1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
36 #ifdef CONFIG_NUMA
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50 }
51
52 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)53 static void zero_zones_numa_counters(void)
54 {
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59 }
60
61 /* zero global numa counters */
zero_global_numa_counters(void)62 static void zero_global_numa_counters(void)
63 {
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68 }
69
invalid_numa_statistics(void)70 static void invalid_numa_statistics(void)
71 {
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74 }
75
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77
sysctl_vm_numa_stat_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void __user *buffer, size_t *length, loff_t *ppos)
80 {
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101 out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104 }
105 #endif
106
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
sum_vm_events(unsigned long * ret)111 static void sum_vm_events(unsigned long *ret)
112 {
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124 }
125
126 /*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130 */
all_vm_events(unsigned long * ret)131 void all_vm_events(unsigned long *ret)
132 {
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138
139 /*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
vm_events_fold_cpu(int cpu)145 void vm_events_fold_cpu(int cpu)
146 {
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154 }
155
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157
158 /*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
169
170 #ifdef CONFIG_SMP
171
calculate_pressure_threshold(struct zone * zone)172 int calculate_pressure_threshold(struct zone *zone)
173 {
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194 }
195
calculate_normal_threshold(struct zone * zone)196 int calculate_normal_threshold(struct zone *zone)
197 {
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241 }
242
243 /*
244 * Refresh the thresholds for each zone.
245 */
refresh_zone_stat_thresholds(void)246 void refresh_zone_stat_thresholds(void)
247 {
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
263
264 threshold = calculate_normal_threshold(zone);
265
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
271
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
288 }
289 }
290
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
293 {
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
309 }
310
311 /*
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
315 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
318 {
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
323
324 x = delta + __this_cpu_read(*p);
325
326 t = __this_cpu_read(pcp->stat_threshold);
327
328 if (unlikely(x > t || x < -t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
332 __this_cpu_write(*p, x);
333 }
334 EXPORT_SYMBOL(__mod_zone_page_state);
335
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338 {
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 x = delta + __this_cpu_read(*p);
345
346 t = __this_cpu_read(pcp->stat_threshold);
347
348 if (unlikely(x > t || x < -t)) {
349 node_page_state_add(x, pgdat, item);
350 x = 0;
351 }
352 __this_cpu_write(*p, x);
353 }
354 EXPORT_SYMBOL(__mod_node_page_state);
355
356 /*
357 * Optimized increment and decrement functions.
358 *
359 * These are only for a single page and therefore can take a struct page *
360 * argument instead of struct zone *. This allows the inclusion of the code
361 * generated for page_zone(page) into the optimized functions.
362 *
363 * No overflow check is necessary and therefore the differential can be
364 * incremented or decremented in place which may allow the compilers to
365 * generate better code.
366 * The increment or decrement is known and therefore one boundary check can
367 * be omitted.
368 *
369 * NOTE: These functions are very performance sensitive. Change only
370 * with care.
371 *
372 * Some processors have inc/dec instructions that are atomic vs an interrupt.
373 * However, the code must first determine the differential location in a zone
374 * based on the processor number and then inc/dec the counter. There is no
375 * guarantee without disabling preemption that the processor will not change
376 * in between and therefore the atomicity vs. interrupt cannot be exploited
377 * in a useful way here.
378 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)379 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
380 {
381 struct per_cpu_pageset __percpu *pcp = zone->pageset;
382 s8 __percpu *p = pcp->vm_stat_diff + item;
383 s8 v, t;
384
385 v = __this_cpu_inc_return(*p);
386 t = __this_cpu_read(pcp->stat_threshold);
387 if (unlikely(v > t)) {
388 s8 overstep = t >> 1;
389
390 zone_page_state_add(v + overstep, zone, item);
391 __this_cpu_write(*p, -overstep);
392 }
393 }
394
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)395 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
396 {
397 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
398 s8 __percpu *p = pcp->vm_node_stat_diff + item;
399 s8 v, t;
400
401 v = __this_cpu_inc_return(*p);
402 t = __this_cpu_read(pcp->stat_threshold);
403 if (unlikely(v > t)) {
404 s8 overstep = t >> 1;
405
406 node_page_state_add(v + overstep, pgdat, item);
407 __this_cpu_write(*p, -overstep);
408 }
409 }
410
__inc_zone_page_state(struct page * page,enum zone_stat_item item)411 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413 __inc_zone_state(page_zone(page), item);
414 }
415 EXPORT_SYMBOL(__inc_zone_page_state);
416
__inc_node_page_state(struct page * page,enum node_stat_item item)417 void __inc_node_page_state(struct page *page, enum node_stat_item item)
418 {
419 __inc_node_state(page_pgdat(page), item);
420 }
421 EXPORT_SYMBOL(__inc_node_page_state);
422
__dec_zone_state(struct zone * zone,enum zone_stat_item item)423 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
424 {
425 struct per_cpu_pageset __percpu *pcp = zone->pageset;
426 s8 __percpu *p = pcp->vm_stat_diff + item;
427 s8 v, t;
428
429 v = __this_cpu_dec_return(*p);
430 t = __this_cpu_read(pcp->stat_threshold);
431 if (unlikely(v < - t)) {
432 s8 overstep = t >> 1;
433
434 zone_page_state_add(v - overstep, zone, item);
435 __this_cpu_write(*p, overstep);
436 }
437 }
438
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)439 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
440 {
441 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
442 s8 __percpu *p = pcp->vm_node_stat_diff + item;
443 s8 v, t;
444
445 v = __this_cpu_dec_return(*p);
446 t = __this_cpu_read(pcp->stat_threshold);
447 if (unlikely(v < - t)) {
448 s8 overstep = t >> 1;
449
450 node_page_state_add(v - overstep, pgdat, item);
451 __this_cpu_write(*p, overstep);
452 }
453 }
454
__dec_zone_page_state(struct page * page,enum zone_stat_item item)455 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457 __dec_zone_state(page_zone(page), item);
458 }
459 EXPORT_SYMBOL(__dec_zone_page_state);
460
__dec_node_page_state(struct page * page,enum node_stat_item item)461 void __dec_node_page_state(struct page *page, enum node_stat_item item)
462 {
463 __dec_node_state(page_pgdat(page), item);
464 }
465 EXPORT_SYMBOL(__dec_node_page_state);
466
467 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
468 /*
469 * If we have cmpxchg_local support then we do not need to incur the overhead
470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
471 *
472 * mod_state() modifies the zone counter state through atomic per cpu
473 * operations.
474 *
475 * Overstep mode specifies how overstep should handled:
476 * 0 No overstepping
477 * 1 Overstepping half of threshold
478 * -1 Overstepping minus half of threshold
479 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)480 static inline void mod_zone_state(struct zone *zone,
481 enum zone_stat_item item, long delta, int overstep_mode)
482 {
483 struct per_cpu_pageset __percpu *pcp = zone->pageset;
484 s8 __percpu *p = pcp->vm_stat_diff + item;
485 long o, n, t, z;
486
487 do {
488 z = 0; /* overflow to zone counters */
489
490 /*
491 * The fetching of the stat_threshold is racy. We may apply
492 * a counter threshold to the wrong the cpu if we get
493 * rescheduled while executing here. However, the next
494 * counter update will apply the threshold again and
495 * therefore bring the counter under the threshold again.
496 *
497 * Most of the time the thresholds are the same anyways
498 * for all cpus in a zone.
499 */
500 t = this_cpu_read(pcp->stat_threshold);
501
502 o = this_cpu_read(*p);
503 n = delta + o;
504
505 if (n > t || n < -t) {
506 int os = overstep_mode * (t >> 1) ;
507
508 /* Overflow must be added to zone counters */
509 z = n + os;
510 n = -os;
511 }
512 } while (this_cpu_cmpxchg(*p, o, n) != o);
513
514 if (z)
515 zone_page_state_add(z, zone, item);
516 }
517
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)518 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
519 long delta)
520 {
521 mod_zone_state(zone, item, delta, 0);
522 }
523 EXPORT_SYMBOL(mod_zone_page_state);
524
inc_zone_page_state(struct page * page,enum zone_stat_item item)525 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
526 {
527 mod_zone_state(page_zone(page), item, 1, 1);
528 }
529 EXPORT_SYMBOL(inc_zone_page_state);
530
dec_zone_page_state(struct page * page,enum zone_stat_item item)531 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
532 {
533 mod_zone_state(page_zone(page), item, -1, -1);
534 }
535 EXPORT_SYMBOL(dec_zone_page_state);
536
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)537 static inline void mod_node_state(struct pglist_data *pgdat,
538 enum node_stat_item item, int delta, int overstep_mode)
539 {
540 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
541 s8 __percpu *p = pcp->vm_node_stat_diff + item;
542 long o, n, t, z;
543
544 do {
545 z = 0; /* overflow to node counters */
546
547 /*
548 * The fetching of the stat_threshold is racy. We may apply
549 * a counter threshold to the wrong the cpu if we get
550 * rescheduled while executing here. However, the next
551 * counter update will apply the threshold again and
552 * therefore bring the counter under the threshold again.
553 *
554 * Most of the time the thresholds are the same anyways
555 * for all cpus in a node.
556 */
557 t = this_cpu_read(pcp->stat_threshold);
558
559 o = this_cpu_read(*p);
560 n = delta + o;
561
562 if (n > t || n < -t) {
563 int os = overstep_mode * (t >> 1) ;
564
565 /* Overflow must be added to node counters */
566 z = n + os;
567 n = -os;
568 }
569 } while (this_cpu_cmpxchg(*p, o, n) != o);
570
571 if (z)
572 node_page_state_add(z, pgdat, item);
573 }
574
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)575 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
576 long delta)
577 {
578 mod_node_state(pgdat, item, delta, 0);
579 }
580 EXPORT_SYMBOL(mod_node_page_state);
581
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)582 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
583 {
584 mod_node_state(pgdat, item, 1, 1);
585 }
586
inc_node_page_state(struct page * page,enum node_stat_item item)587 void inc_node_page_state(struct page *page, enum node_stat_item item)
588 {
589 mod_node_state(page_pgdat(page), item, 1, 1);
590 }
591 EXPORT_SYMBOL(inc_node_page_state);
592
dec_node_page_state(struct page * page,enum node_stat_item item)593 void dec_node_page_state(struct page *page, enum node_stat_item item)
594 {
595 mod_node_state(page_pgdat(page), item, -1, -1);
596 }
597 EXPORT_SYMBOL(dec_node_page_state);
598 #else
599 /*
600 * Use interrupt disable to serialize counter updates
601 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)602 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
603 long delta)
604 {
605 unsigned long flags;
606
607 local_irq_save(flags);
608 __mod_zone_page_state(zone, item, delta);
609 local_irq_restore(flags);
610 }
611 EXPORT_SYMBOL(mod_zone_page_state);
612
inc_zone_page_state(struct page * page,enum zone_stat_item item)613 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
614 {
615 unsigned long flags;
616 struct zone *zone;
617
618 zone = page_zone(page);
619 local_irq_save(flags);
620 __inc_zone_state(zone, item);
621 local_irq_restore(flags);
622 }
623 EXPORT_SYMBOL(inc_zone_page_state);
624
dec_zone_page_state(struct page * page,enum zone_stat_item item)625 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
626 {
627 unsigned long flags;
628
629 local_irq_save(flags);
630 __dec_zone_page_state(page, item);
631 local_irq_restore(flags);
632 }
633 EXPORT_SYMBOL(dec_zone_page_state);
634
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)635 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
636 {
637 unsigned long flags;
638
639 local_irq_save(flags);
640 __inc_node_state(pgdat, item);
641 local_irq_restore(flags);
642 }
643 EXPORT_SYMBOL(inc_node_state);
644
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)645 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
646 long delta)
647 {
648 unsigned long flags;
649
650 local_irq_save(flags);
651 __mod_node_page_state(pgdat, item, delta);
652 local_irq_restore(flags);
653 }
654 EXPORT_SYMBOL(mod_node_page_state);
655
inc_node_page_state(struct page * page,enum node_stat_item item)656 void inc_node_page_state(struct page *page, enum node_stat_item item)
657 {
658 unsigned long flags;
659 struct pglist_data *pgdat;
660
661 pgdat = page_pgdat(page);
662 local_irq_save(flags);
663 __inc_node_state(pgdat, item);
664 local_irq_restore(flags);
665 }
666 EXPORT_SYMBOL(inc_node_page_state);
667
dec_node_page_state(struct page * page,enum node_stat_item item)668 void dec_node_page_state(struct page *page, enum node_stat_item item)
669 {
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __dec_node_page_state(page, item);
674 local_irq_restore(flags);
675 }
676 EXPORT_SYMBOL(dec_node_page_state);
677 #endif
678
679 /*
680 * Fold a differential into the global counters.
681 * Returns the number of counters updated.
682 */
683 #ifdef CONFIG_NUMA
fold_diff(int * zone_diff,int * numa_diff,int * node_diff)684 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
685 {
686 int i;
687 int changes = 0;
688
689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
690 if (zone_diff[i]) {
691 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
692 changes++;
693 }
694
695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
696 if (numa_diff[i]) {
697 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
698 changes++;
699 }
700
701 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
702 if (node_diff[i]) {
703 atomic_long_add(node_diff[i], &vm_node_stat[i]);
704 changes++;
705 }
706 return changes;
707 }
708 #else
fold_diff(int * zone_diff,int * node_diff)709 static int fold_diff(int *zone_diff, int *node_diff)
710 {
711 int i;
712 int changes = 0;
713
714 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
715 if (zone_diff[i]) {
716 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
717 changes++;
718 }
719
720 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
721 if (node_diff[i]) {
722 atomic_long_add(node_diff[i], &vm_node_stat[i]);
723 changes++;
724 }
725 return changes;
726 }
727 #endif /* CONFIG_NUMA */
728
729 /*
730 * Update the zone counters for the current cpu.
731 *
732 * Note that refresh_cpu_vm_stats strives to only access
733 * node local memory. The per cpu pagesets on remote zones are placed
734 * in the memory local to the processor using that pageset. So the
735 * loop over all zones will access a series of cachelines local to
736 * the processor.
737 *
738 * The call to zone_page_state_add updates the cachelines with the
739 * statistics in the remote zone struct as well as the global cachelines
740 * with the global counters. These could cause remote node cache line
741 * bouncing and will have to be only done when necessary.
742 *
743 * The function returns the number of global counters updated.
744 */
refresh_cpu_vm_stats(bool do_pagesets)745 static int refresh_cpu_vm_stats(bool do_pagesets)
746 {
747 struct pglist_data *pgdat;
748 struct zone *zone;
749 int i;
750 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
751 #ifdef CONFIG_NUMA
752 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
753 #endif
754 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
755 int changes = 0;
756
757 for_each_populated_zone(zone) {
758 struct per_cpu_pageset __percpu *p = zone->pageset;
759
760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
761 int v;
762
763 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
764 if (v) {
765
766 atomic_long_add(v, &zone->vm_stat[i]);
767 global_zone_diff[i] += v;
768 #ifdef CONFIG_NUMA
769 /* 3 seconds idle till flush */
770 __this_cpu_write(p->expire, 3);
771 #endif
772 }
773 }
774 #ifdef CONFIG_NUMA
775 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
776 int v;
777
778 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
779 if (v) {
780
781 atomic_long_add(v, &zone->vm_numa_stat[i]);
782 global_numa_diff[i] += v;
783 __this_cpu_write(p->expire, 3);
784 }
785 }
786
787 if (do_pagesets) {
788 cond_resched();
789 /*
790 * Deal with draining the remote pageset of this
791 * processor
792 *
793 * Check if there are pages remaining in this pageset
794 * if not then there is nothing to expire.
795 */
796 if (!__this_cpu_read(p->expire) ||
797 !__this_cpu_read(p->pcp.count))
798 continue;
799
800 /*
801 * We never drain zones local to this processor.
802 */
803 if (zone_to_nid(zone) == numa_node_id()) {
804 __this_cpu_write(p->expire, 0);
805 continue;
806 }
807
808 if (__this_cpu_dec_return(p->expire))
809 continue;
810
811 if (__this_cpu_read(p->pcp.count)) {
812 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
813 changes++;
814 }
815 }
816 #endif
817 }
818
819 for_each_online_pgdat(pgdat) {
820 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
821
822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
823 int v;
824
825 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
826 if (v) {
827 atomic_long_add(v, &pgdat->vm_stat[i]);
828 global_node_diff[i] += v;
829 }
830 }
831 }
832
833 #ifdef CONFIG_NUMA
834 changes += fold_diff(global_zone_diff, global_numa_diff,
835 global_node_diff);
836 #else
837 changes += fold_diff(global_zone_diff, global_node_diff);
838 #endif
839 return changes;
840 }
841
842 /*
843 * Fold the data for an offline cpu into the global array.
844 * There cannot be any access by the offline cpu and therefore
845 * synchronization is simplified.
846 */
cpu_vm_stats_fold(int cpu)847 void cpu_vm_stats_fold(int cpu)
848 {
849 struct pglist_data *pgdat;
850 struct zone *zone;
851 int i;
852 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
853 #ifdef CONFIG_NUMA
854 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
855 #endif
856 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
857
858 for_each_populated_zone(zone) {
859 struct per_cpu_pageset *p;
860
861 p = per_cpu_ptr(zone->pageset, cpu);
862
863 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
864 if (p->vm_stat_diff[i]) {
865 int v;
866
867 v = p->vm_stat_diff[i];
868 p->vm_stat_diff[i] = 0;
869 atomic_long_add(v, &zone->vm_stat[i]);
870 global_zone_diff[i] += v;
871 }
872
873 #ifdef CONFIG_NUMA
874 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
875 if (p->vm_numa_stat_diff[i]) {
876 int v;
877
878 v = p->vm_numa_stat_diff[i];
879 p->vm_numa_stat_diff[i] = 0;
880 atomic_long_add(v, &zone->vm_numa_stat[i]);
881 global_numa_diff[i] += v;
882 }
883 #endif
884 }
885
886 for_each_online_pgdat(pgdat) {
887 struct per_cpu_nodestat *p;
888
889 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890
891 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
892 if (p->vm_node_stat_diff[i]) {
893 int v;
894
895 v = p->vm_node_stat_diff[i];
896 p->vm_node_stat_diff[i] = 0;
897 atomic_long_add(v, &pgdat->vm_stat[i]);
898 global_node_diff[i] += v;
899 }
900 }
901
902 #ifdef CONFIG_NUMA
903 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
904 #else
905 fold_diff(global_zone_diff, global_node_diff);
906 #endif
907 }
908
909 /*
910 * this is only called if !populated_zone(zone), which implies no other users of
911 * pset->vm_stat_diff[] exsist.
912 */
drain_zonestat(struct zone * zone,struct per_cpu_pageset * pset)913 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
914 {
915 int i;
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
918 if (pset->vm_stat_diff[i]) {
919 int v = pset->vm_stat_diff[i];
920 pset->vm_stat_diff[i] = 0;
921 atomic_long_add(v, &zone->vm_stat[i]);
922 atomic_long_add(v, &vm_zone_stat[i]);
923 }
924
925 #ifdef CONFIG_NUMA
926 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
927 if (pset->vm_numa_stat_diff[i]) {
928 int v = pset->vm_numa_stat_diff[i];
929
930 pset->vm_numa_stat_diff[i] = 0;
931 atomic_long_add(v, &zone->vm_numa_stat[i]);
932 atomic_long_add(v, &vm_numa_stat[i]);
933 }
934 #endif
935 }
936 #endif
937
938 #ifdef CONFIG_NUMA
__inc_numa_state(struct zone * zone,enum numa_stat_item item)939 void __inc_numa_state(struct zone *zone,
940 enum numa_stat_item item)
941 {
942 struct per_cpu_pageset __percpu *pcp = zone->pageset;
943 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
944 u16 v;
945
946 v = __this_cpu_inc_return(*p);
947
948 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
949 zone_numa_state_add(v, zone, item);
950 __this_cpu_write(*p, 0);
951 }
952 }
953
954 /*
955 * Determine the per node value of a stat item. This function
956 * is called frequently in a NUMA machine, so try to be as
957 * frugal as possible.
958 */
sum_zone_node_page_state(int node,enum zone_stat_item item)959 unsigned long sum_zone_node_page_state(int node,
960 enum zone_stat_item item)
961 {
962 struct zone *zones = NODE_DATA(node)->node_zones;
963 int i;
964 unsigned long count = 0;
965
966 for (i = 0; i < MAX_NR_ZONES; i++)
967 count += zone_page_state(zones + i, item);
968
969 return count;
970 }
971
972 /*
973 * Determine the per node value of a numa stat item. To avoid deviation,
974 * the per cpu stat number in vm_numa_stat_diff[] is also included.
975 */
sum_zone_numa_state(int node,enum numa_stat_item item)976 unsigned long sum_zone_numa_state(int node,
977 enum numa_stat_item item)
978 {
979 struct zone *zones = NODE_DATA(node)->node_zones;
980 int i;
981 unsigned long count = 0;
982
983 for (i = 0; i < MAX_NR_ZONES; i++)
984 count += zone_numa_state_snapshot(zones + i, item);
985
986 return count;
987 }
988
989 /*
990 * Determine the per node value of a stat item.
991 */
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)992 unsigned long node_page_state(struct pglist_data *pgdat,
993 enum node_stat_item item)
994 {
995 long x = atomic_long_read(&pgdat->vm_stat[item]);
996 #ifdef CONFIG_SMP
997 if (x < 0)
998 x = 0;
999 #endif
1000 return x;
1001 }
1002 #endif
1003
1004 #ifdef CONFIG_COMPACTION
1005
1006 struct contig_page_info {
1007 unsigned long free_pages;
1008 unsigned long free_blocks_total;
1009 unsigned long free_blocks_suitable;
1010 };
1011
1012 /*
1013 * Calculate the number of free pages in a zone, how many contiguous
1014 * pages are free and how many are large enough to satisfy an allocation of
1015 * the target size. Note that this function makes no attempt to estimate
1016 * how many suitable free blocks there *might* be if MOVABLE pages were
1017 * migrated. Calculating that is possible, but expensive and can be
1018 * figured out from userspace
1019 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1020 static void fill_contig_page_info(struct zone *zone,
1021 unsigned int suitable_order,
1022 struct contig_page_info *info)
1023 {
1024 unsigned int order;
1025
1026 info->free_pages = 0;
1027 info->free_blocks_total = 0;
1028 info->free_blocks_suitable = 0;
1029
1030 for (order = 0; order < MAX_ORDER; order++) {
1031 unsigned long blocks;
1032
1033 /* Count number of free blocks */
1034 blocks = zone->free_area[order].nr_free;
1035 info->free_blocks_total += blocks;
1036
1037 /* Count free base pages */
1038 info->free_pages += blocks << order;
1039
1040 /* Count the suitable free blocks */
1041 if (order >= suitable_order)
1042 info->free_blocks_suitable += blocks <<
1043 (order - suitable_order);
1044 }
1045 }
1046
1047 /*
1048 * A fragmentation index only makes sense if an allocation of a requested
1049 * size would fail. If that is true, the fragmentation index indicates
1050 * whether external fragmentation or a lack of memory was the problem.
1051 * The value can be used to determine if page reclaim or compaction
1052 * should be used
1053 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1054 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1055 {
1056 unsigned long requested = 1UL << order;
1057
1058 if (WARN_ON_ONCE(order >= MAX_ORDER))
1059 return 0;
1060
1061 if (!info->free_blocks_total)
1062 return 0;
1063
1064 /* Fragmentation index only makes sense when a request would fail */
1065 if (info->free_blocks_suitable)
1066 return -1000;
1067
1068 /*
1069 * Index is between 0 and 1 so return within 3 decimal places
1070 *
1071 * 0 => allocation would fail due to lack of memory
1072 * 1 => allocation would fail due to fragmentation
1073 */
1074 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1075 }
1076
1077 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1078 int fragmentation_index(struct zone *zone, unsigned int order)
1079 {
1080 struct contig_page_info info;
1081
1082 fill_contig_page_info(zone, order, &info);
1083 return __fragmentation_index(order, &info);
1084 }
1085 #endif
1086
1087 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1088 #ifdef CONFIG_ZONE_DMA
1089 #define TEXT_FOR_DMA(xx) xx "_dma",
1090 #else
1091 #define TEXT_FOR_DMA(xx)
1092 #endif
1093
1094 #ifdef CONFIG_ZONE_DMA32
1095 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1096 #else
1097 #define TEXT_FOR_DMA32(xx)
1098 #endif
1099
1100 #ifdef CONFIG_HIGHMEM
1101 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1102 #else
1103 #define TEXT_FOR_HIGHMEM(xx)
1104 #endif
1105
1106 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1107 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1108
1109 const char * const vmstat_text[] = {
1110 /* enum zone_stat_item countes */
1111 "nr_free_pages",
1112 "nr_zone_inactive_anon",
1113 "nr_zone_active_anon",
1114 "nr_zone_inactive_file",
1115 "nr_zone_active_file",
1116 "nr_zone_unevictable",
1117 "nr_zone_write_pending",
1118 "nr_mlock",
1119 "nr_page_table_pages",
1120 "nr_kernel_stack",
1121 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1122 "nr_shadow_call_stack_bytes",
1123 #endif
1124 "nr_bounce",
1125 #if IS_ENABLED(CONFIG_ZSMALLOC)
1126 "nr_zspages",
1127 #endif
1128 "nr_free_cma",
1129
1130 /* enum numa_stat_item counters */
1131 #ifdef CONFIG_NUMA
1132 "numa_hit",
1133 "numa_miss",
1134 "numa_foreign",
1135 "numa_interleave",
1136 "numa_local",
1137 "numa_other",
1138 #endif
1139
1140 /* Node-based counters */
1141 "nr_inactive_anon",
1142 "nr_active_anon",
1143 "nr_inactive_file",
1144 "nr_active_file",
1145 "nr_unevictable",
1146 "nr_slab_reclaimable",
1147 "nr_slab_unreclaimable",
1148 "nr_isolated_anon",
1149 "nr_isolated_file",
1150 "workingset_nodes",
1151 "workingset_refault",
1152 "workingset_activate",
1153 "workingset_restore",
1154 "workingset_nodereclaim",
1155 "nr_anon_pages",
1156 "nr_mapped",
1157 "nr_file_pages",
1158 "nr_dirty",
1159 "nr_writeback",
1160 "nr_writeback_temp",
1161 "nr_shmem",
1162 "nr_shmem_hugepages",
1163 "nr_shmem_pmdmapped",
1164 "nr_file_hugepages",
1165 "nr_file_pmdmapped",
1166 "nr_anon_transparent_hugepages",
1167 "nr_unstable",
1168 "nr_vmscan_write",
1169 "nr_vmscan_immediate_reclaim",
1170 "nr_dirtied",
1171 "nr_written",
1172 "nr_kernel_misc_reclaimable",
1173
1174 /* enum writeback_stat_item counters */
1175 "nr_dirty_threshold",
1176 "nr_dirty_background_threshold",
1177
1178 #ifdef CONFIG_VM_EVENT_COUNTERS
1179 /* enum vm_event_item counters */
1180 "pgpgin",
1181 "pgpgout",
1182 "pswpin",
1183 "pswpout",
1184
1185 TEXTS_FOR_ZONES("pgalloc")
1186 TEXTS_FOR_ZONES("allocstall")
1187 TEXTS_FOR_ZONES("pgskip")
1188
1189 "pgfree",
1190 "pgactivate",
1191 "pgdeactivate",
1192 "pglazyfree",
1193
1194 "pgfault",
1195 "pgmajfault",
1196 "pglazyfreed",
1197
1198 "pgrefill",
1199 "pgsteal_kswapd",
1200 "pgsteal_direct",
1201 "pgscan_kswapd",
1202 "pgscan_direct",
1203 "pgscan_direct_throttle",
1204
1205 #ifdef CONFIG_NUMA
1206 "zone_reclaim_failed",
1207 #endif
1208 "pginodesteal",
1209 "slabs_scanned",
1210 "kswapd_inodesteal",
1211 "kswapd_low_wmark_hit_quickly",
1212 "kswapd_high_wmark_hit_quickly",
1213 "pageoutrun",
1214
1215 "pgrotated",
1216
1217 "drop_pagecache",
1218 "drop_slab",
1219 "oom_kill",
1220
1221 #ifdef CONFIG_NUMA_BALANCING
1222 "numa_pte_updates",
1223 "numa_huge_pte_updates",
1224 "numa_hint_faults",
1225 "numa_hint_faults_local",
1226 "numa_pages_migrated",
1227 #endif
1228 #ifdef CONFIG_MIGRATION
1229 "pgmigrate_success",
1230 "pgmigrate_fail",
1231 #endif
1232 #ifdef CONFIG_COMPACTION
1233 "compact_migrate_scanned",
1234 "compact_free_scanned",
1235 "compact_isolated",
1236 "compact_stall",
1237 "compact_fail",
1238 "compact_success",
1239 "compact_daemon_wake",
1240 "compact_daemon_migrate_scanned",
1241 "compact_daemon_free_scanned",
1242 #endif
1243
1244 #ifdef CONFIG_HUGETLB_PAGE
1245 "htlb_buddy_alloc_success",
1246 "htlb_buddy_alloc_fail",
1247 #endif
1248 "unevictable_pgs_culled",
1249 "unevictable_pgs_scanned",
1250 "unevictable_pgs_rescued",
1251 "unevictable_pgs_mlocked",
1252 "unevictable_pgs_munlocked",
1253 "unevictable_pgs_cleared",
1254 "unevictable_pgs_stranded",
1255
1256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1257 "thp_fault_alloc",
1258 "thp_fault_fallback",
1259 "thp_collapse_alloc",
1260 "thp_collapse_alloc_failed",
1261 "thp_file_alloc",
1262 "thp_file_mapped",
1263 "thp_split_page",
1264 "thp_split_page_failed",
1265 "thp_deferred_split_page",
1266 "thp_split_pmd",
1267 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1268 "thp_split_pud",
1269 #endif
1270 "thp_zero_page_alloc",
1271 "thp_zero_page_alloc_failed",
1272 "thp_swpout",
1273 "thp_swpout_fallback",
1274 #endif
1275 #ifdef CONFIG_MEMORY_BALLOON
1276 "balloon_inflate",
1277 "balloon_deflate",
1278 #ifdef CONFIG_BALLOON_COMPACTION
1279 "balloon_migrate",
1280 #endif
1281 #endif /* CONFIG_MEMORY_BALLOON */
1282 #ifdef CONFIG_DEBUG_TLBFLUSH
1283 "nr_tlb_remote_flush",
1284 "nr_tlb_remote_flush_received",
1285 "nr_tlb_local_flush_all",
1286 "nr_tlb_local_flush_one",
1287 #endif /* CONFIG_DEBUG_TLBFLUSH */
1288
1289 #ifdef CONFIG_DEBUG_VM_VMACACHE
1290 "vmacache_find_calls",
1291 "vmacache_find_hits",
1292 #endif
1293 #ifdef CONFIG_SWAP
1294 "swap_ra",
1295 "swap_ra_hit",
1296 #endif
1297 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1298 };
1299 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1300
1301 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1302 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1303 static void *frag_start(struct seq_file *m, loff_t *pos)
1304 {
1305 pg_data_t *pgdat;
1306 loff_t node = *pos;
1307
1308 for (pgdat = first_online_pgdat();
1309 pgdat && node;
1310 pgdat = next_online_pgdat(pgdat))
1311 --node;
1312
1313 return pgdat;
1314 }
1315
frag_next(struct seq_file * m,void * arg,loff_t * pos)1316 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1317 {
1318 pg_data_t *pgdat = (pg_data_t *)arg;
1319
1320 (*pos)++;
1321 return next_online_pgdat(pgdat);
1322 }
1323
frag_stop(struct seq_file * m,void * arg)1324 static void frag_stop(struct seq_file *m, void *arg)
1325 {
1326 }
1327
1328 /*
1329 * Walk zones in a node and print using a callback.
1330 * If @assert_populated is true, only use callback for zones that are populated.
1331 */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1332 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1333 bool assert_populated, bool nolock,
1334 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1335 {
1336 struct zone *zone;
1337 struct zone *node_zones = pgdat->node_zones;
1338 unsigned long flags;
1339
1340 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1341 if (assert_populated && !populated_zone(zone))
1342 continue;
1343
1344 if (!nolock)
1345 spin_lock_irqsave(&zone->lock, flags);
1346 print(m, pgdat, zone);
1347 if (!nolock)
1348 spin_unlock_irqrestore(&zone->lock, flags);
1349 }
1350 }
1351 #endif
1352
1353 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1354 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1355 struct zone *zone)
1356 {
1357 int order;
1358
1359 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1360 for (order = 0; order < MAX_ORDER; ++order)
1361 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1362 seq_putc(m, '\n');
1363 }
1364
1365 /*
1366 * This walks the free areas for each zone.
1367 */
frag_show(struct seq_file * m,void * arg)1368 static int frag_show(struct seq_file *m, void *arg)
1369 {
1370 pg_data_t *pgdat = (pg_data_t *)arg;
1371 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1372 return 0;
1373 }
1374
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1375 static void pagetypeinfo_showfree_print(struct seq_file *m,
1376 pg_data_t *pgdat, struct zone *zone)
1377 {
1378 int order, mtype;
1379
1380 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1381 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1382 pgdat->node_id,
1383 zone->name,
1384 migratetype_names[mtype]);
1385 for (order = 0; order < MAX_ORDER; ++order) {
1386 unsigned long freecount = 0;
1387 struct free_area *area;
1388 struct list_head *curr;
1389 bool overflow = false;
1390
1391 area = &(zone->free_area[order]);
1392
1393 list_for_each(curr, &area->free_list[mtype]) {
1394 /*
1395 * Cap the free_list iteration because it might
1396 * be really large and we are under a spinlock
1397 * so a long time spent here could trigger a
1398 * hard lockup detector. Anyway this is a
1399 * debugging tool so knowing there is a handful
1400 * of pages of this order should be more than
1401 * sufficient.
1402 */
1403 if (++freecount >= 100000) {
1404 overflow = true;
1405 break;
1406 }
1407 }
1408 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1409 spin_unlock_irq(&zone->lock);
1410 cond_resched();
1411 spin_lock_irq(&zone->lock);
1412 }
1413 seq_putc(m, '\n');
1414 }
1415 }
1416
1417 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1418 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1419 {
1420 int order;
1421 pg_data_t *pgdat = (pg_data_t *)arg;
1422
1423 /* Print header */
1424 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1425 for (order = 0; order < MAX_ORDER; ++order)
1426 seq_printf(m, "%6d ", order);
1427 seq_putc(m, '\n');
1428
1429 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1430
1431 return 0;
1432 }
1433
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1434 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1435 pg_data_t *pgdat, struct zone *zone)
1436 {
1437 int mtype;
1438 unsigned long pfn;
1439 unsigned long start_pfn = zone->zone_start_pfn;
1440 unsigned long end_pfn = zone_end_pfn(zone);
1441 unsigned long count[MIGRATE_TYPES] = { 0, };
1442
1443 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1444 struct page *page;
1445
1446 page = pfn_to_online_page(pfn);
1447 if (!page)
1448 continue;
1449
1450 /* Watch for unexpected holes punched in the memmap */
1451 if (!memmap_valid_within(pfn, page, zone))
1452 continue;
1453
1454 if (page_zone(page) != zone)
1455 continue;
1456
1457 mtype = get_pageblock_migratetype(page);
1458
1459 if (mtype < MIGRATE_TYPES)
1460 count[mtype]++;
1461 }
1462
1463 /* Print counts */
1464 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1465 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1466 seq_printf(m, "%12lu ", count[mtype]);
1467 seq_putc(m, '\n');
1468 }
1469
1470 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1471 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1472 {
1473 int mtype;
1474 pg_data_t *pgdat = (pg_data_t *)arg;
1475
1476 seq_printf(m, "\n%-23s", "Number of blocks type ");
1477 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1478 seq_printf(m, "%12s ", migratetype_names[mtype]);
1479 seq_putc(m, '\n');
1480 walk_zones_in_node(m, pgdat, true, false,
1481 pagetypeinfo_showblockcount_print);
1482
1483 return 0;
1484 }
1485
1486 /*
1487 * Print out the number of pageblocks for each migratetype that contain pages
1488 * of other types. This gives an indication of how well fallbacks are being
1489 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1490 * to determine what is going on
1491 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1492 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1493 {
1494 #ifdef CONFIG_PAGE_OWNER
1495 int mtype;
1496
1497 if (!static_branch_unlikely(&page_owner_inited))
1498 return;
1499
1500 drain_all_pages(NULL);
1501
1502 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1503 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1504 seq_printf(m, "%12s ", migratetype_names[mtype]);
1505 seq_putc(m, '\n');
1506
1507 walk_zones_in_node(m, pgdat, true, true,
1508 pagetypeinfo_showmixedcount_print);
1509 #endif /* CONFIG_PAGE_OWNER */
1510 }
1511
1512 /*
1513 * This prints out statistics in relation to grouping pages by mobility.
1514 * It is expensive to collect so do not constantly read the file.
1515 */
pagetypeinfo_show(struct seq_file * m,void * arg)1516 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1517 {
1518 pg_data_t *pgdat = (pg_data_t *)arg;
1519
1520 /* check memoryless node */
1521 if (!node_state(pgdat->node_id, N_MEMORY))
1522 return 0;
1523
1524 seq_printf(m, "Page block order: %d\n", pageblock_order);
1525 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1526 seq_putc(m, '\n');
1527 pagetypeinfo_showfree(m, pgdat);
1528 pagetypeinfo_showblockcount(m, pgdat);
1529 pagetypeinfo_showmixedcount(m, pgdat);
1530
1531 return 0;
1532 }
1533
1534 static const struct seq_operations fragmentation_op = {
1535 .start = frag_start,
1536 .next = frag_next,
1537 .stop = frag_stop,
1538 .show = frag_show,
1539 };
1540
1541 static const struct seq_operations pagetypeinfo_op = {
1542 .start = frag_start,
1543 .next = frag_next,
1544 .stop = frag_stop,
1545 .show = pagetypeinfo_show,
1546 };
1547
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1548 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1549 {
1550 int zid;
1551
1552 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553 struct zone *compare = &pgdat->node_zones[zid];
1554
1555 if (populated_zone(compare))
1556 return zone == compare;
1557 }
1558
1559 return false;
1560 }
1561
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1562 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1563 struct zone *zone)
1564 {
1565 int i;
1566 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1567 if (is_zone_first_populated(pgdat, zone)) {
1568 seq_printf(m, "\n per-node stats");
1569 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1570 seq_printf(m, "\n %-12s %lu",
1571 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1572 NR_VM_NUMA_STAT_ITEMS],
1573 node_page_state(pgdat, i));
1574 }
1575 }
1576 seq_printf(m,
1577 "\n pages free %lu"
1578 "\n min %lu"
1579 "\n low %lu"
1580 "\n high %lu"
1581 "\n spanned %lu"
1582 "\n present %lu"
1583 "\n managed %lu",
1584 zone_page_state(zone, NR_FREE_PAGES),
1585 min_wmark_pages(zone),
1586 low_wmark_pages(zone),
1587 high_wmark_pages(zone),
1588 zone->spanned_pages,
1589 zone->present_pages,
1590 zone_managed_pages(zone));
1591
1592 seq_printf(m,
1593 "\n protection: (%ld",
1594 zone->lowmem_reserve[0]);
1595 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1596 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1597 seq_putc(m, ')');
1598
1599 /* If unpopulated, no other information is useful */
1600 if (!populated_zone(zone)) {
1601 seq_putc(m, '\n');
1602 return;
1603 }
1604
1605 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1606 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1607 zone_page_state(zone, i));
1608
1609 #ifdef CONFIG_NUMA
1610 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1611 seq_printf(m, "\n %-12s %lu",
1612 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1613 zone_numa_state_snapshot(zone, i));
1614 #endif
1615
1616 seq_printf(m, "\n pagesets");
1617 for_each_online_cpu(i) {
1618 struct per_cpu_pageset *pageset;
1619
1620 pageset = per_cpu_ptr(zone->pageset, i);
1621 seq_printf(m,
1622 "\n cpu: %i"
1623 "\n count: %i"
1624 "\n high: %i"
1625 "\n batch: %i",
1626 i,
1627 pageset->pcp.count,
1628 pageset->pcp.high,
1629 pageset->pcp.batch);
1630 #ifdef CONFIG_SMP
1631 seq_printf(m, "\n vm stats threshold: %d",
1632 pageset->stat_threshold);
1633 #endif
1634 }
1635 seq_printf(m,
1636 "\n node_unreclaimable: %u"
1637 "\n start_pfn: %lu",
1638 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1639 zone->zone_start_pfn);
1640 seq_putc(m, '\n');
1641 }
1642
1643 /*
1644 * Output information about zones in @pgdat. All zones are printed regardless
1645 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1646 * set of all zones and userspace would not be aware of such zones if they are
1647 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1648 */
zoneinfo_show(struct seq_file * m,void * arg)1649 static int zoneinfo_show(struct seq_file *m, void *arg)
1650 {
1651 pg_data_t *pgdat = (pg_data_t *)arg;
1652 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1653 return 0;
1654 }
1655
1656 static const struct seq_operations zoneinfo_op = {
1657 .start = frag_start, /* iterate over all zones. The same as in
1658 * fragmentation. */
1659 .next = frag_next,
1660 .stop = frag_stop,
1661 .show = zoneinfo_show,
1662 };
1663
1664 enum writeback_stat_item {
1665 NR_DIRTY_THRESHOLD,
1666 NR_DIRTY_BG_THRESHOLD,
1667 NR_VM_WRITEBACK_STAT_ITEMS,
1668 };
1669
vmstat_start(struct seq_file * m,loff_t * pos)1670 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1671 {
1672 unsigned long *v;
1673 int i, stat_items_size;
1674
1675 if (*pos >= ARRAY_SIZE(vmstat_text))
1676 return NULL;
1677 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1678 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1679 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1680 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1681
1682 #ifdef CONFIG_VM_EVENT_COUNTERS
1683 stat_items_size += sizeof(struct vm_event_state);
1684 #endif
1685
1686 BUILD_BUG_ON(stat_items_size !=
1687 ARRAY_SIZE(vmstat_text) * sizeof(unsigned long));
1688 v = kmalloc(stat_items_size, GFP_KERNEL);
1689 m->private = v;
1690 if (!v)
1691 return ERR_PTR(-ENOMEM);
1692 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1693 v[i] = global_zone_page_state(i);
1694 v += NR_VM_ZONE_STAT_ITEMS;
1695
1696 #ifdef CONFIG_NUMA
1697 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1698 v[i] = global_numa_state(i);
1699 v += NR_VM_NUMA_STAT_ITEMS;
1700 #endif
1701
1702 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1703 v[i] = global_node_page_state(i);
1704 v += NR_VM_NODE_STAT_ITEMS;
1705
1706 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1707 v + NR_DIRTY_THRESHOLD);
1708 v += NR_VM_WRITEBACK_STAT_ITEMS;
1709
1710 #ifdef CONFIG_VM_EVENT_COUNTERS
1711 all_vm_events(v);
1712 v[PGPGIN] /= 2; /* sectors -> kbytes */
1713 v[PGPGOUT] /= 2;
1714 #endif
1715 return (unsigned long *)m->private + *pos;
1716 }
1717
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1718 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1719 {
1720 (*pos)++;
1721 if (*pos >= ARRAY_SIZE(vmstat_text))
1722 return NULL;
1723 return (unsigned long *)m->private + *pos;
1724 }
1725
vmstat_show(struct seq_file * m,void * arg)1726 static int vmstat_show(struct seq_file *m, void *arg)
1727 {
1728 unsigned long *l = arg;
1729 unsigned long off = l - (unsigned long *)m->private;
1730
1731 seq_puts(m, vmstat_text[off]);
1732 seq_put_decimal_ull(m, " ", *l);
1733 seq_putc(m, '\n');
1734 return 0;
1735 }
1736
vmstat_stop(struct seq_file * m,void * arg)1737 static void vmstat_stop(struct seq_file *m, void *arg)
1738 {
1739 kfree(m->private);
1740 m->private = NULL;
1741 }
1742
1743 static const struct seq_operations vmstat_op = {
1744 .start = vmstat_start,
1745 .next = vmstat_next,
1746 .stop = vmstat_stop,
1747 .show = vmstat_show,
1748 };
1749 #endif /* CONFIG_PROC_FS */
1750
1751 #ifdef CONFIG_SMP
1752 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1753 int sysctl_stat_interval __read_mostly = HZ;
1754
1755 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1756 static void refresh_vm_stats(struct work_struct *work)
1757 {
1758 refresh_cpu_vm_stats(true);
1759 }
1760
vmstat_refresh(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1761 int vmstat_refresh(struct ctl_table *table, int write,
1762 void __user *buffer, size_t *lenp, loff_t *ppos)
1763 {
1764 long val;
1765 int err;
1766 int i;
1767
1768 /*
1769 * The regular update, every sysctl_stat_interval, may come later
1770 * than expected: leaving a significant amount in per_cpu buckets.
1771 * This is particularly misleading when checking a quantity of HUGE
1772 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1773 * which can equally be echo'ed to or cat'ted from (by root),
1774 * can be used to update the stats just before reading them.
1775 *
1776 * Oh, and since global_zone_page_state() etc. are so careful to hide
1777 * transiently negative values, report an error here if any of
1778 * the stats is negative, so we know to go looking for imbalance.
1779 */
1780 err = schedule_on_each_cpu(refresh_vm_stats);
1781 if (err)
1782 return err;
1783 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1784 val = atomic_long_read(&vm_zone_stat[i]);
1785 if (val < 0) {
1786 pr_warn("%s: %s %ld\n",
1787 __func__, vmstat_text[i], val);
1788 err = -EINVAL;
1789 }
1790 }
1791 #ifdef CONFIG_NUMA
1792 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1793 val = atomic_long_read(&vm_numa_stat[i]);
1794 if (val < 0) {
1795 pr_warn("%s: %s %ld\n",
1796 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1797 err = -EINVAL;
1798 }
1799 }
1800 #endif
1801 if (err)
1802 return err;
1803 if (write)
1804 *ppos += *lenp;
1805 else
1806 *lenp = 0;
1807 return 0;
1808 }
1809 #endif /* CONFIG_PROC_FS */
1810
vmstat_update(struct work_struct * w)1811 static void vmstat_update(struct work_struct *w)
1812 {
1813 if (refresh_cpu_vm_stats(true)) {
1814 /*
1815 * Counters were updated so we expect more updates
1816 * to occur in the future. Keep on running the
1817 * update worker thread.
1818 */
1819 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1820 this_cpu_ptr(&vmstat_work),
1821 round_jiffies_relative(sysctl_stat_interval));
1822 }
1823 }
1824
1825 /*
1826 * Switch off vmstat processing and then fold all the remaining differentials
1827 * until the diffs stay at zero. The function is used by NOHZ and can only be
1828 * invoked when tick processing is not active.
1829 */
1830 /*
1831 * Check if the diffs for a certain cpu indicate that
1832 * an update is needed.
1833 */
need_update(int cpu)1834 static bool need_update(int cpu)
1835 {
1836 struct zone *zone;
1837
1838 for_each_populated_zone(zone) {
1839 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1840
1841 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1842 #ifdef CONFIG_NUMA
1843 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1844 #endif
1845
1846 /*
1847 * The fast way of checking if there are any vmstat diffs.
1848 */
1849 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1850 sizeof(p->vm_stat_diff[0])))
1851 return true;
1852 #ifdef CONFIG_NUMA
1853 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1854 sizeof(p->vm_numa_stat_diff[0])))
1855 return true;
1856 #endif
1857 }
1858 return false;
1859 }
1860
1861 /*
1862 * Switch off vmstat processing and then fold all the remaining differentials
1863 * until the diffs stay at zero. The function is used by NOHZ and can only be
1864 * invoked when tick processing is not active.
1865 */
quiet_vmstat(void)1866 void quiet_vmstat(void)
1867 {
1868 if (system_state != SYSTEM_RUNNING)
1869 return;
1870
1871 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1872 return;
1873
1874 if (!need_update(smp_processor_id()))
1875 return;
1876
1877 /*
1878 * Just refresh counters and do not care about the pending delayed
1879 * vmstat_update. It doesn't fire that often to matter and canceling
1880 * it would be too expensive from this path.
1881 * vmstat_shepherd will take care about that for us.
1882 */
1883 refresh_cpu_vm_stats(false);
1884 }
1885
1886 /*
1887 * Shepherd worker thread that checks the
1888 * differentials of processors that have their worker
1889 * threads for vm statistics updates disabled because of
1890 * inactivity.
1891 */
1892 static void vmstat_shepherd(struct work_struct *w);
1893
1894 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1895
vmstat_shepherd(struct work_struct * w)1896 static void vmstat_shepherd(struct work_struct *w)
1897 {
1898 int cpu;
1899
1900 get_online_cpus();
1901 /* Check processors whose vmstat worker threads have been disabled */
1902 for_each_online_cpu(cpu) {
1903 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1904
1905 if (!delayed_work_pending(dw) && need_update(cpu))
1906 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1907 }
1908 put_online_cpus();
1909
1910 schedule_delayed_work(&shepherd,
1911 round_jiffies_relative(sysctl_stat_interval));
1912 }
1913
start_shepherd_timer(void)1914 static void __init start_shepherd_timer(void)
1915 {
1916 int cpu;
1917
1918 for_each_possible_cpu(cpu)
1919 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1920 vmstat_update);
1921
1922 schedule_delayed_work(&shepherd,
1923 round_jiffies_relative(sysctl_stat_interval));
1924 }
1925
init_cpu_node_state(void)1926 static void __init init_cpu_node_state(void)
1927 {
1928 int node;
1929
1930 for_each_online_node(node) {
1931 if (cpumask_weight(cpumask_of_node(node)) > 0)
1932 node_set_state(node, N_CPU);
1933 }
1934 }
1935
vmstat_cpu_online(unsigned int cpu)1936 static int vmstat_cpu_online(unsigned int cpu)
1937 {
1938 refresh_zone_stat_thresholds();
1939 node_set_state(cpu_to_node(cpu), N_CPU);
1940 return 0;
1941 }
1942
vmstat_cpu_down_prep(unsigned int cpu)1943 static int vmstat_cpu_down_prep(unsigned int cpu)
1944 {
1945 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1946 return 0;
1947 }
1948
vmstat_cpu_dead(unsigned int cpu)1949 static int vmstat_cpu_dead(unsigned int cpu)
1950 {
1951 const struct cpumask *node_cpus;
1952 int node;
1953
1954 node = cpu_to_node(cpu);
1955
1956 refresh_zone_stat_thresholds();
1957 node_cpus = cpumask_of_node(node);
1958 if (cpumask_weight(node_cpus) > 0)
1959 return 0;
1960
1961 node_clear_state(node, N_CPU);
1962 return 0;
1963 }
1964
1965 #endif
1966
1967 struct workqueue_struct *mm_percpu_wq;
1968
init_mm_internals(void)1969 void __init init_mm_internals(void)
1970 {
1971 int ret __maybe_unused;
1972
1973 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1974
1975 #ifdef CONFIG_SMP
1976 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1977 NULL, vmstat_cpu_dead);
1978 if (ret < 0)
1979 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1980
1981 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1982 vmstat_cpu_online,
1983 vmstat_cpu_down_prep);
1984 if (ret < 0)
1985 pr_err("vmstat: failed to register 'online' hotplug state\n");
1986
1987 get_online_cpus();
1988 init_cpu_node_state();
1989 put_online_cpus();
1990
1991 start_shepherd_timer();
1992 #endif
1993 #ifdef CONFIG_PROC_FS
1994 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
1995 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
1996 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
1997 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
1998 #endif
1999 }
2000
2001 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2002
2003 /*
2004 * Return an index indicating how much of the available free memory is
2005 * unusable for an allocation of the requested size.
2006 */
unusable_free_index(unsigned int order,struct contig_page_info * info)2007 static int unusable_free_index(unsigned int order,
2008 struct contig_page_info *info)
2009 {
2010 /* No free memory is interpreted as all free memory is unusable */
2011 if (info->free_pages == 0)
2012 return 1000;
2013
2014 /*
2015 * Index should be a value between 0 and 1. Return a value to 3
2016 * decimal places.
2017 *
2018 * 0 => no fragmentation
2019 * 1 => high fragmentation
2020 */
2021 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2022
2023 }
2024
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2025 static void unusable_show_print(struct seq_file *m,
2026 pg_data_t *pgdat, struct zone *zone)
2027 {
2028 unsigned int order;
2029 int index;
2030 struct contig_page_info info;
2031
2032 seq_printf(m, "Node %d, zone %8s ",
2033 pgdat->node_id,
2034 zone->name);
2035 for (order = 0; order < MAX_ORDER; ++order) {
2036 fill_contig_page_info(zone, order, &info);
2037 index = unusable_free_index(order, &info);
2038 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2039 }
2040
2041 seq_putc(m, '\n');
2042 }
2043
2044 /*
2045 * Display unusable free space index
2046 *
2047 * The unusable free space index measures how much of the available free
2048 * memory cannot be used to satisfy an allocation of a given size and is a
2049 * value between 0 and 1. The higher the value, the more of free memory is
2050 * unusable and by implication, the worse the external fragmentation is. This
2051 * can be expressed as a percentage by multiplying by 100.
2052 */
unusable_show(struct seq_file * m,void * arg)2053 static int unusable_show(struct seq_file *m, void *arg)
2054 {
2055 pg_data_t *pgdat = (pg_data_t *)arg;
2056
2057 /* check memoryless node */
2058 if (!node_state(pgdat->node_id, N_MEMORY))
2059 return 0;
2060
2061 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2062
2063 return 0;
2064 }
2065
2066 static const struct seq_operations unusable_op = {
2067 .start = frag_start,
2068 .next = frag_next,
2069 .stop = frag_stop,
2070 .show = unusable_show,
2071 };
2072
unusable_open(struct inode * inode,struct file * file)2073 static int unusable_open(struct inode *inode, struct file *file)
2074 {
2075 return seq_open(file, &unusable_op);
2076 }
2077
2078 static const struct file_operations unusable_file_ops = {
2079 .open = unusable_open,
2080 .read = seq_read,
2081 .llseek = seq_lseek,
2082 .release = seq_release,
2083 };
2084
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2085 static void extfrag_show_print(struct seq_file *m,
2086 pg_data_t *pgdat, struct zone *zone)
2087 {
2088 unsigned int order;
2089 int index;
2090
2091 /* Alloc on stack as interrupts are disabled for zone walk */
2092 struct contig_page_info info;
2093
2094 seq_printf(m, "Node %d, zone %8s ",
2095 pgdat->node_id,
2096 zone->name);
2097 for (order = 0; order < MAX_ORDER; ++order) {
2098 fill_contig_page_info(zone, order, &info);
2099 index = __fragmentation_index(order, &info);
2100 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2101 }
2102
2103 seq_putc(m, '\n');
2104 }
2105
2106 /*
2107 * Display fragmentation index for orders that allocations would fail for
2108 */
extfrag_show(struct seq_file * m,void * arg)2109 static int extfrag_show(struct seq_file *m, void *arg)
2110 {
2111 pg_data_t *pgdat = (pg_data_t *)arg;
2112
2113 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2114
2115 return 0;
2116 }
2117
2118 static const struct seq_operations extfrag_op = {
2119 .start = frag_start,
2120 .next = frag_next,
2121 .stop = frag_stop,
2122 .show = extfrag_show,
2123 };
2124
extfrag_open(struct inode * inode,struct file * file)2125 static int extfrag_open(struct inode *inode, struct file *file)
2126 {
2127 return seq_open(file, &extfrag_op);
2128 }
2129
2130 static const struct file_operations extfrag_file_ops = {
2131 .open = extfrag_open,
2132 .read = seq_read,
2133 .llseek = seq_lseek,
2134 .release = seq_release,
2135 };
2136
extfrag_debug_init(void)2137 static int __init extfrag_debug_init(void)
2138 {
2139 struct dentry *extfrag_debug_root;
2140
2141 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2142
2143 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2144 &unusable_file_ops);
2145
2146 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2147 &extfrag_file_ops);
2148
2149 return 0;
2150 }
2151
2152 module_init(extfrag_debug_init);
2153 #endif
2154