• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
set_max_mapnr(unsigned long limit)44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
set_max_mapnr(unsigned long limit)49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
totalram_pages(void)53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
totalram_pages_inc(void)58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
totalram_pages_dec(void)63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
totalram_pages_add(long count)68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
totalram_pages_set(long val)73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 /*
103  * Architectures that support memory tagging (assigning tags to memory regions,
104  * embedding these tags into addresses that point to these memory regions, and
105  * checking that the memory and the pointer tags match on memory accesses)
106  * redefine this macro to strip tags from pointers.
107  * It's defined as noop for arcitectures that don't support memory tagging.
108  */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statments if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 80);
158 
159 	switch (sizeof(struct page)) {
160 	case 80:
161 		_pp[9] = 0;	/* fallthrough */
162 	case 72:
163 		_pp[8] = 0;	/* fallthrough */
164 	case 64:
165 		_pp[7] = 0;	/* fallthrough */
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 				    size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 				    size_t *, loff_t *);
212 
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217 
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220 
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222 
223 /*
224  * Linux kernel virtual memory manager primitives.
225  * The idea being to have a "virtual" mm in the same way
226  * we have a virtual fs - giving a cleaner interface to the
227  * mm details, and allowing different kinds of memory mappings
228  * (from shared memory to executable loading to arbitrary
229  * mmap() functions).
230  */
231 
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235 
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239 
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242 
243 /*
244  * vm_flags in vm_area_struct, see mm_types.h.
245  * When changing, update also include/trace/events/mmflags.h
246  */
247 #define VM_NONE		0x00000000
248 
249 #define VM_READ		0x00000001	/* currently active flags */
250 #define VM_WRITE	0x00000002
251 #define VM_EXEC		0x00000004
252 #define VM_SHARED	0x00000008
253 
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
256 #define VM_MAYWRITE	0x00000020
257 #define VM_MAYEXEC	0x00000040
258 #define VM_MAYSHARE	0x00000080
259 
260 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
261 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
262 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
265 
266 #define VM_LOCKED	0x00002000
267 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
268 
269 					/* Used by sys_madvise() */
270 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
271 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
272 
273 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
277 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
278 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
279 #define VM_SYNC		0x00800000	/* Synchronous page faults */
280 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
281 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
282 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
283 
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY	0
288 #endif
289 
290 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
294 
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307 
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
312 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4  0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320 
321 #if defined(CONFIG_X86)
322 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP	VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP	VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR	VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
334 #endif
335 
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX		VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX		VM_NONE
341 #endif
342 
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP	VM_NONE
345 #endif
346 
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
349 
350 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353 
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK	VM_GROWSUP
356 #else
357 #define VM_STACK	VM_GROWSDOWN
358 #endif
359 
360 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361 
362 /*
363  * Special vmas that are non-mergable, non-mlock()able.
364  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365  */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367 
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
370 
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
373 
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR	VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379 
380 /*
381  * mapping from the currently active vm_flags protection bits (the
382  * low four bits) to a page protection mask..
383  */
384 extern pgprot_t protection_map[16];
385 
386 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED	0x20	/* Second try */
392 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
395 
396 #define FAULT_FLAG_TRACE \
397 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
398 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
399 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
400 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
401 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
402 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
403 	{ FAULT_FLAG_USER,		"USER" }, \
404 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
405 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
406 
407 /*
408  * vm_fault is filled by the the pagefault handler and passed to the vma's
409  * ->fault function. The vma's ->fault is responsible for returning a bitmask
410  * of VM_FAULT_xxx flags that give details about how the fault was handled.
411  *
412  * MM layer fills up gfp_mask for page allocations but fault handler might
413  * alter it if its implementation requires a different allocation context.
414  *
415  * pgoff should be used in favour of virtual_address, if possible.
416  */
417 struct vm_fault {
418 	struct vm_area_struct *vma;	/* Target VMA */
419 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
420 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
421 	pgoff_t pgoff;			/* Logical page offset based on vma */
422 	unsigned long address;		/* Faulting virtual address */
423 	pmd_t *pmd;			/* Pointer to pmd entry matching
424 					 * the 'address' */
425 	pud_t *pud;			/* Pointer to pud entry matching
426 					 * the 'address'
427 					 */
428 	pte_t orig_pte;			/* Value of PTE at the time of fault */
429 
430 	struct page *cow_page;		/* Page handler may use for COW fault */
431 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
432 	struct page *page;		/* ->fault handlers should return a
433 					 * page here, unless VM_FAULT_NOPAGE
434 					 * is set (which is also implied by
435 					 * VM_FAULT_ERROR).
436 					 */
437 	/* These three entries are valid only while holding ptl lock */
438 	pte_t *pte;			/* Pointer to pte entry matching
439 					 * the 'address'. NULL if the page
440 					 * table hasn't been allocated.
441 					 */
442 	spinlock_t *ptl;		/* Page table lock.
443 					 * Protects pte page table if 'pte'
444 					 * is not NULL, otherwise pmd.
445 					 */
446 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
447 					 * vm_ops->map_pages() calls
448 					 * alloc_set_pte() from atomic context.
449 					 * do_fault_around() pre-allocates
450 					 * page table to avoid allocation from
451 					 * atomic context.
452 					 */
453 };
454 
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 	PE_SIZE_PTE = 0,
458 	PE_SIZE_PMD,
459 	PE_SIZE_PUD,
460 };
461 
462 /*
463  * These are the virtual MM functions - opening of an area, closing and
464  * unmapping it (needed to keep files on disk up-to-date etc), pointer
465  * to the functions called when a no-page or a wp-page exception occurs.
466  */
467 struct vm_operations_struct {
468 	void (*open)(struct vm_area_struct * area);
469 	void (*close)(struct vm_area_struct * area);
470 	int (*split)(struct vm_area_struct * area, unsigned long addr);
471 	int (*mremap)(struct vm_area_struct * area);
472 	vm_fault_t (*fault)(struct vm_fault *vmf);
473 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 			enum page_entry_size pe_size);
475 	void (*map_pages)(struct vm_fault *vmf,
476 			pgoff_t start_pgoff, pgoff_t end_pgoff);
477 	unsigned long (*pagesize)(struct vm_area_struct * area);
478 
479 	/* notification that a previously read-only page is about to become
480 	 * writable, if an error is returned it will cause a SIGBUS */
481 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482 
483 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485 
486 	/* called by access_process_vm when get_user_pages() fails, typically
487 	 * for use by special VMAs that can switch between memory and hardware
488 	 */
489 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 		      void *buf, int len, int write);
491 
492 	/* Called by the /proc/PID/maps code to ask the vma whether it
493 	 * has a special name.  Returning non-NULL will also cause this
494 	 * vma to be dumped unconditionally. */
495 	const char *(*name)(struct vm_area_struct *vma);
496 
497 #ifdef CONFIG_NUMA
498 	/*
499 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 	 * to hold the policy upon return.  Caller should pass NULL @new to
501 	 * remove a policy and fall back to surrounding context--i.e. do not
502 	 * install a MPOL_DEFAULT policy, nor the task or system default
503 	 * mempolicy.
504 	 */
505 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506 
507 	/*
508 	 * get_policy() op must add reference [mpol_get()] to any policy at
509 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
510 	 * in mm/mempolicy.c will do this automatically.
511 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 	 * must return NULL--i.e., do not "fallback" to task or system default
515 	 * policy.
516 	 */
517 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 					unsigned long addr);
519 #endif
520 	/*
521 	 * Called by vm_normal_page() for special PTEs to find the
522 	 * page for @addr.  This is useful if the default behavior
523 	 * (using pte_page()) would not find the correct page.
524 	 */
525 	struct page *(*find_special_page)(struct vm_area_struct *vma,
526 					  unsigned long addr);
527 };
528 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 	static const struct vm_operations_struct dummy_vm_ops = {};
532 
533 	memset(vma, 0, sizeof(*vma));
534 	vma->vm_mm = mm;
535 	vma->vm_ops = &dummy_vm_ops;
536 	INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538 
vma_set_anonymous(struct vm_area_struct * vma)539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 	vma->vm_ops = NULL;
542 }
543 
vma_is_anonymous(struct vm_area_struct * vma)544 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545 {
546 	return !vma->vm_ops;
547 }
548 
549 #ifdef CONFIG_SHMEM
550 /*
551  * The vma_is_shmem is not inline because it is used only by slow
552  * paths in userfault.
553  */
554 bool vma_is_shmem(struct vm_area_struct *vma);
555 #else
vma_is_shmem(struct vm_area_struct * vma)556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557 #endif
558 
559 int vma_is_stack_for_current(struct vm_area_struct *vma);
560 
561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563 
564 struct mmu_gather;
565 struct inode;
566 
567 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)568 static inline int pmd_devmap(pmd_t pmd)
569 {
570 	return 0;
571 }
pud_devmap(pud_t pud)572 static inline int pud_devmap(pud_t pud)
573 {
574 	return 0;
575 }
pgd_devmap(pgd_t pgd)576 static inline int pgd_devmap(pgd_t pgd)
577 {
578 	return 0;
579 }
580 #endif
581 
582 /*
583  * FIXME: take this include out, include page-flags.h in
584  * files which need it (119 of them)
585  */
586 #include <linux/page-flags.h>
587 #include <linux/huge_mm.h>
588 
589 /*
590  * Methods to modify the page usage count.
591  *
592  * What counts for a page usage:
593  * - cache mapping   (page->mapping)
594  * - private data    (page->private)
595  * - page mapped in a task's page tables, each mapping
596  *   is counted separately
597  *
598  * Also, many kernel routines increase the page count before a critical
599  * routine so they can be sure the page doesn't go away from under them.
600  */
601 
602 /*
603  * Drop a ref, return true if the refcount fell to zero (the page has no users)
604  */
put_page_testzero(struct page * page)605 static inline int put_page_testzero(struct page *page)
606 {
607 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
608 	return page_ref_dec_and_test(page);
609 }
610 
611 /*
612  * Try to grab a ref unless the page has a refcount of zero, return false if
613  * that is the case.
614  * This can be called when MMU is off so it must not access
615  * any of the virtual mappings.
616  */
get_page_unless_zero(struct page * page)617 static inline int get_page_unless_zero(struct page *page)
618 {
619 	return page_ref_add_unless(page, 1, 0);
620 }
621 
622 extern int page_is_ram(unsigned long pfn);
623 
624 enum {
625 	REGION_INTERSECTS,
626 	REGION_DISJOINT,
627 	REGION_MIXED,
628 };
629 
630 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
631 		      unsigned long desc);
632 
633 /* Support for virtually mapped pages */
634 struct page *vmalloc_to_page(const void *addr);
635 unsigned long vmalloc_to_pfn(const void *addr);
636 
637 /*
638  * Determine if an address is within the vmalloc range
639  *
640  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
641  * is no special casing required.
642  */
is_vmalloc_addr(const void * x)643 static inline bool is_vmalloc_addr(const void *x)
644 {
645 #ifdef CONFIG_MMU
646 	unsigned long addr = (unsigned long)x;
647 
648 	return addr >= VMALLOC_START && addr < VMALLOC_END;
649 #else
650 	return false;
651 #endif
652 }
653 
654 #ifndef is_ioremap_addr
655 #define is_ioremap_addr(x) is_vmalloc_addr(x)
656 #endif
657 
658 #ifdef CONFIG_MMU
659 extern int is_vmalloc_or_module_addr(const void *x);
660 #else
is_vmalloc_or_module_addr(const void * x)661 static inline int is_vmalloc_or_module_addr(const void *x)
662 {
663 	return 0;
664 }
665 #endif
666 
667 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)668 static inline void *kvmalloc(size_t size, gfp_t flags)
669 {
670 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
671 }
kvzalloc_node(size_t size,gfp_t flags,int node)672 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
673 {
674 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
675 }
kvzalloc(size_t size,gfp_t flags)676 static inline void *kvzalloc(size_t size, gfp_t flags)
677 {
678 	return kvmalloc(size, flags | __GFP_ZERO);
679 }
680 
kvmalloc_array(size_t n,size_t size,gfp_t flags)681 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
682 {
683 	size_t bytes;
684 
685 	if (unlikely(check_mul_overflow(n, size, &bytes)))
686 		return NULL;
687 
688 	return kvmalloc(bytes, flags);
689 }
690 
kvcalloc(size_t n,size_t size,gfp_t flags)691 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
692 {
693 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
694 }
695 
696 extern void kvfree(const void *addr);
697 
compound_mapcount(struct page * page)698 static inline int compound_mapcount(struct page *page)
699 {
700 	VM_BUG_ON_PAGE(!PageCompound(page), page);
701 	page = compound_head(page);
702 	return atomic_read(compound_mapcount_ptr(page)) + 1;
703 }
704 
705 /*
706  * The atomic page->_mapcount, starts from -1: so that transitions
707  * both from it and to it can be tracked, using atomic_inc_and_test
708  * and atomic_add_negative(-1).
709  */
page_mapcount_reset(struct page * page)710 static inline void page_mapcount_reset(struct page *page)
711 {
712 	atomic_set(&(page)->_mapcount, -1);
713 }
714 
715 int __page_mapcount(struct page *page);
716 
page_mapcount(struct page * page)717 static inline int page_mapcount(struct page *page)
718 {
719 	VM_BUG_ON_PAGE(PageSlab(page), page);
720 
721 	if (unlikely(PageCompound(page)))
722 		return __page_mapcount(page);
723 	return atomic_read(&page->_mapcount) + 1;
724 }
725 
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 int total_mapcount(struct page *page);
728 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
729 #else
total_mapcount(struct page * page)730 static inline int total_mapcount(struct page *page)
731 {
732 	return page_mapcount(page);
733 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)734 static inline int page_trans_huge_mapcount(struct page *page,
735 					   int *total_mapcount)
736 {
737 	int mapcount = page_mapcount(page);
738 	if (total_mapcount)
739 		*total_mapcount = mapcount;
740 	return mapcount;
741 }
742 #endif
743 
virt_to_head_page(const void * x)744 static inline struct page *virt_to_head_page(const void *x)
745 {
746 	struct page *page = virt_to_page(x);
747 
748 	return compound_head(page);
749 }
750 
751 void __put_page(struct page *page);
752 
753 void put_pages_list(struct list_head *pages);
754 
755 void split_page(struct page *page, unsigned int order);
756 
757 /*
758  * Compound pages have a destructor function.  Provide a
759  * prototype for that function and accessor functions.
760  * These are _only_ valid on the head of a compound page.
761  */
762 typedef void compound_page_dtor(struct page *);
763 
764 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
765 enum compound_dtor_id {
766 	NULL_COMPOUND_DTOR,
767 	COMPOUND_PAGE_DTOR,
768 #ifdef CONFIG_HUGETLB_PAGE
769 	HUGETLB_PAGE_DTOR,
770 #endif
771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
772 	TRANSHUGE_PAGE_DTOR,
773 #endif
774 	NR_COMPOUND_DTORS,
775 };
776 extern compound_page_dtor * const compound_page_dtors[];
777 
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)778 static inline void set_compound_page_dtor(struct page *page,
779 		enum compound_dtor_id compound_dtor)
780 {
781 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
782 	page[1].compound_dtor = compound_dtor;
783 }
784 
get_compound_page_dtor(struct page * page)785 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
786 {
787 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
788 	return compound_page_dtors[page[1].compound_dtor];
789 }
790 
compound_order(struct page * page)791 static inline unsigned int compound_order(struct page *page)
792 {
793 	if (!PageHead(page))
794 		return 0;
795 	return page[1].compound_order;
796 }
797 
set_compound_order(struct page * page,unsigned int order)798 static inline void set_compound_order(struct page *page, unsigned int order)
799 {
800 	page[1].compound_order = order;
801 }
802 
803 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)804 static inline unsigned long compound_nr(struct page *page)
805 {
806 	return 1UL << compound_order(page);
807 }
808 
809 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)810 static inline unsigned long page_size(struct page *page)
811 {
812 	return PAGE_SIZE << compound_order(page);
813 }
814 
815 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)816 static inline unsigned int page_shift(struct page *page)
817 {
818 	return PAGE_SHIFT + compound_order(page);
819 }
820 
821 void free_compound_page(struct page *page);
822 
823 #ifdef CONFIG_MMU
824 /*
825  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
826  * servicing faults for write access.  In the normal case, do always want
827  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
828  * that do not have writing enabled, when used by access_process_vm.
829  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)830 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
831 {
832 	if (likely(vma->vm_flags & VM_WRITE))
833 		pte = pte_mkwrite(pte);
834 	return pte;
835 }
836 
837 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
838 		struct page *page);
839 vm_fault_t finish_fault(struct vm_fault *vmf);
840 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
841 #endif
842 
843 /*
844  * Multiple processes may "see" the same page. E.g. for untouched
845  * mappings of /dev/null, all processes see the same page full of
846  * zeroes, and text pages of executables and shared libraries have
847  * only one copy in memory, at most, normally.
848  *
849  * For the non-reserved pages, page_count(page) denotes a reference count.
850  *   page_count() == 0 means the page is free. page->lru is then used for
851  *   freelist management in the buddy allocator.
852  *   page_count() > 0  means the page has been allocated.
853  *
854  * Pages are allocated by the slab allocator in order to provide memory
855  * to kmalloc and kmem_cache_alloc. In this case, the management of the
856  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
857  * unless a particular usage is carefully commented. (the responsibility of
858  * freeing the kmalloc memory is the caller's, of course).
859  *
860  * A page may be used by anyone else who does a __get_free_page().
861  * In this case, page_count still tracks the references, and should only
862  * be used through the normal accessor functions. The top bits of page->flags
863  * and page->virtual store page management information, but all other fields
864  * are unused and could be used privately, carefully. The management of this
865  * page is the responsibility of the one who allocated it, and those who have
866  * subsequently been given references to it.
867  *
868  * The other pages (we may call them "pagecache pages") are completely
869  * managed by the Linux memory manager: I/O, buffers, swapping etc.
870  * The following discussion applies only to them.
871  *
872  * A pagecache page contains an opaque `private' member, which belongs to the
873  * page's address_space. Usually, this is the address of a circular list of
874  * the page's disk buffers. PG_private must be set to tell the VM to call
875  * into the filesystem to release these pages.
876  *
877  * A page may belong to an inode's memory mapping. In this case, page->mapping
878  * is the pointer to the inode, and page->index is the file offset of the page,
879  * in units of PAGE_SIZE.
880  *
881  * If pagecache pages are not associated with an inode, they are said to be
882  * anonymous pages. These may become associated with the swapcache, and in that
883  * case PG_swapcache is set, and page->private is an offset into the swapcache.
884  *
885  * In either case (swapcache or inode backed), the pagecache itself holds one
886  * reference to the page. Setting PG_private should also increment the
887  * refcount. The each user mapping also has a reference to the page.
888  *
889  * The pagecache pages are stored in a per-mapping radix tree, which is
890  * rooted at mapping->i_pages, and indexed by offset.
891  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
892  * lists, we instead now tag pages as dirty/writeback in the radix tree.
893  *
894  * All pagecache pages may be subject to I/O:
895  * - inode pages may need to be read from disk,
896  * - inode pages which have been modified and are MAP_SHARED may need
897  *   to be written back to the inode on disk,
898  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
899  *   modified may need to be swapped out to swap space and (later) to be read
900  *   back into memory.
901  */
902 
903 /*
904  * The zone field is never updated after free_area_init_core()
905  * sets it, so none of the operations on it need to be atomic.
906  */
907 
908 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
909 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
910 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
911 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
912 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
913 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
914 
915 /*
916  * Define the bit shifts to access each section.  For non-existent
917  * sections we define the shift as 0; that plus a 0 mask ensures
918  * the compiler will optimise away reference to them.
919  */
920 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
921 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
922 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
923 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
924 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
925 
926 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
927 #ifdef NODE_NOT_IN_PAGE_FLAGS
928 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
929 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
930 						SECTIONS_PGOFF : ZONES_PGOFF)
931 #else
932 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
933 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
934 						NODES_PGOFF : ZONES_PGOFF)
935 #endif
936 
937 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
938 
939 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
940 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
941 #endif
942 
943 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
944 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
945 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
946 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
947 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
948 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
949 
page_zonenum(const struct page * page)950 static inline enum zone_type page_zonenum(const struct page *page)
951 {
952 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
953 }
954 
955 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)956 static inline bool is_zone_device_page(const struct page *page)
957 {
958 	return page_zonenum(page) == ZONE_DEVICE;
959 }
960 extern void memmap_init_zone_device(struct zone *, unsigned long,
961 				    unsigned long, struct dev_pagemap *);
962 #else
is_zone_device_page(const struct page * page)963 static inline bool is_zone_device_page(const struct page *page)
964 {
965 	return false;
966 }
967 #endif
968 
969 #ifdef CONFIG_DEV_PAGEMAP_OPS
970 void __put_devmap_managed_page(struct page *page);
971 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
put_devmap_managed_page(struct page * page)972 static inline bool put_devmap_managed_page(struct page *page)
973 {
974 	if (!static_branch_unlikely(&devmap_managed_key))
975 		return false;
976 	if (!is_zone_device_page(page))
977 		return false;
978 	switch (page->pgmap->type) {
979 	case MEMORY_DEVICE_PRIVATE:
980 	case MEMORY_DEVICE_FS_DAX:
981 		__put_devmap_managed_page(page);
982 		return true;
983 	default:
984 		break;
985 	}
986 	return false;
987 }
988 
989 #else /* CONFIG_DEV_PAGEMAP_OPS */
put_devmap_managed_page(struct page * page)990 static inline bool put_devmap_managed_page(struct page *page)
991 {
992 	return false;
993 }
994 #endif /* CONFIG_DEV_PAGEMAP_OPS */
995 
is_device_private_page(const struct page * page)996 static inline bool is_device_private_page(const struct page *page)
997 {
998 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
999 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1000 		is_zone_device_page(page) &&
1001 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1002 }
1003 
is_pci_p2pdma_page(const struct page * page)1004 static inline bool is_pci_p2pdma_page(const struct page *page)
1005 {
1006 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1007 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1008 		is_zone_device_page(page) &&
1009 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1010 }
1011 
1012 /* 127: arbitrary random number, small enough to assemble well */
1013 #define page_ref_zero_or_close_to_overflow(page) \
1014 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1015 
get_page(struct page * page)1016 static inline void get_page(struct page *page)
1017 {
1018 	page = compound_head(page);
1019 	/*
1020 	 * Getting a normal page or the head of a compound page
1021 	 * requires to already have an elevated page->_refcount.
1022 	 */
1023 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1024 	page_ref_inc(page);
1025 }
1026 
try_get_page(struct page * page)1027 static inline __must_check bool try_get_page(struct page *page)
1028 {
1029 	page = compound_head(page);
1030 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1031 		return false;
1032 	page_ref_inc(page);
1033 	return true;
1034 }
1035 
put_page(struct page * page)1036 static inline void put_page(struct page *page)
1037 {
1038 	page = compound_head(page);
1039 
1040 	/*
1041 	 * For devmap managed pages we need to catch refcount transition from
1042 	 * 2 to 1, when refcount reach one it means the page is free and we
1043 	 * need to inform the device driver through callback. See
1044 	 * include/linux/memremap.h and HMM for details.
1045 	 */
1046 	if (put_devmap_managed_page(page))
1047 		return;
1048 
1049 	if (put_page_testzero(page))
1050 		__put_page(page);
1051 }
1052 
1053 /**
1054  * put_user_page() - release a gup-pinned page
1055  * @page:            pointer to page to be released
1056  *
1057  * Pages that were pinned via get_user_pages*() must be released via
1058  * either put_user_page(), or one of the put_user_pages*() routines
1059  * below. This is so that eventually, pages that are pinned via
1060  * get_user_pages*() can be separately tracked and uniquely handled. In
1061  * particular, interactions with RDMA and filesystems need special
1062  * handling.
1063  *
1064  * put_user_page() and put_page() are not interchangeable, despite this early
1065  * implementation that makes them look the same. put_user_page() calls must
1066  * be perfectly matched up with get_user_page() calls.
1067  */
put_user_page(struct page * page)1068 static inline void put_user_page(struct page *page)
1069 {
1070 	put_page(page);
1071 }
1072 
1073 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1074 			       bool make_dirty);
1075 
1076 void put_user_pages(struct page **pages, unsigned long npages);
1077 
1078 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1079 #define SECTION_IN_PAGE_FLAGS
1080 #endif
1081 
1082 /*
1083  * The identification function is mainly used by the buddy allocator for
1084  * determining if two pages could be buddies. We are not really identifying
1085  * the zone since we could be using the section number id if we do not have
1086  * node id available in page flags.
1087  * We only guarantee that it will return the same value for two combinable
1088  * pages in a zone.
1089  */
page_zone_id(struct page * page)1090 static inline int page_zone_id(struct page *page)
1091 {
1092 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1093 }
1094 
1095 #ifdef NODE_NOT_IN_PAGE_FLAGS
1096 extern int page_to_nid(const struct page *page);
1097 #else
page_to_nid(const struct page * page)1098 static inline int page_to_nid(const struct page *page)
1099 {
1100 	struct page *p = (struct page *)page;
1101 
1102 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1103 }
1104 #endif
1105 
1106 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1107 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1108 {
1109 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1110 }
1111 
cpupid_to_pid(int cpupid)1112 static inline int cpupid_to_pid(int cpupid)
1113 {
1114 	return cpupid & LAST__PID_MASK;
1115 }
1116 
cpupid_to_cpu(int cpupid)1117 static inline int cpupid_to_cpu(int cpupid)
1118 {
1119 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1120 }
1121 
cpupid_to_nid(int cpupid)1122 static inline int cpupid_to_nid(int cpupid)
1123 {
1124 	return cpu_to_node(cpupid_to_cpu(cpupid));
1125 }
1126 
cpupid_pid_unset(int cpupid)1127 static inline bool cpupid_pid_unset(int cpupid)
1128 {
1129 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1130 }
1131 
cpupid_cpu_unset(int cpupid)1132 static inline bool cpupid_cpu_unset(int cpupid)
1133 {
1134 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1135 }
1136 
__cpupid_match_pid(pid_t task_pid,int cpupid)1137 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1138 {
1139 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1140 }
1141 
1142 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1143 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1144 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1145 {
1146 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1147 }
1148 
page_cpupid_last(struct page * page)1149 static inline int page_cpupid_last(struct page *page)
1150 {
1151 	return page->_last_cpupid;
1152 }
page_cpupid_reset_last(struct page * page)1153 static inline void page_cpupid_reset_last(struct page *page)
1154 {
1155 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1156 }
1157 #else
page_cpupid_last(struct page * page)1158 static inline int page_cpupid_last(struct page *page)
1159 {
1160 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1161 }
1162 
1163 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1164 
page_cpupid_reset_last(struct page * page)1165 static inline void page_cpupid_reset_last(struct page *page)
1166 {
1167 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1168 }
1169 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1170 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1171 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1172 {
1173 	return page_to_nid(page); /* XXX */
1174 }
1175 
page_cpupid_last(struct page * page)1176 static inline int page_cpupid_last(struct page *page)
1177 {
1178 	return page_to_nid(page); /* XXX */
1179 }
1180 
cpupid_to_nid(int cpupid)1181 static inline int cpupid_to_nid(int cpupid)
1182 {
1183 	return -1;
1184 }
1185 
cpupid_to_pid(int cpupid)1186 static inline int cpupid_to_pid(int cpupid)
1187 {
1188 	return -1;
1189 }
1190 
cpupid_to_cpu(int cpupid)1191 static inline int cpupid_to_cpu(int cpupid)
1192 {
1193 	return -1;
1194 }
1195 
cpu_pid_to_cpupid(int nid,int pid)1196 static inline int cpu_pid_to_cpupid(int nid, int pid)
1197 {
1198 	return -1;
1199 }
1200 
cpupid_pid_unset(int cpupid)1201 static inline bool cpupid_pid_unset(int cpupid)
1202 {
1203 	return 1;
1204 }
1205 
page_cpupid_reset_last(struct page * page)1206 static inline void page_cpupid_reset_last(struct page *page)
1207 {
1208 }
1209 
cpupid_match_pid(struct task_struct * task,int cpupid)1210 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1211 {
1212 	return false;
1213 }
1214 #endif /* CONFIG_NUMA_BALANCING */
1215 
1216 #ifdef CONFIG_KASAN_SW_TAGS
page_kasan_tag(const struct page * page)1217 static inline u8 page_kasan_tag(const struct page *page)
1218 {
1219 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1220 }
1221 
page_kasan_tag_set(struct page * page,u8 tag)1222 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1223 {
1224 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1225 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1226 }
1227 
page_kasan_tag_reset(struct page * page)1228 static inline void page_kasan_tag_reset(struct page *page)
1229 {
1230 	page_kasan_tag_set(page, 0xff);
1231 }
1232 #else
page_kasan_tag(const struct page * page)1233 static inline u8 page_kasan_tag(const struct page *page)
1234 {
1235 	return 0xff;
1236 }
1237 
page_kasan_tag_set(struct page * page,u8 tag)1238 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1239 static inline void page_kasan_tag_reset(struct page *page) { }
1240 #endif
1241 
page_zone(const struct page * page)1242 static inline struct zone *page_zone(const struct page *page)
1243 {
1244 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1245 }
1246 
page_pgdat(const struct page * page)1247 static inline pg_data_t *page_pgdat(const struct page *page)
1248 {
1249 	return NODE_DATA(page_to_nid(page));
1250 }
1251 
1252 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1253 static inline void set_page_section(struct page *page, unsigned long section)
1254 {
1255 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1256 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1257 }
1258 
page_to_section(const struct page * page)1259 static inline unsigned long page_to_section(const struct page *page)
1260 {
1261 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1262 }
1263 #endif
1264 
set_page_zone(struct page * page,enum zone_type zone)1265 static inline void set_page_zone(struct page *page, enum zone_type zone)
1266 {
1267 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1268 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1269 }
1270 
set_page_node(struct page * page,unsigned long node)1271 static inline void set_page_node(struct page *page, unsigned long node)
1272 {
1273 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1274 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1275 }
1276 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1277 static inline void set_page_links(struct page *page, enum zone_type zone,
1278 	unsigned long node, unsigned long pfn)
1279 {
1280 	set_page_zone(page, zone);
1281 	set_page_node(page, node);
1282 #ifdef SECTION_IN_PAGE_FLAGS
1283 	set_page_section(page, pfn_to_section_nr(pfn));
1284 #endif
1285 }
1286 
1287 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1288 static inline struct mem_cgroup *page_memcg(struct page *page)
1289 {
1290 	return page->mem_cgroup;
1291 }
page_memcg_rcu(struct page * page)1292 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1293 {
1294 	WARN_ON_ONCE(!rcu_read_lock_held());
1295 	return READ_ONCE(page->mem_cgroup);
1296 }
1297 #else
page_memcg(struct page * page)1298 static inline struct mem_cgroup *page_memcg(struct page *page)
1299 {
1300 	return NULL;
1301 }
page_memcg_rcu(struct page * page)1302 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1303 {
1304 	WARN_ON_ONCE(!rcu_read_lock_held());
1305 	return NULL;
1306 }
1307 #endif
1308 
1309 /*
1310  * Some inline functions in vmstat.h depend on page_zone()
1311  */
1312 #include <linux/vmstat.h>
1313 
lowmem_page_address(const struct page * page)1314 static __always_inline void *lowmem_page_address(const struct page *page)
1315 {
1316 	return page_to_virt(page);
1317 }
1318 
1319 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1320 #define HASHED_PAGE_VIRTUAL
1321 #endif
1322 
1323 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1324 static inline void *page_address(const struct page *page)
1325 {
1326 	return page->virtual;
1327 }
set_page_address(struct page * page,void * address)1328 static inline void set_page_address(struct page *page, void *address)
1329 {
1330 	page->virtual = address;
1331 }
1332 #define page_address_init()  do { } while(0)
1333 #endif
1334 
1335 #if defined(HASHED_PAGE_VIRTUAL)
1336 void *page_address(const struct page *page);
1337 void set_page_address(struct page *page, void *virtual);
1338 void page_address_init(void);
1339 #endif
1340 
1341 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1342 #define page_address(page) lowmem_page_address(page)
1343 #define set_page_address(page, address)  do { } while(0)
1344 #define page_address_init()  do { } while(0)
1345 #endif
1346 
1347 extern void *page_rmapping(struct page *page);
1348 extern struct anon_vma *page_anon_vma(struct page *page);
1349 extern struct address_space *page_mapping(struct page *page);
1350 
1351 extern struct address_space *__page_file_mapping(struct page *);
1352 
1353 static inline
page_file_mapping(struct page * page)1354 struct address_space *page_file_mapping(struct page *page)
1355 {
1356 	if (unlikely(PageSwapCache(page)))
1357 		return __page_file_mapping(page);
1358 
1359 	return page->mapping;
1360 }
1361 
1362 extern pgoff_t __page_file_index(struct page *page);
1363 
1364 /*
1365  * Return the pagecache index of the passed page.  Regular pagecache pages
1366  * use ->index whereas swapcache pages use swp_offset(->private)
1367  */
page_index(struct page * page)1368 static inline pgoff_t page_index(struct page *page)
1369 {
1370 	if (unlikely(PageSwapCache(page)))
1371 		return __page_file_index(page);
1372 	return page->index;
1373 }
1374 
1375 bool page_mapped(struct page *page);
1376 struct address_space *page_mapping(struct page *page);
1377 struct address_space *page_mapping_file(struct page *page);
1378 
1379 /*
1380  * Return true only if the page has been allocated with
1381  * ALLOC_NO_WATERMARKS and the low watermark was not
1382  * met implying that the system is under some pressure.
1383  */
page_is_pfmemalloc(struct page * page)1384 static inline bool page_is_pfmemalloc(struct page *page)
1385 {
1386 	/*
1387 	 * Page index cannot be this large so this must be
1388 	 * a pfmemalloc page.
1389 	 */
1390 	return page->index == -1UL;
1391 }
1392 
1393 /*
1394  * Only to be called by the page allocator on a freshly allocated
1395  * page.
1396  */
set_page_pfmemalloc(struct page * page)1397 static inline void set_page_pfmemalloc(struct page *page)
1398 {
1399 	page->index = -1UL;
1400 }
1401 
clear_page_pfmemalloc(struct page * page)1402 static inline void clear_page_pfmemalloc(struct page *page)
1403 {
1404 	page->index = 0;
1405 }
1406 
1407 /*
1408  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1409  */
1410 extern void pagefault_out_of_memory(void);
1411 
1412 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1413 
1414 /*
1415  * Flags passed to show_mem() and show_free_areas() to suppress output in
1416  * various contexts.
1417  */
1418 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1419 
1420 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1421 
1422 #ifdef CONFIG_MMU
1423 extern bool can_do_mlock(void);
1424 #else
can_do_mlock(void)1425 static inline bool can_do_mlock(void) { return false; }
1426 #endif
1427 extern int user_shm_lock(size_t, struct user_struct *);
1428 extern void user_shm_unlock(size_t, struct user_struct *);
1429 
1430 /*
1431  * Parameter block passed down to zap_pte_range in exceptional cases.
1432  */
1433 struct zap_details {
1434 	struct address_space *check_mapping;	/* Check page->mapping if set */
1435 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1436 	pgoff_t last_index;			/* Highest page->index to unmap */
1437 };
1438 
1439 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1440 			     pte_t pte);
1441 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1442 				pmd_t pmd);
1443 
1444 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 		  unsigned long size);
1446 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1447 		    unsigned long size);
1448 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1449 		unsigned long start, unsigned long end);
1450 
1451 struct mmu_notifier_range;
1452 
1453 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1454 		unsigned long end, unsigned long floor, unsigned long ceiling);
1455 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1456 			struct vm_area_struct *vma);
1457 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1458 		   struct mmu_notifier_range *range,
1459 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1460 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1461 	unsigned long *pfn);
1462 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1463 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1464 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1465 			void *buf, int len, int write);
1466 
1467 extern void truncate_pagecache(struct inode *inode, loff_t new);
1468 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1469 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1470 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1471 int truncate_inode_page(struct address_space *mapping, struct page *page);
1472 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1473 int invalidate_inode_page(struct page *page);
1474 
1475 #ifdef CONFIG_MMU
1476 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1477 			unsigned long address, unsigned int flags);
1478 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1479 			    unsigned long address, unsigned int fault_flags,
1480 			    bool *unlocked);
1481 void unmap_mapping_pages(struct address_space *mapping,
1482 		pgoff_t start, pgoff_t nr, bool even_cows);
1483 void unmap_mapping_range(struct address_space *mapping,
1484 		loff_t const holebegin, loff_t const holelen, int even_cows);
1485 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1486 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1487 		unsigned long address, unsigned int flags)
1488 {
1489 	/* should never happen if there's no MMU */
1490 	BUG();
1491 	return VM_FAULT_SIGBUS;
1492 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1493 static inline int fixup_user_fault(struct task_struct *tsk,
1494 		struct mm_struct *mm, unsigned long address,
1495 		unsigned int fault_flags, bool *unlocked)
1496 {
1497 	/* should never happen if there's no MMU */
1498 	BUG();
1499 	return -EFAULT;
1500 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1501 static inline void unmap_mapping_pages(struct address_space *mapping,
1502 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1503 static inline void unmap_mapping_range(struct address_space *mapping,
1504 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1505 #endif
1506 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1507 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1508 		loff_t const holebegin, loff_t const holelen)
1509 {
1510 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1511 }
1512 
1513 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1514 		void *buf, int len, unsigned int gup_flags);
1515 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1516 		void *buf, int len, unsigned int gup_flags);
1517 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1518 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1519 
1520 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1521 			    unsigned long start, unsigned long nr_pages,
1522 			    unsigned int gup_flags, struct page **pages,
1523 			    struct vm_area_struct **vmas, int *locked);
1524 long get_user_pages(unsigned long start, unsigned long nr_pages,
1525 			    unsigned int gup_flags, struct page **pages,
1526 			    struct vm_area_struct **vmas);
1527 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1528 		    unsigned int gup_flags, struct page **pages, int *locked);
1529 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1530 		    struct page **pages, unsigned int gup_flags);
1531 
1532 int get_user_pages_fast(unsigned long start, int nr_pages,
1533 			unsigned int gup_flags, struct page **pages);
1534 
1535 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1536 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1537 			struct task_struct *task, bool bypass_rlim);
1538 
1539 /* Container for pinned pfns / pages */
1540 struct frame_vector {
1541 	unsigned int nr_allocated;	/* Number of frames we have space for */
1542 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1543 	bool got_ref;		/* Did we pin pages by getting page ref? */
1544 	bool is_pfns;		/* Does array contain pages or pfns? */
1545 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1546 				 * pfns_vector_pages() or pfns_vector_pfns()
1547 				 * for access */
1548 };
1549 
1550 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1551 void frame_vector_destroy(struct frame_vector *vec);
1552 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1553 		     unsigned int gup_flags, struct frame_vector *vec);
1554 void put_vaddr_frames(struct frame_vector *vec);
1555 int frame_vector_to_pages(struct frame_vector *vec);
1556 void frame_vector_to_pfns(struct frame_vector *vec);
1557 
frame_vector_count(struct frame_vector * vec)1558 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1559 {
1560 	return vec->nr_frames;
1561 }
1562 
frame_vector_pages(struct frame_vector * vec)1563 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1564 {
1565 	if (vec->is_pfns) {
1566 		int err = frame_vector_to_pages(vec);
1567 
1568 		if (err)
1569 			return ERR_PTR(err);
1570 	}
1571 	return (struct page **)(vec->ptrs);
1572 }
1573 
frame_vector_pfns(struct frame_vector * vec)1574 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1575 {
1576 	if (!vec->is_pfns)
1577 		frame_vector_to_pfns(vec);
1578 	return (unsigned long *)(vec->ptrs);
1579 }
1580 
1581 struct kvec;
1582 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1583 			struct page **pages);
1584 int get_kernel_page(unsigned long start, int write, struct page **pages);
1585 struct page *get_dump_page(unsigned long addr);
1586 
1587 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1588 extern void do_invalidatepage(struct page *page, unsigned int offset,
1589 			      unsigned int length);
1590 
1591 void __set_page_dirty(struct page *, struct address_space *, int warn);
1592 int __set_page_dirty_nobuffers(struct page *page);
1593 int __set_page_dirty_no_writeback(struct page *page);
1594 int redirty_page_for_writepage(struct writeback_control *wbc,
1595 				struct page *page);
1596 void account_page_dirtied(struct page *page, struct address_space *mapping);
1597 void account_page_cleaned(struct page *page, struct address_space *mapping,
1598 			  struct bdi_writeback *wb);
1599 int set_page_dirty(struct page *page);
1600 int set_page_dirty_lock(struct page *page);
1601 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1602 static inline void cancel_dirty_page(struct page *page)
1603 {
1604 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1605 	if (PageDirty(page))
1606 		__cancel_dirty_page(page);
1607 }
1608 int clear_page_dirty_for_io(struct page *page);
1609 
1610 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1611 
1612 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1613 		unsigned long old_addr, struct vm_area_struct *new_vma,
1614 		unsigned long new_addr, unsigned long len,
1615 		bool need_rmap_locks);
1616 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1617 			      unsigned long end, pgprot_t newprot,
1618 			      int dirty_accountable, int prot_numa);
1619 extern int mprotect_fixup(struct vm_area_struct *vma,
1620 			  struct vm_area_struct **pprev, unsigned long start,
1621 			  unsigned long end, unsigned long newflags);
1622 
1623 /*
1624  * doesn't attempt to fault and will return short.
1625  */
1626 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1627 			  struct page **pages);
1628 /*
1629  * per-process(per-mm_struct) statistics.
1630  */
get_mm_counter(struct mm_struct * mm,int member)1631 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1632 {
1633 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1634 
1635 #ifdef SPLIT_RSS_COUNTING
1636 	/*
1637 	 * counter is updated in asynchronous manner and may go to minus.
1638 	 * But it's never be expected number for users.
1639 	 */
1640 	if (val < 0)
1641 		val = 0;
1642 #endif
1643 	return (unsigned long)val;
1644 }
1645 
1646 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
1647 		       long value);
1648 
add_mm_counter(struct mm_struct * mm,int member,long value)1649 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1650 {
1651 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1652 
1653 	mm_trace_rss_stat(mm, member, count, value);
1654 }
1655 
inc_mm_counter(struct mm_struct * mm,int member)1656 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1657 {
1658 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1659 
1660 	mm_trace_rss_stat(mm, member, count, 1);
1661 }
1662 
dec_mm_counter(struct mm_struct * mm,int member)1663 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1664 {
1665 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1666 
1667 	mm_trace_rss_stat(mm, member, count, -1);
1668 }
1669 
1670 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1671 static inline int mm_counter_file(struct page *page)
1672 {
1673 	if (PageSwapBacked(page))
1674 		return MM_SHMEMPAGES;
1675 	return MM_FILEPAGES;
1676 }
1677 
mm_counter(struct page * page)1678 static inline int mm_counter(struct page *page)
1679 {
1680 	if (PageAnon(page))
1681 		return MM_ANONPAGES;
1682 	return mm_counter_file(page);
1683 }
1684 
get_mm_rss(struct mm_struct * mm)1685 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1686 {
1687 	return get_mm_counter(mm, MM_FILEPAGES) +
1688 		get_mm_counter(mm, MM_ANONPAGES) +
1689 		get_mm_counter(mm, MM_SHMEMPAGES);
1690 }
1691 
get_mm_hiwater_rss(struct mm_struct * mm)1692 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1693 {
1694 	return max(mm->hiwater_rss, get_mm_rss(mm));
1695 }
1696 
get_mm_hiwater_vm(struct mm_struct * mm)1697 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1698 {
1699 	return max(mm->hiwater_vm, mm->total_vm);
1700 }
1701 
update_hiwater_rss(struct mm_struct * mm)1702 static inline void update_hiwater_rss(struct mm_struct *mm)
1703 {
1704 	unsigned long _rss = get_mm_rss(mm);
1705 
1706 	if ((mm)->hiwater_rss < _rss)
1707 		(mm)->hiwater_rss = _rss;
1708 }
1709 
update_hiwater_vm(struct mm_struct * mm)1710 static inline void update_hiwater_vm(struct mm_struct *mm)
1711 {
1712 	if (mm->hiwater_vm < mm->total_vm)
1713 		mm->hiwater_vm = mm->total_vm;
1714 }
1715 
reset_mm_hiwater_rss(struct mm_struct * mm)1716 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1717 {
1718 	mm->hiwater_rss = get_mm_rss(mm);
1719 }
1720 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1721 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1722 					 struct mm_struct *mm)
1723 {
1724 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1725 
1726 	if (*maxrss < hiwater_rss)
1727 		*maxrss = hiwater_rss;
1728 }
1729 
1730 #if defined(SPLIT_RSS_COUNTING)
1731 void sync_mm_rss(struct mm_struct *mm);
1732 #else
sync_mm_rss(struct mm_struct * mm)1733 static inline void sync_mm_rss(struct mm_struct *mm)
1734 {
1735 }
1736 #endif
1737 
1738 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)1739 static inline int pte_devmap(pte_t pte)
1740 {
1741 	return 0;
1742 }
1743 #endif
1744 
1745 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1746 
1747 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1748 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1749 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1750 				    spinlock_t **ptl)
1751 {
1752 	pte_t *ptep;
1753 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1754 	return ptep;
1755 }
1756 
1757 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1758 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1759 						unsigned long address)
1760 {
1761 	return 0;
1762 }
1763 #else
1764 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1765 #endif
1766 
1767 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1768 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1769 						unsigned long address)
1770 {
1771 	return 0;
1772 }
mm_inc_nr_puds(struct mm_struct * mm)1773 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)1774 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1775 
1776 #else
1777 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1778 
mm_inc_nr_puds(struct mm_struct * mm)1779 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1780 {
1781 	if (mm_pud_folded(mm))
1782 		return;
1783 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1784 }
1785 
mm_dec_nr_puds(struct mm_struct * mm)1786 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1787 {
1788 	if (mm_pud_folded(mm))
1789 		return;
1790 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1791 }
1792 #endif
1793 
1794 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1795 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1796 						unsigned long address)
1797 {
1798 	return 0;
1799 }
1800 
mm_inc_nr_pmds(struct mm_struct * mm)1801 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1802 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1803 
1804 #else
1805 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1806 
mm_inc_nr_pmds(struct mm_struct * mm)1807 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1808 {
1809 	if (mm_pmd_folded(mm))
1810 		return;
1811 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1812 }
1813 
mm_dec_nr_pmds(struct mm_struct * mm)1814 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1815 {
1816 	if (mm_pmd_folded(mm))
1817 		return;
1818 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1819 }
1820 #endif
1821 
1822 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)1823 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1824 {
1825 	atomic_long_set(&mm->pgtables_bytes, 0);
1826 }
1827 
mm_pgtables_bytes(const struct mm_struct * mm)1828 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1829 {
1830 	return atomic_long_read(&mm->pgtables_bytes);
1831 }
1832 
mm_inc_nr_ptes(struct mm_struct * mm)1833 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1834 {
1835 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1836 }
1837 
mm_dec_nr_ptes(struct mm_struct * mm)1838 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1839 {
1840 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1841 }
1842 #else
1843 
mm_pgtables_bytes_init(struct mm_struct * mm)1844 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)1845 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1846 {
1847 	return 0;
1848 }
1849 
mm_inc_nr_ptes(struct mm_struct * mm)1850 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)1851 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1852 #endif
1853 
1854 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1855 int __pte_alloc_kernel(pmd_t *pmd);
1856 
1857 /*
1858  * The following ifdef needed to get the 4level-fixup.h header to work.
1859  * Remove it when 4level-fixup.h has been removed.
1860  */
1861 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1862 
1863 #ifndef __ARCH_HAS_5LEVEL_HACK
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1864 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1865 		unsigned long address)
1866 {
1867 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1868 		NULL : p4d_offset(pgd, address);
1869 }
1870 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1871 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1872 		unsigned long address)
1873 {
1874 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1875 		NULL : pud_offset(p4d, address);
1876 }
1877 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1878 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1879 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1880 {
1881 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1882 		NULL: pmd_offset(pud, address);
1883 }
1884 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1885 
1886 #if USE_SPLIT_PTE_PTLOCKS
1887 #if ALLOC_SPLIT_PTLOCKS
1888 void __init ptlock_cache_init(void);
1889 extern bool ptlock_alloc(struct page *page);
1890 extern void ptlock_free(struct page *page);
1891 
ptlock_ptr(struct page * page)1892 static inline spinlock_t *ptlock_ptr(struct page *page)
1893 {
1894 	return page->ptl;
1895 }
1896 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1897 static inline void ptlock_cache_init(void)
1898 {
1899 }
1900 
ptlock_alloc(struct page * page)1901 static inline bool ptlock_alloc(struct page *page)
1902 {
1903 	return true;
1904 }
1905 
ptlock_free(struct page * page)1906 static inline void ptlock_free(struct page *page)
1907 {
1908 }
1909 
ptlock_ptr(struct page * page)1910 static inline spinlock_t *ptlock_ptr(struct page *page)
1911 {
1912 	return &page->ptl;
1913 }
1914 #endif /* ALLOC_SPLIT_PTLOCKS */
1915 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1916 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1917 {
1918 	return ptlock_ptr(pmd_page(*pmd));
1919 }
1920 
ptlock_init(struct page * page)1921 static inline bool ptlock_init(struct page *page)
1922 {
1923 	/*
1924 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1925 	 * with 0. Make sure nobody took it in use in between.
1926 	 *
1927 	 * It can happen if arch try to use slab for page table allocation:
1928 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1929 	 */
1930 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1931 	if (!ptlock_alloc(page))
1932 		return false;
1933 	spin_lock_init(ptlock_ptr(page));
1934 	return true;
1935 }
1936 
1937 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1938 /*
1939  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1940  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1941 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1942 {
1943 	return &mm->page_table_lock;
1944 }
ptlock_cache_init(void)1945 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1946 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)1947 static inline void ptlock_free(struct page *page) {}
1948 #endif /* USE_SPLIT_PTE_PTLOCKS */
1949 
pgtable_init(void)1950 static inline void pgtable_init(void)
1951 {
1952 	ptlock_cache_init();
1953 	pgtable_cache_init();
1954 }
1955 
pgtable_pte_page_ctor(struct page * page)1956 static inline bool pgtable_pte_page_ctor(struct page *page)
1957 {
1958 	if (!ptlock_init(page))
1959 		return false;
1960 	__SetPageTable(page);
1961 	inc_zone_page_state(page, NR_PAGETABLE);
1962 	return true;
1963 }
1964 
pgtable_pte_page_dtor(struct page * page)1965 static inline void pgtable_pte_page_dtor(struct page *page)
1966 {
1967 	ptlock_free(page);
1968 	__ClearPageTable(page);
1969 	dec_zone_page_state(page, NR_PAGETABLE);
1970 }
1971 
1972 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1973 ({							\
1974 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1975 	pte_t *__pte = pte_offset_map(pmd, address);	\
1976 	*(ptlp) = __ptl;				\
1977 	spin_lock(__ptl);				\
1978 	__pte;						\
1979 })
1980 
1981 #define pte_unmap_unlock(pte, ptl)	do {		\
1982 	spin_unlock(ptl);				\
1983 	pte_unmap(pte);					\
1984 } while (0)
1985 
1986 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1987 
1988 #define pte_alloc_map(mm, pmd, address)			\
1989 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1990 
1991 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1992 	(pte_alloc(mm, pmd) ?			\
1993 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1994 
1995 #define pte_alloc_kernel(pmd, address)			\
1996 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1997 		NULL: pte_offset_kernel(pmd, address))
1998 
1999 #if USE_SPLIT_PMD_PTLOCKS
2000 
pmd_to_page(pmd_t * pmd)2001 static struct page *pmd_to_page(pmd_t *pmd)
2002 {
2003 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2004 	return virt_to_page((void *)((unsigned long) pmd & mask));
2005 }
2006 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2007 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2008 {
2009 	return ptlock_ptr(pmd_to_page(pmd));
2010 }
2011 
pgtable_pmd_page_ctor(struct page * page)2012 static inline bool pgtable_pmd_page_ctor(struct page *page)
2013 {
2014 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2015 	page->pmd_huge_pte = NULL;
2016 #endif
2017 	return ptlock_init(page);
2018 }
2019 
pgtable_pmd_page_dtor(struct page * page)2020 static inline void pgtable_pmd_page_dtor(struct page *page)
2021 {
2022 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2023 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2024 #endif
2025 	ptlock_free(page);
2026 }
2027 
2028 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2029 
2030 #else
2031 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2032 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2033 {
2034 	return &mm->page_table_lock;
2035 }
2036 
pgtable_pmd_page_ctor(struct page * page)2037 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)2038 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2039 
2040 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2041 
2042 #endif
2043 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2044 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2045 {
2046 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2047 	spin_lock(ptl);
2048 	return ptl;
2049 }
2050 
2051 /*
2052  * No scalability reason to split PUD locks yet, but follow the same pattern
2053  * as the PMD locks to make it easier if we decide to.  The VM should not be
2054  * considered ready to switch to split PUD locks yet; there may be places
2055  * which need to be converted from page_table_lock.
2056  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2057 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2058 {
2059 	return &mm->page_table_lock;
2060 }
2061 
pud_lock(struct mm_struct * mm,pud_t * pud)2062 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2063 {
2064 	spinlock_t *ptl = pud_lockptr(mm, pud);
2065 
2066 	spin_lock(ptl);
2067 	return ptl;
2068 }
2069 
2070 extern void __init pagecache_init(void);
2071 extern void free_area_init(unsigned long * zones_size);
2072 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2073 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2074 extern void free_initmem(void);
2075 
2076 /*
2077  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2078  * into the buddy system. The freed pages will be poisoned with pattern
2079  * "poison" if it's within range [0, UCHAR_MAX].
2080  * Return pages freed into the buddy system.
2081  */
2082 extern unsigned long free_reserved_area(void *start, void *end,
2083 					int poison, const char *s);
2084 
2085 #ifdef	CONFIG_HIGHMEM
2086 /*
2087  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2088  * and totalram_pages.
2089  */
2090 extern void free_highmem_page(struct page *page);
2091 #endif
2092 
2093 extern void adjust_managed_page_count(struct page *page, long count);
2094 extern void mem_init_print_info(const char *str);
2095 
2096 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2097 
2098 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2099 static inline void __free_reserved_page(struct page *page)
2100 {
2101 	ClearPageReserved(page);
2102 	init_page_count(page);
2103 	__free_page(page);
2104 }
2105 
free_reserved_page(struct page * page)2106 static inline void free_reserved_page(struct page *page)
2107 {
2108 	__free_reserved_page(page);
2109 	adjust_managed_page_count(page, 1);
2110 }
2111 
mark_page_reserved(struct page * page)2112 static inline void mark_page_reserved(struct page *page)
2113 {
2114 	SetPageReserved(page);
2115 	adjust_managed_page_count(page, -1);
2116 }
2117 
2118 /*
2119  * Default method to free all the __init memory into the buddy system.
2120  * The freed pages will be poisoned with pattern "poison" if it's within
2121  * range [0, UCHAR_MAX].
2122  * Return pages freed into the buddy system.
2123  */
free_initmem_default(int poison)2124 static inline unsigned long free_initmem_default(int poison)
2125 {
2126 	extern char __init_begin[], __init_end[];
2127 
2128 	return free_reserved_area(&__init_begin, &__init_end,
2129 				  poison, "unused kernel");
2130 }
2131 
get_num_physpages(void)2132 static inline unsigned long get_num_physpages(void)
2133 {
2134 	int nid;
2135 	unsigned long phys_pages = 0;
2136 
2137 	for_each_online_node(nid)
2138 		phys_pages += node_present_pages(nid);
2139 
2140 	return phys_pages;
2141 }
2142 
2143 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2144 /*
2145  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2146  * zones, allocate the backing mem_map and account for memory holes in a more
2147  * architecture independent manner. This is a substitute for creating the
2148  * zone_sizes[] and zholes_size[] arrays and passing them to
2149  * free_area_init_node()
2150  *
2151  * An architecture is expected to register range of page frames backed by
2152  * physical memory with memblock_add[_node]() before calling
2153  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2154  * usage, an architecture is expected to do something like
2155  *
2156  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2157  * 							 max_highmem_pfn};
2158  * for_each_valid_physical_page_range()
2159  * 	memblock_add_node(base, size, nid)
2160  * free_area_init_nodes(max_zone_pfns);
2161  *
2162  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2163  * registered physical page range.  Similarly
2164  * sparse_memory_present_with_active_regions() calls memory_present() for
2165  * each range when SPARSEMEM is enabled.
2166  *
2167  * See mm/page_alloc.c for more information on each function exposed by
2168  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2169  */
2170 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2171 unsigned long node_map_pfn_alignment(void);
2172 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2173 						unsigned long end_pfn);
2174 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2175 						unsigned long end_pfn);
2176 extern void get_pfn_range_for_nid(unsigned int nid,
2177 			unsigned long *start_pfn, unsigned long *end_pfn);
2178 extern unsigned long find_min_pfn_with_active_regions(void);
2179 extern void free_bootmem_with_active_regions(int nid,
2180 						unsigned long max_low_pfn);
2181 extern void sparse_memory_present_with_active_regions(int nid);
2182 
2183 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2184 
2185 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2186     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)2187 static inline int __early_pfn_to_nid(unsigned long pfn,
2188 					struct mminit_pfnnid_cache *state)
2189 {
2190 	return 0;
2191 }
2192 #else
2193 /* please see mm/page_alloc.c */
2194 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2195 /* there is a per-arch backend function. */
2196 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2197 					struct mminit_pfnnid_cache *state);
2198 #endif
2199 
2200 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2201 void zero_resv_unavail(void);
2202 #else
zero_resv_unavail(void)2203 static inline void zero_resv_unavail(void) {}
2204 #endif
2205 
2206 extern void set_dma_reserve(unsigned long new_dma_reserve);
2207 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2208 		enum memmap_context, struct vmem_altmap *);
2209 extern void setup_per_zone_wmarks(void);
2210 extern int __meminit init_per_zone_wmark_min(void);
2211 extern void mem_init(void);
2212 extern void __init mmap_init(void);
2213 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2214 extern long si_mem_available(void);
2215 extern void si_meminfo(struct sysinfo * val);
2216 extern void si_meminfo_node(struct sysinfo *val, int nid);
2217 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2218 extern unsigned long arch_reserved_kernel_pages(void);
2219 #endif
2220 
2221 extern __printf(3, 4)
2222 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2223 
2224 extern void setup_per_cpu_pageset(void);
2225 
2226 extern void zone_pcp_update(struct zone *zone);
2227 extern void zone_pcp_reset(struct zone *zone);
2228 
2229 /* page_alloc.c */
2230 extern int min_free_kbytes;
2231 extern int watermark_boost_factor;
2232 extern int watermark_scale_factor;
2233 
2234 /* nommu.c */
2235 extern atomic_long_t mmap_pages_allocated;
2236 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2237 
2238 /* interval_tree.c */
2239 void vma_interval_tree_insert(struct vm_area_struct *node,
2240 			      struct rb_root_cached *root);
2241 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2242 				    struct vm_area_struct *prev,
2243 				    struct rb_root_cached *root);
2244 void vma_interval_tree_remove(struct vm_area_struct *node,
2245 			      struct rb_root_cached *root);
2246 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2247 				unsigned long start, unsigned long last);
2248 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2249 				unsigned long start, unsigned long last);
2250 
2251 #define vma_interval_tree_foreach(vma, root, start, last)		\
2252 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2253 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2254 
2255 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2256 				   struct rb_root_cached *root);
2257 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2258 				   struct rb_root_cached *root);
2259 struct anon_vma_chain *
2260 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2261 				  unsigned long start, unsigned long last);
2262 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2263 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2264 #ifdef CONFIG_DEBUG_VM_RB
2265 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2266 #endif
2267 
2268 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2269 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2270 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2271 
2272 /* mmap.c */
2273 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2274 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2275 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2276 	struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2277 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2278 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2279 {
2280 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2281 }
2282 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2283 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2284 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2285 	struct mempolicy *, struct vm_userfaultfd_ctx, const char __user *);
2286 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2287 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2288 	unsigned long addr, int new_below);
2289 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2290 	unsigned long addr, int new_below);
2291 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2292 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2293 	struct rb_node **, struct rb_node *);
2294 extern void unlink_file_vma(struct vm_area_struct *);
2295 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2296 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2297 	bool *need_rmap_locks);
2298 extern void exit_mmap(struct mm_struct *);
2299 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2300 static inline int check_data_rlimit(unsigned long rlim,
2301 				    unsigned long new,
2302 				    unsigned long start,
2303 				    unsigned long end_data,
2304 				    unsigned long start_data)
2305 {
2306 	if (rlim < RLIM_INFINITY) {
2307 		if (((new - start) + (end_data - start_data)) > rlim)
2308 			return -ENOSPC;
2309 	}
2310 
2311 	return 0;
2312 }
2313 
2314 extern int mm_take_all_locks(struct mm_struct *mm);
2315 extern void mm_drop_all_locks(struct mm_struct *mm);
2316 
2317 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2318 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2319 extern struct file *get_task_exe_file(struct task_struct *task);
2320 
2321 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2322 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2323 
2324 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2325 				   const struct vm_special_mapping *sm);
2326 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2327 				   unsigned long addr, unsigned long len,
2328 				   unsigned long flags,
2329 				   const struct vm_special_mapping *spec);
2330 /* This is an obsolete alternative to _install_special_mapping. */
2331 extern int install_special_mapping(struct mm_struct *mm,
2332 				   unsigned long addr, unsigned long len,
2333 				   unsigned long flags, struct page **pages);
2334 
2335 unsigned long randomize_stack_top(unsigned long stack_top);
2336 
2337 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2338 
2339 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2340 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2341 	struct list_head *uf);
2342 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2343 	unsigned long len, unsigned long prot, unsigned long flags,
2344 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2345 	struct list_head *uf);
2346 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2347 		       struct list_head *uf, bool downgrade);
2348 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2349 		     struct list_head *uf);
2350 
2351 static inline unsigned long
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)2352 do_mmap_pgoff(struct file *file, unsigned long addr,
2353 	unsigned long len, unsigned long prot, unsigned long flags,
2354 	unsigned long pgoff, unsigned long *populate,
2355 	struct list_head *uf)
2356 {
2357 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2358 }
2359 
2360 #ifdef CONFIG_MMU
2361 extern int __mm_populate(unsigned long addr, unsigned long len,
2362 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2363 static inline void mm_populate(unsigned long addr, unsigned long len)
2364 {
2365 	/* Ignore errors */
2366 	(void) __mm_populate(addr, len, 1);
2367 }
2368 #else
mm_populate(unsigned long addr,unsigned long len)2369 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2370 #endif
2371 
2372 /* These take the mm semaphore themselves */
2373 extern int __must_check vm_brk(unsigned long, unsigned long);
2374 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2375 extern int vm_munmap(unsigned long, size_t);
2376 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2377         unsigned long, unsigned long,
2378         unsigned long, unsigned long);
2379 
2380 struct vm_unmapped_area_info {
2381 #define VM_UNMAPPED_AREA_TOPDOWN 1
2382 	unsigned long flags;
2383 	unsigned long length;
2384 	unsigned long low_limit;
2385 	unsigned long high_limit;
2386 	unsigned long align_mask;
2387 	unsigned long align_offset;
2388 };
2389 
2390 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2391 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2392 
2393 /*
2394  * Search for an unmapped address range.
2395  *
2396  * We are looking for a range that:
2397  * - does not intersect with any VMA;
2398  * - is contained within the [low_limit, high_limit) interval;
2399  * - is at least the desired size.
2400  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2401  */
2402 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)2403 vm_unmapped_area(struct vm_unmapped_area_info *info)
2404 {
2405 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2406 		return unmapped_area_topdown(info);
2407 	else
2408 		return unmapped_area(info);
2409 }
2410 
2411 /* truncate.c */
2412 extern void truncate_inode_pages(struct address_space *, loff_t);
2413 extern void truncate_inode_pages_range(struct address_space *,
2414 				       loff_t lstart, loff_t lend);
2415 extern void truncate_inode_pages_final(struct address_space *);
2416 
2417 /* generic vm_area_ops exported for stackable file systems */
2418 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2419 extern void filemap_map_pages(struct vm_fault *vmf,
2420 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2421 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2422 
2423 /* mm/page-writeback.c */
2424 int __must_check write_one_page(struct page *page);
2425 void task_dirty_inc(struct task_struct *tsk);
2426 
2427 /* readahead.c */
2428 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2429 
2430 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2431 			pgoff_t offset, unsigned long nr_to_read);
2432 
2433 void page_cache_sync_readahead(struct address_space *mapping,
2434 			       struct file_ra_state *ra,
2435 			       struct file *filp,
2436 			       pgoff_t offset,
2437 			       unsigned long size);
2438 
2439 void page_cache_async_readahead(struct address_space *mapping,
2440 				struct file_ra_state *ra,
2441 				struct file *filp,
2442 				struct page *pg,
2443 				pgoff_t offset,
2444 				unsigned long size);
2445 
2446 extern unsigned long stack_guard_gap;
2447 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2448 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2449 
2450 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2451 extern int expand_downwards(struct vm_area_struct *vma,
2452 		unsigned long address);
2453 #if VM_GROWSUP
2454 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2455 #else
2456   #define expand_upwards(vma, address) (0)
2457 #endif
2458 
2459 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2460 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2461 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2462 					     struct vm_area_struct **pprev);
2463 
2464 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2465    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2466 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2467 {
2468 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2469 
2470 	if (vma && end_addr <= vma->vm_start)
2471 		vma = NULL;
2472 	return vma;
2473 }
2474 
vm_start_gap(struct vm_area_struct * vma)2475 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2476 {
2477 	unsigned long vm_start = vma->vm_start;
2478 
2479 	if (vma->vm_flags & VM_GROWSDOWN) {
2480 		vm_start -= stack_guard_gap;
2481 		if (vm_start > vma->vm_start)
2482 			vm_start = 0;
2483 	}
2484 	return vm_start;
2485 }
2486 
vm_end_gap(struct vm_area_struct * vma)2487 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2488 {
2489 	unsigned long vm_end = vma->vm_end;
2490 
2491 	if (vma->vm_flags & VM_GROWSUP) {
2492 		vm_end += stack_guard_gap;
2493 		if (vm_end < vma->vm_end)
2494 			vm_end = -PAGE_SIZE;
2495 	}
2496 	return vm_end;
2497 }
2498 
vma_pages(struct vm_area_struct * vma)2499 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2500 {
2501 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2502 }
2503 
2504 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2505 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2506 				unsigned long vm_start, unsigned long vm_end)
2507 {
2508 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2509 
2510 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2511 		vma = NULL;
2512 
2513 	return vma;
2514 }
2515 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2516 static inline bool range_in_vma(struct vm_area_struct *vma,
2517 				unsigned long start, unsigned long end)
2518 {
2519 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2520 }
2521 
2522 #ifdef CONFIG_MMU
2523 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2524 void vma_set_page_prot(struct vm_area_struct *vma);
2525 #else
vm_get_page_prot(unsigned long vm_flags)2526 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2527 {
2528 	return __pgprot(0);
2529 }
vma_set_page_prot(struct vm_area_struct * vma)2530 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2531 {
2532 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2533 }
2534 #endif
2535 
2536 #ifdef CONFIG_NUMA_BALANCING
2537 unsigned long change_prot_numa(struct vm_area_struct *vma,
2538 			unsigned long start, unsigned long end);
2539 #endif
2540 
2541 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2542 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2543 			unsigned long pfn, unsigned long size, pgprot_t);
2544 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2545 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2546 				unsigned long num);
2547 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2548 				unsigned long num);
2549 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2550 			unsigned long pfn);
2551 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2552 			unsigned long pfn, pgprot_t pgprot);
2553 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2554 			pfn_t pfn);
2555 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2556 		unsigned long addr, pfn_t pfn);
2557 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2558 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2559 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2560 				unsigned long addr, struct page *page)
2561 {
2562 	int err = vm_insert_page(vma, addr, page);
2563 
2564 	if (err == -ENOMEM)
2565 		return VM_FAULT_OOM;
2566 	if (err < 0 && err != -EBUSY)
2567 		return VM_FAULT_SIGBUS;
2568 
2569 	return VM_FAULT_NOPAGE;
2570 }
2571 
vmf_error(int err)2572 static inline vm_fault_t vmf_error(int err)
2573 {
2574 	if (err == -ENOMEM)
2575 		return VM_FAULT_OOM;
2576 	return VM_FAULT_SIGBUS;
2577 }
2578 
2579 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2580 			 unsigned int foll_flags);
2581 
2582 #define FOLL_WRITE	0x01	/* check pte is writable */
2583 #define FOLL_TOUCH	0x02	/* mark page accessed */
2584 #define FOLL_GET	0x04	/* do get_page on page */
2585 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2586 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2587 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2588 				 * and return without waiting upon it */
2589 #define FOLL_POPULATE	0x40	/* fault in page */
2590 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2591 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2592 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2593 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2594 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2595 #define FOLL_MLOCK	0x1000	/* lock present pages */
2596 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2597 #define FOLL_COW	0x4000	/* internal GUP flag */
2598 #define FOLL_ANON	0x8000	/* don't do file mappings */
2599 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2600 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2601 
2602 /*
2603  * NOTE on FOLL_LONGTERM:
2604  *
2605  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2606  * period _often_ under userspace control.  This is contrasted with
2607  * iov_iter_get_pages() where usages which are transient.
2608  *
2609  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2610  * lifetime enforced by the filesystem and we need guarantees that longterm
2611  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2612  * the filesystem.  Ideas for this coordination include revoking the longterm
2613  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2614  * added after the problem with filesystems was found FS DAX VMAs are
2615  * specifically failed.  Filesystem pages are still subject to bugs and use of
2616  * FOLL_LONGTERM should be avoided on those pages.
2617  *
2618  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2619  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2620  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2621  * is due to an incompatibility with the FS DAX check and
2622  * FAULT_FLAG_ALLOW_RETRY
2623  *
2624  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2625  * that region.  And so CMA attempts to migrate the page before pinning when
2626  * FOLL_LONGTERM is specified.
2627  */
2628 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2629 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2630 {
2631 	if (vm_fault & VM_FAULT_OOM)
2632 		return -ENOMEM;
2633 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2634 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2635 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2636 		return -EFAULT;
2637 	return 0;
2638 }
2639 
2640 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2641 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2642 			       unsigned long size, pte_fn_t fn, void *data);
2643 
2644 
2645 #ifdef CONFIG_PAGE_POISONING
2646 extern bool page_poisoning_enabled(void);
2647 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2648 #else
page_poisoning_enabled(void)2649 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2650 static inline void kernel_poison_pages(struct page *page, int numpages,
2651 					int enable) { }
2652 #endif
2653 
2654 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2655 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2656 #else
2657 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2658 #endif
want_init_on_alloc(gfp_t flags)2659 static inline bool want_init_on_alloc(gfp_t flags)
2660 {
2661 	if (static_branch_unlikely(&init_on_alloc) &&
2662 	    !page_poisoning_enabled())
2663 		return true;
2664 	return flags & __GFP_ZERO;
2665 }
2666 
2667 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2668 DECLARE_STATIC_KEY_TRUE(init_on_free);
2669 #else
2670 DECLARE_STATIC_KEY_FALSE(init_on_free);
2671 #endif
want_init_on_free(void)2672 static inline bool want_init_on_free(void)
2673 {
2674 	return static_branch_unlikely(&init_on_free) &&
2675 	       !page_poisoning_enabled();
2676 }
2677 
2678 #ifdef CONFIG_DEBUG_PAGEALLOC
2679 extern void init_debug_pagealloc(void);
2680 #else
init_debug_pagealloc(void)2681 static inline void init_debug_pagealloc(void) {}
2682 #endif
2683 extern bool _debug_pagealloc_enabled_early;
2684 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2685 
debug_pagealloc_enabled(void)2686 static inline bool debug_pagealloc_enabled(void)
2687 {
2688 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2689 		_debug_pagealloc_enabled_early;
2690 }
2691 
2692 /*
2693  * For use in fast paths after init_debug_pagealloc() has run, or when a
2694  * false negative result is not harmful when called too early.
2695  */
debug_pagealloc_enabled_static(void)2696 static inline bool debug_pagealloc_enabled_static(void)
2697 {
2698 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2699 		return false;
2700 
2701 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2702 }
2703 
2704 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2705 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2706 
2707 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2708 kernel_map_pages(struct page *page, int numpages, int enable)
2709 {
2710 	__kernel_map_pages(page, numpages, enable);
2711 }
2712 #ifdef CONFIG_HIBERNATION
2713 extern bool kernel_page_present(struct page *page);
2714 #endif	/* CONFIG_HIBERNATION */
2715 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2716 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2717 kernel_map_pages(struct page *page, int numpages, int enable) {}
2718 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2719 static inline bool kernel_page_present(struct page *page) { return true; }
2720 #endif	/* CONFIG_HIBERNATION */
2721 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2722 
2723 #ifdef __HAVE_ARCH_GATE_AREA
2724 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2725 extern int in_gate_area_no_mm(unsigned long addr);
2726 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2727 #else
get_gate_vma(struct mm_struct * mm)2728 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2729 {
2730 	return NULL;
2731 }
in_gate_area_no_mm(unsigned long addr)2732 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2733 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2734 {
2735 	return 0;
2736 }
2737 #endif	/* __HAVE_ARCH_GATE_AREA */
2738 
2739 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2740 
2741 #ifdef CONFIG_SYSCTL
2742 extern int sysctl_drop_caches;
2743 int drop_caches_sysctl_handler(struct ctl_table *, int,
2744 					void __user *, size_t *, loff_t *);
2745 #endif
2746 
2747 void drop_slab(void);
2748 void drop_slab_node(int nid);
2749 
2750 #ifndef CONFIG_MMU
2751 #define randomize_va_space 0
2752 #else
2753 extern int randomize_va_space;
2754 #endif
2755 
2756 const char * arch_vma_name(struct vm_area_struct *vma);
2757 #ifdef CONFIG_MMU
2758 void print_vma_addr(char *prefix, unsigned long rip);
2759 #else
print_vma_addr(char * prefix,unsigned long rip)2760 static inline void print_vma_addr(char *prefix, unsigned long rip)
2761 {
2762 }
2763 #endif
2764 
2765 void *sparse_buffer_alloc(unsigned long size);
2766 struct page * __populate_section_memmap(unsigned long pfn,
2767 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2768 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2769 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2770 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2771 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2772 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2773 void *vmemmap_alloc_block(unsigned long size, int node);
2774 struct vmem_altmap;
2775 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2776 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2777 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2778 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2779 			       int node);
2780 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2781 		struct vmem_altmap *altmap);
2782 void vmemmap_populate_print_last(void);
2783 #ifdef CONFIG_MEMORY_HOTPLUG
2784 void vmemmap_free(unsigned long start, unsigned long end,
2785 		struct vmem_altmap *altmap);
2786 #endif
2787 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2788 				  unsigned long nr_pages);
2789 
2790 enum mf_flags {
2791 	MF_COUNT_INCREASED = 1 << 0,
2792 	MF_ACTION_REQUIRED = 1 << 1,
2793 	MF_MUST_KILL = 1 << 2,
2794 	MF_SOFT_OFFLINE = 1 << 3,
2795 };
2796 extern int memory_failure(unsigned long pfn, int flags);
2797 extern void memory_failure_queue(unsigned long pfn, int flags);
2798 extern int unpoison_memory(unsigned long pfn);
2799 extern int get_hwpoison_page(struct page *page);
2800 #define put_hwpoison_page(page)	put_page(page)
2801 extern int sysctl_memory_failure_early_kill;
2802 extern int sysctl_memory_failure_recovery;
2803 extern void shake_page(struct page *p, int access);
2804 extern atomic_long_t num_poisoned_pages __read_mostly;
2805 extern int soft_offline_page(struct page *page, int flags);
2806 
2807 
2808 /*
2809  * Error handlers for various types of pages.
2810  */
2811 enum mf_result {
2812 	MF_IGNORED,	/* Error: cannot be handled */
2813 	MF_FAILED,	/* Error: handling failed */
2814 	MF_DELAYED,	/* Will be handled later */
2815 	MF_RECOVERED,	/* Successfully recovered */
2816 };
2817 
2818 enum mf_action_page_type {
2819 	MF_MSG_KERNEL,
2820 	MF_MSG_KERNEL_HIGH_ORDER,
2821 	MF_MSG_SLAB,
2822 	MF_MSG_DIFFERENT_COMPOUND,
2823 	MF_MSG_POISONED_HUGE,
2824 	MF_MSG_HUGE,
2825 	MF_MSG_FREE_HUGE,
2826 	MF_MSG_NON_PMD_HUGE,
2827 	MF_MSG_UNMAP_FAILED,
2828 	MF_MSG_DIRTY_SWAPCACHE,
2829 	MF_MSG_CLEAN_SWAPCACHE,
2830 	MF_MSG_DIRTY_MLOCKED_LRU,
2831 	MF_MSG_CLEAN_MLOCKED_LRU,
2832 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2833 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2834 	MF_MSG_DIRTY_LRU,
2835 	MF_MSG_CLEAN_LRU,
2836 	MF_MSG_TRUNCATED_LRU,
2837 	MF_MSG_BUDDY,
2838 	MF_MSG_BUDDY_2ND,
2839 	MF_MSG_DAX,
2840 	MF_MSG_UNKNOWN,
2841 };
2842 
2843 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2844 extern void clear_huge_page(struct page *page,
2845 			    unsigned long addr_hint,
2846 			    unsigned int pages_per_huge_page);
2847 extern void copy_user_huge_page(struct page *dst, struct page *src,
2848 				unsigned long addr_hint,
2849 				struct vm_area_struct *vma,
2850 				unsigned int pages_per_huge_page);
2851 extern long copy_huge_page_from_user(struct page *dst_page,
2852 				const void __user *usr_src,
2853 				unsigned int pages_per_huge_page,
2854 				bool allow_pagefault);
2855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2856 
2857 #ifdef CONFIG_DEBUG_PAGEALLOC
2858 extern unsigned int _debug_guardpage_minorder;
2859 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2860 
debug_guardpage_minorder(void)2861 static inline unsigned int debug_guardpage_minorder(void)
2862 {
2863 	return _debug_guardpage_minorder;
2864 }
2865 
debug_guardpage_enabled(void)2866 static inline bool debug_guardpage_enabled(void)
2867 {
2868 	return static_branch_unlikely(&_debug_guardpage_enabled);
2869 }
2870 
page_is_guard(struct page * page)2871 static inline bool page_is_guard(struct page *page)
2872 {
2873 	if (!debug_guardpage_enabled())
2874 		return false;
2875 
2876 	return PageGuard(page);
2877 }
2878 #else
debug_guardpage_minorder(void)2879 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2880 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2881 static inline bool page_is_guard(struct page *page) { return false; }
2882 #endif /* CONFIG_DEBUG_PAGEALLOC */
2883 
2884 #if MAX_NUMNODES > 1
2885 void __init setup_nr_node_ids(void);
2886 #else
setup_nr_node_ids(void)2887 static inline void setup_nr_node_ids(void) {}
2888 #endif
2889 
2890 extern int memcmp_pages(struct page *page1, struct page *page2);
2891 
pages_identical(struct page * page1,struct page * page2)2892 static inline int pages_identical(struct page *page1, struct page *page2)
2893 {
2894 	return !memcmp_pages(page1, page2);
2895 }
2896 
2897 #endif /* __KERNEL__ */
2898 #endif /* _LINUX_MM_H */
2899