1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * OpenRISC Linux
4 *
5 * Linux architectural port borrowing liberally from similar works of
6 * others. All original copyrights apply as per the original source
7 * declaration.
8 *
9 * OpenRISC implementation:
10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * et al.
13 */
14
15 /* or32 pgtable.h - macros and functions to manipulate page tables
16 *
17 * Based on:
18 * include/asm-cris/pgtable.h
19 */
20
21 #ifndef __ASM_OPENRISC_PGTABLE_H
22 #define __ASM_OPENRISC_PGTABLE_H
23
24 #define __ARCH_USE_5LEVEL_HACK
25 #include <asm-generic/pgtable-nopmd.h>
26
27 #ifndef __ASSEMBLY__
28 #include <asm/mmu.h>
29 #include <asm/fixmap.h>
30
31 /*
32 * The Linux memory management assumes a three-level page table setup. On
33 * or32, we use that, but "fold" the mid level into the top-level page
34 * table. Since the MMU TLB is software loaded through an interrupt, it
35 * supports any page table structure, so we could have used a three-level
36 * setup, but for the amounts of memory we normally use, a two-level is
37 * probably more efficient.
38 *
39 * This file contains the functions and defines necessary to modify and use
40 * the or32 page table tree.
41 */
42
43 extern void paging_init(void);
44
45 /* Certain architectures need to do special things when pte's
46 * within a page table are directly modified. Thus, the following
47 * hook is made available.
48 */
49 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
50 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
51 /*
52 * (pmds are folded into pgds so this doesn't get actually called,
53 * but the define is needed for a generic inline function.)
54 */
55 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
56
57 #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
58 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
59 #define PGDIR_MASK (~(PGDIR_SIZE-1))
60
61 /*
62 * entries per page directory level: we use a two-level, so
63 * we don't really have any PMD directory physically.
64 * pointers are 4 bytes so we can use the page size and
65 * divide it by 4 (shift by 2).
66 */
67 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
68
69 #define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
70
71 /* calculate how many PGD entries a user-level program can use
72 * the first mappable virtual address is 0
73 * (TASK_SIZE is the maximum virtual address space)
74 */
75
76 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
77 #define FIRST_USER_ADDRESS 0UL
78
79 /*
80 * Kernels own virtual memory area.
81 */
82
83 /*
84 * The size and location of the vmalloc area are chosen so that modules
85 * placed in this area aren't more than a 28-bit signed offset from any
86 * kernel functions that they may need. This greatly simplifies handling
87 * of the relocations for l.j and l.jal instructions as we don't need to
88 * introduce any trampolines for reaching "distant" code.
89 *
90 * 64 MB of vmalloc area is comparable to what's available on other arches.
91 */
92
93 #define VMALLOC_START (PAGE_OFFSET-0x04000000UL)
94 #define VMALLOC_END (PAGE_OFFSET)
95 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
96
97 /* Define some higher level generic page attributes.
98 *
99 * If you change _PAGE_CI definition be sure to change it in
100 * io.h for ioremap() too.
101 */
102
103 /*
104 * An OR32 PTE looks like this:
105 *
106 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
107 * Phys pg.num L PP Index D A WOM WBC CI CC
108 *
109 * L : link
110 * PPI: Page protection index
111 * D : Dirty
112 * A : Accessed
113 * WOM: Weakly ordered memory
114 * WBC: Write-back cache
115 * CI : Cache inhibit
116 * CC : Cache coherent
117 *
118 * The protection bits below should correspond to the layout of the actual
119 * PTE as per above
120 */
121
122 #define _PAGE_CC 0x001 /* software: pte contains a translation */
123 #define _PAGE_CI 0x002 /* cache inhibit */
124 #define _PAGE_WBC 0x004 /* write back cache */
125 #define _PAGE_WOM 0x008 /* weakly ordered memory */
126
127 #define _PAGE_A 0x010 /* accessed */
128 #define _PAGE_D 0x020 /* dirty */
129 #define _PAGE_URE 0x040 /* user read enable */
130 #define _PAGE_UWE 0x080 /* user write enable */
131
132 #define _PAGE_SRE 0x100 /* superuser read enable */
133 #define _PAGE_SWE 0x200 /* superuser write enable */
134 #define _PAGE_EXEC 0x400 /* software: page is executable */
135 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
136
137 /* 0x001 is cache coherency bit, which should always be set to
138 * 1 - for SMP (when we support it)
139 * 0 - otherwise
140 *
141 * we just reuse this bit in software for _PAGE_PRESENT and
142 * force it to 0 when loading it into TLB.
143 */
144 #define _PAGE_PRESENT _PAGE_CC
145 #define _PAGE_USER _PAGE_URE
146 #define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
147 #define _PAGE_DIRTY _PAGE_D
148 #define _PAGE_ACCESSED _PAGE_A
149 #define _PAGE_NO_CACHE _PAGE_CI
150 #define _PAGE_SHARED _PAGE_U_SHARED
151 #define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
152
153 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
154 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
155 #define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
156 #define _KERNPG_TABLE \
157 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
158
159 #define PAGE_NONE __pgprot(_PAGE_ALL)
160 #define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
161 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
162 #define PAGE_SHARED \
163 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
164 | _PAGE_SHARED)
165 #define PAGE_SHARED_X \
166 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
167 | _PAGE_SHARED | _PAGE_EXEC)
168 #define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
169 #define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
170
171 #define PAGE_KERNEL \
172 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
173 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
174 #define PAGE_KERNEL_RO \
175 __pgprot(_PAGE_ALL | _PAGE_SRE \
176 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
177 #define PAGE_KERNEL_NOCACHE \
178 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
179 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
180
181 #define __P000 PAGE_NONE
182 #define __P001 PAGE_READONLY_X
183 #define __P010 PAGE_COPY
184 #define __P011 PAGE_COPY_X
185 #define __P100 PAGE_READONLY
186 #define __P101 PAGE_READONLY_X
187 #define __P110 PAGE_COPY
188 #define __P111 PAGE_COPY_X
189
190 #define __S000 PAGE_NONE
191 #define __S001 PAGE_READONLY_X
192 #define __S010 PAGE_SHARED
193 #define __S011 PAGE_SHARED_X
194 #define __S100 PAGE_READONLY
195 #define __S101 PAGE_READONLY_X
196 #define __S110 PAGE_SHARED
197 #define __S111 PAGE_SHARED_X
198
199 /* zero page used for uninitialized stuff */
200 extern unsigned long empty_zero_page[2048];
201 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
202
203 /* number of bits that fit into a memory pointer */
204 #define BITS_PER_PTR (8*sizeof(unsigned long))
205
206 /* to align the pointer to a pointer address */
207 #define PTR_MASK (~(sizeof(void *)-1))
208
209 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
210 /* 64-bit machines, beware! SRB. */
211 #define SIZEOF_PTR_LOG2 2
212
213 /* to find an entry in a page-table */
214 #define PAGE_PTR(address) \
215 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
216
217 /* to set the page-dir */
218 #define SET_PAGE_DIR(tsk, pgdir)
219
220 #define pte_none(x) (!pte_val(x))
221 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
222 #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
223
224 #define pmd_none(x) (!pmd_val(x))
225 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
226 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
227 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
228
229 /*
230 * The following only work if pte_present() is true.
231 * Undefined behaviour if not..
232 */
233
pte_read(pte_t pte)234 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
pte_write(pte_t pte)235 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
pte_exec(pte_t pte)236 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
pte_dirty(pte_t pte)237 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)238 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
pte_special(pte_t pte)239 static inline int pte_special(pte_t pte) { return 0; }
pte_mkspecial(pte_t pte)240 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
241
pte_wrprotect(pte_t pte)242 static inline pte_t pte_wrprotect(pte_t pte)
243 {
244 pte_val(pte) &= ~(_PAGE_WRITE);
245 return pte;
246 }
247
pte_rdprotect(pte_t pte)248 static inline pte_t pte_rdprotect(pte_t pte)
249 {
250 pte_val(pte) &= ~(_PAGE_READ);
251 return pte;
252 }
253
pte_exprotect(pte_t pte)254 static inline pte_t pte_exprotect(pte_t pte)
255 {
256 pte_val(pte) &= ~(_PAGE_EXEC);
257 return pte;
258 }
259
pte_mkclean(pte_t pte)260 static inline pte_t pte_mkclean(pte_t pte)
261 {
262 pte_val(pte) &= ~(_PAGE_DIRTY);
263 return pte;
264 }
265
pte_mkold(pte_t pte)266 static inline pte_t pte_mkold(pte_t pte)
267 {
268 pte_val(pte) &= ~(_PAGE_ACCESSED);
269 return pte;
270 }
271
pte_mkwrite(pte_t pte)272 static inline pte_t pte_mkwrite(pte_t pte)
273 {
274 pte_val(pte) |= _PAGE_WRITE;
275 return pte;
276 }
277
pte_mkread(pte_t pte)278 static inline pte_t pte_mkread(pte_t pte)
279 {
280 pte_val(pte) |= _PAGE_READ;
281 return pte;
282 }
283
pte_mkexec(pte_t pte)284 static inline pte_t pte_mkexec(pte_t pte)
285 {
286 pte_val(pte) |= _PAGE_EXEC;
287 return pte;
288 }
289
pte_mkdirty(pte_t pte)290 static inline pte_t pte_mkdirty(pte_t pte)
291 {
292 pte_val(pte) |= _PAGE_DIRTY;
293 return pte;
294 }
295
pte_mkyoung(pte_t pte)296 static inline pte_t pte_mkyoung(pte_t pte)
297 {
298 pte_val(pte) |= _PAGE_ACCESSED;
299 return pte;
300 }
301
302 /*
303 * Conversion functions: convert a page and protection to a page entry,
304 * and a page entry and page directory to the page they refer to.
305 */
306
307 /* What actually goes as arguments to the various functions is less than
308 * obvious, but a rule of thumb is that struct page's goes as struct page *,
309 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
310 * addresses (the 0xc0xxxxxx's) goes as void *'s.
311 */
312
__mk_pte(void * page,pgprot_t pgprot)313 static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
314 {
315 pte_t pte;
316 /* the PTE needs a physical address */
317 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
318 return pte;
319 }
320
321 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
322
323 #define mk_pte_phys(physpage, pgprot) \
324 ({ \
325 pte_t __pte; \
326 \
327 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
328 __pte; \
329 })
330
pte_modify(pte_t pte,pgprot_t newprot)331 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
332 {
333 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
334 return pte;
335 }
336
337
338 /*
339 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
340 * __pte_page(pte_val) refers to the "virtual" DRAM interval
341 * pte_pagenr refers to the page-number counted starting from the virtual
342 * DRAM start
343 */
344
__pte_page(pte_t pte)345 static inline unsigned long __pte_page(pte_t pte)
346 {
347 /* the PTE contains a physical address */
348 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
349 }
350
351 #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
352
353 /* permanent address of a page */
354
355 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
356 #define pte_page(pte) (mem_map+pte_pagenr(pte))
357
358 /*
359 * only the pte's themselves need to point to physical DRAM (see above)
360 * the pagetable links are purely handled within the kernel SW and thus
361 * don't need the __pa and __va transformations.
362 */
pmd_set(pmd_t * pmdp,pte_t * ptep)363 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
364 {
365 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
366 }
367
368 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
369 #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
370
371 /* to find an entry in a page-table-directory. */
372 #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
373
374 #define __pgd_offset(address) pgd_index(address)
375
376 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
377
378 /* to find an entry in a kernel page-table-directory */
379 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
380
381 #define __pmd_offset(address) \
382 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
383
384 /*
385 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
386 *
387 * this macro returns the index of the entry in the pte page which would
388 * control the given virtual address
389 */
390 #define __pte_offset(address) \
391 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
392 #define pte_offset_kernel(dir, address) \
393 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
394 #define pte_offset_map(dir, address) \
395 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
396 #define pte_offset_map_nested(dir, address) \
397 pte_offset_map(dir, address)
398
399 #define pte_unmap(pte) do { } while (0)
400 #define pte_unmap_nested(pte) do { } while (0)
401 #define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
402 #define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
403
404 #define pte_ERROR(e) \
405 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
406 __FILE__, __LINE__, &(e), pte_val(e))
407 #define pgd_ERROR(e) \
408 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
409 __FILE__, __LINE__, &(e), pgd_val(e))
410
411 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
412
413 struct vm_area_struct;
414
update_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * pte)415 static inline void update_tlb(struct vm_area_struct *vma,
416 unsigned long address, pte_t *pte)
417 {
418 }
419
420 extern void update_cache(struct vm_area_struct *vma,
421 unsigned long address, pte_t *pte);
422
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * pte)423 static inline void update_mmu_cache(struct vm_area_struct *vma,
424 unsigned long address, pte_t *pte)
425 {
426 update_tlb(vma, address, pte);
427 update_cache(vma, address, pte);
428 }
429
430 /* __PHX__ FIXME, SWAP, this probably doesn't work */
431
432 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
433 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
434
435 #define __swp_type(x) (((x).val >> 5) & 0x7f)
436 #define __swp_offset(x) ((x).val >> 12)
437 #define __swp_entry(type, offset) \
438 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
439 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
440 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
441
442 #define kern_addr_valid(addr) (1)
443
444 #include <asm-generic/pgtable.h>
445
446 typedef pte_t *pte_addr_t;
447
448 #endif /* __ASSEMBLY__ */
449 #endif /* __ASM_OPENRISC_PGTABLE_H */
450