1 /*
2 * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "acr_r352.h"
24 #include "hs_ucode.h"
25
26 #include <core/gpuobj.h>
27 #include <core/firmware.h>
28 #include <engine/falcon.h>
29 #include <subdev/pmu.h>
30 #include <core/msgqueue.h>
31 #include <engine/sec2.h>
32
33 /**
34 * struct acr_r352_flcn_bl_desc - DMEM bootloader descriptor
35 * @signature: 16B signature for secure code. 0s if no secure code
36 * @ctx_dma: DMA context to be used by BL while loading code/data
37 * @code_dma_base: 256B-aligned Physical FB Address where code is located
38 * (falcon's $xcbase register)
39 * @non_sec_code_off: offset from code_dma_base where the non-secure code is
40 * located. The offset must be multiple of 256 to help perf
41 * @non_sec_code_size: the size of the nonSecure code part.
42 * @sec_code_off: offset from code_dma_base where the secure code is
43 * located. The offset must be multiple of 256 to help perf
44 * @sec_code_size: offset from code_dma_base where the secure code is
45 * located. The offset must be multiple of 256 to help perf
46 * @code_entry_point: code entry point which will be invoked by BL after
47 * code is loaded.
48 * @data_dma_base: 256B aligned Physical FB Address where data is located.
49 * (falcon's $xdbase register)
50 * @data_size: size of data block. Should be multiple of 256B
51 *
52 * Structure used by the bootloader to load the rest of the code. This has
53 * to be filled by host and copied into DMEM at offset provided in the
54 * hsflcn_bl_desc.bl_desc_dmem_load_off.
55 */
56 struct acr_r352_flcn_bl_desc {
57 u32 reserved[4];
58 u32 signature[4];
59 u32 ctx_dma;
60 u32 code_dma_base;
61 u32 non_sec_code_off;
62 u32 non_sec_code_size;
63 u32 sec_code_off;
64 u32 sec_code_size;
65 u32 code_entry_point;
66 u32 data_dma_base;
67 u32 data_size;
68 u32 code_dma_base1;
69 u32 data_dma_base1;
70 };
71
72 /**
73 * acr_r352_generate_flcn_bl_desc - generate generic BL descriptor for LS image
74 */
75 static void
acr_r352_generate_flcn_bl_desc(const struct nvkm_acr * acr,const struct ls_ucode_img * img,u64 wpr_addr,void * _desc)76 acr_r352_generate_flcn_bl_desc(const struct nvkm_acr *acr,
77 const struct ls_ucode_img *img, u64 wpr_addr,
78 void *_desc)
79 {
80 struct acr_r352_flcn_bl_desc *desc = _desc;
81 const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
82 u64 base, addr_code, addr_data;
83
84 base = wpr_addr + img->ucode_off + pdesc->app_start_offset;
85 addr_code = (base + pdesc->app_resident_code_offset) >> 8;
86 addr_data = (base + pdesc->app_resident_data_offset) >> 8;
87
88 desc->ctx_dma = FALCON_DMAIDX_UCODE;
89 desc->code_dma_base = lower_32_bits(addr_code);
90 desc->code_dma_base1 = upper_32_bits(addr_code);
91 desc->non_sec_code_off = pdesc->app_resident_code_offset;
92 desc->non_sec_code_size = pdesc->app_resident_code_size;
93 desc->code_entry_point = pdesc->app_imem_entry;
94 desc->data_dma_base = lower_32_bits(addr_data);
95 desc->data_dma_base1 = upper_32_bits(addr_data);
96 desc->data_size = pdesc->app_resident_data_size;
97 }
98
99
100 /**
101 * struct hsflcn_acr_desc - data section of the HS firmware
102 *
103 * This header is to be copied at the beginning of DMEM by the HS bootloader.
104 *
105 * @signature: signature of ACR ucode
106 * @wpr_region_id: region ID holding the WPR header and its details
107 * @wpr_offset: offset from the WPR region holding the wpr header
108 * @regions: region descriptors
109 * @nonwpr_ucode_blob_size: size of LS blob
110 * @nonwpr_ucode_blob_start: FB location of LS blob is
111 */
112 struct hsflcn_acr_desc {
113 union {
114 u8 reserved_dmem[0x200];
115 u32 signatures[4];
116 } ucode_reserved_space;
117 u32 wpr_region_id;
118 u32 wpr_offset;
119 u32 mmu_mem_range;
120 #define FLCN_ACR_MAX_REGIONS 2
121 struct {
122 u32 no_regions;
123 struct {
124 u32 start_addr;
125 u32 end_addr;
126 u32 region_id;
127 u32 read_mask;
128 u32 write_mask;
129 u32 client_mask;
130 } region_props[FLCN_ACR_MAX_REGIONS];
131 } regions;
132 u32 ucode_blob_size;
133 u64 ucode_blob_base __aligned(8);
134 struct {
135 u32 vpr_enabled;
136 u32 vpr_start;
137 u32 vpr_end;
138 u32 hdcp_policies;
139 } vpr_desc;
140 };
141
142
143 /*
144 * Low-secure blob creation
145 */
146
147 /**
148 * struct acr_r352_lsf_lsb_header - LS firmware header
149 * @signature: signature to verify the firmware against
150 * @ucode_off: offset of the ucode blob in the WPR region. The ucode
151 * blob contains the bootloader, code and data of the
152 * LS falcon
153 * @ucode_size: size of the ucode blob, including bootloader
154 * @data_size: size of the ucode blob data
155 * @bl_code_size: size of the bootloader code
156 * @bl_imem_off: offset in imem of the bootloader
157 * @bl_data_off: offset of the bootloader data in WPR region
158 * @bl_data_size: size of the bootloader data
159 * @app_code_off: offset of the app code relative to ucode_off
160 * @app_code_size: size of the app code
161 * @app_data_off: offset of the app data relative to ucode_off
162 * @app_data_size: size of the app data
163 * @flags: flags for the secure bootloader
164 *
165 * This structure is written into the WPR region for each managed falcon. Each
166 * instance is referenced by the lsb_offset member of the corresponding
167 * lsf_wpr_header.
168 */
169 struct acr_r352_lsf_lsb_header {
170 /**
171 * LS falcon signatures
172 * @prd_keys: signature to use in production mode
173 * @dgb_keys: signature to use in debug mode
174 * @b_prd_present: whether the production key is present
175 * @b_dgb_present: whether the debug key is present
176 * @falcon_id: ID of the falcon the ucode applies to
177 */
178 struct {
179 u8 prd_keys[2][16];
180 u8 dbg_keys[2][16];
181 u32 b_prd_present;
182 u32 b_dbg_present;
183 u32 falcon_id;
184 } signature;
185 u32 ucode_off;
186 u32 ucode_size;
187 u32 data_size;
188 u32 bl_code_size;
189 u32 bl_imem_off;
190 u32 bl_data_off;
191 u32 bl_data_size;
192 u32 app_code_off;
193 u32 app_code_size;
194 u32 app_data_off;
195 u32 app_data_size;
196 u32 flags;
197 };
198
199 /**
200 * struct acr_r352_lsf_wpr_header - LS blob WPR Header
201 * @falcon_id: LS falcon ID
202 * @lsb_offset: offset of the lsb_lsf_header in the WPR region
203 * @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon
204 * @lazy_bootstrap: skip bootstrapping by ACR
205 * @status: bootstrapping status
206 *
207 * An array of these is written at the beginning of the WPR region, one for
208 * each managed falcon. The array is terminated by an instance which falcon_id
209 * is LSF_FALCON_ID_INVALID.
210 */
211 struct acr_r352_lsf_wpr_header {
212 u32 falcon_id;
213 u32 lsb_offset;
214 u32 bootstrap_owner;
215 u32 lazy_bootstrap;
216 u32 status;
217 #define LSF_IMAGE_STATUS_NONE 0
218 #define LSF_IMAGE_STATUS_COPY 1
219 #define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2
220 #define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3
221 #define LSF_IMAGE_STATUS_VALIDATION_DONE 4
222 #define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5
223 #define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6
224 };
225
226 /**
227 * struct ls_ucode_img_r352 - ucode image augmented with r352 headers
228 */
229 struct ls_ucode_img_r352 {
230 struct ls_ucode_img base;
231
232 const struct acr_r352_lsf_func *func;
233
234 struct acr_r352_lsf_wpr_header wpr_header;
235 struct acr_r352_lsf_lsb_header lsb_header;
236 };
237 #define ls_ucode_img_r352(i) container_of(i, struct ls_ucode_img_r352, base)
238
239 /**
240 * ls_ucode_img_load() - create a lsf_ucode_img and load it
241 */
242 struct ls_ucode_img *
acr_r352_ls_ucode_img_load(const struct acr_r352 * acr,const struct nvkm_secboot * sb,enum nvkm_secboot_falcon falcon_id)243 acr_r352_ls_ucode_img_load(const struct acr_r352 *acr,
244 const struct nvkm_secboot *sb,
245 enum nvkm_secboot_falcon falcon_id)
246 {
247 const struct nvkm_subdev *subdev = acr->base.subdev;
248 const struct acr_r352_ls_func *func = acr->func->ls_func[falcon_id];
249 struct ls_ucode_img_r352 *img;
250 int ret;
251
252 img = kzalloc(sizeof(*img), GFP_KERNEL);
253 if (!img)
254 return ERR_PTR(-ENOMEM);
255
256 img->base.falcon_id = falcon_id;
257
258 ret = func->load(sb, func->version_max, &img->base);
259 if (ret < 0) {
260 kfree(img->base.ucode_data);
261 kfree(img->base.sig);
262 kfree(img);
263 return ERR_PTR(ret);
264 }
265
266 img->func = func->version[ret];
267
268 /* Check that the signature size matches our expectations... */
269 if (img->base.sig_size != sizeof(img->lsb_header.signature)) {
270 nvkm_error(subdev, "invalid signature size for %s falcon!\n",
271 nvkm_secboot_falcon_name[falcon_id]);
272 return ERR_PTR(-EINVAL);
273 }
274
275 /* Copy signature to the right place */
276 memcpy(&img->lsb_header.signature, img->base.sig, img->base.sig_size);
277
278 /* not needed? the signature should already have the right value */
279 img->lsb_header.signature.falcon_id = falcon_id;
280
281 return &img->base;
282 }
283
284 #define LSF_LSB_HEADER_ALIGN 256
285 #define LSF_BL_DATA_ALIGN 256
286 #define LSF_BL_DATA_SIZE_ALIGN 256
287 #define LSF_BL_CODE_SIZE_ALIGN 256
288 #define LSF_UCODE_DATA_ALIGN 4096
289
290 /**
291 * acr_r352_ls_img_fill_headers - fill the WPR and LSB headers of an image
292 * @acr: ACR to use
293 * @img: image to generate for
294 * @offset: offset in the WPR region where this image starts
295 *
296 * Allocate space in the WPR area from offset and write the WPR and LSB headers
297 * accordingly.
298 *
299 * Return: offset at the end of this image.
300 */
301 static u32
acr_r352_ls_img_fill_headers(struct acr_r352 * acr,struct ls_ucode_img_r352 * img,u32 offset)302 acr_r352_ls_img_fill_headers(struct acr_r352 *acr,
303 struct ls_ucode_img_r352 *img, u32 offset)
304 {
305 struct ls_ucode_img *_img = &img->base;
306 struct acr_r352_lsf_wpr_header *whdr = &img->wpr_header;
307 struct acr_r352_lsf_lsb_header *lhdr = &img->lsb_header;
308 struct ls_ucode_img_desc *desc = &_img->ucode_desc;
309 const struct acr_r352_lsf_func *func = img->func;
310
311 /* Fill WPR header */
312 whdr->falcon_id = _img->falcon_id;
313 whdr->bootstrap_owner = acr->base.boot_falcon;
314 whdr->status = LSF_IMAGE_STATUS_COPY;
315
316 /* Skip bootstrapping falcons started by someone else than ACR */
317 if (acr->lazy_bootstrap & BIT(_img->falcon_id))
318 whdr->lazy_bootstrap = 1;
319
320 /* Align, save off, and include an LSB header size */
321 offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
322 whdr->lsb_offset = offset;
323 offset += sizeof(*lhdr);
324
325 /*
326 * Align, save off, and include the original (static) ucode
327 * image size
328 */
329 offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
330 _img->ucode_off = lhdr->ucode_off = offset;
331 offset += _img->ucode_size;
332
333 /*
334 * For falcons that use a boot loader (BL), we append a loader
335 * desc structure on the end of the ucode image and consider
336 * this the boot loader data. The host will then copy the loader
337 * desc args to this space within the WPR region (before locking
338 * down) and the HS bin will then copy them to DMEM 0 for the
339 * loader.
340 */
341 lhdr->bl_code_size = ALIGN(desc->bootloader_size,
342 LSF_BL_CODE_SIZE_ALIGN);
343 lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
344 LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
345 lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
346 lhdr->bl_code_size - lhdr->ucode_size;
347 /*
348 * Though the BL is located at 0th offset of the image, the VA
349 * is different to make sure that it doesn't collide the actual
350 * OS VA range
351 */
352 lhdr->bl_imem_off = desc->bootloader_imem_offset;
353 lhdr->app_code_off = desc->app_start_offset +
354 desc->app_resident_code_offset;
355 lhdr->app_code_size = desc->app_resident_code_size;
356 lhdr->app_data_off = desc->app_start_offset +
357 desc->app_resident_data_offset;
358 lhdr->app_data_size = desc->app_resident_data_size;
359
360 lhdr->flags = func->lhdr_flags;
361 if (_img->falcon_id == acr->base.boot_falcon)
362 lhdr->flags |= LSF_FLAG_DMACTL_REQ_CTX;
363
364 /* Align and save off BL descriptor size */
365 lhdr->bl_data_size = ALIGN(func->bl_desc_size, LSF_BL_DATA_SIZE_ALIGN);
366
367 /*
368 * Align, save off, and include the additional BL data
369 */
370 offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
371 lhdr->bl_data_off = offset;
372 offset += lhdr->bl_data_size;
373
374 return offset;
375 }
376
377 /**
378 * acr_r352_ls_fill_headers - fill WPR and LSB headers of all managed images
379 */
380 int
acr_r352_ls_fill_headers(struct acr_r352 * acr,struct list_head * imgs)381 acr_r352_ls_fill_headers(struct acr_r352 *acr, struct list_head *imgs)
382 {
383 struct ls_ucode_img_r352 *img;
384 struct list_head *l;
385 u32 count = 0;
386 u32 offset;
387
388 /* Count the number of images to manage */
389 list_for_each(l, imgs)
390 count++;
391
392 /*
393 * Start with an array of WPR headers at the base of the WPR.
394 * The expectation here is that the secure falcon will do a single DMA
395 * read of this array and cache it internally so it's ok to pack these.
396 * Also, we add 1 to the falcon count to indicate the end of the array.
397 */
398 offset = sizeof(img->wpr_header) * (count + 1);
399
400 /*
401 * Walk the managed falcons, accounting for the LSB structs
402 * as well as the ucode images.
403 */
404 list_for_each_entry(img, imgs, base.node) {
405 offset = acr_r352_ls_img_fill_headers(acr, img, offset);
406 }
407
408 return offset;
409 }
410
411 /**
412 * acr_r352_ls_write_wpr - write the WPR blob contents
413 */
414 int
acr_r352_ls_write_wpr(struct acr_r352 * acr,struct list_head * imgs,struct nvkm_gpuobj * wpr_blob,u64 wpr_addr)415 acr_r352_ls_write_wpr(struct acr_r352 *acr, struct list_head *imgs,
416 struct nvkm_gpuobj *wpr_blob, u64 wpr_addr)
417 {
418 struct ls_ucode_img *_img;
419 u32 pos = 0;
420 u32 max_desc_size = 0;
421 u8 *gdesc;
422
423 /* Figure out how large we need gdesc to be. */
424 list_for_each_entry(_img, imgs, node) {
425 struct ls_ucode_img_r352 *img = ls_ucode_img_r352(_img);
426 const struct acr_r352_lsf_func *ls_func = img->func;
427
428 max_desc_size = max(max_desc_size, ls_func->bl_desc_size);
429 }
430
431 gdesc = kmalloc(max_desc_size, GFP_KERNEL);
432 if (!gdesc)
433 return -ENOMEM;
434
435 nvkm_kmap(wpr_blob);
436
437 list_for_each_entry(_img, imgs, node) {
438 struct ls_ucode_img_r352 *img = ls_ucode_img_r352(_img);
439 const struct acr_r352_lsf_func *ls_func = img->func;
440
441 nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
442 sizeof(img->wpr_header));
443
444 nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
445 &img->lsb_header, sizeof(img->lsb_header));
446
447 /* Generate and write BL descriptor */
448 memset(gdesc, 0, ls_func->bl_desc_size);
449 ls_func->generate_bl_desc(&acr->base, _img, wpr_addr, gdesc);
450
451 nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.bl_data_off,
452 gdesc, ls_func->bl_desc_size);
453
454 /* Copy ucode */
455 nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
456 _img->ucode_data, _img->ucode_size);
457
458 pos += sizeof(img->wpr_header);
459 }
460
461 nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);
462
463 nvkm_done(wpr_blob);
464
465 kfree(gdesc);
466
467 return 0;
468 }
469
470 /* Both size and address of WPR need to be 256K-aligned */
471 #define WPR_ALIGNMENT 0x40000
472 /**
473 * acr_r352_prepare_ls_blob() - prepare the LS blob
474 *
475 * For each securely managed falcon, load the FW, signatures and bootloaders and
476 * prepare a ucode blob. Then, compute the offsets in the WPR region for each
477 * blob, and finally write the headers and ucode blobs into a GPU object that
478 * will be copied into the WPR region by the HS firmware.
479 */
480 static int
acr_r352_prepare_ls_blob(struct acr_r352 * acr,struct nvkm_secboot * sb)481 acr_r352_prepare_ls_blob(struct acr_r352 *acr, struct nvkm_secboot *sb)
482 {
483 const struct nvkm_subdev *subdev = acr->base.subdev;
484 struct list_head imgs;
485 struct ls_ucode_img *img, *t;
486 unsigned long managed_falcons = acr->base.managed_falcons;
487 u64 wpr_addr = sb->wpr_addr;
488 u32 wpr_size = sb->wpr_size;
489 int managed_count = 0;
490 u32 image_wpr_size, ls_blob_size;
491 int falcon_id;
492 int ret;
493
494 INIT_LIST_HEAD(&imgs);
495
496 /* Load all LS blobs */
497 for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) {
498 struct ls_ucode_img *img;
499
500 img = acr->func->ls_ucode_img_load(acr, sb, falcon_id);
501 if (IS_ERR(img)) {
502 if (acr->base.optional_falcons & BIT(falcon_id)) {
503 managed_falcons &= ~BIT(falcon_id);
504 nvkm_info(subdev, "skipping %s falcon...\n",
505 nvkm_secboot_falcon_name[falcon_id]);
506 continue;
507 }
508 ret = PTR_ERR(img);
509 goto cleanup;
510 }
511
512 list_add_tail(&img->node, &imgs);
513 managed_count++;
514 }
515
516 /* Commit the actual list of falcons we will manage from now on */
517 acr->base.managed_falcons = managed_falcons;
518
519 /*
520 * If the boot falcon has a firmare, let it manage the bootstrap of other
521 * falcons.
522 */
523 if (acr->func->ls_func[acr->base.boot_falcon] &&
524 (managed_falcons & BIT(acr->base.boot_falcon))) {
525 for_each_set_bit(falcon_id, &managed_falcons,
526 NVKM_SECBOOT_FALCON_END) {
527 if (falcon_id == acr->base.boot_falcon)
528 continue;
529
530 acr->lazy_bootstrap |= BIT(falcon_id);
531 }
532 }
533
534 /*
535 * Fill the WPR and LSF headers with the right offsets and compute
536 * required WPR size
537 */
538 image_wpr_size = acr->func->ls_fill_headers(acr, &imgs);
539 image_wpr_size = ALIGN(image_wpr_size, WPR_ALIGNMENT);
540
541 ls_blob_size = image_wpr_size;
542
543 /*
544 * If we need a shadow area, allocate twice the size and use the
545 * upper half as WPR
546 */
547 if (wpr_size == 0 && acr->func->shadow_blob)
548 ls_blob_size *= 2;
549
550 /* Allocate GPU object that will contain the WPR region */
551 ret = nvkm_gpuobj_new(subdev->device, ls_blob_size, WPR_ALIGNMENT,
552 false, NULL, &acr->ls_blob);
553 if (ret)
554 goto cleanup;
555
556 nvkm_debug(subdev, "%d managed LS falcons, WPR size is %d bytes\n",
557 managed_count, image_wpr_size);
558
559 /* If WPR address and size are not fixed, set them to fit the LS blob */
560 if (wpr_size == 0) {
561 wpr_addr = acr->ls_blob->addr;
562 if (acr->func->shadow_blob)
563 wpr_addr += acr->ls_blob->size / 2;
564
565 wpr_size = image_wpr_size;
566 /*
567 * But if the WPR region is set by the bootloader, it is illegal for
568 * the HS blob to be larger than this region.
569 */
570 } else if (image_wpr_size > wpr_size) {
571 nvkm_error(subdev, "WPR region too small for FW blob!\n");
572 nvkm_error(subdev, "required: %dB\n", image_wpr_size);
573 nvkm_error(subdev, "available: %dB\n", wpr_size);
574 ret = -ENOSPC;
575 goto cleanup;
576 }
577
578 /* Write LS blob */
579 ret = acr->func->ls_write_wpr(acr, &imgs, acr->ls_blob, wpr_addr);
580 if (ret)
581 nvkm_gpuobj_del(&acr->ls_blob);
582
583 cleanup:
584 list_for_each_entry_safe(img, t, &imgs, node) {
585 kfree(img->ucode_data);
586 kfree(img->sig);
587 kfree(img);
588 }
589
590 return ret;
591 }
592
593
594
595
596 void
acr_r352_fixup_hs_desc(struct acr_r352 * acr,struct nvkm_secboot * sb,void * _desc)597 acr_r352_fixup_hs_desc(struct acr_r352 *acr, struct nvkm_secboot *sb,
598 void *_desc)
599 {
600 struct hsflcn_acr_desc *desc = _desc;
601 struct nvkm_gpuobj *ls_blob = acr->ls_blob;
602
603 /* WPR region information if WPR is not fixed */
604 if (sb->wpr_size == 0) {
605 u64 wpr_start = ls_blob->addr;
606 u64 wpr_end = wpr_start + ls_blob->size;
607
608 desc->wpr_region_id = 1;
609 desc->regions.no_regions = 2;
610 desc->regions.region_props[0].start_addr = wpr_start >> 8;
611 desc->regions.region_props[0].end_addr = wpr_end >> 8;
612 desc->regions.region_props[0].region_id = 1;
613 desc->regions.region_props[0].read_mask = 0xf;
614 desc->regions.region_props[0].write_mask = 0xc;
615 desc->regions.region_props[0].client_mask = 0x2;
616 } else {
617 desc->ucode_blob_base = ls_blob->addr;
618 desc->ucode_blob_size = ls_blob->size;
619 }
620 }
621
622 static void
acr_r352_generate_hs_bl_desc(const struct hsf_load_header * hdr,void * _bl_desc,u64 offset)623 acr_r352_generate_hs_bl_desc(const struct hsf_load_header *hdr, void *_bl_desc,
624 u64 offset)
625 {
626 struct acr_r352_flcn_bl_desc *bl_desc = _bl_desc;
627 u64 addr_code, addr_data;
628
629 addr_code = offset >> 8;
630 addr_data = (offset + hdr->data_dma_base) >> 8;
631
632 bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
633 bl_desc->code_dma_base = lower_32_bits(addr_code);
634 bl_desc->non_sec_code_off = hdr->non_sec_code_off;
635 bl_desc->non_sec_code_size = hdr->non_sec_code_size;
636 bl_desc->sec_code_off = hsf_load_header_app_off(hdr, 0);
637 bl_desc->sec_code_size = hsf_load_header_app_size(hdr, 0);
638 bl_desc->code_entry_point = 0;
639 bl_desc->data_dma_base = lower_32_bits(addr_data);
640 bl_desc->data_size = hdr->data_size;
641 }
642
643 /**
644 * acr_r352_prepare_hs_blob - load and prepare a HS blob and BL descriptor
645 *
646 * @sb secure boot instance to prepare for
647 * @fw name of the HS firmware to load
648 * @blob pointer to gpuobj that will be allocated to receive the HS FW payload
649 * @bl_desc pointer to the BL descriptor to write for this firmware
650 * @patch whether we should patch the HS descriptor (only for HS loaders)
651 */
652 static int
acr_r352_prepare_hs_blob(struct acr_r352 * acr,struct nvkm_secboot * sb,const char * fw,struct nvkm_gpuobj ** blob,struct hsf_load_header * load_header,bool patch)653 acr_r352_prepare_hs_blob(struct acr_r352 *acr, struct nvkm_secboot *sb,
654 const char *fw, struct nvkm_gpuobj **blob,
655 struct hsf_load_header *load_header, bool patch)
656 {
657 struct nvkm_subdev *subdev = &sb->subdev;
658 void *acr_image;
659 struct fw_bin_header *hsbin_hdr;
660 struct hsf_fw_header *fw_hdr;
661 struct hsf_load_header *load_hdr;
662 void *acr_data;
663 int ret;
664
665 acr_image = hs_ucode_load_blob(subdev, sb->boot_falcon, fw);
666 if (IS_ERR(acr_image))
667 return PTR_ERR(acr_image);
668
669 hsbin_hdr = acr_image;
670 fw_hdr = acr_image + hsbin_hdr->header_offset;
671 load_hdr = acr_image + fw_hdr->hdr_offset;
672 acr_data = acr_image + hsbin_hdr->data_offset;
673
674 /* Patch descriptor with WPR information? */
675 if (patch) {
676 struct hsflcn_acr_desc *desc;
677
678 desc = acr_data + load_hdr->data_dma_base;
679 acr->func->fixup_hs_desc(acr, sb, desc);
680 }
681
682 if (load_hdr->num_apps > ACR_R352_MAX_APPS) {
683 nvkm_error(subdev, "more apps (%d) than supported (%d)!",
684 load_hdr->num_apps, ACR_R352_MAX_APPS);
685 ret = -EINVAL;
686 goto cleanup;
687 }
688 memcpy(load_header, load_hdr, sizeof(*load_header) +
689 (sizeof(load_hdr->apps[0]) * 2 * load_hdr->num_apps));
690
691 /* Create ACR blob and copy HS data to it */
692 ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256),
693 0x1000, false, NULL, blob);
694 if (ret)
695 goto cleanup;
696
697 nvkm_kmap(*blob);
698 nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size);
699 nvkm_done(*blob);
700
701 cleanup:
702 kfree(acr_image);
703
704 return ret;
705 }
706
707 /**
708 * acr_r352_load_blobs - load blobs common to all ACR V1 versions.
709 *
710 * This includes the LS blob, HS ucode loading blob, and HS bootloader.
711 *
712 * The HS ucode unload blob is only used on dGPU if the WPR region is variable.
713 */
714 int
acr_r352_load_blobs(struct acr_r352 * acr,struct nvkm_secboot * sb)715 acr_r352_load_blobs(struct acr_r352 *acr, struct nvkm_secboot *sb)
716 {
717 struct nvkm_subdev *subdev = &sb->subdev;
718 int ret;
719
720 /* Firmware already loaded? */
721 if (acr->firmware_ok)
722 return 0;
723
724 /* Load and prepare the managed falcon's firmwares */
725 ret = acr_r352_prepare_ls_blob(acr, sb);
726 if (ret)
727 return ret;
728
729 /* Load the HS firmware that will load the LS firmwares */
730 if (!acr->load_blob) {
731 ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_load",
732 &acr->load_blob,
733 &acr->load_bl_header, true);
734 if (ret)
735 return ret;
736 }
737
738 /* If the ACR region is dynamically programmed, we need an unload FW */
739 if (sb->wpr_size == 0) {
740 ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_unload",
741 &acr->unload_blob,
742 &acr->unload_bl_header, false);
743 if (ret)
744 return ret;
745 }
746
747 /* Load the HS firmware bootloader */
748 if (!acr->hsbl_blob) {
749 acr->hsbl_blob = nvkm_acr_load_firmware(subdev, "acr/bl", 0);
750 if (IS_ERR(acr->hsbl_blob)) {
751 ret = PTR_ERR(acr->hsbl_blob);
752 acr->hsbl_blob = NULL;
753 return ret;
754 }
755
756 if (acr->base.boot_falcon != NVKM_SECBOOT_FALCON_PMU) {
757 acr->hsbl_unload_blob = nvkm_acr_load_firmware(subdev,
758 "acr/unload_bl", 0);
759 if (IS_ERR(acr->hsbl_unload_blob)) {
760 ret = PTR_ERR(acr->hsbl_unload_blob);
761 acr->hsbl_unload_blob = NULL;
762 return ret;
763 }
764 } else {
765 acr->hsbl_unload_blob = acr->hsbl_blob;
766 }
767 }
768
769 acr->firmware_ok = true;
770 nvkm_debug(&sb->subdev, "LS blob successfully created\n");
771
772 return 0;
773 }
774
775 /**
776 * acr_r352_load() - prepare HS falcon to run the specified blob, mapped.
777 *
778 * Returns the start address to use, or a negative error value.
779 */
780 static int
acr_r352_load(struct nvkm_acr * _acr,struct nvkm_falcon * falcon,struct nvkm_gpuobj * blob,u64 offset)781 acr_r352_load(struct nvkm_acr *_acr, struct nvkm_falcon *falcon,
782 struct nvkm_gpuobj *blob, u64 offset)
783 {
784 struct acr_r352 *acr = acr_r352(_acr);
785 const u32 bl_desc_size = acr->func->hs_bl_desc_size;
786 const struct hsf_load_header *load_hdr;
787 struct fw_bin_header *bl_hdr;
788 struct fw_bl_desc *hsbl_desc;
789 void *bl, *blob_data, *hsbl_code, *hsbl_data;
790 u32 code_size;
791 u8 *bl_desc;
792
793 bl_desc = kzalloc(bl_desc_size, GFP_KERNEL);
794 if (!bl_desc)
795 return -ENOMEM;
796
797 /* Find the bootloader descriptor for our blob and copy it */
798 if (blob == acr->load_blob) {
799 load_hdr = &acr->load_bl_header;
800 bl = acr->hsbl_blob;
801 } else if (blob == acr->unload_blob) {
802 load_hdr = &acr->unload_bl_header;
803 bl = acr->hsbl_unload_blob;
804 } else {
805 nvkm_error(_acr->subdev, "invalid secure boot blob!\n");
806 kfree(bl_desc);
807 return -EINVAL;
808 }
809
810 bl_hdr = bl;
811 hsbl_desc = bl + bl_hdr->header_offset;
812 blob_data = bl + bl_hdr->data_offset;
813 hsbl_code = blob_data + hsbl_desc->code_off;
814 hsbl_data = blob_data + hsbl_desc->data_off;
815 code_size = ALIGN(hsbl_desc->code_size, 256);
816
817 /*
818 * Copy HS bootloader data
819 */
820 nvkm_falcon_load_dmem(falcon, hsbl_data, 0x0, hsbl_desc->data_size, 0);
821
822 /* Copy HS bootloader code to end of IMEM */
823 nvkm_falcon_load_imem(falcon, hsbl_code, falcon->code.limit - code_size,
824 code_size, hsbl_desc->start_tag, 0, false);
825
826 /* Generate the BL header */
827 acr->func->generate_hs_bl_desc(load_hdr, bl_desc, offset);
828
829 /*
830 * Copy HS BL header where the HS descriptor expects it to be
831 */
832 nvkm_falcon_load_dmem(falcon, bl_desc, hsbl_desc->dmem_load_off,
833 bl_desc_size, 0);
834
835 kfree(bl_desc);
836 return hsbl_desc->start_tag << 8;
837 }
838
839 static int
acr_r352_shutdown(struct acr_r352 * acr,struct nvkm_secboot * sb)840 acr_r352_shutdown(struct acr_r352 *acr, struct nvkm_secboot *sb)
841 {
842 struct nvkm_subdev *subdev = &sb->subdev;
843 int i;
844
845 /* Run the unload blob to unprotect the WPR region */
846 if (acr->unload_blob && sb->wpr_set) {
847 int ret;
848
849 nvkm_debug(subdev, "running HS unload blob\n");
850 ret = sb->func->run_blob(sb, acr->unload_blob, sb->halt_falcon);
851 if (ret < 0)
852 return ret;
853 /*
854 * Unload blob will return this error code - it is not an error
855 * and the expected behavior on RM as well
856 */
857 if (ret && ret != 0x1d) {
858 nvkm_error(subdev, "HS unload failed, ret 0x%08x\n", ret);
859 return -EINVAL;
860 }
861 nvkm_debug(subdev, "HS unload blob completed\n");
862 }
863
864 for (i = 0; i < NVKM_SECBOOT_FALCON_END; i++)
865 acr->falcon_state[i] = NON_SECURE;
866
867 sb->wpr_set = false;
868
869 return 0;
870 }
871
872 /**
873 * Check if the WPR region has been indeed set by the ACR firmware, and
874 * matches where it should be.
875 */
876 static bool
acr_r352_wpr_is_set(const struct acr_r352 * acr,const struct nvkm_secboot * sb)877 acr_r352_wpr_is_set(const struct acr_r352 *acr, const struct nvkm_secboot *sb)
878 {
879 const struct nvkm_subdev *subdev = &sb->subdev;
880 const struct nvkm_device *device = subdev->device;
881 u64 wpr_lo, wpr_hi;
882 u64 wpr_range_lo, wpr_range_hi;
883
884 nvkm_wr32(device, 0x100cd4, 0x2);
885 wpr_lo = (nvkm_rd32(device, 0x100cd4) & ~0xff);
886 wpr_lo <<= 8;
887 nvkm_wr32(device, 0x100cd4, 0x3);
888 wpr_hi = (nvkm_rd32(device, 0x100cd4) & ~0xff);
889 wpr_hi <<= 8;
890
891 if (sb->wpr_size != 0) {
892 wpr_range_lo = sb->wpr_addr;
893 wpr_range_hi = wpr_range_lo + sb->wpr_size;
894 } else {
895 wpr_range_lo = acr->ls_blob->addr;
896 wpr_range_hi = wpr_range_lo + acr->ls_blob->size;
897 }
898
899 return (wpr_lo >= wpr_range_lo && wpr_lo < wpr_range_hi &&
900 wpr_hi > wpr_range_lo && wpr_hi <= wpr_range_hi);
901 }
902
903 static int
acr_r352_bootstrap(struct acr_r352 * acr,struct nvkm_secboot * sb)904 acr_r352_bootstrap(struct acr_r352 *acr, struct nvkm_secboot *sb)
905 {
906 const struct nvkm_subdev *subdev = &sb->subdev;
907 unsigned long managed_falcons = acr->base.managed_falcons;
908 int falcon_id;
909 int ret;
910
911 if (sb->wpr_set)
912 return 0;
913
914 /* Make sure all blobs are ready */
915 ret = acr_r352_load_blobs(acr, sb);
916 if (ret)
917 return ret;
918
919 nvkm_debug(subdev, "running HS load blob\n");
920 ret = sb->func->run_blob(sb, acr->load_blob, sb->boot_falcon);
921 /* clear halt interrupt */
922 nvkm_falcon_clear_interrupt(sb->boot_falcon, 0x10);
923 sb->wpr_set = acr_r352_wpr_is_set(acr, sb);
924 if (ret < 0) {
925 return ret;
926 } else if (ret > 0) {
927 nvkm_error(subdev, "HS load failed, ret 0x%08x\n", ret);
928 return -EINVAL;
929 }
930 nvkm_debug(subdev, "HS load blob completed\n");
931 /* WPR must be set at this point */
932 if (!sb->wpr_set) {
933 nvkm_error(subdev, "ACR blob completed but WPR not set!\n");
934 return -EINVAL;
935 }
936
937 /* Run LS firmwares post_run hooks */
938 for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) {
939 const struct acr_r352_ls_func *func =
940 acr->func->ls_func[falcon_id];
941
942 if (func->post_run) {
943 ret = func->post_run(&acr->base, sb);
944 if (ret)
945 return ret;
946 }
947 }
948
949 return 0;
950 }
951
952 /**
953 * acr_r352_reset_nopmu - dummy reset method when no PMU firmware is loaded
954 *
955 * Reset is done by re-executing secure boot from scratch, with lazy bootstrap
956 * disabled. This has the effect of making all managed falcons ready-to-run.
957 */
958 static int
acr_r352_reset_nopmu(struct acr_r352 * acr,struct nvkm_secboot * sb,unsigned long falcon_mask)959 acr_r352_reset_nopmu(struct acr_r352 *acr, struct nvkm_secboot *sb,
960 unsigned long falcon_mask)
961 {
962 int falcon;
963 int ret;
964
965 /*
966 * Perform secure boot each time we are called on FECS. Since only FECS
967 * and GPCCS are managed and started together, this ought to be safe.
968 */
969 if (!(falcon_mask & BIT(NVKM_SECBOOT_FALCON_FECS)))
970 goto end;
971
972 ret = acr_r352_shutdown(acr, sb);
973 if (ret)
974 return ret;
975
976 ret = acr_r352_bootstrap(acr, sb);
977 if (ret)
978 return ret;
979
980 end:
981 for_each_set_bit(falcon, &falcon_mask, NVKM_SECBOOT_FALCON_END) {
982 acr->falcon_state[falcon] = RESET;
983 }
984 return 0;
985 }
986
987 /*
988 * acr_r352_reset() - execute secure boot from the prepared state
989 *
990 * Load the HS bootloader and ask the falcon to run it. This will in turn
991 * load the HS firmware and run it, so once the falcon stops all the managed
992 * falcons should have their LS firmware loaded and be ready to run.
993 */
994 static int
acr_r352_reset(struct nvkm_acr * _acr,struct nvkm_secboot * sb,unsigned long falcon_mask)995 acr_r352_reset(struct nvkm_acr *_acr, struct nvkm_secboot *sb,
996 unsigned long falcon_mask)
997 {
998 struct acr_r352 *acr = acr_r352(_acr);
999 struct nvkm_msgqueue *queue;
1000 int falcon;
1001 bool wpr_already_set = sb->wpr_set;
1002 int ret;
1003
1004 /* Make sure secure boot is performed */
1005 ret = acr_r352_bootstrap(acr, sb);
1006 if (ret)
1007 return ret;
1008
1009 /* No PMU interface? */
1010 if (!nvkm_secboot_is_managed(sb, _acr->boot_falcon)) {
1011 /* Redo secure boot entirely if it was already done */
1012 if (wpr_already_set)
1013 return acr_r352_reset_nopmu(acr, sb, falcon_mask);
1014 /* Else return the result of the initial invokation */
1015 else
1016 return ret;
1017 }
1018
1019 switch (_acr->boot_falcon) {
1020 case NVKM_SECBOOT_FALCON_PMU:
1021 queue = sb->subdev.device->pmu->queue;
1022 break;
1023 case NVKM_SECBOOT_FALCON_SEC2:
1024 queue = sb->subdev.device->sec2->queue;
1025 break;
1026 default:
1027 return -EINVAL;
1028 }
1029
1030 /* Otherwise just ask the LS firmware to reset the falcon */
1031 for_each_set_bit(falcon, &falcon_mask, NVKM_SECBOOT_FALCON_END)
1032 nvkm_debug(&sb->subdev, "resetting %s falcon\n",
1033 nvkm_secboot_falcon_name[falcon]);
1034 ret = nvkm_msgqueue_acr_boot_falcons(queue, falcon_mask);
1035 if (ret) {
1036 nvkm_error(&sb->subdev, "error during falcon reset: %d\n", ret);
1037 return ret;
1038 }
1039 nvkm_debug(&sb->subdev, "falcon reset done\n");
1040
1041 return 0;
1042 }
1043
1044 static int
acr_r352_fini(struct nvkm_acr * _acr,struct nvkm_secboot * sb,bool suspend)1045 acr_r352_fini(struct nvkm_acr *_acr, struct nvkm_secboot *sb, bool suspend)
1046 {
1047 struct acr_r352 *acr = acr_r352(_acr);
1048
1049 return acr_r352_shutdown(acr, sb);
1050 }
1051
1052 static void
acr_r352_dtor(struct nvkm_acr * _acr)1053 acr_r352_dtor(struct nvkm_acr *_acr)
1054 {
1055 struct acr_r352 *acr = acr_r352(_acr);
1056
1057 nvkm_gpuobj_del(&acr->unload_blob);
1058
1059 if (_acr->boot_falcon != NVKM_SECBOOT_FALCON_PMU)
1060 kfree(acr->hsbl_unload_blob);
1061 kfree(acr->hsbl_blob);
1062 nvkm_gpuobj_del(&acr->load_blob);
1063 nvkm_gpuobj_del(&acr->ls_blob);
1064
1065 kfree(acr);
1066 }
1067
1068 static const struct acr_r352_lsf_func
1069 acr_r352_ls_fecs_func_0 = {
1070 .generate_bl_desc = acr_r352_generate_flcn_bl_desc,
1071 .bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
1072 };
1073
1074 const struct acr_r352_ls_func
1075 acr_r352_ls_fecs_func = {
1076 .load = acr_ls_ucode_load_fecs,
1077 .version_max = 0,
1078 .version = {
1079 &acr_r352_ls_fecs_func_0,
1080 }
1081 };
1082
1083 static const struct acr_r352_lsf_func
1084 acr_r352_ls_gpccs_func_0 = {
1085 .generate_bl_desc = acr_r352_generate_flcn_bl_desc,
1086 .bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
1087 /* GPCCS will be loaded using PRI */
1088 .lhdr_flags = LSF_FLAG_FORCE_PRIV_LOAD,
1089 };
1090
1091 static const struct acr_r352_ls_func
1092 acr_r352_ls_gpccs_func = {
1093 .load = acr_ls_ucode_load_gpccs,
1094 .version_max = 0,
1095 .version = {
1096 &acr_r352_ls_gpccs_func_0,
1097 }
1098 };
1099
1100
1101
1102 /**
1103 * struct acr_r352_pmu_bl_desc - PMU DMEM bootloader descriptor
1104 * @dma_idx: DMA context to be used by BL while loading code/data
1105 * @code_dma_base: 256B-aligned Physical FB Address where code is located
1106 * @total_code_size: total size of the code part in the ucode
1107 * @code_size_to_load: size of the code part to load in PMU IMEM.
1108 * @code_entry_point: entry point in the code.
1109 * @data_dma_base: Physical FB address where data part of ucode is located
1110 * @data_size: Total size of the data portion.
1111 * @overlay_dma_base: Physical Fb address for resident code present in ucode
1112 * @argc: Total number of args
1113 * @argv: offset where args are copied into PMU's DMEM.
1114 *
1115 * Structure used by the PMU bootloader to load the rest of the code
1116 */
1117 struct acr_r352_pmu_bl_desc {
1118 u32 dma_idx;
1119 u32 code_dma_base;
1120 u32 code_size_total;
1121 u32 code_size_to_load;
1122 u32 code_entry_point;
1123 u32 data_dma_base;
1124 u32 data_size;
1125 u32 overlay_dma_base;
1126 u32 argc;
1127 u32 argv;
1128 u16 code_dma_base1;
1129 u16 data_dma_base1;
1130 u16 overlay_dma_base1;
1131 };
1132
1133 /**
1134 * acr_r352_generate_pmu_bl_desc() - populate a DMEM BL descriptor for PMU LS image
1135 *
1136 */
1137 static void
acr_r352_generate_pmu_bl_desc(const struct nvkm_acr * acr,const struct ls_ucode_img * img,u64 wpr_addr,void * _desc)1138 acr_r352_generate_pmu_bl_desc(const struct nvkm_acr *acr,
1139 const struct ls_ucode_img *img, u64 wpr_addr,
1140 void *_desc)
1141 {
1142 const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
1143 const struct nvkm_pmu *pmu = acr->subdev->device->pmu;
1144 struct acr_r352_pmu_bl_desc *desc = _desc;
1145 u64 base;
1146 u64 addr_code;
1147 u64 addr_data;
1148 u32 addr_args;
1149
1150 base = wpr_addr + img->ucode_off + pdesc->app_start_offset;
1151 addr_code = (base + pdesc->app_resident_code_offset) >> 8;
1152 addr_data = (base + pdesc->app_resident_data_offset) >> 8;
1153 addr_args = pmu->falcon->data.limit;
1154 addr_args -= NVKM_MSGQUEUE_CMDLINE_SIZE;
1155
1156 desc->dma_idx = FALCON_DMAIDX_UCODE;
1157 desc->code_dma_base = lower_32_bits(addr_code);
1158 desc->code_dma_base1 = upper_32_bits(addr_code);
1159 desc->code_size_total = pdesc->app_size;
1160 desc->code_size_to_load = pdesc->app_resident_code_size;
1161 desc->code_entry_point = pdesc->app_imem_entry;
1162 desc->data_dma_base = lower_32_bits(addr_data);
1163 desc->data_dma_base1 = upper_32_bits(addr_data);
1164 desc->data_size = pdesc->app_resident_data_size;
1165 desc->overlay_dma_base = lower_32_bits(addr_code);
1166 desc->overlay_dma_base1 = upper_32_bits(addr_code);
1167 desc->argc = 1;
1168 desc->argv = addr_args;
1169 }
1170
1171 static const struct acr_r352_lsf_func
1172 acr_r352_ls_pmu_func_0 = {
1173 .generate_bl_desc = acr_r352_generate_pmu_bl_desc,
1174 .bl_desc_size = sizeof(struct acr_r352_pmu_bl_desc),
1175 };
1176
1177 static const struct acr_r352_ls_func
1178 acr_r352_ls_pmu_func = {
1179 .load = acr_ls_ucode_load_pmu,
1180 .post_run = acr_ls_pmu_post_run,
1181 .version_max = 0,
1182 .version = {
1183 &acr_r352_ls_pmu_func_0,
1184 }
1185 };
1186
1187 const struct acr_r352_func
1188 acr_r352_func = {
1189 .fixup_hs_desc = acr_r352_fixup_hs_desc,
1190 .generate_hs_bl_desc = acr_r352_generate_hs_bl_desc,
1191 .hs_bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
1192 .ls_ucode_img_load = acr_r352_ls_ucode_img_load,
1193 .ls_fill_headers = acr_r352_ls_fill_headers,
1194 .ls_write_wpr = acr_r352_ls_write_wpr,
1195 .ls_func = {
1196 [NVKM_SECBOOT_FALCON_FECS] = &acr_r352_ls_fecs_func,
1197 [NVKM_SECBOOT_FALCON_GPCCS] = &acr_r352_ls_gpccs_func,
1198 [NVKM_SECBOOT_FALCON_PMU] = &acr_r352_ls_pmu_func,
1199 },
1200 };
1201
1202 static const struct nvkm_acr_func
1203 acr_r352_base_func = {
1204 .dtor = acr_r352_dtor,
1205 .fini = acr_r352_fini,
1206 .load = acr_r352_load,
1207 .reset = acr_r352_reset,
1208 };
1209
1210 struct nvkm_acr *
acr_r352_new_(const struct acr_r352_func * func,enum nvkm_secboot_falcon boot_falcon,unsigned long managed_falcons)1211 acr_r352_new_(const struct acr_r352_func *func,
1212 enum nvkm_secboot_falcon boot_falcon,
1213 unsigned long managed_falcons)
1214 {
1215 struct acr_r352 *acr;
1216 int i;
1217
1218 /* Check that all requested falcons are supported */
1219 for_each_set_bit(i, &managed_falcons, NVKM_SECBOOT_FALCON_END) {
1220 if (!func->ls_func[i])
1221 return ERR_PTR(-ENOTSUPP);
1222 }
1223
1224 acr = kzalloc(sizeof(*acr), GFP_KERNEL);
1225 if (!acr)
1226 return ERR_PTR(-ENOMEM);
1227
1228 acr->base.boot_falcon = boot_falcon;
1229 acr->base.managed_falcons = managed_falcons;
1230 acr->base.func = &acr_r352_base_func;
1231 acr->func = func;
1232
1233 return &acr->base;
1234 }
1235
1236 struct nvkm_acr *
acr_r352_new(unsigned long managed_falcons)1237 acr_r352_new(unsigned long managed_falcons)
1238 {
1239 return acr_r352_new_(&acr_r352_func, NVKM_SECBOOT_FALCON_PMU,
1240 managed_falcons);
1241 }
1242