2228 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2229
2230 extern void nohz_balance_exit_idle(struct rq *rq);
2231 #else
nohz_balance_exit_idle(struct rq * rq)2232 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2233 #endif
2234
2235
2236 #ifdef CONFIG_SMP
2237 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2238 void __dl_update(struct dl_bw *dl_b, s64 bw)
2239 {
2240 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2241 int i;
2242
2243 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2244 "sched RCU must be held");
2245 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2246 struct rq *rq = cpu_rq(i);
2247
2248 rq->dl.extra_bw += bw;
2249 }
2250 }
2251 #else
2252 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2253 void __dl_update(struct dl_bw *dl_b, s64 bw)
2254 {
2255 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2256
2257 dl->extra_bw += bw;
2258 }
2259 #endif
2260
2261
2262 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2263 struct irqtime {
2264 u64 total;
2265 u64 tick_delta;
2266 u64 irq_start_time;
2267 struct u64_stats_sync sync;
2268 };
2269
2270 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2271
2272 /*
2273 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2274 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2275 * and never move forward.
2276 */
irq_time_read(int cpu)2277 static inline u64 irq_time_read(int cpu)
2278 {
2279 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2280 unsigned int seq;
2281 u64 total;
2282
2283 do {
2284 seq = __u64_stats_fetch_begin(&irqtime->sync);
2285 total = irqtime->total;
2286 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2287
2288 return total;
2289 }
2290 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2291
2292 #ifdef CONFIG_CPU_FREQ
2293 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2294
2295 /**
2296 * cpufreq_update_util - Take a note about CPU utilization changes.
2297 * @rq: Runqueue to carry out the update for.
2298 * @flags: Update reason flags.
2299 *
2300 * This function is called by the scheduler on the CPU whose utilization is
2301 * being updated.
2302 *
2303 * It can only be called from RCU-sched read-side critical sections.
2304 *
2305 * The way cpufreq is currently arranged requires it to evaluate the CPU
2306 * performance state (frequency/voltage) on a regular basis to prevent it from
2307 * being stuck in a completely inadequate performance level for too long.
2308 * That is not guaranteed to happen if the updates are only triggered from CFS
2309 * and DL, though, because they may not be coming in if only RT tasks are
2310 * active all the time (or there are RT tasks only).
2311 *
2312 * As a workaround for that issue, this function is called periodically by the
2313 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2314 * but that really is a band-aid. Going forward it should be replaced with
2315 * solutions targeted more specifically at RT tasks.
2316 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2317 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2318 {
2319 struct update_util_data *data;
2320
2321 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2322 cpu_of(rq)));
2323 if (data)
2324 data->func(data, rq_clock(rq), flags);
2325 }
2326 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2327 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2328 #endif /* CONFIG_CPU_FREQ */
2329
2330 #ifdef CONFIG_UCLAMP_TASK
2331 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2332
2333 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2334 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2335 struct task_struct *p)
2336 {
2337 unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2338 unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2339
2340 if (p) {
2341 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2342 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2343 }
2344
2345 /*
2346 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2347 * RUNNABLE tasks with _different_ clamps, we can end up with an
2348 * inversion. Fix it now when the clamps are applied.
2349 */
2350 if (unlikely(min_util >= max_util))
2351 return min_util;
2352
2353 return clamp(util, min_util, max_util);
2354 }
2355
uclamp_boosted(struct task_struct * p)2356 static inline bool uclamp_boosted(struct task_struct *p)
2357 {
2358 return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2359 }
2360 #else /* CONFIG_UCLAMP_TASK */
2361 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2362 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2363 struct task_struct *p)
2364 {
2365 return util;
2366 }
uclamp_boosted(struct task_struct * p)2367 static inline bool uclamp_boosted(struct task_struct *p)
2368 {
2369 return false;
2370 }
2371 #endif /* CONFIG_UCLAMP_TASK */
2372
2373 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_latency_sensitive(struct task_struct * p)2374 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2375 {
2376 struct cgroup_subsys_state *css = task_css(p, cpu_cgrp_id);
2377 struct task_group *tg;
2378
2379 if (!css)
2380 return false;
2381 tg = container_of(css, struct task_group, css);
2382
2383 return tg->latency_sensitive;
2384 }
2385 #else
uclamp_latency_sensitive(struct task_struct * p)2386 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2387 {
2388 return false;
2389 }
2390 #endif /* CONFIG_UCLAMP_TASK_GROUP */
2391
2392 #ifdef arch_scale_freq_capacity
2393 # ifndef arch_scale_freq_invariant
2394 # define arch_scale_freq_invariant() true
2395 # endif
2396 #else
2397 # define arch_scale_freq_invariant() false
2398 #endif
2399
2400 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2401 static inline unsigned long capacity_orig_of(int cpu)
2402 {
2403 return cpu_rq(cpu)->cpu_capacity_orig;
2404 }
2405 #endif
2406
2407 /**
2408 * enum schedutil_type - CPU utilization type
2409 * @FREQUENCY_UTIL: Utilization used to select frequency
2410 * @ENERGY_UTIL: Utilization used during energy calculation
2411 *
2412 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2413 * need to be aggregated differently depending on the usage made of them. This
2414 * enum is used within schedutil_freq_util() to differentiate the types of
2415 * utilization expected by the callers, and adjust the aggregation accordingly.
2416 */
2417 enum schedutil_type {
2418 FREQUENCY_UTIL,
2419 ENERGY_UTIL,
2420 };
2421
2422 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2423
2424 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2425 unsigned long max, enum schedutil_type type,
2426 struct task_struct *p);
2427
cpu_bw_dl(struct rq * rq)2428 static inline unsigned long cpu_bw_dl(struct rq *rq)
2429 {
2430 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2431 }
2432
cpu_util_dl(struct rq * rq)2433 static inline unsigned long cpu_util_dl(struct rq *rq)
2434 {
2435 return READ_ONCE(rq->avg_dl.util_avg);
2436 }
2437
cpu_util_cfs(struct rq * rq)2438 static inline unsigned long cpu_util_cfs(struct rq *rq)
2439 {
2440 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2441
2442 if (sched_feat(UTIL_EST)) {
2443 util = max_t(unsigned long, util,
2444 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2445 }
2446
2447 return util;
2448 }
2449
cpu_util_rt(struct rq * rq)2450 static inline unsigned long cpu_util_rt(struct rq *rq)
2451 {
2452 return READ_ONCE(rq->avg_rt.util_avg);
2453 }
2454 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2455 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2456 unsigned long max, enum schedutil_type type,
2457 struct task_struct *p)
2458 {
2459 return 0;
2460 }
2461 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2462
2463 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2464 static inline unsigned long cpu_util_irq(struct rq *rq)
2465 {
2466 return rq->avg_irq.util_avg;
2467 }
2468
2469 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2470 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2471 {
2472 util *= (max - irq);
2473 util /= max;
2474
2475 return util;
2476
2477 }
2478 #else
cpu_util_irq(struct rq * rq)2479 static inline unsigned long cpu_util_irq(struct rq *rq)
2480 {
2481 return 0;
2482 }
2483
2484 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2485 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2486 {
2487 return util;
2488 }
2489 #endif
2490
2491 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2492
2493 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2494
2495 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2496
sched_energy_enabled(void)2497 static inline bool sched_energy_enabled(void)
2498 {
2499 return static_branch_unlikely(&sched_energy_present);
2500 }
2501
2502 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2503
2504 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2505 static inline bool sched_energy_enabled(void) { return false; }
2506
2507 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2508
2509 #ifdef CONFIG_MEMBARRIER
2510 /*
2511 * The scheduler provides memory barriers required by membarrier between:
2512 * - prior user-space memory accesses and store to rq->membarrier_state,
2513 * - store to rq->membarrier_state and following user-space memory accesses.
2514 * In the same way it provides those guarantees around store to rq->curr.
2515 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2516 static inline void membarrier_switch_mm(struct rq *rq,
2517 struct mm_struct *prev_mm,
2518 struct mm_struct *next_mm)
2519 {
2520 int membarrier_state;
2521
2522 if (prev_mm == next_mm)
2523 return;
2524
2525 membarrier_state = atomic_read(&next_mm->membarrier_state);
2526 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2527 return;
2528
2529 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2530 }
2531 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2532 static inline void membarrier_switch_mm(struct rq *rq,
2533 struct mm_struct *prev_mm,
2534 struct mm_struct *next_mm)
2535 {
2536 }
2537 #endif
2538