1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similarto hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corperation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29
30 #include "posix-timers.h"
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/alarmtimer.h>
34
35 /**
36 * struct alarm_base - Alarm timer bases
37 * @lock: Lock for syncrhonized access to the base
38 * @timerqueue: Timerqueue head managing the list of events
39 * @gettime: Function to read the time correlating to the base
40 * @base_clockid: clockid for the base
41 */
42 static struct alarm_base {
43 spinlock_t lock;
44 struct timerqueue_head timerqueue;
45 ktime_t (*gettime)(void);
46 clockid_t base_clockid;
47 } alarm_bases[ALARM_NUMTYPE];
48
49 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
50 /* freezer information to handle clock_nanosleep triggered wakeups */
51 static enum alarmtimer_type freezer_alarmtype;
52 static ktime_t freezer_expires;
53 static ktime_t freezer_delta;
54 static DEFINE_SPINLOCK(freezer_delta_lock);
55 #endif
56
57 #ifdef CONFIG_RTC_CLASS
58 static struct wakeup_source *ws;
59
60 /* rtc timer and device for setting alarm wakeups at suspend */
61 static struct rtc_timer rtctimer;
62 static struct rtc_device *rtcdev;
63 static DEFINE_SPINLOCK(rtcdev_lock);
64
65 /**
66 * alarmtimer_get_rtcdev - Return selected rtcdevice
67 *
68 * This function returns the rtc device to use for wakealarms.
69 * If one has not already been chosen, it checks to see if a
70 * functional rtc device is available.
71 */
alarmtimer_get_rtcdev(void)72 struct rtc_device *alarmtimer_get_rtcdev(void)
73 {
74 unsigned long flags;
75 struct rtc_device *ret;
76
77 spin_lock_irqsave(&rtcdev_lock, flags);
78 ret = rtcdev;
79 spin_unlock_irqrestore(&rtcdev_lock, flags);
80
81 return ret;
82 }
83 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
84
alarmtimer_rtc_add_device(struct device * dev,struct class_interface * class_intf)85 static int alarmtimer_rtc_add_device(struct device *dev,
86 struct class_interface *class_intf)
87 {
88 unsigned long flags;
89 struct rtc_device *rtc = to_rtc_device(dev);
90 struct wakeup_source *__ws;
91
92 if (rtcdev)
93 return -EBUSY;
94
95 if (!rtc->ops->set_alarm)
96 return -1;
97 if (!device_may_wakeup(rtc->dev.parent))
98 return -1;
99
100 __ws = wakeup_source_register(dev, "alarmtimer");
101
102 spin_lock_irqsave(&rtcdev_lock, flags);
103 if (!rtcdev) {
104 if (!try_module_get(rtc->owner)) {
105 spin_unlock_irqrestore(&rtcdev_lock, flags);
106 return -1;
107 }
108
109 rtcdev = rtc;
110 /* hold a reference so it doesn't go away */
111 get_device(dev);
112 ws = __ws;
113 __ws = NULL;
114 }
115 spin_unlock_irqrestore(&rtcdev_lock, flags);
116
117 wakeup_source_unregister(__ws);
118
119 return 0;
120 }
121
alarmtimer_rtc_timer_init(void)122 static inline void alarmtimer_rtc_timer_init(void)
123 {
124 rtc_timer_init(&rtctimer, NULL, NULL);
125 }
126
127 static struct class_interface alarmtimer_rtc_interface = {
128 .add_dev = &alarmtimer_rtc_add_device,
129 };
130
alarmtimer_rtc_interface_setup(void)131 static int alarmtimer_rtc_interface_setup(void)
132 {
133 alarmtimer_rtc_interface.class = rtc_class;
134 return class_interface_register(&alarmtimer_rtc_interface);
135 }
alarmtimer_rtc_interface_remove(void)136 static void alarmtimer_rtc_interface_remove(void)
137 {
138 class_interface_unregister(&alarmtimer_rtc_interface);
139 }
140 #else
alarmtimer_get_rtcdev(void)141 struct rtc_device *alarmtimer_get_rtcdev(void)
142 {
143 return NULL;
144 }
145 #define rtcdev (NULL)
alarmtimer_rtc_interface_setup(void)146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)147 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163 timerqueue_del(&base->timerqueue, &alarm->node);
164
165 timerqueue_add(&base->timerqueue, &alarm->node);
166 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
175 *
176 * Must hold base->lock when calling.
177 */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181 return;
182
183 timerqueue_del(&base->timerqueue, &alarm->node);
184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * when the next future alarm timer expires.
196 */
alarmtimer_fired(struct hrtimer * timer)197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199 struct alarm *alarm = container_of(timer, struct alarm, timer);
200 struct alarm_base *base = &alarm_bases[alarm->type];
201 unsigned long flags;
202 int ret = HRTIMER_NORESTART;
203 int restart = ALARMTIMER_NORESTART;
204
205 spin_lock_irqsave(&base->lock, flags);
206 alarmtimer_dequeue(base, alarm);
207 spin_unlock_irqrestore(&base->lock, flags);
208
209 if (alarm->function)
210 restart = alarm->function(alarm, base->gettime());
211
212 spin_lock_irqsave(&base->lock, flags);
213 if (restart != ALARMTIMER_NORESTART) {
214 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215 alarmtimer_enqueue(base, alarm);
216 ret = HRTIMER_RESTART;
217 }
218 spin_unlock_irqrestore(&base->lock, flags);
219
220 trace_alarmtimer_fired(alarm, base->gettime());
221 return ret;
222
223 }
224
alarm_expires_remaining(const struct alarm * alarm)225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227 struct alarm_base *base = &alarm_bases[alarm->type];
228 return ktime_sub(alarm->node.expires, base->gettime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
alarmtimer_suspend(struct device * dev)242 static int alarmtimer_suspend(struct device *dev)
243 {
244 ktime_t min, now, expires;
245 int i, ret, type;
246 struct rtc_device *rtc;
247 unsigned long flags;
248 struct rtc_time tm;
249
250 spin_lock_irqsave(&freezer_delta_lock, flags);
251 min = freezer_delta;
252 expires = freezer_expires;
253 type = freezer_alarmtype;
254 freezer_delta = 0;
255 spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257 rtc = alarmtimer_get_rtcdev();
258 /* If we have no rtcdev, just return */
259 if (!rtc)
260 return 0;
261
262 /* Find the soonest timer to expire*/
263 for (i = 0; i < ALARM_NUMTYPE; i++) {
264 struct alarm_base *base = &alarm_bases[i];
265 struct timerqueue_node *next;
266 ktime_t delta;
267
268 spin_lock_irqsave(&base->lock, flags);
269 next = timerqueue_getnext(&base->timerqueue);
270 spin_unlock_irqrestore(&base->lock, flags);
271 if (!next)
272 continue;
273 delta = ktime_sub(next->expires, base->gettime());
274 if (!min || (delta < min)) {
275 expires = next->expires;
276 min = delta;
277 type = i;
278 }
279 }
280 if (min == 0)
281 return 0;
282
283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
285 return -EBUSY;
286 }
287
288 trace_alarmtimer_suspend(expires, type);
289
290 /* Setup an rtc timer to fire that far in the future */
291 rtc_timer_cancel(rtc, &rtctimer);
292 rtc_read_time(rtc, &tm);
293 now = rtc_tm_to_ktime(tm);
294 now = ktime_add(now, min);
295
296 /* Set alarm, if in the past reject suspend briefly to handle */
297 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298 if (ret < 0)
299 __pm_wakeup_event(ws, MSEC_PER_SEC);
300 return ret;
301 }
302
alarmtimer_resume(struct device * dev)303 static int alarmtimer_resume(struct device *dev)
304 {
305 struct rtc_device *rtc;
306
307 rtc = alarmtimer_get_rtcdev();
308 if (rtc)
309 rtc_timer_cancel(rtc, &rtctimer);
310 return 0;
311 }
312
313 #else
alarmtimer_suspend(struct device * dev)314 static int alarmtimer_suspend(struct device *dev)
315 {
316 return 0;
317 }
318
alarmtimer_resume(struct device * dev)319 static int alarmtimer_resume(struct device *dev)
320 {
321 return 0;
322 }
323 #endif
324
325 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328 {
329 timerqueue_init(&alarm->node);
330 alarm->timer.function = alarmtimer_fired;
331 alarm->function = function;
332 alarm->type = type;
333 alarm->state = ALARMTIMER_STATE_INACTIVE;
334 }
335
336 /**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344 {
345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346 HRTIMER_MODE_ABS);
347 __alarm_init(alarm, type, function);
348 }
349 EXPORT_SYMBOL_GPL(alarm_init);
350
351 /**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
355 */
alarm_start(struct alarm * alarm,ktime_t start)356 void alarm_start(struct alarm *alarm, ktime_t start)
357 {
358 struct alarm_base *base = &alarm_bases[alarm->type];
359 unsigned long flags;
360
361 spin_lock_irqsave(&base->lock, flags);
362 alarm->node.expires = start;
363 alarmtimer_enqueue(base, alarm);
364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365 spin_unlock_irqrestore(&base->lock, flags);
366
367 trace_alarmtimer_start(alarm, base->gettime());
368 }
369 EXPORT_SYMBOL_GPL(alarm_start);
370
371 /**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
alarm_start_relative(struct alarm * alarm,ktime_t start)376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
377 {
378 struct alarm_base *base = &alarm_bases[alarm->type];
379
380 start = ktime_add_safe(start, base->gettime());
381 alarm_start(alarm, start);
382 }
383 EXPORT_SYMBOL_GPL(alarm_start_relative);
384
alarm_restart(struct alarm * alarm)385 void alarm_restart(struct alarm *alarm)
386 {
387 struct alarm_base *base = &alarm_bases[alarm->type];
388 unsigned long flags;
389
390 spin_lock_irqsave(&base->lock, flags);
391 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392 hrtimer_restart(&alarm->timer);
393 alarmtimer_enqueue(base, alarm);
394 spin_unlock_irqrestore(&base->lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(alarm_restart);
397
398 /**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
alarm_try_to_cancel(struct alarm * alarm)405 int alarm_try_to_cancel(struct alarm *alarm)
406 {
407 struct alarm_base *base = &alarm_bases[alarm->type];
408 unsigned long flags;
409 int ret;
410
411 spin_lock_irqsave(&base->lock, flags);
412 ret = hrtimer_try_to_cancel(&alarm->timer);
413 if (ret >= 0)
414 alarmtimer_dequeue(base, alarm);
415 spin_unlock_irqrestore(&base->lock, flags);
416
417 trace_alarmtimer_cancel(alarm, base->gettime());
418 return ret;
419 }
420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423 /**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
alarm_cancel(struct alarm * alarm)429 int alarm_cancel(struct alarm *alarm)
430 {
431 for (;;) {
432 int ret = alarm_try_to_cancel(alarm);
433 if (ret >= 0)
434 return ret;
435 hrtimer_cancel_wait_running(&alarm->timer);
436 }
437 }
438 EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442 {
443 u64 overrun = 1;
444 ktime_t delta;
445
446 delta = ktime_sub(now, alarm->node.expires);
447
448 if (delta < 0)
449 return 0;
450
451 if (unlikely(delta >= interval)) {
452 s64 incr = ktime_to_ns(interval);
453
454 overrun = ktime_divns(delta, incr);
455
456 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457 incr*overrun);
458
459 if (alarm->node.expires > now)
460 return overrun;
461 /*
462 * This (and the ktime_add() below) is the
463 * correction for exact:
464 */
465 overrun++;
466 }
467
468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469 return overrun;
470 }
471 EXPORT_SYMBOL_GPL(alarm_forward);
472
alarm_forward_now(struct alarm * alarm,ktime_t interval)473 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474 {
475 struct alarm_base *base = &alarm_bases[alarm->type];
476
477 return alarm_forward(alarm, base->gettime(), interval);
478 }
479 EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481 #ifdef CONFIG_POSIX_TIMERS
482
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)483 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484 {
485 struct alarm_base *base;
486 unsigned long flags;
487 ktime_t delta;
488
489 switch(type) {
490 case ALARM_REALTIME:
491 base = &alarm_bases[ALARM_REALTIME];
492 type = ALARM_REALTIME_FREEZER;
493 break;
494 case ALARM_BOOTTIME:
495 base = &alarm_bases[ALARM_BOOTTIME];
496 type = ALARM_BOOTTIME_FREEZER;
497 break;
498 default:
499 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500 return;
501 }
502
503 delta = ktime_sub(absexp, base->gettime());
504
505 spin_lock_irqsave(&freezer_delta_lock, flags);
506 if (!freezer_delta || (delta < freezer_delta)) {
507 freezer_delta = delta;
508 freezer_expires = absexp;
509 freezer_alarmtype = type;
510 }
511 spin_unlock_irqrestore(&freezer_delta_lock, flags);
512 }
513
514 /**
515 * clock2alarm - helper that converts from clockid to alarmtypes
516 * @clockid: clockid.
517 */
clock2alarm(clockid_t clockid)518 static enum alarmtimer_type clock2alarm(clockid_t clockid)
519 {
520 if (clockid == CLOCK_REALTIME_ALARM)
521 return ALARM_REALTIME;
522 if (clockid == CLOCK_BOOTTIME_ALARM)
523 return ALARM_BOOTTIME;
524 return -1;
525 }
526
527 /**
528 * alarm_handle_timer - Callback for posix timers
529 * @alarm: alarm that fired
530 *
531 * Posix timer callback for expired alarm timers.
532 */
alarm_handle_timer(struct alarm * alarm,ktime_t now)533 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
534 ktime_t now)
535 {
536 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
537 it.alarm.alarmtimer);
538 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
539 unsigned long flags;
540 int si_private = 0;
541
542 spin_lock_irqsave(&ptr->it_lock, flags);
543
544 ptr->it_active = 0;
545 if (ptr->it_interval)
546 si_private = ++ptr->it_requeue_pending;
547
548 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
549 /*
550 * Handle ignored signals and rearm the timer. This will go
551 * away once we handle ignored signals proper.
552 */
553 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
554 ++ptr->it_requeue_pending;
555 ptr->it_active = 1;
556 result = ALARMTIMER_RESTART;
557 }
558 spin_unlock_irqrestore(&ptr->it_lock, flags);
559
560 return result;
561 }
562
563 /**
564 * alarm_timer_rearm - Posix timer callback for rearming timer
565 * @timr: Pointer to the posixtimer data struct
566 */
alarm_timer_rearm(struct k_itimer * timr)567 static void alarm_timer_rearm(struct k_itimer *timr)
568 {
569 struct alarm *alarm = &timr->it.alarm.alarmtimer;
570
571 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
572 alarm_start(alarm, alarm->node.expires);
573 }
574
575 /**
576 * alarm_timer_forward - Posix timer callback for forwarding timer
577 * @timr: Pointer to the posixtimer data struct
578 * @now: Current time to forward the timer against
579 */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)580 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
581 {
582 struct alarm *alarm = &timr->it.alarm.alarmtimer;
583
584 return alarm_forward(alarm, timr->it_interval, now);
585 }
586
587 /**
588 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
589 * @timr: Pointer to the posixtimer data struct
590 * @now: Current time to calculate against
591 */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)592 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
593 {
594 struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596 return ktime_sub(alarm->node.expires, now);
597 }
598
599 /**
600 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
601 * @timr: Pointer to the posixtimer data struct
602 */
alarm_timer_try_to_cancel(struct k_itimer * timr)603 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
604 {
605 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
606 }
607
608 /**
609 * alarm_timer_wait_running - Posix timer callback to wait for a timer
610 * @timr: Pointer to the posixtimer data struct
611 *
612 * Called from the core code when timer cancel detected that the callback
613 * is running. @timr is unlocked and rcu read lock is held to prevent it
614 * from being freed.
615 */
alarm_timer_wait_running(struct k_itimer * timr)616 static void alarm_timer_wait_running(struct k_itimer *timr)
617 {
618 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
619 }
620
621 /**
622 * alarm_timer_arm - Posix timer callback to arm a timer
623 * @timr: Pointer to the posixtimer data struct
624 * @expires: The new expiry time
625 * @absolute: Expiry value is absolute time
626 * @sigev_none: Posix timer does not deliver signals
627 */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)628 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
629 bool absolute, bool sigev_none)
630 {
631 struct alarm *alarm = &timr->it.alarm.alarmtimer;
632 struct alarm_base *base = &alarm_bases[alarm->type];
633
634 if (!absolute)
635 expires = ktime_add_safe(expires, base->gettime());
636 if (sigev_none)
637 alarm->node.expires = expires;
638 else
639 alarm_start(&timr->it.alarm.alarmtimer, expires);
640 }
641
642 /**
643 * alarm_clock_getres - posix getres interface
644 * @which_clock: clockid
645 * @tp: timespec to fill
646 *
647 * Returns the granularity of underlying alarm base clock
648 */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)649 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
650 {
651 if (!alarmtimer_get_rtcdev())
652 return -EINVAL;
653
654 tp->tv_sec = 0;
655 tp->tv_nsec = hrtimer_resolution;
656 return 0;
657 }
658
659 /**
660 * alarm_clock_get - posix clock_get interface
661 * @which_clock: clockid
662 * @tp: timespec to fill.
663 *
664 * Provides the underlying alarm base time.
665 */
alarm_clock_get(clockid_t which_clock,struct timespec64 * tp)666 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
667 {
668 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
669
670 if (!alarmtimer_get_rtcdev())
671 return -EINVAL;
672
673 *tp = ktime_to_timespec64(base->gettime());
674 return 0;
675 }
676
677 /**
678 * alarm_timer_create - posix timer_create interface
679 * @new_timer: k_itimer pointer to manage
680 *
681 * Initializes the k_itimer structure.
682 */
alarm_timer_create(struct k_itimer * new_timer)683 static int alarm_timer_create(struct k_itimer *new_timer)
684 {
685 enum alarmtimer_type type;
686
687 if (!alarmtimer_get_rtcdev())
688 return -EOPNOTSUPP;
689
690 if (!capable(CAP_WAKE_ALARM))
691 return -EPERM;
692
693 type = clock2alarm(new_timer->it_clock);
694 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
695 return 0;
696 }
697
698 /**
699 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
700 * @alarm: ptr to alarm that fired
701 *
702 * Wakes up the task that set the alarmtimer
703 */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)704 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
705 ktime_t now)
706 {
707 struct task_struct *task = (struct task_struct *)alarm->data;
708
709 alarm->data = NULL;
710 if (task)
711 wake_up_process(task);
712 return ALARMTIMER_NORESTART;
713 }
714
715 /**
716 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
717 * @alarm: ptr to alarmtimer
718 * @absexp: absolute expiration time
719 *
720 * Sets the alarm timer and sleeps until it is fired or interrupted.
721 */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)722 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
723 enum alarmtimer_type type)
724 {
725 struct restart_block *restart;
726 alarm->data = (void *)current;
727 do {
728 set_current_state(TASK_INTERRUPTIBLE);
729 alarm_start(alarm, absexp);
730 if (likely(alarm->data))
731 schedule();
732
733 alarm_cancel(alarm);
734 } while (alarm->data && !signal_pending(current));
735
736 __set_current_state(TASK_RUNNING);
737
738 destroy_hrtimer_on_stack(&alarm->timer);
739
740 if (!alarm->data)
741 return 0;
742
743 if (freezing(current))
744 alarmtimer_freezerset(absexp, type);
745 restart = ¤t->restart_block;
746 if (restart->nanosleep.type != TT_NONE) {
747 struct timespec64 rmt;
748 ktime_t rem;
749
750 rem = ktime_sub(absexp, alarm_bases[type].gettime());
751
752 if (rem <= 0)
753 return 0;
754 rmt = ktime_to_timespec64(rem);
755
756 return nanosleep_copyout(restart, &rmt);
757 }
758 return -ERESTART_RESTARTBLOCK;
759 }
760
761 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))762 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
763 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
764 {
765 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
766 HRTIMER_MODE_ABS);
767 __alarm_init(alarm, type, function);
768 }
769
770 /**
771 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
772 * @restart: ptr to restart block
773 *
774 * Handles restarted clock_nanosleep calls
775 */
alarm_timer_nsleep_restart(struct restart_block * restart)776 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
777 {
778 enum alarmtimer_type type = restart->nanosleep.clockid;
779 ktime_t exp = restart->nanosleep.expires;
780 struct alarm alarm;
781
782 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
783
784 return alarmtimer_do_nsleep(&alarm, exp, type);
785 }
786
787 /**
788 * alarm_timer_nsleep - alarmtimer nanosleep
789 * @which_clock: clockid
790 * @flags: determins abstime or relative
791 * @tsreq: requested sleep time (abs or rel)
792 * @rmtp: remaining sleep time saved
793 *
794 * Handles clock_nanosleep calls against _ALARM clockids
795 */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)796 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
797 const struct timespec64 *tsreq)
798 {
799 enum alarmtimer_type type = clock2alarm(which_clock);
800 struct restart_block *restart = ¤t->restart_block;
801 struct alarm alarm;
802 ktime_t exp;
803 int ret = 0;
804
805 if (!alarmtimer_get_rtcdev())
806 return -EOPNOTSUPP;
807
808 if (flags & ~TIMER_ABSTIME)
809 return -EINVAL;
810
811 if (!capable(CAP_WAKE_ALARM))
812 return -EPERM;
813
814 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
815
816 exp = timespec64_to_ktime(*tsreq);
817 /* Convert (if necessary) to absolute time */
818 if (flags != TIMER_ABSTIME) {
819 ktime_t now = alarm_bases[type].gettime();
820
821 exp = ktime_add_safe(now, exp);
822 }
823
824 ret = alarmtimer_do_nsleep(&alarm, exp, type);
825 if (ret != -ERESTART_RESTARTBLOCK)
826 return ret;
827
828 /* abs timers don't set remaining time or restart */
829 if (flags == TIMER_ABSTIME)
830 return -ERESTARTNOHAND;
831
832 restart->fn = alarm_timer_nsleep_restart;
833 restart->nanosleep.clockid = type;
834 restart->nanosleep.expires = exp;
835 return ret;
836 }
837
838 const struct k_clock alarm_clock = {
839 .clock_getres = alarm_clock_getres,
840 .clock_get = alarm_clock_get,
841 .timer_create = alarm_timer_create,
842 .timer_set = common_timer_set,
843 .timer_del = common_timer_del,
844 .timer_get = common_timer_get,
845 .timer_arm = alarm_timer_arm,
846 .timer_rearm = alarm_timer_rearm,
847 .timer_forward = alarm_timer_forward,
848 .timer_remaining = alarm_timer_remaining,
849 .timer_try_to_cancel = alarm_timer_try_to_cancel,
850 .timer_wait_running = alarm_timer_wait_running,
851 .nsleep = alarm_timer_nsleep,
852 };
853 #endif /* CONFIG_POSIX_TIMERS */
854
855
856 /* Suspend hook structures */
857 static const struct dev_pm_ops alarmtimer_pm_ops = {
858 .suspend = alarmtimer_suspend,
859 .resume = alarmtimer_resume,
860 };
861
862 static struct platform_driver alarmtimer_driver = {
863 .driver = {
864 .name = "alarmtimer",
865 .pm = &alarmtimer_pm_ops,
866 }
867 };
868
869 /**
870 * alarmtimer_init - Initialize alarm timer code
871 *
872 * This function initializes the alarm bases and registers
873 * the posix clock ids.
874 */
alarmtimer_init(void)875 static int __init alarmtimer_init(void)
876 {
877 struct platform_device *pdev;
878 int error = 0;
879 int i;
880
881 alarmtimer_rtc_timer_init();
882
883 /* Initialize alarm bases */
884 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
885 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
886 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
887 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
888 for (i = 0; i < ALARM_NUMTYPE; i++) {
889 timerqueue_init_head(&alarm_bases[i].timerqueue);
890 spin_lock_init(&alarm_bases[i].lock);
891 }
892
893 error = alarmtimer_rtc_interface_setup();
894 if (error)
895 return error;
896
897 error = platform_driver_register(&alarmtimer_driver);
898 if (error)
899 goto out_if;
900
901 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
902 if (IS_ERR(pdev)) {
903 error = PTR_ERR(pdev);
904 goto out_drv;
905 }
906 return 0;
907
908 out_drv:
909 platform_driver_unregister(&alarmtimer_driver);
910 out_if:
911 alarmtimer_rtc_interface_remove();
912 return error;
913 }
914 device_initcall(alarmtimer_init);
915