1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18
19 #include "../workqueue_internal.h"
20 #include "../smpboot.h"
21
22 #include "pelt.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26
27 /*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42 * Debugging: various feature bits
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
47 */
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 0;
53 #undef SCHED_FEAT
54 #endif
55
56 /*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
62 /*
63 * period over which we measure -rt task CPU usage in us.
64 * default: 1s
65 */
66 unsigned int sysctl_sched_rt_period = 1000000;
67
68 __read_mostly int scheduler_running;
69
70 /*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74 int sysctl_sched_rt_runtime = 950000;
75
76 /*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 __acquires(rq->lock)
81 {
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 rq_pin_lock(rq, rf);
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98 }
99
100 /*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106 {
107 struct rq *rq;
108
109 for (;;) {
110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
123 * If we observe the old CPU in task_rq_lock(), the acquire of
124 * the old rq->lock will fully serialize against the stores.
125 *
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 rq_pin_lock(rq, rf);
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140 }
141
142 /*
143 * RQ-clock updating methods:
144 */
145
update_rq_clock_task(struct rq * rq,s64 delta)146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((¶virt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189 #endif
190
191 rq->clock_task += delta;
192
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 update_rq_clock_pelt(rq, delta);
198 }
199
update_rq_clock(struct rq * rq)200 void update_rq_clock(struct rq *rq)
201 {
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209 #ifdef CONFIG_SCHED_DEBUG
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220 }
221
222
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225 * Use HR-timers to deliver accurate preemption points.
226 */
227
hrtick_clear(struct rq * rq)228 static void hrtick_clear(struct rq *rq)
229 {
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
232 }
233
234 /*
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
237 */
hrtick(struct hrtimer * timer)238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 struct rq_flags rf;
242
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244
245 rq_lock(rq, &rf);
246 update_rq_clock(rq);
247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 rq_unlock(rq, &rf);
249
250 return HRTIMER_NORESTART;
251 }
252
253 #ifdef CONFIG_SMP
254
__hrtick_restart(struct rq * rq)255 static void __hrtick_restart(struct rq *rq)
256 {
257 struct hrtimer *timer = &rq->hrtick_timer;
258
259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261
262 /*
263 * called from hardirq (IPI) context
264 */
__hrtick_start(void * arg)265 static void __hrtick_start(void *arg)
266 {
267 struct rq *rq = arg;
268 struct rq_flags rf;
269
270 rq_lock(rq, &rf);
271 __hrtick_restart(rq);
272 rq->hrtick_csd_pending = 0;
273 rq_unlock(rq, &rf);
274 }
275
276 /*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
hrtick_start(struct rq * rq,u64 delay)281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 struct hrtimer *timer = &rq->hrtick_timer;
284 ktime_t time;
285 s64 delta;
286
287 /*
288 * Don't schedule slices shorter than 10000ns, that just
289 * doesn't make sense and can cause timer DoS.
290 */
291 delta = max_t(s64, delay, 10000LL);
292 time = ktime_add_ns(timer->base->get_time(), delta);
293
294 hrtimer_set_expires(timer, time);
295
296 if (rq == this_rq()) {
297 __hrtick_restart(rq);
298 } else if (!rq->hrtick_csd_pending) {
299 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
300 rq->hrtick_csd_pending = 1;
301 }
302 }
303
304 #else
305 /*
306 * Called to set the hrtick timer state.
307 *
308 * called with rq->lock held and irqs disabled
309 */
hrtick_start(struct rq * rq,u64 delay)310 void hrtick_start(struct rq *rq, u64 delay)
311 {
312 /*
313 * Don't schedule slices shorter than 10000ns, that just
314 * doesn't make sense. Rely on vruntime for fairness.
315 */
316 delay = max_t(u64, delay, 10000LL);
317 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
318 HRTIMER_MODE_REL_PINNED_HARD);
319 }
320 #endif /* CONFIG_SMP */
321
hrtick_rq_init(struct rq * rq)322 static void hrtick_rq_init(struct rq *rq)
323 {
324 #ifdef CONFIG_SMP
325 rq->hrtick_csd_pending = 0;
326
327 rq->hrtick_csd.flags = 0;
328 rq->hrtick_csd.func = __hrtick_start;
329 rq->hrtick_csd.info = rq;
330 #endif
331
332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 rq->hrtick_timer.function = hrtick;
334 }
335 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339
hrtick_rq_init(struct rq * rq)340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif /* CONFIG_SCHED_HRTICK */
344
345 /*
346 * cmpxchg based fetch_or, macro so it works for different integer types
347 */
348 #define fetch_or(ptr, mask) \
349 ({ \
350 typeof(ptr) _ptr = (ptr); \
351 typeof(mask) _mask = (mask); \
352 typeof(*_ptr) _old, _val = *_ptr; \
353 \
354 for (;;) { \
355 _old = cmpxchg(_ptr, _val, _val | _mask); \
356 if (_old == _val) \
357 break; \
358 _val = _old; \
359 } \
360 _old; \
361 })
362
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366 * this avoids any races wrt polling state changes and thereby avoids
367 * spurious IPIs.
368 */
set_nr_and_not_polling(struct task_struct * p)369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 struct thread_info *ti = task_thread_info(p);
372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374
375 /*
376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 *
378 * If this returns true, then the idle task promises to call
379 * sched_ttwu_pending() and reschedule soon.
380 */
set_nr_if_polling(struct task_struct * p)381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 struct thread_info *ti = task_thread_info(p);
384 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385
386 for (;;) {
387 if (!(val & _TIF_POLLING_NRFLAG))
388 return false;
389 if (val & _TIF_NEED_RESCHED)
390 return true;
391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 if (old == val)
393 break;
394 val = old;
395 }
396 return true;
397 }
398
399 #else
set_nr_and_not_polling(struct task_struct * p)400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 set_tsk_need_resched(p);
403 return true;
404 }
405
406 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 return false;
410 }
411 #endif
412 #endif
413
__wake_q_add(struct wake_q_head * head,struct task_struct * task)414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 struct wake_q_node *node = &task->wake_q;
417
418 /*
419 * Atomically grab the task, if ->wake_q is !nil already it means
420 * its already queued (either by us or someone else) and will get the
421 * wakeup due to that.
422 *
423 * In order to ensure that a pending wakeup will observe our pending
424 * state, even in the failed case, an explicit smp_mb() must be used.
425 */
426 smp_mb__before_atomic();
427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 return false;
429
430 /*
431 * The head is context local, there can be no concurrency.
432 */
433 *head->lastp = node;
434 head->lastp = &node->next;
435 return true;
436 }
437
438 /**
439 * wake_q_add() - queue a wakeup for 'later' waking.
440 * @head: the wake_q_head to add @task to
441 * @task: the task to queue for 'later' wakeup
442 *
443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445 * instantly.
446 *
447 * This function must be used as-if it were wake_up_process(); IOW the task
448 * must be ready to be woken at this location.
449 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 if (__wake_q_add(head, task))
453 get_task_struct(task);
454 }
455
456 /**
457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458 * @head: the wake_q_head to add @task to
459 * @task: the task to queue for 'later' wakeup
460 *
461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463 * instantly.
464 *
465 * This function must be used as-if it were wake_up_process(); IOW the task
466 * must be ready to be woken at this location.
467 *
468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469 * that already hold reference to @task can call the 'safe' version and trust
470 * wake_q to do the right thing depending whether or not the @task is already
471 * queued for wakeup.
472 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 if (!__wake_q_add(head, task))
476 put_task_struct(task);
477 }
478
wake_up_q(struct wake_q_head * head)479 void wake_up_q(struct wake_q_head *head)
480 {
481 struct wake_q_node *node = head->first;
482
483 while (node != WAKE_Q_TAIL) {
484 struct task_struct *task;
485
486 task = container_of(node, struct task_struct, wake_q);
487 BUG_ON(!task);
488 /* Task can safely be re-inserted now: */
489 node = node->next;
490 task->wake_q.next = NULL;
491
492 /*
493 * wake_up_process() executes a full barrier, which pairs with
494 * the queueing in wake_q_add() so as not to miss wakeups.
495 */
496 wake_up_process(task);
497 put_task_struct(task);
498 }
499 }
500
501 /*
502 * resched_curr - mark rq's current task 'to be rescheduled now'.
503 *
504 * On UP this means the setting of the need_resched flag, on SMP it
505 * might also involve a cross-CPU call to trigger the scheduler on
506 * the target CPU.
507 */
resched_curr(struct rq * rq)508 void resched_curr(struct rq *rq)
509 {
510 struct task_struct *curr = rq->curr;
511 int cpu;
512
513 lockdep_assert_held(&rq->lock);
514
515 if (test_tsk_need_resched(curr))
516 return;
517
518 cpu = cpu_of(rq);
519
520 if (cpu == smp_processor_id()) {
521 set_tsk_need_resched(curr);
522 set_preempt_need_resched();
523 return;
524 }
525
526 if (set_nr_and_not_polling(curr))
527 smp_send_reschedule(cpu);
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
530 }
531
resched_cpu(int cpu)532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 raw_spin_lock_irqsave(&rq->lock, flags);
538 if (cpu_online(cpu) || cpu == smp_processor_id())
539 resched_curr(rq);
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546 * In the semi idle case, use the nearest busy CPU for migrating timers
547 * from an idle CPU. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle CPU will add more delays to the timers than intended
551 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552 */
get_nohz_timer_target(void)553 int get_nohz_timer_target(void)
554 {
555 int i, cpu = smp_processor_id();
556 struct sched_domain *sd;
557
558 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
559 return cpu;
560
561 rcu_read_lock();
562 for_each_domain(cpu, sd) {
563 for_each_cpu(i, sched_domain_span(sd)) {
564 if (cpu == i)
565 continue;
566
567 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573
574 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
575 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580
581 /*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
wake_up_idle_cpu(int cpu)591 static void wake_up_idle_cpu(int cpu)
592 {
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 if (set_nr_and_not_polling(rq->idle))
599 smp_send_reschedule(cpu);
600 else
601 trace_sched_wake_idle_without_ipi(cpu);
602 }
603
wake_up_full_nohz_cpu(int cpu)604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 /*
607 * We just need the target to call irq_exit() and re-evaluate
608 * the next tick. The nohz full kick at least implies that.
609 * If needed we can still optimize that later with an
610 * empty IRQ.
611 */
612 if (cpu_is_offline(cpu))
613 return true; /* Don't try to wake offline CPUs. */
614 if (tick_nohz_full_cpu(cpu)) {
615 if (cpu != smp_processor_id() ||
616 tick_nohz_tick_stopped())
617 tick_nohz_full_kick_cpu(cpu);
618 return true;
619 }
620
621 return false;
622 }
623
624 /*
625 * Wake up the specified CPU. If the CPU is going offline, it is the
626 * caller's responsibility to deal with the lost wakeup, for example,
627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628 */
wake_up_nohz_cpu(int cpu)629 void wake_up_nohz_cpu(int cpu)
630 {
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633 }
634
got_nohz_idle_kick(void)635 static inline bool got_nohz_idle_kick(void)
636 {
637 int cpu = smp_processor_id();
638
639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 return false;
651 }
652
653 #else /* CONFIG_NO_HZ_COMMON */
654
got_nohz_idle_kick(void)655 static inline bool got_nohz_idle_kick(void)
656 {
657 return false;
658 }
659
660 #endif /* CONFIG_NO_HZ_COMMON */
661
662 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 int fifo_nr_running;
666
667 /* Deadline tasks, even if single, need the tick */
668 if (rq->dl.dl_nr_running)
669 return false;
670
671 /*
672 * If there are more than one RR tasks, we need the tick to effect the
673 * actual RR behaviour.
674 */
675 if (rq->rt.rr_nr_running) {
676 if (rq->rt.rr_nr_running == 1)
677 return true;
678 else
679 return false;
680 }
681
682 /*
683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 * forced preemption between FIFO tasks.
685 */
686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 if (fifo_nr_running)
688 return true;
689
690 /*
691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 * if there's more than one we need the tick for involuntary
693 * preemption.
694 */
695 if (rq->nr_running > 1)
696 return false;
697
698 return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706 * Iterate task_group tree rooted at *from, calling @down when first entering a
707 * node and @up when leaving it for the final time.
708 *
709 * Caller must hold rcu_lock or sufficient equivalent.
710 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)711 int walk_tg_tree_from(struct task_group *from,
712 tg_visitor down, tg_visitor up, void *data)
713 {
714 struct task_group *parent, *child;
715 int ret;
716
717 parent = from;
718
719 down:
720 ret = (*down)(parent, data);
721 if (ret)
722 goto out;
723 list_for_each_entry_rcu(child, &parent->children, siblings) {
724 parent = child;
725 goto down;
726
727 up:
728 continue;
729 }
730 ret = (*up)(parent, data);
731 if (ret || parent == from)
732 goto out;
733
734 child = parent;
735 parent = parent->parent;
736 if (parent)
737 goto up;
738 out:
739 return ret;
740 }
741
tg_nop(struct task_group * tg,void * data)742 int tg_nop(struct task_group *tg, void *data)
743 {
744 return 0;
745 }
746 #endif
747
set_load_weight(struct task_struct * p,bool update_load)748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 int prio = p->static_prio - MAX_RT_PRIO;
751 struct load_weight *load = &p->se.load;
752
753 /*
754 * SCHED_IDLE tasks get minimal weight:
755 */
756 if (task_has_idle_policy(p)) {
757 load->weight = scale_load(WEIGHT_IDLEPRIO);
758 load->inv_weight = WMULT_IDLEPRIO;
759 p->se.runnable_weight = load->weight;
760 return;
761 }
762
763 /*
764 * SCHED_OTHER tasks have to update their load when changing their
765 * weight
766 */
767 if (update_load && p->sched_class == &fair_sched_class) {
768 reweight_task(p, prio);
769 } else {
770 load->weight = scale_load(sched_prio_to_weight[prio]);
771 load->inv_weight = sched_prio_to_wmult[prio];
772 p->se.runnable_weight = load->weight;
773 }
774 }
775
776 #ifdef CONFIG_UCLAMP_TASK
777 /*
778 * Serializes updates of utilization clamp values
779 *
780 * The (slow-path) user-space triggers utilization clamp value updates which
781 * can require updates on (fast-path) scheduler's data structures used to
782 * support enqueue/dequeue operations.
783 * While the per-CPU rq lock protects fast-path update operations, user-space
784 * requests are serialized using a mutex to reduce the risk of conflicting
785 * updates or API abuses.
786 */
787 static DEFINE_MUTEX(uclamp_mutex);
788
789 /* Max allowed minimum utilization */
790 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
791
792 /* Max allowed maximum utilization */
793 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
794
795 /* All clamps are required to be less or equal than these values */
796 static struct uclamp_se uclamp_default[UCLAMP_CNT];
797
798 /* Integer rounded range for each bucket */
799 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
800
801 #define for_each_clamp_id(clamp_id) \
802 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
803
uclamp_bucket_id(unsigned int clamp_value)804 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
805 {
806 return clamp_value / UCLAMP_BUCKET_DELTA;
807 }
808
uclamp_bucket_base_value(unsigned int clamp_value)809 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
810 {
811 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
812 }
813
uclamp_none(enum uclamp_id clamp_id)814 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
815 {
816 if (clamp_id == UCLAMP_MIN)
817 return 0;
818 return SCHED_CAPACITY_SCALE;
819 }
820
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)821 static inline void uclamp_se_set(struct uclamp_se *uc_se,
822 unsigned int value, bool user_defined)
823 {
824 uc_se->value = value;
825 uc_se->bucket_id = uclamp_bucket_id(value);
826 uc_se->user_defined = user_defined;
827 }
828
829 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)830 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
831 unsigned int clamp_value)
832 {
833 /*
834 * Avoid blocked utilization pushing up the frequency when we go
835 * idle (which drops the max-clamp) by retaining the last known
836 * max-clamp.
837 */
838 if (clamp_id == UCLAMP_MAX) {
839 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
840 return clamp_value;
841 }
842
843 return uclamp_none(UCLAMP_MIN);
844 }
845
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)846 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
847 unsigned int clamp_value)
848 {
849 /* Reset max-clamp retention only on idle exit */
850 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
851 return;
852
853 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
854 }
855
856 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)857 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
858 unsigned int clamp_value)
859 {
860 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
861 int bucket_id = UCLAMP_BUCKETS - 1;
862
863 /*
864 * Since both min and max clamps are max aggregated, find the
865 * top most bucket with tasks in.
866 */
867 for ( ; bucket_id >= 0; bucket_id--) {
868 if (!bucket[bucket_id].tasks)
869 continue;
870 return bucket[bucket_id].value;
871 }
872
873 /* No tasks -- default clamp values */
874 return uclamp_idle_value(rq, clamp_id, clamp_value);
875 }
876
877 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)878 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
879 {
880 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
881 #ifdef CONFIG_UCLAMP_TASK_GROUP
882 struct uclamp_se uc_max;
883
884 /*
885 * Tasks in autogroups or root task group will be
886 * restricted by system defaults.
887 */
888 if (task_group_is_autogroup(task_group(p)))
889 return uc_req;
890 if (task_group(p) == &root_task_group)
891 return uc_req;
892
893 uc_max = task_group(p)->uclamp[clamp_id];
894 if (uc_req.value > uc_max.value || !uc_req.user_defined)
895 return uc_max;
896 #endif
897
898 return uc_req;
899 }
900
901 /*
902 * The effective clamp bucket index of a task depends on, by increasing
903 * priority:
904 * - the task specific clamp value, when explicitly requested from userspace
905 * - the task group effective clamp value, for tasks not either in the root
906 * group or in an autogroup
907 * - the system default clamp value, defined by the sysadmin
908 */
909 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)910 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
911 {
912 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
913 struct uclamp_se uc_max = uclamp_default[clamp_id];
914
915 /* System default restrictions always apply */
916 if (unlikely(uc_req.value > uc_max.value))
917 return uc_max;
918
919 return uc_req;
920 }
921
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)922 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
923 {
924 struct uclamp_se uc_eff;
925
926 /* Task currently refcounted: use back-annotated (effective) value */
927 if (p->uclamp[clamp_id].active)
928 return (unsigned long)p->uclamp[clamp_id].value;
929
930 uc_eff = uclamp_eff_get(p, clamp_id);
931
932 return (unsigned long)uc_eff.value;
933 }
934
935 /*
936 * When a task is enqueued on a rq, the clamp bucket currently defined by the
937 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
938 * updates the rq's clamp value if required.
939 *
940 * Tasks can have a task-specific value requested from user-space, track
941 * within each bucket the maximum value for tasks refcounted in it.
942 * This "local max aggregation" allows to track the exact "requested" value
943 * for each bucket when all its RUNNABLE tasks require the same clamp.
944 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)945 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
946 enum uclamp_id clamp_id)
947 {
948 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
949 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
950 struct uclamp_bucket *bucket;
951
952 lockdep_assert_held(&rq->lock);
953
954 /* Update task effective clamp */
955 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
956
957 bucket = &uc_rq->bucket[uc_se->bucket_id];
958 bucket->tasks++;
959 uc_se->active = true;
960
961 uclamp_idle_reset(rq, clamp_id, uc_se->value);
962
963 /*
964 * Local max aggregation: rq buckets always track the max
965 * "requested" clamp value of its RUNNABLE tasks.
966 */
967 if (bucket->tasks == 1 || uc_se->value > bucket->value)
968 bucket->value = uc_se->value;
969
970 if (uc_se->value > READ_ONCE(uc_rq->value))
971 WRITE_ONCE(uc_rq->value, uc_se->value);
972 }
973
974 /*
975 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
976 * is released. If this is the last task reference counting the rq's max
977 * active clamp value, then the rq's clamp value is updated.
978 *
979 * Both refcounted tasks and rq's cached clamp values are expected to be
980 * always valid. If it's detected they are not, as defensive programming,
981 * enforce the expected state and warn.
982 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)983 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
984 enum uclamp_id clamp_id)
985 {
986 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
987 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
988 struct uclamp_bucket *bucket;
989 unsigned int bkt_clamp;
990 unsigned int rq_clamp;
991
992 lockdep_assert_held(&rq->lock);
993
994 bucket = &uc_rq->bucket[uc_se->bucket_id];
995 SCHED_WARN_ON(!bucket->tasks);
996 if (likely(bucket->tasks))
997 bucket->tasks--;
998 uc_se->active = false;
999
1000 /*
1001 * Keep "local max aggregation" simple and accept to (possibly)
1002 * overboost some RUNNABLE tasks in the same bucket.
1003 * The rq clamp bucket value is reset to its base value whenever
1004 * there are no more RUNNABLE tasks refcounting it.
1005 */
1006 if (likely(bucket->tasks))
1007 return;
1008
1009 rq_clamp = READ_ONCE(uc_rq->value);
1010 /*
1011 * Defensive programming: this should never happen. If it happens,
1012 * e.g. due to future modification, warn and fixup the expected value.
1013 */
1014 SCHED_WARN_ON(bucket->value > rq_clamp);
1015 if (bucket->value >= rq_clamp) {
1016 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1017 WRITE_ONCE(uc_rq->value, bkt_clamp);
1018 }
1019 }
1020
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1021 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1022 {
1023 enum uclamp_id clamp_id;
1024
1025 if (unlikely(!p->sched_class->uclamp_enabled))
1026 return;
1027
1028 for_each_clamp_id(clamp_id)
1029 uclamp_rq_inc_id(rq, p, clamp_id);
1030
1031 /* Reset clamp idle holding when there is one RUNNABLE task */
1032 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1033 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1034 }
1035
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1036 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1037 {
1038 enum uclamp_id clamp_id;
1039
1040 if (unlikely(!p->sched_class->uclamp_enabled))
1041 return;
1042
1043 for_each_clamp_id(clamp_id)
1044 uclamp_rq_dec_id(rq, p, clamp_id);
1045 }
1046
1047 static inline void
uclamp_update_active(struct task_struct * p,enum uclamp_id clamp_id)1048 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1049 {
1050 struct rq_flags rf;
1051 struct rq *rq;
1052
1053 /*
1054 * Lock the task and the rq where the task is (or was) queued.
1055 *
1056 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1057 * price to pay to safely serialize util_{min,max} updates with
1058 * enqueues, dequeues and migration operations.
1059 * This is the same locking schema used by __set_cpus_allowed_ptr().
1060 */
1061 rq = task_rq_lock(p, &rf);
1062
1063 /*
1064 * Setting the clamp bucket is serialized by task_rq_lock().
1065 * If the task is not yet RUNNABLE and its task_struct is not
1066 * affecting a valid clamp bucket, the next time it's enqueued,
1067 * it will already see the updated clamp bucket value.
1068 */
1069 if (p->uclamp[clamp_id].active) {
1070 uclamp_rq_dec_id(rq, p, clamp_id);
1071 uclamp_rq_inc_id(rq, p, clamp_id);
1072 }
1073
1074 task_rq_unlock(rq, p, &rf);
1075 }
1076
1077 #ifdef CONFIG_UCLAMP_TASK_GROUP
1078 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css,unsigned int clamps)1079 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1080 unsigned int clamps)
1081 {
1082 enum uclamp_id clamp_id;
1083 struct css_task_iter it;
1084 struct task_struct *p;
1085
1086 css_task_iter_start(css, 0, &it);
1087 while ((p = css_task_iter_next(&it))) {
1088 for_each_clamp_id(clamp_id) {
1089 if ((0x1 << clamp_id) & clamps)
1090 uclamp_update_active(p, clamp_id);
1091 }
1092 }
1093 css_task_iter_end(&it);
1094 }
1095
1096 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1097 static void uclamp_update_root_tg(void)
1098 {
1099 struct task_group *tg = &root_task_group;
1100
1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1102 sysctl_sched_uclamp_util_min, false);
1103 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1104 sysctl_sched_uclamp_util_max, false);
1105
1106 rcu_read_lock();
1107 cpu_util_update_eff(&root_task_group.css);
1108 rcu_read_unlock();
1109 }
1110 #else
uclamp_update_root_tg(void)1111 static void uclamp_update_root_tg(void) { }
1112 #endif
1113
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1114 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1115 void __user *buffer, size_t *lenp,
1116 loff_t *ppos)
1117 {
1118 bool update_root_tg = false;
1119 int old_min, old_max;
1120 int result;
1121
1122 mutex_lock(&uclamp_mutex);
1123 old_min = sysctl_sched_uclamp_util_min;
1124 old_max = sysctl_sched_uclamp_util_max;
1125
1126 result = proc_dointvec(table, write, buffer, lenp, ppos);
1127 if (result)
1128 goto undo;
1129 if (!write)
1130 goto done;
1131
1132 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1133 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1134 result = -EINVAL;
1135 goto undo;
1136 }
1137
1138 if (old_min != sysctl_sched_uclamp_util_min) {
1139 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1140 sysctl_sched_uclamp_util_min, false);
1141 update_root_tg = true;
1142 }
1143 if (old_max != sysctl_sched_uclamp_util_max) {
1144 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1145 sysctl_sched_uclamp_util_max, false);
1146 update_root_tg = true;
1147 }
1148
1149 if (update_root_tg)
1150 uclamp_update_root_tg();
1151
1152 /*
1153 * We update all RUNNABLE tasks only when task groups are in use.
1154 * Otherwise, keep it simple and do just a lazy update at each next
1155 * task enqueue time.
1156 */
1157
1158 goto done;
1159
1160 undo:
1161 sysctl_sched_uclamp_util_min = old_min;
1162 sysctl_sched_uclamp_util_max = old_max;
1163 done:
1164 mutex_unlock(&uclamp_mutex);
1165
1166 return result;
1167 }
1168
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1169 static int uclamp_validate(struct task_struct *p,
1170 const struct sched_attr *attr)
1171 {
1172 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1173 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1174
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1176 lower_bound = attr->sched_util_min;
1177 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1178 upper_bound = attr->sched_util_max;
1179
1180 if (lower_bound > upper_bound)
1181 return -EINVAL;
1182 if (upper_bound > SCHED_CAPACITY_SCALE)
1183 return -EINVAL;
1184
1185 return 0;
1186 }
1187
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1188 static void __setscheduler_uclamp(struct task_struct *p,
1189 const struct sched_attr *attr)
1190 {
1191 enum uclamp_id clamp_id;
1192
1193 /*
1194 * On scheduling class change, reset to default clamps for tasks
1195 * without a task-specific value.
1196 */
1197 for_each_clamp_id(clamp_id) {
1198 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1199 unsigned int clamp_value = uclamp_none(clamp_id);
1200
1201 /* Keep using defined clamps across class changes */
1202 if (uc_se->user_defined)
1203 continue;
1204
1205 /* By default, RT tasks always get 100% boost */
1206 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1207 clamp_value = uclamp_none(UCLAMP_MAX);
1208
1209 uclamp_se_set(uc_se, clamp_value, false);
1210 }
1211
1212 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1213 return;
1214
1215 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1216 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1217 attr->sched_util_min, true);
1218 }
1219
1220 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1221 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1222 attr->sched_util_max, true);
1223 }
1224 }
1225
uclamp_fork(struct task_struct * p)1226 static void uclamp_fork(struct task_struct *p)
1227 {
1228 enum uclamp_id clamp_id;
1229
1230 for_each_clamp_id(clamp_id)
1231 p->uclamp[clamp_id].active = false;
1232
1233 if (likely(!p->sched_reset_on_fork))
1234 return;
1235
1236 for_each_clamp_id(clamp_id) {
1237 unsigned int clamp_value = uclamp_none(clamp_id);
1238
1239 /* By default, RT tasks always get 100% boost */
1240 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1241 clamp_value = uclamp_none(UCLAMP_MAX);
1242
1243 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1244 }
1245 }
1246
init_uclamp(void)1247 static void __init init_uclamp(void)
1248 {
1249 struct uclamp_se uc_max = {};
1250 enum uclamp_id clamp_id;
1251 int cpu;
1252
1253 mutex_init(&uclamp_mutex);
1254
1255 for_each_possible_cpu(cpu) {
1256 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1257 cpu_rq(cpu)->uclamp_flags = 0;
1258 }
1259
1260 for_each_clamp_id(clamp_id) {
1261 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1262 uclamp_none(clamp_id), false);
1263 }
1264
1265 /* System defaults allow max clamp values for both indexes */
1266 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1267 for_each_clamp_id(clamp_id) {
1268 uclamp_default[clamp_id] = uc_max;
1269 #ifdef CONFIG_UCLAMP_TASK_GROUP
1270 root_task_group.uclamp_req[clamp_id] = uc_max;
1271 root_task_group.uclamp[clamp_id] = uc_max;
1272 #endif
1273 }
1274 }
1275
1276 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1277 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1278 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1279 static inline int uclamp_validate(struct task_struct *p,
1280 const struct sched_attr *attr)
1281 {
1282 return -EOPNOTSUPP;
1283 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1284 static void __setscheduler_uclamp(struct task_struct *p,
1285 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1286 static inline void uclamp_fork(struct task_struct *p) { }
init_uclamp(void)1287 static inline void init_uclamp(void) { }
1288 #endif /* CONFIG_UCLAMP_TASK */
1289
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1290 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1291 {
1292 if (!(flags & ENQUEUE_NOCLOCK))
1293 update_rq_clock(rq);
1294
1295 if (!(flags & ENQUEUE_RESTORE)) {
1296 sched_info_queued(rq, p);
1297 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1298 }
1299
1300 uclamp_rq_inc(rq, p);
1301 p->sched_class->enqueue_task(rq, p, flags);
1302 }
1303
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1304 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1305 {
1306 if (!(flags & DEQUEUE_NOCLOCK))
1307 update_rq_clock(rq);
1308
1309 if (!(flags & DEQUEUE_SAVE)) {
1310 sched_info_dequeued(rq, p);
1311 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1312 }
1313
1314 uclamp_rq_dec(rq, p);
1315 p->sched_class->dequeue_task(rq, p, flags);
1316 }
1317
activate_task(struct rq * rq,struct task_struct * p,int flags)1318 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1319 {
1320 if (task_contributes_to_load(p))
1321 rq->nr_uninterruptible--;
1322
1323 enqueue_task(rq, p, flags);
1324
1325 p->on_rq = TASK_ON_RQ_QUEUED;
1326 }
1327
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1328 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1329 {
1330 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1331
1332 if (task_contributes_to_load(p))
1333 rq->nr_uninterruptible++;
1334
1335 dequeue_task(rq, p, flags);
1336 }
1337
1338 /*
1339 * __normal_prio - return the priority that is based on the static prio
1340 */
__normal_prio(struct task_struct * p)1341 static inline int __normal_prio(struct task_struct *p)
1342 {
1343 return p->static_prio;
1344 }
1345
1346 /*
1347 * Calculate the expected normal priority: i.e. priority
1348 * without taking RT-inheritance into account. Might be
1349 * boosted by interactivity modifiers. Changes upon fork,
1350 * setprio syscalls, and whenever the interactivity
1351 * estimator recalculates.
1352 */
normal_prio(struct task_struct * p)1353 static inline int normal_prio(struct task_struct *p)
1354 {
1355 int prio;
1356
1357 if (task_has_dl_policy(p))
1358 prio = MAX_DL_PRIO-1;
1359 else if (task_has_rt_policy(p))
1360 prio = MAX_RT_PRIO-1 - p->rt_priority;
1361 else
1362 prio = __normal_prio(p);
1363 return prio;
1364 }
1365
1366 /*
1367 * Calculate the current priority, i.e. the priority
1368 * taken into account by the scheduler. This value might
1369 * be boosted by RT tasks, or might be boosted by
1370 * interactivity modifiers. Will be RT if the task got
1371 * RT-boosted. If not then it returns p->normal_prio.
1372 */
effective_prio(struct task_struct * p)1373 static int effective_prio(struct task_struct *p)
1374 {
1375 p->normal_prio = normal_prio(p);
1376 /*
1377 * If we are RT tasks or we were boosted to RT priority,
1378 * keep the priority unchanged. Otherwise, update priority
1379 * to the normal priority:
1380 */
1381 if (!rt_prio(p->prio))
1382 return p->normal_prio;
1383 return p->prio;
1384 }
1385
1386 /**
1387 * task_curr - is this task currently executing on a CPU?
1388 * @p: the task in question.
1389 *
1390 * Return: 1 if the task is currently executing. 0 otherwise.
1391 */
task_curr(const struct task_struct * p)1392 inline int task_curr(const struct task_struct *p)
1393 {
1394 return cpu_curr(task_cpu(p)) == p;
1395 }
1396
1397 /*
1398 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1399 * use the balance_callback list if you want balancing.
1400 *
1401 * this means any call to check_class_changed() must be followed by a call to
1402 * balance_callback().
1403 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1404 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1405 const struct sched_class *prev_class,
1406 int oldprio)
1407 {
1408 if (prev_class != p->sched_class) {
1409 if (prev_class->switched_from)
1410 prev_class->switched_from(rq, p);
1411
1412 p->sched_class->switched_to(rq, p);
1413 } else if (oldprio != p->prio || dl_task(p))
1414 p->sched_class->prio_changed(rq, p, oldprio);
1415 }
1416
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1417 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1418 {
1419 const struct sched_class *class;
1420
1421 if (p->sched_class == rq->curr->sched_class) {
1422 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1423 } else {
1424 for_each_class(class) {
1425 if (class == rq->curr->sched_class)
1426 break;
1427 if (class == p->sched_class) {
1428 resched_curr(rq);
1429 break;
1430 }
1431 }
1432 }
1433
1434 /*
1435 * A queue event has occurred, and we're going to schedule. In
1436 * this case, we can save a useless back to back clock update.
1437 */
1438 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1439 rq_clock_skip_update(rq);
1440 }
1441
1442 #ifdef CONFIG_SMP
1443
is_per_cpu_kthread(struct task_struct * p)1444 static inline bool is_per_cpu_kthread(struct task_struct *p)
1445 {
1446 if (!(p->flags & PF_KTHREAD))
1447 return false;
1448
1449 if (p->nr_cpus_allowed != 1)
1450 return false;
1451
1452 return true;
1453 }
1454
1455 /*
1456 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1457 * __set_cpus_allowed_ptr() and select_fallback_rq().
1458 */
is_cpu_allowed(struct task_struct * p,int cpu)1459 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1460 {
1461 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1462 return false;
1463
1464 if (is_per_cpu_kthread(p))
1465 return cpu_online(cpu);
1466
1467 return cpu_active(cpu);
1468 }
1469
1470 /*
1471 * This is how migration works:
1472 *
1473 * 1) we invoke migration_cpu_stop() on the target CPU using
1474 * stop_one_cpu().
1475 * 2) stopper starts to run (implicitly forcing the migrated thread
1476 * off the CPU)
1477 * 3) it checks whether the migrated task is still in the wrong runqueue.
1478 * 4) if it's in the wrong runqueue then the migration thread removes
1479 * it and puts it into the right queue.
1480 * 5) stopper completes and stop_one_cpu() returns and the migration
1481 * is done.
1482 */
1483
1484 /*
1485 * move_queued_task - move a queued task to new rq.
1486 *
1487 * Returns (locked) new rq. Old rq's lock is released.
1488 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1489 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1490 struct task_struct *p, int new_cpu)
1491 {
1492 lockdep_assert_held(&rq->lock);
1493
1494 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1495 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1496 set_task_cpu(p, new_cpu);
1497 rq_unlock(rq, rf);
1498
1499 rq = cpu_rq(new_cpu);
1500
1501 rq_lock(rq, rf);
1502 BUG_ON(task_cpu(p) != new_cpu);
1503 enqueue_task(rq, p, 0);
1504 p->on_rq = TASK_ON_RQ_QUEUED;
1505 check_preempt_curr(rq, p, 0);
1506
1507 return rq;
1508 }
1509
1510 struct migration_arg {
1511 struct task_struct *task;
1512 int dest_cpu;
1513 };
1514
1515 /*
1516 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1517 * this because either it can't run here any more (set_cpus_allowed()
1518 * away from this CPU, or CPU going down), or because we're
1519 * attempting to rebalance this task on exec (sched_exec).
1520 *
1521 * So we race with normal scheduler movements, but that's OK, as long
1522 * as the task is no longer on this CPU.
1523 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1524 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1525 struct task_struct *p, int dest_cpu)
1526 {
1527 /* Affinity changed (again). */
1528 if (!is_cpu_allowed(p, dest_cpu))
1529 return rq;
1530
1531 update_rq_clock(rq);
1532 rq = move_queued_task(rq, rf, p, dest_cpu);
1533
1534 return rq;
1535 }
1536
1537 /*
1538 * migration_cpu_stop - this will be executed by a highprio stopper thread
1539 * and performs thread migration by bumping thread off CPU then
1540 * 'pushing' onto another runqueue.
1541 */
migration_cpu_stop(void * data)1542 static int migration_cpu_stop(void *data)
1543 {
1544 struct migration_arg *arg = data;
1545 struct task_struct *p = arg->task;
1546 struct rq *rq = this_rq();
1547 struct rq_flags rf;
1548
1549 /*
1550 * The original target CPU might have gone down and we might
1551 * be on another CPU but it doesn't matter.
1552 */
1553 local_irq_disable();
1554 /*
1555 * We need to explicitly wake pending tasks before running
1556 * __migrate_task() such that we will not miss enforcing cpus_ptr
1557 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1558 */
1559 sched_ttwu_pending();
1560
1561 raw_spin_lock(&p->pi_lock);
1562 rq_lock(rq, &rf);
1563 /*
1564 * If task_rq(p) != rq, it cannot be migrated here, because we're
1565 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1566 * we're holding p->pi_lock.
1567 */
1568 if (task_rq(p) == rq) {
1569 if (task_on_rq_queued(p))
1570 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1571 else
1572 p->wake_cpu = arg->dest_cpu;
1573 }
1574 rq_unlock(rq, &rf);
1575 raw_spin_unlock(&p->pi_lock);
1576
1577 local_irq_enable();
1578 return 0;
1579 }
1580
1581 /*
1582 * sched_class::set_cpus_allowed must do the below, but is not required to
1583 * actually call this function.
1584 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1585 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1586 {
1587 cpumask_copy(&p->cpus_mask, new_mask);
1588 p->nr_cpus_allowed = cpumask_weight(new_mask);
1589 }
1590
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1591 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1592 {
1593 struct rq *rq = task_rq(p);
1594 bool queued, running;
1595
1596 lockdep_assert_held(&p->pi_lock);
1597
1598 queued = task_on_rq_queued(p);
1599 running = task_current(rq, p);
1600
1601 if (queued) {
1602 /*
1603 * Because __kthread_bind() calls this on blocked tasks without
1604 * holding rq->lock.
1605 */
1606 lockdep_assert_held(&rq->lock);
1607 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1608 }
1609 if (running)
1610 put_prev_task(rq, p);
1611
1612 p->sched_class->set_cpus_allowed(p, new_mask);
1613
1614 if (queued)
1615 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1616 if (running)
1617 set_next_task(rq, p);
1618 }
1619
1620 /*
1621 * Change a given task's CPU affinity. Migrate the thread to a
1622 * proper CPU and schedule it away if the CPU it's executing on
1623 * is removed from the allowed bitmask.
1624 *
1625 * NOTE: the caller must have a valid reference to the task, the
1626 * task must not exit() & deallocate itself prematurely. The
1627 * call is not atomic; no spinlocks may be held.
1628 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1629 static int __set_cpus_allowed_ptr(struct task_struct *p,
1630 const struct cpumask *new_mask, bool check)
1631 {
1632 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1633 unsigned int dest_cpu;
1634 struct rq_flags rf;
1635 struct rq *rq;
1636 int ret = 0;
1637
1638 rq = task_rq_lock(p, &rf);
1639 update_rq_clock(rq);
1640
1641 if (p->flags & PF_KTHREAD) {
1642 /*
1643 * Kernel threads are allowed on online && !active CPUs
1644 */
1645 cpu_valid_mask = cpu_online_mask;
1646 }
1647
1648 /*
1649 * Must re-check here, to close a race against __kthread_bind(),
1650 * sched_setaffinity() is not guaranteed to observe the flag.
1651 */
1652 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1653 ret = -EINVAL;
1654 goto out;
1655 }
1656
1657 if (cpumask_equal(p->cpus_ptr, new_mask))
1658 goto out;
1659
1660 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1661 if (dest_cpu >= nr_cpu_ids) {
1662 ret = -EINVAL;
1663 goto out;
1664 }
1665
1666 do_set_cpus_allowed(p, new_mask);
1667
1668 if (p->flags & PF_KTHREAD) {
1669 /*
1670 * For kernel threads that do indeed end up on online &&
1671 * !active we want to ensure they are strict per-CPU threads.
1672 */
1673 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1674 !cpumask_intersects(new_mask, cpu_active_mask) &&
1675 p->nr_cpus_allowed != 1);
1676 }
1677
1678 /* Can the task run on the task's current CPU? If so, we're done */
1679 if (cpumask_test_cpu(task_cpu(p), new_mask))
1680 goto out;
1681
1682 if (task_running(rq, p) || p->state == TASK_WAKING) {
1683 struct migration_arg arg = { p, dest_cpu };
1684 /* Need help from migration thread: drop lock and wait. */
1685 task_rq_unlock(rq, p, &rf);
1686 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1687 return 0;
1688 } else if (task_on_rq_queued(p)) {
1689 /*
1690 * OK, since we're going to drop the lock immediately
1691 * afterwards anyway.
1692 */
1693 rq = move_queued_task(rq, &rf, p, dest_cpu);
1694 }
1695 out:
1696 task_rq_unlock(rq, p, &rf);
1697
1698 return ret;
1699 }
1700
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1701 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1702 {
1703 return __set_cpus_allowed_ptr(p, new_mask, false);
1704 }
1705 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1706
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1707 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1708 {
1709 #ifdef CONFIG_SCHED_DEBUG
1710 /*
1711 * We should never call set_task_cpu() on a blocked task,
1712 * ttwu() will sort out the placement.
1713 */
1714 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1715 !p->on_rq);
1716
1717 /*
1718 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1719 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1720 * time relying on p->on_rq.
1721 */
1722 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1723 p->sched_class == &fair_sched_class &&
1724 (p->on_rq && !task_on_rq_migrating(p)));
1725
1726 #ifdef CONFIG_LOCKDEP
1727 /*
1728 * The caller should hold either p->pi_lock or rq->lock, when changing
1729 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1730 *
1731 * sched_move_task() holds both and thus holding either pins the cgroup,
1732 * see task_group().
1733 *
1734 * Furthermore, all task_rq users should acquire both locks, see
1735 * task_rq_lock().
1736 */
1737 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1738 lockdep_is_held(&task_rq(p)->lock)));
1739 #endif
1740 /*
1741 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1742 */
1743 WARN_ON_ONCE(!cpu_online(new_cpu));
1744 #endif
1745
1746 trace_sched_migrate_task(p, new_cpu);
1747
1748 if (task_cpu(p) != new_cpu) {
1749 if (p->sched_class->migrate_task_rq)
1750 p->sched_class->migrate_task_rq(p, new_cpu);
1751 p->se.nr_migrations++;
1752 rseq_migrate(p);
1753 perf_event_task_migrate(p);
1754 }
1755
1756 __set_task_cpu(p, new_cpu);
1757 }
1758
1759 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)1760 static void __migrate_swap_task(struct task_struct *p, int cpu)
1761 {
1762 if (task_on_rq_queued(p)) {
1763 struct rq *src_rq, *dst_rq;
1764 struct rq_flags srf, drf;
1765
1766 src_rq = task_rq(p);
1767 dst_rq = cpu_rq(cpu);
1768
1769 rq_pin_lock(src_rq, &srf);
1770 rq_pin_lock(dst_rq, &drf);
1771
1772 deactivate_task(src_rq, p, 0);
1773 set_task_cpu(p, cpu);
1774 activate_task(dst_rq, p, 0);
1775 check_preempt_curr(dst_rq, p, 0);
1776
1777 rq_unpin_lock(dst_rq, &drf);
1778 rq_unpin_lock(src_rq, &srf);
1779
1780 } else {
1781 /*
1782 * Task isn't running anymore; make it appear like we migrated
1783 * it before it went to sleep. This means on wakeup we make the
1784 * previous CPU our target instead of where it really is.
1785 */
1786 p->wake_cpu = cpu;
1787 }
1788 }
1789
1790 struct migration_swap_arg {
1791 struct task_struct *src_task, *dst_task;
1792 int src_cpu, dst_cpu;
1793 };
1794
migrate_swap_stop(void * data)1795 static int migrate_swap_stop(void *data)
1796 {
1797 struct migration_swap_arg *arg = data;
1798 struct rq *src_rq, *dst_rq;
1799 int ret = -EAGAIN;
1800
1801 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1802 return -EAGAIN;
1803
1804 src_rq = cpu_rq(arg->src_cpu);
1805 dst_rq = cpu_rq(arg->dst_cpu);
1806
1807 double_raw_lock(&arg->src_task->pi_lock,
1808 &arg->dst_task->pi_lock);
1809 double_rq_lock(src_rq, dst_rq);
1810
1811 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1812 goto unlock;
1813
1814 if (task_cpu(arg->src_task) != arg->src_cpu)
1815 goto unlock;
1816
1817 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1818 goto unlock;
1819
1820 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1821 goto unlock;
1822
1823 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1824 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1825
1826 ret = 0;
1827
1828 unlock:
1829 double_rq_unlock(src_rq, dst_rq);
1830 raw_spin_unlock(&arg->dst_task->pi_lock);
1831 raw_spin_unlock(&arg->src_task->pi_lock);
1832
1833 return ret;
1834 }
1835
1836 /*
1837 * Cross migrate two tasks
1838 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)1839 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1840 int target_cpu, int curr_cpu)
1841 {
1842 struct migration_swap_arg arg;
1843 int ret = -EINVAL;
1844
1845 arg = (struct migration_swap_arg){
1846 .src_task = cur,
1847 .src_cpu = curr_cpu,
1848 .dst_task = p,
1849 .dst_cpu = target_cpu,
1850 };
1851
1852 if (arg.src_cpu == arg.dst_cpu)
1853 goto out;
1854
1855 /*
1856 * These three tests are all lockless; this is OK since all of them
1857 * will be re-checked with proper locks held further down the line.
1858 */
1859 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1860 goto out;
1861
1862 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1863 goto out;
1864
1865 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1866 goto out;
1867
1868 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1869 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1870
1871 out:
1872 return ret;
1873 }
1874 #endif /* CONFIG_NUMA_BALANCING */
1875
1876 /*
1877 * wait_task_inactive - wait for a thread to unschedule.
1878 *
1879 * If @match_state is nonzero, it's the @p->state value just checked and
1880 * not expected to change. If it changes, i.e. @p might have woken up,
1881 * then return zero. When we succeed in waiting for @p to be off its CPU,
1882 * we return a positive number (its total switch count). If a second call
1883 * a short while later returns the same number, the caller can be sure that
1884 * @p has remained unscheduled the whole time.
1885 *
1886 * The caller must ensure that the task *will* unschedule sometime soon,
1887 * else this function might spin for a *long* time. This function can't
1888 * be called with interrupts off, or it may introduce deadlock with
1889 * smp_call_function() if an IPI is sent by the same process we are
1890 * waiting to become inactive.
1891 */
wait_task_inactive(struct task_struct * p,long match_state)1892 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1893 {
1894 int running, queued;
1895 struct rq_flags rf;
1896 unsigned long ncsw;
1897 struct rq *rq;
1898
1899 for (;;) {
1900 /*
1901 * We do the initial early heuristics without holding
1902 * any task-queue locks at all. We'll only try to get
1903 * the runqueue lock when things look like they will
1904 * work out!
1905 */
1906 rq = task_rq(p);
1907
1908 /*
1909 * If the task is actively running on another CPU
1910 * still, just relax and busy-wait without holding
1911 * any locks.
1912 *
1913 * NOTE! Since we don't hold any locks, it's not
1914 * even sure that "rq" stays as the right runqueue!
1915 * But we don't care, since "task_running()" will
1916 * return false if the runqueue has changed and p
1917 * is actually now running somewhere else!
1918 */
1919 while (task_running(rq, p)) {
1920 if (match_state && unlikely(p->state != match_state))
1921 return 0;
1922 cpu_relax();
1923 }
1924
1925 /*
1926 * Ok, time to look more closely! We need the rq
1927 * lock now, to be *sure*. If we're wrong, we'll
1928 * just go back and repeat.
1929 */
1930 rq = task_rq_lock(p, &rf);
1931 trace_sched_wait_task(p);
1932 running = task_running(rq, p);
1933 queued = task_on_rq_queued(p);
1934 ncsw = 0;
1935 if (!match_state || p->state == match_state)
1936 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1937 task_rq_unlock(rq, p, &rf);
1938
1939 /*
1940 * If it changed from the expected state, bail out now.
1941 */
1942 if (unlikely(!ncsw))
1943 break;
1944
1945 /*
1946 * Was it really running after all now that we
1947 * checked with the proper locks actually held?
1948 *
1949 * Oops. Go back and try again..
1950 */
1951 if (unlikely(running)) {
1952 cpu_relax();
1953 continue;
1954 }
1955
1956 /*
1957 * It's not enough that it's not actively running,
1958 * it must be off the runqueue _entirely_, and not
1959 * preempted!
1960 *
1961 * So if it was still runnable (but just not actively
1962 * running right now), it's preempted, and we should
1963 * yield - it could be a while.
1964 */
1965 if (unlikely(queued)) {
1966 ktime_t to = NSEC_PER_SEC / HZ;
1967
1968 set_current_state(TASK_UNINTERRUPTIBLE);
1969 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1970 continue;
1971 }
1972
1973 /*
1974 * Ahh, all good. It wasn't running, and it wasn't
1975 * runnable, which means that it will never become
1976 * running in the future either. We're all done!
1977 */
1978 break;
1979 }
1980
1981 return ncsw;
1982 }
1983
1984 /***
1985 * kick_process - kick a running thread to enter/exit the kernel
1986 * @p: the to-be-kicked thread
1987 *
1988 * Cause a process which is running on another CPU to enter
1989 * kernel-mode, without any delay. (to get signals handled.)
1990 *
1991 * NOTE: this function doesn't have to take the runqueue lock,
1992 * because all it wants to ensure is that the remote task enters
1993 * the kernel. If the IPI races and the task has been migrated
1994 * to another CPU then no harm is done and the purpose has been
1995 * achieved as well.
1996 */
kick_process(struct task_struct * p)1997 void kick_process(struct task_struct *p)
1998 {
1999 int cpu;
2000
2001 preempt_disable();
2002 cpu = task_cpu(p);
2003 if ((cpu != smp_processor_id()) && task_curr(p))
2004 smp_send_reschedule(cpu);
2005 preempt_enable();
2006 }
2007 EXPORT_SYMBOL_GPL(kick_process);
2008
2009 /*
2010 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2011 *
2012 * A few notes on cpu_active vs cpu_online:
2013 *
2014 * - cpu_active must be a subset of cpu_online
2015 *
2016 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2017 * see __set_cpus_allowed_ptr(). At this point the newly online
2018 * CPU isn't yet part of the sched domains, and balancing will not
2019 * see it.
2020 *
2021 * - on CPU-down we clear cpu_active() to mask the sched domains and
2022 * avoid the load balancer to place new tasks on the to be removed
2023 * CPU. Existing tasks will remain running there and will be taken
2024 * off.
2025 *
2026 * This means that fallback selection must not select !active CPUs.
2027 * And can assume that any active CPU must be online. Conversely
2028 * select_task_rq() below may allow selection of !active CPUs in order
2029 * to satisfy the above rules.
2030 */
select_fallback_rq(int cpu,struct task_struct * p)2031 static int select_fallback_rq(int cpu, struct task_struct *p)
2032 {
2033 int nid = cpu_to_node(cpu);
2034 const struct cpumask *nodemask = NULL;
2035 enum { cpuset, possible, fail } state = cpuset;
2036 int dest_cpu;
2037
2038 /*
2039 * If the node that the CPU is on has been offlined, cpu_to_node()
2040 * will return -1. There is no CPU on the node, and we should
2041 * select the CPU on the other node.
2042 */
2043 if (nid != -1) {
2044 nodemask = cpumask_of_node(nid);
2045
2046 /* Look for allowed, online CPU in same node. */
2047 for_each_cpu(dest_cpu, nodemask) {
2048 if (!cpu_active(dest_cpu))
2049 continue;
2050 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2051 return dest_cpu;
2052 }
2053 }
2054
2055 for (;;) {
2056 /* Any allowed, online CPU? */
2057 for_each_cpu(dest_cpu, p->cpus_ptr) {
2058 if (!is_cpu_allowed(p, dest_cpu))
2059 continue;
2060
2061 goto out;
2062 }
2063
2064 /* No more Mr. Nice Guy. */
2065 switch (state) {
2066 case cpuset:
2067 if (IS_ENABLED(CONFIG_CPUSETS)) {
2068 cpuset_cpus_allowed_fallback(p);
2069 state = possible;
2070 break;
2071 }
2072 /* Fall-through */
2073 case possible:
2074 do_set_cpus_allowed(p, cpu_possible_mask);
2075 state = fail;
2076 break;
2077
2078 case fail:
2079 BUG();
2080 break;
2081 }
2082 }
2083
2084 out:
2085 if (state != cpuset) {
2086 /*
2087 * Don't tell them about moving exiting tasks or
2088 * kernel threads (both mm NULL), since they never
2089 * leave kernel.
2090 */
2091 if (p->mm && printk_ratelimit()) {
2092 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2093 task_pid_nr(p), p->comm, cpu);
2094 }
2095 }
2096
2097 return dest_cpu;
2098 }
2099
2100 /*
2101 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2102 */
2103 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2104 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2105 {
2106 lockdep_assert_held(&p->pi_lock);
2107
2108 if (p->nr_cpus_allowed > 1)
2109 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2110 else
2111 cpu = cpumask_any(p->cpus_ptr);
2112
2113 /*
2114 * In order not to call set_task_cpu() on a blocking task we need
2115 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2116 * CPU.
2117 *
2118 * Since this is common to all placement strategies, this lives here.
2119 *
2120 * [ this allows ->select_task() to simply return task_cpu(p) and
2121 * not worry about this generic constraint ]
2122 */
2123 if (unlikely(!is_cpu_allowed(p, cpu)))
2124 cpu = select_fallback_rq(task_cpu(p), p);
2125
2126 return cpu;
2127 }
2128
update_avg(u64 * avg,u64 sample)2129 static void update_avg(u64 *avg, u64 sample)
2130 {
2131 s64 diff = sample - *avg;
2132 *avg += diff >> 3;
2133 }
2134
sched_set_stop_task(int cpu,struct task_struct * stop)2135 void sched_set_stop_task(int cpu, struct task_struct *stop)
2136 {
2137 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2138 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2139
2140 if (stop) {
2141 /*
2142 * Make it appear like a SCHED_FIFO task, its something
2143 * userspace knows about and won't get confused about.
2144 *
2145 * Also, it will make PI more or less work without too
2146 * much confusion -- but then, stop work should not
2147 * rely on PI working anyway.
2148 */
2149 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2150
2151 stop->sched_class = &stop_sched_class;
2152 }
2153
2154 cpu_rq(cpu)->stop = stop;
2155
2156 if (old_stop) {
2157 /*
2158 * Reset it back to a normal scheduling class so that
2159 * it can die in pieces.
2160 */
2161 old_stop->sched_class = &rt_sched_class;
2162 }
2163 }
2164
2165 #else
2166
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2167 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2168 const struct cpumask *new_mask, bool check)
2169 {
2170 return set_cpus_allowed_ptr(p, new_mask);
2171 }
2172
2173 #endif /* CONFIG_SMP */
2174
2175 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2176 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2177 {
2178 struct rq *rq;
2179
2180 if (!schedstat_enabled())
2181 return;
2182
2183 rq = this_rq();
2184
2185 #ifdef CONFIG_SMP
2186 if (cpu == rq->cpu) {
2187 __schedstat_inc(rq->ttwu_local);
2188 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2189 } else {
2190 struct sched_domain *sd;
2191
2192 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2193 rcu_read_lock();
2194 for_each_domain(rq->cpu, sd) {
2195 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2196 __schedstat_inc(sd->ttwu_wake_remote);
2197 break;
2198 }
2199 }
2200 rcu_read_unlock();
2201 }
2202
2203 if (wake_flags & WF_MIGRATED)
2204 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2205 #endif /* CONFIG_SMP */
2206
2207 __schedstat_inc(rq->ttwu_count);
2208 __schedstat_inc(p->se.statistics.nr_wakeups);
2209
2210 if (wake_flags & WF_SYNC)
2211 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2212 }
2213
2214 /*
2215 * Mark the task runnable and perform wakeup-preemption.
2216 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2217 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2218 struct rq_flags *rf)
2219 {
2220 check_preempt_curr(rq, p, wake_flags);
2221 p->state = TASK_RUNNING;
2222 trace_sched_wakeup(p);
2223
2224 #ifdef CONFIG_SMP
2225 if (p->sched_class->task_woken) {
2226 /*
2227 * Our task @p is fully woken up and running; so its safe to
2228 * drop the rq->lock, hereafter rq is only used for statistics.
2229 */
2230 rq_unpin_lock(rq, rf);
2231 p->sched_class->task_woken(rq, p);
2232 rq_repin_lock(rq, rf);
2233 }
2234
2235 if (rq->idle_stamp) {
2236 u64 delta = rq_clock(rq) - rq->idle_stamp;
2237 u64 max = 2*rq->max_idle_balance_cost;
2238
2239 update_avg(&rq->avg_idle, delta);
2240
2241 if (rq->avg_idle > max)
2242 rq->avg_idle = max;
2243
2244 rq->idle_stamp = 0;
2245 }
2246 #endif
2247 }
2248
2249 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2250 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2251 struct rq_flags *rf)
2252 {
2253 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2254
2255 lockdep_assert_held(&rq->lock);
2256
2257 #ifdef CONFIG_SMP
2258 if (p->sched_contributes_to_load)
2259 rq->nr_uninterruptible--;
2260
2261 if (wake_flags & WF_MIGRATED)
2262 en_flags |= ENQUEUE_MIGRATED;
2263 #endif
2264
2265 activate_task(rq, p, en_flags);
2266 ttwu_do_wakeup(rq, p, wake_flags, rf);
2267 }
2268
2269 /*
2270 * Called in case the task @p isn't fully descheduled from its runqueue,
2271 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2272 * since all we need to do is flip p->state to TASK_RUNNING, since
2273 * the task is still ->on_rq.
2274 */
ttwu_remote(struct task_struct * p,int wake_flags)2275 static int ttwu_remote(struct task_struct *p, int wake_flags)
2276 {
2277 struct rq_flags rf;
2278 struct rq *rq;
2279 int ret = 0;
2280
2281 rq = __task_rq_lock(p, &rf);
2282 if (task_on_rq_queued(p)) {
2283 /* check_preempt_curr() may use rq clock */
2284 update_rq_clock(rq);
2285 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2286 ret = 1;
2287 }
2288 __task_rq_unlock(rq, &rf);
2289
2290 return ret;
2291 }
2292
2293 #ifdef CONFIG_SMP
sched_ttwu_pending(void)2294 void sched_ttwu_pending(void)
2295 {
2296 struct rq *rq = this_rq();
2297 struct llist_node *llist = llist_del_all(&rq->wake_list);
2298 struct task_struct *p, *t;
2299 struct rq_flags rf;
2300
2301 if (!llist)
2302 return;
2303
2304 rq_lock_irqsave(rq, &rf);
2305 update_rq_clock(rq);
2306
2307 llist_for_each_entry_safe(p, t, llist, wake_entry)
2308 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2309
2310 rq_unlock_irqrestore(rq, &rf);
2311 }
2312
scheduler_ipi(void)2313 void scheduler_ipi(void)
2314 {
2315 /*
2316 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2317 * TIF_NEED_RESCHED remotely (for the first time) will also send
2318 * this IPI.
2319 */
2320 preempt_fold_need_resched();
2321
2322 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2323 return;
2324
2325 /*
2326 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2327 * traditionally all their work was done from the interrupt return
2328 * path. Now that we actually do some work, we need to make sure
2329 * we do call them.
2330 *
2331 * Some archs already do call them, luckily irq_enter/exit nest
2332 * properly.
2333 *
2334 * Arguably we should visit all archs and update all handlers,
2335 * however a fair share of IPIs are still resched only so this would
2336 * somewhat pessimize the simple resched case.
2337 */
2338 irq_enter();
2339 sched_ttwu_pending();
2340
2341 /*
2342 * Check if someone kicked us for doing the nohz idle load balance.
2343 */
2344 if (unlikely(got_nohz_idle_kick())) {
2345 this_rq()->idle_balance = 1;
2346 raise_softirq_irqoff(SCHED_SOFTIRQ);
2347 }
2348 irq_exit();
2349 }
2350
ttwu_queue_remote(struct task_struct * p,int cpu,int wake_flags)2351 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2352 {
2353 struct rq *rq = cpu_rq(cpu);
2354
2355 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2356
2357 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2358 if (!set_nr_if_polling(rq->idle))
2359 smp_send_reschedule(cpu);
2360 else
2361 trace_sched_wake_idle_without_ipi(cpu);
2362 }
2363 }
2364
wake_up_if_idle(int cpu)2365 void wake_up_if_idle(int cpu)
2366 {
2367 struct rq *rq = cpu_rq(cpu);
2368 struct rq_flags rf;
2369
2370 rcu_read_lock();
2371
2372 if (!is_idle_task(rcu_dereference(rq->curr)))
2373 goto out;
2374
2375 if (set_nr_if_polling(rq->idle)) {
2376 trace_sched_wake_idle_without_ipi(cpu);
2377 } else {
2378 rq_lock_irqsave(rq, &rf);
2379 if (is_idle_task(rq->curr))
2380 smp_send_reschedule(cpu);
2381 /* Else CPU is not idle, do nothing here: */
2382 rq_unlock_irqrestore(rq, &rf);
2383 }
2384
2385 out:
2386 rcu_read_unlock();
2387 }
2388
cpus_share_cache(int this_cpu,int that_cpu)2389 bool cpus_share_cache(int this_cpu, int that_cpu)
2390 {
2391 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2392 }
2393 #endif /* CONFIG_SMP */
2394
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2395 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2396 {
2397 struct rq *rq = cpu_rq(cpu);
2398 struct rq_flags rf;
2399
2400 #if defined(CONFIG_SMP)
2401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2402 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2403 ttwu_queue_remote(p, cpu, wake_flags);
2404 return;
2405 }
2406 #endif
2407
2408 rq_lock(rq, &rf);
2409 update_rq_clock(rq);
2410 ttwu_do_activate(rq, p, wake_flags, &rf);
2411 rq_unlock(rq, &rf);
2412 }
2413
2414 /*
2415 * Notes on Program-Order guarantees on SMP systems.
2416 *
2417 * MIGRATION
2418 *
2419 * The basic program-order guarantee on SMP systems is that when a task [t]
2420 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2421 * execution on its new CPU [c1].
2422 *
2423 * For migration (of runnable tasks) this is provided by the following means:
2424 *
2425 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2426 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2427 * rq(c1)->lock (if not at the same time, then in that order).
2428 * C) LOCK of the rq(c1)->lock scheduling in task
2429 *
2430 * Release/acquire chaining guarantees that B happens after A and C after B.
2431 * Note: the CPU doing B need not be c0 or c1
2432 *
2433 * Example:
2434 *
2435 * CPU0 CPU1 CPU2
2436 *
2437 * LOCK rq(0)->lock
2438 * sched-out X
2439 * sched-in Y
2440 * UNLOCK rq(0)->lock
2441 *
2442 * LOCK rq(0)->lock // orders against CPU0
2443 * dequeue X
2444 * UNLOCK rq(0)->lock
2445 *
2446 * LOCK rq(1)->lock
2447 * enqueue X
2448 * UNLOCK rq(1)->lock
2449 *
2450 * LOCK rq(1)->lock // orders against CPU2
2451 * sched-out Z
2452 * sched-in X
2453 * UNLOCK rq(1)->lock
2454 *
2455 *
2456 * BLOCKING -- aka. SLEEP + WAKEUP
2457 *
2458 * For blocking we (obviously) need to provide the same guarantee as for
2459 * migration. However the means are completely different as there is no lock
2460 * chain to provide order. Instead we do:
2461 *
2462 * 1) smp_store_release(X->on_cpu, 0)
2463 * 2) smp_cond_load_acquire(!X->on_cpu)
2464 *
2465 * Example:
2466 *
2467 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2468 *
2469 * LOCK rq(0)->lock LOCK X->pi_lock
2470 * dequeue X
2471 * sched-out X
2472 * smp_store_release(X->on_cpu, 0);
2473 *
2474 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2475 * X->state = WAKING
2476 * set_task_cpu(X,2)
2477 *
2478 * LOCK rq(2)->lock
2479 * enqueue X
2480 * X->state = RUNNING
2481 * UNLOCK rq(2)->lock
2482 *
2483 * LOCK rq(2)->lock // orders against CPU1
2484 * sched-out Z
2485 * sched-in X
2486 * UNLOCK rq(2)->lock
2487 *
2488 * UNLOCK X->pi_lock
2489 * UNLOCK rq(0)->lock
2490 *
2491 *
2492 * However, for wakeups there is a second guarantee we must provide, namely we
2493 * must ensure that CONDITION=1 done by the caller can not be reordered with
2494 * accesses to the task state; see try_to_wake_up() and set_current_state().
2495 */
2496
2497 /**
2498 * try_to_wake_up - wake up a thread
2499 * @p: the thread to be awakened
2500 * @state: the mask of task states that can be woken
2501 * @wake_flags: wake modifier flags (WF_*)
2502 *
2503 * If (@state & @p->state) @p->state = TASK_RUNNING.
2504 *
2505 * If the task was not queued/runnable, also place it back on a runqueue.
2506 *
2507 * Atomic against schedule() which would dequeue a task, also see
2508 * set_current_state().
2509 *
2510 * This function executes a full memory barrier before accessing the task
2511 * state; see set_current_state().
2512 *
2513 * Return: %true if @p->state changes (an actual wakeup was done),
2514 * %false otherwise.
2515 */
2516 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2517 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2518 {
2519 unsigned long flags;
2520 int cpu, success = 0;
2521
2522 preempt_disable();
2523 if (p == current) {
2524 /*
2525 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2526 * == smp_processor_id()'. Together this means we can special
2527 * case the whole 'p->on_rq && ttwu_remote()' case below
2528 * without taking any locks.
2529 *
2530 * In particular:
2531 * - we rely on Program-Order guarantees for all the ordering,
2532 * - we're serialized against set_special_state() by virtue of
2533 * it disabling IRQs (this allows not taking ->pi_lock).
2534 */
2535 if (!(p->state & state))
2536 goto out;
2537
2538 success = 1;
2539 cpu = task_cpu(p);
2540 trace_sched_waking(p);
2541 p->state = TASK_RUNNING;
2542 trace_sched_wakeup(p);
2543 goto out;
2544 }
2545
2546 /*
2547 * If we are going to wake up a thread waiting for CONDITION we
2548 * need to ensure that CONDITION=1 done by the caller can not be
2549 * reordered with p->state check below. This pairs with mb() in
2550 * set_current_state() the waiting thread does.
2551 */
2552 raw_spin_lock_irqsave(&p->pi_lock, flags);
2553 smp_mb__after_spinlock();
2554 if (!(p->state & state))
2555 goto unlock;
2556
2557 trace_sched_waking(p);
2558
2559 /* We're going to change ->state: */
2560 success = 1;
2561 cpu = task_cpu(p);
2562
2563 /*
2564 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2565 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2566 * in smp_cond_load_acquire() below.
2567 *
2568 * sched_ttwu_pending() try_to_wake_up()
2569 * STORE p->on_rq = 1 LOAD p->state
2570 * UNLOCK rq->lock
2571 *
2572 * __schedule() (switch to task 'p')
2573 * LOCK rq->lock smp_rmb();
2574 * smp_mb__after_spinlock();
2575 * UNLOCK rq->lock
2576 *
2577 * [task p]
2578 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2579 *
2580 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2581 * __schedule(). See the comment for smp_mb__after_spinlock().
2582 */
2583 smp_rmb();
2584 if (p->on_rq && ttwu_remote(p, wake_flags))
2585 goto unlock;
2586
2587 #ifdef CONFIG_SMP
2588 /*
2589 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2590 * possible to, falsely, observe p->on_cpu == 0.
2591 *
2592 * One must be running (->on_cpu == 1) in order to remove oneself
2593 * from the runqueue.
2594 *
2595 * __schedule() (switch to task 'p') try_to_wake_up()
2596 * STORE p->on_cpu = 1 LOAD p->on_rq
2597 * UNLOCK rq->lock
2598 *
2599 * __schedule() (put 'p' to sleep)
2600 * LOCK rq->lock smp_rmb();
2601 * smp_mb__after_spinlock();
2602 * STORE p->on_rq = 0 LOAD p->on_cpu
2603 *
2604 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2605 * __schedule(). See the comment for smp_mb__after_spinlock().
2606 */
2607 smp_rmb();
2608
2609 /*
2610 * If the owning (remote) CPU is still in the middle of schedule() with
2611 * this task as prev, wait until its done referencing the task.
2612 *
2613 * Pairs with the smp_store_release() in finish_task().
2614 *
2615 * This ensures that tasks getting woken will be fully ordered against
2616 * their previous state and preserve Program Order.
2617 */
2618 smp_cond_load_acquire(&p->on_cpu, !VAL);
2619
2620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2621 p->state = TASK_WAKING;
2622
2623 if (p->in_iowait) {
2624 delayacct_blkio_end(p);
2625 atomic_dec(&task_rq(p)->nr_iowait);
2626 }
2627
2628 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2629 if (task_cpu(p) != cpu) {
2630 wake_flags |= WF_MIGRATED;
2631 psi_ttwu_dequeue(p);
2632 set_task_cpu(p, cpu);
2633 }
2634
2635 #else /* CONFIG_SMP */
2636
2637 if (p->in_iowait) {
2638 delayacct_blkio_end(p);
2639 atomic_dec(&task_rq(p)->nr_iowait);
2640 }
2641
2642 #endif /* CONFIG_SMP */
2643
2644 ttwu_queue(p, cpu, wake_flags);
2645 unlock:
2646 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2647 out:
2648 if (success)
2649 ttwu_stat(p, cpu, wake_flags);
2650 preempt_enable();
2651
2652 return success;
2653 }
2654
2655 /**
2656 * wake_up_process - Wake up a specific process
2657 * @p: The process to be woken up.
2658 *
2659 * Attempt to wake up the nominated process and move it to the set of runnable
2660 * processes.
2661 *
2662 * Return: 1 if the process was woken up, 0 if it was already running.
2663 *
2664 * This function executes a full memory barrier before accessing the task state.
2665 */
wake_up_process(struct task_struct * p)2666 int wake_up_process(struct task_struct *p)
2667 {
2668 return try_to_wake_up(p, TASK_NORMAL, 0);
2669 }
2670 EXPORT_SYMBOL(wake_up_process);
2671
wake_up_state(struct task_struct * p,unsigned int state)2672 int wake_up_state(struct task_struct *p, unsigned int state)
2673 {
2674 return try_to_wake_up(p, state, 0);
2675 }
2676
2677 /*
2678 * Perform scheduler related setup for a newly forked process p.
2679 * p is forked by current.
2680 *
2681 * __sched_fork() is basic setup used by init_idle() too:
2682 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2683 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2684 {
2685 p->on_rq = 0;
2686
2687 p->se.on_rq = 0;
2688 p->se.exec_start = 0;
2689 p->se.sum_exec_runtime = 0;
2690 p->se.prev_sum_exec_runtime = 0;
2691 p->se.nr_migrations = 0;
2692 p->se.vruntime = 0;
2693 INIT_LIST_HEAD(&p->se.group_node);
2694
2695 #ifdef CONFIG_FAIR_GROUP_SCHED
2696 p->se.cfs_rq = NULL;
2697 #endif
2698
2699 #ifdef CONFIG_SCHEDSTATS
2700 /* Even if schedstat is disabled, there should not be garbage */
2701 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2702 #endif
2703
2704 RB_CLEAR_NODE(&p->dl.rb_node);
2705 init_dl_task_timer(&p->dl);
2706 init_dl_inactive_task_timer(&p->dl);
2707 __dl_clear_params(p);
2708
2709 INIT_LIST_HEAD(&p->rt.run_list);
2710 p->rt.timeout = 0;
2711 p->rt.time_slice = sched_rr_timeslice;
2712 p->rt.on_rq = 0;
2713 p->rt.on_list = 0;
2714
2715 #ifdef CONFIG_PREEMPT_NOTIFIERS
2716 INIT_HLIST_HEAD(&p->preempt_notifiers);
2717 #endif
2718
2719 #ifdef CONFIG_COMPACTION
2720 p->capture_control = NULL;
2721 #endif
2722 init_numa_balancing(clone_flags, p);
2723 }
2724
2725 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2726
2727 #ifdef CONFIG_NUMA_BALANCING
2728
set_numabalancing_state(bool enabled)2729 void set_numabalancing_state(bool enabled)
2730 {
2731 if (enabled)
2732 static_branch_enable(&sched_numa_balancing);
2733 else
2734 static_branch_disable(&sched_numa_balancing);
2735 }
2736
2737 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2738 int sysctl_numa_balancing(struct ctl_table *table, int write,
2739 void __user *buffer, size_t *lenp, loff_t *ppos)
2740 {
2741 struct ctl_table t;
2742 int err;
2743 int state = static_branch_likely(&sched_numa_balancing);
2744
2745 if (write && !capable(CAP_SYS_ADMIN))
2746 return -EPERM;
2747
2748 t = *table;
2749 t.data = &state;
2750 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2751 if (err < 0)
2752 return err;
2753 if (write)
2754 set_numabalancing_state(state);
2755 return err;
2756 }
2757 #endif
2758 #endif
2759
2760 #ifdef CONFIG_SCHEDSTATS
2761
2762 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2763 static bool __initdata __sched_schedstats = false;
2764
set_schedstats(bool enabled)2765 static void set_schedstats(bool enabled)
2766 {
2767 if (enabled)
2768 static_branch_enable(&sched_schedstats);
2769 else
2770 static_branch_disable(&sched_schedstats);
2771 }
2772
force_schedstat_enabled(void)2773 void force_schedstat_enabled(void)
2774 {
2775 if (!schedstat_enabled()) {
2776 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2777 static_branch_enable(&sched_schedstats);
2778 }
2779 }
2780
setup_schedstats(char * str)2781 static int __init setup_schedstats(char *str)
2782 {
2783 int ret = 0;
2784 if (!str)
2785 goto out;
2786
2787 /*
2788 * This code is called before jump labels have been set up, so we can't
2789 * change the static branch directly just yet. Instead set a temporary
2790 * variable so init_schedstats() can do it later.
2791 */
2792 if (!strcmp(str, "enable")) {
2793 __sched_schedstats = true;
2794 ret = 1;
2795 } else if (!strcmp(str, "disable")) {
2796 __sched_schedstats = false;
2797 ret = 1;
2798 }
2799 out:
2800 if (!ret)
2801 pr_warn("Unable to parse schedstats=\n");
2802
2803 return ret;
2804 }
2805 __setup("schedstats=", setup_schedstats);
2806
init_schedstats(void)2807 static void __init init_schedstats(void)
2808 {
2809 set_schedstats(__sched_schedstats);
2810 }
2811
2812 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2813 int sysctl_schedstats(struct ctl_table *table, int write,
2814 void __user *buffer, size_t *lenp, loff_t *ppos)
2815 {
2816 struct ctl_table t;
2817 int err;
2818 int state = static_branch_likely(&sched_schedstats);
2819
2820 if (write && !capable(CAP_SYS_ADMIN))
2821 return -EPERM;
2822
2823 t = *table;
2824 t.data = &state;
2825 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2826 if (err < 0)
2827 return err;
2828 if (write)
2829 set_schedstats(state);
2830 return err;
2831 }
2832 #endif /* CONFIG_PROC_SYSCTL */
2833 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)2834 static inline void init_schedstats(void) {}
2835 #endif /* CONFIG_SCHEDSTATS */
2836
2837 /*
2838 * fork()/clone()-time setup:
2839 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2840 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2841 {
2842 unsigned long flags;
2843
2844 __sched_fork(clone_flags, p);
2845 /*
2846 * We mark the process as NEW here. This guarantees that
2847 * nobody will actually run it, and a signal or other external
2848 * event cannot wake it up and insert it on the runqueue either.
2849 */
2850 p->state = TASK_NEW;
2851
2852 /*
2853 * Make sure we do not leak PI boosting priority to the child.
2854 */
2855 p->prio = current->normal_prio;
2856
2857 uclamp_fork(p);
2858
2859 /*
2860 * Revert to default priority/policy on fork if requested.
2861 */
2862 if (unlikely(p->sched_reset_on_fork)) {
2863 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2864 p->policy = SCHED_NORMAL;
2865 p->static_prio = NICE_TO_PRIO(0);
2866 p->rt_priority = 0;
2867 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2868 p->static_prio = NICE_TO_PRIO(0);
2869
2870 p->prio = p->normal_prio = __normal_prio(p);
2871 set_load_weight(p, false);
2872
2873 /*
2874 * We don't need the reset flag anymore after the fork. It has
2875 * fulfilled its duty:
2876 */
2877 p->sched_reset_on_fork = 0;
2878 }
2879
2880 if (dl_prio(p->prio))
2881 return -EAGAIN;
2882 else if (rt_prio(p->prio))
2883 p->sched_class = &rt_sched_class;
2884 else
2885 p->sched_class = &fair_sched_class;
2886
2887 init_entity_runnable_average(&p->se);
2888
2889 /*
2890 * The child is not yet in the pid-hash so no cgroup attach races,
2891 * and the cgroup is pinned to this child due to cgroup_fork()
2892 * is ran before sched_fork().
2893 *
2894 * Silence PROVE_RCU.
2895 */
2896 raw_spin_lock_irqsave(&p->pi_lock, flags);
2897 /*
2898 * We're setting the CPU for the first time, we don't migrate,
2899 * so use __set_task_cpu().
2900 */
2901 __set_task_cpu(p, smp_processor_id());
2902 if (p->sched_class->task_fork)
2903 p->sched_class->task_fork(p);
2904 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2905
2906 #ifdef CONFIG_SCHED_INFO
2907 if (likely(sched_info_on()))
2908 memset(&p->sched_info, 0, sizeof(p->sched_info));
2909 #endif
2910 #if defined(CONFIG_SMP)
2911 p->on_cpu = 0;
2912 #endif
2913 init_task_preempt_count(p);
2914 #ifdef CONFIG_SMP
2915 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2916 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2917 #endif
2918 return 0;
2919 }
2920
to_ratio(u64 period,u64 runtime)2921 unsigned long to_ratio(u64 period, u64 runtime)
2922 {
2923 if (runtime == RUNTIME_INF)
2924 return BW_UNIT;
2925
2926 /*
2927 * Doing this here saves a lot of checks in all
2928 * the calling paths, and returning zero seems
2929 * safe for them anyway.
2930 */
2931 if (period == 0)
2932 return 0;
2933
2934 return div64_u64(runtime << BW_SHIFT, period);
2935 }
2936
2937 /*
2938 * wake_up_new_task - wake up a newly created task for the first time.
2939 *
2940 * This function will do some initial scheduler statistics housekeeping
2941 * that must be done for every newly created context, then puts the task
2942 * on the runqueue and wakes it.
2943 */
wake_up_new_task(struct task_struct * p)2944 void wake_up_new_task(struct task_struct *p)
2945 {
2946 struct rq_flags rf;
2947 struct rq *rq;
2948
2949 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2950 p->state = TASK_RUNNING;
2951 #ifdef CONFIG_SMP
2952 /*
2953 * Fork balancing, do it here and not earlier because:
2954 * - cpus_ptr can change in the fork path
2955 * - any previously selected CPU might disappear through hotplug
2956 *
2957 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2958 * as we're not fully set-up yet.
2959 */
2960 p->recent_used_cpu = task_cpu(p);
2961 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2962 #endif
2963 rq = __task_rq_lock(p, &rf);
2964 update_rq_clock(rq);
2965 post_init_entity_util_avg(p);
2966
2967 activate_task(rq, p, ENQUEUE_NOCLOCK);
2968 trace_sched_wakeup_new(p);
2969 check_preempt_curr(rq, p, WF_FORK);
2970 #ifdef CONFIG_SMP
2971 if (p->sched_class->task_woken) {
2972 /*
2973 * Nothing relies on rq->lock after this, so its fine to
2974 * drop it.
2975 */
2976 rq_unpin_lock(rq, &rf);
2977 p->sched_class->task_woken(rq, p);
2978 rq_repin_lock(rq, &rf);
2979 }
2980 #endif
2981 task_rq_unlock(rq, p, &rf);
2982 }
2983
2984 #ifdef CONFIG_PREEMPT_NOTIFIERS
2985
2986 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2987
preempt_notifier_inc(void)2988 void preempt_notifier_inc(void)
2989 {
2990 static_branch_inc(&preempt_notifier_key);
2991 }
2992 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2993
preempt_notifier_dec(void)2994 void preempt_notifier_dec(void)
2995 {
2996 static_branch_dec(&preempt_notifier_key);
2997 }
2998 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2999
3000 /**
3001 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3002 * @notifier: notifier struct to register
3003 */
preempt_notifier_register(struct preempt_notifier * notifier)3004 void preempt_notifier_register(struct preempt_notifier *notifier)
3005 {
3006 if (!static_branch_unlikely(&preempt_notifier_key))
3007 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3008
3009 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3010 }
3011 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3012
3013 /**
3014 * preempt_notifier_unregister - no longer interested in preemption notifications
3015 * @notifier: notifier struct to unregister
3016 *
3017 * This is *not* safe to call from within a preemption notifier.
3018 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3019 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3020 {
3021 hlist_del(¬ifier->link);
3022 }
3023 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3024
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3025 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3026 {
3027 struct preempt_notifier *notifier;
3028
3029 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3030 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3031 }
3032
fire_sched_in_preempt_notifiers(struct task_struct * curr)3033 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3034 {
3035 if (static_branch_unlikely(&preempt_notifier_key))
3036 __fire_sched_in_preempt_notifiers(curr);
3037 }
3038
3039 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3040 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3041 struct task_struct *next)
3042 {
3043 struct preempt_notifier *notifier;
3044
3045 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3046 notifier->ops->sched_out(notifier, next);
3047 }
3048
3049 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3050 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3051 struct task_struct *next)
3052 {
3053 if (static_branch_unlikely(&preempt_notifier_key))
3054 __fire_sched_out_preempt_notifiers(curr, next);
3055 }
3056
3057 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3058
fire_sched_in_preempt_notifiers(struct task_struct * curr)3059 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3060 {
3061 }
3062
3063 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3064 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3065 struct task_struct *next)
3066 {
3067 }
3068
3069 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3070
prepare_task(struct task_struct * next)3071 static inline void prepare_task(struct task_struct *next)
3072 {
3073 #ifdef CONFIG_SMP
3074 /*
3075 * Claim the task as running, we do this before switching to it
3076 * such that any running task will have this set.
3077 */
3078 next->on_cpu = 1;
3079 #endif
3080 }
3081
finish_task(struct task_struct * prev)3082 static inline void finish_task(struct task_struct *prev)
3083 {
3084 #ifdef CONFIG_SMP
3085 /*
3086 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3087 * We must ensure this doesn't happen until the switch is completely
3088 * finished.
3089 *
3090 * In particular, the load of prev->state in finish_task_switch() must
3091 * happen before this.
3092 *
3093 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3094 */
3095 smp_store_release(&prev->on_cpu, 0);
3096 #endif
3097 }
3098
3099 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3100 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3101 {
3102 /*
3103 * Since the runqueue lock will be released by the next
3104 * task (which is an invalid locking op but in the case
3105 * of the scheduler it's an obvious special-case), so we
3106 * do an early lockdep release here:
3107 */
3108 rq_unpin_lock(rq, rf);
3109 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3110 #ifdef CONFIG_DEBUG_SPINLOCK
3111 /* this is a valid case when another task releases the spinlock */
3112 rq->lock.owner = next;
3113 #endif
3114 }
3115
finish_lock_switch(struct rq * rq)3116 static inline void finish_lock_switch(struct rq *rq)
3117 {
3118 /*
3119 * If we are tracking spinlock dependencies then we have to
3120 * fix up the runqueue lock - which gets 'carried over' from
3121 * prev into current:
3122 */
3123 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3124 raw_spin_unlock_irq(&rq->lock);
3125 }
3126
3127 /*
3128 * NOP if the arch has not defined these:
3129 */
3130
3131 #ifndef prepare_arch_switch
3132 # define prepare_arch_switch(next) do { } while (0)
3133 #endif
3134
3135 #ifndef finish_arch_post_lock_switch
3136 # define finish_arch_post_lock_switch() do { } while (0)
3137 #endif
3138
3139 /**
3140 * prepare_task_switch - prepare to switch tasks
3141 * @rq: the runqueue preparing to switch
3142 * @prev: the current task that is being switched out
3143 * @next: the task we are going to switch to.
3144 *
3145 * This is called with the rq lock held and interrupts off. It must
3146 * be paired with a subsequent finish_task_switch after the context
3147 * switch.
3148 *
3149 * prepare_task_switch sets up locking and calls architecture specific
3150 * hooks.
3151 */
3152 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3153 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3154 struct task_struct *next)
3155 {
3156 kcov_prepare_switch(prev);
3157 sched_info_switch(rq, prev, next);
3158 perf_event_task_sched_out(prev, next);
3159 rseq_preempt(prev);
3160 fire_sched_out_preempt_notifiers(prev, next);
3161 prepare_task(next);
3162 prepare_arch_switch(next);
3163 }
3164
3165 /**
3166 * finish_task_switch - clean up after a task-switch
3167 * @prev: the thread we just switched away from.
3168 *
3169 * finish_task_switch must be called after the context switch, paired
3170 * with a prepare_task_switch call before the context switch.
3171 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3172 * and do any other architecture-specific cleanup actions.
3173 *
3174 * Note that we may have delayed dropping an mm in context_switch(). If
3175 * so, we finish that here outside of the runqueue lock. (Doing it
3176 * with the lock held can cause deadlocks; see schedule() for
3177 * details.)
3178 *
3179 * The context switch have flipped the stack from under us and restored the
3180 * local variables which were saved when this task called schedule() in the
3181 * past. prev == current is still correct but we need to recalculate this_rq
3182 * because prev may have moved to another CPU.
3183 */
finish_task_switch(struct task_struct * prev)3184 static struct rq *finish_task_switch(struct task_struct *prev)
3185 __releases(rq->lock)
3186 {
3187 struct rq *rq = this_rq();
3188 struct mm_struct *mm = rq->prev_mm;
3189 long prev_state;
3190
3191 /*
3192 * The previous task will have left us with a preempt_count of 2
3193 * because it left us after:
3194 *
3195 * schedule()
3196 * preempt_disable(); // 1
3197 * __schedule()
3198 * raw_spin_lock_irq(&rq->lock) // 2
3199 *
3200 * Also, see FORK_PREEMPT_COUNT.
3201 */
3202 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3203 "corrupted preempt_count: %s/%d/0x%x\n",
3204 current->comm, current->pid, preempt_count()))
3205 preempt_count_set(FORK_PREEMPT_COUNT);
3206
3207 rq->prev_mm = NULL;
3208
3209 /*
3210 * A task struct has one reference for the use as "current".
3211 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3212 * schedule one last time. The schedule call will never return, and
3213 * the scheduled task must drop that reference.
3214 *
3215 * We must observe prev->state before clearing prev->on_cpu (in
3216 * finish_task), otherwise a concurrent wakeup can get prev
3217 * running on another CPU and we could rave with its RUNNING -> DEAD
3218 * transition, resulting in a double drop.
3219 */
3220 prev_state = prev->state;
3221 vtime_task_switch(prev);
3222 perf_event_task_sched_in(prev, current);
3223 finish_task(prev);
3224 finish_lock_switch(rq);
3225 finish_arch_post_lock_switch();
3226 kcov_finish_switch(current);
3227
3228 fire_sched_in_preempt_notifiers(current);
3229 /*
3230 * When switching through a kernel thread, the loop in
3231 * membarrier_{private,global}_expedited() may have observed that
3232 * kernel thread and not issued an IPI. It is therefore possible to
3233 * schedule between user->kernel->user threads without passing though
3234 * switch_mm(). Membarrier requires a barrier after storing to
3235 * rq->curr, before returning to userspace, so provide them here:
3236 *
3237 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3238 * provided by mmdrop(),
3239 * - a sync_core for SYNC_CORE.
3240 */
3241 if (mm) {
3242 membarrier_mm_sync_core_before_usermode(mm);
3243 mmdrop(mm);
3244 }
3245 if (unlikely(prev_state == TASK_DEAD)) {
3246 if (prev->sched_class->task_dead)
3247 prev->sched_class->task_dead(prev);
3248
3249 /*
3250 * Remove function-return probe instances associated with this
3251 * task and put them back on the free list.
3252 */
3253 kprobe_flush_task(prev);
3254
3255 /* Task is done with its stack. */
3256 put_task_stack(prev);
3257
3258 put_task_struct_rcu_user(prev);
3259 }
3260
3261 tick_nohz_task_switch();
3262 return rq;
3263 }
3264
3265 #ifdef CONFIG_SMP
3266
3267 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3268 static void __balance_callback(struct rq *rq)
3269 {
3270 struct callback_head *head, *next;
3271 void (*func)(struct rq *rq);
3272 unsigned long flags;
3273
3274 raw_spin_lock_irqsave(&rq->lock, flags);
3275 head = rq->balance_callback;
3276 rq->balance_callback = NULL;
3277 while (head) {
3278 func = (void (*)(struct rq *))head->func;
3279 next = head->next;
3280 head->next = NULL;
3281 head = next;
3282
3283 func(rq);
3284 }
3285 raw_spin_unlock_irqrestore(&rq->lock, flags);
3286 }
3287
balance_callback(struct rq * rq)3288 static inline void balance_callback(struct rq *rq)
3289 {
3290 if (unlikely(rq->balance_callback))
3291 __balance_callback(rq);
3292 }
3293
3294 #else
3295
balance_callback(struct rq * rq)3296 static inline void balance_callback(struct rq *rq)
3297 {
3298 }
3299
3300 #endif
3301
3302 /**
3303 * schedule_tail - first thing a freshly forked thread must call.
3304 * @prev: the thread we just switched away from.
3305 */
schedule_tail(struct task_struct * prev)3306 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3307 __releases(rq->lock)
3308 {
3309 struct rq *rq;
3310
3311 /*
3312 * New tasks start with FORK_PREEMPT_COUNT, see there and
3313 * finish_task_switch() for details.
3314 *
3315 * finish_task_switch() will drop rq->lock() and lower preempt_count
3316 * and the preempt_enable() will end up enabling preemption (on
3317 * PREEMPT_COUNT kernels).
3318 */
3319
3320 rq = finish_task_switch(prev);
3321 balance_callback(rq);
3322 preempt_enable();
3323
3324 if (current->set_child_tid)
3325 put_user(task_pid_vnr(current), current->set_child_tid);
3326
3327 calculate_sigpending();
3328 }
3329
3330 /*
3331 * context_switch - switch to the new MM and the new thread's register state.
3332 */
3333 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3334 context_switch(struct rq *rq, struct task_struct *prev,
3335 struct task_struct *next, struct rq_flags *rf)
3336 {
3337 prepare_task_switch(rq, prev, next);
3338
3339 /*
3340 * For paravirt, this is coupled with an exit in switch_to to
3341 * combine the page table reload and the switch backend into
3342 * one hypercall.
3343 */
3344 arch_start_context_switch(prev);
3345
3346 /*
3347 * kernel -> kernel lazy + transfer active
3348 * user -> kernel lazy + mmgrab() active
3349 *
3350 * kernel -> user switch + mmdrop() active
3351 * user -> user switch
3352 */
3353 if (!next->mm) { // to kernel
3354 enter_lazy_tlb(prev->active_mm, next);
3355
3356 next->active_mm = prev->active_mm;
3357 if (prev->mm) // from user
3358 mmgrab(prev->active_mm);
3359 else
3360 prev->active_mm = NULL;
3361 } else { // to user
3362 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3363 /*
3364 * sys_membarrier() requires an smp_mb() between setting
3365 * rq->curr / membarrier_switch_mm() and returning to userspace.
3366 *
3367 * The below provides this either through switch_mm(), or in
3368 * case 'prev->active_mm == next->mm' through
3369 * finish_task_switch()'s mmdrop().
3370 */
3371 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3372
3373 if (!prev->mm) { // from kernel
3374 /* will mmdrop() in finish_task_switch(). */
3375 rq->prev_mm = prev->active_mm;
3376 prev->active_mm = NULL;
3377 }
3378 }
3379
3380 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3381
3382 prepare_lock_switch(rq, next, rf);
3383
3384 /* Here we just switch the register state and the stack. */
3385 switch_to(prev, next, prev);
3386 barrier();
3387
3388 return finish_task_switch(prev);
3389 }
3390
3391 /*
3392 * nr_running and nr_context_switches:
3393 *
3394 * externally visible scheduler statistics: current number of runnable
3395 * threads, total number of context switches performed since bootup.
3396 */
nr_running(void)3397 unsigned long nr_running(void)
3398 {
3399 unsigned long i, sum = 0;
3400
3401 for_each_online_cpu(i)
3402 sum += cpu_rq(i)->nr_running;
3403
3404 return sum;
3405 }
3406
3407 /*
3408 * Check if only the current task is running on the CPU.
3409 *
3410 * Caution: this function does not check that the caller has disabled
3411 * preemption, thus the result might have a time-of-check-to-time-of-use
3412 * race. The caller is responsible to use it correctly, for example:
3413 *
3414 * - from a non-preemptible section (of course)
3415 *
3416 * - from a thread that is bound to a single CPU
3417 *
3418 * - in a loop with very short iterations (e.g. a polling loop)
3419 */
single_task_running(void)3420 bool single_task_running(void)
3421 {
3422 return raw_rq()->nr_running == 1;
3423 }
3424 EXPORT_SYMBOL(single_task_running);
3425
nr_context_switches(void)3426 unsigned long long nr_context_switches(void)
3427 {
3428 int i;
3429 unsigned long long sum = 0;
3430
3431 for_each_possible_cpu(i)
3432 sum += cpu_rq(i)->nr_switches;
3433
3434 return sum;
3435 }
3436
3437 /*
3438 * Consumers of these two interfaces, like for example the cpuidle menu
3439 * governor, are using nonsensical data. Preferring shallow idle state selection
3440 * for a CPU that has IO-wait which might not even end up running the task when
3441 * it does become runnable.
3442 */
3443
nr_iowait_cpu(int cpu)3444 unsigned long nr_iowait_cpu(int cpu)
3445 {
3446 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3447 }
3448
3449 /*
3450 * IO-wait accounting, and how its mostly bollocks (on SMP).
3451 *
3452 * The idea behind IO-wait account is to account the idle time that we could
3453 * have spend running if it were not for IO. That is, if we were to improve the
3454 * storage performance, we'd have a proportional reduction in IO-wait time.
3455 *
3456 * This all works nicely on UP, where, when a task blocks on IO, we account
3457 * idle time as IO-wait, because if the storage were faster, it could've been
3458 * running and we'd not be idle.
3459 *
3460 * This has been extended to SMP, by doing the same for each CPU. This however
3461 * is broken.
3462 *
3463 * Imagine for instance the case where two tasks block on one CPU, only the one
3464 * CPU will have IO-wait accounted, while the other has regular idle. Even
3465 * though, if the storage were faster, both could've ran at the same time,
3466 * utilising both CPUs.
3467 *
3468 * This means, that when looking globally, the current IO-wait accounting on
3469 * SMP is a lower bound, by reason of under accounting.
3470 *
3471 * Worse, since the numbers are provided per CPU, they are sometimes
3472 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3473 * associated with any one particular CPU, it can wake to another CPU than it
3474 * blocked on. This means the per CPU IO-wait number is meaningless.
3475 *
3476 * Task CPU affinities can make all that even more 'interesting'.
3477 */
3478
nr_iowait(void)3479 unsigned long nr_iowait(void)
3480 {
3481 unsigned long i, sum = 0;
3482
3483 for_each_possible_cpu(i)
3484 sum += nr_iowait_cpu(i);
3485
3486 return sum;
3487 }
3488
3489 #ifdef CONFIG_SMP
3490
3491 /*
3492 * sched_exec - execve() is a valuable balancing opportunity, because at
3493 * this point the task has the smallest effective memory and cache footprint.
3494 */
sched_exec(void)3495 void sched_exec(void)
3496 {
3497 struct task_struct *p = current;
3498 unsigned long flags;
3499 int dest_cpu;
3500
3501 raw_spin_lock_irqsave(&p->pi_lock, flags);
3502 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3503 if (dest_cpu == smp_processor_id())
3504 goto unlock;
3505
3506 if (likely(cpu_active(dest_cpu))) {
3507 struct migration_arg arg = { p, dest_cpu };
3508
3509 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3510 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3511 return;
3512 }
3513 unlock:
3514 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3515 }
3516
3517 #endif
3518
3519 DEFINE_PER_CPU(struct kernel_stat, kstat);
3520 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3521
3522 EXPORT_PER_CPU_SYMBOL(kstat);
3523 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3524
3525 /*
3526 * The function fair_sched_class.update_curr accesses the struct curr
3527 * and its field curr->exec_start; when called from task_sched_runtime(),
3528 * we observe a high rate of cache misses in practice.
3529 * Prefetching this data results in improved performance.
3530 */
prefetch_curr_exec_start(struct task_struct * p)3531 static inline void prefetch_curr_exec_start(struct task_struct *p)
3532 {
3533 #ifdef CONFIG_FAIR_GROUP_SCHED
3534 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3535 #else
3536 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3537 #endif
3538 prefetch(curr);
3539 prefetch(&curr->exec_start);
3540 }
3541
3542 /*
3543 * Return accounted runtime for the task.
3544 * In case the task is currently running, return the runtime plus current's
3545 * pending runtime that have not been accounted yet.
3546 */
task_sched_runtime(struct task_struct * p)3547 unsigned long long task_sched_runtime(struct task_struct *p)
3548 {
3549 struct rq_flags rf;
3550 struct rq *rq;
3551 u64 ns;
3552
3553 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3554 /*
3555 * 64-bit doesn't need locks to atomically read a 64-bit value.
3556 * So we have a optimization chance when the task's delta_exec is 0.
3557 * Reading ->on_cpu is racy, but this is ok.
3558 *
3559 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3560 * If we race with it entering CPU, unaccounted time is 0. This is
3561 * indistinguishable from the read occurring a few cycles earlier.
3562 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3563 * been accounted, so we're correct here as well.
3564 */
3565 if (!p->on_cpu || !task_on_rq_queued(p))
3566 return p->se.sum_exec_runtime;
3567 #endif
3568
3569 rq = task_rq_lock(p, &rf);
3570 /*
3571 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3572 * project cycles that may never be accounted to this
3573 * thread, breaking clock_gettime().
3574 */
3575 if (task_current(rq, p) && task_on_rq_queued(p)) {
3576 prefetch_curr_exec_start(p);
3577 update_rq_clock(rq);
3578 p->sched_class->update_curr(rq);
3579 }
3580 ns = p->se.sum_exec_runtime;
3581 task_rq_unlock(rq, p, &rf);
3582
3583 return ns;
3584 }
3585
3586 /*
3587 * This function gets called by the timer code, with HZ frequency.
3588 * We call it with interrupts disabled.
3589 */
scheduler_tick(void)3590 void scheduler_tick(void)
3591 {
3592 int cpu = smp_processor_id();
3593 struct rq *rq = cpu_rq(cpu);
3594 struct task_struct *curr = rq->curr;
3595 struct rq_flags rf;
3596
3597 sched_clock_tick();
3598
3599 rq_lock(rq, &rf);
3600
3601 update_rq_clock(rq);
3602 curr->sched_class->task_tick(rq, curr, 0);
3603 calc_global_load_tick(rq);
3604 psi_task_tick(rq);
3605
3606 rq_unlock(rq, &rf);
3607
3608 perf_event_task_tick();
3609
3610 #ifdef CONFIG_SMP
3611 rq->idle_balance = idle_cpu(cpu);
3612 trigger_load_balance(rq);
3613 #endif
3614 }
3615
3616 #ifdef CONFIG_NO_HZ_FULL
3617
3618 struct tick_work {
3619 int cpu;
3620 atomic_t state;
3621 struct delayed_work work;
3622 };
3623 /* Values for ->state, see diagram below. */
3624 #define TICK_SCHED_REMOTE_OFFLINE 0
3625 #define TICK_SCHED_REMOTE_OFFLINING 1
3626 #define TICK_SCHED_REMOTE_RUNNING 2
3627
3628 /*
3629 * State diagram for ->state:
3630 *
3631 *
3632 * TICK_SCHED_REMOTE_OFFLINE
3633 * | ^
3634 * | |
3635 * | | sched_tick_remote()
3636 * | |
3637 * | |
3638 * +--TICK_SCHED_REMOTE_OFFLINING
3639 * | ^
3640 * | |
3641 * sched_tick_start() | | sched_tick_stop()
3642 * | |
3643 * V |
3644 * TICK_SCHED_REMOTE_RUNNING
3645 *
3646 *
3647 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3648 * and sched_tick_start() are happy to leave the state in RUNNING.
3649 */
3650
3651 static struct tick_work __percpu *tick_work_cpu;
3652
sched_tick_remote(struct work_struct * work)3653 static void sched_tick_remote(struct work_struct *work)
3654 {
3655 struct delayed_work *dwork = to_delayed_work(work);
3656 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3657 int cpu = twork->cpu;
3658 struct rq *rq = cpu_rq(cpu);
3659 struct task_struct *curr;
3660 struct rq_flags rf;
3661 u64 delta;
3662 int os;
3663
3664 /*
3665 * Handle the tick only if it appears the remote CPU is running in full
3666 * dynticks mode. The check is racy by nature, but missing a tick or
3667 * having one too much is no big deal because the scheduler tick updates
3668 * statistics and checks timeslices in a time-independent way, regardless
3669 * of when exactly it is running.
3670 */
3671 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3672 goto out_requeue;
3673
3674 rq_lock_irq(rq, &rf);
3675 curr = rq->curr;
3676 if (is_idle_task(curr) || cpu_is_offline(cpu))
3677 goto out_unlock;
3678
3679 update_rq_clock(rq);
3680 delta = rq_clock_task(rq) - curr->se.exec_start;
3681
3682 /*
3683 * Make sure the next tick runs within a reasonable
3684 * amount of time.
3685 */
3686 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3687 curr->sched_class->task_tick(rq, curr, 0);
3688
3689 out_unlock:
3690 rq_unlock_irq(rq, &rf);
3691
3692 out_requeue:
3693 /*
3694 * Run the remote tick once per second (1Hz). This arbitrary
3695 * frequency is large enough to avoid overload but short enough
3696 * to keep scheduler internal stats reasonably up to date. But
3697 * first update state to reflect hotplug activity if required.
3698 */
3699 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3700 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3701 if (os == TICK_SCHED_REMOTE_RUNNING)
3702 queue_delayed_work(system_unbound_wq, dwork, HZ);
3703 }
3704
sched_tick_start(int cpu)3705 static void sched_tick_start(int cpu)
3706 {
3707 int os;
3708 struct tick_work *twork;
3709
3710 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3711 return;
3712
3713 WARN_ON_ONCE(!tick_work_cpu);
3714
3715 twork = per_cpu_ptr(tick_work_cpu, cpu);
3716 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3717 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3718 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3719 twork->cpu = cpu;
3720 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3721 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3722 }
3723 }
3724
3725 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)3726 static void sched_tick_stop(int cpu)
3727 {
3728 struct tick_work *twork;
3729 int os;
3730
3731 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3732 return;
3733
3734 WARN_ON_ONCE(!tick_work_cpu);
3735
3736 twork = per_cpu_ptr(tick_work_cpu, cpu);
3737 /* There cannot be competing actions, but don't rely on stop-machine. */
3738 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3739 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3740 /* Don't cancel, as this would mess up the state machine. */
3741 }
3742 #endif /* CONFIG_HOTPLUG_CPU */
3743
sched_tick_offload_init(void)3744 int __init sched_tick_offload_init(void)
3745 {
3746 tick_work_cpu = alloc_percpu(struct tick_work);
3747 BUG_ON(!tick_work_cpu);
3748 return 0;
3749 }
3750
3751 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)3752 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)3753 static inline void sched_tick_stop(int cpu) { }
3754 #endif
3755
3756 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3757 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3758 /*
3759 * If the value passed in is equal to the current preempt count
3760 * then we just disabled preemption. Start timing the latency.
3761 */
preempt_latency_start(int val)3762 static inline void preempt_latency_start(int val)
3763 {
3764 if (preempt_count() == val) {
3765 unsigned long ip = get_lock_parent_ip();
3766 #ifdef CONFIG_DEBUG_PREEMPT
3767 current->preempt_disable_ip = ip;
3768 #endif
3769 trace_preempt_off(CALLER_ADDR0, ip);
3770 }
3771 }
3772
preempt_count_add(int val)3773 void preempt_count_add(int val)
3774 {
3775 #ifdef CONFIG_DEBUG_PREEMPT
3776 /*
3777 * Underflow?
3778 */
3779 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3780 return;
3781 #endif
3782 __preempt_count_add(val);
3783 #ifdef CONFIG_DEBUG_PREEMPT
3784 /*
3785 * Spinlock count overflowing soon?
3786 */
3787 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3788 PREEMPT_MASK - 10);
3789 #endif
3790 preempt_latency_start(val);
3791 }
3792 EXPORT_SYMBOL(preempt_count_add);
3793 NOKPROBE_SYMBOL(preempt_count_add);
3794
3795 /*
3796 * If the value passed in equals to the current preempt count
3797 * then we just enabled preemption. Stop timing the latency.
3798 */
preempt_latency_stop(int val)3799 static inline void preempt_latency_stop(int val)
3800 {
3801 if (preempt_count() == val)
3802 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3803 }
3804
preempt_count_sub(int val)3805 void preempt_count_sub(int val)
3806 {
3807 #ifdef CONFIG_DEBUG_PREEMPT
3808 /*
3809 * Underflow?
3810 */
3811 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3812 return;
3813 /*
3814 * Is the spinlock portion underflowing?
3815 */
3816 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3817 !(preempt_count() & PREEMPT_MASK)))
3818 return;
3819 #endif
3820
3821 preempt_latency_stop(val);
3822 __preempt_count_sub(val);
3823 }
3824 EXPORT_SYMBOL(preempt_count_sub);
3825 NOKPROBE_SYMBOL(preempt_count_sub);
3826
3827 #else
preempt_latency_start(int val)3828 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)3829 static inline void preempt_latency_stop(int val) { }
3830 #endif
3831
get_preempt_disable_ip(struct task_struct * p)3832 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3833 {
3834 #ifdef CONFIG_DEBUG_PREEMPT
3835 return p->preempt_disable_ip;
3836 #else
3837 return 0;
3838 #endif
3839 }
3840
3841 /*
3842 * Print scheduling while atomic bug:
3843 */
__schedule_bug(struct task_struct * prev)3844 static noinline void __schedule_bug(struct task_struct *prev)
3845 {
3846 /* Save this before calling printk(), since that will clobber it */
3847 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3848
3849 if (oops_in_progress)
3850 return;
3851
3852 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3853 prev->comm, prev->pid, preempt_count());
3854
3855 debug_show_held_locks(prev);
3856 print_modules();
3857 if (irqs_disabled())
3858 print_irqtrace_events(prev);
3859 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3860 && in_atomic_preempt_off()) {
3861 pr_err("Preemption disabled at:");
3862 print_ip_sym(preempt_disable_ip);
3863 pr_cont("\n");
3864 }
3865 if (panic_on_warn)
3866 panic("scheduling while atomic\n");
3867
3868 dump_stack();
3869 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3870 }
3871
3872 /*
3873 * Various schedule()-time debugging checks and statistics:
3874 */
schedule_debug(struct task_struct * prev,bool preempt)3875 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3876 {
3877 #ifdef CONFIG_SCHED_STACK_END_CHECK
3878 if (task_stack_end_corrupted(prev))
3879 panic("corrupted stack end detected inside scheduler\n");
3880 #endif
3881
3882 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3883 if (!preempt && prev->state && prev->non_block_count) {
3884 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3885 prev->comm, prev->pid, prev->non_block_count);
3886 dump_stack();
3887 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3888 }
3889 #endif
3890
3891 if (unlikely(in_atomic_preempt_off())) {
3892 __schedule_bug(prev);
3893 preempt_count_set(PREEMPT_DISABLED);
3894 }
3895 rcu_sleep_check();
3896
3897 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3898
3899 schedstat_inc(this_rq()->sched_count);
3900 }
3901
3902 /*
3903 * Pick up the highest-prio task:
3904 */
3905 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)3906 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3907 {
3908 const struct sched_class *class;
3909 struct task_struct *p;
3910
3911 /*
3912 * Optimization: we know that if all tasks are in the fair class we can
3913 * call that function directly, but only if the @prev task wasn't of a
3914 * higher scheduling class, because otherwise those loose the
3915 * opportunity to pull in more work from other CPUs.
3916 */
3917 if (likely((prev->sched_class == &idle_sched_class ||
3918 prev->sched_class == &fair_sched_class) &&
3919 rq->nr_running == rq->cfs.h_nr_running)) {
3920
3921 p = fair_sched_class.pick_next_task(rq, prev, rf);
3922 if (unlikely(p == RETRY_TASK))
3923 goto restart;
3924
3925 /* Assumes fair_sched_class->next == idle_sched_class */
3926 if (unlikely(!p))
3927 p = idle_sched_class.pick_next_task(rq, prev, rf);
3928
3929 return p;
3930 }
3931
3932 restart:
3933 #ifdef CONFIG_SMP
3934 /*
3935 * We must do the balancing pass before put_next_task(), such
3936 * that when we release the rq->lock the task is in the same
3937 * state as before we took rq->lock.
3938 *
3939 * We can terminate the balance pass as soon as we know there is
3940 * a runnable task of @class priority or higher.
3941 */
3942 for_class_range(class, prev->sched_class, &idle_sched_class) {
3943 if (class->balance(rq, prev, rf))
3944 break;
3945 }
3946 #endif
3947
3948 put_prev_task(rq, prev);
3949
3950 for_each_class(class) {
3951 p = class->pick_next_task(rq, NULL, NULL);
3952 if (p)
3953 return p;
3954 }
3955
3956 /* The idle class should always have a runnable task: */
3957 BUG();
3958 }
3959
3960 /*
3961 * __schedule() is the main scheduler function.
3962 *
3963 * The main means of driving the scheduler and thus entering this function are:
3964 *
3965 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3966 *
3967 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3968 * paths. For example, see arch/x86/entry_64.S.
3969 *
3970 * To drive preemption between tasks, the scheduler sets the flag in timer
3971 * interrupt handler scheduler_tick().
3972 *
3973 * 3. Wakeups don't really cause entry into schedule(). They add a
3974 * task to the run-queue and that's it.
3975 *
3976 * Now, if the new task added to the run-queue preempts the current
3977 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3978 * called on the nearest possible occasion:
3979 *
3980 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3981 *
3982 * - in syscall or exception context, at the next outmost
3983 * preempt_enable(). (this might be as soon as the wake_up()'s
3984 * spin_unlock()!)
3985 *
3986 * - in IRQ context, return from interrupt-handler to
3987 * preemptible context
3988 *
3989 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3990 * then at the next:
3991 *
3992 * - cond_resched() call
3993 * - explicit schedule() call
3994 * - return from syscall or exception to user-space
3995 * - return from interrupt-handler to user-space
3996 *
3997 * WARNING: must be called with preemption disabled!
3998 */
__schedule(bool preempt)3999 static void __sched notrace __schedule(bool preempt)
4000 {
4001 struct task_struct *prev, *next;
4002 unsigned long *switch_count;
4003 struct rq_flags rf;
4004 struct rq *rq;
4005 int cpu;
4006
4007 cpu = smp_processor_id();
4008 rq = cpu_rq(cpu);
4009 prev = rq->curr;
4010
4011 schedule_debug(prev, preempt);
4012
4013 if (sched_feat(HRTICK))
4014 hrtick_clear(rq);
4015
4016 local_irq_disable();
4017 rcu_note_context_switch(preempt);
4018
4019 /*
4020 * Make sure that signal_pending_state()->signal_pending() below
4021 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4022 * done by the caller to avoid the race with signal_wake_up().
4023 *
4024 * The membarrier system call requires a full memory barrier
4025 * after coming from user-space, before storing to rq->curr.
4026 */
4027 rq_lock(rq, &rf);
4028 smp_mb__after_spinlock();
4029
4030 /* Promote REQ to ACT */
4031 rq->clock_update_flags <<= 1;
4032 update_rq_clock(rq);
4033
4034 switch_count = &prev->nivcsw;
4035 if (!preempt && prev->state) {
4036 if (signal_pending_state(prev->state, prev)) {
4037 prev->state = TASK_RUNNING;
4038 } else {
4039 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4040
4041 if (prev->in_iowait) {
4042 atomic_inc(&rq->nr_iowait);
4043 delayacct_blkio_start();
4044 }
4045 }
4046 switch_count = &prev->nvcsw;
4047 }
4048
4049 next = pick_next_task(rq, prev, &rf);
4050 clear_tsk_need_resched(prev);
4051 clear_preempt_need_resched();
4052
4053 if (likely(prev != next)) {
4054 rq->nr_switches++;
4055 /*
4056 * RCU users of rcu_dereference(rq->curr) may not see
4057 * changes to task_struct made by pick_next_task().
4058 */
4059 RCU_INIT_POINTER(rq->curr, next);
4060 /*
4061 * The membarrier system call requires each architecture
4062 * to have a full memory barrier after updating
4063 * rq->curr, before returning to user-space.
4064 *
4065 * Here are the schemes providing that barrier on the
4066 * various architectures:
4067 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4068 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4069 * - finish_lock_switch() for weakly-ordered
4070 * architectures where spin_unlock is a full barrier,
4071 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4072 * is a RELEASE barrier),
4073 */
4074 ++*switch_count;
4075
4076 trace_sched_switch(preempt, prev, next);
4077
4078 /* Also unlocks the rq: */
4079 rq = context_switch(rq, prev, next, &rf);
4080 } else {
4081 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4082 rq_unlock_irq(rq, &rf);
4083 }
4084
4085 balance_callback(rq);
4086 }
4087
do_task_dead(void)4088 void __noreturn do_task_dead(void)
4089 {
4090 /* Causes final put_task_struct in finish_task_switch(): */
4091 set_special_state(TASK_DEAD);
4092
4093 /* Tell freezer to ignore us: */
4094 current->flags |= PF_NOFREEZE;
4095
4096 __schedule(false);
4097 BUG();
4098
4099 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4100 for (;;)
4101 cpu_relax();
4102 }
4103
sched_submit_work(struct task_struct * tsk)4104 static inline void sched_submit_work(struct task_struct *tsk)
4105 {
4106 if (!tsk->state)
4107 return;
4108
4109 /*
4110 * If a worker went to sleep, notify and ask workqueue whether
4111 * it wants to wake up a task to maintain concurrency.
4112 * As this function is called inside the schedule() context,
4113 * we disable preemption to avoid it calling schedule() again
4114 * in the possible wakeup of a kworker.
4115 */
4116 if (tsk->flags & PF_WQ_WORKER) {
4117 preempt_disable();
4118 wq_worker_sleeping(tsk);
4119 preempt_enable_no_resched();
4120 }
4121
4122 if (tsk_is_pi_blocked(tsk))
4123 return;
4124
4125 /*
4126 * If we are going to sleep and we have plugged IO queued,
4127 * make sure to submit it to avoid deadlocks.
4128 */
4129 if (blk_needs_flush_plug(tsk))
4130 blk_schedule_flush_plug(tsk);
4131 }
4132
sched_update_worker(struct task_struct * tsk)4133 static void sched_update_worker(struct task_struct *tsk)
4134 {
4135 if (tsk->flags & PF_WQ_WORKER)
4136 wq_worker_running(tsk);
4137 }
4138
schedule(void)4139 asmlinkage __visible void __sched schedule(void)
4140 {
4141 struct task_struct *tsk = current;
4142
4143 sched_submit_work(tsk);
4144 do {
4145 preempt_disable();
4146 __schedule(false);
4147 sched_preempt_enable_no_resched();
4148 } while (need_resched());
4149 sched_update_worker(tsk);
4150 }
4151 EXPORT_SYMBOL(schedule);
4152
4153 /*
4154 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4155 * state (have scheduled out non-voluntarily) by making sure that all
4156 * tasks have either left the run queue or have gone into user space.
4157 * As idle tasks do not do either, they must not ever be preempted
4158 * (schedule out non-voluntarily).
4159 *
4160 * schedule_idle() is similar to schedule_preempt_disable() except that it
4161 * never enables preemption because it does not call sched_submit_work().
4162 */
schedule_idle(void)4163 void __sched schedule_idle(void)
4164 {
4165 /*
4166 * As this skips calling sched_submit_work(), which the idle task does
4167 * regardless because that function is a nop when the task is in a
4168 * TASK_RUNNING state, make sure this isn't used someplace that the
4169 * current task can be in any other state. Note, idle is always in the
4170 * TASK_RUNNING state.
4171 */
4172 WARN_ON_ONCE(current->state);
4173 do {
4174 __schedule(false);
4175 } while (need_resched());
4176 }
4177
4178 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4179 asmlinkage __visible void __sched schedule_user(void)
4180 {
4181 /*
4182 * If we come here after a random call to set_need_resched(),
4183 * or we have been woken up remotely but the IPI has not yet arrived,
4184 * we haven't yet exited the RCU idle mode. Do it here manually until
4185 * we find a better solution.
4186 *
4187 * NB: There are buggy callers of this function. Ideally we
4188 * should warn if prev_state != CONTEXT_USER, but that will trigger
4189 * too frequently to make sense yet.
4190 */
4191 enum ctx_state prev_state = exception_enter();
4192 schedule();
4193 exception_exit(prev_state);
4194 }
4195 #endif
4196
4197 /**
4198 * schedule_preempt_disabled - called with preemption disabled
4199 *
4200 * Returns with preemption disabled. Note: preempt_count must be 1
4201 */
schedule_preempt_disabled(void)4202 void __sched schedule_preempt_disabled(void)
4203 {
4204 sched_preempt_enable_no_resched();
4205 schedule();
4206 preempt_disable();
4207 }
4208
preempt_schedule_common(void)4209 static void __sched notrace preempt_schedule_common(void)
4210 {
4211 do {
4212 /*
4213 * Because the function tracer can trace preempt_count_sub()
4214 * and it also uses preempt_enable/disable_notrace(), if
4215 * NEED_RESCHED is set, the preempt_enable_notrace() called
4216 * by the function tracer will call this function again and
4217 * cause infinite recursion.
4218 *
4219 * Preemption must be disabled here before the function
4220 * tracer can trace. Break up preempt_disable() into two
4221 * calls. One to disable preemption without fear of being
4222 * traced. The other to still record the preemption latency,
4223 * which can also be traced by the function tracer.
4224 */
4225 preempt_disable_notrace();
4226 preempt_latency_start(1);
4227 __schedule(true);
4228 preempt_latency_stop(1);
4229 preempt_enable_no_resched_notrace();
4230
4231 /*
4232 * Check again in case we missed a preemption opportunity
4233 * between schedule and now.
4234 */
4235 } while (need_resched());
4236 }
4237
4238 #ifdef CONFIG_PREEMPTION
4239 /*
4240 * This is the entry point to schedule() from in-kernel preemption
4241 * off of preempt_enable.
4242 */
preempt_schedule(void)4243 asmlinkage __visible void __sched notrace preempt_schedule(void)
4244 {
4245 /*
4246 * If there is a non-zero preempt_count or interrupts are disabled,
4247 * we do not want to preempt the current task. Just return..
4248 */
4249 if (likely(!preemptible()))
4250 return;
4251
4252 preempt_schedule_common();
4253 }
4254 NOKPROBE_SYMBOL(preempt_schedule);
4255 EXPORT_SYMBOL(preempt_schedule);
4256
4257 /**
4258 * preempt_schedule_notrace - preempt_schedule called by tracing
4259 *
4260 * The tracing infrastructure uses preempt_enable_notrace to prevent
4261 * recursion and tracing preempt enabling caused by the tracing
4262 * infrastructure itself. But as tracing can happen in areas coming
4263 * from userspace or just about to enter userspace, a preempt enable
4264 * can occur before user_exit() is called. This will cause the scheduler
4265 * to be called when the system is still in usermode.
4266 *
4267 * To prevent this, the preempt_enable_notrace will use this function
4268 * instead of preempt_schedule() to exit user context if needed before
4269 * calling the scheduler.
4270 */
preempt_schedule_notrace(void)4271 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4272 {
4273 enum ctx_state prev_ctx;
4274
4275 if (likely(!preemptible()))
4276 return;
4277
4278 do {
4279 /*
4280 * Because the function tracer can trace preempt_count_sub()
4281 * and it also uses preempt_enable/disable_notrace(), if
4282 * NEED_RESCHED is set, the preempt_enable_notrace() called
4283 * by the function tracer will call this function again and
4284 * cause infinite recursion.
4285 *
4286 * Preemption must be disabled here before the function
4287 * tracer can trace. Break up preempt_disable() into two
4288 * calls. One to disable preemption without fear of being
4289 * traced. The other to still record the preemption latency,
4290 * which can also be traced by the function tracer.
4291 */
4292 preempt_disable_notrace();
4293 preempt_latency_start(1);
4294 /*
4295 * Needs preempt disabled in case user_exit() is traced
4296 * and the tracer calls preempt_enable_notrace() causing
4297 * an infinite recursion.
4298 */
4299 prev_ctx = exception_enter();
4300 __schedule(true);
4301 exception_exit(prev_ctx);
4302
4303 preempt_latency_stop(1);
4304 preempt_enable_no_resched_notrace();
4305 } while (need_resched());
4306 }
4307 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4308
4309 #endif /* CONFIG_PREEMPTION */
4310
4311 /*
4312 * This is the entry point to schedule() from kernel preemption
4313 * off of irq context.
4314 * Note, that this is called and return with irqs disabled. This will
4315 * protect us against recursive calling from irq.
4316 */
preempt_schedule_irq(void)4317 asmlinkage __visible void __sched preempt_schedule_irq(void)
4318 {
4319 enum ctx_state prev_state;
4320
4321 /* Catch callers which need to be fixed */
4322 BUG_ON(preempt_count() || !irqs_disabled());
4323
4324 prev_state = exception_enter();
4325
4326 do {
4327 preempt_disable();
4328 local_irq_enable();
4329 __schedule(true);
4330 local_irq_disable();
4331 sched_preempt_enable_no_resched();
4332 } while (need_resched());
4333
4334 exception_exit(prev_state);
4335 }
4336
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)4337 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4338 void *key)
4339 {
4340 return try_to_wake_up(curr->private, mode, wake_flags);
4341 }
4342 EXPORT_SYMBOL(default_wake_function);
4343
4344 #ifdef CONFIG_RT_MUTEXES
4345
__rt_effective_prio(struct task_struct * pi_task,int prio)4346 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4347 {
4348 if (pi_task)
4349 prio = min(prio, pi_task->prio);
4350
4351 return prio;
4352 }
4353
rt_effective_prio(struct task_struct * p,int prio)4354 static inline int rt_effective_prio(struct task_struct *p, int prio)
4355 {
4356 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4357
4358 return __rt_effective_prio(pi_task, prio);
4359 }
4360
4361 /*
4362 * rt_mutex_setprio - set the current priority of a task
4363 * @p: task to boost
4364 * @pi_task: donor task
4365 *
4366 * This function changes the 'effective' priority of a task. It does
4367 * not touch ->normal_prio like __setscheduler().
4368 *
4369 * Used by the rt_mutex code to implement priority inheritance
4370 * logic. Call site only calls if the priority of the task changed.
4371 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)4372 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4373 {
4374 int prio, oldprio, queued, running, queue_flag =
4375 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4376 const struct sched_class *prev_class;
4377 struct rq_flags rf;
4378 struct rq *rq;
4379
4380 /* XXX used to be waiter->prio, not waiter->task->prio */
4381 prio = __rt_effective_prio(pi_task, p->normal_prio);
4382
4383 /*
4384 * If nothing changed; bail early.
4385 */
4386 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4387 return;
4388
4389 rq = __task_rq_lock(p, &rf);
4390 update_rq_clock(rq);
4391 /*
4392 * Set under pi_lock && rq->lock, such that the value can be used under
4393 * either lock.
4394 *
4395 * Note that there is loads of tricky to make this pointer cache work
4396 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4397 * ensure a task is de-boosted (pi_task is set to NULL) before the
4398 * task is allowed to run again (and can exit). This ensures the pointer
4399 * points to a blocked task -- which guaratees the task is present.
4400 */
4401 p->pi_top_task = pi_task;
4402
4403 /*
4404 * For FIFO/RR we only need to set prio, if that matches we're done.
4405 */
4406 if (prio == p->prio && !dl_prio(prio))
4407 goto out_unlock;
4408
4409 /*
4410 * Idle task boosting is a nono in general. There is one
4411 * exception, when PREEMPT_RT and NOHZ is active:
4412 *
4413 * The idle task calls get_next_timer_interrupt() and holds
4414 * the timer wheel base->lock on the CPU and another CPU wants
4415 * to access the timer (probably to cancel it). We can safely
4416 * ignore the boosting request, as the idle CPU runs this code
4417 * with interrupts disabled and will complete the lock
4418 * protected section without being interrupted. So there is no
4419 * real need to boost.
4420 */
4421 if (unlikely(p == rq->idle)) {
4422 WARN_ON(p != rq->curr);
4423 WARN_ON(p->pi_blocked_on);
4424 goto out_unlock;
4425 }
4426
4427 trace_sched_pi_setprio(p, pi_task);
4428 oldprio = p->prio;
4429
4430 if (oldprio == prio)
4431 queue_flag &= ~DEQUEUE_MOVE;
4432
4433 prev_class = p->sched_class;
4434 queued = task_on_rq_queued(p);
4435 running = task_current(rq, p);
4436 if (queued)
4437 dequeue_task(rq, p, queue_flag);
4438 if (running)
4439 put_prev_task(rq, p);
4440
4441 /*
4442 * Boosting condition are:
4443 * 1. -rt task is running and holds mutex A
4444 * --> -dl task blocks on mutex A
4445 *
4446 * 2. -dl task is running and holds mutex A
4447 * --> -dl task blocks on mutex A and could preempt the
4448 * running task
4449 */
4450 if (dl_prio(prio)) {
4451 if (!dl_prio(p->normal_prio) ||
4452 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4453 p->dl.dl_boosted = 1;
4454 queue_flag |= ENQUEUE_REPLENISH;
4455 } else
4456 p->dl.dl_boosted = 0;
4457 p->sched_class = &dl_sched_class;
4458 } else if (rt_prio(prio)) {
4459 if (dl_prio(oldprio))
4460 p->dl.dl_boosted = 0;
4461 if (oldprio < prio)
4462 queue_flag |= ENQUEUE_HEAD;
4463 p->sched_class = &rt_sched_class;
4464 } else {
4465 if (dl_prio(oldprio))
4466 p->dl.dl_boosted = 0;
4467 if (rt_prio(oldprio))
4468 p->rt.timeout = 0;
4469 p->sched_class = &fair_sched_class;
4470 }
4471
4472 p->prio = prio;
4473
4474 if (queued)
4475 enqueue_task(rq, p, queue_flag);
4476 if (running)
4477 set_next_task(rq, p);
4478
4479 check_class_changed(rq, p, prev_class, oldprio);
4480 out_unlock:
4481 /* Avoid rq from going away on us: */
4482 preempt_disable();
4483 __task_rq_unlock(rq, &rf);
4484
4485 balance_callback(rq);
4486 preempt_enable();
4487 }
4488 #else
rt_effective_prio(struct task_struct * p,int prio)4489 static inline int rt_effective_prio(struct task_struct *p, int prio)
4490 {
4491 return prio;
4492 }
4493 #endif
4494
set_user_nice(struct task_struct * p,long nice)4495 void set_user_nice(struct task_struct *p, long nice)
4496 {
4497 bool queued, running;
4498 int old_prio, delta;
4499 struct rq_flags rf;
4500 struct rq *rq;
4501
4502 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4503 return;
4504 /*
4505 * We have to be careful, if called from sys_setpriority(),
4506 * the task might be in the middle of scheduling on another CPU.
4507 */
4508 rq = task_rq_lock(p, &rf);
4509 update_rq_clock(rq);
4510
4511 /*
4512 * The RT priorities are set via sched_setscheduler(), but we still
4513 * allow the 'normal' nice value to be set - but as expected
4514 * it wont have any effect on scheduling until the task is
4515 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4516 */
4517 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4518 p->static_prio = NICE_TO_PRIO(nice);
4519 goto out_unlock;
4520 }
4521 queued = task_on_rq_queued(p);
4522 running = task_current(rq, p);
4523 if (queued)
4524 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4525 if (running)
4526 put_prev_task(rq, p);
4527
4528 p->static_prio = NICE_TO_PRIO(nice);
4529 set_load_weight(p, true);
4530 old_prio = p->prio;
4531 p->prio = effective_prio(p);
4532 delta = p->prio - old_prio;
4533
4534 if (queued) {
4535 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4536 /*
4537 * If the task increased its priority or is running and
4538 * lowered its priority, then reschedule its CPU:
4539 */
4540 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4541 resched_curr(rq);
4542 }
4543 if (running)
4544 set_next_task(rq, p);
4545 out_unlock:
4546 task_rq_unlock(rq, p, &rf);
4547 }
4548 EXPORT_SYMBOL(set_user_nice);
4549
4550 /*
4551 * can_nice - check if a task can reduce its nice value
4552 * @p: task
4553 * @nice: nice value
4554 */
can_nice(const struct task_struct * p,const int nice)4555 int can_nice(const struct task_struct *p, const int nice)
4556 {
4557 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4558 int nice_rlim = nice_to_rlimit(nice);
4559
4560 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4561 capable(CAP_SYS_NICE));
4562 }
4563
4564 #ifdef __ARCH_WANT_SYS_NICE
4565
4566 /*
4567 * sys_nice - change the priority of the current process.
4568 * @increment: priority increment
4569 *
4570 * sys_setpriority is a more generic, but much slower function that
4571 * does similar things.
4572 */
SYSCALL_DEFINE1(nice,int,increment)4573 SYSCALL_DEFINE1(nice, int, increment)
4574 {
4575 long nice, retval;
4576
4577 /*
4578 * Setpriority might change our priority at the same moment.
4579 * We don't have to worry. Conceptually one call occurs first
4580 * and we have a single winner.
4581 */
4582 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4583 nice = task_nice(current) + increment;
4584
4585 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4586 if (increment < 0 && !can_nice(current, nice))
4587 return -EPERM;
4588
4589 retval = security_task_setnice(current, nice);
4590 if (retval)
4591 return retval;
4592
4593 set_user_nice(current, nice);
4594 return 0;
4595 }
4596
4597 #endif
4598
4599 /**
4600 * task_prio - return the priority value of a given task.
4601 * @p: the task in question.
4602 *
4603 * Return: The priority value as seen by users in /proc.
4604 * RT tasks are offset by -200. Normal tasks are centered
4605 * around 0, value goes from -16 to +15.
4606 */
task_prio(const struct task_struct * p)4607 int task_prio(const struct task_struct *p)
4608 {
4609 return p->prio - MAX_RT_PRIO;
4610 }
4611
4612 /**
4613 * idle_cpu - is a given CPU idle currently?
4614 * @cpu: the processor in question.
4615 *
4616 * Return: 1 if the CPU is currently idle. 0 otherwise.
4617 */
idle_cpu(int cpu)4618 int idle_cpu(int cpu)
4619 {
4620 struct rq *rq = cpu_rq(cpu);
4621
4622 if (rq->curr != rq->idle)
4623 return 0;
4624
4625 if (rq->nr_running)
4626 return 0;
4627
4628 #ifdef CONFIG_SMP
4629 if (!llist_empty(&rq->wake_list))
4630 return 0;
4631 #endif
4632
4633 return 1;
4634 }
4635
4636 /**
4637 * available_idle_cpu - is a given CPU idle for enqueuing work.
4638 * @cpu: the CPU in question.
4639 *
4640 * Return: 1 if the CPU is currently idle. 0 otherwise.
4641 */
available_idle_cpu(int cpu)4642 int available_idle_cpu(int cpu)
4643 {
4644 if (!idle_cpu(cpu))
4645 return 0;
4646
4647 if (vcpu_is_preempted(cpu))
4648 return 0;
4649
4650 return 1;
4651 }
4652
4653 /**
4654 * idle_task - return the idle task for a given CPU.
4655 * @cpu: the processor in question.
4656 *
4657 * Return: The idle task for the CPU @cpu.
4658 */
idle_task(int cpu)4659 struct task_struct *idle_task(int cpu)
4660 {
4661 return cpu_rq(cpu)->idle;
4662 }
4663
4664 /**
4665 * find_process_by_pid - find a process with a matching PID value.
4666 * @pid: the pid in question.
4667 *
4668 * The task of @pid, if found. %NULL otherwise.
4669 */
find_process_by_pid(pid_t pid)4670 static struct task_struct *find_process_by_pid(pid_t pid)
4671 {
4672 return pid ? find_task_by_vpid(pid) : current;
4673 }
4674
4675 /*
4676 * sched_setparam() passes in -1 for its policy, to let the functions
4677 * it calls know not to change it.
4678 */
4679 #define SETPARAM_POLICY -1
4680
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)4681 static void __setscheduler_params(struct task_struct *p,
4682 const struct sched_attr *attr)
4683 {
4684 int policy = attr->sched_policy;
4685
4686 if (policy == SETPARAM_POLICY)
4687 policy = p->policy;
4688
4689 p->policy = policy;
4690
4691 if (dl_policy(policy))
4692 __setparam_dl(p, attr);
4693 else if (fair_policy(policy))
4694 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4695
4696 /*
4697 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4698 * !rt_policy. Always setting this ensures that things like
4699 * getparam()/getattr() don't report silly values for !rt tasks.
4700 */
4701 p->rt_priority = attr->sched_priority;
4702 p->normal_prio = normal_prio(p);
4703 set_load_weight(p, true);
4704 }
4705
4706 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)4707 static void __setscheduler(struct rq *rq, struct task_struct *p,
4708 const struct sched_attr *attr, bool keep_boost)
4709 {
4710 /*
4711 * If params can't change scheduling class changes aren't allowed
4712 * either.
4713 */
4714 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4715 return;
4716
4717 __setscheduler_params(p, attr);
4718
4719 /*
4720 * Keep a potential priority boosting if called from
4721 * sched_setscheduler().
4722 */
4723 p->prio = normal_prio(p);
4724 if (keep_boost)
4725 p->prio = rt_effective_prio(p, p->prio);
4726
4727 if (dl_prio(p->prio))
4728 p->sched_class = &dl_sched_class;
4729 else if (rt_prio(p->prio))
4730 p->sched_class = &rt_sched_class;
4731 else
4732 p->sched_class = &fair_sched_class;
4733 }
4734
4735 /*
4736 * Check the target process has a UID that matches the current process's:
4737 */
check_same_owner(struct task_struct * p)4738 static bool check_same_owner(struct task_struct *p)
4739 {
4740 const struct cred *cred = current_cred(), *pcred;
4741 bool match;
4742
4743 rcu_read_lock();
4744 pcred = __task_cred(p);
4745 match = (uid_eq(cred->euid, pcred->euid) ||
4746 uid_eq(cred->euid, pcred->uid));
4747 rcu_read_unlock();
4748 return match;
4749 }
4750
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)4751 static int __sched_setscheduler(struct task_struct *p,
4752 const struct sched_attr *attr,
4753 bool user, bool pi)
4754 {
4755 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4756 MAX_RT_PRIO - 1 - attr->sched_priority;
4757 int retval, oldprio, oldpolicy = -1, queued, running;
4758 int new_effective_prio, policy = attr->sched_policy;
4759 const struct sched_class *prev_class;
4760 struct rq_flags rf;
4761 int reset_on_fork;
4762 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4763 struct rq *rq;
4764
4765 /* The pi code expects interrupts enabled */
4766 BUG_ON(pi && in_interrupt());
4767 recheck:
4768 /* Double check policy once rq lock held: */
4769 if (policy < 0) {
4770 reset_on_fork = p->sched_reset_on_fork;
4771 policy = oldpolicy = p->policy;
4772 } else {
4773 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4774
4775 if (!valid_policy(policy))
4776 return -EINVAL;
4777 }
4778
4779 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4780 return -EINVAL;
4781
4782 /*
4783 * Valid priorities for SCHED_FIFO and SCHED_RR are
4784 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4785 * SCHED_BATCH and SCHED_IDLE is 0.
4786 */
4787 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4788 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4789 return -EINVAL;
4790 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4791 (rt_policy(policy) != (attr->sched_priority != 0)))
4792 return -EINVAL;
4793
4794 /*
4795 * Allow unprivileged RT tasks to decrease priority:
4796 */
4797 if (user && !capable(CAP_SYS_NICE)) {
4798 if (fair_policy(policy)) {
4799 if (attr->sched_nice < task_nice(p) &&
4800 !can_nice(p, attr->sched_nice))
4801 return -EPERM;
4802 }
4803
4804 if (rt_policy(policy)) {
4805 unsigned long rlim_rtprio =
4806 task_rlimit(p, RLIMIT_RTPRIO);
4807
4808 /* Can't set/change the rt policy: */
4809 if (policy != p->policy && !rlim_rtprio)
4810 return -EPERM;
4811
4812 /* Can't increase priority: */
4813 if (attr->sched_priority > p->rt_priority &&
4814 attr->sched_priority > rlim_rtprio)
4815 return -EPERM;
4816 }
4817
4818 /*
4819 * Can't set/change SCHED_DEADLINE policy at all for now
4820 * (safest behavior); in the future we would like to allow
4821 * unprivileged DL tasks to increase their relative deadline
4822 * or reduce their runtime (both ways reducing utilization)
4823 */
4824 if (dl_policy(policy))
4825 return -EPERM;
4826
4827 /*
4828 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4829 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4830 */
4831 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4832 if (!can_nice(p, task_nice(p)))
4833 return -EPERM;
4834 }
4835
4836 /* Can't change other user's priorities: */
4837 if (!check_same_owner(p))
4838 return -EPERM;
4839
4840 /* Normal users shall not reset the sched_reset_on_fork flag: */
4841 if (p->sched_reset_on_fork && !reset_on_fork)
4842 return -EPERM;
4843 }
4844
4845 if (user) {
4846 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4847 return -EINVAL;
4848
4849 retval = security_task_setscheduler(p);
4850 if (retval)
4851 return retval;
4852 }
4853
4854 /* Update task specific "requested" clamps */
4855 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4856 retval = uclamp_validate(p, attr);
4857 if (retval)
4858 return retval;
4859 }
4860
4861 if (pi)
4862 cpuset_read_lock();
4863
4864 /*
4865 * Make sure no PI-waiters arrive (or leave) while we are
4866 * changing the priority of the task:
4867 *
4868 * To be able to change p->policy safely, the appropriate
4869 * runqueue lock must be held.
4870 */
4871 rq = task_rq_lock(p, &rf);
4872 update_rq_clock(rq);
4873
4874 /*
4875 * Changing the policy of the stop threads its a very bad idea:
4876 */
4877 if (p == rq->stop) {
4878 retval = -EINVAL;
4879 goto unlock;
4880 }
4881
4882 /*
4883 * If not changing anything there's no need to proceed further,
4884 * but store a possible modification of reset_on_fork.
4885 */
4886 if (unlikely(policy == p->policy)) {
4887 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4888 goto change;
4889 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4890 goto change;
4891 if (dl_policy(policy) && dl_param_changed(p, attr))
4892 goto change;
4893 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4894 goto change;
4895
4896 p->sched_reset_on_fork = reset_on_fork;
4897 retval = 0;
4898 goto unlock;
4899 }
4900 change:
4901
4902 if (user) {
4903 #ifdef CONFIG_RT_GROUP_SCHED
4904 /*
4905 * Do not allow realtime tasks into groups that have no runtime
4906 * assigned.
4907 */
4908 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4909 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4910 !task_group_is_autogroup(task_group(p))) {
4911 retval = -EPERM;
4912 goto unlock;
4913 }
4914 #endif
4915 #ifdef CONFIG_SMP
4916 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4917 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4918 cpumask_t *span = rq->rd->span;
4919
4920 /*
4921 * Don't allow tasks with an affinity mask smaller than
4922 * the entire root_domain to become SCHED_DEADLINE. We
4923 * will also fail if there's no bandwidth available.
4924 */
4925 if (!cpumask_subset(span, p->cpus_ptr) ||
4926 rq->rd->dl_bw.bw == 0) {
4927 retval = -EPERM;
4928 goto unlock;
4929 }
4930 }
4931 #endif
4932 }
4933
4934 /* Re-check policy now with rq lock held: */
4935 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4936 policy = oldpolicy = -1;
4937 task_rq_unlock(rq, p, &rf);
4938 if (pi)
4939 cpuset_read_unlock();
4940 goto recheck;
4941 }
4942
4943 /*
4944 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4945 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4946 * is available.
4947 */
4948 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4949 retval = -EBUSY;
4950 goto unlock;
4951 }
4952
4953 p->sched_reset_on_fork = reset_on_fork;
4954 oldprio = p->prio;
4955
4956 if (pi) {
4957 /*
4958 * Take priority boosted tasks into account. If the new
4959 * effective priority is unchanged, we just store the new
4960 * normal parameters and do not touch the scheduler class and
4961 * the runqueue. This will be done when the task deboost
4962 * itself.
4963 */
4964 new_effective_prio = rt_effective_prio(p, newprio);
4965 if (new_effective_prio == oldprio)
4966 queue_flags &= ~DEQUEUE_MOVE;
4967 }
4968
4969 queued = task_on_rq_queued(p);
4970 running = task_current(rq, p);
4971 if (queued)
4972 dequeue_task(rq, p, queue_flags);
4973 if (running)
4974 put_prev_task(rq, p);
4975
4976 prev_class = p->sched_class;
4977
4978 __setscheduler(rq, p, attr, pi);
4979 __setscheduler_uclamp(p, attr);
4980
4981 if (queued) {
4982 /*
4983 * We enqueue to tail when the priority of a task is
4984 * increased (user space view).
4985 */
4986 if (oldprio < p->prio)
4987 queue_flags |= ENQUEUE_HEAD;
4988
4989 enqueue_task(rq, p, queue_flags);
4990 }
4991 if (running)
4992 set_next_task(rq, p);
4993
4994 check_class_changed(rq, p, prev_class, oldprio);
4995
4996 /* Avoid rq from going away on us: */
4997 preempt_disable();
4998 task_rq_unlock(rq, p, &rf);
4999
5000 if (pi) {
5001 cpuset_read_unlock();
5002 rt_mutex_adjust_pi(p);
5003 }
5004
5005 /* Run balance callbacks after we've adjusted the PI chain: */
5006 balance_callback(rq);
5007 preempt_enable();
5008
5009 return 0;
5010
5011 unlock:
5012 task_rq_unlock(rq, p, &rf);
5013 if (pi)
5014 cpuset_read_unlock();
5015 return retval;
5016 }
5017
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5018 static int _sched_setscheduler(struct task_struct *p, int policy,
5019 const struct sched_param *param, bool check)
5020 {
5021 struct sched_attr attr = {
5022 .sched_policy = policy,
5023 .sched_priority = param->sched_priority,
5024 .sched_nice = PRIO_TO_NICE(p->static_prio),
5025 };
5026
5027 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5028 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5029 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5030 policy &= ~SCHED_RESET_ON_FORK;
5031 attr.sched_policy = policy;
5032 }
5033
5034 return __sched_setscheduler(p, &attr, check, true);
5035 }
5036 /**
5037 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5038 * @p: the task in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
5041 *
5042 * Return: 0 on success. An error code otherwise.
5043 *
5044 * NOTE that the task may be already dead.
5045 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5046 int sched_setscheduler(struct task_struct *p, int policy,
5047 const struct sched_param *param)
5048 {
5049 return _sched_setscheduler(p, policy, param, true);
5050 }
5051 EXPORT_SYMBOL_GPL(sched_setscheduler);
5052
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5053 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5054 {
5055 return __sched_setscheduler(p, attr, true, true);
5056 }
5057 EXPORT_SYMBOL_GPL(sched_setattr);
5058
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5059 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5060 {
5061 return __sched_setscheduler(p, attr, false, true);
5062 }
5063
5064 /**
5065 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5066 * @p: the task in question.
5067 * @policy: new policy.
5068 * @param: structure containing the new RT priority.
5069 *
5070 * Just like sched_setscheduler, only don't bother checking if the
5071 * current context has permission. For example, this is needed in
5072 * stop_machine(): we create temporary high priority worker threads,
5073 * but our caller might not have that capability.
5074 *
5075 * Return: 0 on success. An error code otherwise.
5076 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5077 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5078 const struct sched_param *param)
5079 {
5080 return _sched_setscheduler(p, policy, param, false);
5081 }
5082 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5083
5084 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5085 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5086 {
5087 struct sched_param lparam;
5088 struct task_struct *p;
5089 int retval;
5090
5091 if (!param || pid < 0)
5092 return -EINVAL;
5093 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5094 return -EFAULT;
5095
5096 rcu_read_lock();
5097 retval = -ESRCH;
5098 p = find_process_by_pid(pid);
5099 if (likely(p))
5100 get_task_struct(p);
5101 rcu_read_unlock();
5102
5103 if (likely(p)) {
5104 retval = sched_setscheduler(p, policy, &lparam);
5105 put_task_struct(p);
5106 }
5107
5108 return retval;
5109 }
5110
5111 /*
5112 * Mimics kernel/events/core.c perf_copy_attr().
5113 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5114 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5115 {
5116 u32 size;
5117 int ret;
5118
5119 /* Zero the full structure, so that a short copy will be nice: */
5120 memset(attr, 0, sizeof(*attr));
5121
5122 ret = get_user(size, &uattr->size);
5123 if (ret)
5124 return ret;
5125
5126 /* ABI compatibility quirk: */
5127 if (!size)
5128 size = SCHED_ATTR_SIZE_VER0;
5129 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5130 goto err_size;
5131
5132 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5133 if (ret) {
5134 if (ret == -E2BIG)
5135 goto err_size;
5136 return ret;
5137 }
5138
5139 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5140 size < SCHED_ATTR_SIZE_VER1)
5141 return -EINVAL;
5142
5143 /*
5144 * XXX: Do we want to be lenient like existing syscalls; or do we want
5145 * to be strict and return an error on out-of-bounds values?
5146 */
5147 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5148
5149 return 0;
5150
5151 err_size:
5152 put_user(sizeof(*attr), &uattr->size);
5153 return -E2BIG;
5154 }
5155
5156 /**
5157 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5158 * @pid: the pid in question.
5159 * @policy: new policy.
5160 * @param: structure containing the new RT priority.
5161 *
5162 * Return: 0 on success. An error code otherwise.
5163 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5164 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5165 {
5166 if (policy < 0)
5167 return -EINVAL;
5168
5169 return do_sched_setscheduler(pid, policy, param);
5170 }
5171
5172 /**
5173 * sys_sched_setparam - set/change the RT priority of a thread
5174 * @pid: the pid in question.
5175 * @param: structure containing the new RT priority.
5176 *
5177 * Return: 0 on success. An error code otherwise.
5178 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5179 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5180 {
5181 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5182 }
5183
5184 /**
5185 * sys_sched_setattr - same as above, but with extended sched_attr
5186 * @pid: the pid in question.
5187 * @uattr: structure containing the extended parameters.
5188 * @flags: for future extension.
5189 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5190 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5191 unsigned int, flags)
5192 {
5193 struct sched_attr attr;
5194 struct task_struct *p;
5195 int retval;
5196
5197 if (!uattr || pid < 0 || flags)
5198 return -EINVAL;
5199
5200 retval = sched_copy_attr(uattr, &attr);
5201 if (retval)
5202 return retval;
5203
5204 if ((int)attr.sched_policy < 0)
5205 return -EINVAL;
5206 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5207 attr.sched_policy = SETPARAM_POLICY;
5208
5209 rcu_read_lock();
5210 retval = -ESRCH;
5211 p = find_process_by_pid(pid);
5212 if (likely(p))
5213 get_task_struct(p);
5214 rcu_read_unlock();
5215
5216 if (likely(p)) {
5217 retval = sched_setattr(p, &attr);
5218 put_task_struct(p);
5219 }
5220
5221 return retval;
5222 }
5223
5224 /**
5225 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5226 * @pid: the pid in question.
5227 *
5228 * Return: On success, the policy of the thread. Otherwise, a negative error
5229 * code.
5230 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5231 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5232 {
5233 struct task_struct *p;
5234 int retval;
5235
5236 if (pid < 0)
5237 return -EINVAL;
5238
5239 retval = -ESRCH;
5240 rcu_read_lock();
5241 p = find_process_by_pid(pid);
5242 if (p) {
5243 retval = security_task_getscheduler(p);
5244 if (!retval)
5245 retval = p->policy
5246 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5247 }
5248 rcu_read_unlock();
5249 return retval;
5250 }
5251
5252 /**
5253 * sys_sched_getparam - get the RT priority of a thread
5254 * @pid: the pid in question.
5255 * @param: structure containing the RT priority.
5256 *
5257 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5258 * code.
5259 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5260 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5261 {
5262 struct sched_param lp = { .sched_priority = 0 };
5263 struct task_struct *p;
5264 int retval;
5265
5266 if (!param || pid < 0)
5267 return -EINVAL;
5268
5269 rcu_read_lock();
5270 p = find_process_by_pid(pid);
5271 retval = -ESRCH;
5272 if (!p)
5273 goto out_unlock;
5274
5275 retval = security_task_getscheduler(p);
5276 if (retval)
5277 goto out_unlock;
5278
5279 if (task_has_rt_policy(p))
5280 lp.sched_priority = p->rt_priority;
5281 rcu_read_unlock();
5282
5283 /*
5284 * This one might sleep, we cannot do it with a spinlock held ...
5285 */
5286 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5287
5288 return retval;
5289
5290 out_unlock:
5291 rcu_read_unlock();
5292 return retval;
5293 }
5294
5295 /*
5296 * Copy the kernel size attribute structure (which might be larger
5297 * than what user-space knows about) to user-space.
5298 *
5299 * Note that all cases are valid: user-space buffer can be larger or
5300 * smaller than the kernel-space buffer. The usual case is that both
5301 * have the same size.
5302 */
5303 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)5304 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5305 struct sched_attr *kattr,
5306 unsigned int usize)
5307 {
5308 unsigned int ksize = sizeof(*kattr);
5309
5310 if (!access_ok(uattr, usize))
5311 return -EFAULT;
5312
5313 /*
5314 * sched_getattr() ABI forwards and backwards compatibility:
5315 *
5316 * If usize == ksize then we just copy everything to user-space and all is good.
5317 *
5318 * If usize < ksize then we only copy as much as user-space has space for,
5319 * this keeps ABI compatibility as well. We skip the rest.
5320 *
5321 * If usize > ksize then user-space is using a newer version of the ABI,
5322 * which part the kernel doesn't know about. Just ignore it - tooling can
5323 * detect the kernel's knowledge of attributes from the attr->size value
5324 * which is set to ksize in this case.
5325 */
5326 kattr->size = min(usize, ksize);
5327
5328 if (copy_to_user(uattr, kattr, kattr->size))
5329 return -EFAULT;
5330
5331 return 0;
5332 }
5333
5334 /**
5335 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5336 * @pid: the pid in question.
5337 * @uattr: structure containing the extended parameters.
5338 * @usize: sizeof(attr) for fwd/bwd comp.
5339 * @flags: for future extension.
5340 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)5341 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5342 unsigned int, usize, unsigned int, flags)
5343 {
5344 struct sched_attr kattr = { };
5345 struct task_struct *p;
5346 int retval;
5347
5348 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5349 usize < SCHED_ATTR_SIZE_VER0 || flags)
5350 return -EINVAL;
5351
5352 rcu_read_lock();
5353 p = find_process_by_pid(pid);
5354 retval = -ESRCH;
5355 if (!p)
5356 goto out_unlock;
5357
5358 retval = security_task_getscheduler(p);
5359 if (retval)
5360 goto out_unlock;
5361
5362 kattr.sched_policy = p->policy;
5363 if (p->sched_reset_on_fork)
5364 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5365 if (task_has_dl_policy(p))
5366 __getparam_dl(p, &kattr);
5367 else if (task_has_rt_policy(p))
5368 kattr.sched_priority = p->rt_priority;
5369 else
5370 kattr.sched_nice = task_nice(p);
5371
5372 #ifdef CONFIG_UCLAMP_TASK
5373 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5374 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5375 #endif
5376
5377 rcu_read_unlock();
5378
5379 return sched_attr_copy_to_user(uattr, &kattr, usize);
5380
5381 out_unlock:
5382 rcu_read_unlock();
5383 return retval;
5384 }
5385
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)5386 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5387 {
5388 cpumask_var_t cpus_allowed, new_mask;
5389 struct task_struct *p;
5390 int retval;
5391
5392 rcu_read_lock();
5393
5394 p = find_process_by_pid(pid);
5395 if (!p) {
5396 rcu_read_unlock();
5397 return -ESRCH;
5398 }
5399
5400 /* Prevent p going away */
5401 get_task_struct(p);
5402 rcu_read_unlock();
5403
5404 if (p->flags & PF_NO_SETAFFINITY) {
5405 retval = -EINVAL;
5406 goto out_put_task;
5407 }
5408 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5409 retval = -ENOMEM;
5410 goto out_put_task;
5411 }
5412 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5413 retval = -ENOMEM;
5414 goto out_free_cpus_allowed;
5415 }
5416 retval = -EPERM;
5417 if (!check_same_owner(p)) {
5418 rcu_read_lock();
5419 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5420 rcu_read_unlock();
5421 goto out_free_new_mask;
5422 }
5423 rcu_read_unlock();
5424 }
5425
5426 retval = security_task_setscheduler(p);
5427 if (retval)
5428 goto out_free_new_mask;
5429
5430
5431 cpuset_cpus_allowed(p, cpus_allowed);
5432 cpumask_and(new_mask, in_mask, cpus_allowed);
5433
5434 /*
5435 * Since bandwidth control happens on root_domain basis,
5436 * if admission test is enabled, we only admit -deadline
5437 * tasks allowed to run on all the CPUs in the task's
5438 * root_domain.
5439 */
5440 #ifdef CONFIG_SMP
5441 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5442 rcu_read_lock();
5443 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5444 retval = -EBUSY;
5445 rcu_read_unlock();
5446 goto out_free_new_mask;
5447 }
5448 rcu_read_unlock();
5449 }
5450 #endif
5451 again:
5452 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5453
5454 if (!retval) {
5455 cpuset_cpus_allowed(p, cpus_allowed);
5456 if (!cpumask_subset(new_mask, cpus_allowed)) {
5457 /*
5458 * We must have raced with a concurrent cpuset
5459 * update. Just reset the cpus_allowed to the
5460 * cpuset's cpus_allowed
5461 */
5462 cpumask_copy(new_mask, cpus_allowed);
5463 goto again;
5464 }
5465 }
5466 out_free_new_mask:
5467 free_cpumask_var(new_mask);
5468 out_free_cpus_allowed:
5469 free_cpumask_var(cpus_allowed);
5470 out_put_task:
5471 put_task_struct(p);
5472 return retval;
5473 }
5474
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)5475 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5476 struct cpumask *new_mask)
5477 {
5478 if (len < cpumask_size())
5479 cpumask_clear(new_mask);
5480 else if (len > cpumask_size())
5481 len = cpumask_size();
5482
5483 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5484 }
5485
5486 /**
5487 * sys_sched_setaffinity - set the CPU affinity of a process
5488 * @pid: pid of the process
5489 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5490 * @user_mask_ptr: user-space pointer to the new CPU mask
5491 *
5492 * Return: 0 on success. An error code otherwise.
5493 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5494 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5495 unsigned long __user *, user_mask_ptr)
5496 {
5497 cpumask_var_t new_mask;
5498 int retval;
5499
5500 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5501 return -ENOMEM;
5502
5503 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5504 if (retval == 0)
5505 retval = sched_setaffinity(pid, new_mask);
5506 free_cpumask_var(new_mask);
5507 return retval;
5508 }
5509
sched_getaffinity(pid_t pid,struct cpumask * mask)5510 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5511 {
5512 struct task_struct *p;
5513 unsigned long flags;
5514 int retval;
5515
5516 rcu_read_lock();
5517
5518 retval = -ESRCH;
5519 p = find_process_by_pid(pid);
5520 if (!p)
5521 goto out_unlock;
5522
5523 retval = security_task_getscheduler(p);
5524 if (retval)
5525 goto out_unlock;
5526
5527 raw_spin_lock_irqsave(&p->pi_lock, flags);
5528 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5530
5531 out_unlock:
5532 rcu_read_unlock();
5533
5534 return retval;
5535 }
5536
5537 /**
5538 * sys_sched_getaffinity - get the CPU affinity of a process
5539 * @pid: pid of the process
5540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5541 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5542 *
5543 * Return: size of CPU mask copied to user_mask_ptr on success. An
5544 * error code otherwise.
5545 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5546 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5547 unsigned long __user *, user_mask_ptr)
5548 {
5549 int ret;
5550 cpumask_var_t mask;
5551
5552 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5553 return -EINVAL;
5554 if (len & (sizeof(unsigned long)-1))
5555 return -EINVAL;
5556
5557 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5558 return -ENOMEM;
5559
5560 ret = sched_getaffinity(pid, mask);
5561 if (ret == 0) {
5562 unsigned int retlen = min(len, cpumask_size());
5563
5564 if (copy_to_user(user_mask_ptr, mask, retlen))
5565 ret = -EFAULT;
5566 else
5567 ret = retlen;
5568 }
5569 free_cpumask_var(mask);
5570
5571 return ret;
5572 }
5573
5574 /**
5575 * sys_sched_yield - yield the current processor to other threads.
5576 *
5577 * This function yields the current CPU to other tasks. If there are no
5578 * other threads running on this CPU then this function will return.
5579 *
5580 * Return: 0.
5581 */
do_sched_yield(void)5582 static void do_sched_yield(void)
5583 {
5584 struct rq_flags rf;
5585 struct rq *rq;
5586
5587 rq = this_rq_lock_irq(&rf);
5588
5589 schedstat_inc(rq->yld_count);
5590 current->sched_class->yield_task(rq);
5591
5592 /*
5593 * Since we are going to call schedule() anyway, there's
5594 * no need to preempt or enable interrupts:
5595 */
5596 preempt_disable();
5597 rq_unlock(rq, &rf);
5598 sched_preempt_enable_no_resched();
5599
5600 schedule();
5601 }
5602
SYSCALL_DEFINE0(sched_yield)5603 SYSCALL_DEFINE0(sched_yield)
5604 {
5605 do_sched_yield();
5606 return 0;
5607 }
5608
5609 #ifndef CONFIG_PREEMPTION
_cond_resched(void)5610 int __sched _cond_resched(void)
5611 {
5612 if (should_resched(0)) {
5613 preempt_schedule_common();
5614 return 1;
5615 }
5616 rcu_all_qs();
5617 return 0;
5618 }
5619 EXPORT_SYMBOL(_cond_resched);
5620 #endif
5621
5622 /*
5623 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5624 * call schedule, and on return reacquire the lock.
5625 *
5626 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5627 * operations here to prevent schedule() from being called twice (once via
5628 * spin_unlock(), once by hand).
5629 */
__cond_resched_lock(spinlock_t * lock)5630 int __cond_resched_lock(spinlock_t *lock)
5631 {
5632 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5633 int ret = 0;
5634
5635 lockdep_assert_held(lock);
5636
5637 if (spin_needbreak(lock) || resched) {
5638 spin_unlock(lock);
5639 if (resched)
5640 preempt_schedule_common();
5641 else
5642 cpu_relax();
5643 ret = 1;
5644 spin_lock(lock);
5645 }
5646 return ret;
5647 }
5648 EXPORT_SYMBOL(__cond_resched_lock);
5649
5650 /**
5651 * yield - yield the current processor to other threads.
5652 *
5653 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5654 *
5655 * The scheduler is at all times free to pick the calling task as the most
5656 * eligible task to run, if removing the yield() call from your code breaks
5657 * it, its already broken.
5658 *
5659 * Typical broken usage is:
5660 *
5661 * while (!event)
5662 * yield();
5663 *
5664 * where one assumes that yield() will let 'the other' process run that will
5665 * make event true. If the current task is a SCHED_FIFO task that will never
5666 * happen. Never use yield() as a progress guarantee!!
5667 *
5668 * If you want to use yield() to wait for something, use wait_event().
5669 * If you want to use yield() to be 'nice' for others, use cond_resched().
5670 * If you still want to use yield(), do not!
5671 */
yield(void)5672 void __sched yield(void)
5673 {
5674 set_current_state(TASK_RUNNING);
5675 do_sched_yield();
5676 }
5677 EXPORT_SYMBOL(yield);
5678
5679 /**
5680 * yield_to - yield the current processor to another thread in
5681 * your thread group, or accelerate that thread toward the
5682 * processor it's on.
5683 * @p: target task
5684 * @preempt: whether task preemption is allowed or not
5685 *
5686 * It's the caller's job to ensure that the target task struct
5687 * can't go away on us before we can do any checks.
5688 *
5689 * Return:
5690 * true (>0) if we indeed boosted the target task.
5691 * false (0) if we failed to boost the target.
5692 * -ESRCH if there's no task to yield to.
5693 */
yield_to(struct task_struct * p,bool preempt)5694 int __sched yield_to(struct task_struct *p, bool preempt)
5695 {
5696 struct task_struct *curr = current;
5697 struct rq *rq, *p_rq;
5698 unsigned long flags;
5699 int yielded = 0;
5700
5701 local_irq_save(flags);
5702 rq = this_rq();
5703
5704 again:
5705 p_rq = task_rq(p);
5706 /*
5707 * If we're the only runnable task on the rq and target rq also
5708 * has only one task, there's absolutely no point in yielding.
5709 */
5710 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5711 yielded = -ESRCH;
5712 goto out_irq;
5713 }
5714
5715 double_rq_lock(rq, p_rq);
5716 if (task_rq(p) != p_rq) {
5717 double_rq_unlock(rq, p_rq);
5718 goto again;
5719 }
5720
5721 if (!curr->sched_class->yield_to_task)
5722 goto out_unlock;
5723
5724 if (curr->sched_class != p->sched_class)
5725 goto out_unlock;
5726
5727 if (task_running(p_rq, p) || p->state)
5728 goto out_unlock;
5729
5730 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5731 if (yielded) {
5732 schedstat_inc(rq->yld_count);
5733 /*
5734 * Make p's CPU reschedule; pick_next_entity takes care of
5735 * fairness.
5736 */
5737 if (preempt && rq != p_rq)
5738 resched_curr(p_rq);
5739 }
5740
5741 out_unlock:
5742 double_rq_unlock(rq, p_rq);
5743 out_irq:
5744 local_irq_restore(flags);
5745
5746 if (yielded > 0)
5747 schedule();
5748
5749 return yielded;
5750 }
5751 EXPORT_SYMBOL_GPL(yield_to);
5752
io_schedule_prepare(void)5753 int io_schedule_prepare(void)
5754 {
5755 int old_iowait = current->in_iowait;
5756
5757 current->in_iowait = 1;
5758 blk_schedule_flush_plug(current);
5759
5760 return old_iowait;
5761 }
5762
io_schedule_finish(int token)5763 void io_schedule_finish(int token)
5764 {
5765 current->in_iowait = token;
5766 }
5767
5768 /*
5769 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5770 * that process accounting knows that this is a task in IO wait state.
5771 */
io_schedule_timeout(long timeout)5772 long __sched io_schedule_timeout(long timeout)
5773 {
5774 int token;
5775 long ret;
5776
5777 token = io_schedule_prepare();
5778 ret = schedule_timeout(timeout);
5779 io_schedule_finish(token);
5780
5781 return ret;
5782 }
5783 EXPORT_SYMBOL(io_schedule_timeout);
5784
io_schedule(void)5785 void __sched io_schedule(void)
5786 {
5787 int token;
5788
5789 token = io_schedule_prepare();
5790 schedule();
5791 io_schedule_finish(token);
5792 }
5793 EXPORT_SYMBOL(io_schedule);
5794
5795 /**
5796 * sys_sched_get_priority_max - return maximum RT priority.
5797 * @policy: scheduling class.
5798 *
5799 * Return: On success, this syscall returns the maximum
5800 * rt_priority that can be used by a given scheduling class.
5801 * On failure, a negative error code is returned.
5802 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5803 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5804 {
5805 int ret = -EINVAL;
5806
5807 switch (policy) {
5808 case SCHED_FIFO:
5809 case SCHED_RR:
5810 ret = MAX_USER_RT_PRIO-1;
5811 break;
5812 case SCHED_DEADLINE:
5813 case SCHED_NORMAL:
5814 case SCHED_BATCH:
5815 case SCHED_IDLE:
5816 ret = 0;
5817 break;
5818 }
5819 return ret;
5820 }
5821
5822 /**
5823 * sys_sched_get_priority_min - return minimum RT priority.
5824 * @policy: scheduling class.
5825 *
5826 * Return: On success, this syscall returns the minimum
5827 * rt_priority that can be used by a given scheduling class.
5828 * On failure, a negative error code is returned.
5829 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5830 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5831 {
5832 int ret = -EINVAL;
5833
5834 switch (policy) {
5835 case SCHED_FIFO:
5836 case SCHED_RR:
5837 ret = 1;
5838 break;
5839 case SCHED_DEADLINE:
5840 case SCHED_NORMAL:
5841 case SCHED_BATCH:
5842 case SCHED_IDLE:
5843 ret = 0;
5844 }
5845 return ret;
5846 }
5847
sched_rr_get_interval(pid_t pid,struct timespec64 * t)5848 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5849 {
5850 struct task_struct *p;
5851 unsigned int time_slice;
5852 struct rq_flags rf;
5853 struct rq *rq;
5854 int retval;
5855
5856 if (pid < 0)
5857 return -EINVAL;
5858
5859 retval = -ESRCH;
5860 rcu_read_lock();
5861 p = find_process_by_pid(pid);
5862 if (!p)
5863 goto out_unlock;
5864
5865 retval = security_task_getscheduler(p);
5866 if (retval)
5867 goto out_unlock;
5868
5869 rq = task_rq_lock(p, &rf);
5870 time_slice = 0;
5871 if (p->sched_class->get_rr_interval)
5872 time_slice = p->sched_class->get_rr_interval(rq, p);
5873 task_rq_unlock(rq, p, &rf);
5874
5875 rcu_read_unlock();
5876 jiffies_to_timespec64(time_slice, t);
5877 return 0;
5878
5879 out_unlock:
5880 rcu_read_unlock();
5881 return retval;
5882 }
5883
5884 /**
5885 * sys_sched_rr_get_interval - return the default timeslice of a process.
5886 * @pid: pid of the process.
5887 * @interval: userspace pointer to the timeslice value.
5888 *
5889 * this syscall writes the default timeslice value of a given process
5890 * into the user-space timespec buffer. A value of '0' means infinity.
5891 *
5892 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5893 * an error code.
5894 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)5895 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5896 struct __kernel_timespec __user *, interval)
5897 {
5898 struct timespec64 t;
5899 int retval = sched_rr_get_interval(pid, &t);
5900
5901 if (retval == 0)
5902 retval = put_timespec64(&t, interval);
5903
5904 return retval;
5905 }
5906
5907 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)5908 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5909 struct old_timespec32 __user *, interval)
5910 {
5911 struct timespec64 t;
5912 int retval = sched_rr_get_interval(pid, &t);
5913
5914 if (retval == 0)
5915 retval = put_old_timespec32(&t, interval);
5916 return retval;
5917 }
5918 #endif
5919
sched_show_task(struct task_struct * p)5920 void sched_show_task(struct task_struct *p)
5921 {
5922 unsigned long free = 0;
5923 int ppid;
5924
5925 if (!try_get_task_stack(p))
5926 return;
5927
5928 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5929
5930 if (p->state == TASK_RUNNING)
5931 printk(KERN_CONT " running task ");
5932 #ifdef CONFIG_DEBUG_STACK_USAGE
5933 free = stack_not_used(p);
5934 #endif
5935 ppid = 0;
5936 rcu_read_lock();
5937 if (pid_alive(p))
5938 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5939 rcu_read_unlock();
5940 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5941 task_pid_nr(p), ppid,
5942 (unsigned long)task_thread_info(p)->flags);
5943
5944 print_worker_info(KERN_INFO, p);
5945 show_stack(p, NULL);
5946 put_task_stack(p);
5947 }
5948 EXPORT_SYMBOL_GPL(sched_show_task);
5949
5950 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)5951 state_filter_match(unsigned long state_filter, struct task_struct *p)
5952 {
5953 /* no filter, everything matches */
5954 if (!state_filter)
5955 return true;
5956
5957 /* filter, but doesn't match */
5958 if (!(p->state & state_filter))
5959 return false;
5960
5961 /*
5962 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5963 * TASK_KILLABLE).
5964 */
5965 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5966 return false;
5967
5968 return true;
5969 }
5970
5971
show_state_filter(unsigned long state_filter)5972 void show_state_filter(unsigned long state_filter)
5973 {
5974 struct task_struct *g, *p;
5975
5976 #if BITS_PER_LONG == 32
5977 printk(KERN_INFO
5978 " task PC stack pid father\n");
5979 #else
5980 printk(KERN_INFO
5981 " task PC stack pid father\n");
5982 #endif
5983 rcu_read_lock();
5984 for_each_process_thread(g, p) {
5985 /*
5986 * reset the NMI-timeout, listing all files on a slow
5987 * console might take a lot of time:
5988 * Also, reset softlockup watchdogs on all CPUs, because
5989 * another CPU might be blocked waiting for us to process
5990 * an IPI.
5991 */
5992 touch_nmi_watchdog();
5993 touch_all_softlockup_watchdogs();
5994 if (state_filter_match(state_filter, p))
5995 sched_show_task(p);
5996 }
5997
5998 #ifdef CONFIG_SCHED_DEBUG
5999 if (!state_filter)
6000 sysrq_sched_debug_show();
6001 #endif
6002 rcu_read_unlock();
6003 /*
6004 * Only show locks if all tasks are dumped:
6005 */
6006 if (!state_filter)
6007 debug_show_all_locks();
6008 }
6009
6010 /**
6011 * init_idle - set up an idle thread for a given CPU
6012 * @idle: task in question
6013 * @cpu: CPU the idle task belongs to
6014 *
6015 * NOTE: this function does not set the idle thread's NEED_RESCHED
6016 * flag, to make booting more robust.
6017 */
init_idle(struct task_struct * idle,int cpu)6018 void init_idle(struct task_struct *idle, int cpu)
6019 {
6020 struct rq *rq = cpu_rq(cpu);
6021 unsigned long flags;
6022
6023 __sched_fork(0, idle);
6024
6025 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6026 raw_spin_lock(&rq->lock);
6027
6028 idle->state = TASK_RUNNING;
6029 idle->se.exec_start = sched_clock();
6030 idle->flags |= PF_IDLE;
6031
6032 scs_task_reset(idle);
6033 kasan_unpoison_task_stack(idle);
6034
6035 #ifdef CONFIG_SMP
6036 /*
6037 * Its possible that init_idle() gets called multiple times on a task,
6038 * in that case do_set_cpus_allowed() will not do the right thing.
6039 *
6040 * And since this is boot we can forgo the serialization.
6041 */
6042 set_cpus_allowed_common(idle, cpumask_of(cpu));
6043 #endif
6044 /*
6045 * We're having a chicken and egg problem, even though we are
6046 * holding rq->lock, the CPU isn't yet set to this CPU so the
6047 * lockdep check in task_group() will fail.
6048 *
6049 * Similar case to sched_fork(). / Alternatively we could
6050 * use task_rq_lock() here and obtain the other rq->lock.
6051 *
6052 * Silence PROVE_RCU
6053 */
6054 rcu_read_lock();
6055 __set_task_cpu(idle, cpu);
6056 rcu_read_unlock();
6057
6058 rq->idle = idle;
6059 rcu_assign_pointer(rq->curr, idle);
6060 idle->on_rq = TASK_ON_RQ_QUEUED;
6061 #ifdef CONFIG_SMP
6062 idle->on_cpu = 1;
6063 #endif
6064 raw_spin_unlock(&rq->lock);
6065 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6066
6067 /* Set the preempt count _outside_ the spinlocks! */
6068 init_idle_preempt_count(idle, cpu);
6069
6070 /*
6071 * The idle tasks have their own, simple scheduling class:
6072 */
6073 idle->sched_class = &idle_sched_class;
6074 ftrace_graph_init_idle_task(idle, cpu);
6075 vtime_init_idle(idle, cpu);
6076 #ifdef CONFIG_SMP
6077 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6078 #endif
6079 }
6080
6081 #ifdef CONFIG_SMP
6082
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6083 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6084 const struct cpumask *trial)
6085 {
6086 int ret = 1;
6087
6088 if (!cpumask_weight(cur))
6089 return ret;
6090
6091 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6092
6093 return ret;
6094 }
6095
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)6096 int task_can_attach(struct task_struct *p,
6097 const struct cpumask *cs_cpus_allowed)
6098 {
6099 int ret = 0;
6100
6101 /*
6102 * Kthreads which disallow setaffinity shouldn't be moved
6103 * to a new cpuset; we don't want to change their CPU
6104 * affinity and isolating such threads by their set of
6105 * allowed nodes is unnecessary. Thus, cpusets are not
6106 * applicable for such threads. This prevents checking for
6107 * success of set_cpus_allowed_ptr() on all attached tasks
6108 * before cpus_mask may be changed.
6109 */
6110 if (p->flags & PF_NO_SETAFFINITY) {
6111 ret = -EINVAL;
6112 goto out;
6113 }
6114
6115 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6116 cs_cpus_allowed))
6117 ret = dl_task_can_attach(p, cs_cpus_allowed);
6118
6119 out:
6120 return ret;
6121 }
6122
6123 bool sched_smp_initialized __read_mostly;
6124
6125 #ifdef CONFIG_NUMA_BALANCING
6126 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6127 int migrate_task_to(struct task_struct *p, int target_cpu)
6128 {
6129 struct migration_arg arg = { p, target_cpu };
6130 int curr_cpu = task_cpu(p);
6131
6132 if (curr_cpu == target_cpu)
6133 return 0;
6134
6135 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6136 return -EINVAL;
6137
6138 /* TODO: This is not properly updating schedstats */
6139
6140 trace_sched_move_numa(p, curr_cpu, target_cpu);
6141 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6142 }
6143
6144 /*
6145 * Requeue a task on a given node and accurately track the number of NUMA
6146 * tasks on the runqueues
6147 */
sched_setnuma(struct task_struct * p,int nid)6148 void sched_setnuma(struct task_struct *p, int nid)
6149 {
6150 bool queued, running;
6151 struct rq_flags rf;
6152 struct rq *rq;
6153
6154 rq = task_rq_lock(p, &rf);
6155 queued = task_on_rq_queued(p);
6156 running = task_current(rq, p);
6157
6158 if (queued)
6159 dequeue_task(rq, p, DEQUEUE_SAVE);
6160 if (running)
6161 put_prev_task(rq, p);
6162
6163 p->numa_preferred_nid = nid;
6164
6165 if (queued)
6166 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6167 if (running)
6168 set_next_task(rq, p);
6169 task_rq_unlock(rq, p, &rf);
6170 }
6171 #endif /* CONFIG_NUMA_BALANCING */
6172
6173 #ifdef CONFIG_HOTPLUG_CPU
6174 /*
6175 * Ensure that the idle task is using init_mm right before its CPU goes
6176 * offline.
6177 */
idle_task_exit(void)6178 void idle_task_exit(void)
6179 {
6180 struct mm_struct *mm = current->active_mm;
6181
6182 BUG_ON(cpu_online(smp_processor_id()));
6183
6184 if (mm != &init_mm) {
6185 switch_mm(mm, &init_mm, current);
6186 current->active_mm = &init_mm;
6187 finish_arch_post_lock_switch();
6188 }
6189 mmdrop(mm);
6190 }
6191
6192 /*
6193 * Since this CPU is going 'away' for a while, fold any nr_active delta
6194 * we might have. Assumes we're called after migrate_tasks() so that the
6195 * nr_active count is stable. We need to take the teardown thread which
6196 * is calling this into account, so we hand in adjust = 1 to the load
6197 * calculation.
6198 *
6199 * Also see the comment "Global load-average calculations".
6200 */
calc_load_migrate(struct rq * rq)6201 static void calc_load_migrate(struct rq *rq)
6202 {
6203 long delta = calc_load_fold_active(rq, 1);
6204 if (delta)
6205 atomic_long_add(delta, &calc_load_tasks);
6206 }
6207
__pick_migrate_task(struct rq * rq)6208 static struct task_struct *__pick_migrate_task(struct rq *rq)
6209 {
6210 const struct sched_class *class;
6211 struct task_struct *next;
6212
6213 for_each_class(class) {
6214 next = class->pick_next_task(rq, NULL, NULL);
6215 if (next) {
6216 next->sched_class->put_prev_task(rq, next);
6217 return next;
6218 }
6219 }
6220
6221 /* The idle class should always have a runnable task */
6222 BUG();
6223 }
6224
6225 /*
6226 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6227 * try_to_wake_up()->select_task_rq().
6228 *
6229 * Called with rq->lock held even though we'er in stop_machine() and
6230 * there's no concurrency possible, we hold the required locks anyway
6231 * because of lock validation efforts.
6232 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf)6233 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6234 {
6235 struct rq *rq = dead_rq;
6236 struct task_struct *next, *stop = rq->stop;
6237 struct rq_flags orf = *rf;
6238 int dest_cpu;
6239
6240 /*
6241 * Fudge the rq selection such that the below task selection loop
6242 * doesn't get stuck on the currently eligible stop task.
6243 *
6244 * We're currently inside stop_machine() and the rq is either stuck
6245 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6246 * either way we should never end up calling schedule() until we're
6247 * done here.
6248 */
6249 rq->stop = NULL;
6250
6251 /*
6252 * put_prev_task() and pick_next_task() sched
6253 * class method both need to have an up-to-date
6254 * value of rq->clock[_task]
6255 */
6256 update_rq_clock(rq);
6257
6258 for (;;) {
6259 /*
6260 * There's this thread running, bail when that's the only
6261 * remaining thread:
6262 */
6263 if (rq->nr_running == 1)
6264 break;
6265
6266 next = __pick_migrate_task(rq);
6267
6268 /*
6269 * Rules for changing task_struct::cpus_mask are holding
6270 * both pi_lock and rq->lock, such that holding either
6271 * stabilizes the mask.
6272 *
6273 * Drop rq->lock is not quite as disastrous as it usually is
6274 * because !cpu_active at this point, which means load-balance
6275 * will not interfere. Also, stop-machine.
6276 */
6277 rq_unlock(rq, rf);
6278 raw_spin_lock(&next->pi_lock);
6279 rq_relock(rq, rf);
6280
6281 /*
6282 * Since we're inside stop-machine, _nothing_ should have
6283 * changed the task, WARN if weird stuff happened, because in
6284 * that case the above rq->lock drop is a fail too.
6285 */
6286 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6287 raw_spin_unlock(&next->pi_lock);
6288 continue;
6289 }
6290
6291 /* Find suitable destination for @next, with force if needed. */
6292 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6293 rq = __migrate_task(rq, rf, next, dest_cpu);
6294 if (rq != dead_rq) {
6295 rq_unlock(rq, rf);
6296 rq = dead_rq;
6297 *rf = orf;
6298 rq_relock(rq, rf);
6299 }
6300 raw_spin_unlock(&next->pi_lock);
6301 }
6302
6303 rq->stop = stop;
6304 }
6305 #endif /* CONFIG_HOTPLUG_CPU */
6306
set_rq_online(struct rq * rq)6307 void set_rq_online(struct rq *rq)
6308 {
6309 if (!rq->online) {
6310 const struct sched_class *class;
6311
6312 cpumask_set_cpu(rq->cpu, rq->rd->online);
6313 rq->online = 1;
6314
6315 for_each_class(class) {
6316 if (class->rq_online)
6317 class->rq_online(rq);
6318 }
6319 }
6320 }
6321
set_rq_offline(struct rq * rq)6322 void set_rq_offline(struct rq *rq)
6323 {
6324 if (rq->online) {
6325 const struct sched_class *class;
6326
6327 for_each_class(class) {
6328 if (class->rq_offline)
6329 class->rq_offline(rq);
6330 }
6331
6332 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6333 rq->online = 0;
6334 }
6335 }
6336
6337 /*
6338 * used to mark begin/end of suspend/resume:
6339 */
6340 static int num_cpus_frozen;
6341
6342 /*
6343 * Update cpusets according to cpu_active mask. If cpusets are
6344 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6345 * around partition_sched_domains().
6346 *
6347 * If we come here as part of a suspend/resume, don't touch cpusets because we
6348 * want to restore it back to its original state upon resume anyway.
6349 */
cpuset_cpu_active(void)6350 static void cpuset_cpu_active(void)
6351 {
6352 if (cpuhp_tasks_frozen) {
6353 /*
6354 * num_cpus_frozen tracks how many CPUs are involved in suspend
6355 * resume sequence. As long as this is not the last online
6356 * operation in the resume sequence, just build a single sched
6357 * domain, ignoring cpusets.
6358 */
6359 partition_sched_domains(1, NULL, NULL);
6360 if (--num_cpus_frozen)
6361 return;
6362 /*
6363 * This is the last CPU online operation. So fall through and
6364 * restore the original sched domains by considering the
6365 * cpuset configurations.
6366 */
6367 cpuset_force_rebuild();
6368 }
6369 cpuset_update_active_cpus();
6370 }
6371
cpuset_cpu_inactive(unsigned int cpu)6372 static int cpuset_cpu_inactive(unsigned int cpu)
6373 {
6374 if (!cpuhp_tasks_frozen) {
6375 if (dl_cpu_busy(cpu))
6376 return -EBUSY;
6377 cpuset_update_active_cpus();
6378 } else {
6379 num_cpus_frozen++;
6380 partition_sched_domains(1, NULL, NULL);
6381 }
6382 return 0;
6383 }
6384
sched_cpu_activate(unsigned int cpu)6385 int sched_cpu_activate(unsigned int cpu)
6386 {
6387 struct rq *rq = cpu_rq(cpu);
6388 struct rq_flags rf;
6389
6390 #ifdef CONFIG_SCHED_SMT
6391 /*
6392 * When going up, increment the number of cores with SMT present.
6393 */
6394 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6395 static_branch_inc_cpuslocked(&sched_smt_present);
6396 #endif
6397 set_cpu_active(cpu, true);
6398
6399 if (sched_smp_initialized) {
6400 sched_domains_numa_masks_set(cpu);
6401 cpuset_cpu_active();
6402 }
6403
6404 /*
6405 * Put the rq online, if not already. This happens:
6406 *
6407 * 1) In the early boot process, because we build the real domains
6408 * after all CPUs have been brought up.
6409 *
6410 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6411 * domains.
6412 */
6413 rq_lock_irqsave(rq, &rf);
6414 if (rq->rd) {
6415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6416 set_rq_online(rq);
6417 }
6418 rq_unlock_irqrestore(rq, &rf);
6419
6420 return 0;
6421 }
6422
sched_cpu_deactivate(unsigned int cpu)6423 int sched_cpu_deactivate(unsigned int cpu)
6424 {
6425 int ret;
6426
6427 set_cpu_active(cpu, false);
6428 /*
6429 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6430 * users of this state to go away such that all new such users will
6431 * observe it.
6432 *
6433 * Do sync before park smpboot threads to take care the rcu boost case.
6434 */
6435 synchronize_rcu();
6436
6437 #ifdef CONFIG_SCHED_SMT
6438 /*
6439 * When going down, decrement the number of cores with SMT present.
6440 */
6441 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6442 static_branch_dec_cpuslocked(&sched_smt_present);
6443 #endif
6444
6445 if (!sched_smp_initialized)
6446 return 0;
6447
6448 ret = cpuset_cpu_inactive(cpu);
6449 if (ret) {
6450 set_cpu_active(cpu, true);
6451 return ret;
6452 }
6453 sched_domains_numa_masks_clear(cpu);
6454 return 0;
6455 }
6456
sched_rq_cpu_starting(unsigned int cpu)6457 static void sched_rq_cpu_starting(unsigned int cpu)
6458 {
6459 struct rq *rq = cpu_rq(cpu);
6460
6461 rq->calc_load_update = calc_load_update;
6462 update_max_interval();
6463 }
6464
sched_cpu_starting(unsigned int cpu)6465 int sched_cpu_starting(unsigned int cpu)
6466 {
6467 sched_rq_cpu_starting(cpu);
6468 sched_tick_start(cpu);
6469 return 0;
6470 }
6471
6472 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)6473 int sched_cpu_dying(unsigned int cpu)
6474 {
6475 struct rq *rq = cpu_rq(cpu);
6476 struct rq_flags rf;
6477
6478 /* Handle pending wakeups and then migrate everything off */
6479 sched_ttwu_pending();
6480 sched_tick_stop(cpu);
6481
6482 rq_lock_irqsave(rq, &rf);
6483 if (rq->rd) {
6484 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6485 set_rq_offline(rq);
6486 }
6487 migrate_tasks(rq, &rf);
6488 BUG_ON(rq->nr_running != 1);
6489 rq_unlock_irqrestore(rq, &rf);
6490
6491 calc_load_migrate(rq);
6492 update_max_interval();
6493 nohz_balance_exit_idle(rq);
6494 hrtick_clear(rq);
6495 return 0;
6496 }
6497 #endif
6498
sched_init_smp(void)6499 void __init sched_init_smp(void)
6500 {
6501 sched_init_numa();
6502
6503 /*
6504 * There's no userspace yet to cause hotplug operations; hence all the
6505 * CPU masks are stable and all blatant races in the below code cannot
6506 * happen.
6507 */
6508 mutex_lock(&sched_domains_mutex);
6509 sched_init_domains(cpu_active_mask);
6510 mutex_unlock(&sched_domains_mutex);
6511
6512 /* Move init over to a non-isolated CPU */
6513 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6514 BUG();
6515 sched_init_granularity();
6516
6517 init_sched_rt_class();
6518 init_sched_dl_class();
6519
6520 sched_smp_initialized = true;
6521 }
6522
migration_init(void)6523 static int __init migration_init(void)
6524 {
6525 sched_cpu_starting(smp_processor_id());
6526 return 0;
6527 }
6528 early_initcall(migration_init);
6529
6530 #else
sched_init_smp(void)6531 void __init sched_init_smp(void)
6532 {
6533 sched_init_granularity();
6534 }
6535 #endif /* CONFIG_SMP */
6536
in_sched_functions(unsigned long addr)6537 int in_sched_functions(unsigned long addr)
6538 {
6539 return in_lock_functions(addr) ||
6540 (addr >= (unsigned long)__sched_text_start
6541 && addr < (unsigned long)__sched_text_end);
6542 }
6543
6544 #ifdef CONFIG_CGROUP_SCHED
6545 /*
6546 * Default task group.
6547 * Every task in system belongs to this group at bootup.
6548 */
6549 struct task_group root_task_group;
6550 LIST_HEAD(task_groups);
6551
6552 /* Cacheline aligned slab cache for task_group */
6553 static struct kmem_cache *task_group_cache __read_mostly;
6554 #endif
6555
6556 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6557 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6558
sched_init(void)6559 void __init sched_init(void)
6560 {
6561 unsigned long ptr = 0;
6562 int i;
6563
6564 wait_bit_init();
6565
6566 #ifdef CONFIG_FAIR_GROUP_SCHED
6567 ptr += 2 * nr_cpu_ids * sizeof(void **);
6568 #endif
6569 #ifdef CONFIG_RT_GROUP_SCHED
6570 ptr += 2 * nr_cpu_ids * sizeof(void **);
6571 #endif
6572 if (ptr) {
6573 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6574
6575 #ifdef CONFIG_FAIR_GROUP_SCHED
6576 root_task_group.se = (struct sched_entity **)ptr;
6577 ptr += nr_cpu_ids * sizeof(void **);
6578
6579 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6580 ptr += nr_cpu_ids * sizeof(void **);
6581
6582 #endif /* CONFIG_FAIR_GROUP_SCHED */
6583 #ifdef CONFIG_RT_GROUP_SCHED
6584 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6585 ptr += nr_cpu_ids * sizeof(void **);
6586
6587 root_task_group.rt_rq = (struct rt_rq **)ptr;
6588 ptr += nr_cpu_ids * sizeof(void **);
6589
6590 #endif /* CONFIG_RT_GROUP_SCHED */
6591 }
6592 #ifdef CONFIG_CPUMASK_OFFSTACK
6593 for_each_possible_cpu(i) {
6594 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6595 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6596 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6597 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6598 }
6599 #endif /* CONFIG_CPUMASK_OFFSTACK */
6600
6601 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6602 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6603
6604 #ifdef CONFIG_SMP
6605 init_defrootdomain();
6606 #endif
6607
6608 #ifdef CONFIG_RT_GROUP_SCHED
6609 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6610 global_rt_period(), global_rt_runtime());
6611 #endif /* CONFIG_RT_GROUP_SCHED */
6612
6613 #ifdef CONFIG_CGROUP_SCHED
6614 task_group_cache = KMEM_CACHE(task_group, 0);
6615
6616 list_add(&root_task_group.list, &task_groups);
6617 INIT_LIST_HEAD(&root_task_group.children);
6618 INIT_LIST_HEAD(&root_task_group.siblings);
6619 autogroup_init(&init_task);
6620 #endif /* CONFIG_CGROUP_SCHED */
6621
6622 for_each_possible_cpu(i) {
6623 struct rq *rq;
6624
6625 rq = cpu_rq(i);
6626 raw_spin_lock_init(&rq->lock);
6627 rq->nr_running = 0;
6628 rq->calc_load_active = 0;
6629 rq->calc_load_update = jiffies + LOAD_FREQ;
6630 init_cfs_rq(&rq->cfs);
6631 init_rt_rq(&rq->rt);
6632 init_dl_rq(&rq->dl);
6633 #ifdef CONFIG_FAIR_GROUP_SCHED
6634 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6635 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6636 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6637 /*
6638 * How much CPU bandwidth does root_task_group get?
6639 *
6640 * In case of task-groups formed thr' the cgroup filesystem, it
6641 * gets 100% of the CPU resources in the system. This overall
6642 * system CPU resource is divided among the tasks of
6643 * root_task_group and its child task-groups in a fair manner,
6644 * based on each entity's (task or task-group's) weight
6645 * (se->load.weight).
6646 *
6647 * In other words, if root_task_group has 10 tasks of weight
6648 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6649 * then A0's share of the CPU resource is:
6650 *
6651 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6652 *
6653 * We achieve this by letting root_task_group's tasks sit
6654 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6655 */
6656 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6657 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6658 #endif /* CONFIG_FAIR_GROUP_SCHED */
6659
6660 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6661 #ifdef CONFIG_RT_GROUP_SCHED
6662 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6663 #endif
6664 #ifdef CONFIG_SMP
6665 rq->sd = NULL;
6666 rq->rd = NULL;
6667 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6668 rq->balance_callback = NULL;
6669 rq->active_balance = 0;
6670 rq->next_balance = jiffies;
6671 rq->push_cpu = 0;
6672 rq->cpu = i;
6673 rq->online = 0;
6674 rq->idle_stamp = 0;
6675 rq->avg_idle = 2*sysctl_sched_migration_cost;
6676 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6677
6678 INIT_LIST_HEAD(&rq->cfs_tasks);
6679
6680 rq_attach_root(rq, &def_root_domain);
6681 #ifdef CONFIG_NO_HZ_COMMON
6682 rq->last_load_update_tick = jiffies;
6683 rq->last_blocked_load_update_tick = jiffies;
6684 atomic_set(&rq->nohz_flags, 0);
6685 #endif
6686 #endif /* CONFIG_SMP */
6687 hrtick_rq_init(rq);
6688 atomic_set(&rq->nr_iowait, 0);
6689 }
6690
6691 set_load_weight(&init_task, false);
6692
6693 /*
6694 * The boot idle thread does lazy MMU switching as well:
6695 */
6696 mmgrab(&init_mm);
6697 enter_lazy_tlb(&init_mm, current);
6698
6699 /*
6700 * Make us the idle thread. Technically, schedule() should not be
6701 * called from this thread, however somewhere below it might be,
6702 * but because we are the idle thread, we just pick up running again
6703 * when this runqueue becomes "idle".
6704 */
6705 init_idle(current, smp_processor_id());
6706
6707 calc_load_update = jiffies + LOAD_FREQ;
6708
6709 #ifdef CONFIG_SMP
6710 idle_thread_set_boot_cpu();
6711 #endif
6712 init_sched_fair_class();
6713
6714 init_schedstats();
6715
6716 psi_init();
6717
6718 init_uclamp();
6719
6720 scheduler_running = 1;
6721 }
6722
6723 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)6724 static inline int preempt_count_equals(int preempt_offset)
6725 {
6726 int nested = preempt_count() + rcu_preempt_depth();
6727
6728 return (nested == preempt_offset);
6729 }
6730
__might_sleep(const char * file,int line,int preempt_offset)6731 void __might_sleep(const char *file, int line, int preempt_offset)
6732 {
6733 /*
6734 * Blocking primitives will set (and therefore destroy) current->state,
6735 * since we will exit with TASK_RUNNING make sure we enter with it,
6736 * otherwise we will destroy state.
6737 */
6738 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6739 "do not call blocking ops when !TASK_RUNNING; "
6740 "state=%lx set at [<%p>] %pS\n",
6741 current->state,
6742 (void *)current->task_state_change,
6743 (void *)current->task_state_change);
6744
6745 ___might_sleep(file, line, preempt_offset);
6746 }
6747 EXPORT_SYMBOL(__might_sleep);
6748
___might_sleep(const char * file,int line,int preempt_offset)6749 void ___might_sleep(const char *file, int line, int preempt_offset)
6750 {
6751 /* Ratelimiting timestamp: */
6752 static unsigned long prev_jiffy;
6753
6754 unsigned long preempt_disable_ip;
6755
6756 /* WARN_ON_ONCE() by default, no rate limit required: */
6757 rcu_sleep_check();
6758
6759 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6760 !is_idle_task(current) && !current->non_block_count) ||
6761 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6762 oops_in_progress)
6763 return;
6764
6765 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6766 return;
6767 prev_jiffy = jiffies;
6768
6769 /* Save this before calling printk(), since that will clobber it: */
6770 preempt_disable_ip = get_preempt_disable_ip(current);
6771
6772 printk(KERN_ERR
6773 "BUG: sleeping function called from invalid context at %s:%d\n",
6774 file, line);
6775 printk(KERN_ERR
6776 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6777 in_atomic(), irqs_disabled(), current->non_block_count,
6778 current->pid, current->comm);
6779
6780 if (task_stack_end_corrupted(current))
6781 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6782
6783 debug_show_held_locks(current);
6784 if (irqs_disabled())
6785 print_irqtrace_events(current);
6786 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6787 && !preempt_count_equals(preempt_offset)) {
6788 pr_err("Preemption disabled at:");
6789 print_ip_sym(preempt_disable_ip);
6790 pr_cont("\n");
6791 }
6792 dump_stack();
6793 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6794 }
6795 EXPORT_SYMBOL(___might_sleep);
6796
__cant_sleep(const char * file,int line,int preempt_offset)6797 void __cant_sleep(const char *file, int line, int preempt_offset)
6798 {
6799 static unsigned long prev_jiffy;
6800
6801 if (irqs_disabled())
6802 return;
6803
6804 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6805 return;
6806
6807 if (preempt_count() > preempt_offset)
6808 return;
6809
6810 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6811 return;
6812 prev_jiffy = jiffies;
6813
6814 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6815 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6816 in_atomic(), irqs_disabled(),
6817 current->pid, current->comm);
6818
6819 debug_show_held_locks(current);
6820 dump_stack();
6821 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6822 }
6823 EXPORT_SYMBOL_GPL(__cant_sleep);
6824 #endif
6825
6826 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)6827 void normalize_rt_tasks(void)
6828 {
6829 struct task_struct *g, *p;
6830 struct sched_attr attr = {
6831 .sched_policy = SCHED_NORMAL,
6832 };
6833
6834 read_lock(&tasklist_lock);
6835 for_each_process_thread(g, p) {
6836 /*
6837 * Only normalize user tasks:
6838 */
6839 if (p->flags & PF_KTHREAD)
6840 continue;
6841
6842 p->se.exec_start = 0;
6843 schedstat_set(p->se.statistics.wait_start, 0);
6844 schedstat_set(p->se.statistics.sleep_start, 0);
6845 schedstat_set(p->se.statistics.block_start, 0);
6846
6847 if (!dl_task(p) && !rt_task(p)) {
6848 /*
6849 * Renice negative nice level userspace
6850 * tasks back to 0:
6851 */
6852 if (task_nice(p) < 0)
6853 set_user_nice(p, 0);
6854 continue;
6855 }
6856
6857 __sched_setscheduler(p, &attr, false, false);
6858 }
6859 read_unlock(&tasklist_lock);
6860 }
6861
6862 #endif /* CONFIG_MAGIC_SYSRQ */
6863
6864 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6865 /*
6866 * These functions are only useful for the IA64 MCA handling, or kdb.
6867 *
6868 * They can only be called when the whole system has been
6869 * stopped - every CPU needs to be quiescent, and no scheduling
6870 * activity can take place. Using them for anything else would
6871 * be a serious bug, and as a result, they aren't even visible
6872 * under any other configuration.
6873 */
6874
6875 /**
6876 * curr_task - return the current task for a given CPU.
6877 * @cpu: the processor in question.
6878 *
6879 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6880 *
6881 * Return: The current task for @cpu.
6882 */
curr_task(int cpu)6883 struct task_struct *curr_task(int cpu)
6884 {
6885 return cpu_curr(cpu);
6886 }
6887
6888 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6889
6890 #ifdef CONFIG_IA64
6891 /**
6892 * ia64_set_curr_task - set the current task for a given CPU.
6893 * @cpu: the processor in question.
6894 * @p: the task pointer to set.
6895 *
6896 * Description: This function must only be used when non-maskable interrupts
6897 * are serviced on a separate stack. It allows the architecture to switch the
6898 * notion of the current task on a CPU in a non-blocking manner. This function
6899 * must be called with all CPU's synchronized, and interrupts disabled, the
6900 * and caller must save the original value of the current task (see
6901 * curr_task() above) and restore that value before reenabling interrupts and
6902 * re-starting the system.
6903 *
6904 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6905 */
ia64_set_curr_task(int cpu,struct task_struct * p)6906 void ia64_set_curr_task(int cpu, struct task_struct *p)
6907 {
6908 cpu_curr(cpu) = p;
6909 }
6910
6911 #endif
6912
6913 #ifdef CONFIG_CGROUP_SCHED
6914 /* task_group_lock serializes the addition/removal of task groups */
6915 static DEFINE_SPINLOCK(task_group_lock);
6916
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)6917 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6918 struct task_group *parent)
6919 {
6920 #ifdef CONFIG_UCLAMP_TASK_GROUP
6921 enum uclamp_id clamp_id;
6922
6923 for_each_clamp_id(clamp_id) {
6924 uclamp_se_set(&tg->uclamp_req[clamp_id],
6925 uclamp_none(clamp_id), false);
6926 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6927 }
6928 #endif
6929 }
6930
sched_free_group(struct task_group * tg)6931 static void sched_free_group(struct task_group *tg)
6932 {
6933 free_fair_sched_group(tg);
6934 free_rt_sched_group(tg);
6935 autogroup_free(tg);
6936 kmem_cache_free(task_group_cache, tg);
6937 }
6938
6939 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)6940 struct task_group *sched_create_group(struct task_group *parent)
6941 {
6942 struct task_group *tg;
6943
6944 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6945 if (!tg)
6946 return ERR_PTR(-ENOMEM);
6947
6948 if (!alloc_fair_sched_group(tg, parent))
6949 goto err;
6950
6951 if (!alloc_rt_sched_group(tg, parent))
6952 goto err;
6953
6954 alloc_uclamp_sched_group(tg, parent);
6955
6956 return tg;
6957
6958 err:
6959 sched_free_group(tg);
6960 return ERR_PTR(-ENOMEM);
6961 }
6962
sched_online_group(struct task_group * tg,struct task_group * parent)6963 void sched_online_group(struct task_group *tg, struct task_group *parent)
6964 {
6965 unsigned long flags;
6966
6967 spin_lock_irqsave(&task_group_lock, flags);
6968 list_add_rcu(&tg->list, &task_groups);
6969
6970 /* Root should already exist: */
6971 WARN_ON(!parent);
6972
6973 tg->parent = parent;
6974 INIT_LIST_HEAD(&tg->children);
6975 list_add_rcu(&tg->siblings, &parent->children);
6976 spin_unlock_irqrestore(&task_group_lock, flags);
6977
6978 online_fair_sched_group(tg);
6979 }
6980
6981 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)6982 static void sched_free_group_rcu(struct rcu_head *rhp)
6983 {
6984 /* Now it should be safe to free those cfs_rqs: */
6985 sched_free_group(container_of(rhp, struct task_group, rcu));
6986 }
6987
sched_destroy_group(struct task_group * tg)6988 void sched_destroy_group(struct task_group *tg)
6989 {
6990 /* Wait for possible concurrent references to cfs_rqs complete: */
6991 call_rcu(&tg->rcu, sched_free_group_rcu);
6992 }
6993
sched_offline_group(struct task_group * tg)6994 void sched_offline_group(struct task_group *tg)
6995 {
6996 unsigned long flags;
6997
6998 /* End participation in shares distribution: */
6999 unregister_fair_sched_group(tg);
7000
7001 spin_lock_irqsave(&task_group_lock, flags);
7002 list_del_rcu(&tg->list);
7003 list_del_rcu(&tg->siblings);
7004 spin_unlock_irqrestore(&task_group_lock, flags);
7005 }
7006
sched_change_group(struct task_struct * tsk,int type)7007 static void sched_change_group(struct task_struct *tsk, int type)
7008 {
7009 struct task_group *tg;
7010
7011 /*
7012 * All callers are synchronized by task_rq_lock(); we do not use RCU
7013 * which is pointless here. Thus, we pass "true" to task_css_check()
7014 * to prevent lockdep warnings.
7015 */
7016 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7017 struct task_group, css);
7018 tg = autogroup_task_group(tsk, tg);
7019 tsk->sched_task_group = tg;
7020
7021 #ifdef CONFIG_FAIR_GROUP_SCHED
7022 if (tsk->sched_class->task_change_group)
7023 tsk->sched_class->task_change_group(tsk, type);
7024 else
7025 #endif
7026 set_task_rq(tsk, task_cpu(tsk));
7027 }
7028
7029 /*
7030 * Change task's runqueue when it moves between groups.
7031 *
7032 * The caller of this function should have put the task in its new group by
7033 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7034 * its new group.
7035 */
sched_move_task(struct task_struct * tsk)7036 void sched_move_task(struct task_struct *tsk)
7037 {
7038 int queued, running, queue_flags =
7039 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7040 struct rq_flags rf;
7041 struct rq *rq;
7042
7043 rq = task_rq_lock(tsk, &rf);
7044 update_rq_clock(rq);
7045
7046 running = task_current(rq, tsk);
7047 queued = task_on_rq_queued(tsk);
7048
7049 if (queued)
7050 dequeue_task(rq, tsk, queue_flags);
7051 if (running)
7052 put_prev_task(rq, tsk);
7053
7054 sched_change_group(tsk, TASK_MOVE_GROUP);
7055
7056 if (queued)
7057 enqueue_task(rq, tsk, queue_flags);
7058 if (running)
7059 set_next_task(rq, tsk);
7060
7061 task_rq_unlock(rq, tsk, &rf);
7062 }
7063
css_tg(struct cgroup_subsys_state * css)7064 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7065 {
7066 return css ? container_of(css, struct task_group, css) : NULL;
7067 }
7068
7069 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)7070 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7071 {
7072 struct task_group *parent = css_tg(parent_css);
7073 struct task_group *tg;
7074
7075 if (!parent) {
7076 /* This is early initialization for the top cgroup */
7077 return &root_task_group.css;
7078 }
7079
7080 tg = sched_create_group(parent);
7081 if (IS_ERR(tg))
7082 return ERR_PTR(-ENOMEM);
7083
7084 return &tg->css;
7085 }
7086
7087 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)7088 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7089 {
7090 struct task_group *tg = css_tg(css);
7091 struct task_group *parent = css_tg(css->parent);
7092
7093 if (parent)
7094 sched_online_group(tg, parent);
7095 return 0;
7096 }
7097
cpu_cgroup_css_released(struct cgroup_subsys_state * css)7098 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7099 {
7100 struct task_group *tg = css_tg(css);
7101
7102 sched_offline_group(tg);
7103 }
7104
cpu_cgroup_css_free(struct cgroup_subsys_state * css)7105 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7106 {
7107 struct task_group *tg = css_tg(css);
7108
7109 /*
7110 * Relies on the RCU grace period between css_released() and this.
7111 */
7112 sched_free_group(tg);
7113 }
7114
7115 /*
7116 * This is called before wake_up_new_task(), therefore we really only
7117 * have to set its group bits, all the other stuff does not apply.
7118 */
cpu_cgroup_fork(struct task_struct * task)7119 static void cpu_cgroup_fork(struct task_struct *task)
7120 {
7121 struct rq_flags rf;
7122 struct rq *rq;
7123
7124 rq = task_rq_lock(task, &rf);
7125
7126 update_rq_clock(rq);
7127 sched_change_group(task, TASK_SET_GROUP);
7128
7129 task_rq_unlock(rq, task, &rf);
7130 }
7131
cpu_cgroup_can_attach(struct cgroup_taskset * tset)7132 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7133 {
7134 struct task_struct *task;
7135 struct cgroup_subsys_state *css;
7136 int ret = 0;
7137
7138 cgroup_taskset_for_each(task, css, tset) {
7139 #ifdef CONFIG_RT_GROUP_SCHED
7140 if (!sched_rt_can_attach(css_tg(css), task))
7141 return -EINVAL;
7142 #endif
7143 /*
7144 * Serialize against wake_up_new_task() such that if its
7145 * running, we're sure to observe its full state.
7146 */
7147 raw_spin_lock_irq(&task->pi_lock);
7148 /*
7149 * Avoid calling sched_move_task() before wake_up_new_task()
7150 * has happened. This would lead to problems with PELT, due to
7151 * move wanting to detach+attach while we're not attached yet.
7152 */
7153 if (task->state == TASK_NEW)
7154 ret = -EINVAL;
7155 raw_spin_unlock_irq(&task->pi_lock);
7156
7157 if (ret)
7158 break;
7159 }
7160 return ret;
7161 }
7162
cpu_cgroup_attach(struct cgroup_taskset * tset)7163 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7164 {
7165 struct task_struct *task;
7166 struct cgroup_subsys_state *css;
7167
7168 cgroup_taskset_for_each(task, css, tset)
7169 sched_move_task(task);
7170 }
7171
7172 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)7173 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7174 {
7175 struct cgroup_subsys_state *top_css = css;
7176 struct uclamp_se *uc_parent = NULL;
7177 struct uclamp_se *uc_se = NULL;
7178 unsigned int eff[UCLAMP_CNT];
7179 enum uclamp_id clamp_id;
7180 unsigned int clamps;
7181
7182 css_for_each_descendant_pre(css, top_css) {
7183 uc_parent = css_tg(css)->parent
7184 ? css_tg(css)->parent->uclamp : NULL;
7185
7186 for_each_clamp_id(clamp_id) {
7187 /* Assume effective clamps matches requested clamps */
7188 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7189 /* Cap effective clamps with parent's effective clamps */
7190 if (uc_parent &&
7191 eff[clamp_id] > uc_parent[clamp_id].value) {
7192 eff[clamp_id] = uc_parent[clamp_id].value;
7193 }
7194 }
7195 /* Ensure protection is always capped by limit */
7196 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7197
7198 /* Propagate most restrictive effective clamps */
7199 clamps = 0x0;
7200 uc_se = css_tg(css)->uclamp;
7201 for_each_clamp_id(clamp_id) {
7202 if (eff[clamp_id] == uc_se[clamp_id].value)
7203 continue;
7204 uc_se[clamp_id].value = eff[clamp_id];
7205 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7206 clamps |= (0x1 << clamp_id);
7207 }
7208 if (!clamps) {
7209 css = css_rightmost_descendant(css);
7210 continue;
7211 }
7212
7213 /* Immediately update descendants RUNNABLE tasks */
7214 uclamp_update_active_tasks(css, clamps);
7215 }
7216 }
7217
7218 /*
7219 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7220 * C expression. Since there is no way to convert a macro argument (N) into a
7221 * character constant, use two levels of macros.
7222 */
7223 #define _POW10(exp) ((unsigned int)1e##exp)
7224 #define POW10(exp) _POW10(exp)
7225
7226 struct uclamp_request {
7227 #define UCLAMP_PERCENT_SHIFT 2
7228 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7229 s64 percent;
7230 u64 util;
7231 int ret;
7232 };
7233
7234 static inline struct uclamp_request
capacity_from_percent(char * buf)7235 capacity_from_percent(char *buf)
7236 {
7237 struct uclamp_request req = {
7238 .percent = UCLAMP_PERCENT_SCALE,
7239 .util = SCHED_CAPACITY_SCALE,
7240 .ret = 0,
7241 };
7242
7243 buf = strim(buf);
7244 if (strcmp(buf, "max")) {
7245 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7246 &req.percent);
7247 if (req.ret)
7248 return req;
7249 if (req.percent > UCLAMP_PERCENT_SCALE) {
7250 req.ret = -ERANGE;
7251 return req;
7252 }
7253
7254 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7255 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7256 }
7257
7258 return req;
7259 }
7260
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)7261 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7262 size_t nbytes, loff_t off,
7263 enum uclamp_id clamp_id)
7264 {
7265 struct uclamp_request req;
7266 struct task_group *tg;
7267
7268 req = capacity_from_percent(buf);
7269 if (req.ret)
7270 return req.ret;
7271
7272 mutex_lock(&uclamp_mutex);
7273 rcu_read_lock();
7274
7275 tg = css_tg(of_css(of));
7276 if (tg->uclamp_req[clamp_id].value != req.util)
7277 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7278
7279 /*
7280 * Because of not recoverable conversion rounding we keep track of the
7281 * exact requested value
7282 */
7283 tg->uclamp_pct[clamp_id] = req.percent;
7284
7285 /* Update effective clamps to track the most restrictive value */
7286 cpu_util_update_eff(of_css(of));
7287
7288 rcu_read_unlock();
7289 mutex_unlock(&uclamp_mutex);
7290
7291 return nbytes;
7292 }
7293
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7294 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7295 char *buf, size_t nbytes,
7296 loff_t off)
7297 {
7298 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7299 }
7300
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7301 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7302 char *buf, size_t nbytes,
7303 loff_t off)
7304 {
7305 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7306 }
7307
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)7308 static inline void cpu_uclamp_print(struct seq_file *sf,
7309 enum uclamp_id clamp_id)
7310 {
7311 struct task_group *tg;
7312 u64 util_clamp;
7313 u64 percent;
7314 u32 rem;
7315
7316 rcu_read_lock();
7317 tg = css_tg(seq_css(sf));
7318 util_clamp = tg->uclamp_req[clamp_id].value;
7319 rcu_read_unlock();
7320
7321 if (util_clamp == SCHED_CAPACITY_SCALE) {
7322 seq_puts(sf, "max\n");
7323 return;
7324 }
7325
7326 percent = tg->uclamp_pct[clamp_id];
7327 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7328 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7329 }
7330
cpu_uclamp_min_show(struct seq_file * sf,void * v)7331 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7332 {
7333 cpu_uclamp_print(sf, UCLAMP_MIN);
7334 return 0;
7335 }
7336
cpu_uclamp_max_show(struct seq_file * sf,void * v)7337 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7338 {
7339 cpu_uclamp_print(sf, UCLAMP_MAX);
7340 return 0;
7341 }
7342
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)7343 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
7344 struct cftype *cftype, u64 ls)
7345 {
7346 struct task_group *tg;
7347
7348 if (ls > 1)
7349 return -EINVAL;
7350 tg = css_tg(css);
7351 tg->latency_sensitive = (unsigned int) ls;
7352
7353 return 0;
7354 }
7355
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7356 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
7357 struct cftype *cft)
7358 {
7359 struct task_group *tg = css_tg(css);
7360
7361 return (u64) tg->latency_sensitive;
7362 }
7363 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7364
7365 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)7366 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7367 struct cftype *cftype, u64 shareval)
7368 {
7369 if (shareval > scale_load_down(ULONG_MAX))
7370 shareval = MAX_SHARES;
7371 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7372 }
7373
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7374 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7375 struct cftype *cft)
7376 {
7377 struct task_group *tg = css_tg(css);
7378
7379 return (u64) scale_load_down(tg->shares);
7380 }
7381
7382 #ifdef CONFIG_CFS_BANDWIDTH
7383 static DEFINE_MUTEX(cfs_constraints_mutex);
7384
7385 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7386 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7387
7388 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7389
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)7390 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7391 {
7392 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7393 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7394
7395 if (tg == &root_task_group)
7396 return -EINVAL;
7397
7398 /*
7399 * Ensure we have at some amount of bandwidth every period. This is
7400 * to prevent reaching a state of large arrears when throttled via
7401 * entity_tick() resulting in prolonged exit starvation.
7402 */
7403 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7404 return -EINVAL;
7405
7406 /*
7407 * Likewise, bound things on the otherside by preventing insane quota
7408 * periods. This also allows us to normalize in computing quota
7409 * feasibility.
7410 */
7411 if (period > max_cfs_quota_period)
7412 return -EINVAL;
7413
7414 /*
7415 * Prevent race between setting of cfs_rq->runtime_enabled and
7416 * unthrottle_offline_cfs_rqs().
7417 */
7418 get_online_cpus();
7419 mutex_lock(&cfs_constraints_mutex);
7420 ret = __cfs_schedulable(tg, period, quota);
7421 if (ret)
7422 goto out_unlock;
7423
7424 runtime_enabled = quota != RUNTIME_INF;
7425 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7426 /*
7427 * If we need to toggle cfs_bandwidth_used, off->on must occur
7428 * before making related changes, and on->off must occur afterwards
7429 */
7430 if (runtime_enabled && !runtime_was_enabled)
7431 cfs_bandwidth_usage_inc();
7432 raw_spin_lock_irq(&cfs_b->lock);
7433 cfs_b->period = ns_to_ktime(period);
7434 cfs_b->quota = quota;
7435
7436 __refill_cfs_bandwidth_runtime(cfs_b);
7437
7438 /* Restart the period timer (if active) to handle new period expiry: */
7439 if (runtime_enabled)
7440 start_cfs_bandwidth(cfs_b);
7441
7442 raw_spin_unlock_irq(&cfs_b->lock);
7443
7444 for_each_online_cpu(i) {
7445 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7446 struct rq *rq = cfs_rq->rq;
7447 struct rq_flags rf;
7448
7449 rq_lock_irq(rq, &rf);
7450 cfs_rq->runtime_enabled = runtime_enabled;
7451 cfs_rq->runtime_remaining = 0;
7452
7453 if (cfs_rq->throttled)
7454 unthrottle_cfs_rq(cfs_rq);
7455 rq_unlock_irq(rq, &rf);
7456 }
7457 if (runtime_was_enabled && !runtime_enabled)
7458 cfs_bandwidth_usage_dec();
7459 out_unlock:
7460 mutex_unlock(&cfs_constraints_mutex);
7461 put_online_cpus();
7462
7463 return ret;
7464 }
7465
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)7466 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7467 {
7468 u64 quota, period;
7469
7470 period = ktime_to_ns(tg->cfs_bandwidth.period);
7471 if (cfs_quota_us < 0)
7472 quota = RUNTIME_INF;
7473 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7474 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7475 else
7476 return -EINVAL;
7477
7478 return tg_set_cfs_bandwidth(tg, period, quota);
7479 }
7480
tg_get_cfs_quota(struct task_group * tg)7481 static long tg_get_cfs_quota(struct task_group *tg)
7482 {
7483 u64 quota_us;
7484
7485 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7486 return -1;
7487
7488 quota_us = tg->cfs_bandwidth.quota;
7489 do_div(quota_us, NSEC_PER_USEC);
7490
7491 return quota_us;
7492 }
7493
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)7494 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7495 {
7496 u64 quota, period;
7497
7498 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7499 return -EINVAL;
7500
7501 period = (u64)cfs_period_us * NSEC_PER_USEC;
7502 quota = tg->cfs_bandwidth.quota;
7503
7504 return tg_set_cfs_bandwidth(tg, period, quota);
7505 }
7506
tg_get_cfs_period(struct task_group * tg)7507 static long tg_get_cfs_period(struct task_group *tg)
7508 {
7509 u64 cfs_period_us;
7510
7511 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7512 do_div(cfs_period_us, NSEC_PER_USEC);
7513
7514 return cfs_period_us;
7515 }
7516
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)7517 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7518 struct cftype *cft)
7519 {
7520 return tg_get_cfs_quota(css_tg(css));
7521 }
7522
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)7523 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7524 struct cftype *cftype, s64 cfs_quota_us)
7525 {
7526 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7527 }
7528
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7529 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7530 struct cftype *cft)
7531 {
7532 return tg_get_cfs_period(css_tg(css));
7533 }
7534
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)7535 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7536 struct cftype *cftype, u64 cfs_period_us)
7537 {
7538 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7539 }
7540
7541 struct cfs_schedulable_data {
7542 struct task_group *tg;
7543 u64 period, quota;
7544 };
7545
7546 /*
7547 * normalize group quota/period to be quota/max_period
7548 * note: units are usecs
7549 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)7550 static u64 normalize_cfs_quota(struct task_group *tg,
7551 struct cfs_schedulable_data *d)
7552 {
7553 u64 quota, period;
7554
7555 if (tg == d->tg) {
7556 period = d->period;
7557 quota = d->quota;
7558 } else {
7559 period = tg_get_cfs_period(tg);
7560 quota = tg_get_cfs_quota(tg);
7561 }
7562
7563 /* note: these should typically be equivalent */
7564 if (quota == RUNTIME_INF || quota == -1)
7565 return RUNTIME_INF;
7566
7567 return to_ratio(period, quota);
7568 }
7569
tg_cfs_schedulable_down(struct task_group * tg,void * data)7570 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7571 {
7572 struct cfs_schedulable_data *d = data;
7573 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7574 s64 quota = 0, parent_quota = -1;
7575
7576 if (!tg->parent) {
7577 quota = RUNTIME_INF;
7578 } else {
7579 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7580
7581 quota = normalize_cfs_quota(tg, d);
7582 parent_quota = parent_b->hierarchical_quota;
7583
7584 /*
7585 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7586 * always take the min. On cgroup1, only inherit when no
7587 * limit is set:
7588 */
7589 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7590 quota = min(quota, parent_quota);
7591 } else {
7592 if (quota == RUNTIME_INF)
7593 quota = parent_quota;
7594 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7595 return -EINVAL;
7596 }
7597 }
7598 cfs_b->hierarchical_quota = quota;
7599
7600 return 0;
7601 }
7602
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)7603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7604 {
7605 int ret;
7606 struct cfs_schedulable_data data = {
7607 .tg = tg,
7608 .period = period,
7609 .quota = quota,
7610 };
7611
7612 if (quota != RUNTIME_INF) {
7613 do_div(data.period, NSEC_PER_USEC);
7614 do_div(data.quota, NSEC_PER_USEC);
7615 }
7616
7617 rcu_read_lock();
7618 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7619 rcu_read_unlock();
7620
7621 return ret;
7622 }
7623
cpu_cfs_stat_show(struct seq_file * sf,void * v)7624 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7625 {
7626 struct task_group *tg = css_tg(seq_css(sf));
7627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7628
7629 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7630 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7631 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7632
7633 if (schedstat_enabled() && tg != &root_task_group) {
7634 u64 ws = 0;
7635 int i;
7636
7637 for_each_possible_cpu(i)
7638 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7639
7640 seq_printf(sf, "wait_sum %llu\n", ws);
7641 }
7642
7643 return 0;
7644 }
7645 #endif /* CONFIG_CFS_BANDWIDTH */
7646 #endif /* CONFIG_FAIR_GROUP_SCHED */
7647
7648 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)7649 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7650 struct cftype *cft, s64 val)
7651 {
7652 return sched_group_set_rt_runtime(css_tg(css), val);
7653 }
7654
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)7655 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7656 struct cftype *cft)
7657 {
7658 return sched_group_rt_runtime(css_tg(css));
7659 }
7660
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)7661 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7662 struct cftype *cftype, u64 rt_period_us)
7663 {
7664 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7665 }
7666
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)7667 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7668 struct cftype *cft)
7669 {
7670 return sched_group_rt_period(css_tg(css));
7671 }
7672 #endif /* CONFIG_RT_GROUP_SCHED */
7673
7674 static struct cftype cpu_legacy_files[] = {
7675 #ifdef CONFIG_FAIR_GROUP_SCHED
7676 {
7677 .name = "shares",
7678 .read_u64 = cpu_shares_read_u64,
7679 .write_u64 = cpu_shares_write_u64,
7680 },
7681 #endif
7682 #ifdef CONFIG_CFS_BANDWIDTH
7683 {
7684 .name = "cfs_quota_us",
7685 .read_s64 = cpu_cfs_quota_read_s64,
7686 .write_s64 = cpu_cfs_quota_write_s64,
7687 },
7688 {
7689 .name = "cfs_period_us",
7690 .read_u64 = cpu_cfs_period_read_u64,
7691 .write_u64 = cpu_cfs_period_write_u64,
7692 },
7693 {
7694 .name = "stat",
7695 .seq_show = cpu_cfs_stat_show,
7696 },
7697 #endif
7698 #ifdef CONFIG_RT_GROUP_SCHED
7699 {
7700 .name = "rt_runtime_us",
7701 .read_s64 = cpu_rt_runtime_read,
7702 .write_s64 = cpu_rt_runtime_write,
7703 },
7704 {
7705 .name = "rt_period_us",
7706 .read_u64 = cpu_rt_period_read_uint,
7707 .write_u64 = cpu_rt_period_write_uint,
7708 },
7709 #endif
7710 #ifdef CONFIG_UCLAMP_TASK_GROUP
7711 {
7712 .name = "uclamp.min",
7713 .flags = CFTYPE_NOT_ON_ROOT,
7714 .seq_show = cpu_uclamp_min_show,
7715 .write = cpu_uclamp_min_write,
7716 },
7717 {
7718 .name = "uclamp.max",
7719 .flags = CFTYPE_NOT_ON_ROOT,
7720 .seq_show = cpu_uclamp_max_show,
7721 .write = cpu_uclamp_max_write,
7722 },
7723 {
7724 .name = "uclamp.latency_sensitive",
7725 .flags = CFTYPE_NOT_ON_ROOT,
7726 .read_u64 = cpu_uclamp_ls_read_u64,
7727 .write_u64 = cpu_uclamp_ls_write_u64,
7728 },
7729 #endif
7730 { } /* Terminate */
7731 };
7732
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)7733 static int cpu_extra_stat_show(struct seq_file *sf,
7734 struct cgroup_subsys_state *css)
7735 {
7736 #ifdef CONFIG_CFS_BANDWIDTH
7737 {
7738 struct task_group *tg = css_tg(css);
7739 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7740 u64 throttled_usec;
7741
7742 throttled_usec = cfs_b->throttled_time;
7743 do_div(throttled_usec, NSEC_PER_USEC);
7744
7745 seq_printf(sf, "nr_periods %d\n"
7746 "nr_throttled %d\n"
7747 "throttled_usec %llu\n",
7748 cfs_b->nr_periods, cfs_b->nr_throttled,
7749 throttled_usec);
7750 }
7751 #endif
7752 return 0;
7753 }
7754
7755 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7756 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7757 struct cftype *cft)
7758 {
7759 struct task_group *tg = css_tg(css);
7760 u64 weight = scale_load_down(tg->shares);
7761
7762 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7763 }
7764
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)7765 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7766 struct cftype *cft, u64 weight)
7767 {
7768 /*
7769 * cgroup weight knobs should use the common MIN, DFL and MAX
7770 * values which are 1, 100 and 10000 respectively. While it loses
7771 * a bit of range on both ends, it maps pretty well onto the shares
7772 * value used by scheduler and the round-trip conversions preserve
7773 * the original value over the entire range.
7774 */
7775 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7776 return -ERANGE;
7777
7778 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7779
7780 return sched_group_set_shares(css_tg(css), scale_load(weight));
7781 }
7782
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)7783 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7784 struct cftype *cft)
7785 {
7786 unsigned long weight = scale_load_down(css_tg(css)->shares);
7787 int last_delta = INT_MAX;
7788 int prio, delta;
7789
7790 /* find the closest nice value to the current weight */
7791 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7792 delta = abs(sched_prio_to_weight[prio] - weight);
7793 if (delta >= last_delta)
7794 break;
7795 last_delta = delta;
7796 }
7797
7798 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7799 }
7800
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)7801 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7802 struct cftype *cft, s64 nice)
7803 {
7804 unsigned long weight;
7805 int idx;
7806
7807 if (nice < MIN_NICE || nice > MAX_NICE)
7808 return -ERANGE;
7809
7810 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7811 idx = array_index_nospec(idx, 40);
7812 weight = sched_prio_to_weight[idx];
7813
7814 return sched_group_set_shares(css_tg(css), scale_load(weight));
7815 }
7816 #endif
7817
cpu_period_quota_print(struct seq_file * sf,long period,long quota)7818 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7819 long period, long quota)
7820 {
7821 if (quota < 0)
7822 seq_puts(sf, "max");
7823 else
7824 seq_printf(sf, "%ld", quota);
7825
7826 seq_printf(sf, " %ld\n", period);
7827 }
7828
7829 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)7830 static int __maybe_unused cpu_period_quota_parse(char *buf,
7831 u64 *periodp, u64 *quotap)
7832 {
7833 char tok[21]; /* U64_MAX */
7834
7835 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7836 return -EINVAL;
7837
7838 *periodp *= NSEC_PER_USEC;
7839
7840 if (sscanf(tok, "%llu", quotap))
7841 *quotap *= NSEC_PER_USEC;
7842 else if (!strcmp(tok, "max"))
7843 *quotap = RUNTIME_INF;
7844 else
7845 return -EINVAL;
7846
7847 return 0;
7848 }
7849
7850 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)7851 static int cpu_max_show(struct seq_file *sf, void *v)
7852 {
7853 struct task_group *tg = css_tg(seq_css(sf));
7854
7855 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7856 return 0;
7857 }
7858
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7859 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7860 char *buf, size_t nbytes, loff_t off)
7861 {
7862 struct task_group *tg = css_tg(of_css(of));
7863 u64 period = tg_get_cfs_period(tg);
7864 u64 quota;
7865 int ret;
7866
7867 ret = cpu_period_quota_parse(buf, &period, "a);
7868 if (!ret)
7869 ret = tg_set_cfs_bandwidth(tg, period, quota);
7870 return ret ?: nbytes;
7871 }
7872 #endif
7873
7874 static struct cftype cpu_files[] = {
7875 #ifdef CONFIG_FAIR_GROUP_SCHED
7876 {
7877 .name = "weight",
7878 .flags = CFTYPE_NOT_ON_ROOT,
7879 .read_u64 = cpu_weight_read_u64,
7880 .write_u64 = cpu_weight_write_u64,
7881 },
7882 {
7883 .name = "weight.nice",
7884 .flags = CFTYPE_NOT_ON_ROOT,
7885 .read_s64 = cpu_weight_nice_read_s64,
7886 .write_s64 = cpu_weight_nice_write_s64,
7887 },
7888 #endif
7889 #ifdef CONFIG_CFS_BANDWIDTH
7890 {
7891 .name = "max",
7892 .flags = CFTYPE_NOT_ON_ROOT,
7893 .seq_show = cpu_max_show,
7894 .write = cpu_max_write,
7895 },
7896 #endif
7897 #ifdef CONFIG_UCLAMP_TASK_GROUP
7898 {
7899 .name = "uclamp.min",
7900 .flags = CFTYPE_NOT_ON_ROOT,
7901 .seq_show = cpu_uclamp_min_show,
7902 .write = cpu_uclamp_min_write,
7903 },
7904 {
7905 .name = "uclamp.max",
7906 .flags = CFTYPE_NOT_ON_ROOT,
7907 .seq_show = cpu_uclamp_max_show,
7908 .write = cpu_uclamp_max_write,
7909 },
7910 {
7911 .name = "uclamp.latency_sensitive",
7912 .flags = CFTYPE_NOT_ON_ROOT,
7913 .read_u64 = cpu_uclamp_ls_read_u64,
7914 .write_u64 = cpu_uclamp_ls_write_u64,
7915 },
7916 #endif
7917 { } /* terminate */
7918 };
7919
7920 struct cgroup_subsys cpu_cgrp_subsys = {
7921 .css_alloc = cpu_cgroup_css_alloc,
7922 .css_online = cpu_cgroup_css_online,
7923 .css_released = cpu_cgroup_css_released,
7924 .css_free = cpu_cgroup_css_free,
7925 .css_extra_stat_show = cpu_extra_stat_show,
7926 .fork = cpu_cgroup_fork,
7927 .can_attach = cpu_cgroup_can_attach,
7928 .attach = cpu_cgroup_attach,
7929 .legacy_cftypes = cpu_legacy_files,
7930 .dfl_cftypes = cpu_files,
7931 .early_init = true,
7932 .threaded = true,
7933 };
7934
7935 #endif /* CONFIG_CGROUP_SCHED */
7936
dump_cpu_task(int cpu)7937 void dump_cpu_task(int cpu)
7938 {
7939 pr_info("Task dump for CPU %d:\n", cpu);
7940 sched_show_task(cpu_curr(cpu));
7941 }
7942
7943 /*
7944 * Nice levels are multiplicative, with a gentle 10% change for every
7945 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7946 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7947 * that remained on nice 0.
7948 *
7949 * The "10% effect" is relative and cumulative: from _any_ nice level,
7950 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7951 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7952 * If a task goes up by ~10% and another task goes down by ~10% then
7953 * the relative distance between them is ~25%.)
7954 */
7955 const int sched_prio_to_weight[40] = {
7956 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7957 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7958 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7959 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7960 /* 0 */ 1024, 820, 655, 526, 423,
7961 /* 5 */ 335, 272, 215, 172, 137,
7962 /* 10 */ 110, 87, 70, 56, 45,
7963 /* 15 */ 36, 29, 23, 18, 15,
7964 };
7965
7966 /*
7967 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7968 *
7969 * In cases where the weight does not change often, we can use the
7970 * precalculated inverse to speed up arithmetics by turning divisions
7971 * into multiplications:
7972 */
7973 const u32 sched_prio_to_wmult[40] = {
7974 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7975 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7976 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7977 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7978 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7979 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7980 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7981 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7982 };
7983
7984 #undef CREATE_TRACE_POINTS
7985