• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_XARRAY_H
3 #define _LINUX_XARRAY_H
4 /*
5  * eXtensible Arrays
6  * Copyright (c) 2017 Microsoft Corporation
7  * Author: Matthew Wilcox <willy@infradead.org>
8  *
9  * See Documentation/core-api/xarray.rst for how to use the XArray.
10  */
11 
12 #include <linux/bug.h>
13 #include <linux/compiler.h>
14 #include <linux/gfp.h>
15 #include <linux/kconfig.h>
16 #include <linux/kernel.h>
17 #include <linux/rcupdate.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20 
21 /*
22  * The bottom two bits of the entry determine how the XArray interprets
23  * the contents:
24  *
25  * 00: Pointer entry
26  * 10: Internal entry
27  * x1: Value entry or tagged pointer
28  *
29  * Attempting to store internal entries in the XArray is a bug.
30  *
31  * Most internal entries are pointers to the next node in the tree.
32  * The following internal entries have a special meaning:
33  *
34  * 0-62: Sibling entries
35  * 256: Zero entry
36  * 257: Retry entry
37  *
38  * Errors are also represented as internal entries, but use the negative
39  * space (-4094 to -2).  They're never stored in the slots array; only
40  * returned by the normal API.
41  */
42 
43 #define BITS_PER_XA_VALUE	(BITS_PER_LONG - 1)
44 
45 /**
46  * xa_mk_value() - Create an XArray entry from an integer.
47  * @v: Value to store in XArray.
48  *
49  * Context: Any context.
50  * Return: An entry suitable for storing in the XArray.
51  */
xa_mk_value(unsigned long v)52 static inline void *xa_mk_value(unsigned long v)
53 {
54 	WARN_ON((long)v < 0);
55 	return (void *)((v << 1) | 1);
56 }
57 
58 /**
59  * xa_to_value() - Get value stored in an XArray entry.
60  * @entry: XArray entry.
61  *
62  * Context: Any context.
63  * Return: The value stored in the XArray entry.
64  */
xa_to_value(const void * entry)65 static inline unsigned long xa_to_value(const void *entry)
66 {
67 	return (unsigned long)entry >> 1;
68 }
69 
70 /**
71  * xa_is_value() - Determine if an entry is a value.
72  * @entry: XArray entry.
73  *
74  * Context: Any context.
75  * Return: True if the entry is a value, false if it is a pointer.
76  */
xa_is_value(const void * entry)77 static inline bool xa_is_value(const void *entry)
78 {
79 	return (unsigned long)entry & 1;
80 }
81 
82 /**
83  * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
84  * @p: Plain pointer.
85  * @tag: Tag value (0, 1 or 3).
86  *
87  * If the user of the XArray prefers, they can tag their pointers instead
88  * of storing value entries.  Three tags are available (0, 1 and 3).
89  * These are distinct from the xa_mark_t as they are not replicated up
90  * through the array and cannot be searched for.
91  *
92  * Context: Any context.
93  * Return: An XArray entry.
94  */
xa_tag_pointer(void * p,unsigned long tag)95 static inline void *xa_tag_pointer(void *p, unsigned long tag)
96 {
97 	return (void *)((unsigned long)p | tag);
98 }
99 
100 /**
101  * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
102  * @entry: XArray entry.
103  *
104  * If you have stored a tagged pointer in the XArray, call this function
105  * to get the untagged version of the pointer.
106  *
107  * Context: Any context.
108  * Return: A pointer.
109  */
xa_untag_pointer(void * entry)110 static inline void *xa_untag_pointer(void *entry)
111 {
112 	return (void *)((unsigned long)entry & ~3UL);
113 }
114 
115 /**
116  * xa_pointer_tag() - Get the tag stored in an XArray entry.
117  * @entry: XArray entry.
118  *
119  * If you have stored a tagged pointer in the XArray, call this function
120  * to get the tag of that pointer.
121  *
122  * Context: Any context.
123  * Return: A tag.
124  */
xa_pointer_tag(void * entry)125 static inline unsigned int xa_pointer_tag(void *entry)
126 {
127 	return (unsigned long)entry & 3UL;
128 }
129 
130 /*
131  * xa_mk_internal() - Create an internal entry.
132  * @v: Value to turn into an internal entry.
133  *
134  * Internal entries are used for a number of purposes.  Entries 0-255 are
135  * used for sibling entries (only 0-62 are used by the current code).  256
136  * is used for the retry entry.  257 is used for the reserved / zero entry.
137  * Negative internal entries are used to represent errnos.  Node pointers
138  * are also tagged as internal entries in some situations.
139  *
140  * Context: Any context.
141  * Return: An XArray internal entry corresponding to this value.
142  */
xa_mk_internal(unsigned long v)143 static inline void *xa_mk_internal(unsigned long v)
144 {
145 	return (void *)((v << 2) | 2);
146 }
147 
148 /*
149  * xa_to_internal() - Extract the value from an internal entry.
150  * @entry: XArray entry.
151  *
152  * Context: Any context.
153  * Return: The value which was stored in the internal entry.
154  */
xa_to_internal(const void * entry)155 static inline unsigned long xa_to_internal(const void *entry)
156 {
157 	return (unsigned long)entry >> 2;
158 }
159 
160 /*
161  * xa_is_internal() - Is the entry an internal entry?
162  * @entry: XArray entry.
163  *
164  * Context: Any context.
165  * Return: %true if the entry is an internal entry.
166  */
xa_is_internal(const void * entry)167 static inline bool xa_is_internal(const void *entry)
168 {
169 	return ((unsigned long)entry & 3) == 2;
170 }
171 
172 #define XA_ZERO_ENTRY		xa_mk_internal(257)
173 
174 /**
175  * xa_is_zero() - Is the entry a zero entry?
176  * @entry: Entry retrieved from the XArray
177  *
178  * The normal API will return NULL as the contents of a slot containing
179  * a zero entry.  You can only see zero entries by using the advanced API.
180  *
181  * Return: %true if the entry is a zero entry.
182  */
xa_is_zero(const void * entry)183 static inline bool xa_is_zero(const void *entry)
184 {
185 	return unlikely(entry == XA_ZERO_ENTRY);
186 }
187 
188 /**
189  * xa_is_err() - Report whether an XArray operation returned an error
190  * @entry: Result from calling an XArray function
191  *
192  * If an XArray operation cannot complete an operation, it will return
193  * a special value indicating an error.  This function tells you
194  * whether an error occurred; xa_err() tells you which error occurred.
195  *
196  * Context: Any context.
197  * Return: %true if the entry indicates an error.
198  */
xa_is_err(const void * entry)199 static inline bool xa_is_err(const void *entry)
200 {
201 	return unlikely(xa_is_internal(entry) &&
202 			entry >= xa_mk_internal(-MAX_ERRNO));
203 }
204 
205 /**
206  * xa_err() - Turn an XArray result into an errno.
207  * @entry: Result from calling an XArray function.
208  *
209  * If an XArray operation cannot complete an operation, it will return
210  * a special pointer value which encodes an errno.  This function extracts
211  * the errno from the pointer value, or returns 0 if the pointer does not
212  * represent an errno.
213  *
214  * Context: Any context.
215  * Return: A negative errno or 0.
216  */
xa_err(void * entry)217 static inline int xa_err(void *entry)
218 {
219 	/* xa_to_internal() would not do sign extension. */
220 	if (xa_is_err(entry))
221 		return (long)entry >> 2;
222 	return 0;
223 }
224 
225 /**
226  * struct xa_limit - Represents a range of IDs.
227  * @min: The lowest ID to allocate (inclusive).
228  * @max: The maximum ID to allocate (inclusive).
229  *
230  * This structure is used either directly or via the XA_LIMIT() macro
231  * to communicate the range of IDs that are valid for allocation.
232  * Two common ranges are predefined for you:
233  * * xa_limit_32b	- [0 - UINT_MAX]
234  * * xa_limit_31b	- [0 - INT_MAX]
235  */
236 struct xa_limit {
237 	u32 max;
238 	u32 min;
239 };
240 
241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
242 
243 #define xa_limit_32b	XA_LIMIT(0, UINT_MAX)
244 #define xa_limit_31b	XA_LIMIT(0, INT_MAX)
245 
246 typedef unsigned __bitwise xa_mark_t;
247 #define XA_MARK_0		((__force xa_mark_t)0U)
248 #define XA_MARK_1		((__force xa_mark_t)1U)
249 #define XA_MARK_2		((__force xa_mark_t)2U)
250 #define XA_PRESENT		((__force xa_mark_t)8U)
251 #define XA_MARK_MAX		XA_MARK_2
252 #define XA_FREE_MARK		XA_MARK_0
253 
254 enum xa_lock_type {
255 	XA_LOCK_IRQ = 1,
256 	XA_LOCK_BH = 2,
257 };
258 
259 /*
260  * Values for xa_flags.  The radix tree stores its GFP flags in the xa_flags,
261  * and we remain compatible with that.
262  */
263 #define XA_FLAGS_LOCK_IRQ	((__force gfp_t)XA_LOCK_IRQ)
264 #define XA_FLAGS_LOCK_BH	((__force gfp_t)XA_LOCK_BH)
265 #define XA_FLAGS_TRACK_FREE	((__force gfp_t)4U)
266 #define XA_FLAGS_ZERO_BUSY	((__force gfp_t)8U)
267 #define XA_FLAGS_ALLOC_WRAPPED	((__force gfp_t)16U)
268 #define XA_FLAGS_ACCOUNT	((__force gfp_t)32U)
269 #define XA_FLAGS_MARK(mark)	((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
270 						(__force unsigned)(mark)))
271 
272 /* ALLOC is for a normal 0-based alloc.  ALLOC1 is for an 1-based alloc */
273 #define XA_FLAGS_ALLOC	(XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
274 #define XA_FLAGS_ALLOC1	(XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
275 
276 /**
277  * struct xarray - The anchor of the XArray.
278  * @xa_lock: Lock that protects the contents of the XArray.
279  *
280  * To use the xarray, define it statically or embed it in your data structure.
281  * It is a very small data structure, so it does not usually make sense to
282  * allocate it separately and keep a pointer to it in your data structure.
283  *
284  * You may use the xa_lock to protect your own data structures as well.
285  */
286 /*
287  * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
288  * If the only non-NULL entry in the array is at index 0, @xa_head is that
289  * entry.  If any other entry in the array is non-NULL, @xa_head points
290  * to an @xa_node.
291  */
292 struct xarray {
293 	spinlock_t	xa_lock;
294 /* private: The rest of the data structure is not to be used directly. */
295 	gfp_t		xa_flags;
296 	void __rcu *	xa_head;
297 };
298 
299 #define XARRAY_INIT(name, flags) {				\
300 	.xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),		\
301 	.xa_flags = flags,					\
302 	.xa_head = NULL,					\
303 }
304 
305 /**
306  * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
307  * @name: A string that names your XArray.
308  * @flags: XA_FLAG values.
309  *
310  * This is intended for file scope definitions of XArrays.  It declares
311  * and initialises an empty XArray with the chosen name and flags.  It is
312  * equivalent to calling xa_init_flags() on the array, but it does the
313  * initialisation at compiletime instead of runtime.
314  */
315 #define DEFINE_XARRAY_FLAGS(name, flags)				\
316 	struct xarray name = XARRAY_INIT(name, flags)
317 
318 /**
319  * DEFINE_XARRAY() - Define an XArray.
320  * @name: A string that names your XArray.
321  *
322  * This is intended for file scope definitions of XArrays.  It declares
323  * and initialises an empty XArray with the chosen name.  It is equivalent
324  * to calling xa_init() on the array, but it does the initialisation at
325  * compiletime instead of runtime.
326  */
327 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
328 
329 /**
330  * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
331  * @name: A string that names your XArray.
332  *
333  * This is intended for file scope definitions of allocating XArrays.
334  * See also DEFINE_XARRAY().
335  */
336 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
337 
338 /**
339  * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
340  * @name: A string that names your XArray.
341  *
342  * This is intended for file scope definitions of allocating XArrays.
343  * See also DEFINE_XARRAY().
344  */
345 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
346 
347 void *xa_load(struct xarray *, unsigned long index);
348 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
349 void *xa_erase(struct xarray *, unsigned long index);
350 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
351 			void *entry, gfp_t);
352 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
353 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
354 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
355 void *xa_find(struct xarray *xa, unsigned long *index,
356 		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
357 void *xa_find_after(struct xarray *xa, unsigned long *index,
358 		unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
359 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
360 		unsigned long max, unsigned int n, xa_mark_t);
361 void xa_destroy(struct xarray *);
362 
363 /**
364  * xa_init_flags() - Initialise an empty XArray with flags.
365  * @xa: XArray.
366  * @flags: XA_FLAG values.
367  *
368  * If you need to initialise an XArray with special flags (eg you need
369  * to take the lock from interrupt context), use this function instead
370  * of xa_init().
371  *
372  * Context: Any context.
373  */
xa_init_flags(struct xarray * xa,gfp_t flags)374 static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
375 {
376 	spin_lock_init(&xa->xa_lock);
377 	xa->xa_flags = flags;
378 	xa->xa_head = NULL;
379 }
380 
381 /**
382  * xa_init() - Initialise an empty XArray.
383  * @xa: XArray.
384  *
385  * An empty XArray is full of NULL entries.
386  *
387  * Context: Any context.
388  */
xa_init(struct xarray * xa)389 static inline void xa_init(struct xarray *xa)
390 {
391 	xa_init_flags(xa, 0);
392 }
393 
394 /**
395  * xa_empty() - Determine if an array has any present entries.
396  * @xa: XArray.
397  *
398  * Context: Any context.
399  * Return: %true if the array contains only NULL pointers.
400  */
xa_empty(const struct xarray * xa)401 static inline bool xa_empty(const struct xarray *xa)
402 {
403 	return xa->xa_head == NULL;
404 }
405 
406 /**
407  * xa_marked() - Inquire whether any entry in this array has a mark set
408  * @xa: Array
409  * @mark: Mark value
410  *
411  * Context: Any context.
412  * Return: %true if any entry has this mark set.
413  */
xa_marked(const struct xarray * xa,xa_mark_t mark)414 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
415 {
416 	return xa->xa_flags & XA_FLAGS_MARK(mark);
417 }
418 
419 /**
420  * xa_for_each_start() - Iterate over a portion of an XArray.
421  * @xa: XArray.
422  * @index: Index of @entry.
423  * @entry: Entry retrieved from array.
424  * @start: First index to retrieve from array.
425  *
426  * During the iteration, @entry will have the value of the entry stored
427  * in @xa at @index.  You may modify @index during the iteration if you
428  * want to skip or reprocess indices.  It is safe to modify the array
429  * during the iteration.  At the end of the iteration, @entry will be set
430  * to NULL and @index will have a value less than or equal to max.
431  *
432  * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n).  You have
433  * to handle your own locking with xas_for_each(), and if you have to unlock
434  * after each iteration, it will also end up being O(n.log(n)).
435  * xa_for_each_start() will spin if it hits a retry entry; if you intend to
436  * see retry entries, you should use the xas_for_each() iterator instead.
437  * The xas_for_each() iterator will expand into more inline code than
438  * xa_for_each_start().
439  *
440  * Context: Any context.  Takes and releases the RCU lock.
441  */
442 #define xa_for_each_start(xa, index, entry, start)			\
443 	for (index = start,						\
444 	     entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT);	\
445 	     entry;							\
446 	     entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT))
447 
448 /**
449  * xa_for_each() - Iterate over present entries in an XArray.
450  * @xa: XArray.
451  * @index: Index of @entry.
452  * @entry: Entry retrieved from array.
453  *
454  * During the iteration, @entry will have the value of the entry stored
455  * in @xa at @index.  You may modify @index during the iteration if you want
456  * to skip or reprocess indices.  It is safe to modify the array during the
457  * iteration.  At the end of the iteration, @entry will be set to NULL and
458  * @index will have a value less than or equal to max.
459  *
460  * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n).  You have
461  * to handle your own locking with xas_for_each(), and if you have to unlock
462  * after each iteration, it will also end up being O(n.log(n)).  xa_for_each()
463  * will spin if it hits a retry entry; if you intend to see retry entries,
464  * you should use the xas_for_each() iterator instead.  The xas_for_each()
465  * iterator will expand into more inline code than xa_for_each().
466  *
467  * Context: Any context.  Takes and releases the RCU lock.
468  */
469 #define xa_for_each(xa, index, entry) \
470 	xa_for_each_start(xa, index, entry, 0)
471 
472 /**
473  * xa_for_each_marked() - Iterate over marked entries in an XArray.
474  * @xa: XArray.
475  * @index: Index of @entry.
476  * @entry: Entry retrieved from array.
477  * @filter: Selection criterion.
478  *
479  * During the iteration, @entry will have the value of the entry stored
480  * in @xa at @index.  The iteration will skip all entries in the array
481  * which do not match @filter.  You may modify @index during the iteration
482  * if you want to skip or reprocess indices.  It is safe to modify the array
483  * during the iteration.  At the end of the iteration, @entry will be set to
484  * NULL and @index will have a value less than or equal to max.
485  *
486  * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
487  * You have to handle your own locking with xas_for_each(), and if you have
488  * to unlock after each iteration, it will also end up being O(n.log(n)).
489  * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
490  * see retry entries, you should use the xas_for_each_marked() iterator
491  * instead.  The xas_for_each_marked() iterator will expand into more inline
492  * code than xa_for_each_marked().
493  *
494  * Context: Any context.  Takes and releases the RCU lock.
495  */
496 #define xa_for_each_marked(xa, index, entry, filter) \
497 	for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
498 	     entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
499 
500 #define xa_trylock(xa)		spin_trylock(&(xa)->xa_lock)
501 #define xa_lock(xa)		spin_lock(&(xa)->xa_lock)
502 #define xa_unlock(xa)		spin_unlock(&(xa)->xa_lock)
503 #define xa_lock_bh(xa)		spin_lock_bh(&(xa)->xa_lock)
504 #define xa_unlock_bh(xa)	spin_unlock_bh(&(xa)->xa_lock)
505 #define xa_lock_irq(xa)		spin_lock_irq(&(xa)->xa_lock)
506 #define xa_unlock_irq(xa)	spin_unlock_irq(&(xa)->xa_lock)
507 #define xa_lock_irqsave(xa, flags) \
508 				spin_lock_irqsave(&(xa)->xa_lock, flags)
509 #define xa_unlock_irqrestore(xa, flags) \
510 				spin_unlock_irqrestore(&(xa)->xa_lock, flags)
511 
512 /*
513  * Versions of the normal API which require the caller to hold the
514  * xa_lock.  If the GFP flags allow it, they will drop the lock to
515  * allocate memory, then reacquire it afterwards.  These functions
516  * may also re-enable interrupts if the XArray flags indicate the
517  * locking should be interrupt safe.
518  */
519 void *__xa_erase(struct xarray *, unsigned long index);
520 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
521 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
522 		void *entry, gfp_t);
523 int __must_check __xa_insert(struct xarray *, unsigned long index,
524 		void *entry, gfp_t);
525 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
526 		struct xa_limit, gfp_t);
527 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
528 		struct xa_limit, u32 *next, gfp_t);
529 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
530 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
531 
532 /**
533  * xa_store_bh() - Store this entry in the XArray.
534  * @xa: XArray.
535  * @index: Index into array.
536  * @entry: New entry.
537  * @gfp: Memory allocation flags.
538  *
539  * This function is like calling xa_store() except it disables softirqs
540  * while holding the array lock.
541  *
542  * Context: Any context.  Takes and releases the xa_lock while
543  * disabling softirqs.
544  * Return: The entry which used to be at this index.
545  */
xa_store_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)546 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
547 		void *entry, gfp_t gfp)
548 {
549 	void *curr;
550 
551 	xa_lock_bh(xa);
552 	curr = __xa_store(xa, index, entry, gfp);
553 	xa_unlock_bh(xa);
554 
555 	return curr;
556 }
557 
558 /**
559  * xa_store_irq() - Store this entry in the XArray.
560  * @xa: XArray.
561  * @index: Index into array.
562  * @entry: New entry.
563  * @gfp: Memory allocation flags.
564  *
565  * This function is like calling xa_store() except it disables interrupts
566  * while holding the array lock.
567  *
568  * Context: Process context.  Takes and releases the xa_lock while
569  * disabling interrupts.
570  * Return: The entry which used to be at this index.
571  */
xa_store_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)572 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
573 		void *entry, gfp_t gfp)
574 {
575 	void *curr;
576 
577 	xa_lock_irq(xa);
578 	curr = __xa_store(xa, index, entry, gfp);
579 	xa_unlock_irq(xa);
580 
581 	return curr;
582 }
583 
584 /**
585  * xa_erase_bh() - Erase this entry from the XArray.
586  * @xa: XArray.
587  * @index: Index of entry.
588  *
589  * After this function returns, loading from @index will return %NULL.
590  * If the index is part of a multi-index entry, all indices will be erased
591  * and none of the entries will be part of a multi-index entry.
592  *
593  * Context: Any context.  Takes and releases the xa_lock while
594  * disabling softirqs.
595  * Return: The entry which used to be at this index.
596  */
xa_erase_bh(struct xarray * xa,unsigned long index)597 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
598 {
599 	void *entry;
600 
601 	xa_lock_bh(xa);
602 	entry = __xa_erase(xa, index);
603 	xa_unlock_bh(xa);
604 
605 	return entry;
606 }
607 
608 /**
609  * xa_erase_irq() - Erase this entry from the XArray.
610  * @xa: XArray.
611  * @index: Index of entry.
612  *
613  * After this function returns, loading from @index will return %NULL.
614  * If the index is part of a multi-index entry, all indices will be erased
615  * and none of the entries will be part of a multi-index entry.
616  *
617  * Context: Process context.  Takes and releases the xa_lock while
618  * disabling interrupts.
619  * Return: The entry which used to be at this index.
620  */
xa_erase_irq(struct xarray * xa,unsigned long index)621 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
622 {
623 	void *entry;
624 
625 	xa_lock_irq(xa);
626 	entry = __xa_erase(xa, index);
627 	xa_unlock_irq(xa);
628 
629 	return entry;
630 }
631 
632 /**
633  * xa_cmpxchg() - Conditionally replace an entry in the XArray.
634  * @xa: XArray.
635  * @index: Index into array.
636  * @old: Old value to test against.
637  * @entry: New value to place in array.
638  * @gfp: Memory allocation flags.
639  *
640  * If the entry at @index is the same as @old, replace it with @entry.
641  * If the return value is equal to @old, then the exchange was successful.
642  *
643  * Context: Any context.  Takes and releases the xa_lock.  May sleep
644  * if the @gfp flags permit.
645  * Return: The old value at this index or xa_err() if an error happened.
646  */
xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)647 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
648 			void *old, void *entry, gfp_t gfp)
649 {
650 	void *curr;
651 
652 	xa_lock(xa);
653 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
654 	xa_unlock(xa);
655 
656 	return curr;
657 }
658 
659 /**
660  * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
661  * @xa: XArray.
662  * @index: Index into array.
663  * @old: Old value to test against.
664  * @entry: New value to place in array.
665  * @gfp: Memory allocation flags.
666  *
667  * This function is like calling xa_cmpxchg() except it disables softirqs
668  * while holding the array lock.
669  *
670  * Context: Any context.  Takes and releases the xa_lock while
671  * disabling softirqs.  May sleep if the @gfp flags permit.
672  * Return: The old value at this index or xa_err() if an error happened.
673  */
xa_cmpxchg_bh(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)674 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
675 			void *old, void *entry, gfp_t gfp)
676 {
677 	void *curr;
678 
679 	xa_lock_bh(xa);
680 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
681 	xa_unlock_bh(xa);
682 
683 	return curr;
684 }
685 
686 /**
687  * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
688  * @xa: XArray.
689  * @index: Index into array.
690  * @old: Old value to test against.
691  * @entry: New value to place in array.
692  * @gfp: Memory allocation flags.
693  *
694  * This function is like calling xa_cmpxchg() except it disables interrupts
695  * while holding the array lock.
696  *
697  * Context: Process context.  Takes and releases the xa_lock while
698  * disabling interrupts.  May sleep if the @gfp flags permit.
699  * Return: The old value at this index or xa_err() if an error happened.
700  */
xa_cmpxchg_irq(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)701 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
702 			void *old, void *entry, gfp_t gfp)
703 {
704 	void *curr;
705 
706 	xa_lock_irq(xa);
707 	curr = __xa_cmpxchg(xa, index, old, entry, gfp);
708 	xa_unlock_irq(xa);
709 
710 	return curr;
711 }
712 
713 /**
714  * xa_insert() - Store this entry in the XArray unless another entry is
715  *			already present.
716  * @xa: XArray.
717  * @index: Index into array.
718  * @entry: New entry.
719  * @gfp: Memory allocation flags.
720  *
721  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
722  * if no entry is present.  Inserting will fail if a reserved entry is
723  * present, even though loading from this index will return NULL.
724  *
725  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
726  * the @gfp flags permit.
727  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
728  * -ENOMEM if memory could not be allocated.
729  */
xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)730 static inline int __must_check xa_insert(struct xarray *xa,
731 		unsigned long index, void *entry, gfp_t gfp)
732 {
733 	int err;
734 
735 	xa_lock(xa);
736 	err = __xa_insert(xa, index, entry, gfp);
737 	xa_unlock(xa);
738 
739 	return err;
740 }
741 
742 /**
743  * xa_insert_bh() - Store this entry in the XArray unless another entry is
744  *			already present.
745  * @xa: XArray.
746  * @index: Index into array.
747  * @entry: New entry.
748  * @gfp: Memory allocation flags.
749  *
750  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
751  * if no entry is present.  Inserting will fail if a reserved entry is
752  * present, even though loading from this index will return NULL.
753  *
754  * Context: Any context.  Takes and releases the xa_lock while
755  * disabling softirqs.  May sleep if the @gfp flags permit.
756  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
757  * -ENOMEM if memory could not be allocated.
758  */
xa_insert_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)759 static inline int __must_check xa_insert_bh(struct xarray *xa,
760 		unsigned long index, void *entry, gfp_t gfp)
761 {
762 	int err;
763 
764 	xa_lock_bh(xa);
765 	err = __xa_insert(xa, index, entry, gfp);
766 	xa_unlock_bh(xa);
767 
768 	return err;
769 }
770 
771 /**
772  * xa_insert_irq() - Store this entry in the XArray unless another entry is
773  *			already present.
774  * @xa: XArray.
775  * @index: Index into array.
776  * @entry: New entry.
777  * @gfp: Memory allocation flags.
778  *
779  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
780  * if no entry is present.  Inserting will fail if a reserved entry is
781  * present, even though loading from this index will return NULL.
782  *
783  * Context: Process context.  Takes and releases the xa_lock while
784  * disabling interrupts.  May sleep if the @gfp flags permit.
785  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
786  * -ENOMEM if memory could not be allocated.
787  */
xa_insert_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)788 static inline int __must_check xa_insert_irq(struct xarray *xa,
789 		unsigned long index, void *entry, gfp_t gfp)
790 {
791 	int err;
792 
793 	xa_lock_irq(xa);
794 	err = __xa_insert(xa, index, entry, gfp);
795 	xa_unlock_irq(xa);
796 
797 	return err;
798 }
799 
800 /**
801  * xa_alloc() - Find somewhere to store this entry in the XArray.
802  * @xa: XArray.
803  * @id: Pointer to ID.
804  * @entry: New entry.
805  * @limit: Range of ID to allocate.
806  * @gfp: Memory allocation flags.
807  *
808  * Finds an empty entry in @xa between @limit.min and @limit.max,
809  * stores the index into the @id pointer, then stores the entry at
810  * that index.  A concurrent lookup will not see an uninitialised @id.
811  *
812  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
813  * the @gfp flags permit.
814  * Return: 0 on success, -ENOMEM if memory could not be allocated or
815  * -EBUSY if there are no free entries in @limit.
816  */
xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)817 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
818 		void *entry, struct xa_limit limit, gfp_t gfp)
819 {
820 	int err;
821 
822 	xa_lock(xa);
823 	err = __xa_alloc(xa, id, entry, limit, gfp);
824 	xa_unlock(xa);
825 
826 	return err;
827 }
828 
829 /**
830  * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
831  * @xa: XArray.
832  * @id: Pointer to ID.
833  * @entry: New entry.
834  * @limit: Range of ID to allocate.
835  * @gfp: Memory allocation flags.
836  *
837  * Finds an empty entry in @xa between @limit.min and @limit.max,
838  * stores the index into the @id pointer, then stores the entry at
839  * that index.  A concurrent lookup will not see an uninitialised @id.
840  *
841  * Context: Any context.  Takes and releases the xa_lock while
842  * disabling softirqs.  May sleep if the @gfp flags permit.
843  * Return: 0 on success, -ENOMEM if memory could not be allocated or
844  * -EBUSY if there are no free entries in @limit.
845  */
xa_alloc_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)846 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
847 		void *entry, struct xa_limit limit, gfp_t gfp)
848 {
849 	int err;
850 
851 	xa_lock_bh(xa);
852 	err = __xa_alloc(xa, id, entry, limit, gfp);
853 	xa_unlock_bh(xa);
854 
855 	return err;
856 }
857 
858 /**
859  * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
860  * @xa: XArray.
861  * @id: Pointer to ID.
862  * @entry: New entry.
863  * @limit: Range of ID to allocate.
864  * @gfp: Memory allocation flags.
865  *
866  * Finds an empty entry in @xa between @limit.min and @limit.max,
867  * stores the index into the @id pointer, then stores the entry at
868  * that index.  A concurrent lookup will not see an uninitialised @id.
869  *
870  * Context: Process context.  Takes and releases the xa_lock while
871  * disabling interrupts.  May sleep if the @gfp flags permit.
872  * Return: 0 on success, -ENOMEM if memory could not be allocated or
873  * -EBUSY if there are no free entries in @limit.
874  */
xa_alloc_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)875 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
876 		void *entry, struct xa_limit limit, gfp_t gfp)
877 {
878 	int err;
879 
880 	xa_lock_irq(xa);
881 	err = __xa_alloc(xa, id, entry, limit, gfp);
882 	xa_unlock_irq(xa);
883 
884 	return err;
885 }
886 
887 /**
888  * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
889  * @xa: XArray.
890  * @id: Pointer to ID.
891  * @entry: New entry.
892  * @limit: Range of allocated ID.
893  * @next: Pointer to next ID to allocate.
894  * @gfp: Memory allocation flags.
895  *
896  * Finds an empty entry in @xa between @limit.min and @limit.max,
897  * stores the index into the @id pointer, then stores the entry at
898  * that index.  A concurrent lookup will not see an uninitialised @id.
899  * The search for an empty entry will start at @next and will wrap
900  * around if necessary.
901  *
902  * Context: Any context.  Takes and releases the xa_lock.  May sleep if
903  * the @gfp flags permit.
904  * Return: 0 if the allocation succeeded without wrapping.  1 if the
905  * allocation succeeded after wrapping, -ENOMEM if memory could not be
906  * allocated or -EBUSY if there are no free entries in @limit.
907  */
xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)908 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
909 		struct xa_limit limit, u32 *next, gfp_t gfp)
910 {
911 	int err;
912 
913 	xa_lock(xa);
914 	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
915 	xa_unlock(xa);
916 
917 	return err;
918 }
919 
920 /**
921  * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
922  * @xa: XArray.
923  * @id: Pointer to ID.
924  * @entry: New entry.
925  * @limit: Range of allocated ID.
926  * @next: Pointer to next ID to allocate.
927  * @gfp: Memory allocation flags.
928  *
929  * Finds an empty entry in @xa between @limit.min and @limit.max,
930  * stores the index into the @id pointer, then stores the entry at
931  * that index.  A concurrent lookup will not see an uninitialised @id.
932  * The search for an empty entry will start at @next and will wrap
933  * around if necessary.
934  *
935  * Context: Any context.  Takes and releases the xa_lock while
936  * disabling softirqs.  May sleep if the @gfp flags permit.
937  * Return: 0 if the allocation succeeded without wrapping.  1 if the
938  * allocation succeeded after wrapping, -ENOMEM if memory could not be
939  * allocated or -EBUSY if there are no free entries in @limit.
940  */
xa_alloc_cyclic_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)941 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
942 		struct xa_limit limit, u32 *next, gfp_t gfp)
943 {
944 	int err;
945 
946 	xa_lock_bh(xa);
947 	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
948 	xa_unlock_bh(xa);
949 
950 	return err;
951 }
952 
953 /**
954  * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
955  * @xa: XArray.
956  * @id: Pointer to ID.
957  * @entry: New entry.
958  * @limit: Range of allocated ID.
959  * @next: Pointer to next ID to allocate.
960  * @gfp: Memory allocation flags.
961  *
962  * Finds an empty entry in @xa between @limit.min and @limit.max,
963  * stores the index into the @id pointer, then stores the entry at
964  * that index.  A concurrent lookup will not see an uninitialised @id.
965  * The search for an empty entry will start at @next and will wrap
966  * around if necessary.
967  *
968  * Context: Process context.  Takes and releases the xa_lock while
969  * disabling interrupts.  May sleep if the @gfp flags permit.
970  * Return: 0 if the allocation succeeded without wrapping.  1 if the
971  * allocation succeeded after wrapping, -ENOMEM if memory could not be
972  * allocated or -EBUSY if there are no free entries in @limit.
973  */
xa_alloc_cyclic_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)974 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
975 		struct xa_limit limit, u32 *next, gfp_t gfp)
976 {
977 	int err;
978 
979 	xa_lock_irq(xa);
980 	err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
981 	xa_unlock_irq(xa);
982 
983 	return err;
984 }
985 
986 /**
987  * xa_reserve() - Reserve this index in the XArray.
988  * @xa: XArray.
989  * @index: Index into array.
990  * @gfp: Memory allocation flags.
991  *
992  * Ensures there is somewhere to store an entry at @index in the array.
993  * If there is already something stored at @index, this function does
994  * nothing.  If there was nothing there, the entry is marked as reserved.
995  * Loading from a reserved entry returns a %NULL pointer.
996  *
997  * If you do not use the entry that you have reserved, call xa_release()
998  * or xa_erase() to free any unnecessary memory.
999  *
1000  * Context: Any context.  Takes and releases the xa_lock.
1001  * May sleep if the @gfp flags permit.
1002  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1003  */
1004 static inline __must_check
xa_reserve(struct xarray * xa,unsigned long index,gfp_t gfp)1005 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1006 {
1007 	return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1008 }
1009 
1010 /**
1011  * xa_reserve_bh() - Reserve this index in the XArray.
1012  * @xa: XArray.
1013  * @index: Index into array.
1014  * @gfp: Memory allocation flags.
1015  *
1016  * A softirq-disabling version of xa_reserve().
1017  *
1018  * Context: Any context.  Takes and releases the xa_lock while
1019  * disabling softirqs.
1020  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1021  */
1022 static inline __must_check
xa_reserve_bh(struct xarray * xa,unsigned long index,gfp_t gfp)1023 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1024 {
1025 	return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1026 }
1027 
1028 /**
1029  * xa_reserve_irq() - Reserve this index in the XArray.
1030  * @xa: XArray.
1031  * @index: Index into array.
1032  * @gfp: Memory allocation flags.
1033  *
1034  * An interrupt-disabling version of xa_reserve().
1035  *
1036  * Context: Process context.  Takes and releases the xa_lock while
1037  * disabling interrupts.
1038  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1039  */
1040 static inline __must_check
xa_reserve_irq(struct xarray * xa,unsigned long index,gfp_t gfp)1041 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1042 {
1043 	return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1044 }
1045 
1046 /**
1047  * xa_release() - Release a reserved entry.
1048  * @xa: XArray.
1049  * @index: Index of entry.
1050  *
1051  * After calling xa_reserve(), you can call this function to release the
1052  * reservation.  If the entry at @index has been stored to, this function
1053  * will do nothing.
1054  */
xa_release(struct xarray * xa,unsigned long index)1055 static inline void xa_release(struct xarray *xa, unsigned long index)
1056 {
1057 	xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1058 }
1059 
1060 /* Everything below here is the Advanced API.  Proceed with caution. */
1061 
1062 /*
1063  * The xarray is constructed out of a set of 'chunks' of pointers.  Choosing
1064  * the best chunk size requires some tradeoffs.  A power of two recommends
1065  * itself so that we can walk the tree based purely on shifts and masks.
1066  * Generally, the larger the better; as the number of slots per level of the
1067  * tree increases, the less tall the tree needs to be.  But that needs to be
1068  * balanced against the memory consumption of each node.  On a 64-bit system,
1069  * xa_node is currently 576 bytes, and we get 7 of them per 4kB page.  If we
1070  * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1071  */
1072 #ifndef XA_CHUNK_SHIFT
1073 #define XA_CHUNK_SHIFT		(CONFIG_BASE_SMALL ? 4 : 6)
1074 #endif
1075 #define XA_CHUNK_SIZE		(1UL << XA_CHUNK_SHIFT)
1076 #define XA_CHUNK_MASK		(XA_CHUNK_SIZE - 1)
1077 #define XA_MAX_MARKS		3
1078 #define XA_MARK_LONGS		DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1079 
1080 /*
1081  * @count is the count of every non-NULL element in the ->slots array
1082  * whether that is a value entry, a retry entry, a user pointer,
1083  * a sibling entry or a pointer to the next level of the tree.
1084  * @nr_values is the count of every element in ->slots which is
1085  * either a value entry or a sibling of a value entry.
1086  */
1087 struct xa_node {
1088 	unsigned char	shift;		/* Bits remaining in each slot */
1089 	unsigned char	offset;		/* Slot offset in parent */
1090 	unsigned char	count;		/* Total entry count */
1091 	unsigned char	nr_values;	/* Value entry count */
1092 	struct xa_node __rcu *parent;	/* NULL at top of tree */
1093 	struct xarray	*array;		/* The array we belong to */
1094 	union {
1095 		struct list_head private_list;	/* For tree user */
1096 		struct rcu_head	rcu_head;	/* Used when freeing node */
1097 	};
1098 	void __rcu	*slots[XA_CHUNK_SIZE];
1099 	union {
1100 		unsigned long	tags[XA_MAX_MARKS][XA_MARK_LONGS];
1101 		unsigned long	marks[XA_MAX_MARKS][XA_MARK_LONGS];
1102 	};
1103 };
1104 
1105 void xa_dump(const struct xarray *);
1106 void xa_dump_node(const struct xa_node *);
1107 
1108 #ifdef XA_DEBUG
1109 #define XA_BUG_ON(xa, x) do {					\
1110 		if (x) {					\
1111 			xa_dump(xa);				\
1112 			BUG();					\
1113 		}						\
1114 	} while (0)
1115 #define XA_NODE_BUG_ON(node, x) do {				\
1116 		if (x) {					\
1117 			if (node) xa_dump_node(node);		\
1118 			BUG();					\
1119 		}						\
1120 	} while (0)
1121 #else
1122 #define XA_BUG_ON(xa, x)	do { } while (0)
1123 #define XA_NODE_BUG_ON(node, x)	do { } while (0)
1124 #endif
1125 
1126 /* Private */
xa_head(const struct xarray * xa)1127 static inline void *xa_head(const struct xarray *xa)
1128 {
1129 	return rcu_dereference_check(xa->xa_head,
1130 						lockdep_is_held(&xa->xa_lock));
1131 }
1132 
1133 /* Private */
xa_head_locked(const struct xarray * xa)1134 static inline void *xa_head_locked(const struct xarray *xa)
1135 {
1136 	return rcu_dereference_protected(xa->xa_head,
1137 						lockdep_is_held(&xa->xa_lock));
1138 }
1139 
1140 /* Private */
xa_entry(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1141 static inline void *xa_entry(const struct xarray *xa,
1142 				const struct xa_node *node, unsigned int offset)
1143 {
1144 	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1145 	return rcu_dereference_check(node->slots[offset],
1146 						lockdep_is_held(&xa->xa_lock));
1147 }
1148 
1149 /* Private */
xa_entry_locked(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1150 static inline void *xa_entry_locked(const struct xarray *xa,
1151 				const struct xa_node *node, unsigned int offset)
1152 {
1153 	XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1154 	return rcu_dereference_protected(node->slots[offset],
1155 						lockdep_is_held(&xa->xa_lock));
1156 }
1157 
1158 /* Private */
xa_parent(const struct xarray * xa,const struct xa_node * node)1159 static inline struct xa_node *xa_parent(const struct xarray *xa,
1160 					const struct xa_node *node)
1161 {
1162 	return rcu_dereference_check(node->parent,
1163 						lockdep_is_held(&xa->xa_lock));
1164 }
1165 
1166 /* Private */
xa_parent_locked(const struct xarray * xa,const struct xa_node * node)1167 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1168 					const struct xa_node *node)
1169 {
1170 	return rcu_dereference_protected(node->parent,
1171 						lockdep_is_held(&xa->xa_lock));
1172 }
1173 
1174 /* Private */
xa_mk_node(const struct xa_node * node)1175 static inline void *xa_mk_node(const struct xa_node *node)
1176 {
1177 	return (void *)((unsigned long)node | 2);
1178 }
1179 
1180 /* Private */
xa_to_node(const void * entry)1181 static inline struct xa_node *xa_to_node(const void *entry)
1182 {
1183 	return (struct xa_node *)((unsigned long)entry - 2);
1184 }
1185 
1186 /* Private */
xa_is_node(const void * entry)1187 static inline bool xa_is_node(const void *entry)
1188 {
1189 	return xa_is_internal(entry) && (unsigned long)entry > 4096;
1190 }
1191 
1192 /* Private */
xa_mk_sibling(unsigned int offset)1193 static inline void *xa_mk_sibling(unsigned int offset)
1194 {
1195 	return xa_mk_internal(offset);
1196 }
1197 
1198 /* Private */
xa_to_sibling(const void * entry)1199 static inline unsigned long xa_to_sibling(const void *entry)
1200 {
1201 	return xa_to_internal(entry);
1202 }
1203 
1204 /**
1205  * xa_is_sibling() - Is the entry a sibling entry?
1206  * @entry: Entry retrieved from the XArray
1207  *
1208  * Return: %true if the entry is a sibling entry.
1209  */
xa_is_sibling(const void * entry)1210 static inline bool xa_is_sibling(const void *entry)
1211 {
1212 	return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1213 		(entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1214 }
1215 
1216 #define XA_RETRY_ENTRY		xa_mk_internal(256)
1217 
1218 /**
1219  * xa_is_retry() - Is the entry a retry entry?
1220  * @entry: Entry retrieved from the XArray
1221  *
1222  * Return: %true if the entry is a retry entry.
1223  */
xa_is_retry(const void * entry)1224 static inline bool xa_is_retry(const void *entry)
1225 {
1226 	return unlikely(entry == XA_RETRY_ENTRY);
1227 }
1228 
1229 /**
1230  * xa_is_advanced() - Is the entry only permitted for the advanced API?
1231  * @entry: Entry to be stored in the XArray.
1232  *
1233  * Return: %true if the entry cannot be stored by the normal API.
1234  */
xa_is_advanced(const void * entry)1235 static inline bool xa_is_advanced(const void *entry)
1236 {
1237 	return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1238 }
1239 
1240 /**
1241  * typedef xa_update_node_t - A callback function from the XArray.
1242  * @node: The node which is being processed
1243  *
1244  * This function is called every time the XArray updates the count of
1245  * present and value entries in a node.  It allows advanced users to
1246  * maintain the private_list in the node.
1247  *
1248  * Context: The xa_lock is held and interrupts may be disabled.
1249  *	    Implementations should not drop the xa_lock, nor re-enable
1250  *	    interrupts.
1251  */
1252 typedef void (*xa_update_node_t)(struct xa_node *node);
1253 
1254 /*
1255  * The xa_state is opaque to its users.  It contains various different pieces
1256  * of state involved in the current operation on the XArray.  It should be
1257  * declared on the stack and passed between the various internal routines.
1258  * The various elements in it should not be accessed directly, but only
1259  * through the provided accessor functions.  The below documentation is for
1260  * the benefit of those working on the code, not for users of the XArray.
1261  *
1262  * @xa_node usually points to the xa_node containing the slot we're operating
1263  * on (and @xa_offset is the offset in the slots array).  If there is a
1264  * single entry in the array at index 0, there are no allocated xa_nodes to
1265  * point to, and so we store %NULL in @xa_node.  @xa_node is set to
1266  * the value %XAS_RESTART if the xa_state is not walked to the correct
1267  * position in the tree of nodes for this operation.  If an error occurs
1268  * during an operation, it is set to an %XAS_ERROR value.  If we run off the
1269  * end of the allocated nodes, it is set to %XAS_BOUNDS.
1270  */
1271 struct xa_state {
1272 	struct xarray *xa;
1273 	unsigned long xa_index;
1274 	unsigned char xa_shift;
1275 	unsigned char xa_sibs;
1276 	unsigned char xa_offset;
1277 	unsigned char xa_pad;		/* Helps gcc generate better code */
1278 	struct xa_node *xa_node;
1279 	struct xa_node *xa_alloc;
1280 	xa_update_node_t xa_update;
1281 };
1282 
1283 /*
1284  * We encode errnos in the xas->xa_node.  If an error has happened, we need to
1285  * drop the lock to fix it, and once we've done so the xa_state is invalid.
1286  */
1287 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1288 #define XAS_BOUNDS	((struct xa_node *)1UL)
1289 #define XAS_RESTART	((struct xa_node *)3UL)
1290 
1291 #define __XA_STATE(array, index, shift, sibs)  {	\
1292 	.xa = array,					\
1293 	.xa_index = index,				\
1294 	.xa_shift = shift,				\
1295 	.xa_sibs = sibs,				\
1296 	.xa_offset = 0,					\
1297 	.xa_pad = 0,					\
1298 	.xa_node = XAS_RESTART,				\
1299 	.xa_alloc = NULL,				\
1300 	.xa_update = NULL				\
1301 }
1302 
1303 /**
1304  * XA_STATE() - Declare an XArray operation state.
1305  * @name: Name of this operation state (usually xas).
1306  * @array: Array to operate on.
1307  * @index: Initial index of interest.
1308  *
1309  * Declare and initialise an xa_state on the stack.
1310  */
1311 #define XA_STATE(name, array, index)				\
1312 	struct xa_state name = __XA_STATE(array, index, 0, 0)
1313 
1314 /**
1315  * XA_STATE_ORDER() - Declare an XArray operation state.
1316  * @name: Name of this operation state (usually xas).
1317  * @array: Array to operate on.
1318  * @index: Initial index of interest.
1319  * @order: Order of entry.
1320  *
1321  * Declare and initialise an xa_state on the stack.  This variant of
1322  * XA_STATE() allows you to specify the 'order' of the element you
1323  * want to operate on.`
1324  */
1325 #define XA_STATE_ORDER(name, array, index, order)		\
1326 	struct xa_state name = __XA_STATE(array,		\
1327 			(index >> order) << order,		\
1328 			order - (order % XA_CHUNK_SHIFT),	\
1329 			(1U << (order % XA_CHUNK_SHIFT)) - 1)
1330 
1331 #define xas_marked(xas, mark)	xa_marked((xas)->xa, (mark))
1332 #define xas_trylock(xas)	xa_trylock((xas)->xa)
1333 #define xas_lock(xas)		xa_lock((xas)->xa)
1334 #define xas_unlock(xas)		xa_unlock((xas)->xa)
1335 #define xas_lock_bh(xas)	xa_lock_bh((xas)->xa)
1336 #define xas_unlock_bh(xas)	xa_unlock_bh((xas)->xa)
1337 #define xas_lock_irq(xas)	xa_lock_irq((xas)->xa)
1338 #define xas_unlock_irq(xas)	xa_unlock_irq((xas)->xa)
1339 #define xas_lock_irqsave(xas, flags) \
1340 				xa_lock_irqsave((xas)->xa, flags)
1341 #define xas_unlock_irqrestore(xas, flags) \
1342 				xa_unlock_irqrestore((xas)->xa, flags)
1343 
1344 /**
1345  * xas_error() - Return an errno stored in the xa_state.
1346  * @xas: XArray operation state.
1347  *
1348  * Return: 0 if no error has been noted.  A negative errno if one has.
1349  */
xas_error(const struct xa_state * xas)1350 static inline int xas_error(const struct xa_state *xas)
1351 {
1352 	return xa_err(xas->xa_node);
1353 }
1354 
1355 /**
1356  * xas_set_err() - Note an error in the xa_state.
1357  * @xas: XArray operation state.
1358  * @err: Negative error number.
1359  *
1360  * Only call this function with a negative @err; zero or positive errors
1361  * will probably not behave the way you think they should.  If you want
1362  * to clear the error from an xa_state, use xas_reset().
1363  */
xas_set_err(struct xa_state * xas,long err)1364 static inline void xas_set_err(struct xa_state *xas, long err)
1365 {
1366 	xas->xa_node = XA_ERROR(err);
1367 }
1368 
1369 /**
1370  * xas_invalid() - Is the xas in a retry or error state?
1371  * @xas: XArray operation state.
1372  *
1373  * Return: %true if the xas cannot be used for operations.
1374  */
xas_invalid(const struct xa_state * xas)1375 static inline bool xas_invalid(const struct xa_state *xas)
1376 {
1377 	return (unsigned long)xas->xa_node & 3;
1378 }
1379 
1380 /**
1381  * xas_valid() - Is the xas a valid cursor into the array?
1382  * @xas: XArray operation state.
1383  *
1384  * Return: %true if the xas can be used for operations.
1385  */
xas_valid(const struct xa_state * xas)1386 static inline bool xas_valid(const struct xa_state *xas)
1387 {
1388 	return !xas_invalid(xas);
1389 }
1390 
1391 /**
1392  * xas_is_node() - Does the xas point to a node?
1393  * @xas: XArray operation state.
1394  *
1395  * Return: %true if the xas currently references a node.
1396  */
xas_is_node(const struct xa_state * xas)1397 static inline bool xas_is_node(const struct xa_state *xas)
1398 {
1399 	return xas_valid(xas) && xas->xa_node;
1400 }
1401 
1402 /* True if the pointer is something other than a node */
xas_not_node(struct xa_node * node)1403 static inline bool xas_not_node(struct xa_node *node)
1404 {
1405 	return ((unsigned long)node & 3) || !node;
1406 }
1407 
1408 /* True if the node represents RESTART or an error */
xas_frozen(struct xa_node * node)1409 static inline bool xas_frozen(struct xa_node *node)
1410 {
1411 	return (unsigned long)node & 2;
1412 }
1413 
1414 /* True if the node represents head-of-tree, RESTART or BOUNDS */
xas_top(struct xa_node * node)1415 static inline bool xas_top(struct xa_node *node)
1416 {
1417 	return node <= XAS_RESTART;
1418 }
1419 
1420 /**
1421  * xas_reset() - Reset an XArray operation state.
1422  * @xas: XArray operation state.
1423  *
1424  * Resets the error or walk state of the @xas so future walks of the
1425  * array will start from the root.  Use this if you have dropped the
1426  * xarray lock and want to reuse the xa_state.
1427  *
1428  * Context: Any context.
1429  */
xas_reset(struct xa_state * xas)1430 static inline void xas_reset(struct xa_state *xas)
1431 {
1432 	xas->xa_node = XAS_RESTART;
1433 }
1434 
1435 /**
1436  * xas_retry() - Retry the operation if appropriate.
1437  * @xas: XArray operation state.
1438  * @entry: Entry from xarray.
1439  *
1440  * The advanced functions may sometimes return an internal entry, such as
1441  * a retry entry or a zero entry.  This function sets up the @xas to restart
1442  * the walk from the head of the array if needed.
1443  *
1444  * Context: Any context.
1445  * Return: true if the operation needs to be retried.
1446  */
xas_retry(struct xa_state * xas,const void * entry)1447 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1448 {
1449 	if (xa_is_zero(entry))
1450 		return true;
1451 	if (!xa_is_retry(entry))
1452 		return false;
1453 	xas_reset(xas);
1454 	return true;
1455 }
1456 
1457 void *xas_load(struct xa_state *);
1458 void *xas_store(struct xa_state *, void *entry);
1459 void *xas_find(struct xa_state *, unsigned long max);
1460 void *xas_find_conflict(struct xa_state *);
1461 
1462 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1463 void xas_set_mark(const struct xa_state *, xa_mark_t);
1464 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1465 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1466 void xas_init_marks(const struct xa_state *);
1467 
1468 bool xas_nomem(struct xa_state *, gfp_t);
1469 void xas_pause(struct xa_state *);
1470 
1471 void xas_create_range(struct xa_state *);
1472 
1473 /**
1474  * xas_reload() - Refetch an entry from the xarray.
1475  * @xas: XArray operation state.
1476  *
1477  * Use this function to check that a previously loaded entry still has
1478  * the same value.  This is useful for the lockless pagecache lookup where
1479  * we walk the array with only the RCU lock to protect us, lock the page,
1480  * then check that the page hasn't moved since we looked it up.
1481  *
1482  * The caller guarantees that @xas is still valid.  If it may be in an
1483  * error or restart state, call xas_load() instead.
1484  *
1485  * Return: The entry at this location in the xarray.
1486  */
xas_reload(struct xa_state * xas)1487 static inline void *xas_reload(struct xa_state *xas)
1488 {
1489 	struct xa_node *node = xas->xa_node;
1490 
1491 	if (node)
1492 		return xa_entry(xas->xa, node, xas->xa_offset);
1493 	return xa_head(xas->xa);
1494 }
1495 
1496 /**
1497  * xas_set() - Set up XArray operation state for a different index.
1498  * @xas: XArray operation state.
1499  * @index: New index into the XArray.
1500  *
1501  * Move the operation state to refer to a different index.  This will
1502  * have the effect of starting a walk from the top; see xas_next()
1503  * to move to an adjacent index.
1504  */
xas_set(struct xa_state * xas,unsigned long index)1505 static inline void xas_set(struct xa_state *xas, unsigned long index)
1506 {
1507 	xas->xa_index = index;
1508 	xas->xa_node = XAS_RESTART;
1509 }
1510 
1511 /**
1512  * xas_set_order() - Set up XArray operation state for a multislot entry.
1513  * @xas: XArray operation state.
1514  * @index: Target of the operation.
1515  * @order: Entry occupies 2^@order indices.
1516  */
xas_set_order(struct xa_state * xas,unsigned long index,unsigned int order)1517 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1518 					unsigned int order)
1519 {
1520 #ifdef CONFIG_XARRAY_MULTI
1521 	xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1522 	xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1523 	xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1524 	xas->xa_node = XAS_RESTART;
1525 #else
1526 	BUG_ON(order > 0);
1527 	xas_set(xas, index);
1528 #endif
1529 }
1530 
1531 /**
1532  * xas_set_update() - Set up XArray operation state for a callback.
1533  * @xas: XArray operation state.
1534  * @update: Function to call when updating a node.
1535  *
1536  * The XArray can notify a caller after it has updated an xa_node.
1537  * This is advanced functionality and is only needed by the page cache.
1538  */
xas_set_update(struct xa_state * xas,xa_update_node_t update)1539 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1540 {
1541 	xas->xa_update = update;
1542 }
1543 
1544 /**
1545  * xas_next_entry() - Advance iterator to next present entry.
1546  * @xas: XArray operation state.
1547  * @max: Highest index to return.
1548  *
1549  * xas_next_entry() is an inline function to optimise xarray traversal for
1550  * speed.  It is equivalent to calling xas_find(), and will call xas_find()
1551  * for all the hard cases.
1552  *
1553  * Return: The next present entry after the one currently referred to by @xas.
1554  */
xas_next_entry(struct xa_state * xas,unsigned long max)1555 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1556 {
1557 	struct xa_node *node = xas->xa_node;
1558 	void *entry;
1559 
1560 	if (unlikely(xas_not_node(node) || node->shift ||
1561 			xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1562 		return xas_find(xas, max);
1563 
1564 	do {
1565 		if (unlikely(xas->xa_index >= max))
1566 			return xas_find(xas, max);
1567 		if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1568 			return xas_find(xas, max);
1569 		entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1570 		if (unlikely(xa_is_internal(entry)))
1571 			return xas_find(xas, max);
1572 		xas->xa_offset++;
1573 		xas->xa_index++;
1574 	} while (!entry);
1575 
1576 	return entry;
1577 }
1578 
1579 /* Private */
xas_find_chunk(struct xa_state * xas,bool advance,xa_mark_t mark)1580 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1581 		xa_mark_t mark)
1582 {
1583 	unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1584 	unsigned int offset = xas->xa_offset;
1585 
1586 	if (advance)
1587 		offset++;
1588 	if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1589 		if (offset < XA_CHUNK_SIZE) {
1590 			unsigned long data = *addr & (~0UL << offset);
1591 			if (data)
1592 				return __ffs(data);
1593 		}
1594 		return XA_CHUNK_SIZE;
1595 	}
1596 
1597 	return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1598 }
1599 
1600 /**
1601  * xas_next_marked() - Advance iterator to next marked entry.
1602  * @xas: XArray operation state.
1603  * @max: Highest index to return.
1604  * @mark: Mark to search for.
1605  *
1606  * xas_next_marked() is an inline function to optimise xarray traversal for
1607  * speed.  It is equivalent to calling xas_find_marked(), and will call
1608  * xas_find_marked() for all the hard cases.
1609  *
1610  * Return: The next marked entry after the one currently referred to by @xas.
1611  */
xas_next_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1612 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1613 								xa_mark_t mark)
1614 {
1615 	struct xa_node *node = xas->xa_node;
1616 	unsigned int offset;
1617 
1618 	if (unlikely(xas_not_node(node) || node->shift))
1619 		return xas_find_marked(xas, max, mark);
1620 	offset = xas_find_chunk(xas, true, mark);
1621 	xas->xa_offset = offset;
1622 	xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1623 	if (xas->xa_index > max)
1624 		return NULL;
1625 	if (offset == XA_CHUNK_SIZE)
1626 		return xas_find_marked(xas, max, mark);
1627 	return xa_entry(xas->xa, node, offset);
1628 }
1629 
1630 /*
1631  * If iterating while holding a lock, drop the lock and reschedule
1632  * every %XA_CHECK_SCHED loops.
1633  */
1634 enum {
1635 	XA_CHECK_SCHED = 4096,
1636 };
1637 
1638 /**
1639  * xas_for_each() - Iterate over a range of an XArray.
1640  * @xas: XArray operation state.
1641  * @entry: Entry retrieved from the array.
1642  * @max: Maximum index to retrieve from array.
1643  *
1644  * The loop body will be executed for each entry present in the xarray
1645  * between the current xas position and @max.  @entry will be set to
1646  * the entry retrieved from the xarray.  It is safe to delete entries
1647  * from the array in the loop body.  You should hold either the RCU lock
1648  * or the xa_lock while iterating.  If you need to drop the lock, call
1649  * xas_pause() first.
1650  */
1651 #define xas_for_each(xas, entry, max) \
1652 	for (entry = xas_find(xas, max); entry; \
1653 	     entry = xas_next_entry(xas, max))
1654 
1655 /**
1656  * xas_for_each_marked() - Iterate over a range of an XArray.
1657  * @xas: XArray operation state.
1658  * @entry: Entry retrieved from the array.
1659  * @max: Maximum index to retrieve from array.
1660  * @mark: Mark to search for.
1661  *
1662  * The loop body will be executed for each marked entry in the xarray
1663  * between the current xas position and @max.  @entry will be set to
1664  * the entry retrieved from the xarray.  It is safe to delete entries
1665  * from the array in the loop body.  You should hold either the RCU lock
1666  * or the xa_lock while iterating.  If you need to drop the lock, call
1667  * xas_pause() first.
1668  */
1669 #define xas_for_each_marked(xas, entry, max, mark) \
1670 	for (entry = xas_find_marked(xas, max, mark); entry; \
1671 	     entry = xas_next_marked(xas, max, mark))
1672 
1673 /**
1674  * xas_for_each_conflict() - Iterate over a range of an XArray.
1675  * @xas: XArray operation state.
1676  * @entry: Entry retrieved from the array.
1677  *
1678  * The loop body will be executed for each entry in the XArray that lies
1679  * within the range specified by @xas.  If the loop completes successfully,
1680  * any entries that lie in this range will be replaced by @entry.  The caller
1681  * may break out of the loop; if they do so, the contents of the XArray will
1682  * be unchanged.  The operation may fail due to an out of memory condition.
1683  * The caller may also call xa_set_err() to exit the loop while setting an
1684  * error to record the reason.
1685  */
1686 #define xas_for_each_conflict(xas, entry) \
1687 	while ((entry = xas_find_conflict(xas)))
1688 
1689 void *__xas_next(struct xa_state *);
1690 void *__xas_prev(struct xa_state *);
1691 
1692 /**
1693  * xas_prev() - Move iterator to previous index.
1694  * @xas: XArray operation state.
1695  *
1696  * If the @xas was in an error state, it will remain in an error state
1697  * and this function will return %NULL.  If the @xas has never been walked,
1698  * it will have the effect of calling xas_load().  Otherwise one will be
1699  * subtracted from the index and the state will be walked to the correct
1700  * location in the array for the next operation.
1701  *
1702  * If the iterator was referencing index 0, this function wraps
1703  * around to %ULONG_MAX.
1704  *
1705  * Return: The entry at the new index.  This may be %NULL or an internal
1706  * entry.
1707  */
xas_prev(struct xa_state * xas)1708 static inline void *xas_prev(struct xa_state *xas)
1709 {
1710 	struct xa_node *node = xas->xa_node;
1711 
1712 	if (unlikely(xas_not_node(node) || node->shift ||
1713 				xas->xa_offset == 0))
1714 		return __xas_prev(xas);
1715 
1716 	xas->xa_index--;
1717 	xas->xa_offset--;
1718 	return xa_entry(xas->xa, node, xas->xa_offset);
1719 }
1720 
1721 /**
1722  * xas_next() - Move state to next index.
1723  * @xas: XArray operation state.
1724  *
1725  * If the @xas was in an error state, it will remain in an error state
1726  * and this function will return %NULL.  If the @xas has never been walked,
1727  * it will have the effect of calling xas_load().  Otherwise one will be
1728  * added to the index and the state will be walked to the correct
1729  * location in the array for the next operation.
1730  *
1731  * If the iterator was referencing index %ULONG_MAX, this function wraps
1732  * around to 0.
1733  *
1734  * Return: The entry at the new index.  This may be %NULL or an internal
1735  * entry.
1736  */
xas_next(struct xa_state * xas)1737 static inline void *xas_next(struct xa_state *xas)
1738 {
1739 	struct xa_node *node = xas->xa_node;
1740 
1741 	if (unlikely(xas_not_node(node) || node->shift ||
1742 				xas->xa_offset == XA_CHUNK_MASK))
1743 		return __xas_next(xas);
1744 
1745 	xas->xa_index++;
1746 	xas->xa_offset++;
1747 	return xa_entry(xas->xa, node, xas->xa_offset);
1748 }
1749 
1750 #endif /* _LINUX_XARRAY_H */
1751