1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151
early_init_on_alloc(char * buf)152 static int __init early_init_on_alloc(char *buf)
153 {
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169
early_init_on_free(char * buf)170 static int __init early_init_on_free(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187
188 /*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
get_pcppage_migratetype(struct page * page)196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 return page->index;
199 }
200
set_pcppage_migratetype(struct page * page,int migratetype)201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 page->index = migratetype;
204 }
205
206 #ifdef CONFIG_PM_SLEEP
207 /*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217 static gfp_t saved_gfp_mask;
218
pm_restore_gfp_mask(void)219 void pm_restore_gfp_mask(void)
220 {
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226 }
227
pm_restrict_gfp_mask(void)228 void pm_restrict_gfp_mask(void)
229 {
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235
pm_suspended_storage(void)236 bool pm_suspended_storage(void)
237 {
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247
248 static void __free_pages_ok(struct page *page, unsigned int order);
249
250 /*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
273 };
274
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
290 };
291
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
303 };
304
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
314 };
315
316 /*
317 * Try to keep at least this much lowmem free. Do not allow normal
318 * allocations below this point, only high priority ones. Automatically
319 * tuned according to the amount of memory in the system.
320 */
321 int min_free_kbytes = 1024;
322 int user_min_free_kbytes = -1;
323 #ifdef CONFIG_DISCONTIGMEM
324 /*
325 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
326 * are not on separate NUMA nodes. Functionally this works but with
327 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
328 * quite small. By default, do not boost watermarks on discontigmem as in
329 * many cases very high-order allocations like THP are likely to be
330 * unsupported and the premature reclaim offsets the advantage of long-term
331 * fragmentation avoidance.
332 */
333 int watermark_boost_factor __read_mostly;
334 #else
335 int watermark_boost_factor __read_mostly = 15000;
336 #endif
337 int watermark_scale_factor = 10;
338
339 /*
340 * Extra memory for the system to try freeing. Used to temporarily
341 * free memory, to make space for new workloads. Anyone can allocate
342 * down to the min watermarks controlled by min_free_kbytes above.
343 */
344 int extra_free_kbytes = 0;
345
346 static unsigned long nr_kernel_pages __initdata;
347 static unsigned long nr_all_pages __initdata;
348 static unsigned long dma_reserve __initdata;
349
350 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long required_kernelcore __initdata;
354 static unsigned long required_kernelcore_percent __initdata;
355 static unsigned long required_movablecore __initdata;
356 static unsigned long required_movablecore_percent __initdata;
357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358 static bool mirrored_kernelcore __meminitdata;
359
360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361 int movable_zone;
362 EXPORT_SYMBOL(movable_zone);
363 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
364
365 #if MAX_NUMNODES > 1
366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367 unsigned int nr_online_nodes __read_mostly = 1;
368 EXPORT_SYMBOL(nr_node_ids);
369 EXPORT_SYMBOL(nr_online_nodes);
370 #endif
371
372 int page_group_by_mobility_disabled __read_mostly;
373
374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375 /*
376 * During boot we initialize deferred pages on-demand, as needed, but once
377 * page_alloc_init_late() has finished, the deferred pages are all initialized,
378 * and we can permanently disable that path.
379 */
380 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381
382 /*
383 * Calling kasan_free_pages() only after deferred memory initialization
384 * has completed. Poisoning pages during deferred memory init will greatly
385 * lengthen the process and cause problem in large memory systems as the
386 * deferred pages initialization is done with interrupt disabled.
387 *
388 * Assuming that there will be no reference to those newly initialized
389 * pages before they are ever allocated, this should have no effect on
390 * KASAN memory tracking as the poison will be properly inserted at page
391 * allocation time. The only corner case is when pages are allocated by
392 * on-demand allocation and then freed again before the deferred pages
393 * initialization is done, but this is not likely to happen.
394 */
kasan_free_nondeferred_pages(struct page * page,int order)395 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
396 {
397 if (!static_branch_unlikely(&deferred_pages))
398 kasan_free_pages(page, order);
399 }
400
401 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)402 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
403 {
404 int nid = early_pfn_to_nid(pfn);
405
406 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
407 return true;
408
409 return false;
410 }
411
412 /*
413 * Returns true when the remaining initialisation should be deferred until
414 * later in the boot cycle when it can be parallelised.
415 */
416 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)417 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
418 {
419 static unsigned long prev_end_pfn, nr_initialised;
420
421 /*
422 * prev_end_pfn static that contains the end of previous zone
423 * No need to protect because called very early in boot before smp_init.
424 */
425 if (prev_end_pfn != end_pfn) {
426 prev_end_pfn = end_pfn;
427 nr_initialised = 0;
428 }
429
430 /* Always populate low zones for address-constrained allocations */
431 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
432 return false;
433
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
447 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
448
early_page_uninitialised(unsigned long pfn)449 static inline bool early_page_uninitialised(unsigned long pfn)
450 {
451 return false;
452 }
453
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)454 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
455 {
456 return false;
457 }
458 #endif
459
460 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)461 static inline unsigned long *get_pageblock_bitmap(struct page *page,
462 unsigned long pfn)
463 {
464 #ifdef CONFIG_SPARSEMEM
465 return section_to_usemap(__pfn_to_section(pfn));
466 #else
467 return page_zone(page)->pageblock_flags;
468 #endif /* CONFIG_SPARSEMEM */
469 }
470
pfn_to_bitidx(struct page * page,unsigned long pfn)471 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
472 {
473 #ifdef CONFIG_SPARSEMEM
474 pfn &= (PAGES_PER_SECTION-1);
475 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
476 #else
477 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
478 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
479 #endif /* CONFIG_SPARSEMEM */
480 }
481
482 /**
483 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
484 * @page: The page within the block of interest
485 * @pfn: The target page frame number
486 * @end_bitidx: The last bit of interest to retrieve
487 * @mask: mask of bits that the caller is interested in
488 *
489 * Return: pageblock_bits flags
490 */
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)491 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
492 unsigned long pfn,
493 unsigned long end_bitidx,
494 unsigned long mask)
495 {
496 unsigned long *bitmap;
497 unsigned long bitidx, word_bitidx;
498 unsigned long word;
499
500 bitmap = get_pageblock_bitmap(page, pfn);
501 bitidx = pfn_to_bitidx(page, pfn);
502 word_bitidx = bitidx / BITS_PER_LONG;
503 bitidx &= (BITS_PER_LONG-1);
504
505 word = bitmap[word_bitidx];
506 bitidx += end_bitidx;
507 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
508 }
509
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)510 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
511 unsigned long end_bitidx,
512 unsigned long mask)
513 {
514 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
515 }
516
get_pfnblock_migratetype(struct page * page,unsigned long pfn)517 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
518 {
519 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
520 }
521
522 /**
523 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
524 * @page: The page within the block of interest
525 * @flags: The flags to set
526 * @pfn: The target page frame number
527 * @end_bitidx: The last bit of interest
528 * @mask: mask of bits that the caller is interested in
529 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)530 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
531 unsigned long pfn,
532 unsigned long end_bitidx,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 bitidx += end_bitidx;
550 mask <<= (BITS_PER_LONG - bitidx - 1);
551 flags <<= (BITS_PER_LONG - bitidx - 1);
552
553 word = READ_ONCE(bitmap[word_bitidx]);
554 for (;;) {
555 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
556 if (word == old_word)
557 break;
558 word = old_word;
559 }
560 }
561
set_pageblock_migratetype(struct page * page,int migratetype)562 void set_pageblock_migratetype(struct page *page, int migratetype)
563 {
564 if (unlikely(page_group_by_mobility_disabled &&
565 migratetype < MIGRATE_PCPTYPES))
566 migratetype = MIGRATE_UNMOVABLE;
567
568 set_pageblock_flags_group(page, (unsigned long)migratetype,
569 PB_migrate, PB_migrate_end);
570 }
571
572 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)573 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
574 {
575 int ret = 0;
576 unsigned seq;
577 unsigned long pfn = page_to_pfn(page);
578 unsigned long sp, start_pfn;
579
580 do {
581 seq = zone_span_seqbegin(zone);
582 start_pfn = zone->zone_start_pfn;
583 sp = zone->spanned_pages;
584 if (!zone_spans_pfn(zone, pfn))
585 ret = 1;
586 } while (zone_span_seqretry(zone, seq));
587
588 if (ret)
589 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
590 pfn, zone_to_nid(zone), zone->name,
591 start_pfn, start_pfn + sp);
592
593 return ret;
594 }
595
page_is_consistent(struct zone * zone,struct page * page)596 static int page_is_consistent(struct zone *zone, struct page *page)
597 {
598 if (!pfn_valid_within(page_to_pfn(page)))
599 return 0;
600 if (zone != page_zone(page))
601 return 0;
602
603 return 1;
604 }
605 /*
606 * Temporary debugging check for pages not lying within a given zone.
607 */
bad_range(struct zone * zone,struct page * page)608 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
609 {
610 if (page_outside_zone_boundaries(zone, page))
611 return 1;
612 if (!page_is_consistent(zone, page))
613 return 1;
614
615 return 0;
616 }
617 #else
bad_range(struct zone * zone,struct page * page)618 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 {
620 return 0;
621 }
622 #endif
623
bad_page(struct page * page,const char * reason,unsigned long bad_flags)624 static void bad_page(struct page *page, const char *reason,
625 unsigned long bad_flags)
626 {
627 static unsigned long resume;
628 static unsigned long nr_shown;
629 static unsigned long nr_unshown;
630
631 /*
632 * Allow a burst of 60 reports, then keep quiet for that minute;
633 * or allow a steady drip of one report per second.
634 */
635 if (nr_shown == 60) {
636 if (time_before(jiffies, resume)) {
637 nr_unshown++;
638 goto out;
639 }
640 if (nr_unshown) {
641 pr_alert(
642 "BUG: Bad page state: %lu messages suppressed\n",
643 nr_unshown);
644 nr_unshown = 0;
645 }
646 nr_shown = 0;
647 }
648 if (nr_shown++ == 0)
649 resume = jiffies + 60 * HZ;
650
651 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
652 current->comm, page_to_pfn(page));
653 __dump_page(page, reason);
654 bad_flags &= page->flags;
655 if (bad_flags)
656 pr_alert("bad because of flags: %#lx(%pGp)\n",
657 bad_flags, &bad_flags);
658 dump_page_owner(page);
659
660 print_modules();
661 dump_stack();
662 out:
663 /* Leave bad fields for debug, except PageBuddy could make trouble */
664 page_mapcount_reset(page); /* remove PageBuddy */
665 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
666 }
667
668 /*
669 * Higher-order pages are called "compound pages". They are structured thusly:
670 *
671 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
672 *
673 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
674 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
675 *
676 * The first tail page's ->compound_dtor holds the offset in array of compound
677 * page destructors. See compound_page_dtors.
678 *
679 * The first tail page's ->compound_order holds the order of allocation.
680 * This usage means that zero-order pages may not be compound.
681 */
682
free_compound_page(struct page * page)683 void free_compound_page(struct page *page)
684 {
685 mem_cgroup_uncharge(page);
686 __free_pages_ok(page, compound_order(page));
687 }
688
prep_compound_page(struct page * page,unsigned int order)689 void prep_compound_page(struct page *page, unsigned int order)
690 {
691 int i;
692 int nr_pages = 1 << order;
693
694 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
695 set_compound_order(page, order);
696 __SetPageHead(page);
697 for (i = 1; i < nr_pages; i++) {
698 struct page *p = page + i;
699 set_page_count(p, 0);
700 p->mapping = TAIL_MAPPING;
701 set_compound_head(p, page);
702 }
703 atomic_set(compound_mapcount_ptr(page), -1);
704 }
705
706 #ifdef CONFIG_DEBUG_PAGEALLOC
707 unsigned int _debug_guardpage_minorder;
708
709 bool _debug_pagealloc_enabled_early __read_mostly
710 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
711 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
712 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
713 EXPORT_SYMBOL(_debug_pagealloc_enabled);
714
715 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
716
early_debug_pagealloc(char * buf)717 static int __init early_debug_pagealloc(char *buf)
718 {
719 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
720 }
721 early_param("debug_pagealloc", early_debug_pagealloc);
722
init_debug_pagealloc(void)723 void init_debug_pagealloc(void)
724 {
725 if (!debug_pagealloc_enabled())
726 return;
727
728 static_branch_enable(&_debug_pagealloc_enabled);
729
730 if (!debug_guardpage_minorder())
731 return;
732
733 static_branch_enable(&_debug_guardpage_enabled);
734 }
735
debug_guardpage_minorder_setup(char * buf)736 static int __init debug_guardpage_minorder_setup(char *buf)
737 {
738 unsigned long res;
739
740 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
741 pr_err("Bad debug_guardpage_minorder value\n");
742 return 0;
743 }
744 _debug_guardpage_minorder = res;
745 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
746 return 0;
747 }
748 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
749
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)750 static inline bool set_page_guard(struct zone *zone, struct page *page,
751 unsigned int order, int migratetype)
752 {
753 if (!debug_guardpage_enabled())
754 return false;
755
756 if (order >= debug_guardpage_minorder())
757 return false;
758
759 __SetPageGuard(page);
760 INIT_LIST_HEAD(&page->lru);
761 set_page_private(page, order);
762 /* Guard pages are not available for any usage */
763 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
764
765 return true;
766 }
767
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)768 static inline void clear_page_guard(struct zone *zone, struct page *page,
769 unsigned int order, int migratetype)
770 {
771 if (!debug_guardpage_enabled())
772 return;
773
774 __ClearPageGuard(page);
775
776 set_page_private(page, 0);
777 if (!is_migrate_isolate(migratetype))
778 __mod_zone_freepage_state(zone, (1 << order), migratetype);
779 }
780 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)781 static inline bool set_page_guard(struct zone *zone, struct page *page,
782 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)783 static inline void clear_page_guard(struct zone *zone, struct page *page,
784 unsigned int order, int migratetype) {}
785 #endif
786
set_page_order(struct page * page,unsigned int order)787 static inline void set_page_order(struct page *page, unsigned int order)
788 {
789 set_page_private(page, order);
790 __SetPageBuddy(page);
791 }
792
793 /*
794 * This function checks whether a page is free && is the buddy
795 * we can coalesce a page and its buddy if
796 * (a) the buddy is not in a hole (check before calling!) &&
797 * (b) the buddy is in the buddy system &&
798 * (c) a page and its buddy have the same order &&
799 * (d) a page and its buddy are in the same zone.
800 *
801 * For recording whether a page is in the buddy system, we set PageBuddy.
802 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
803 *
804 * For recording page's order, we use page_private(page).
805 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)806 static inline int page_is_buddy(struct page *page, struct page *buddy,
807 unsigned int order)
808 {
809 if (page_is_guard(buddy) && page_order(buddy) == order) {
810 if (page_zone_id(page) != page_zone_id(buddy))
811 return 0;
812
813 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
814
815 return 1;
816 }
817
818 if (PageBuddy(buddy) && page_order(buddy) == order) {
819 /*
820 * zone check is done late to avoid uselessly
821 * calculating zone/node ids for pages that could
822 * never merge.
823 */
824 if (page_zone_id(page) != page_zone_id(buddy))
825 return 0;
826
827 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
828
829 return 1;
830 }
831 return 0;
832 }
833
834 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)835 static inline struct capture_control *task_capc(struct zone *zone)
836 {
837 struct capture_control *capc = current->capture_control;
838
839 return capc &&
840 !(current->flags & PF_KTHREAD) &&
841 !capc->page &&
842 capc->cc->zone == zone &&
843 capc->cc->direct_compaction ? capc : NULL;
844 }
845
846 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)847 compaction_capture(struct capture_control *capc, struct page *page,
848 int order, int migratetype)
849 {
850 if (!capc || order != capc->cc->order)
851 return false;
852
853 /* Do not accidentally pollute CMA or isolated regions*/
854 if (is_migrate_cma(migratetype) ||
855 is_migrate_isolate(migratetype))
856 return false;
857
858 /*
859 * Do not let lower order allocations polluate a movable pageblock.
860 * This might let an unmovable request use a reclaimable pageblock
861 * and vice-versa but no more than normal fallback logic which can
862 * have trouble finding a high-order free page.
863 */
864 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
865 return false;
866
867 capc->page = page;
868 return true;
869 }
870
871 #else
task_capc(struct zone * zone)872 static inline struct capture_control *task_capc(struct zone *zone)
873 {
874 return NULL;
875 }
876
877 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)878 compaction_capture(struct capture_control *capc, struct page *page,
879 int order, int migratetype)
880 {
881 return false;
882 }
883 #endif /* CONFIG_COMPACTION */
884
885 /*
886 * Freeing function for a buddy system allocator.
887 *
888 * The concept of a buddy system is to maintain direct-mapped table
889 * (containing bit values) for memory blocks of various "orders".
890 * The bottom level table contains the map for the smallest allocatable
891 * units of memory (here, pages), and each level above it describes
892 * pairs of units from the levels below, hence, "buddies".
893 * At a high level, all that happens here is marking the table entry
894 * at the bottom level available, and propagating the changes upward
895 * as necessary, plus some accounting needed to play nicely with other
896 * parts of the VM system.
897 * At each level, we keep a list of pages, which are heads of continuous
898 * free pages of length of (1 << order) and marked with PageBuddy.
899 * Page's order is recorded in page_private(page) field.
900 * So when we are allocating or freeing one, we can derive the state of the
901 * other. That is, if we allocate a small block, and both were
902 * free, the remainder of the region must be split into blocks.
903 * If a block is freed, and its buddy is also free, then this
904 * triggers coalescing into a block of larger size.
905 *
906 * -- nyc
907 */
908
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)909 static inline void __free_one_page(struct page *page,
910 unsigned long pfn,
911 struct zone *zone, unsigned int order,
912 int migratetype)
913 {
914 unsigned long combined_pfn;
915 unsigned long uninitialized_var(buddy_pfn);
916 struct page *buddy;
917 unsigned int max_order;
918 struct capture_control *capc = task_capc(zone);
919
920 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
921
922 VM_BUG_ON(!zone_is_initialized(zone));
923 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
924
925 VM_BUG_ON(migratetype == -1);
926 if (likely(!is_migrate_isolate(migratetype)))
927 __mod_zone_freepage_state(zone, 1 << order, migratetype);
928
929 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
930 VM_BUG_ON_PAGE(bad_range(zone, page), page);
931
932 continue_merging:
933 while (order < max_order - 1) {
934 if (compaction_capture(capc, page, order, migratetype)) {
935 __mod_zone_freepage_state(zone, -(1 << order),
936 migratetype);
937 return;
938 }
939 buddy_pfn = __find_buddy_pfn(pfn, order);
940 buddy = page + (buddy_pfn - pfn);
941
942 if (!pfn_valid_within(buddy_pfn))
943 goto done_merging;
944 if (!page_is_buddy(page, buddy, order))
945 goto done_merging;
946 /*
947 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
948 * merge with it and move up one order.
949 */
950 if (page_is_guard(buddy))
951 clear_page_guard(zone, buddy, order, migratetype);
952 else
953 del_page_from_free_area(buddy, &zone->free_area[order]);
954 combined_pfn = buddy_pfn & pfn;
955 page = page + (combined_pfn - pfn);
956 pfn = combined_pfn;
957 order++;
958 }
959 if (max_order < MAX_ORDER) {
960 /* If we are here, it means order is >= pageblock_order.
961 * We want to prevent merge between freepages on isolate
962 * pageblock and normal pageblock. Without this, pageblock
963 * isolation could cause incorrect freepage or CMA accounting.
964 *
965 * We don't want to hit this code for the more frequent
966 * low-order merging.
967 */
968 if (unlikely(has_isolate_pageblock(zone))) {
969 int buddy_mt;
970
971 buddy_pfn = __find_buddy_pfn(pfn, order);
972 buddy = page + (buddy_pfn - pfn);
973 buddy_mt = get_pageblock_migratetype(buddy);
974
975 if (migratetype != buddy_mt
976 && (is_migrate_isolate(migratetype) ||
977 is_migrate_isolate(buddy_mt)))
978 goto done_merging;
979 }
980 max_order++;
981 goto continue_merging;
982 }
983
984 done_merging:
985 set_page_order(page, order);
986
987 /*
988 * If this is not the largest possible page, check if the buddy
989 * of the next-highest order is free. If it is, it's possible
990 * that pages are being freed that will coalesce soon. In case,
991 * that is happening, add the free page to the tail of the list
992 * so it's less likely to be used soon and more likely to be merged
993 * as a higher order page
994 */
995 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
996 && !is_shuffle_order(order)) {
997 struct page *higher_page, *higher_buddy;
998 combined_pfn = buddy_pfn & pfn;
999 higher_page = page + (combined_pfn - pfn);
1000 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1001 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1002 if (pfn_valid_within(buddy_pfn) &&
1003 page_is_buddy(higher_page, higher_buddy, order + 1)) {
1004 add_to_free_area_tail(page, &zone->free_area[order],
1005 migratetype);
1006 return;
1007 }
1008 }
1009
1010 if (is_shuffle_order(order))
1011 add_to_free_area_random(page, &zone->free_area[order],
1012 migratetype);
1013 else
1014 add_to_free_area(page, &zone->free_area[order], migratetype);
1015
1016 }
1017
1018 /*
1019 * A bad page could be due to a number of fields. Instead of multiple branches,
1020 * try and check multiple fields with one check. The caller must do a detailed
1021 * check if necessary.
1022 */
page_expected_state(struct page * page,unsigned long check_flags)1023 static inline bool page_expected_state(struct page *page,
1024 unsigned long check_flags)
1025 {
1026 if (unlikely(atomic_read(&page->_mapcount) != -1))
1027 return false;
1028
1029 if (unlikely((unsigned long)page->mapping |
1030 page_ref_count(page) |
1031 #ifdef CONFIG_MEMCG
1032 (unsigned long)page->mem_cgroup |
1033 #endif
1034 (page->flags & check_flags)))
1035 return false;
1036
1037 return true;
1038 }
1039
free_pages_check_bad(struct page * page)1040 static void free_pages_check_bad(struct page *page)
1041 {
1042 const char *bad_reason;
1043 unsigned long bad_flags;
1044
1045 bad_reason = NULL;
1046 bad_flags = 0;
1047
1048 if (unlikely(atomic_read(&page->_mapcount) != -1))
1049 bad_reason = "nonzero mapcount";
1050 if (unlikely(page->mapping != NULL))
1051 bad_reason = "non-NULL mapping";
1052 if (unlikely(page_ref_count(page) != 0))
1053 bad_reason = "nonzero _refcount";
1054 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1055 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1056 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1057 }
1058 #ifdef CONFIG_MEMCG
1059 if (unlikely(page->mem_cgroup))
1060 bad_reason = "page still charged to cgroup";
1061 #endif
1062 bad_page(page, bad_reason, bad_flags);
1063 }
1064
free_pages_check(struct page * page)1065 static inline int free_pages_check(struct page *page)
1066 {
1067 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1068 return 0;
1069
1070 /* Something has gone sideways, find it */
1071 free_pages_check_bad(page);
1072 return 1;
1073 }
1074
free_tail_pages_check(struct page * head_page,struct page * page)1075 static int free_tail_pages_check(struct page *head_page, struct page *page)
1076 {
1077 int ret = 1;
1078
1079 /*
1080 * We rely page->lru.next never has bit 0 set, unless the page
1081 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1082 */
1083 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1084
1085 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1086 ret = 0;
1087 goto out;
1088 }
1089 switch (page - head_page) {
1090 case 1:
1091 /* the first tail page: ->mapping may be compound_mapcount() */
1092 if (unlikely(compound_mapcount(page))) {
1093 bad_page(page, "nonzero compound_mapcount", 0);
1094 goto out;
1095 }
1096 break;
1097 case 2:
1098 /*
1099 * the second tail page: ->mapping is
1100 * deferred_list.next -- ignore value.
1101 */
1102 break;
1103 default:
1104 if (page->mapping != TAIL_MAPPING) {
1105 bad_page(page, "corrupted mapping in tail page", 0);
1106 goto out;
1107 }
1108 break;
1109 }
1110 if (unlikely(!PageTail(page))) {
1111 bad_page(page, "PageTail not set", 0);
1112 goto out;
1113 }
1114 if (unlikely(compound_head(page) != head_page)) {
1115 bad_page(page, "compound_head not consistent", 0);
1116 goto out;
1117 }
1118 ret = 0;
1119 out:
1120 page->mapping = NULL;
1121 clear_compound_head(page);
1122 return ret;
1123 }
1124
kernel_init_free_pages(struct page * page,int numpages)1125 static void kernel_init_free_pages(struct page *page, int numpages)
1126 {
1127 int i;
1128
1129 for (i = 0; i < numpages; i++)
1130 clear_highpage(page + i);
1131 }
1132
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1133 static __always_inline bool free_pages_prepare(struct page *page,
1134 unsigned int order, bool check_free)
1135 {
1136 int bad = 0;
1137
1138 VM_BUG_ON_PAGE(PageTail(page), page);
1139
1140 trace_mm_page_free(page, order);
1141
1142 /*
1143 * Check tail pages before head page information is cleared to
1144 * avoid checking PageCompound for order-0 pages.
1145 */
1146 if (unlikely(order)) {
1147 bool compound = PageCompound(page);
1148 int i;
1149
1150 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1151
1152 if (compound)
1153 ClearPageDoubleMap(page);
1154 for (i = 1; i < (1 << order); i++) {
1155 if (compound)
1156 bad += free_tail_pages_check(page, page + i);
1157 if (unlikely(free_pages_check(page + i))) {
1158 bad++;
1159 continue;
1160 }
1161 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1162 }
1163 }
1164 if (PageMappingFlags(page))
1165 page->mapping = NULL;
1166 if (memcg_kmem_enabled() && PageKmemcg(page))
1167 __memcg_kmem_uncharge(page, order);
1168 if (check_free)
1169 bad += free_pages_check(page);
1170 if (bad)
1171 return false;
1172
1173 page_cpupid_reset_last(page);
1174 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1175 reset_page_owner(page, order);
1176
1177 if (!PageHighMem(page)) {
1178 debug_check_no_locks_freed(page_address(page),
1179 PAGE_SIZE << order);
1180 debug_check_no_obj_freed(page_address(page),
1181 PAGE_SIZE << order);
1182 }
1183 if (want_init_on_free())
1184 kernel_init_free_pages(page, 1 << order);
1185
1186 kernel_poison_pages(page, 1 << order, 0);
1187 /*
1188 * arch_free_page() can make the page's contents inaccessible. s390
1189 * does this. So nothing which can access the page's contents should
1190 * happen after this.
1191 */
1192 arch_free_page(page, order);
1193
1194 if (debug_pagealloc_enabled_static())
1195 kernel_map_pages(page, 1 << order, 0);
1196
1197 kasan_free_nondeferred_pages(page, order);
1198
1199 return true;
1200 }
1201
1202 #ifdef CONFIG_DEBUG_VM
1203 /*
1204 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1205 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1206 * moved from pcp lists to free lists.
1207 */
free_pcp_prepare(struct page * page)1208 static bool free_pcp_prepare(struct page *page)
1209 {
1210 return free_pages_prepare(page, 0, true);
1211 }
1212
bulkfree_pcp_prepare(struct page * page)1213 static bool bulkfree_pcp_prepare(struct page *page)
1214 {
1215 if (debug_pagealloc_enabled_static())
1216 return free_pages_check(page);
1217 else
1218 return false;
1219 }
1220 #else
1221 /*
1222 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1223 * moving from pcp lists to free list in order to reduce overhead. With
1224 * debug_pagealloc enabled, they are checked also immediately when being freed
1225 * to the pcp lists.
1226 */
free_pcp_prepare(struct page * page)1227 static bool free_pcp_prepare(struct page *page)
1228 {
1229 if (debug_pagealloc_enabled_static())
1230 return free_pages_prepare(page, 0, true);
1231 else
1232 return free_pages_prepare(page, 0, false);
1233 }
1234
bulkfree_pcp_prepare(struct page * page)1235 static bool bulkfree_pcp_prepare(struct page *page)
1236 {
1237 return free_pages_check(page);
1238 }
1239 #endif /* CONFIG_DEBUG_VM */
1240
prefetch_buddy(struct page * page)1241 static inline void prefetch_buddy(struct page *page)
1242 {
1243 unsigned long pfn = page_to_pfn(page);
1244 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1245 struct page *buddy = page + (buddy_pfn - pfn);
1246
1247 prefetch(buddy);
1248 }
1249
1250 /*
1251 * Frees a number of pages from the PCP lists
1252 * Assumes all pages on list are in same zone, and of same order.
1253 * count is the number of pages to free.
1254 *
1255 * If the zone was previously in an "all pages pinned" state then look to
1256 * see if this freeing clears that state.
1257 *
1258 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1259 * pinned" detection logic.
1260 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1261 static void free_pcppages_bulk(struct zone *zone, int count,
1262 struct per_cpu_pages *pcp)
1263 {
1264 int migratetype = 0;
1265 int batch_free = 0;
1266 int prefetch_nr = 0;
1267 bool isolated_pageblocks;
1268 struct page *page, *tmp;
1269 LIST_HEAD(head);
1270
1271 while (count) {
1272 struct list_head *list;
1273
1274 /*
1275 * Remove pages from lists in a round-robin fashion. A
1276 * batch_free count is maintained that is incremented when an
1277 * empty list is encountered. This is so more pages are freed
1278 * off fuller lists instead of spinning excessively around empty
1279 * lists
1280 */
1281 do {
1282 batch_free++;
1283 if (++migratetype == MIGRATE_PCPTYPES)
1284 migratetype = 0;
1285 list = &pcp->lists[migratetype];
1286 } while (list_empty(list));
1287
1288 /* This is the only non-empty list. Free them all. */
1289 if (batch_free == MIGRATE_PCPTYPES)
1290 batch_free = count;
1291
1292 do {
1293 page = list_last_entry(list, struct page, lru);
1294 /* must delete to avoid corrupting pcp list */
1295 list_del(&page->lru);
1296 pcp->count--;
1297
1298 if (bulkfree_pcp_prepare(page))
1299 continue;
1300
1301 list_add_tail(&page->lru, &head);
1302
1303 /*
1304 * We are going to put the page back to the global
1305 * pool, prefetch its buddy to speed up later access
1306 * under zone->lock. It is believed the overhead of
1307 * an additional test and calculating buddy_pfn here
1308 * can be offset by reduced memory latency later. To
1309 * avoid excessive prefetching due to large count, only
1310 * prefetch buddy for the first pcp->batch nr of pages.
1311 */
1312 if (prefetch_nr++ < pcp->batch)
1313 prefetch_buddy(page);
1314 } while (--count && --batch_free && !list_empty(list));
1315 }
1316
1317 spin_lock(&zone->lock);
1318 isolated_pageblocks = has_isolate_pageblock(zone);
1319
1320 /*
1321 * Use safe version since after __free_one_page(),
1322 * page->lru.next will not point to original list.
1323 */
1324 list_for_each_entry_safe(page, tmp, &head, lru) {
1325 int mt = get_pcppage_migratetype(page);
1326 /* MIGRATE_ISOLATE page should not go to pcplists */
1327 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1328 /* Pageblock could have been isolated meanwhile */
1329 if (unlikely(isolated_pageblocks))
1330 mt = get_pageblock_migratetype(page);
1331
1332 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1333 trace_mm_page_pcpu_drain(page, 0, mt);
1334 }
1335 spin_unlock(&zone->lock);
1336 }
1337
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)1338 static void free_one_page(struct zone *zone,
1339 struct page *page, unsigned long pfn,
1340 unsigned int order,
1341 int migratetype)
1342 {
1343 spin_lock(&zone->lock);
1344 if (unlikely(has_isolate_pageblock(zone) ||
1345 is_migrate_isolate(migratetype))) {
1346 migratetype = get_pfnblock_migratetype(page, pfn);
1347 }
1348 __free_one_page(page, pfn, zone, order, migratetype);
1349 spin_unlock(&zone->lock);
1350 }
1351
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1352 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1353 unsigned long zone, int nid)
1354 {
1355 mm_zero_struct_page(page);
1356 set_page_links(page, zone, nid, pfn);
1357 init_page_count(page);
1358 page_mapcount_reset(page);
1359 page_cpupid_reset_last(page);
1360 page_kasan_tag_reset(page);
1361
1362 INIT_LIST_HEAD(&page->lru);
1363 #ifdef WANT_PAGE_VIRTUAL
1364 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1365 if (!is_highmem_idx(zone))
1366 set_page_address(page, __va(pfn << PAGE_SHIFT));
1367 #endif
1368 }
1369
1370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1371 static void __meminit init_reserved_page(unsigned long pfn)
1372 {
1373 pg_data_t *pgdat;
1374 int nid, zid;
1375
1376 if (!early_page_uninitialised(pfn))
1377 return;
1378
1379 nid = early_pfn_to_nid(pfn);
1380 pgdat = NODE_DATA(nid);
1381
1382 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1383 struct zone *zone = &pgdat->node_zones[zid];
1384
1385 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1386 break;
1387 }
1388 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1389 }
1390 #else
init_reserved_page(unsigned long pfn)1391 static inline void init_reserved_page(unsigned long pfn)
1392 {
1393 }
1394 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1395
1396 /*
1397 * Initialised pages do not have PageReserved set. This function is
1398 * called for each range allocated by the bootmem allocator and
1399 * marks the pages PageReserved. The remaining valid pages are later
1400 * sent to the buddy page allocator.
1401 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1402 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1403 {
1404 unsigned long start_pfn = PFN_DOWN(start);
1405 unsigned long end_pfn = PFN_UP(end);
1406
1407 for (; start_pfn < end_pfn; start_pfn++) {
1408 if (pfn_valid(start_pfn)) {
1409 struct page *page = pfn_to_page(start_pfn);
1410
1411 init_reserved_page(start_pfn);
1412
1413 /* Avoid false-positive PageTail() */
1414 INIT_LIST_HEAD(&page->lru);
1415
1416 /*
1417 * no need for atomic set_bit because the struct
1418 * page is not visible yet so nobody should
1419 * access it yet.
1420 */
1421 __SetPageReserved(page);
1422 }
1423 }
1424 }
1425
__free_pages_ok(struct page * page,unsigned int order)1426 static void __free_pages_ok(struct page *page, unsigned int order)
1427 {
1428 unsigned long flags;
1429 int migratetype;
1430 unsigned long pfn = page_to_pfn(page);
1431
1432 if (!free_pages_prepare(page, order, true))
1433 return;
1434
1435 migratetype = get_pfnblock_migratetype(page, pfn);
1436 local_irq_save(flags);
1437 __count_vm_events(PGFREE, 1 << order);
1438 free_one_page(page_zone(page), page, pfn, order, migratetype);
1439 local_irq_restore(flags);
1440 }
1441
__free_pages_core(struct page * page,unsigned int order)1442 void __free_pages_core(struct page *page, unsigned int order)
1443 {
1444 unsigned int nr_pages = 1 << order;
1445 struct page *p = page;
1446 unsigned int loop;
1447
1448 prefetchw(p);
1449 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1450 prefetchw(p + 1);
1451 __ClearPageReserved(p);
1452 set_page_count(p, 0);
1453 }
1454 __ClearPageReserved(p);
1455 set_page_count(p, 0);
1456
1457 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1458 set_page_refcounted(page);
1459 __free_pages(page, order);
1460 }
1461
1462 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1463 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1464
1465 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1466
early_pfn_to_nid(unsigned long pfn)1467 int __meminit early_pfn_to_nid(unsigned long pfn)
1468 {
1469 static DEFINE_SPINLOCK(early_pfn_lock);
1470 int nid;
1471
1472 spin_lock(&early_pfn_lock);
1473 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1474 if (nid < 0)
1475 nid = first_online_node;
1476 spin_unlock(&early_pfn_lock);
1477
1478 return nid;
1479 }
1480 #endif
1481
1482 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1483 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1484 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1485 {
1486 int nid;
1487
1488 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1489 if (nid >= 0 && nid != node)
1490 return false;
1491 return true;
1492 }
1493
1494 #else
early_pfn_in_nid(unsigned long pfn,int node)1495 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1496 {
1497 return true;
1498 }
1499 #endif
1500
1501
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1502 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1503 unsigned int order)
1504 {
1505 if (early_page_uninitialised(pfn))
1506 return;
1507 __free_pages_core(page, order);
1508 }
1509
1510 /*
1511 * Check that the whole (or subset of) a pageblock given by the interval of
1512 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1513 * with the migration of free compaction scanner. The scanners then need to
1514 * use only pfn_valid_within() check for arches that allow holes within
1515 * pageblocks.
1516 *
1517 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1518 *
1519 * It's possible on some configurations to have a setup like node0 node1 node0
1520 * i.e. it's possible that all pages within a zones range of pages do not
1521 * belong to a single zone. We assume that a border between node0 and node1
1522 * can occur within a single pageblock, but not a node0 node1 node0
1523 * interleaving within a single pageblock. It is therefore sufficient to check
1524 * the first and last page of a pageblock and avoid checking each individual
1525 * page in a pageblock.
1526 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1527 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1528 unsigned long end_pfn, struct zone *zone)
1529 {
1530 struct page *start_page;
1531 struct page *end_page;
1532
1533 /* end_pfn is one past the range we are checking */
1534 end_pfn--;
1535
1536 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1537 return NULL;
1538
1539 start_page = pfn_to_online_page(start_pfn);
1540 if (!start_page)
1541 return NULL;
1542
1543 if (page_zone(start_page) != zone)
1544 return NULL;
1545
1546 end_page = pfn_to_page(end_pfn);
1547
1548 /* This gives a shorter code than deriving page_zone(end_page) */
1549 if (page_zone_id(start_page) != page_zone_id(end_page))
1550 return NULL;
1551
1552 return start_page;
1553 }
1554
set_zone_contiguous(struct zone * zone)1555 void set_zone_contiguous(struct zone *zone)
1556 {
1557 unsigned long block_start_pfn = zone->zone_start_pfn;
1558 unsigned long block_end_pfn;
1559
1560 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1561 for (; block_start_pfn < zone_end_pfn(zone);
1562 block_start_pfn = block_end_pfn,
1563 block_end_pfn += pageblock_nr_pages) {
1564
1565 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1566
1567 if (!__pageblock_pfn_to_page(block_start_pfn,
1568 block_end_pfn, zone))
1569 return;
1570 }
1571
1572 /* We confirm that there is no hole */
1573 zone->contiguous = true;
1574 }
1575
clear_zone_contiguous(struct zone * zone)1576 void clear_zone_contiguous(struct zone *zone)
1577 {
1578 zone->contiguous = false;
1579 }
1580
1581 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1582 static void __init deferred_free_range(unsigned long pfn,
1583 unsigned long nr_pages)
1584 {
1585 struct page *page;
1586 unsigned long i;
1587
1588 if (!nr_pages)
1589 return;
1590
1591 page = pfn_to_page(pfn);
1592
1593 /* Free a large naturally-aligned chunk if possible */
1594 if (nr_pages == pageblock_nr_pages &&
1595 (pfn & (pageblock_nr_pages - 1)) == 0) {
1596 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1597 __free_pages_core(page, pageblock_order);
1598 return;
1599 }
1600
1601 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1602 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1603 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1604 __free_pages_core(page, 0);
1605 }
1606 }
1607
1608 /* Completion tracking for deferred_init_memmap() threads */
1609 static atomic_t pgdat_init_n_undone __initdata;
1610 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1611
pgdat_init_report_one_done(void)1612 static inline void __init pgdat_init_report_one_done(void)
1613 {
1614 if (atomic_dec_and_test(&pgdat_init_n_undone))
1615 complete(&pgdat_init_all_done_comp);
1616 }
1617
1618 /*
1619 * Returns true if page needs to be initialized or freed to buddy allocator.
1620 *
1621 * First we check if pfn is valid on architectures where it is possible to have
1622 * holes within pageblock_nr_pages. On systems where it is not possible, this
1623 * function is optimized out.
1624 *
1625 * Then, we check if a current large page is valid by only checking the validity
1626 * of the head pfn.
1627 */
deferred_pfn_valid(unsigned long pfn)1628 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1629 {
1630 if (!pfn_valid_within(pfn))
1631 return false;
1632 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1633 return false;
1634 return true;
1635 }
1636
1637 /*
1638 * Free pages to buddy allocator. Try to free aligned pages in
1639 * pageblock_nr_pages sizes.
1640 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1641 static void __init deferred_free_pages(unsigned long pfn,
1642 unsigned long end_pfn)
1643 {
1644 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1645 unsigned long nr_free = 0;
1646
1647 for (; pfn < end_pfn; pfn++) {
1648 if (!deferred_pfn_valid(pfn)) {
1649 deferred_free_range(pfn - nr_free, nr_free);
1650 nr_free = 0;
1651 } else if (!(pfn & nr_pgmask)) {
1652 deferred_free_range(pfn - nr_free, nr_free);
1653 nr_free = 1;
1654 touch_nmi_watchdog();
1655 } else {
1656 nr_free++;
1657 }
1658 }
1659 /* Free the last block of pages to allocator */
1660 deferred_free_range(pfn - nr_free, nr_free);
1661 }
1662
1663 /*
1664 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1665 * by performing it only once every pageblock_nr_pages.
1666 * Return number of pages initialized.
1667 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1668 static unsigned long __init deferred_init_pages(struct zone *zone,
1669 unsigned long pfn,
1670 unsigned long end_pfn)
1671 {
1672 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1673 int nid = zone_to_nid(zone);
1674 unsigned long nr_pages = 0;
1675 int zid = zone_idx(zone);
1676 struct page *page = NULL;
1677
1678 for (; pfn < end_pfn; pfn++) {
1679 if (!deferred_pfn_valid(pfn)) {
1680 page = NULL;
1681 continue;
1682 } else if (!page || !(pfn & nr_pgmask)) {
1683 page = pfn_to_page(pfn);
1684 touch_nmi_watchdog();
1685 } else {
1686 page++;
1687 }
1688 __init_single_page(page, pfn, zid, nid);
1689 nr_pages++;
1690 }
1691 return (nr_pages);
1692 }
1693
1694 /*
1695 * This function is meant to pre-load the iterator for the zone init.
1696 * Specifically it walks through the ranges until we are caught up to the
1697 * first_init_pfn value and exits there. If we never encounter the value we
1698 * return false indicating there are no valid ranges left.
1699 */
1700 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1701 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1702 unsigned long *spfn, unsigned long *epfn,
1703 unsigned long first_init_pfn)
1704 {
1705 u64 j;
1706
1707 /*
1708 * Start out by walking through the ranges in this zone that have
1709 * already been initialized. We don't need to do anything with them
1710 * so we just need to flush them out of the system.
1711 */
1712 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1713 if (*epfn <= first_init_pfn)
1714 continue;
1715 if (*spfn < first_init_pfn)
1716 *spfn = first_init_pfn;
1717 *i = j;
1718 return true;
1719 }
1720
1721 return false;
1722 }
1723
1724 /*
1725 * Initialize and free pages. We do it in two loops: first we initialize
1726 * struct page, then free to buddy allocator, because while we are
1727 * freeing pages we can access pages that are ahead (computing buddy
1728 * page in __free_one_page()).
1729 *
1730 * In order to try and keep some memory in the cache we have the loop
1731 * broken along max page order boundaries. This way we will not cause
1732 * any issues with the buddy page computation.
1733 */
1734 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1735 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1736 unsigned long *end_pfn)
1737 {
1738 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1739 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1740 unsigned long nr_pages = 0;
1741 u64 j = *i;
1742
1743 /* First we loop through and initialize the page values */
1744 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1745 unsigned long t;
1746
1747 if (mo_pfn <= *start_pfn)
1748 break;
1749
1750 t = min(mo_pfn, *end_pfn);
1751 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1752
1753 if (mo_pfn < *end_pfn) {
1754 *start_pfn = mo_pfn;
1755 break;
1756 }
1757 }
1758
1759 /* Reset values and now loop through freeing pages as needed */
1760 swap(j, *i);
1761
1762 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1763 unsigned long t;
1764
1765 if (mo_pfn <= spfn)
1766 break;
1767
1768 t = min(mo_pfn, epfn);
1769 deferred_free_pages(spfn, t);
1770
1771 if (mo_pfn <= epfn)
1772 break;
1773 }
1774
1775 return nr_pages;
1776 }
1777
1778 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1779 static int __init deferred_init_memmap(void *data)
1780 {
1781 pg_data_t *pgdat = data;
1782 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1783 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1784 unsigned long first_init_pfn, flags;
1785 unsigned long start = jiffies;
1786 struct zone *zone;
1787 int zid;
1788 u64 i;
1789
1790 /* Bind memory initialisation thread to a local node if possible */
1791 if (!cpumask_empty(cpumask))
1792 set_cpus_allowed_ptr(current, cpumask);
1793
1794 pgdat_resize_lock(pgdat, &flags);
1795 first_init_pfn = pgdat->first_deferred_pfn;
1796 if (first_init_pfn == ULONG_MAX) {
1797 pgdat_resize_unlock(pgdat, &flags);
1798 pgdat_init_report_one_done();
1799 return 0;
1800 }
1801
1802 /* Sanity check boundaries */
1803 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1804 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1805 pgdat->first_deferred_pfn = ULONG_MAX;
1806
1807 /* Only the highest zone is deferred so find it */
1808 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1809 zone = pgdat->node_zones + zid;
1810 if (first_init_pfn < zone_end_pfn(zone))
1811 break;
1812 }
1813
1814 /* If the zone is empty somebody else may have cleared out the zone */
1815 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1816 first_init_pfn))
1817 goto zone_empty;
1818
1819 /*
1820 * Initialize and free pages in MAX_ORDER sized increments so
1821 * that we can avoid introducing any issues with the buddy
1822 * allocator.
1823 */
1824 while (spfn < epfn)
1825 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1826 zone_empty:
1827 pgdat_resize_unlock(pgdat, &flags);
1828
1829 /* Sanity check that the next zone really is unpopulated */
1830 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1831
1832 pr_info("node %d initialised, %lu pages in %ums\n",
1833 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1834
1835 pgdat_init_report_one_done();
1836 return 0;
1837 }
1838
1839 /*
1840 * If this zone has deferred pages, try to grow it by initializing enough
1841 * deferred pages to satisfy the allocation specified by order, rounded up to
1842 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1843 * of SECTION_SIZE bytes by initializing struct pages in increments of
1844 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1845 *
1846 * Return true when zone was grown, otherwise return false. We return true even
1847 * when we grow less than requested, to let the caller decide if there are
1848 * enough pages to satisfy the allocation.
1849 *
1850 * Note: We use noinline because this function is needed only during boot, and
1851 * it is called from a __ref function _deferred_grow_zone. This way we are
1852 * making sure that it is not inlined into permanent text section.
1853 */
1854 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)1855 deferred_grow_zone(struct zone *zone, unsigned int order)
1856 {
1857 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1858 pg_data_t *pgdat = zone->zone_pgdat;
1859 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1860 unsigned long spfn, epfn, flags;
1861 unsigned long nr_pages = 0;
1862 u64 i;
1863
1864 /* Only the last zone may have deferred pages */
1865 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1866 return false;
1867
1868 pgdat_resize_lock(pgdat, &flags);
1869
1870 /*
1871 * If deferred pages have been initialized while we were waiting for
1872 * the lock, return true, as the zone was grown. The caller will retry
1873 * this zone. We won't return to this function since the caller also
1874 * has this static branch.
1875 */
1876 if (!static_branch_unlikely(&deferred_pages)) {
1877 pgdat_resize_unlock(pgdat, &flags);
1878 return true;
1879 }
1880
1881 /*
1882 * If someone grew this zone while we were waiting for spinlock, return
1883 * true, as there might be enough pages already.
1884 */
1885 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1886 pgdat_resize_unlock(pgdat, &flags);
1887 return true;
1888 }
1889
1890 /* If the zone is empty somebody else may have cleared out the zone */
1891 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1892 first_deferred_pfn)) {
1893 pgdat->first_deferred_pfn = ULONG_MAX;
1894 pgdat_resize_unlock(pgdat, &flags);
1895 /* Retry only once. */
1896 return first_deferred_pfn != ULONG_MAX;
1897 }
1898
1899 /*
1900 * Initialize and free pages in MAX_ORDER sized increments so
1901 * that we can avoid introducing any issues with the buddy
1902 * allocator.
1903 */
1904 while (spfn < epfn) {
1905 /* update our first deferred PFN for this section */
1906 first_deferred_pfn = spfn;
1907
1908 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1909
1910 /* We should only stop along section boundaries */
1911 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1912 continue;
1913
1914 /* If our quota has been met we can stop here */
1915 if (nr_pages >= nr_pages_needed)
1916 break;
1917 }
1918
1919 pgdat->first_deferred_pfn = spfn;
1920 pgdat_resize_unlock(pgdat, &flags);
1921
1922 return nr_pages > 0;
1923 }
1924
1925 /*
1926 * deferred_grow_zone() is __init, but it is called from
1927 * get_page_from_freelist() during early boot until deferred_pages permanently
1928 * disables this call. This is why we have refdata wrapper to avoid warning,
1929 * and to ensure that the function body gets unloaded.
1930 */
1931 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)1932 _deferred_grow_zone(struct zone *zone, unsigned int order)
1933 {
1934 return deferred_grow_zone(zone, order);
1935 }
1936
1937 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1938
page_alloc_init_late(void)1939 void __init page_alloc_init_late(void)
1940 {
1941 struct zone *zone;
1942 int nid;
1943
1944 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1945
1946 /* There will be num_node_state(N_MEMORY) threads */
1947 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1948 for_each_node_state(nid, N_MEMORY) {
1949 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1950 }
1951
1952 /* Block until all are initialised */
1953 wait_for_completion(&pgdat_init_all_done_comp);
1954
1955 /*
1956 * The number of managed pages has changed due to the initialisation
1957 * so the pcpu batch and high limits needs to be updated or the limits
1958 * will be artificially small.
1959 */
1960 for_each_populated_zone(zone)
1961 zone_pcp_update(zone);
1962
1963 /*
1964 * We initialized the rest of the deferred pages. Permanently disable
1965 * on-demand struct page initialization.
1966 */
1967 static_branch_disable(&deferred_pages);
1968
1969 /* Reinit limits that are based on free pages after the kernel is up */
1970 files_maxfiles_init();
1971 #endif
1972
1973 /* Discard memblock private memory */
1974 memblock_discard();
1975
1976 for_each_node_state(nid, N_MEMORY)
1977 shuffle_free_memory(NODE_DATA(nid));
1978
1979 for_each_populated_zone(zone)
1980 set_zone_contiguous(zone);
1981 }
1982
1983 #ifdef CONFIG_CMA
1984 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1985 void __init init_cma_reserved_pageblock(struct page *page)
1986 {
1987 unsigned i = pageblock_nr_pages;
1988 struct page *p = page;
1989
1990 do {
1991 __ClearPageReserved(p);
1992 set_page_count(p, 0);
1993 } while (++p, --i);
1994
1995 set_pageblock_migratetype(page, MIGRATE_CMA);
1996
1997 if (pageblock_order >= MAX_ORDER) {
1998 i = pageblock_nr_pages;
1999 p = page;
2000 do {
2001 set_page_refcounted(p);
2002 __free_pages(p, MAX_ORDER - 1);
2003 p += MAX_ORDER_NR_PAGES;
2004 } while (i -= MAX_ORDER_NR_PAGES);
2005 } else {
2006 set_page_refcounted(page);
2007 __free_pages(page, pageblock_order);
2008 }
2009
2010 adjust_managed_page_count(page, pageblock_nr_pages);
2011 }
2012 #endif
2013
2014 /*
2015 * The order of subdivision here is critical for the IO subsystem.
2016 * Please do not alter this order without good reasons and regression
2017 * testing. Specifically, as large blocks of memory are subdivided,
2018 * the order in which smaller blocks are delivered depends on the order
2019 * they're subdivided in this function. This is the primary factor
2020 * influencing the order in which pages are delivered to the IO
2021 * subsystem according to empirical testing, and this is also justified
2022 * by considering the behavior of a buddy system containing a single
2023 * large block of memory acted on by a series of small allocations.
2024 * This behavior is a critical factor in sglist merging's success.
2025 *
2026 * -- nyc
2027 */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)2028 static inline void expand(struct zone *zone, struct page *page,
2029 int low, int high, struct free_area *area,
2030 int migratetype)
2031 {
2032 unsigned long size = 1 << high;
2033
2034 while (high > low) {
2035 area--;
2036 high--;
2037 size >>= 1;
2038 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2039
2040 /*
2041 * Mark as guard pages (or page), that will allow to
2042 * merge back to allocator when buddy will be freed.
2043 * Corresponding page table entries will not be touched,
2044 * pages will stay not present in virtual address space
2045 */
2046 if (set_page_guard(zone, &page[size], high, migratetype))
2047 continue;
2048
2049 add_to_free_area(&page[size], area, migratetype);
2050 set_page_order(&page[size], high);
2051 }
2052 }
2053
check_new_page_bad(struct page * page)2054 static void check_new_page_bad(struct page *page)
2055 {
2056 const char *bad_reason = NULL;
2057 unsigned long bad_flags = 0;
2058
2059 if (unlikely(atomic_read(&page->_mapcount) != -1))
2060 bad_reason = "nonzero mapcount";
2061 if (unlikely(page->mapping != NULL))
2062 bad_reason = "non-NULL mapping";
2063 if (unlikely(page_ref_count(page) != 0))
2064 bad_reason = "nonzero _refcount";
2065 if (unlikely(page->flags & __PG_HWPOISON)) {
2066 bad_reason = "HWPoisoned (hardware-corrupted)";
2067 bad_flags = __PG_HWPOISON;
2068 /* Don't complain about hwpoisoned pages */
2069 page_mapcount_reset(page); /* remove PageBuddy */
2070 return;
2071 }
2072 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2073 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2074 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2075 }
2076 #ifdef CONFIG_MEMCG
2077 if (unlikely(page->mem_cgroup))
2078 bad_reason = "page still charged to cgroup";
2079 #endif
2080 bad_page(page, bad_reason, bad_flags);
2081 }
2082
2083 /*
2084 * This page is about to be returned from the page allocator
2085 */
check_new_page(struct page * page)2086 static inline int check_new_page(struct page *page)
2087 {
2088 if (likely(page_expected_state(page,
2089 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2090 return 0;
2091
2092 check_new_page_bad(page);
2093 return 1;
2094 }
2095
free_pages_prezeroed(void)2096 static inline bool free_pages_prezeroed(void)
2097 {
2098 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2099 page_poisoning_enabled()) || want_init_on_free();
2100 }
2101
2102 #ifdef CONFIG_DEBUG_VM
2103 /*
2104 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2105 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2106 * also checked when pcp lists are refilled from the free lists.
2107 */
check_pcp_refill(struct page * page)2108 static inline bool check_pcp_refill(struct page *page)
2109 {
2110 if (debug_pagealloc_enabled_static())
2111 return check_new_page(page);
2112 else
2113 return false;
2114 }
2115
check_new_pcp(struct page * page)2116 static inline bool check_new_pcp(struct page *page)
2117 {
2118 return check_new_page(page);
2119 }
2120 #else
2121 /*
2122 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2123 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2124 * enabled, they are also checked when being allocated from the pcp lists.
2125 */
check_pcp_refill(struct page * page)2126 static inline bool check_pcp_refill(struct page *page)
2127 {
2128 return check_new_page(page);
2129 }
check_new_pcp(struct page * page)2130 static inline bool check_new_pcp(struct page *page)
2131 {
2132 if (debug_pagealloc_enabled_static())
2133 return check_new_page(page);
2134 else
2135 return false;
2136 }
2137 #endif /* CONFIG_DEBUG_VM */
2138
check_new_pages(struct page * page,unsigned int order)2139 static bool check_new_pages(struct page *page, unsigned int order)
2140 {
2141 int i;
2142 for (i = 0; i < (1 << order); i++) {
2143 struct page *p = page + i;
2144
2145 if (unlikely(check_new_page(p)))
2146 return true;
2147 }
2148
2149 return false;
2150 }
2151
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2152 inline void post_alloc_hook(struct page *page, unsigned int order,
2153 gfp_t gfp_flags)
2154 {
2155 set_page_private(page, 0);
2156 set_page_refcounted(page);
2157
2158 arch_alloc_page(page, order);
2159 if (debug_pagealloc_enabled_static())
2160 kernel_map_pages(page, 1 << order, 1);
2161 kasan_alloc_pages(page, order);
2162 kernel_poison_pages(page, 1 << order, 1);
2163 set_page_owner(page, order, gfp_flags);
2164 }
2165
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2166 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2167 unsigned int alloc_flags)
2168 {
2169 post_alloc_hook(page, order, gfp_flags);
2170
2171 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2172 kernel_init_free_pages(page, 1 << order);
2173
2174 if (order && (gfp_flags & __GFP_COMP))
2175 prep_compound_page(page, order);
2176
2177 /*
2178 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2179 * allocate the page. The expectation is that the caller is taking
2180 * steps that will free more memory. The caller should avoid the page
2181 * being used for !PFMEMALLOC purposes.
2182 */
2183 if (alloc_flags & ALLOC_NO_WATERMARKS)
2184 set_page_pfmemalloc(page);
2185 else
2186 clear_page_pfmemalloc(page);
2187 }
2188
2189 /*
2190 * Go through the free lists for the given migratetype and remove
2191 * the smallest available page from the freelists
2192 */
2193 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2194 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2195 int migratetype)
2196 {
2197 unsigned int current_order;
2198 struct free_area *area;
2199 struct page *page;
2200
2201 /* Find a page of the appropriate size in the preferred list */
2202 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2203 area = &(zone->free_area[current_order]);
2204 page = get_page_from_free_area(area, migratetype);
2205 if (!page)
2206 continue;
2207 del_page_from_free_area(page, area);
2208 expand(zone, page, order, current_order, area, migratetype);
2209 set_pcppage_migratetype(page, migratetype);
2210 return page;
2211 }
2212
2213 return NULL;
2214 }
2215
2216
2217 /*
2218 * This array describes the order lists are fallen back to when
2219 * the free lists for the desirable migrate type are depleted
2220 */
2221 static int fallbacks[MIGRATE_TYPES][4] = {
2222 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2223 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2224 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2225 #ifdef CONFIG_CMA
2226 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2227 #endif
2228 #ifdef CONFIG_MEMORY_ISOLATION
2229 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2230 #endif
2231 };
2232
2233 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2234 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2235 unsigned int order)
2236 {
2237 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2238 }
2239 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2240 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2241 unsigned int order) { return NULL; }
2242 #endif
2243
2244 /*
2245 * Move the free pages in a range to the free lists of the requested type.
2246 * Note that start_page and end_pages are not aligned on a pageblock
2247 * boundary. If alignment is required, use move_freepages_block()
2248 */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype,int * num_movable)2249 static int move_freepages(struct zone *zone,
2250 struct page *start_page, struct page *end_page,
2251 int migratetype, int *num_movable)
2252 {
2253 struct page *page;
2254 unsigned int order;
2255 int pages_moved = 0;
2256
2257 for (page = start_page; page <= end_page;) {
2258 if (!pfn_valid_within(page_to_pfn(page))) {
2259 page++;
2260 continue;
2261 }
2262
2263 if (!PageBuddy(page)) {
2264 /*
2265 * We assume that pages that could be isolated for
2266 * migration are movable. But we don't actually try
2267 * isolating, as that would be expensive.
2268 */
2269 if (num_movable &&
2270 (PageLRU(page) || __PageMovable(page)))
2271 (*num_movable)++;
2272
2273 page++;
2274 continue;
2275 }
2276
2277 /* Make sure we are not inadvertently changing nodes */
2278 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2279 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2280
2281 order = page_order(page);
2282 move_to_free_area(page, &zone->free_area[order], migratetype);
2283 page += 1 << order;
2284 pages_moved += 1 << order;
2285 }
2286
2287 return pages_moved;
2288 }
2289
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2290 int move_freepages_block(struct zone *zone, struct page *page,
2291 int migratetype, int *num_movable)
2292 {
2293 unsigned long start_pfn, end_pfn;
2294 struct page *start_page, *end_page;
2295
2296 if (num_movable)
2297 *num_movable = 0;
2298
2299 start_pfn = page_to_pfn(page);
2300 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2301 start_page = pfn_to_page(start_pfn);
2302 end_page = start_page + pageblock_nr_pages - 1;
2303 end_pfn = start_pfn + pageblock_nr_pages - 1;
2304
2305 /* Do not cross zone boundaries */
2306 if (!zone_spans_pfn(zone, start_pfn))
2307 start_page = page;
2308 if (!zone_spans_pfn(zone, end_pfn))
2309 return 0;
2310
2311 return move_freepages(zone, start_page, end_page, migratetype,
2312 num_movable);
2313 }
2314
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2315 static void change_pageblock_range(struct page *pageblock_page,
2316 int start_order, int migratetype)
2317 {
2318 int nr_pageblocks = 1 << (start_order - pageblock_order);
2319
2320 while (nr_pageblocks--) {
2321 set_pageblock_migratetype(pageblock_page, migratetype);
2322 pageblock_page += pageblock_nr_pages;
2323 }
2324 }
2325
2326 /*
2327 * When we are falling back to another migratetype during allocation, try to
2328 * steal extra free pages from the same pageblocks to satisfy further
2329 * allocations, instead of polluting multiple pageblocks.
2330 *
2331 * If we are stealing a relatively large buddy page, it is likely there will
2332 * be more free pages in the pageblock, so try to steal them all. For
2333 * reclaimable and unmovable allocations, we steal regardless of page size,
2334 * as fragmentation caused by those allocations polluting movable pageblocks
2335 * is worse than movable allocations stealing from unmovable and reclaimable
2336 * pageblocks.
2337 */
can_steal_fallback(unsigned int order,int start_mt)2338 static bool can_steal_fallback(unsigned int order, int start_mt)
2339 {
2340 /*
2341 * Leaving this order check is intended, although there is
2342 * relaxed order check in next check. The reason is that
2343 * we can actually steal whole pageblock if this condition met,
2344 * but, below check doesn't guarantee it and that is just heuristic
2345 * so could be changed anytime.
2346 */
2347 if (order >= pageblock_order)
2348 return true;
2349
2350 if (order >= pageblock_order / 2 ||
2351 start_mt == MIGRATE_RECLAIMABLE ||
2352 start_mt == MIGRATE_UNMOVABLE ||
2353 page_group_by_mobility_disabled)
2354 return true;
2355
2356 return false;
2357 }
2358
boost_watermark(struct zone * zone)2359 static inline void boost_watermark(struct zone *zone)
2360 {
2361 unsigned long max_boost;
2362
2363 if (!watermark_boost_factor)
2364 return;
2365
2366 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2367 watermark_boost_factor, 10000);
2368
2369 /*
2370 * high watermark may be uninitialised if fragmentation occurs
2371 * very early in boot so do not boost. We do not fall
2372 * through and boost by pageblock_nr_pages as failing
2373 * allocations that early means that reclaim is not going
2374 * to help and it may even be impossible to reclaim the
2375 * boosted watermark resulting in a hang.
2376 */
2377 if (!max_boost)
2378 return;
2379
2380 max_boost = max(pageblock_nr_pages, max_boost);
2381
2382 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2383 max_boost);
2384 }
2385
2386 /*
2387 * This function implements actual steal behaviour. If order is large enough,
2388 * we can steal whole pageblock. If not, we first move freepages in this
2389 * pageblock to our migratetype and determine how many already-allocated pages
2390 * are there in the pageblock with a compatible migratetype. If at least half
2391 * of pages are free or compatible, we can change migratetype of the pageblock
2392 * itself, so pages freed in the future will be put on the correct free list.
2393 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2394 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2395 unsigned int alloc_flags, int start_type, bool whole_block)
2396 {
2397 unsigned int current_order = page_order(page);
2398 struct free_area *area;
2399 int free_pages, movable_pages, alike_pages;
2400 int old_block_type;
2401
2402 old_block_type = get_pageblock_migratetype(page);
2403
2404 /*
2405 * This can happen due to races and we want to prevent broken
2406 * highatomic accounting.
2407 */
2408 if (is_migrate_highatomic(old_block_type))
2409 goto single_page;
2410
2411 /* Take ownership for orders >= pageblock_order */
2412 if (current_order >= pageblock_order) {
2413 change_pageblock_range(page, current_order, start_type);
2414 goto single_page;
2415 }
2416
2417 /*
2418 * Boost watermarks to increase reclaim pressure to reduce the
2419 * likelihood of future fallbacks. Wake kswapd now as the node
2420 * may be balanced overall and kswapd will not wake naturally.
2421 */
2422 boost_watermark(zone);
2423 if (alloc_flags & ALLOC_KSWAPD)
2424 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2425
2426 /* We are not allowed to try stealing from the whole block */
2427 if (!whole_block)
2428 goto single_page;
2429
2430 free_pages = move_freepages_block(zone, page, start_type,
2431 &movable_pages);
2432 /*
2433 * Determine how many pages are compatible with our allocation.
2434 * For movable allocation, it's the number of movable pages which
2435 * we just obtained. For other types it's a bit more tricky.
2436 */
2437 if (start_type == MIGRATE_MOVABLE) {
2438 alike_pages = movable_pages;
2439 } else {
2440 /*
2441 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2442 * to MOVABLE pageblock, consider all non-movable pages as
2443 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2444 * vice versa, be conservative since we can't distinguish the
2445 * exact migratetype of non-movable pages.
2446 */
2447 if (old_block_type == MIGRATE_MOVABLE)
2448 alike_pages = pageblock_nr_pages
2449 - (free_pages + movable_pages);
2450 else
2451 alike_pages = 0;
2452 }
2453
2454 /* moving whole block can fail due to zone boundary conditions */
2455 if (!free_pages)
2456 goto single_page;
2457
2458 /*
2459 * If a sufficient number of pages in the block are either free or of
2460 * comparable migratability as our allocation, claim the whole block.
2461 */
2462 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2463 page_group_by_mobility_disabled)
2464 set_pageblock_migratetype(page, start_type);
2465
2466 return;
2467
2468 single_page:
2469 area = &zone->free_area[current_order];
2470 move_to_free_area(page, area, start_type);
2471 }
2472
2473 /*
2474 * Check whether there is a suitable fallback freepage with requested order.
2475 * If only_stealable is true, this function returns fallback_mt only if
2476 * we can steal other freepages all together. This would help to reduce
2477 * fragmentation due to mixed migratetype pages in one pageblock.
2478 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2479 int find_suitable_fallback(struct free_area *area, unsigned int order,
2480 int migratetype, bool only_stealable, bool *can_steal)
2481 {
2482 int i;
2483 int fallback_mt;
2484
2485 if (area->nr_free == 0)
2486 return -1;
2487
2488 *can_steal = false;
2489 for (i = 0;; i++) {
2490 fallback_mt = fallbacks[migratetype][i];
2491 if (fallback_mt == MIGRATE_TYPES)
2492 break;
2493
2494 if (free_area_empty(area, fallback_mt))
2495 continue;
2496
2497 if (can_steal_fallback(order, migratetype))
2498 *can_steal = true;
2499
2500 if (!only_stealable)
2501 return fallback_mt;
2502
2503 if (*can_steal)
2504 return fallback_mt;
2505 }
2506
2507 return -1;
2508 }
2509
2510 /*
2511 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2512 * there are no empty page blocks that contain a page with a suitable order
2513 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2514 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2515 unsigned int alloc_order)
2516 {
2517 int mt;
2518 unsigned long max_managed, flags;
2519
2520 /*
2521 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2522 * Check is race-prone but harmless.
2523 */
2524 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2525 if (zone->nr_reserved_highatomic >= max_managed)
2526 return;
2527
2528 spin_lock_irqsave(&zone->lock, flags);
2529
2530 /* Recheck the nr_reserved_highatomic limit under the lock */
2531 if (zone->nr_reserved_highatomic >= max_managed)
2532 goto out_unlock;
2533
2534 /* Yoink! */
2535 mt = get_pageblock_migratetype(page);
2536 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2537 && !is_migrate_cma(mt)) {
2538 zone->nr_reserved_highatomic += pageblock_nr_pages;
2539 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2540 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2541 }
2542
2543 out_unlock:
2544 spin_unlock_irqrestore(&zone->lock, flags);
2545 }
2546
2547 /*
2548 * Used when an allocation is about to fail under memory pressure. This
2549 * potentially hurts the reliability of high-order allocations when under
2550 * intense memory pressure but failed atomic allocations should be easier
2551 * to recover from than an OOM.
2552 *
2553 * If @force is true, try to unreserve a pageblock even though highatomic
2554 * pageblock is exhausted.
2555 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2556 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2557 bool force)
2558 {
2559 struct zonelist *zonelist = ac->zonelist;
2560 unsigned long flags;
2561 struct zoneref *z;
2562 struct zone *zone;
2563 struct page *page;
2564 int order;
2565 bool ret;
2566
2567 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2568 ac->nodemask) {
2569 /*
2570 * Preserve at least one pageblock unless memory pressure
2571 * is really high.
2572 */
2573 if (!force && zone->nr_reserved_highatomic <=
2574 pageblock_nr_pages)
2575 continue;
2576
2577 spin_lock_irqsave(&zone->lock, flags);
2578 for (order = 0; order < MAX_ORDER; order++) {
2579 struct free_area *area = &(zone->free_area[order]);
2580
2581 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2582 if (!page)
2583 continue;
2584
2585 /*
2586 * In page freeing path, migratetype change is racy so
2587 * we can counter several free pages in a pageblock
2588 * in this loop althoug we changed the pageblock type
2589 * from highatomic to ac->migratetype. So we should
2590 * adjust the count once.
2591 */
2592 if (is_migrate_highatomic_page(page)) {
2593 /*
2594 * It should never happen but changes to
2595 * locking could inadvertently allow a per-cpu
2596 * drain to add pages to MIGRATE_HIGHATOMIC
2597 * while unreserving so be safe and watch for
2598 * underflows.
2599 */
2600 zone->nr_reserved_highatomic -= min(
2601 pageblock_nr_pages,
2602 zone->nr_reserved_highatomic);
2603 }
2604
2605 /*
2606 * Convert to ac->migratetype and avoid the normal
2607 * pageblock stealing heuristics. Minimally, the caller
2608 * is doing the work and needs the pages. More
2609 * importantly, if the block was always converted to
2610 * MIGRATE_UNMOVABLE or another type then the number
2611 * of pageblocks that cannot be completely freed
2612 * may increase.
2613 */
2614 set_pageblock_migratetype(page, ac->migratetype);
2615 ret = move_freepages_block(zone, page, ac->migratetype,
2616 NULL);
2617 if (ret) {
2618 spin_unlock_irqrestore(&zone->lock, flags);
2619 return ret;
2620 }
2621 }
2622 spin_unlock_irqrestore(&zone->lock, flags);
2623 }
2624
2625 return false;
2626 }
2627
2628 /*
2629 * Try finding a free buddy page on the fallback list and put it on the free
2630 * list of requested migratetype, possibly along with other pages from the same
2631 * block, depending on fragmentation avoidance heuristics. Returns true if
2632 * fallback was found so that __rmqueue_smallest() can grab it.
2633 *
2634 * The use of signed ints for order and current_order is a deliberate
2635 * deviation from the rest of this file, to make the for loop
2636 * condition simpler.
2637 */
2638 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2639 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2640 unsigned int alloc_flags)
2641 {
2642 struct free_area *area;
2643 int current_order;
2644 int min_order = order;
2645 struct page *page;
2646 int fallback_mt;
2647 bool can_steal;
2648
2649 /*
2650 * Do not steal pages from freelists belonging to other pageblocks
2651 * i.e. orders < pageblock_order. If there are no local zones free,
2652 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2653 */
2654 if (alloc_flags & ALLOC_NOFRAGMENT)
2655 min_order = pageblock_order;
2656
2657 /*
2658 * Find the largest available free page in the other list. This roughly
2659 * approximates finding the pageblock with the most free pages, which
2660 * would be too costly to do exactly.
2661 */
2662 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2663 --current_order) {
2664 area = &(zone->free_area[current_order]);
2665 fallback_mt = find_suitable_fallback(area, current_order,
2666 start_migratetype, false, &can_steal);
2667 if (fallback_mt == -1)
2668 continue;
2669
2670 /*
2671 * We cannot steal all free pages from the pageblock and the
2672 * requested migratetype is movable. In that case it's better to
2673 * steal and split the smallest available page instead of the
2674 * largest available page, because even if the next movable
2675 * allocation falls back into a different pageblock than this
2676 * one, it won't cause permanent fragmentation.
2677 */
2678 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2679 && current_order > order)
2680 goto find_smallest;
2681
2682 goto do_steal;
2683 }
2684
2685 return false;
2686
2687 find_smallest:
2688 for (current_order = order; current_order < MAX_ORDER;
2689 current_order++) {
2690 area = &(zone->free_area[current_order]);
2691 fallback_mt = find_suitable_fallback(area, current_order,
2692 start_migratetype, false, &can_steal);
2693 if (fallback_mt != -1)
2694 break;
2695 }
2696
2697 /*
2698 * This should not happen - we already found a suitable fallback
2699 * when looking for the largest page.
2700 */
2701 VM_BUG_ON(current_order == MAX_ORDER);
2702
2703 do_steal:
2704 page = get_page_from_free_area(area, fallback_mt);
2705
2706 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2707 can_steal);
2708
2709 trace_mm_page_alloc_extfrag(page, order, current_order,
2710 start_migratetype, fallback_mt);
2711
2712 return true;
2713
2714 }
2715
2716 /*
2717 * Do the hard work of removing an element from the buddy allocator.
2718 * Call me with the zone->lock already held.
2719 */
2720 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2721 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2722 unsigned int alloc_flags)
2723 {
2724 struct page *page;
2725
2726 retry:
2727 page = __rmqueue_smallest(zone, order, migratetype);
2728 if (unlikely(!page)) {
2729 if (migratetype == MIGRATE_MOVABLE)
2730 page = __rmqueue_cma_fallback(zone, order);
2731
2732 if (!page && __rmqueue_fallback(zone, order, migratetype,
2733 alloc_flags))
2734 goto retry;
2735 }
2736
2737 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2738 return page;
2739 }
2740
2741 /*
2742 * Obtain a specified number of elements from the buddy allocator, all under
2743 * a single hold of the lock, for efficiency. Add them to the supplied list.
2744 * Returns the number of new pages which were placed at *list.
2745 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2746 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2747 unsigned long count, struct list_head *list,
2748 int migratetype, unsigned int alloc_flags)
2749 {
2750 int i, alloced = 0;
2751
2752 spin_lock(&zone->lock);
2753 for (i = 0; i < count; ++i) {
2754 struct page *page = __rmqueue(zone, order, migratetype,
2755 alloc_flags);
2756 if (unlikely(page == NULL))
2757 break;
2758
2759 if (unlikely(check_pcp_refill(page)))
2760 continue;
2761
2762 /*
2763 * Split buddy pages returned by expand() are received here in
2764 * physical page order. The page is added to the tail of
2765 * caller's list. From the callers perspective, the linked list
2766 * is ordered by page number under some conditions. This is
2767 * useful for IO devices that can forward direction from the
2768 * head, thus also in the physical page order. This is useful
2769 * for IO devices that can merge IO requests if the physical
2770 * pages are ordered properly.
2771 */
2772 list_add_tail(&page->lru, list);
2773 alloced++;
2774 if (is_migrate_cma(get_pcppage_migratetype(page)))
2775 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2776 -(1 << order));
2777 }
2778
2779 /*
2780 * i pages were removed from the buddy list even if some leak due
2781 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2782 * on i. Do not confuse with 'alloced' which is the number of
2783 * pages added to the pcp list.
2784 */
2785 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2786 spin_unlock(&zone->lock);
2787 return alloced;
2788 }
2789
2790 #ifdef CONFIG_NUMA
2791 /*
2792 * Called from the vmstat counter updater to drain pagesets of this
2793 * currently executing processor on remote nodes after they have
2794 * expired.
2795 *
2796 * Note that this function must be called with the thread pinned to
2797 * a single processor.
2798 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2799 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2800 {
2801 unsigned long flags;
2802 int to_drain, batch;
2803
2804 local_irq_save(flags);
2805 batch = READ_ONCE(pcp->batch);
2806 to_drain = min(pcp->count, batch);
2807 if (to_drain > 0)
2808 free_pcppages_bulk(zone, to_drain, pcp);
2809 local_irq_restore(flags);
2810 }
2811 #endif
2812
2813 /*
2814 * Drain pcplists of the indicated processor and zone.
2815 *
2816 * The processor must either be the current processor and the
2817 * thread pinned to the current processor or a processor that
2818 * is not online.
2819 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2820 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2821 {
2822 unsigned long flags;
2823 struct per_cpu_pageset *pset;
2824 struct per_cpu_pages *pcp;
2825
2826 local_irq_save(flags);
2827 pset = per_cpu_ptr(zone->pageset, cpu);
2828
2829 pcp = &pset->pcp;
2830 if (pcp->count)
2831 free_pcppages_bulk(zone, pcp->count, pcp);
2832 local_irq_restore(flags);
2833 }
2834
2835 /*
2836 * Drain pcplists of all zones on the indicated processor.
2837 *
2838 * The processor must either be the current processor and the
2839 * thread pinned to the current processor or a processor that
2840 * is not online.
2841 */
drain_pages(unsigned int cpu)2842 static void drain_pages(unsigned int cpu)
2843 {
2844 struct zone *zone;
2845
2846 for_each_populated_zone(zone) {
2847 drain_pages_zone(cpu, zone);
2848 }
2849 }
2850
2851 /*
2852 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2853 *
2854 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2855 * the single zone's pages.
2856 */
drain_local_pages(struct zone * zone)2857 void drain_local_pages(struct zone *zone)
2858 {
2859 int cpu = smp_processor_id();
2860
2861 if (zone)
2862 drain_pages_zone(cpu, zone);
2863 else
2864 drain_pages(cpu);
2865 }
2866
drain_local_pages_wq(struct work_struct * work)2867 static void drain_local_pages_wq(struct work_struct *work)
2868 {
2869 struct pcpu_drain *drain;
2870
2871 drain = container_of(work, struct pcpu_drain, work);
2872
2873 /*
2874 * drain_all_pages doesn't use proper cpu hotplug protection so
2875 * we can race with cpu offline when the WQ can move this from
2876 * a cpu pinned worker to an unbound one. We can operate on a different
2877 * cpu which is allright but we also have to make sure to not move to
2878 * a different one.
2879 */
2880 preempt_disable();
2881 drain_local_pages(drain->zone);
2882 preempt_enable();
2883 }
2884
2885 /*
2886 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2887 *
2888 * When zone parameter is non-NULL, spill just the single zone's pages.
2889 *
2890 * Note that this can be extremely slow as the draining happens in a workqueue.
2891 */
drain_all_pages(struct zone * zone)2892 void drain_all_pages(struct zone *zone)
2893 {
2894 int cpu;
2895
2896 /*
2897 * Allocate in the BSS so we wont require allocation in
2898 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2899 */
2900 static cpumask_t cpus_with_pcps;
2901
2902 /*
2903 * Make sure nobody triggers this path before mm_percpu_wq is fully
2904 * initialized.
2905 */
2906 if (WARN_ON_ONCE(!mm_percpu_wq))
2907 return;
2908
2909 /*
2910 * Do not drain if one is already in progress unless it's specific to
2911 * a zone. Such callers are primarily CMA and memory hotplug and need
2912 * the drain to be complete when the call returns.
2913 */
2914 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2915 if (!zone)
2916 return;
2917 mutex_lock(&pcpu_drain_mutex);
2918 }
2919
2920 /*
2921 * We don't care about racing with CPU hotplug event
2922 * as offline notification will cause the notified
2923 * cpu to drain that CPU pcps and on_each_cpu_mask
2924 * disables preemption as part of its processing
2925 */
2926 for_each_online_cpu(cpu) {
2927 struct per_cpu_pageset *pcp;
2928 struct zone *z;
2929 bool has_pcps = false;
2930
2931 if (zone) {
2932 pcp = per_cpu_ptr(zone->pageset, cpu);
2933 if (pcp->pcp.count)
2934 has_pcps = true;
2935 } else {
2936 for_each_populated_zone(z) {
2937 pcp = per_cpu_ptr(z->pageset, cpu);
2938 if (pcp->pcp.count) {
2939 has_pcps = true;
2940 break;
2941 }
2942 }
2943 }
2944
2945 if (has_pcps)
2946 cpumask_set_cpu(cpu, &cpus_with_pcps);
2947 else
2948 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2949 }
2950
2951 for_each_cpu(cpu, &cpus_with_pcps) {
2952 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2953
2954 drain->zone = zone;
2955 INIT_WORK(&drain->work, drain_local_pages_wq);
2956 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2957 }
2958 for_each_cpu(cpu, &cpus_with_pcps)
2959 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2960
2961 mutex_unlock(&pcpu_drain_mutex);
2962 }
2963
2964 #ifdef CONFIG_HIBERNATION
2965
2966 /*
2967 * Touch the watchdog for every WD_PAGE_COUNT pages.
2968 */
2969 #define WD_PAGE_COUNT (128*1024)
2970
mark_free_pages(struct zone * zone)2971 void mark_free_pages(struct zone *zone)
2972 {
2973 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2974 unsigned long flags;
2975 unsigned int order, t;
2976 struct page *page;
2977
2978 if (zone_is_empty(zone))
2979 return;
2980
2981 spin_lock_irqsave(&zone->lock, flags);
2982
2983 max_zone_pfn = zone_end_pfn(zone);
2984 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2985 if (pfn_valid(pfn)) {
2986 page = pfn_to_page(pfn);
2987
2988 if (!--page_count) {
2989 touch_nmi_watchdog();
2990 page_count = WD_PAGE_COUNT;
2991 }
2992
2993 if (page_zone(page) != zone)
2994 continue;
2995
2996 if (!swsusp_page_is_forbidden(page))
2997 swsusp_unset_page_free(page);
2998 }
2999
3000 for_each_migratetype_order(order, t) {
3001 list_for_each_entry(page,
3002 &zone->free_area[order].free_list[t], lru) {
3003 unsigned long i;
3004
3005 pfn = page_to_pfn(page);
3006 for (i = 0; i < (1UL << order); i++) {
3007 if (!--page_count) {
3008 touch_nmi_watchdog();
3009 page_count = WD_PAGE_COUNT;
3010 }
3011 swsusp_set_page_free(pfn_to_page(pfn + i));
3012 }
3013 }
3014 }
3015 spin_unlock_irqrestore(&zone->lock, flags);
3016 }
3017 #endif /* CONFIG_PM */
3018
free_unref_page_prepare(struct page * page,unsigned long pfn)3019 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3020 {
3021 int migratetype;
3022
3023 if (!free_pcp_prepare(page))
3024 return false;
3025
3026 migratetype = get_pfnblock_migratetype(page, pfn);
3027 set_pcppage_migratetype(page, migratetype);
3028 return true;
3029 }
3030
free_unref_page_commit(struct page * page,unsigned long pfn)3031 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3032 {
3033 struct zone *zone = page_zone(page);
3034 struct per_cpu_pages *pcp;
3035 int migratetype;
3036
3037 migratetype = get_pcppage_migratetype(page);
3038 __count_vm_event(PGFREE);
3039
3040 /*
3041 * We only track unmovable, reclaimable and movable on pcp lists.
3042 * Free ISOLATE pages back to the allocator because they are being
3043 * offlined but treat HIGHATOMIC as movable pages so we can get those
3044 * areas back if necessary. Otherwise, we may have to free
3045 * excessively into the page allocator
3046 */
3047 if (migratetype >= MIGRATE_PCPTYPES) {
3048 if (unlikely(is_migrate_isolate(migratetype))) {
3049 free_one_page(zone, page, pfn, 0, migratetype);
3050 return;
3051 }
3052 migratetype = MIGRATE_MOVABLE;
3053 }
3054
3055 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3056 list_add(&page->lru, &pcp->lists[migratetype]);
3057 pcp->count++;
3058 if (pcp->count >= pcp->high) {
3059 unsigned long batch = READ_ONCE(pcp->batch);
3060 free_pcppages_bulk(zone, batch, pcp);
3061 }
3062 }
3063
3064 /*
3065 * Free a 0-order page
3066 */
free_unref_page(struct page * page)3067 void free_unref_page(struct page *page)
3068 {
3069 unsigned long flags;
3070 unsigned long pfn = page_to_pfn(page);
3071
3072 if (!free_unref_page_prepare(page, pfn))
3073 return;
3074
3075 local_irq_save(flags);
3076 free_unref_page_commit(page, pfn);
3077 local_irq_restore(flags);
3078 }
3079
3080 /*
3081 * Free a list of 0-order pages
3082 */
free_unref_page_list(struct list_head * list)3083 void free_unref_page_list(struct list_head *list)
3084 {
3085 struct page *page, *next;
3086 unsigned long flags, pfn;
3087 int batch_count = 0;
3088
3089 /* Prepare pages for freeing */
3090 list_for_each_entry_safe(page, next, list, lru) {
3091 pfn = page_to_pfn(page);
3092 if (!free_unref_page_prepare(page, pfn))
3093 list_del(&page->lru);
3094 set_page_private(page, pfn);
3095 }
3096
3097 local_irq_save(flags);
3098 list_for_each_entry_safe(page, next, list, lru) {
3099 unsigned long pfn = page_private(page);
3100
3101 set_page_private(page, 0);
3102 trace_mm_page_free_batched(page);
3103 free_unref_page_commit(page, pfn);
3104
3105 /*
3106 * Guard against excessive IRQ disabled times when we get
3107 * a large list of pages to free.
3108 */
3109 if (++batch_count == SWAP_CLUSTER_MAX) {
3110 local_irq_restore(flags);
3111 batch_count = 0;
3112 local_irq_save(flags);
3113 }
3114 }
3115 local_irq_restore(flags);
3116 }
3117
3118 /*
3119 * split_page takes a non-compound higher-order page, and splits it into
3120 * n (1<<order) sub-pages: page[0..n]
3121 * Each sub-page must be freed individually.
3122 *
3123 * Note: this is probably too low level an operation for use in drivers.
3124 * Please consult with lkml before using this in your driver.
3125 */
split_page(struct page * page,unsigned int order)3126 void split_page(struct page *page, unsigned int order)
3127 {
3128 int i;
3129
3130 VM_BUG_ON_PAGE(PageCompound(page), page);
3131 VM_BUG_ON_PAGE(!page_count(page), page);
3132
3133 for (i = 1; i < (1 << order); i++)
3134 set_page_refcounted(page + i);
3135 split_page_owner(page, order);
3136 }
3137 EXPORT_SYMBOL_GPL(split_page);
3138
__isolate_free_page(struct page * page,unsigned int order)3139 int __isolate_free_page(struct page *page, unsigned int order)
3140 {
3141 struct free_area *area = &page_zone(page)->free_area[order];
3142 unsigned long watermark;
3143 struct zone *zone;
3144 int mt;
3145
3146 BUG_ON(!PageBuddy(page));
3147
3148 zone = page_zone(page);
3149 mt = get_pageblock_migratetype(page);
3150
3151 if (!is_migrate_isolate(mt)) {
3152 /*
3153 * Obey watermarks as if the page was being allocated. We can
3154 * emulate a high-order watermark check with a raised order-0
3155 * watermark, because we already know our high-order page
3156 * exists.
3157 */
3158 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3159 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3160 return 0;
3161
3162 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3163 }
3164
3165 /* Remove page from free list */
3166
3167 del_page_from_free_area(page, area);
3168
3169 /*
3170 * Set the pageblock if the isolated page is at least half of a
3171 * pageblock
3172 */
3173 if (order >= pageblock_order - 1) {
3174 struct page *endpage = page + (1 << order) - 1;
3175 for (; page < endpage; page += pageblock_nr_pages) {
3176 int mt = get_pageblock_migratetype(page);
3177 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3178 && !is_migrate_highatomic(mt))
3179 set_pageblock_migratetype(page,
3180 MIGRATE_MOVABLE);
3181 }
3182 }
3183
3184
3185 return 1UL << order;
3186 }
3187
3188 /*
3189 * Update NUMA hit/miss statistics
3190 *
3191 * Must be called with interrupts disabled.
3192 */
zone_statistics(struct zone * preferred_zone,struct zone * z)3193 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3194 {
3195 #ifdef CONFIG_NUMA
3196 enum numa_stat_item local_stat = NUMA_LOCAL;
3197
3198 /* skip numa counters update if numa stats is disabled */
3199 if (!static_branch_likely(&vm_numa_stat_key))
3200 return;
3201
3202 if (zone_to_nid(z) != numa_node_id())
3203 local_stat = NUMA_OTHER;
3204
3205 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3206 __inc_numa_state(z, NUMA_HIT);
3207 else {
3208 __inc_numa_state(z, NUMA_MISS);
3209 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3210 }
3211 __inc_numa_state(z, local_stat);
3212 #endif
3213 }
3214
3215 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3216 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3217 unsigned int alloc_flags,
3218 struct per_cpu_pages *pcp,
3219 struct list_head *list)
3220 {
3221 struct page *page;
3222
3223 do {
3224 if (list_empty(list)) {
3225 pcp->count += rmqueue_bulk(zone, 0,
3226 pcp->batch, list,
3227 migratetype, alloc_flags);
3228 if (unlikely(list_empty(list)))
3229 return NULL;
3230 }
3231
3232 page = list_first_entry(list, struct page, lru);
3233 list_del(&page->lru);
3234 pcp->count--;
3235 } while (check_new_pcp(page));
3236
3237 return page;
3238 }
3239
3240 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3241 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3242 struct zone *zone, gfp_t gfp_flags,
3243 int migratetype, unsigned int alloc_flags)
3244 {
3245 struct per_cpu_pages *pcp;
3246 struct list_head *list;
3247 struct page *page;
3248 unsigned long flags;
3249
3250 local_irq_save(flags);
3251 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3252 list = &pcp->lists[migratetype];
3253 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3254 if (page) {
3255 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3256 zone_statistics(preferred_zone, zone);
3257 }
3258 local_irq_restore(flags);
3259 return page;
3260 }
3261
3262 /*
3263 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3264 */
3265 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3266 struct page *rmqueue(struct zone *preferred_zone,
3267 struct zone *zone, unsigned int order,
3268 gfp_t gfp_flags, unsigned int alloc_flags,
3269 int migratetype)
3270 {
3271 unsigned long flags;
3272 struct page *page;
3273
3274 if (likely(order == 0)) {
3275 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3276 migratetype, alloc_flags);
3277 goto out;
3278 }
3279
3280 /*
3281 * We most definitely don't want callers attempting to
3282 * allocate greater than order-1 page units with __GFP_NOFAIL.
3283 */
3284 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3285 spin_lock_irqsave(&zone->lock, flags);
3286
3287 do {
3288 page = NULL;
3289 if (alloc_flags & ALLOC_HARDER) {
3290 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3291 if (page)
3292 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3293 }
3294 if (!page)
3295 page = __rmqueue(zone, order, migratetype, alloc_flags);
3296 } while (page && check_new_pages(page, order));
3297 spin_unlock(&zone->lock);
3298 if (!page)
3299 goto failed;
3300 __mod_zone_freepage_state(zone, -(1 << order),
3301 get_pcppage_migratetype(page));
3302
3303 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3304 zone_statistics(preferred_zone, zone);
3305 local_irq_restore(flags);
3306
3307 out:
3308 /* Separate test+clear to avoid unnecessary atomics */
3309 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3310 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3311 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3312 }
3313
3314 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3315 return page;
3316
3317 failed:
3318 local_irq_restore(flags);
3319 return NULL;
3320 }
3321
3322 #ifdef CONFIG_FAIL_PAGE_ALLOC
3323
3324 static struct {
3325 struct fault_attr attr;
3326
3327 bool ignore_gfp_highmem;
3328 bool ignore_gfp_reclaim;
3329 u32 min_order;
3330 } fail_page_alloc = {
3331 .attr = FAULT_ATTR_INITIALIZER,
3332 .ignore_gfp_reclaim = true,
3333 .ignore_gfp_highmem = true,
3334 .min_order = 1,
3335 };
3336
setup_fail_page_alloc(char * str)3337 static int __init setup_fail_page_alloc(char *str)
3338 {
3339 return setup_fault_attr(&fail_page_alloc.attr, str);
3340 }
3341 __setup("fail_page_alloc=", setup_fail_page_alloc);
3342
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3343 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3344 {
3345 if (order < fail_page_alloc.min_order)
3346 return false;
3347 if (gfp_mask & __GFP_NOFAIL)
3348 return false;
3349 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3350 return false;
3351 if (fail_page_alloc.ignore_gfp_reclaim &&
3352 (gfp_mask & __GFP_DIRECT_RECLAIM))
3353 return false;
3354
3355 return should_fail(&fail_page_alloc.attr, 1 << order);
3356 }
3357
3358 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3359
fail_page_alloc_debugfs(void)3360 static int __init fail_page_alloc_debugfs(void)
3361 {
3362 umode_t mode = S_IFREG | 0600;
3363 struct dentry *dir;
3364
3365 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3366 &fail_page_alloc.attr);
3367
3368 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3369 &fail_page_alloc.ignore_gfp_reclaim);
3370 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3371 &fail_page_alloc.ignore_gfp_highmem);
3372 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3373
3374 return 0;
3375 }
3376
3377 late_initcall(fail_page_alloc_debugfs);
3378
3379 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3380
3381 #else /* CONFIG_FAIL_PAGE_ALLOC */
3382
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3383 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3384 {
3385 return false;
3386 }
3387
3388 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3389
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3390 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3391 {
3392 return __should_fail_alloc_page(gfp_mask, order);
3393 }
3394 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3395
3396 /*
3397 * Return true if free base pages are above 'mark'. For high-order checks it
3398 * will return true of the order-0 watermark is reached and there is at least
3399 * one free page of a suitable size. Checking now avoids taking the zone lock
3400 * to check in the allocation paths if no pages are free.
3401 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags,long free_pages)3402 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3403 int classzone_idx, unsigned int alloc_flags,
3404 long free_pages)
3405 {
3406 long min = mark;
3407 int o;
3408 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3409
3410 /* free_pages may go negative - that's OK */
3411 free_pages -= (1 << order) - 1;
3412
3413 if (alloc_flags & ALLOC_HIGH)
3414 min -= min / 2;
3415
3416 /*
3417 * If the caller does not have rights to ALLOC_HARDER then subtract
3418 * the high-atomic reserves. This will over-estimate the size of the
3419 * atomic reserve but it avoids a search.
3420 */
3421 if (likely(!alloc_harder)) {
3422 free_pages -= z->nr_reserved_highatomic;
3423 } else {
3424 /*
3425 * OOM victims can try even harder than normal ALLOC_HARDER
3426 * users on the grounds that it's definitely going to be in
3427 * the exit path shortly and free memory. Any allocation it
3428 * makes during the free path will be small and short-lived.
3429 */
3430 if (alloc_flags & ALLOC_OOM)
3431 min -= min / 2;
3432 else
3433 min -= min / 4;
3434 }
3435
3436
3437 #ifdef CONFIG_CMA
3438 /* If allocation can't use CMA areas don't use free CMA pages */
3439 if (!(alloc_flags & ALLOC_CMA))
3440 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3441 #endif
3442
3443 /*
3444 * Check watermarks for an order-0 allocation request. If these
3445 * are not met, then a high-order request also cannot go ahead
3446 * even if a suitable page happened to be free.
3447 */
3448 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3449 return false;
3450
3451 /* If this is an order-0 request then the watermark is fine */
3452 if (!order)
3453 return true;
3454
3455 /* For a high-order request, check at least one suitable page is free */
3456 for (o = order; o < MAX_ORDER; o++) {
3457 struct free_area *area = &z->free_area[o];
3458 int mt;
3459
3460 if (!area->nr_free)
3461 continue;
3462
3463 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3464 if (!free_area_empty(area, mt))
3465 return true;
3466 }
3467
3468 #ifdef CONFIG_CMA
3469 if ((alloc_flags & ALLOC_CMA) &&
3470 !free_area_empty(area, MIGRATE_CMA)) {
3471 return true;
3472 }
3473 #endif
3474 if (alloc_harder &&
3475 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3476 return true;
3477 }
3478 return false;
3479 }
3480
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3481 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3482 int classzone_idx, unsigned int alloc_flags)
3483 {
3484 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3485 zone_page_state(z, NR_FREE_PAGES));
3486 }
3487
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3488 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3489 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3490 {
3491 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3492 long cma_pages = 0;
3493
3494 #ifdef CONFIG_CMA
3495 /* If allocation can't use CMA areas don't use free CMA pages */
3496 if (!(alloc_flags & ALLOC_CMA))
3497 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3498 #endif
3499
3500 /*
3501 * Fast check for order-0 only. If this fails then the reserves
3502 * need to be calculated. There is a corner case where the check
3503 * passes but only the high-order atomic reserve are free. If
3504 * the caller is !atomic then it'll uselessly search the free
3505 * list. That corner case is then slower but it is harmless.
3506 */
3507 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3508 return true;
3509
3510 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3511 free_pages);
3512 }
3513
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)3514 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3515 unsigned long mark, int classzone_idx)
3516 {
3517 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3518
3519 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3520 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3521
3522 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3523 free_pages);
3524 }
3525
3526 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3527 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3528 {
3529 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3530 node_reclaim_distance;
3531 }
3532 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3533 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3534 {
3535 return true;
3536 }
3537 #endif /* CONFIG_NUMA */
3538
3539 /*
3540 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3541 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3542 * premature use of a lower zone may cause lowmem pressure problems that
3543 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3544 * probably too small. It only makes sense to spread allocations to avoid
3545 * fragmentation between the Normal and DMA32 zones.
3546 */
3547 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3548 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3549 {
3550 unsigned int alloc_flags = 0;
3551
3552 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3553 alloc_flags |= ALLOC_KSWAPD;
3554
3555 #ifdef CONFIG_ZONE_DMA32
3556 if (!zone)
3557 return alloc_flags;
3558
3559 if (zone_idx(zone) != ZONE_NORMAL)
3560 return alloc_flags;
3561
3562 /*
3563 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3564 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3565 * on UMA that if Normal is populated then so is DMA32.
3566 */
3567 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3568 if (nr_online_nodes > 1 && !populated_zone(--zone))
3569 return alloc_flags;
3570
3571 alloc_flags |= ALLOC_NOFRAGMENT;
3572 #endif /* CONFIG_ZONE_DMA32 */
3573 return alloc_flags;
3574 }
3575
3576 /*
3577 * get_page_from_freelist goes through the zonelist trying to allocate
3578 * a page.
3579 */
3580 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3581 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3582 const struct alloc_context *ac)
3583 {
3584 struct zoneref *z;
3585 struct zone *zone;
3586 struct pglist_data *last_pgdat_dirty_limit = NULL;
3587 bool no_fallback;
3588
3589 retry:
3590 /*
3591 * Scan zonelist, looking for a zone with enough free.
3592 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3593 */
3594 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3595 z = ac->preferred_zoneref;
3596 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3597 ac->nodemask) {
3598 struct page *page;
3599 unsigned long mark;
3600
3601 if (cpusets_enabled() &&
3602 (alloc_flags & ALLOC_CPUSET) &&
3603 !__cpuset_zone_allowed(zone, gfp_mask))
3604 continue;
3605 /*
3606 * When allocating a page cache page for writing, we
3607 * want to get it from a node that is within its dirty
3608 * limit, such that no single node holds more than its
3609 * proportional share of globally allowed dirty pages.
3610 * The dirty limits take into account the node's
3611 * lowmem reserves and high watermark so that kswapd
3612 * should be able to balance it without having to
3613 * write pages from its LRU list.
3614 *
3615 * XXX: For now, allow allocations to potentially
3616 * exceed the per-node dirty limit in the slowpath
3617 * (spread_dirty_pages unset) before going into reclaim,
3618 * which is important when on a NUMA setup the allowed
3619 * nodes are together not big enough to reach the
3620 * global limit. The proper fix for these situations
3621 * will require awareness of nodes in the
3622 * dirty-throttling and the flusher threads.
3623 */
3624 if (ac->spread_dirty_pages) {
3625 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3626 continue;
3627
3628 if (!node_dirty_ok(zone->zone_pgdat)) {
3629 last_pgdat_dirty_limit = zone->zone_pgdat;
3630 continue;
3631 }
3632 }
3633
3634 if (no_fallback && nr_online_nodes > 1 &&
3635 zone != ac->preferred_zoneref->zone) {
3636 int local_nid;
3637
3638 /*
3639 * If moving to a remote node, retry but allow
3640 * fragmenting fallbacks. Locality is more important
3641 * than fragmentation avoidance.
3642 */
3643 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3644 if (zone_to_nid(zone) != local_nid) {
3645 alloc_flags &= ~ALLOC_NOFRAGMENT;
3646 goto retry;
3647 }
3648 }
3649
3650 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3651 if (!zone_watermark_fast(zone, order, mark,
3652 ac_classzone_idx(ac), alloc_flags)) {
3653 int ret;
3654
3655 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3656 /*
3657 * Watermark failed for this zone, but see if we can
3658 * grow this zone if it contains deferred pages.
3659 */
3660 if (static_branch_unlikely(&deferred_pages)) {
3661 if (_deferred_grow_zone(zone, order))
3662 goto try_this_zone;
3663 }
3664 #endif
3665 /* Checked here to keep the fast path fast */
3666 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3667 if (alloc_flags & ALLOC_NO_WATERMARKS)
3668 goto try_this_zone;
3669
3670 if (node_reclaim_mode == 0 ||
3671 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3672 continue;
3673
3674 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3675 switch (ret) {
3676 case NODE_RECLAIM_NOSCAN:
3677 /* did not scan */
3678 continue;
3679 case NODE_RECLAIM_FULL:
3680 /* scanned but unreclaimable */
3681 continue;
3682 default:
3683 /* did we reclaim enough */
3684 if (zone_watermark_ok(zone, order, mark,
3685 ac_classzone_idx(ac), alloc_flags))
3686 goto try_this_zone;
3687
3688 continue;
3689 }
3690 }
3691
3692 try_this_zone:
3693 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3694 gfp_mask, alloc_flags, ac->migratetype);
3695 if (page) {
3696 prep_new_page(page, order, gfp_mask, alloc_flags);
3697
3698 /*
3699 * If this is a high-order atomic allocation then check
3700 * if the pageblock should be reserved for the future
3701 */
3702 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3703 reserve_highatomic_pageblock(page, zone, order);
3704
3705 return page;
3706 } else {
3707 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3708 /* Try again if zone has deferred pages */
3709 if (static_branch_unlikely(&deferred_pages)) {
3710 if (_deferred_grow_zone(zone, order))
3711 goto try_this_zone;
3712 }
3713 #endif
3714 }
3715 }
3716
3717 /*
3718 * It's possible on a UMA machine to get through all zones that are
3719 * fragmented. If avoiding fragmentation, reset and try again.
3720 */
3721 if (no_fallback) {
3722 alloc_flags &= ~ALLOC_NOFRAGMENT;
3723 goto retry;
3724 }
3725
3726 return NULL;
3727 }
3728
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3729 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3730 {
3731 unsigned int filter = SHOW_MEM_FILTER_NODES;
3732
3733 /*
3734 * This documents exceptions given to allocations in certain
3735 * contexts that are allowed to allocate outside current's set
3736 * of allowed nodes.
3737 */
3738 if (!(gfp_mask & __GFP_NOMEMALLOC))
3739 if (tsk_is_oom_victim(current) ||
3740 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3741 filter &= ~SHOW_MEM_FILTER_NODES;
3742 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3743 filter &= ~SHOW_MEM_FILTER_NODES;
3744
3745 show_mem(filter, nodemask);
3746 }
3747
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3748 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3749 {
3750 struct va_format vaf;
3751 va_list args;
3752 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3753
3754 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3755 return;
3756
3757 va_start(args, fmt);
3758 vaf.fmt = fmt;
3759 vaf.va = &args;
3760 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3761 current->comm, &vaf, gfp_mask, &gfp_mask,
3762 nodemask_pr_args(nodemask));
3763 va_end(args);
3764
3765 cpuset_print_current_mems_allowed();
3766 pr_cont("\n");
3767 dump_stack();
3768 warn_alloc_show_mem(gfp_mask, nodemask);
3769 }
3770
3771 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3772 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3773 unsigned int alloc_flags,
3774 const struct alloc_context *ac)
3775 {
3776 struct page *page;
3777
3778 page = get_page_from_freelist(gfp_mask, order,
3779 alloc_flags|ALLOC_CPUSET, ac);
3780 /*
3781 * fallback to ignore cpuset restriction if our nodes
3782 * are depleted
3783 */
3784 if (!page)
3785 page = get_page_from_freelist(gfp_mask, order,
3786 alloc_flags, ac);
3787
3788 return page;
3789 }
3790
3791 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3792 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3793 const struct alloc_context *ac, unsigned long *did_some_progress)
3794 {
3795 struct oom_control oc = {
3796 .zonelist = ac->zonelist,
3797 .nodemask = ac->nodemask,
3798 .memcg = NULL,
3799 .gfp_mask = gfp_mask,
3800 .order = order,
3801 };
3802 struct page *page;
3803
3804 *did_some_progress = 0;
3805
3806 /*
3807 * Acquire the oom lock. If that fails, somebody else is
3808 * making progress for us.
3809 */
3810 if (!mutex_trylock(&oom_lock)) {
3811 *did_some_progress = 1;
3812 schedule_timeout_uninterruptible(1);
3813 return NULL;
3814 }
3815
3816 /*
3817 * Go through the zonelist yet one more time, keep very high watermark
3818 * here, this is only to catch a parallel oom killing, we must fail if
3819 * we're still under heavy pressure. But make sure that this reclaim
3820 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3821 * allocation which will never fail due to oom_lock already held.
3822 */
3823 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3824 ~__GFP_DIRECT_RECLAIM, order,
3825 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3826 if (page)
3827 goto out;
3828
3829 /* Coredumps can quickly deplete all memory reserves */
3830 if (current->flags & PF_DUMPCORE)
3831 goto out;
3832 /* The OOM killer will not help higher order allocs */
3833 if (order > PAGE_ALLOC_COSTLY_ORDER)
3834 goto out;
3835 /*
3836 * We have already exhausted all our reclaim opportunities without any
3837 * success so it is time to admit defeat. We will skip the OOM killer
3838 * because it is very likely that the caller has a more reasonable
3839 * fallback than shooting a random task.
3840 */
3841 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3842 goto out;
3843 /* The OOM killer does not needlessly kill tasks for lowmem */
3844 if (ac->high_zoneidx < ZONE_NORMAL)
3845 goto out;
3846 if (pm_suspended_storage())
3847 goto out;
3848 /*
3849 * XXX: GFP_NOFS allocations should rather fail than rely on
3850 * other request to make a forward progress.
3851 * We are in an unfortunate situation where out_of_memory cannot
3852 * do much for this context but let's try it to at least get
3853 * access to memory reserved if the current task is killed (see
3854 * out_of_memory). Once filesystems are ready to handle allocation
3855 * failures more gracefully we should just bail out here.
3856 */
3857
3858 /* The OOM killer may not free memory on a specific node */
3859 if (gfp_mask & __GFP_THISNODE)
3860 goto out;
3861
3862 /* Exhausted what can be done so it's blame time */
3863 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3864 *did_some_progress = 1;
3865
3866 /*
3867 * Help non-failing allocations by giving them access to memory
3868 * reserves
3869 */
3870 if (gfp_mask & __GFP_NOFAIL)
3871 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3872 ALLOC_NO_WATERMARKS, ac);
3873 }
3874 out:
3875 mutex_unlock(&oom_lock);
3876 return page;
3877 }
3878
3879 /*
3880 * Maximum number of compaction retries wit a progress before OOM
3881 * killer is consider as the only way to move forward.
3882 */
3883 #define MAX_COMPACT_RETRIES 16
3884
3885 #ifdef CONFIG_COMPACTION
3886 /* Try memory compaction for high-order allocations before reclaim */
3887 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3888 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3889 unsigned int alloc_flags, const struct alloc_context *ac,
3890 enum compact_priority prio, enum compact_result *compact_result)
3891 {
3892 struct page *page = NULL;
3893 unsigned long pflags;
3894 unsigned int noreclaim_flag;
3895
3896 if (!order)
3897 return NULL;
3898
3899 psi_memstall_enter(&pflags);
3900 noreclaim_flag = memalloc_noreclaim_save();
3901
3902 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3903 prio, &page);
3904
3905 memalloc_noreclaim_restore(noreclaim_flag);
3906 psi_memstall_leave(&pflags);
3907
3908 /*
3909 * At least in one zone compaction wasn't deferred or skipped, so let's
3910 * count a compaction stall
3911 */
3912 count_vm_event(COMPACTSTALL);
3913
3914 /* Prep a captured page if available */
3915 if (page)
3916 prep_new_page(page, order, gfp_mask, alloc_flags);
3917
3918 /* Try get a page from the freelist if available */
3919 if (!page)
3920 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3921
3922 if (page) {
3923 struct zone *zone = page_zone(page);
3924
3925 zone->compact_blockskip_flush = false;
3926 compaction_defer_reset(zone, order, true);
3927 count_vm_event(COMPACTSUCCESS);
3928 return page;
3929 }
3930
3931 /*
3932 * It's bad if compaction run occurs and fails. The most likely reason
3933 * is that pages exist, but not enough to satisfy watermarks.
3934 */
3935 count_vm_event(COMPACTFAIL);
3936
3937 cond_resched();
3938
3939 return NULL;
3940 }
3941
3942 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3943 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3944 enum compact_result compact_result,
3945 enum compact_priority *compact_priority,
3946 int *compaction_retries)
3947 {
3948 int max_retries = MAX_COMPACT_RETRIES;
3949 int min_priority;
3950 bool ret = false;
3951 int retries = *compaction_retries;
3952 enum compact_priority priority = *compact_priority;
3953
3954 if (!order)
3955 return false;
3956
3957 if (compaction_made_progress(compact_result))
3958 (*compaction_retries)++;
3959
3960 /*
3961 * compaction considers all the zone as desperately out of memory
3962 * so it doesn't really make much sense to retry except when the
3963 * failure could be caused by insufficient priority
3964 */
3965 if (compaction_failed(compact_result))
3966 goto check_priority;
3967
3968 /*
3969 * compaction was skipped because there are not enough order-0 pages
3970 * to work with, so we retry only if it looks like reclaim can help.
3971 */
3972 if (compaction_needs_reclaim(compact_result)) {
3973 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3974 goto out;
3975 }
3976
3977 /*
3978 * make sure the compaction wasn't deferred or didn't bail out early
3979 * due to locks contention before we declare that we should give up.
3980 * But the next retry should use a higher priority if allowed, so
3981 * we don't just keep bailing out endlessly.
3982 */
3983 if (compaction_withdrawn(compact_result)) {
3984 goto check_priority;
3985 }
3986
3987 /*
3988 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3989 * costly ones because they are de facto nofail and invoke OOM
3990 * killer to move on while costly can fail and users are ready
3991 * to cope with that. 1/4 retries is rather arbitrary but we
3992 * would need much more detailed feedback from compaction to
3993 * make a better decision.
3994 */
3995 if (order > PAGE_ALLOC_COSTLY_ORDER)
3996 max_retries /= 4;
3997 if (*compaction_retries <= max_retries) {
3998 ret = true;
3999 goto out;
4000 }
4001
4002 /*
4003 * Make sure there are attempts at the highest priority if we exhausted
4004 * all retries or failed at the lower priorities.
4005 */
4006 check_priority:
4007 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4008 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4009
4010 if (*compact_priority > min_priority) {
4011 (*compact_priority)--;
4012 *compaction_retries = 0;
4013 ret = true;
4014 }
4015 out:
4016 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4017 return ret;
4018 }
4019 #else
4020 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4021 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4022 unsigned int alloc_flags, const struct alloc_context *ac,
4023 enum compact_priority prio, enum compact_result *compact_result)
4024 {
4025 *compact_result = COMPACT_SKIPPED;
4026 return NULL;
4027 }
4028
4029 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4030 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4031 enum compact_result compact_result,
4032 enum compact_priority *compact_priority,
4033 int *compaction_retries)
4034 {
4035 struct zone *zone;
4036 struct zoneref *z;
4037
4038 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4039 return false;
4040
4041 /*
4042 * There are setups with compaction disabled which would prefer to loop
4043 * inside the allocator rather than hit the oom killer prematurely.
4044 * Let's give them a good hope and keep retrying while the order-0
4045 * watermarks are OK.
4046 */
4047 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4048 ac->nodemask) {
4049 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4050 ac_classzone_idx(ac), alloc_flags))
4051 return true;
4052 }
4053 return false;
4054 }
4055 #endif /* CONFIG_COMPACTION */
4056
4057 #ifdef CONFIG_LOCKDEP
4058 static struct lockdep_map __fs_reclaim_map =
4059 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4060
__need_fs_reclaim(gfp_t gfp_mask)4061 static bool __need_fs_reclaim(gfp_t gfp_mask)
4062 {
4063 gfp_mask = current_gfp_context(gfp_mask);
4064
4065 /* no reclaim without waiting on it */
4066 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4067 return false;
4068
4069 /* this guy won't enter reclaim */
4070 if (current->flags & PF_MEMALLOC)
4071 return false;
4072
4073 /* We're only interested __GFP_FS allocations for now */
4074 if (!(gfp_mask & __GFP_FS))
4075 return false;
4076
4077 if (gfp_mask & __GFP_NOLOCKDEP)
4078 return false;
4079
4080 return true;
4081 }
4082
__fs_reclaim_acquire(void)4083 void __fs_reclaim_acquire(void)
4084 {
4085 lock_map_acquire(&__fs_reclaim_map);
4086 }
4087
__fs_reclaim_release(void)4088 void __fs_reclaim_release(void)
4089 {
4090 lock_map_release(&__fs_reclaim_map);
4091 }
4092
fs_reclaim_acquire(gfp_t gfp_mask)4093 void fs_reclaim_acquire(gfp_t gfp_mask)
4094 {
4095 if (__need_fs_reclaim(gfp_mask))
4096 __fs_reclaim_acquire();
4097 }
4098 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4099
fs_reclaim_release(gfp_t gfp_mask)4100 void fs_reclaim_release(gfp_t gfp_mask)
4101 {
4102 if (__need_fs_reclaim(gfp_mask))
4103 __fs_reclaim_release();
4104 }
4105 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4106 #endif
4107
4108 /* Perform direct synchronous page reclaim */
4109 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4110 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4111 const struct alloc_context *ac)
4112 {
4113 int progress;
4114 unsigned int noreclaim_flag;
4115 unsigned long pflags;
4116
4117 cond_resched();
4118
4119 /* We now go into synchronous reclaim */
4120 cpuset_memory_pressure_bump();
4121 psi_memstall_enter(&pflags);
4122 fs_reclaim_acquire(gfp_mask);
4123 noreclaim_flag = memalloc_noreclaim_save();
4124
4125 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4126 ac->nodemask);
4127
4128 memalloc_noreclaim_restore(noreclaim_flag);
4129 fs_reclaim_release(gfp_mask);
4130 psi_memstall_leave(&pflags);
4131
4132 cond_resched();
4133
4134 return progress;
4135 }
4136
4137 /* The really slow allocator path where we enter direct reclaim */
4138 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4139 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4140 unsigned int alloc_flags, const struct alloc_context *ac,
4141 unsigned long *did_some_progress)
4142 {
4143 struct page *page = NULL;
4144 bool drained = false;
4145
4146 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4147 if (unlikely(!(*did_some_progress)))
4148 return NULL;
4149
4150 retry:
4151 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4152
4153 /*
4154 * If an allocation failed after direct reclaim, it could be because
4155 * pages are pinned on the per-cpu lists or in high alloc reserves.
4156 * Shrink them them and try again
4157 */
4158 if (!page && !drained) {
4159 unreserve_highatomic_pageblock(ac, false);
4160 drain_all_pages(NULL);
4161 drained = true;
4162 goto retry;
4163 }
4164
4165 return page;
4166 }
4167
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4168 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4169 const struct alloc_context *ac)
4170 {
4171 struct zoneref *z;
4172 struct zone *zone;
4173 pg_data_t *last_pgdat = NULL;
4174 enum zone_type high_zoneidx = ac->high_zoneidx;
4175
4176 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4177 ac->nodemask) {
4178 if (last_pgdat != zone->zone_pgdat)
4179 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4180 last_pgdat = zone->zone_pgdat;
4181 }
4182 }
4183
4184 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4185 gfp_to_alloc_flags(gfp_t gfp_mask)
4186 {
4187 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4188
4189 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4190 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4191
4192 /*
4193 * The caller may dip into page reserves a bit more if the caller
4194 * cannot run direct reclaim, or if the caller has realtime scheduling
4195 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4196 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4197 */
4198 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4199
4200 if (gfp_mask & __GFP_ATOMIC) {
4201 /*
4202 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4203 * if it can't schedule.
4204 */
4205 if (!(gfp_mask & __GFP_NOMEMALLOC))
4206 alloc_flags |= ALLOC_HARDER;
4207 /*
4208 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4209 * comment for __cpuset_node_allowed().
4210 */
4211 alloc_flags &= ~ALLOC_CPUSET;
4212 } else if (unlikely(rt_task(current)) && !in_interrupt())
4213 alloc_flags |= ALLOC_HARDER;
4214
4215 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4216 alloc_flags |= ALLOC_KSWAPD;
4217
4218 #ifdef CONFIG_CMA
4219 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4220 alloc_flags |= ALLOC_CMA;
4221 #endif
4222 return alloc_flags;
4223 }
4224
oom_reserves_allowed(struct task_struct * tsk)4225 static bool oom_reserves_allowed(struct task_struct *tsk)
4226 {
4227 if (!tsk_is_oom_victim(tsk))
4228 return false;
4229
4230 /*
4231 * !MMU doesn't have oom reaper so give access to memory reserves
4232 * only to the thread with TIF_MEMDIE set
4233 */
4234 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4235 return false;
4236
4237 return true;
4238 }
4239
4240 /*
4241 * Distinguish requests which really need access to full memory
4242 * reserves from oom victims which can live with a portion of it
4243 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4244 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4245 {
4246 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4247 return 0;
4248 if (gfp_mask & __GFP_MEMALLOC)
4249 return ALLOC_NO_WATERMARKS;
4250 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4251 return ALLOC_NO_WATERMARKS;
4252 if (!in_interrupt()) {
4253 if (current->flags & PF_MEMALLOC)
4254 return ALLOC_NO_WATERMARKS;
4255 else if (oom_reserves_allowed(current))
4256 return ALLOC_OOM;
4257 }
4258
4259 return 0;
4260 }
4261
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4262 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4263 {
4264 return !!__gfp_pfmemalloc_flags(gfp_mask);
4265 }
4266
4267 /*
4268 * Checks whether it makes sense to retry the reclaim to make a forward progress
4269 * for the given allocation request.
4270 *
4271 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4272 * without success, or when we couldn't even meet the watermark if we
4273 * reclaimed all remaining pages on the LRU lists.
4274 *
4275 * Returns true if a retry is viable or false to enter the oom path.
4276 */
4277 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4278 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4279 struct alloc_context *ac, int alloc_flags,
4280 bool did_some_progress, int *no_progress_loops)
4281 {
4282 struct zone *zone;
4283 struct zoneref *z;
4284 bool ret = false;
4285
4286 /*
4287 * Costly allocations might have made a progress but this doesn't mean
4288 * their order will become available due to high fragmentation so
4289 * always increment the no progress counter for them
4290 */
4291 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4292 *no_progress_loops = 0;
4293 else
4294 (*no_progress_loops)++;
4295
4296 /*
4297 * Make sure we converge to OOM if we cannot make any progress
4298 * several times in the row.
4299 */
4300 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4301 /* Before OOM, exhaust highatomic_reserve */
4302 return unreserve_highatomic_pageblock(ac, true);
4303 }
4304
4305 /*
4306 * Keep reclaiming pages while there is a chance this will lead
4307 * somewhere. If none of the target zones can satisfy our allocation
4308 * request even if all reclaimable pages are considered then we are
4309 * screwed and have to go OOM.
4310 */
4311 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4312 ac->nodemask) {
4313 unsigned long available;
4314 unsigned long reclaimable;
4315 unsigned long min_wmark = min_wmark_pages(zone);
4316 bool wmark;
4317
4318 available = reclaimable = zone_reclaimable_pages(zone);
4319 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4320
4321 /*
4322 * Would the allocation succeed if we reclaimed all
4323 * reclaimable pages?
4324 */
4325 wmark = __zone_watermark_ok(zone, order, min_wmark,
4326 ac_classzone_idx(ac), alloc_flags, available);
4327 trace_reclaim_retry_zone(z, order, reclaimable,
4328 available, min_wmark, *no_progress_loops, wmark);
4329 if (wmark) {
4330 /*
4331 * If we didn't make any progress and have a lot of
4332 * dirty + writeback pages then we should wait for
4333 * an IO to complete to slow down the reclaim and
4334 * prevent from pre mature OOM
4335 */
4336 if (!did_some_progress) {
4337 unsigned long write_pending;
4338
4339 write_pending = zone_page_state_snapshot(zone,
4340 NR_ZONE_WRITE_PENDING);
4341
4342 if (2 * write_pending > reclaimable) {
4343 congestion_wait(BLK_RW_ASYNC, HZ/10);
4344 return true;
4345 }
4346 }
4347
4348 ret = true;
4349 goto out;
4350 }
4351 }
4352
4353 out:
4354 /*
4355 * Memory allocation/reclaim might be called from a WQ context and the
4356 * current implementation of the WQ concurrency control doesn't
4357 * recognize that a particular WQ is congested if the worker thread is
4358 * looping without ever sleeping. Therefore we have to do a short sleep
4359 * here rather than calling cond_resched().
4360 */
4361 if (current->flags & PF_WQ_WORKER)
4362 schedule_timeout_uninterruptible(1);
4363 else
4364 cond_resched();
4365 return ret;
4366 }
4367
4368 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4369 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4370 {
4371 /*
4372 * It's possible that cpuset's mems_allowed and the nodemask from
4373 * mempolicy don't intersect. This should be normally dealt with by
4374 * policy_nodemask(), but it's possible to race with cpuset update in
4375 * such a way the check therein was true, and then it became false
4376 * before we got our cpuset_mems_cookie here.
4377 * This assumes that for all allocations, ac->nodemask can come only
4378 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4379 * when it does not intersect with the cpuset restrictions) or the
4380 * caller can deal with a violated nodemask.
4381 */
4382 if (cpusets_enabled() && ac->nodemask &&
4383 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4384 ac->nodemask = NULL;
4385 return true;
4386 }
4387
4388 /*
4389 * When updating a task's mems_allowed or mempolicy nodemask, it is
4390 * possible to race with parallel threads in such a way that our
4391 * allocation can fail while the mask is being updated. If we are about
4392 * to fail, check if the cpuset changed during allocation and if so,
4393 * retry.
4394 */
4395 if (read_mems_allowed_retry(cpuset_mems_cookie))
4396 return true;
4397
4398 return false;
4399 }
4400
4401 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4402 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4403 struct alloc_context *ac)
4404 {
4405 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4406 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4407 struct page *page = NULL;
4408 unsigned int alloc_flags;
4409 unsigned long did_some_progress;
4410 enum compact_priority compact_priority;
4411 enum compact_result compact_result;
4412 int compaction_retries;
4413 int no_progress_loops;
4414 unsigned int cpuset_mems_cookie;
4415 int reserve_flags;
4416
4417 /*
4418 * We also sanity check to catch abuse of atomic reserves being used by
4419 * callers that are not in atomic context.
4420 */
4421 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4422 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4423 gfp_mask &= ~__GFP_ATOMIC;
4424
4425 retry_cpuset:
4426 compaction_retries = 0;
4427 no_progress_loops = 0;
4428 compact_priority = DEF_COMPACT_PRIORITY;
4429 cpuset_mems_cookie = read_mems_allowed_begin();
4430
4431 /*
4432 * The fast path uses conservative alloc_flags to succeed only until
4433 * kswapd needs to be woken up, and to avoid the cost of setting up
4434 * alloc_flags precisely. So we do that now.
4435 */
4436 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4437
4438 /*
4439 * We need to recalculate the starting point for the zonelist iterator
4440 * because we might have used different nodemask in the fast path, or
4441 * there was a cpuset modification and we are retrying - otherwise we
4442 * could end up iterating over non-eligible zones endlessly.
4443 */
4444 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4445 ac->high_zoneidx, ac->nodemask);
4446 if (!ac->preferred_zoneref->zone)
4447 goto nopage;
4448
4449 if (alloc_flags & ALLOC_KSWAPD)
4450 wake_all_kswapds(order, gfp_mask, ac);
4451
4452 /*
4453 * The adjusted alloc_flags might result in immediate success, so try
4454 * that first
4455 */
4456 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4457 if (page)
4458 goto got_pg;
4459
4460 /*
4461 * For costly allocations, try direct compaction first, as it's likely
4462 * that we have enough base pages and don't need to reclaim. For non-
4463 * movable high-order allocations, do that as well, as compaction will
4464 * try prevent permanent fragmentation by migrating from blocks of the
4465 * same migratetype.
4466 * Don't try this for allocations that are allowed to ignore
4467 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4468 */
4469 if (can_direct_reclaim &&
4470 (costly_order ||
4471 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4472 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4473 page = __alloc_pages_direct_compact(gfp_mask, order,
4474 alloc_flags, ac,
4475 INIT_COMPACT_PRIORITY,
4476 &compact_result);
4477 if (page)
4478 goto got_pg;
4479
4480 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4481 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4482 /*
4483 * If allocating entire pageblock(s) and compaction
4484 * failed because all zones are below low watermarks
4485 * or is prohibited because it recently failed at this
4486 * order, fail immediately unless the allocator has
4487 * requested compaction and reclaim retry.
4488 *
4489 * Reclaim is
4490 * - potentially very expensive because zones are far
4491 * below their low watermarks or this is part of very
4492 * bursty high order allocations,
4493 * - not guaranteed to help because isolate_freepages()
4494 * may not iterate over freed pages as part of its
4495 * linear scan, and
4496 * - unlikely to make entire pageblocks free on its
4497 * own.
4498 */
4499 if (compact_result == COMPACT_SKIPPED ||
4500 compact_result == COMPACT_DEFERRED)
4501 goto nopage;
4502 }
4503
4504 /*
4505 * Checks for costly allocations with __GFP_NORETRY, which
4506 * includes THP page fault allocations
4507 */
4508 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4509 /*
4510 * If compaction is deferred for high-order allocations,
4511 * it is because sync compaction recently failed. If
4512 * this is the case and the caller requested a THP
4513 * allocation, we do not want to heavily disrupt the
4514 * system, so we fail the allocation instead of entering
4515 * direct reclaim.
4516 */
4517 if (compact_result == COMPACT_DEFERRED)
4518 goto nopage;
4519
4520 /*
4521 * Looks like reclaim/compaction is worth trying, but
4522 * sync compaction could be very expensive, so keep
4523 * using async compaction.
4524 */
4525 compact_priority = INIT_COMPACT_PRIORITY;
4526 }
4527 }
4528
4529 retry:
4530 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4531 if (alloc_flags & ALLOC_KSWAPD)
4532 wake_all_kswapds(order, gfp_mask, ac);
4533
4534 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4535 if (reserve_flags)
4536 alloc_flags = reserve_flags;
4537
4538 /*
4539 * Reset the nodemask and zonelist iterators if memory policies can be
4540 * ignored. These allocations are high priority and system rather than
4541 * user oriented.
4542 */
4543 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4544 ac->nodemask = NULL;
4545 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4546 ac->high_zoneidx, ac->nodemask);
4547 }
4548
4549 /* Attempt with potentially adjusted zonelist and alloc_flags */
4550 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4551 if (page)
4552 goto got_pg;
4553
4554 /* Caller is not willing to reclaim, we can't balance anything */
4555 if (!can_direct_reclaim)
4556 goto nopage;
4557
4558 /* Avoid recursion of direct reclaim */
4559 if (current->flags & PF_MEMALLOC)
4560 goto nopage;
4561
4562 /* Try direct reclaim and then allocating */
4563 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4564 &did_some_progress);
4565 if (page)
4566 goto got_pg;
4567
4568 /* Try direct compaction and then allocating */
4569 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4570 compact_priority, &compact_result);
4571 if (page)
4572 goto got_pg;
4573
4574 /* Do not loop if specifically requested */
4575 if (gfp_mask & __GFP_NORETRY)
4576 goto nopage;
4577
4578 /*
4579 * Do not retry costly high order allocations unless they are
4580 * __GFP_RETRY_MAYFAIL
4581 */
4582 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4583 goto nopage;
4584
4585 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4586 did_some_progress > 0, &no_progress_loops))
4587 goto retry;
4588
4589 /*
4590 * It doesn't make any sense to retry for the compaction if the order-0
4591 * reclaim is not able to make any progress because the current
4592 * implementation of the compaction depends on the sufficient amount
4593 * of free memory (see __compaction_suitable)
4594 */
4595 if (did_some_progress > 0 &&
4596 should_compact_retry(ac, order, alloc_flags,
4597 compact_result, &compact_priority,
4598 &compaction_retries))
4599 goto retry;
4600
4601
4602 /* Deal with possible cpuset update races before we start OOM killing */
4603 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4604 goto retry_cpuset;
4605
4606 /* Reclaim has failed us, start killing things */
4607 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4608 if (page)
4609 goto got_pg;
4610
4611 /* Avoid allocations with no watermarks from looping endlessly */
4612 if (tsk_is_oom_victim(current) &&
4613 (alloc_flags == ALLOC_OOM ||
4614 (gfp_mask & __GFP_NOMEMALLOC)))
4615 goto nopage;
4616
4617 /* Retry as long as the OOM killer is making progress */
4618 if (did_some_progress) {
4619 no_progress_loops = 0;
4620 goto retry;
4621 }
4622
4623 nopage:
4624 /* Deal with possible cpuset update races before we fail */
4625 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4626 goto retry_cpuset;
4627
4628 /*
4629 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4630 * we always retry
4631 */
4632 if (gfp_mask & __GFP_NOFAIL) {
4633 /*
4634 * All existing users of the __GFP_NOFAIL are blockable, so warn
4635 * of any new users that actually require GFP_NOWAIT
4636 */
4637 if (WARN_ON_ONCE(!can_direct_reclaim))
4638 goto fail;
4639
4640 /*
4641 * PF_MEMALLOC request from this context is rather bizarre
4642 * because we cannot reclaim anything and only can loop waiting
4643 * for somebody to do a work for us
4644 */
4645 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4646
4647 /*
4648 * non failing costly orders are a hard requirement which we
4649 * are not prepared for much so let's warn about these users
4650 * so that we can identify them and convert them to something
4651 * else.
4652 */
4653 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4654
4655 /*
4656 * Help non-failing allocations by giving them access to memory
4657 * reserves but do not use ALLOC_NO_WATERMARKS because this
4658 * could deplete whole memory reserves which would just make
4659 * the situation worse
4660 */
4661 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4662 if (page)
4663 goto got_pg;
4664
4665 cond_resched();
4666 goto retry;
4667 }
4668 fail:
4669 warn_alloc(gfp_mask, ac->nodemask,
4670 "page allocation failure: order:%u", order);
4671 got_pg:
4672 return page;
4673 }
4674
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4675 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4676 int preferred_nid, nodemask_t *nodemask,
4677 struct alloc_context *ac, gfp_t *alloc_mask,
4678 unsigned int *alloc_flags)
4679 {
4680 ac->high_zoneidx = gfp_zone(gfp_mask);
4681 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4682 ac->nodemask = nodemask;
4683 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4684
4685 if (cpusets_enabled()) {
4686 *alloc_mask |= __GFP_HARDWALL;
4687 if (!ac->nodemask)
4688 ac->nodemask = &cpuset_current_mems_allowed;
4689 else
4690 *alloc_flags |= ALLOC_CPUSET;
4691 }
4692
4693 fs_reclaim_acquire(gfp_mask);
4694 fs_reclaim_release(gfp_mask);
4695
4696 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4697
4698 if (should_fail_alloc_page(gfp_mask, order))
4699 return false;
4700
4701 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4702 *alloc_flags |= ALLOC_CMA;
4703
4704 return true;
4705 }
4706
4707 /* Determine whether to spread dirty pages and what the first usable zone */
finalise_ac(gfp_t gfp_mask,struct alloc_context * ac)4708 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4709 {
4710 /* Dirty zone balancing only done in the fast path */
4711 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4712
4713 /*
4714 * The preferred zone is used for statistics but crucially it is
4715 * also used as the starting point for the zonelist iterator. It
4716 * may get reset for allocations that ignore memory policies.
4717 */
4718 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4719 ac->high_zoneidx, ac->nodemask);
4720 }
4721
4722 /*
4723 * This is the 'heart' of the zoned buddy allocator.
4724 */
4725 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)4726 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4727 nodemask_t *nodemask)
4728 {
4729 struct page *page;
4730 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4731 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4732 struct alloc_context ac = { };
4733
4734 /*
4735 * There are several places where we assume that the order value is sane
4736 * so bail out early if the request is out of bound.
4737 */
4738 if (unlikely(order >= MAX_ORDER)) {
4739 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4740 return NULL;
4741 }
4742
4743 gfp_mask &= gfp_allowed_mask;
4744 alloc_mask = gfp_mask;
4745 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4746 return NULL;
4747
4748 finalise_ac(gfp_mask, &ac);
4749
4750 /*
4751 * Forbid the first pass from falling back to types that fragment
4752 * memory until all local zones are considered.
4753 */
4754 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4755
4756 /* First allocation attempt */
4757 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4758 if (likely(page))
4759 goto out;
4760
4761 /*
4762 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4763 * resp. GFP_NOIO which has to be inherited for all allocation requests
4764 * from a particular context which has been marked by
4765 * memalloc_no{fs,io}_{save,restore}.
4766 */
4767 alloc_mask = current_gfp_context(gfp_mask);
4768 ac.spread_dirty_pages = false;
4769
4770 /*
4771 * Restore the original nodemask if it was potentially replaced with
4772 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4773 */
4774 if (unlikely(ac.nodemask != nodemask))
4775 ac.nodemask = nodemask;
4776
4777 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4778
4779 out:
4780 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4781 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4782 __free_pages(page, order);
4783 page = NULL;
4784 }
4785
4786 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4787
4788 return page;
4789 }
4790 EXPORT_SYMBOL(__alloc_pages_nodemask);
4791
4792 /*
4793 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4794 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4795 * you need to access high mem.
4796 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4797 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4798 {
4799 struct page *page;
4800
4801 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4802 if (!page)
4803 return 0;
4804 return (unsigned long) page_address(page);
4805 }
4806 EXPORT_SYMBOL(__get_free_pages);
4807
get_zeroed_page(gfp_t gfp_mask)4808 unsigned long get_zeroed_page(gfp_t gfp_mask)
4809 {
4810 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4811 }
4812 EXPORT_SYMBOL(get_zeroed_page);
4813
free_the_page(struct page * page,unsigned int order)4814 static inline void free_the_page(struct page *page, unsigned int order)
4815 {
4816 if (order == 0) /* Via pcp? */
4817 free_unref_page(page);
4818 else
4819 __free_pages_ok(page, order);
4820 }
4821
__free_pages(struct page * page,unsigned int order)4822 void __free_pages(struct page *page, unsigned int order)
4823 {
4824 if (put_page_testzero(page))
4825 free_the_page(page, order);
4826 }
4827 EXPORT_SYMBOL(__free_pages);
4828
free_pages(unsigned long addr,unsigned int order)4829 void free_pages(unsigned long addr, unsigned int order)
4830 {
4831 if (addr != 0) {
4832 VM_BUG_ON(!virt_addr_valid((void *)addr));
4833 __free_pages(virt_to_page((void *)addr), order);
4834 }
4835 }
4836
4837 EXPORT_SYMBOL(free_pages);
4838
4839 /*
4840 * Page Fragment:
4841 * An arbitrary-length arbitrary-offset area of memory which resides
4842 * within a 0 or higher order page. Multiple fragments within that page
4843 * are individually refcounted, in the page's reference counter.
4844 *
4845 * The page_frag functions below provide a simple allocation framework for
4846 * page fragments. This is used by the network stack and network device
4847 * drivers to provide a backing region of memory for use as either an
4848 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4849 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4850 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4851 gfp_t gfp_mask)
4852 {
4853 struct page *page = NULL;
4854 gfp_t gfp = gfp_mask;
4855
4856 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4857 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4858 __GFP_NOMEMALLOC;
4859 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4860 PAGE_FRAG_CACHE_MAX_ORDER);
4861 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4862 #endif
4863 if (unlikely(!page))
4864 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4865
4866 nc->va = page ? page_address(page) : NULL;
4867
4868 return page;
4869 }
4870
__page_frag_cache_drain(struct page * page,unsigned int count)4871 void __page_frag_cache_drain(struct page *page, unsigned int count)
4872 {
4873 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4874
4875 if (page_ref_sub_and_test(page, count))
4876 free_the_page(page, compound_order(page));
4877 }
4878 EXPORT_SYMBOL(__page_frag_cache_drain);
4879
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)4880 void *page_frag_alloc(struct page_frag_cache *nc,
4881 unsigned int fragsz, gfp_t gfp_mask)
4882 {
4883 unsigned int size = PAGE_SIZE;
4884 struct page *page;
4885 int offset;
4886
4887 if (unlikely(!nc->va)) {
4888 refill:
4889 page = __page_frag_cache_refill(nc, gfp_mask);
4890 if (!page)
4891 return NULL;
4892
4893 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4894 /* if size can vary use size else just use PAGE_SIZE */
4895 size = nc->size;
4896 #endif
4897 /* Even if we own the page, we do not use atomic_set().
4898 * This would break get_page_unless_zero() users.
4899 */
4900 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4901
4902 /* reset page count bias and offset to start of new frag */
4903 nc->pfmemalloc = page_is_pfmemalloc(page);
4904 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4905 nc->offset = size;
4906 }
4907
4908 offset = nc->offset - fragsz;
4909 if (unlikely(offset < 0)) {
4910 page = virt_to_page(nc->va);
4911
4912 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4913 goto refill;
4914
4915 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4916 /* if size can vary use size else just use PAGE_SIZE */
4917 size = nc->size;
4918 #endif
4919 /* OK, page count is 0, we can safely set it */
4920 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4921
4922 /* reset page count bias and offset to start of new frag */
4923 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4924 offset = size - fragsz;
4925 }
4926
4927 nc->pagecnt_bias--;
4928 nc->offset = offset;
4929
4930 return nc->va + offset;
4931 }
4932 EXPORT_SYMBOL(page_frag_alloc);
4933
4934 /*
4935 * Frees a page fragment allocated out of either a compound or order 0 page.
4936 */
page_frag_free(void * addr)4937 void page_frag_free(void *addr)
4938 {
4939 struct page *page = virt_to_head_page(addr);
4940
4941 if (unlikely(put_page_testzero(page)))
4942 free_the_page(page, compound_order(page));
4943 }
4944 EXPORT_SYMBOL(page_frag_free);
4945
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4946 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4947 size_t size)
4948 {
4949 if (addr) {
4950 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4951 unsigned long used = addr + PAGE_ALIGN(size);
4952
4953 split_page(virt_to_page((void *)addr), order);
4954 while (used < alloc_end) {
4955 free_page(used);
4956 used += PAGE_SIZE;
4957 }
4958 }
4959 return (void *)addr;
4960 }
4961
4962 /**
4963 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4964 * @size: the number of bytes to allocate
4965 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4966 *
4967 * This function is similar to alloc_pages(), except that it allocates the
4968 * minimum number of pages to satisfy the request. alloc_pages() can only
4969 * allocate memory in power-of-two pages.
4970 *
4971 * This function is also limited by MAX_ORDER.
4972 *
4973 * Memory allocated by this function must be released by free_pages_exact().
4974 *
4975 * Return: pointer to the allocated area or %NULL in case of error.
4976 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4977 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4978 {
4979 unsigned int order = get_order(size);
4980 unsigned long addr;
4981
4982 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4983 gfp_mask &= ~__GFP_COMP;
4984
4985 addr = __get_free_pages(gfp_mask, order);
4986 return make_alloc_exact(addr, order, size);
4987 }
4988 EXPORT_SYMBOL(alloc_pages_exact);
4989
4990 /**
4991 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4992 * pages on a node.
4993 * @nid: the preferred node ID where memory should be allocated
4994 * @size: the number of bytes to allocate
4995 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4996 *
4997 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4998 * back.
4999 *
5000 * Return: pointer to the allocated area or %NULL in case of error.
5001 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5002 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5003 {
5004 unsigned int order = get_order(size);
5005 struct page *p;
5006
5007 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5008 gfp_mask &= ~__GFP_COMP;
5009
5010 p = alloc_pages_node(nid, gfp_mask, order);
5011 if (!p)
5012 return NULL;
5013 return make_alloc_exact((unsigned long)page_address(p), order, size);
5014 }
5015
5016 /**
5017 * free_pages_exact - release memory allocated via alloc_pages_exact()
5018 * @virt: the value returned by alloc_pages_exact.
5019 * @size: size of allocation, same value as passed to alloc_pages_exact().
5020 *
5021 * Release the memory allocated by a previous call to alloc_pages_exact.
5022 */
free_pages_exact(void * virt,size_t size)5023 void free_pages_exact(void *virt, size_t size)
5024 {
5025 unsigned long addr = (unsigned long)virt;
5026 unsigned long end = addr + PAGE_ALIGN(size);
5027
5028 while (addr < end) {
5029 free_page(addr);
5030 addr += PAGE_SIZE;
5031 }
5032 }
5033 EXPORT_SYMBOL(free_pages_exact);
5034
5035 /**
5036 * nr_free_zone_pages - count number of pages beyond high watermark
5037 * @offset: The zone index of the highest zone
5038 *
5039 * nr_free_zone_pages() counts the number of pages which are beyond the
5040 * high watermark within all zones at or below a given zone index. For each
5041 * zone, the number of pages is calculated as:
5042 *
5043 * nr_free_zone_pages = managed_pages - high_pages
5044 *
5045 * Return: number of pages beyond high watermark.
5046 */
nr_free_zone_pages(int offset)5047 static unsigned long nr_free_zone_pages(int offset)
5048 {
5049 struct zoneref *z;
5050 struct zone *zone;
5051
5052 /* Just pick one node, since fallback list is circular */
5053 unsigned long sum = 0;
5054
5055 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5056
5057 for_each_zone_zonelist(zone, z, zonelist, offset) {
5058 unsigned long size = zone_managed_pages(zone);
5059 unsigned long high = high_wmark_pages(zone);
5060 if (size > high)
5061 sum += size - high;
5062 }
5063
5064 return sum;
5065 }
5066
5067 /**
5068 * nr_free_buffer_pages - count number of pages beyond high watermark
5069 *
5070 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5071 * watermark within ZONE_DMA and ZONE_NORMAL.
5072 *
5073 * Return: number of pages beyond high watermark within ZONE_DMA and
5074 * ZONE_NORMAL.
5075 */
nr_free_buffer_pages(void)5076 unsigned long nr_free_buffer_pages(void)
5077 {
5078 return nr_free_zone_pages(gfp_zone(GFP_USER));
5079 }
5080 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5081
5082 /**
5083 * nr_free_pagecache_pages - count number of pages beyond high watermark
5084 *
5085 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5086 * high watermark within all zones.
5087 *
5088 * Return: number of pages beyond high watermark within all zones.
5089 */
nr_free_pagecache_pages(void)5090 unsigned long nr_free_pagecache_pages(void)
5091 {
5092 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5093 }
5094
show_node(struct zone * zone)5095 static inline void show_node(struct zone *zone)
5096 {
5097 if (IS_ENABLED(CONFIG_NUMA))
5098 printk("Node %d ", zone_to_nid(zone));
5099 }
5100
si_mem_available(void)5101 long si_mem_available(void)
5102 {
5103 long available;
5104 unsigned long pagecache;
5105 unsigned long wmark_low = 0;
5106 unsigned long pages[NR_LRU_LISTS];
5107 unsigned long reclaimable;
5108 struct zone *zone;
5109 int lru;
5110
5111 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5112 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5113
5114 for_each_zone(zone)
5115 wmark_low += low_wmark_pages(zone);
5116
5117 /*
5118 * Estimate the amount of memory available for userspace allocations,
5119 * without causing swapping.
5120 */
5121 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5122
5123 /*
5124 * Not all the page cache can be freed, otherwise the system will
5125 * start swapping. Assume at least half of the page cache, or the
5126 * low watermark worth of cache, needs to stay.
5127 */
5128 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5129 pagecache -= min(pagecache / 2, wmark_low);
5130 available += pagecache;
5131
5132 /*
5133 * Part of the reclaimable slab and other kernel memory consists of
5134 * items that are in use, and cannot be freed. Cap this estimate at the
5135 * low watermark.
5136 */
5137 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5138 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5139 available += reclaimable - min(reclaimable / 2, wmark_low);
5140
5141 if (available < 0)
5142 available = 0;
5143 return available;
5144 }
5145 EXPORT_SYMBOL_GPL(si_mem_available);
5146
si_meminfo(struct sysinfo * val)5147 void si_meminfo(struct sysinfo *val)
5148 {
5149 val->totalram = totalram_pages();
5150 val->sharedram = global_node_page_state(NR_SHMEM);
5151 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5152 val->bufferram = nr_blockdev_pages();
5153 val->totalhigh = totalhigh_pages();
5154 val->freehigh = nr_free_highpages();
5155 val->mem_unit = PAGE_SIZE;
5156 }
5157
5158 EXPORT_SYMBOL(si_meminfo);
5159
5160 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5161 void si_meminfo_node(struct sysinfo *val, int nid)
5162 {
5163 int zone_type; /* needs to be signed */
5164 unsigned long managed_pages = 0;
5165 unsigned long managed_highpages = 0;
5166 unsigned long free_highpages = 0;
5167 pg_data_t *pgdat = NODE_DATA(nid);
5168
5169 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5170 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5171 val->totalram = managed_pages;
5172 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5173 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5174 #ifdef CONFIG_HIGHMEM
5175 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5176 struct zone *zone = &pgdat->node_zones[zone_type];
5177
5178 if (is_highmem(zone)) {
5179 managed_highpages += zone_managed_pages(zone);
5180 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5181 }
5182 }
5183 val->totalhigh = managed_highpages;
5184 val->freehigh = free_highpages;
5185 #else
5186 val->totalhigh = managed_highpages;
5187 val->freehigh = free_highpages;
5188 #endif
5189 val->mem_unit = PAGE_SIZE;
5190 }
5191 #endif
5192
5193 /*
5194 * Determine whether the node should be displayed or not, depending on whether
5195 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5196 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5197 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5198 {
5199 if (!(flags & SHOW_MEM_FILTER_NODES))
5200 return false;
5201
5202 /*
5203 * no node mask - aka implicit memory numa policy. Do not bother with
5204 * the synchronization - read_mems_allowed_begin - because we do not
5205 * have to be precise here.
5206 */
5207 if (!nodemask)
5208 nodemask = &cpuset_current_mems_allowed;
5209
5210 return !node_isset(nid, *nodemask);
5211 }
5212
5213 #define K(x) ((x) << (PAGE_SHIFT-10))
5214
show_migration_types(unsigned char type)5215 static void show_migration_types(unsigned char type)
5216 {
5217 static const char types[MIGRATE_TYPES] = {
5218 [MIGRATE_UNMOVABLE] = 'U',
5219 [MIGRATE_MOVABLE] = 'M',
5220 [MIGRATE_RECLAIMABLE] = 'E',
5221 [MIGRATE_HIGHATOMIC] = 'H',
5222 #ifdef CONFIG_CMA
5223 [MIGRATE_CMA] = 'C',
5224 #endif
5225 #ifdef CONFIG_MEMORY_ISOLATION
5226 [MIGRATE_ISOLATE] = 'I',
5227 #endif
5228 };
5229 char tmp[MIGRATE_TYPES + 1];
5230 char *p = tmp;
5231 int i;
5232
5233 for (i = 0; i < MIGRATE_TYPES; i++) {
5234 if (type & (1 << i))
5235 *p++ = types[i];
5236 }
5237
5238 *p = '\0';
5239 printk(KERN_CONT "(%s) ", tmp);
5240 }
5241
5242 /*
5243 * Show free area list (used inside shift_scroll-lock stuff)
5244 * We also calculate the percentage fragmentation. We do this by counting the
5245 * memory on each free list with the exception of the first item on the list.
5246 *
5247 * Bits in @filter:
5248 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5249 * cpuset.
5250 */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5251 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5252 {
5253 unsigned long free_pcp = 0;
5254 int cpu;
5255 struct zone *zone;
5256 pg_data_t *pgdat;
5257
5258 for_each_populated_zone(zone) {
5259 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5260 continue;
5261
5262 for_each_online_cpu(cpu)
5263 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5264 }
5265
5266 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5267 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5268 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5269 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5270 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5271 " free:%lu free_pcp:%lu free_cma:%lu\n",
5272 global_node_page_state(NR_ACTIVE_ANON),
5273 global_node_page_state(NR_INACTIVE_ANON),
5274 global_node_page_state(NR_ISOLATED_ANON),
5275 global_node_page_state(NR_ACTIVE_FILE),
5276 global_node_page_state(NR_INACTIVE_FILE),
5277 global_node_page_state(NR_ISOLATED_FILE),
5278 global_node_page_state(NR_UNEVICTABLE),
5279 global_node_page_state(NR_FILE_DIRTY),
5280 global_node_page_state(NR_WRITEBACK),
5281 global_node_page_state(NR_UNSTABLE_NFS),
5282 global_node_page_state(NR_SLAB_RECLAIMABLE),
5283 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5284 global_node_page_state(NR_FILE_MAPPED),
5285 global_node_page_state(NR_SHMEM),
5286 global_zone_page_state(NR_PAGETABLE),
5287 global_zone_page_state(NR_BOUNCE),
5288 global_zone_page_state(NR_FREE_PAGES),
5289 free_pcp,
5290 global_zone_page_state(NR_FREE_CMA_PAGES));
5291
5292 for_each_online_pgdat(pgdat) {
5293 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5294 continue;
5295
5296 printk("Node %d"
5297 " active_anon:%lukB"
5298 " inactive_anon:%lukB"
5299 " active_file:%lukB"
5300 " inactive_file:%lukB"
5301 " unevictable:%lukB"
5302 " isolated(anon):%lukB"
5303 " isolated(file):%lukB"
5304 " mapped:%lukB"
5305 " dirty:%lukB"
5306 " writeback:%lukB"
5307 " shmem:%lukB"
5308 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5309 " shmem_thp: %lukB"
5310 " shmem_pmdmapped: %lukB"
5311 " anon_thp: %lukB"
5312 #endif
5313 " writeback_tmp:%lukB"
5314 " unstable:%lukB"
5315 " all_unreclaimable? %s"
5316 "\n",
5317 pgdat->node_id,
5318 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5319 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5320 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5321 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5322 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5323 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5324 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5325 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5326 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5327 K(node_page_state(pgdat, NR_WRITEBACK)),
5328 K(node_page_state(pgdat, NR_SHMEM)),
5329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5330 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5331 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5332 * HPAGE_PMD_NR),
5333 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5334 #endif
5335 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5336 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5337 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5338 "yes" : "no");
5339 }
5340
5341 for_each_populated_zone(zone) {
5342 int i;
5343
5344 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5345 continue;
5346
5347 free_pcp = 0;
5348 for_each_online_cpu(cpu)
5349 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5350
5351 show_node(zone);
5352 printk(KERN_CONT
5353 "%s"
5354 " free:%lukB"
5355 " min:%lukB"
5356 " low:%lukB"
5357 " high:%lukB"
5358 " active_anon:%lukB"
5359 " inactive_anon:%lukB"
5360 " active_file:%lukB"
5361 " inactive_file:%lukB"
5362 " unevictable:%lukB"
5363 " writepending:%lukB"
5364 " present:%lukB"
5365 " managed:%lukB"
5366 " mlocked:%lukB"
5367 " kernel_stack:%lukB"
5368 #ifdef CONFIG_SHADOW_CALL_STACK
5369 " shadow_call_stack:%lukB"
5370 #endif
5371 " pagetables:%lukB"
5372 " bounce:%lukB"
5373 " free_pcp:%lukB"
5374 " local_pcp:%ukB"
5375 " free_cma:%lukB"
5376 "\n",
5377 zone->name,
5378 K(zone_page_state(zone, NR_FREE_PAGES)),
5379 K(min_wmark_pages(zone)),
5380 K(low_wmark_pages(zone)),
5381 K(high_wmark_pages(zone)),
5382 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5383 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5384 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5385 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5386 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5387 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5388 K(zone->present_pages),
5389 K(zone_managed_pages(zone)),
5390 K(zone_page_state(zone, NR_MLOCK)),
5391 zone_page_state(zone, NR_KERNEL_STACK_KB),
5392 #ifdef CONFIG_SHADOW_CALL_STACK
5393 zone_page_state(zone, NR_KERNEL_SCS_BYTES) / 1024,
5394 #endif
5395 K(zone_page_state(zone, NR_PAGETABLE)),
5396 K(zone_page_state(zone, NR_BOUNCE)),
5397 K(free_pcp),
5398 K(this_cpu_read(zone->pageset->pcp.count)),
5399 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5400 printk("lowmem_reserve[]:");
5401 for (i = 0; i < MAX_NR_ZONES; i++)
5402 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5403 printk(KERN_CONT "\n");
5404 }
5405
5406 for_each_populated_zone(zone) {
5407 unsigned int order;
5408 unsigned long nr[MAX_ORDER], flags, total = 0;
5409 unsigned char types[MAX_ORDER];
5410
5411 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5412 continue;
5413 show_node(zone);
5414 printk(KERN_CONT "%s: ", zone->name);
5415
5416 spin_lock_irqsave(&zone->lock, flags);
5417 for (order = 0; order < MAX_ORDER; order++) {
5418 struct free_area *area = &zone->free_area[order];
5419 int type;
5420
5421 nr[order] = area->nr_free;
5422 total += nr[order] << order;
5423
5424 types[order] = 0;
5425 for (type = 0; type < MIGRATE_TYPES; type++) {
5426 if (!free_area_empty(area, type))
5427 types[order] |= 1 << type;
5428 }
5429 }
5430 spin_unlock_irqrestore(&zone->lock, flags);
5431 for (order = 0; order < MAX_ORDER; order++) {
5432 printk(KERN_CONT "%lu*%lukB ",
5433 nr[order], K(1UL) << order);
5434 if (nr[order])
5435 show_migration_types(types[order]);
5436 }
5437 printk(KERN_CONT "= %lukB\n", K(total));
5438 }
5439
5440 hugetlb_show_meminfo();
5441
5442 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5443
5444 show_swap_cache_info();
5445 }
5446
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5447 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5448 {
5449 zoneref->zone = zone;
5450 zoneref->zone_idx = zone_idx(zone);
5451 }
5452
5453 /*
5454 * Builds allocation fallback zone lists.
5455 *
5456 * Add all populated zones of a node to the zonelist.
5457 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5458 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5459 {
5460 struct zone *zone;
5461 enum zone_type zone_type = MAX_NR_ZONES;
5462 int nr_zones = 0;
5463
5464 do {
5465 zone_type--;
5466 zone = pgdat->node_zones + zone_type;
5467 if (managed_zone(zone)) {
5468 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5469 check_highest_zone(zone_type);
5470 }
5471 } while (zone_type);
5472
5473 return nr_zones;
5474 }
5475
5476 #ifdef CONFIG_NUMA
5477
__parse_numa_zonelist_order(char * s)5478 static int __parse_numa_zonelist_order(char *s)
5479 {
5480 /*
5481 * We used to support different zonlists modes but they turned
5482 * out to be just not useful. Let's keep the warning in place
5483 * if somebody still use the cmd line parameter so that we do
5484 * not fail it silently
5485 */
5486 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5487 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5488 return -EINVAL;
5489 }
5490 return 0;
5491 }
5492
setup_numa_zonelist_order(char * s)5493 static __init int setup_numa_zonelist_order(char *s)
5494 {
5495 if (!s)
5496 return 0;
5497
5498 return __parse_numa_zonelist_order(s);
5499 }
5500 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5501
5502 char numa_zonelist_order[] = "Node";
5503
5504 /*
5505 * sysctl handler for numa_zonelist_order
5506 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5507 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5508 void __user *buffer, size_t *length,
5509 loff_t *ppos)
5510 {
5511 char *str;
5512 int ret;
5513
5514 if (!write)
5515 return proc_dostring(table, write, buffer, length, ppos);
5516 str = memdup_user_nul(buffer, 16);
5517 if (IS_ERR(str))
5518 return PTR_ERR(str);
5519
5520 ret = __parse_numa_zonelist_order(str);
5521 kfree(str);
5522 return ret;
5523 }
5524
5525
5526 #define MAX_NODE_LOAD (nr_online_nodes)
5527 static int node_load[MAX_NUMNODES];
5528
5529 /**
5530 * find_next_best_node - find the next node that should appear in a given node's fallback list
5531 * @node: node whose fallback list we're appending
5532 * @used_node_mask: nodemask_t of already used nodes
5533 *
5534 * We use a number of factors to determine which is the next node that should
5535 * appear on a given node's fallback list. The node should not have appeared
5536 * already in @node's fallback list, and it should be the next closest node
5537 * according to the distance array (which contains arbitrary distance values
5538 * from each node to each node in the system), and should also prefer nodes
5539 * with no CPUs, since presumably they'll have very little allocation pressure
5540 * on them otherwise.
5541 *
5542 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5543 */
find_next_best_node(int node,nodemask_t * used_node_mask)5544 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5545 {
5546 int n, val;
5547 int min_val = INT_MAX;
5548 int best_node = NUMA_NO_NODE;
5549 const struct cpumask *tmp = cpumask_of_node(0);
5550
5551 /* Use the local node if we haven't already */
5552 if (!node_isset(node, *used_node_mask)) {
5553 node_set(node, *used_node_mask);
5554 return node;
5555 }
5556
5557 for_each_node_state(n, N_MEMORY) {
5558
5559 /* Don't want a node to appear more than once */
5560 if (node_isset(n, *used_node_mask))
5561 continue;
5562
5563 /* Use the distance array to find the distance */
5564 val = node_distance(node, n);
5565
5566 /* Penalize nodes under us ("prefer the next node") */
5567 val += (n < node);
5568
5569 /* Give preference to headless and unused nodes */
5570 tmp = cpumask_of_node(n);
5571 if (!cpumask_empty(tmp))
5572 val += PENALTY_FOR_NODE_WITH_CPUS;
5573
5574 /* Slight preference for less loaded node */
5575 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5576 val += node_load[n];
5577
5578 if (val < min_val) {
5579 min_val = val;
5580 best_node = n;
5581 }
5582 }
5583
5584 if (best_node >= 0)
5585 node_set(best_node, *used_node_mask);
5586
5587 return best_node;
5588 }
5589
5590
5591 /*
5592 * Build zonelists ordered by node and zones within node.
5593 * This results in maximum locality--normal zone overflows into local
5594 * DMA zone, if any--but risks exhausting DMA zone.
5595 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5596 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5597 unsigned nr_nodes)
5598 {
5599 struct zoneref *zonerefs;
5600 int i;
5601
5602 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5603
5604 for (i = 0; i < nr_nodes; i++) {
5605 int nr_zones;
5606
5607 pg_data_t *node = NODE_DATA(node_order[i]);
5608
5609 nr_zones = build_zonerefs_node(node, zonerefs);
5610 zonerefs += nr_zones;
5611 }
5612 zonerefs->zone = NULL;
5613 zonerefs->zone_idx = 0;
5614 }
5615
5616 /*
5617 * Build gfp_thisnode zonelists
5618 */
build_thisnode_zonelists(pg_data_t * pgdat)5619 static void build_thisnode_zonelists(pg_data_t *pgdat)
5620 {
5621 struct zoneref *zonerefs;
5622 int nr_zones;
5623
5624 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5625 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5626 zonerefs += nr_zones;
5627 zonerefs->zone = NULL;
5628 zonerefs->zone_idx = 0;
5629 }
5630
5631 /*
5632 * Build zonelists ordered by zone and nodes within zones.
5633 * This results in conserving DMA zone[s] until all Normal memory is
5634 * exhausted, but results in overflowing to remote node while memory
5635 * may still exist in local DMA zone.
5636 */
5637
build_zonelists(pg_data_t * pgdat)5638 static void build_zonelists(pg_data_t *pgdat)
5639 {
5640 static int node_order[MAX_NUMNODES];
5641 int node, load, nr_nodes = 0;
5642 nodemask_t used_mask;
5643 int local_node, prev_node;
5644
5645 /* NUMA-aware ordering of nodes */
5646 local_node = pgdat->node_id;
5647 load = nr_online_nodes;
5648 prev_node = local_node;
5649 nodes_clear(used_mask);
5650
5651 memset(node_order, 0, sizeof(node_order));
5652 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5653 /*
5654 * We don't want to pressure a particular node.
5655 * So adding penalty to the first node in same
5656 * distance group to make it round-robin.
5657 */
5658 if (node_distance(local_node, node) !=
5659 node_distance(local_node, prev_node))
5660 node_load[node] = load;
5661
5662 node_order[nr_nodes++] = node;
5663 prev_node = node;
5664 load--;
5665 }
5666
5667 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5668 build_thisnode_zonelists(pgdat);
5669 }
5670
5671 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5672 /*
5673 * Return node id of node used for "local" allocations.
5674 * I.e., first node id of first zone in arg node's generic zonelist.
5675 * Used for initializing percpu 'numa_mem', which is used primarily
5676 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5677 */
local_memory_node(int node)5678 int local_memory_node(int node)
5679 {
5680 struct zoneref *z;
5681
5682 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5683 gfp_zone(GFP_KERNEL),
5684 NULL);
5685 return zone_to_nid(z->zone);
5686 }
5687 #endif
5688
5689 static void setup_min_unmapped_ratio(void);
5690 static void setup_min_slab_ratio(void);
5691 #else /* CONFIG_NUMA */
5692
build_zonelists(pg_data_t * pgdat)5693 static void build_zonelists(pg_data_t *pgdat)
5694 {
5695 int node, local_node;
5696 struct zoneref *zonerefs;
5697 int nr_zones;
5698
5699 local_node = pgdat->node_id;
5700
5701 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5702 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5703 zonerefs += nr_zones;
5704
5705 /*
5706 * Now we build the zonelist so that it contains the zones
5707 * of all the other nodes.
5708 * We don't want to pressure a particular node, so when
5709 * building the zones for node N, we make sure that the
5710 * zones coming right after the local ones are those from
5711 * node N+1 (modulo N)
5712 */
5713 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5714 if (!node_online(node))
5715 continue;
5716 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5717 zonerefs += nr_zones;
5718 }
5719 for (node = 0; node < local_node; node++) {
5720 if (!node_online(node))
5721 continue;
5722 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5723 zonerefs += nr_zones;
5724 }
5725
5726 zonerefs->zone = NULL;
5727 zonerefs->zone_idx = 0;
5728 }
5729
5730 #endif /* CONFIG_NUMA */
5731
5732 /*
5733 * Boot pageset table. One per cpu which is going to be used for all
5734 * zones and all nodes. The parameters will be set in such a way
5735 * that an item put on a list will immediately be handed over to
5736 * the buddy list. This is safe since pageset manipulation is done
5737 * with interrupts disabled.
5738 *
5739 * The boot_pagesets must be kept even after bootup is complete for
5740 * unused processors and/or zones. They do play a role for bootstrapping
5741 * hotplugged processors.
5742 *
5743 * zoneinfo_show() and maybe other functions do
5744 * not check if the processor is online before following the pageset pointer.
5745 * Other parts of the kernel may not check if the zone is available.
5746 */
5747 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5748 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5749 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5750
__build_all_zonelists(void * data)5751 static void __build_all_zonelists(void *data)
5752 {
5753 int nid;
5754 int __maybe_unused cpu;
5755 pg_data_t *self = data;
5756 static DEFINE_SPINLOCK(lock);
5757
5758 spin_lock(&lock);
5759
5760 #ifdef CONFIG_NUMA
5761 memset(node_load, 0, sizeof(node_load));
5762 #endif
5763
5764 /*
5765 * This node is hotadded and no memory is yet present. So just
5766 * building zonelists is fine - no need to touch other nodes.
5767 */
5768 if (self && !node_online(self->node_id)) {
5769 build_zonelists(self);
5770 } else {
5771 for_each_online_node(nid) {
5772 pg_data_t *pgdat = NODE_DATA(nid);
5773
5774 build_zonelists(pgdat);
5775 }
5776
5777 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5778 /*
5779 * We now know the "local memory node" for each node--
5780 * i.e., the node of the first zone in the generic zonelist.
5781 * Set up numa_mem percpu variable for on-line cpus. During
5782 * boot, only the boot cpu should be on-line; we'll init the
5783 * secondary cpus' numa_mem as they come on-line. During
5784 * node/memory hotplug, we'll fixup all on-line cpus.
5785 */
5786 for_each_online_cpu(cpu)
5787 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5788 #endif
5789 }
5790
5791 spin_unlock(&lock);
5792 }
5793
5794 static noinline void __init
build_all_zonelists_init(void)5795 build_all_zonelists_init(void)
5796 {
5797 int cpu;
5798
5799 __build_all_zonelists(NULL);
5800
5801 /*
5802 * Initialize the boot_pagesets that are going to be used
5803 * for bootstrapping processors. The real pagesets for
5804 * each zone will be allocated later when the per cpu
5805 * allocator is available.
5806 *
5807 * boot_pagesets are used also for bootstrapping offline
5808 * cpus if the system is already booted because the pagesets
5809 * are needed to initialize allocators on a specific cpu too.
5810 * F.e. the percpu allocator needs the page allocator which
5811 * needs the percpu allocator in order to allocate its pagesets
5812 * (a chicken-egg dilemma).
5813 */
5814 for_each_possible_cpu(cpu)
5815 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5816
5817 mminit_verify_zonelist();
5818 cpuset_init_current_mems_allowed();
5819 }
5820
5821 /*
5822 * unless system_state == SYSTEM_BOOTING.
5823 *
5824 * __ref due to call of __init annotated helper build_all_zonelists_init
5825 * [protected by SYSTEM_BOOTING].
5826 */
build_all_zonelists(pg_data_t * pgdat)5827 void __ref build_all_zonelists(pg_data_t *pgdat)
5828 {
5829 if (system_state == SYSTEM_BOOTING) {
5830 build_all_zonelists_init();
5831 } else {
5832 __build_all_zonelists(pgdat);
5833 /* cpuset refresh routine should be here */
5834 }
5835 vm_total_pages = nr_free_pagecache_pages();
5836 /*
5837 * Disable grouping by mobility if the number of pages in the
5838 * system is too low to allow the mechanism to work. It would be
5839 * more accurate, but expensive to check per-zone. This check is
5840 * made on memory-hotadd so a system can start with mobility
5841 * disabled and enable it later
5842 */
5843 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5844 page_group_by_mobility_disabled = 1;
5845 else
5846 page_group_by_mobility_disabled = 0;
5847
5848 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5849 nr_online_nodes,
5850 page_group_by_mobility_disabled ? "off" : "on",
5851 vm_total_pages);
5852 #ifdef CONFIG_NUMA
5853 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5854 #endif
5855 }
5856
5857 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5858 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)5859 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5860 {
5861 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5862 static struct memblock_region *r;
5863
5864 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5865 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5866 for_each_memblock(memory, r) {
5867 if (*pfn < memblock_region_memory_end_pfn(r))
5868 break;
5869 }
5870 }
5871 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5872 memblock_is_mirror(r)) {
5873 *pfn = memblock_region_memory_end_pfn(r);
5874 return true;
5875 }
5876 }
5877 #endif
5878 return false;
5879 }
5880
5881 /*
5882 * Initially all pages are reserved - free ones are freed
5883 * up by memblock_free_all() once the early boot process is
5884 * done. Non-atomic initialization, single-pass.
5885 */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context,struct vmem_altmap * altmap)5886 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5887 unsigned long start_pfn, enum memmap_context context,
5888 struct vmem_altmap *altmap)
5889 {
5890 unsigned long pfn, end_pfn = start_pfn + size;
5891 struct page *page;
5892
5893 if (highest_memmap_pfn < end_pfn - 1)
5894 highest_memmap_pfn = end_pfn - 1;
5895
5896 #ifdef CONFIG_ZONE_DEVICE
5897 /*
5898 * Honor reservation requested by the driver for this ZONE_DEVICE
5899 * memory. We limit the total number of pages to initialize to just
5900 * those that might contain the memory mapping. We will defer the
5901 * ZONE_DEVICE page initialization until after we have released
5902 * the hotplug lock.
5903 */
5904 if (zone == ZONE_DEVICE) {
5905 if (!altmap)
5906 return;
5907
5908 if (start_pfn == altmap->base_pfn)
5909 start_pfn += altmap->reserve;
5910 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5911 }
5912 #endif
5913
5914 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5915 /*
5916 * There can be holes in boot-time mem_map[]s handed to this
5917 * function. They do not exist on hotplugged memory.
5918 */
5919 if (context == MEMMAP_EARLY) {
5920 if (!early_pfn_valid(pfn))
5921 continue;
5922 if (!early_pfn_in_nid(pfn, nid))
5923 continue;
5924 if (overlap_memmap_init(zone, &pfn))
5925 continue;
5926 if (defer_init(nid, pfn, end_pfn))
5927 break;
5928 }
5929
5930 page = pfn_to_page(pfn);
5931 __init_single_page(page, pfn, zone, nid);
5932 if (context == MEMMAP_HOTPLUG)
5933 __SetPageReserved(page);
5934
5935 /*
5936 * Mark the block movable so that blocks are reserved for
5937 * movable at startup. This will force kernel allocations
5938 * to reserve their blocks rather than leaking throughout
5939 * the address space during boot when many long-lived
5940 * kernel allocations are made.
5941 *
5942 * bitmap is created for zone's valid pfn range. but memmap
5943 * can be created for invalid pages (for alignment)
5944 * check here not to call set_pageblock_migratetype() against
5945 * pfn out of zone.
5946 */
5947 if (!(pfn & (pageblock_nr_pages - 1))) {
5948 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5949 cond_resched();
5950 }
5951 }
5952 }
5953
5954 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long size,struct dev_pagemap * pgmap)5955 void __ref memmap_init_zone_device(struct zone *zone,
5956 unsigned long start_pfn,
5957 unsigned long size,
5958 struct dev_pagemap *pgmap)
5959 {
5960 unsigned long pfn, end_pfn = start_pfn + size;
5961 struct pglist_data *pgdat = zone->zone_pgdat;
5962 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5963 unsigned long zone_idx = zone_idx(zone);
5964 unsigned long start = jiffies;
5965 int nid = pgdat->node_id;
5966
5967 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5968 return;
5969
5970 /*
5971 * The call to memmap_init_zone should have already taken care
5972 * of the pages reserved for the memmap, so we can just jump to
5973 * the end of that region and start processing the device pages.
5974 */
5975 if (altmap) {
5976 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5977 size = end_pfn - start_pfn;
5978 }
5979
5980 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5981 struct page *page = pfn_to_page(pfn);
5982
5983 __init_single_page(page, pfn, zone_idx, nid);
5984
5985 /*
5986 * Mark page reserved as it will need to wait for onlining
5987 * phase for it to be fully associated with a zone.
5988 *
5989 * We can use the non-atomic __set_bit operation for setting
5990 * the flag as we are still initializing the pages.
5991 */
5992 __SetPageReserved(page);
5993
5994 /*
5995 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5996 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5997 * ever freed or placed on a driver-private list.
5998 */
5999 page->pgmap = pgmap;
6000 page->zone_device_data = NULL;
6001
6002 /*
6003 * Mark the block movable so that blocks are reserved for
6004 * movable at startup. This will force kernel allocations
6005 * to reserve their blocks rather than leaking throughout
6006 * the address space during boot when many long-lived
6007 * kernel allocations are made.
6008 *
6009 * bitmap is created for zone's valid pfn range. but memmap
6010 * can be created for invalid pages (for alignment)
6011 * check here not to call set_pageblock_migratetype() against
6012 * pfn out of zone.
6013 *
6014 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6015 * because this is done early in section_activate()
6016 */
6017 if (!(pfn & (pageblock_nr_pages - 1))) {
6018 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6019 cond_resched();
6020 }
6021 }
6022
6023 pr_info("%s initialised %lu pages in %ums\n", __func__,
6024 size, jiffies_to_msecs(jiffies - start));
6025 }
6026
6027 #endif
zone_init_free_lists(struct zone * zone)6028 static void __meminit zone_init_free_lists(struct zone *zone)
6029 {
6030 unsigned int order, t;
6031 for_each_migratetype_order(order, t) {
6032 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6033 zone->free_area[order].nr_free = 0;
6034 }
6035 }
6036
memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn)6037 void __meminit __weak memmap_init(unsigned long size, int nid,
6038 unsigned long zone, unsigned long start_pfn)
6039 {
6040 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6041 }
6042
zone_batchsize(struct zone * zone)6043 static int zone_batchsize(struct zone *zone)
6044 {
6045 #ifdef CONFIG_MMU
6046 int batch;
6047
6048 /*
6049 * The per-cpu-pages pools are set to around 1000th of the
6050 * size of the zone.
6051 */
6052 batch = zone_managed_pages(zone) / 1024;
6053 /* But no more than a meg. */
6054 if (batch * PAGE_SIZE > 1024 * 1024)
6055 batch = (1024 * 1024) / PAGE_SIZE;
6056 batch /= 4; /* We effectively *= 4 below */
6057 if (batch < 1)
6058 batch = 1;
6059
6060 /*
6061 * Clamp the batch to a 2^n - 1 value. Having a power
6062 * of 2 value was found to be more likely to have
6063 * suboptimal cache aliasing properties in some cases.
6064 *
6065 * For example if 2 tasks are alternately allocating
6066 * batches of pages, one task can end up with a lot
6067 * of pages of one half of the possible page colors
6068 * and the other with pages of the other colors.
6069 */
6070 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6071
6072 return batch;
6073
6074 #else
6075 /* The deferral and batching of frees should be suppressed under NOMMU
6076 * conditions.
6077 *
6078 * The problem is that NOMMU needs to be able to allocate large chunks
6079 * of contiguous memory as there's no hardware page translation to
6080 * assemble apparent contiguous memory from discontiguous pages.
6081 *
6082 * Queueing large contiguous runs of pages for batching, however,
6083 * causes the pages to actually be freed in smaller chunks. As there
6084 * can be a significant delay between the individual batches being
6085 * recycled, this leads to the once large chunks of space being
6086 * fragmented and becoming unavailable for high-order allocations.
6087 */
6088 return 0;
6089 #endif
6090 }
6091
6092 /*
6093 * pcp->high and pcp->batch values are related and dependent on one another:
6094 * ->batch must never be higher then ->high.
6095 * The following function updates them in a safe manner without read side
6096 * locking.
6097 *
6098 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6099 * those fields changing asynchronously (acording the the above rule).
6100 *
6101 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6102 * outside of boot time (or some other assurance that no concurrent updaters
6103 * exist).
6104 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6105 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6106 unsigned long batch)
6107 {
6108 /* start with a fail safe value for batch */
6109 pcp->batch = 1;
6110 smp_wmb();
6111
6112 /* Update high, then batch, in order */
6113 pcp->high = high;
6114 smp_wmb();
6115
6116 pcp->batch = batch;
6117 }
6118
6119 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)6120 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6121 {
6122 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6123 }
6124
pageset_init(struct per_cpu_pageset * p)6125 static void pageset_init(struct per_cpu_pageset *p)
6126 {
6127 struct per_cpu_pages *pcp;
6128 int migratetype;
6129
6130 memset(p, 0, sizeof(*p));
6131
6132 pcp = &p->pcp;
6133 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6134 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6135 }
6136
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)6137 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6138 {
6139 pageset_init(p);
6140 pageset_set_batch(p, batch);
6141 }
6142
6143 /*
6144 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6145 * to the value high for the pageset p.
6146 */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)6147 static void pageset_set_high(struct per_cpu_pageset *p,
6148 unsigned long high)
6149 {
6150 unsigned long batch = max(1UL, high / 4);
6151 if ((high / 4) > (PAGE_SHIFT * 8))
6152 batch = PAGE_SHIFT * 8;
6153
6154 pageset_update(&p->pcp, high, batch);
6155 }
6156
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)6157 static void pageset_set_high_and_batch(struct zone *zone,
6158 struct per_cpu_pageset *pcp)
6159 {
6160 if (percpu_pagelist_fraction)
6161 pageset_set_high(pcp,
6162 (zone_managed_pages(zone) /
6163 percpu_pagelist_fraction));
6164 else
6165 pageset_set_batch(pcp, zone_batchsize(zone));
6166 }
6167
zone_pageset_init(struct zone * zone,int cpu)6168 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6169 {
6170 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6171
6172 pageset_init(pcp);
6173 pageset_set_high_and_batch(zone, pcp);
6174 }
6175
setup_zone_pageset(struct zone * zone)6176 void __meminit setup_zone_pageset(struct zone *zone)
6177 {
6178 int cpu;
6179 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6180 for_each_possible_cpu(cpu)
6181 zone_pageset_init(zone, cpu);
6182 }
6183
6184 /*
6185 * Allocate per cpu pagesets and initialize them.
6186 * Before this call only boot pagesets were available.
6187 */
setup_per_cpu_pageset(void)6188 void __init setup_per_cpu_pageset(void)
6189 {
6190 struct pglist_data *pgdat;
6191 struct zone *zone;
6192
6193 for_each_populated_zone(zone)
6194 setup_zone_pageset(zone);
6195
6196 for_each_online_pgdat(pgdat)
6197 pgdat->per_cpu_nodestats =
6198 alloc_percpu(struct per_cpu_nodestat);
6199 }
6200
zone_pcp_init(struct zone * zone)6201 static __meminit void zone_pcp_init(struct zone *zone)
6202 {
6203 /*
6204 * per cpu subsystem is not up at this point. The following code
6205 * relies on the ability of the linker to provide the
6206 * offset of a (static) per cpu variable into the per cpu area.
6207 */
6208 zone->pageset = &boot_pageset;
6209
6210 if (populated_zone(zone))
6211 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6212 zone->name, zone->present_pages,
6213 zone_batchsize(zone));
6214 }
6215
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)6216 void __meminit init_currently_empty_zone(struct zone *zone,
6217 unsigned long zone_start_pfn,
6218 unsigned long size)
6219 {
6220 struct pglist_data *pgdat = zone->zone_pgdat;
6221 int zone_idx = zone_idx(zone) + 1;
6222
6223 if (zone_idx > pgdat->nr_zones)
6224 pgdat->nr_zones = zone_idx;
6225
6226 zone->zone_start_pfn = zone_start_pfn;
6227
6228 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6229 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6230 pgdat->node_id,
6231 (unsigned long)zone_idx(zone),
6232 zone_start_pfn, (zone_start_pfn + size));
6233
6234 zone_init_free_lists(zone);
6235 zone->initialized = 1;
6236 }
6237
6238 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6239 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6240
6241 /*
6242 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6243 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)6244 int __meminit __early_pfn_to_nid(unsigned long pfn,
6245 struct mminit_pfnnid_cache *state)
6246 {
6247 unsigned long start_pfn, end_pfn;
6248 int nid;
6249
6250 if (state->last_start <= pfn && pfn < state->last_end)
6251 return state->last_nid;
6252
6253 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6254 if (nid != NUMA_NO_NODE) {
6255 state->last_start = start_pfn;
6256 state->last_end = end_pfn;
6257 state->last_nid = nid;
6258 }
6259
6260 return nid;
6261 }
6262 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6263
6264 /**
6265 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6266 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6267 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6268 *
6269 * If an architecture guarantees that all ranges registered contain no holes
6270 * and may be freed, this this function may be used instead of calling
6271 * memblock_free_early_nid() manually.
6272 */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)6273 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6274 {
6275 unsigned long start_pfn, end_pfn;
6276 int i, this_nid;
6277
6278 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6279 start_pfn = min(start_pfn, max_low_pfn);
6280 end_pfn = min(end_pfn, max_low_pfn);
6281
6282 if (start_pfn < end_pfn)
6283 memblock_free_early_nid(PFN_PHYS(start_pfn),
6284 (end_pfn - start_pfn) << PAGE_SHIFT,
6285 this_nid);
6286 }
6287 }
6288
6289 /**
6290 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6291 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6292 *
6293 * If an architecture guarantees that all ranges registered contain no holes and may
6294 * be freed, this function may be used instead of calling memory_present() manually.
6295 */
sparse_memory_present_with_active_regions(int nid)6296 void __init sparse_memory_present_with_active_regions(int nid)
6297 {
6298 unsigned long start_pfn, end_pfn;
6299 int i, this_nid;
6300
6301 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6302 memory_present(this_nid, start_pfn, end_pfn);
6303 }
6304
6305 /**
6306 * get_pfn_range_for_nid - Return the start and end page frames for a node
6307 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6308 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6309 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6310 *
6311 * It returns the start and end page frame of a node based on information
6312 * provided by memblock_set_node(). If called for a node
6313 * with no available memory, a warning is printed and the start and end
6314 * PFNs will be 0.
6315 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)6316 void __init get_pfn_range_for_nid(unsigned int nid,
6317 unsigned long *start_pfn, unsigned long *end_pfn)
6318 {
6319 unsigned long this_start_pfn, this_end_pfn;
6320 int i;
6321
6322 *start_pfn = -1UL;
6323 *end_pfn = 0;
6324
6325 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6326 *start_pfn = min(*start_pfn, this_start_pfn);
6327 *end_pfn = max(*end_pfn, this_end_pfn);
6328 }
6329
6330 if (*start_pfn == -1UL)
6331 *start_pfn = 0;
6332 }
6333
6334 /*
6335 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6336 * assumption is made that zones within a node are ordered in monotonic
6337 * increasing memory addresses so that the "highest" populated zone is used
6338 */
find_usable_zone_for_movable(void)6339 static void __init find_usable_zone_for_movable(void)
6340 {
6341 int zone_index;
6342 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6343 if (zone_index == ZONE_MOVABLE)
6344 continue;
6345
6346 if (arch_zone_highest_possible_pfn[zone_index] >
6347 arch_zone_lowest_possible_pfn[zone_index])
6348 break;
6349 }
6350
6351 VM_BUG_ON(zone_index == -1);
6352 movable_zone = zone_index;
6353 }
6354
6355 /*
6356 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6357 * because it is sized independent of architecture. Unlike the other zones,
6358 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6359 * in each node depending on the size of each node and how evenly kernelcore
6360 * is distributed. This helper function adjusts the zone ranges
6361 * provided by the architecture for a given node by using the end of the
6362 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6363 * zones within a node are in order of monotonic increases memory addresses
6364 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6365 static void __init adjust_zone_range_for_zone_movable(int nid,
6366 unsigned long zone_type,
6367 unsigned long node_start_pfn,
6368 unsigned long node_end_pfn,
6369 unsigned long *zone_start_pfn,
6370 unsigned long *zone_end_pfn)
6371 {
6372 /* Only adjust if ZONE_MOVABLE is on this node */
6373 if (zone_movable_pfn[nid]) {
6374 /* Size ZONE_MOVABLE */
6375 if (zone_type == ZONE_MOVABLE) {
6376 *zone_start_pfn = zone_movable_pfn[nid];
6377 *zone_end_pfn = min(node_end_pfn,
6378 arch_zone_highest_possible_pfn[movable_zone]);
6379
6380 /* Adjust for ZONE_MOVABLE starting within this range */
6381 } else if (!mirrored_kernelcore &&
6382 *zone_start_pfn < zone_movable_pfn[nid] &&
6383 *zone_end_pfn > zone_movable_pfn[nid]) {
6384 *zone_end_pfn = zone_movable_pfn[nid];
6385
6386 /* Check if this whole range is within ZONE_MOVABLE */
6387 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6388 *zone_start_pfn = *zone_end_pfn;
6389 }
6390 }
6391
6392 /*
6393 * Return the number of pages a zone spans in a node, including holes
6394 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6395 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * ignored)6396 static unsigned long __init zone_spanned_pages_in_node(int nid,
6397 unsigned long zone_type,
6398 unsigned long node_start_pfn,
6399 unsigned long node_end_pfn,
6400 unsigned long *zone_start_pfn,
6401 unsigned long *zone_end_pfn,
6402 unsigned long *ignored)
6403 {
6404 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6405 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6406 /* When hotadd a new node from cpu_up(), the node should be empty */
6407 if (!node_start_pfn && !node_end_pfn)
6408 return 0;
6409
6410 /* Get the start and end of the zone */
6411 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6412 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6413 adjust_zone_range_for_zone_movable(nid, zone_type,
6414 node_start_pfn, node_end_pfn,
6415 zone_start_pfn, zone_end_pfn);
6416
6417 /* Check that this node has pages within the zone's required range */
6418 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6419 return 0;
6420
6421 /* Move the zone boundaries inside the node if necessary */
6422 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6423 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6424
6425 /* Return the spanned pages */
6426 return *zone_end_pfn - *zone_start_pfn;
6427 }
6428
6429 /*
6430 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6431 * then all holes in the requested range will be accounted for.
6432 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)6433 unsigned long __init __absent_pages_in_range(int nid,
6434 unsigned long range_start_pfn,
6435 unsigned long range_end_pfn)
6436 {
6437 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6438 unsigned long start_pfn, end_pfn;
6439 int i;
6440
6441 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6442 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6443 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6444 nr_absent -= end_pfn - start_pfn;
6445 }
6446 return nr_absent;
6447 }
6448
6449 /**
6450 * absent_pages_in_range - Return number of page frames in holes within a range
6451 * @start_pfn: The start PFN to start searching for holes
6452 * @end_pfn: The end PFN to stop searching for holes
6453 *
6454 * Return: the number of pages frames in memory holes within a range.
6455 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6456 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6457 unsigned long end_pfn)
6458 {
6459 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6460 }
6461
6462 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)6463 static unsigned long __init zone_absent_pages_in_node(int nid,
6464 unsigned long zone_type,
6465 unsigned long node_start_pfn,
6466 unsigned long node_end_pfn,
6467 unsigned long *ignored)
6468 {
6469 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6470 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6471 unsigned long zone_start_pfn, zone_end_pfn;
6472 unsigned long nr_absent;
6473
6474 /* When hotadd a new node from cpu_up(), the node should be empty */
6475 if (!node_start_pfn && !node_end_pfn)
6476 return 0;
6477
6478 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6479 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6480
6481 adjust_zone_range_for_zone_movable(nid, zone_type,
6482 node_start_pfn, node_end_pfn,
6483 &zone_start_pfn, &zone_end_pfn);
6484 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6485
6486 /*
6487 * ZONE_MOVABLE handling.
6488 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6489 * and vice versa.
6490 */
6491 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6492 unsigned long start_pfn, end_pfn;
6493 struct memblock_region *r;
6494
6495 for_each_memblock(memory, r) {
6496 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6497 zone_start_pfn, zone_end_pfn);
6498 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6499 zone_start_pfn, zone_end_pfn);
6500
6501 if (zone_type == ZONE_MOVABLE &&
6502 memblock_is_mirror(r))
6503 nr_absent += end_pfn - start_pfn;
6504
6505 if (zone_type == ZONE_NORMAL &&
6506 !memblock_is_mirror(r))
6507 nr_absent += end_pfn - start_pfn;
6508 }
6509 }
6510
6511 return nr_absent;
6512 }
6513
6514 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * zones_size)6515 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6516 unsigned long zone_type,
6517 unsigned long node_start_pfn,
6518 unsigned long node_end_pfn,
6519 unsigned long *zone_start_pfn,
6520 unsigned long *zone_end_pfn,
6521 unsigned long *zones_size)
6522 {
6523 unsigned int zone;
6524
6525 *zone_start_pfn = node_start_pfn;
6526 for (zone = 0; zone < zone_type; zone++)
6527 *zone_start_pfn += zones_size[zone];
6528
6529 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6530
6531 return zones_size[zone_type];
6532 }
6533
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)6534 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6535 unsigned long zone_type,
6536 unsigned long node_start_pfn,
6537 unsigned long node_end_pfn,
6538 unsigned long *zholes_size)
6539 {
6540 if (!zholes_size)
6541 return 0;
6542
6543 return zholes_size[zone_type];
6544 }
6545
6546 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6547
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)6548 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6549 unsigned long node_start_pfn,
6550 unsigned long node_end_pfn,
6551 unsigned long *zones_size,
6552 unsigned long *zholes_size)
6553 {
6554 unsigned long realtotalpages = 0, totalpages = 0;
6555 enum zone_type i;
6556
6557 for (i = 0; i < MAX_NR_ZONES; i++) {
6558 struct zone *zone = pgdat->node_zones + i;
6559 unsigned long zone_start_pfn, zone_end_pfn;
6560 unsigned long size, real_size;
6561
6562 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6563 node_start_pfn,
6564 node_end_pfn,
6565 &zone_start_pfn,
6566 &zone_end_pfn,
6567 zones_size);
6568 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6569 node_start_pfn, node_end_pfn,
6570 zholes_size);
6571 if (size)
6572 zone->zone_start_pfn = zone_start_pfn;
6573 else
6574 zone->zone_start_pfn = 0;
6575 zone->spanned_pages = size;
6576 zone->present_pages = real_size;
6577
6578 totalpages += size;
6579 realtotalpages += real_size;
6580 }
6581
6582 pgdat->node_spanned_pages = totalpages;
6583 pgdat->node_present_pages = realtotalpages;
6584 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6585 realtotalpages);
6586 }
6587
6588 #ifndef CONFIG_SPARSEMEM
6589 /*
6590 * Calculate the size of the zone->blockflags rounded to an unsigned long
6591 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6592 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6593 * round what is now in bits to nearest long in bits, then return it in
6594 * bytes.
6595 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)6596 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6597 {
6598 unsigned long usemapsize;
6599
6600 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6601 usemapsize = roundup(zonesize, pageblock_nr_pages);
6602 usemapsize = usemapsize >> pageblock_order;
6603 usemapsize *= NR_PAGEBLOCK_BITS;
6604 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6605
6606 return usemapsize / 8;
6607 }
6608
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6609 static void __ref setup_usemap(struct pglist_data *pgdat,
6610 struct zone *zone,
6611 unsigned long zone_start_pfn,
6612 unsigned long zonesize)
6613 {
6614 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6615 zone->pageblock_flags = NULL;
6616 if (usemapsize) {
6617 zone->pageblock_flags =
6618 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6619 pgdat->node_id);
6620 if (!zone->pageblock_flags)
6621 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6622 usemapsize, zone->name, pgdat->node_id);
6623 }
6624 }
6625 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6626 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6627 unsigned long zone_start_pfn, unsigned long zonesize) {}
6628 #endif /* CONFIG_SPARSEMEM */
6629
6630 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6631
6632 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)6633 void __init set_pageblock_order(void)
6634 {
6635 unsigned int order;
6636
6637 /* Check that pageblock_nr_pages has not already been setup */
6638 if (pageblock_order)
6639 return;
6640
6641 if (HPAGE_SHIFT > PAGE_SHIFT)
6642 order = HUGETLB_PAGE_ORDER;
6643 else
6644 order = MAX_ORDER - 1;
6645
6646 /*
6647 * Assume the largest contiguous order of interest is a huge page.
6648 * This value may be variable depending on boot parameters on IA64 and
6649 * powerpc.
6650 */
6651 pageblock_order = order;
6652 }
6653 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6654
6655 /*
6656 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6657 * is unused as pageblock_order is set at compile-time. See
6658 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6659 * the kernel config
6660 */
set_pageblock_order(void)6661 void __init set_pageblock_order(void)
6662 {
6663 }
6664
6665 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6666
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)6667 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6668 unsigned long present_pages)
6669 {
6670 unsigned long pages = spanned_pages;
6671
6672 /*
6673 * Provide a more accurate estimation if there are holes within
6674 * the zone and SPARSEMEM is in use. If there are holes within the
6675 * zone, each populated memory region may cost us one or two extra
6676 * memmap pages due to alignment because memmap pages for each
6677 * populated regions may not be naturally aligned on page boundary.
6678 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6679 */
6680 if (spanned_pages > present_pages + (present_pages >> 4) &&
6681 IS_ENABLED(CONFIG_SPARSEMEM))
6682 pages = present_pages;
6683
6684 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6685 }
6686
6687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)6688 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6689 {
6690 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6691
6692 spin_lock_init(&ds_queue->split_queue_lock);
6693 INIT_LIST_HEAD(&ds_queue->split_queue);
6694 ds_queue->split_queue_len = 0;
6695 }
6696 #else
pgdat_init_split_queue(struct pglist_data * pgdat)6697 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6698 #endif
6699
6700 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)6701 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6702 {
6703 init_waitqueue_head(&pgdat->kcompactd_wait);
6704 }
6705 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)6706 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6707 #endif
6708
pgdat_init_internals(struct pglist_data * pgdat)6709 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6710 {
6711 pgdat_resize_init(pgdat);
6712
6713 pgdat_init_split_queue(pgdat);
6714 pgdat_init_kcompactd(pgdat);
6715
6716 init_waitqueue_head(&pgdat->kswapd_wait);
6717 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6718
6719 pgdat_page_ext_init(pgdat);
6720 spin_lock_init(&pgdat->lru_lock);
6721 lruvec_init(node_lruvec(pgdat));
6722 }
6723
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)6724 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6725 unsigned long remaining_pages)
6726 {
6727 atomic_long_set(&zone->managed_pages, remaining_pages);
6728 zone_set_nid(zone, nid);
6729 zone->name = zone_names[idx];
6730 zone->zone_pgdat = NODE_DATA(nid);
6731 spin_lock_init(&zone->lock);
6732 zone_seqlock_init(zone);
6733 zone_pcp_init(zone);
6734 }
6735
6736 /*
6737 * Set up the zone data structures
6738 * - init pgdat internals
6739 * - init all zones belonging to this node
6740 *
6741 * NOTE: this function is only called during memory hotplug
6742 */
6743 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)6744 void __ref free_area_init_core_hotplug(int nid)
6745 {
6746 enum zone_type z;
6747 pg_data_t *pgdat = NODE_DATA(nid);
6748
6749 pgdat_init_internals(pgdat);
6750 for (z = 0; z < MAX_NR_ZONES; z++)
6751 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6752 }
6753 #endif
6754
6755 /*
6756 * Set up the zone data structures:
6757 * - mark all pages reserved
6758 * - mark all memory queues empty
6759 * - clear the memory bitmaps
6760 *
6761 * NOTE: pgdat should get zeroed by caller.
6762 * NOTE: this function is only called during early init.
6763 */
free_area_init_core(struct pglist_data * pgdat)6764 static void __init free_area_init_core(struct pglist_data *pgdat)
6765 {
6766 enum zone_type j;
6767 int nid = pgdat->node_id;
6768
6769 pgdat_init_internals(pgdat);
6770 pgdat->per_cpu_nodestats = &boot_nodestats;
6771
6772 for (j = 0; j < MAX_NR_ZONES; j++) {
6773 struct zone *zone = pgdat->node_zones + j;
6774 unsigned long size, freesize, memmap_pages;
6775 unsigned long zone_start_pfn = zone->zone_start_pfn;
6776
6777 size = zone->spanned_pages;
6778 freesize = zone->present_pages;
6779
6780 /*
6781 * Adjust freesize so that it accounts for how much memory
6782 * is used by this zone for memmap. This affects the watermark
6783 * and per-cpu initialisations
6784 */
6785 memmap_pages = calc_memmap_size(size, freesize);
6786 if (!is_highmem_idx(j)) {
6787 if (freesize >= memmap_pages) {
6788 freesize -= memmap_pages;
6789 if (memmap_pages)
6790 printk(KERN_DEBUG
6791 " %s zone: %lu pages used for memmap\n",
6792 zone_names[j], memmap_pages);
6793 } else
6794 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6795 zone_names[j], memmap_pages, freesize);
6796 }
6797
6798 /* Account for reserved pages */
6799 if (j == 0 && freesize > dma_reserve) {
6800 freesize -= dma_reserve;
6801 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6802 zone_names[0], dma_reserve);
6803 }
6804
6805 if (!is_highmem_idx(j))
6806 nr_kernel_pages += freesize;
6807 /* Charge for highmem memmap if there are enough kernel pages */
6808 else if (nr_kernel_pages > memmap_pages * 2)
6809 nr_kernel_pages -= memmap_pages;
6810 nr_all_pages += freesize;
6811
6812 /*
6813 * Set an approximate value for lowmem here, it will be adjusted
6814 * when the bootmem allocator frees pages into the buddy system.
6815 * And all highmem pages will be managed by the buddy system.
6816 */
6817 zone_init_internals(zone, j, nid, freesize);
6818
6819 if (!size)
6820 continue;
6821
6822 set_pageblock_order();
6823 setup_usemap(pgdat, zone, zone_start_pfn, size);
6824 init_currently_empty_zone(zone, zone_start_pfn, size);
6825 memmap_init(size, nid, j, zone_start_pfn);
6826 }
6827 }
6828
6829 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)6830 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6831 {
6832 unsigned long __maybe_unused start = 0;
6833 unsigned long __maybe_unused offset = 0;
6834
6835 /* Skip empty nodes */
6836 if (!pgdat->node_spanned_pages)
6837 return;
6838
6839 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6840 offset = pgdat->node_start_pfn - start;
6841 /* ia64 gets its own node_mem_map, before this, without bootmem */
6842 if (!pgdat->node_mem_map) {
6843 unsigned long size, end;
6844 struct page *map;
6845
6846 /*
6847 * The zone's endpoints aren't required to be MAX_ORDER
6848 * aligned but the node_mem_map endpoints must be in order
6849 * for the buddy allocator to function correctly.
6850 */
6851 end = pgdat_end_pfn(pgdat);
6852 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6853 size = (end - start) * sizeof(struct page);
6854 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6855 pgdat->node_id);
6856 if (!map)
6857 panic("Failed to allocate %ld bytes for node %d memory map\n",
6858 size, pgdat->node_id);
6859 pgdat->node_mem_map = map + offset;
6860 }
6861 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6862 __func__, pgdat->node_id, (unsigned long)pgdat,
6863 (unsigned long)pgdat->node_mem_map);
6864 #ifndef CONFIG_NEED_MULTIPLE_NODES
6865 /*
6866 * With no DISCONTIG, the global mem_map is just set as node 0's
6867 */
6868 if (pgdat == NODE_DATA(0)) {
6869 mem_map = NODE_DATA(0)->node_mem_map;
6870 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6871 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6872 mem_map -= offset;
6873 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6874 }
6875 #endif
6876 }
6877 #else
alloc_node_mem_map(struct pglist_data * pgdat)6878 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6879 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6880
6881 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)6882 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6883 {
6884 pgdat->first_deferred_pfn = ULONG_MAX;
6885 }
6886 #else
pgdat_set_deferred_range(pg_data_t * pgdat)6887 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6888 #endif
6889
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)6890 void __init free_area_init_node(int nid, unsigned long *zones_size,
6891 unsigned long node_start_pfn,
6892 unsigned long *zholes_size)
6893 {
6894 pg_data_t *pgdat = NODE_DATA(nid);
6895 unsigned long start_pfn = 0;
6896 unsigned long end_pfn = 0;
6897
6898 /* pg_data_t should be reset to zero when it's allocated */
6899 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6900
6901 pgdat->node_id = nid;
6902 pgdat->node_start_pfn = node_start_pfn;
6903 pgdat->per_cpu_nodestats = NULL;
6904 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6905 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6906 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6907 (u64)start_pfn << PAGE_SHIFT,
6908 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6909 #else
6910 start_pfn = node_start_pfn;
6911 #endif
6912 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6913 zones_size, zholes_size);
6914
6915 alloc_node_mem_map(pgdat);
6916 pgdat_set_deferred_range(pgdat);
6917
6918 free_area_init_core(pgdat);
6919 }
6920
6921 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6922 /*
6923 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6924 * pages zeroed
6925 */
zero_pfn_range(unsigned long spfn,unsigned long epfn)6926 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6927 {
6928 unsigned long pfn;
6929 u64 pgcnt = 0;
6930
6931 for (pfn = spfn; pfn < epfn; pfn++) {
6932 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6933 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6934 + pageblock_nr_pages - 1;
6935 continue;
6936 }
6937 mm_zero_struct_page(pfn_to_page(pfn));
6938 pgcnt++;
6939 }
6940
6941 return pgcnt;
6942 }
6943
6944 /*
6945 * Only struct pages that are backed by physical memory are zeroed and
6946 * initialized by going through __init_single_page(). But, there are some
6947 * struct pages which are reserved in memblock allocator and their fields
6948 * may be accessed (for example page_to_pfn() on some configuration accesses
6949 * flags). We must explicitly zero those struct pages.
6950 *
6951 * This function also addresses a similar issue where struct pages are left
6952 * uninitialized because the physical address range is not covered by
6953 * memblock.memory or memblock.reserved. That could happen when memblock
6954 * layout is manually configured via memmap=.
6955 */
zero_resv_unavail(void)6956 void __init zero_resv_unavail(void)
6957 {
6958 phys_addr_t start, end;
6959 u64 i, pgcnt;
6960 phys_addr_t next = 0;
6961
6962 /*
6963 * Loop through unavailable ranges not covered by memblock.memory.
6964 */
6965 pgcnt = 0;
6966 for_each_mem_range(i, &memblock.memory, NULL,
6967 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6968 if (next < start)
6969 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6970 next = end;
6971 }
6972 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6973
6974 /*
6975 * Struct pages that do not have backing memory. This could be because
6976 * firmware is using some of this memory, or for some other reasons.
6977 */
6978 if (pgcnt)
6979 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6980 }
6981 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6982
6983 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6984
6985 #if MAX_NUMNODES > 1
6986 /*
6987 * Figure out the number of possible node ids.
6988 */
setup_nr_node_ids(void)6989 void __init setup_nr_node_ids(void)
6990 {
6991 unsigned int highest;
6992
6993 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6994 nr_node_ids = highest + 1;
6995 }
6996 #endif
6997
6998 /**
6999 * node_map_pfn_alignment - determine the maximum internode alignment
7000 *
7001 * This function should be called after node map is populated and sorted.
7002 * It calculates the maximum power of two alignment which can distinguish
7003 * all the nodes.
7004 *
7005 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7006 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7007 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7008 * shifted, 1GiB is enough and this function will indicate so.
7009 *
7010 * This is used to test whether pfn -> nid mapping of the chosen memory
7011 * model has fine enough granularity to avoid incorrect mapping for the
7012 * populated node map.
7013 *
7014 * Return: the determined alignment in pfn's. 0 if there is no alignment
7015 * requirement (single node).
7016 */
node_map_pfn_alignment(void)7017 unsigned long __init node_map_pfn_alignment(void)
7018 {
7019 unsigned long accl_mask = 0, last_end = 0;
7020 unsigned long start, end, mask;
7021 int last_nid = NUMA_NO_NODE;
7022 int i, nid;
7023
7024 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7025 if (!start || last_nid < 0 || last_nid == nid) {
7026 last_nid = nid;
7027 last_end = end;
7028 continue;
7029 }
7030
7031 /*
7032 * Start with a mask granular enough to pin-point to the
7033 * start pfn and tick off bits one-by-one until it becomes
7034 * too coarse to separate the current node from the last.
7035 */
7036 mask = ~((1 << __ffs(start)) - 1);
7037 while (mask && last_end <= (start & (mask << 1)))
7038 mask <<= 1;
7039
7040 /* accumulate all internode masks */
7041 accl_mask |= mask;
7042 }
7043
7044 /* convert mask to number of pages */
7045 return ~accl_mask + 1;
7046 }
7047
7048 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)7049 static unsigned long __init find_min_pfn_for_node(int nid)
7050 {
7051 unsigned long min_pfn = ULONG_MAX;
7052 unsigned long start_pfn;
7053 int i;
7054
7055 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7056 min_pfn = min(min_pfn, start_pfn);
7057
7058 if (min_pfn == ULONG_MAX) {
7059 pr_warn("Could not find start_pfn for node %d\n", nid);
7060 return 0;
7061 }
7062
7063 return min_pfn;
7064 }
7065
7066 /**
7067 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7068 *
7069 * Return: the minimum PFN based on information provided via
7070 * memblock_set_node().
7071 */
find_min_pfn_with_active_regions(void)7072 unsigned long __init find_min_pfn_with_active_regions(void)
7073 {
7074 return find_min_pfn_for_node(MAX_NUMNODES);
7075 }
7076
7077 /*
7078 * early_calculate_totalpages()
7079 * Sum pages in active regions for movable zone.
7080 * Populate N_MEMORY for calculating usable_nodes.
7081 */
early_calculate_totalpages(void)7082 static unsigned long __init early_calculate_totalpages(void)
7083 {
7084 unsigned long totalpages = 0;
7085 unsigned long start_pfn, end_pfn;
7086 int i, nid;
7087
7088 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7089 unsigned long pages = end_pfn - start_pfn;
7090
7091 totalpages += pages;
7092 if (pages)
7093 node_set_state(nid, N_MEMORY);
7094 }
7095 return totalpages;
7096 }
7097
7098 /*
7099 * Find the PFN the Movable zone begins in each node. Kernel memory
7100 * is spread evenly between nodes as long as the nodes have enough
7101 * memory. When they don't, some nodes will have more kernelcore than
7102 * others
7103 */
find_zone_movable_pfns_for_nodes(void)7104 static void __init find_zone_movable_pfns_for_nodes(void)
7105 {
7106 int i, nid;
7107 unsigned long usable_startpfn;
7108 unsigned long kernelcore_node, kernelcore_remaining;
7109 /* save the state before borrow the nodemask */
7110 nodemask_t saved_node_state = node_states[N_MEMORY];
7111 unsigned long totalpages = early_calculate_totalpages();
7112 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7113 struct memblock_region *r;
7114
7115 /* Need to find movable_zone earlier when movable_node is specified. */
7116 find_usable_zone_for_movable();
7117
7118 /*
7119 * If movable_node is specified, ignore kernelcore and movablecore
7120 * options.
7121 */
7122 if (movable_node_is_enabled()) {
7123 for_each_memblock(memory, r) {
7124 if (!memblock_is_hotpluggable(r))
7125 continue;
7126
7127 nid = r->nid;
7128
7129 usable_startpfn = PFN_DOWN(r->base);
7130 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7131 min(usable_startpfn, zone_movable_pfn[nid]) :
7132 usable_startpfn;
7133 }
7134
7135 goto out2;
7136 }
7137
7138 /*
7139 * If kernelcore=mirror is specified, ignore movablecore option
7140 */
7141 if (mirrored_kernelcore) {
7142 bool mem_below_4gb_not_mirrored = false;
7143
7144 for_each_memblock(memory, r) {
7145 if (memblock_is_mirror(r))
7146 continue;
7147
7148 nid = r->nid;
7149
7150 usable_startpfn = memblock_region_memory_base_pfn(r);
7151
7152 if (usable_startpfn < 0x100000) {
7153 mem_below_4gb_not_mirrored = true;
7154 continue;
7155 }
7156
7157 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7158 min(usable_startpfn, zone_movable_pfn[nid]) :
7159 usable_startpfn;
7160 }
7161
7162 if (mem_below_4gb_not_mirrored)
7163 pr_warn("This configuration results in unmirrored kernel memory.");
7164
7165 goto out2;
7166 }
7167
7168 /*
7169 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7170 * amount of necessary memory.
7171 */
7172 if (required_kernelcore_percent)
7173 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7174 10000UL;
7175 if (required_movablecore_percent)
7176 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7177 10000UL;
7178
7179 /*
7180 * If movablecore= was specified, calculate what size of
7181 * kernelcore that corresponds so that memory usable for
7182 * any allocation type is evenly spread. If both kernelcore
7183 * and movablecore are specified, then the value of kernelcore
7184 * will be used for required_kernelcore if it's greater than
7185 * what movablecore would have allowed.
7186 */
7187 if (required_movablecore) {
7188 unsigned long corepages;
7189
7190 /*
7191 * Round-up so that ZONE_MOVABLE is at least as large as what
7192 * was requested by the user
7193 */
7194 required_movablecore =
7195 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7196 required_movablecore = min(totalpages, required_movablecore);
7197 corepages = totalpages - required_movablecore;
7198
7199 required_kernelcore = max(required_kernelcore, corepages);
7200 }
7201
7202 /*
7203 * If kernelcore was not specified or kernelcore size is larger
7204 * than totalpages, there is no ZONE_MOVABLE.
7205 */
7206 if (!required_kernelcore || required_kernelcore >= totalpages)
7207 goto out;
7208
7209 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7210 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7211
7212 restart:
7213 /* Spread kernelcore memory as evenly as possible throughout nodes */
7214 kernelcore_node = required_kernelcore / usable_nodes;
7215 for_each_node_state(nid, N_MEMORY) {
7216 unsigned long start_pfn, end_pfn;
7217
7218 /*
7219 * Recalculate kernelcore_node if the division per node
7220 * now exceeds what is necessary to satisfy the requested
7221 * amount of memory for the kernel
7222 */
7223 if (required_kernelcore < kernelcore_node)
7224 kernelcore_node = required_kernelcore / usable_nodes;
7225
7226 /*
7227 * As the map is walked, we track how much memory is usable
7228 * by the kernel using kernelcore_remaining. When it is
7229 * 0, the rest of the node is usable by ZONE_MOVABLE
7230 */
7231 kernelcore_remaining = kernelcore_node;
7232
7233 /* Go through each range of PFNs within this node */
7234 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7235 unsigned long size_pages;
7236
7237 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7238 if (start_pfn >= end_pfn)
7239 continue;
7240
7241 /* Account for what is only usable for kernelcore */
7242 if (start_pfn < usable_startpfn) {
7243 unsigned long kernel_pages;
7244 kernel_pages = min(end_pfn, usable_startpfn)
7245 - start_pfn;
7246
7247 kernelcore_remaining -= min(kernel_pages,
7248 kernelcore_remaining);
7249 required_kernelcore -= min(kernel_pages,
7250 required_kernelcore);
7251
7252 /* Continue if range is now fully accounted */
7253 if (end_pfn <= usable_startpfn) {
7254
7255 /*
7256 * Push zone_movable_pfn to the end so
7257 * that if we have to rebalance
7258 * kernelcore across nodes, we will
7259 * not double account here
7260 */
7261 zone_movable_pfn[nid] = end_pfn;
7262 continue;
7263 }
7264 start_pfn = usable_startpfn;
7265 }
7266
7267 /*
7268 * The usable PFN range for ZONE_MOVABLE is from
7269 * start_pfn->end_pfn. Calculate size_pages as the
7270 * number of pages used as kernelcore
7271 */
7272 size_pages = end_pfn - start_pfn;
7273 if (size_pages > kernelcore_remaining)
7274 size_pages = kernelcore_remaining;
7275 zone_movable_pfn[nid] = start_pfn + size_pages;
7276
7277 /*
7278 * Some kernelcore has been met, update counts and
7279 * break if the kernelcore for this node has been
7280 * satisfied
7281 */
7282 required_kernelcore -= min(required_kernelcore,
7283 size_pages);
7284 kernelcore_remaining -= size_pages;
7285 if (!kernelcore_remaining)
7286 break;
7287 }
7288 }
7289
7290 /*
7291 * If there is still required_kernelcore, we do another pass with one
7292 * less node in the count. This will push zone_movable_pfn[nid] further
7293 * along on the nodes that still have memory until kernelcore is
7294 * satisfied
7295 */
7296 usable_nodes--;
7297 if (usable_nodes && required_kernelcore > usable_nodes)
7298 goto restart;
7299
7300 out2:
7301 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7302 for (nid = 0; nid < MAX_NUMNODES; nid++)
7303 zone_movable_pfn[nid] =
7304 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7305
7306 out:
7307 /* restore the node_state */
7308 node_states[N_MEMORY] = saved_node_state;
7309 }
7310
7311 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7312 static void check_for_memory(pg_data_t *pgdat, int nid)
7313 {
7314 enum zone_type zone_type;
7315
7316 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7317 struct zone *zone = &pgdat->node_zones[zone_type];
7318 if (populated_zone(zone)) {
7319 if (IS_ENABLED(CONFIG_HIGHMEM))
7320 node_set_state(nid, N_HIGH_MEMORY);
7321 if (zone_type <= ZONE_NORMAL)
7322 node_set_state(nid, N_NORMAL_MEMORY);
7323 break;
7324 }
7325 }
7326 }
7327
7328 /**
7329 * free_area_init_nodes - Initialise all pg_data_t and zone data
7330 * @max_zone_pfn: an array of max PFNs for each zone
7331 *
7332 * This will call free_area_init_node() for each active node in the system.
7333 * Using the page ranges provided by memblock_set_node(), the size of each
7334 * zone in each node and their holes is calculated. If the maximum PFN
7335 * between two adjacent zones match, it is assumed that the zone is empty.
7336 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7337 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7338 * starts where the previous one ended. For example, ZONE_DMA32 starts
7339 * at arch_max_dma_pfn.
7340 */
free_area_init_nodes(unsigned long * max_zone_pfn)7341 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7342 {
7343 unsigned long start_pfn, end_pfn;
7344 int i, nid;
7345
7346 /* Record where the zone boundaries are */
7347 memset(arch_zone_lowest_possible_pfn, 0,
7348 sizeof(arch_zone_lowest_possible_pfn));
7349 memset(arch_zone_highest_possible_pfn, 0,
7350 sizeof(arch_zone_highest_possible_pfn));
7351
7352 start_pfn = find_min_pfn_with_active_regions();
7353
7354 for (i = 0; i < MAX_NR_ZONES; i++) {
7355 if (i == ZONE_MOVABLE)
7356 continue;
7357
7358 end_pfn = max(max_zone_pfn[i], start_pfn);
7359 arch_zone_lowest_possible_pfn[i] = start_pfn;
7360 arch_zone_highest_possible_pfn[i] = end_pfn;
7361
7362 start_pfn = end_pfn;
7363 }
7364
7365 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7366 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7367 find_zone_movable_pfns_for_nodes();
7368
7369 /* Print out the zone ranges */
7370 pr_info("Zone ranges:\n");
7371 for (i = 0; i < MAX_NR_ZONES; i++) {
7372 if (i == ZONE_MOVABLE)
7373 continue;
7374 pr_info(" %-8s ", zone_names[i]);
7375 if (arch_zone_lowest_possible_pfn[i] ==
7376 arch_zone_highest_possible_pfn[i])
7377 pr_cont("empty\n");
7378 else
7379 pr_cont("[mem %#018Lx-%#018Lx]\n",
7380 (u64)arch_zone_lowest_possible_pfn[i]
7381 << PAGE_SHIFT,
7382 ((u64)arch_zone_highest_possible_pfn[i]
7383 << PAGE_SHIFT) - 1);
7384 }
7385
7386 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7387 pr_info("Movable zone start for each node\n");
7388 for (i = 0; i < MAX_NUMNODES; i++) {
7389 if (zone_movable_pfn[i])
7390 pr_info(" Node %d: %#018Lx\n", i,
7391 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7392 }
7393
7394 /*
7395 * Print out the early node map, and initialize the
7396 * subsection-map relative to active online memory ranges to
7397 * enable future "sub-section" extensions of the memory map.
7398 */
7399 pr_info("Early memory node ranges\n");
7400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7401 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7402 (u64)start_pfn << PAGE_SHIFT,
7403 ((u64)end_pfn << PAGE_SHIFT) - 1);
7404 subsection_map_init(start_pfn, end_pfn - start_pfn);
7405 }
7406
7407 /* Initialise every node */
7408 mminit_verify_pageflags_layout();
7409 setup_nr_node_ids();
7410 zero_resv_unavail();
7411 for_each_online_node(nid) {
7412 pg_data_t *pgdat = NODE_DATA(nid);
7413 free_area_init_node(nid, NULL,
7414 find_min_pfn_for_node(nid), NULL);
7415
7416 /* Any memory on that node */
7417 if (pgdat->node_present_pages)
7418 node_set_state(nid, N_MEMORY);
7419 check_for_memory(pgdat, nid);
7420 }
7421 }
7422
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)7423 static int __init cmdline_parse_core(char *p, unsigned long *core,
7424 unsigned long *percent)
7425 {
7426 unsigned long long coremem;
7427 char *endptr;
7428
7429 if (!p)
7430 return -EINVAL;
7431
7432 /* Value may be a percentage of total memory, otherwise bytes */
7433 coremem = simple_strtoull(p, &endptr, 0);
7434 if (*endptr == '%') {
7435 /* Paranoid check for percent values greater than 100 */
7436 WARN_ON(coremem > 100);
7437
7438 *percent = coremem;
7439 } else {
7440 coremem = memparse(p, &p);
7441 /* Paranoid check that UL is enough for the coremem value */
7442 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7443
7444 *core = coremem >> PAGE_SHIFT;
7445 *percent = 0UL;
7446 }
7447 return 0;
7448 }
7449
7450 /*
7451 * kernelcore=size sets the amount of memory for use for allocations that
7452 * cannot be reclaimed or migrated.
7453 */
cmdline_parse_kernelcore(char * p)7454 static int __init cmdline_parse_kernelcore(char *p)
7455 {
7456 /* parse kernelcore=mirror */
7457 if (parse_option_str(p, "mirror")) {
7458 mirrored_kernelcore = true;
7459 return 0;
7460 }
7461
7462 return cmdline_parse_core(p, &required_kernelcore,
7463 &required_kernelcore_percent);
7464 }
7465
7466 /*
7467 * movablecore=size sets the amount of memory for use for allocations that
7468 * can be reclaimed or migrated.
7469 */
cmdline_parse_movablecore(char * p)7470 static int __init cmdline_parse_movablecore(char *p)
7471 {
7472 return cmdline_parse_core(p, &required_movablecore,
7473 &required_movablecore_percent);
7474 }
7475
7476 early_param("kernelcore", cmdline_parse_kernelcore);
7477 early_param("movablecore", cmdline_parse_movablecore);
7478
7479 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7480
adjust_managed_page_count(struct page * page,long count)7481 void adjust_managed_page_count(struct page *page, long count)
7482 {
7483 atomic_long_add(count, &page_zone(page)->managed_pages);
7484 totalram_pages_add(count);
7485 #ifdef CONFIG_HIGHMEM
7486 if (PageHighMem(page))
7487 totalhigh_pages_add(count);
7488 #endif
7489 }
7490 EXPORT_SYMBOL(adjust_managed_page_count);
7491
free_reserved_area(void * start,void * end,int poison,const char * s)7492 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7493 {
7494 void *pos;
7495 unsigned long pages = 0;
7496
7497 start = (void *)PAGE_ALIGN((unsigned long)start);
7498 end = (void *)((unsigned long)end & PAGE_MASK);
7499 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7500 struct page *page = virt_to_page(pos);
7501 void *direct_map_addr;
7502
7503 /*
7504 * 'direct_map_addr' might be different from 'pos'
7505 * because some architectures' virt_to_page()
7506 * work with aliases. Getting the direct map
7507 * address ensures that we get a _writeable_
7508 * alias for the memset().
7509 */
7510 direct_map_addr = page_address(page);
7511 if ((unsigned int)poison <= 0xFF)
7512 memset(direct_map_addr, poison, PAGE_SIZE);
7513
7514 free_reserved_page(page);
7515 }
7516
7517 if (pages && s)
7518 pr_info("Freeing %s memory: %ldK\n",
7519 s, pages << (PAGE_SHIFT - 10));
7520
7521 return pages;
7522 }
7523
7524 #ifdef CONFIG_HIGHMEM
free_highmem_page(struct page * page)7525 void free_highmem_page(struct page *page)
7526 {
7527 __free_reserved_page(page);
7528 totalram_pages_inc();
7529 atomic_long_inc(&page_zone(page)->managed_pages);
7530 totalhigh_pages_inc();
7531 }
7532 #endif
7533
7534
mem_init_print_info(const char * str)7535 void __init mem_init_print_info(const char *str)
7536 {
7537 unsigned long physpages, codesize, datasize, rosize, bss_size;
7538 unsigned long init_code_size, init_data_size;
7539
7540 physpages = get_num_physpages();
7541 codesize = _etext - _stext;
7542 datasize = _edata - _sdata;
7543 rosize = __end_rodata - __start_rodata;
7544 bss_size = __bss_stop - __bss_start;
7545 init_data_size = __init_end - __init_begin;
7546 init_code_size = _einittext - _sinittext;
7547
7548 /*
7549 * Detect special cases and adjust section sizes accordingly:
7550 * 1) .init.* may be embedded into .data sections
7551 * 2) .init.text.* may be out of [__init_begin, __init_end],
7552 * please refer to arch/tile/kernel/vmlinux.lds.S.
7553 * 3) .rodata.* may be embedded into .text or .data sections.
7554 */
7555 #define adj_init_size(start, end, size, pos, adj) \
7556 do { \
7557 if (start <= pos && pos < end && size > adj) \
7558 size -= adj; \
7559 } while (0)
7560
7561 adj_init_size(__init_begin, __init_end, init_data_size,
7562 _sinittext, init_code_size);
7563 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7564 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7565 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7566 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7567
7568 #undef adj_init_size
7569
7570 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7571 #ifdef CONFIG_HIGHMEM
7572 ", %luK highmem"
7573 #endif
7574 "%s%s)\n",
7575 nr_free_pages() << (PAGE_SHIFT - 10),
7576 physpages << (PAGE_SHIFT - 10),
7577 codesize >> 10, datasize >> 10, rosize >> 10,
7578 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7579 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7580 totalcma_pages << (PAGE_SHIFT - 10),
7581 #ifdef CONFIG_HIGHMEM
7582 totalhigh_pages() << (PAGE_SHIFT - 10),
7583 #endif
7584 str ? ", " : "", str ? str : "");
7585 }
7586
7587 /**
7588 * set_dma_reserve - set the specified number of pages reserved in the first zone
7589 * @new_dma_reserve: The number of pages to mark reserved
7590 *
7591 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7592 * In the DMA zone, a significant percentage may be consumed by kernel image
7593 * and other unfreeable allocations which can skew the watermarks badly. This
7594 * function may optionally be used to account for unfreeable pages in the
7595 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7596 * smaller per-cpu batchsize.
7597 */
set_dma_reserve(unsigned long new_dma_reserve)7598 void __init set_dma_reserve(unsigned long new_dma_reserve)
7599 {
7600 dma_reserve = new_dma_reserve;
7601 }
7602
free_area_init(unsigned long * zones_size)7603 void __init free_area_init(unsigned long *zones_size)
7604 {
7605 zero_resv_unavail();
7606 free_area_init_node(0, zones_size,
7607 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7608 }
7609
page_alloc_cpu_dead(unsigned int cpu)7610 static int page_alloc_cpu_dead(unsigned int cpu)
7611 {
7612
7613 lru_add_drain_cpu(cpu);
7614 drain_pages(cpu);
7615
7616 /*
7617 * Spill the event counters of the dead processor
7618 * into the current processors event counters.
7619 * This artificially elevates the count of the current
7620 * processor.
7621 */
7622 vm_events_fold_cpu(cpu);
7623
7624 /*
7625 * Zero the differential counters of the dead processor
7626 * so that the vm statistics are consistent.
7627 *
7628 * This is only okay since the processor is dead and cannot
7629 * race with what we are doing.
7630 */
7631 cpu_vm_stats_fold(cpu);
7632 return 0;
7633 }
7634
7635 #ifdef CONFIG_NUMA
7636 int hashdist = HASHDIST_DEFAULT;
7637
set_hashdist(char * str)7638 static int __init set_hashdist(char *str)
7639 {
7640 if (!str)
7641 return 0;
7642 hashdist = simple_strtoul(str, &str, 0);
7643 return 1;
7644 }
7645 __setup("hashdist=", set_hashdist);
7646 #endif
7647
page_alloc_init(void)7648 void __init page_alloc_init(void)
7649 {
7650 int ret;
7651
7652 #ifdef CONFIG_NUMA
7653 if (num_node_state(N_MEMORY) == 1)
7654 hashdist = 0;
7655 #endif
7656
7657 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7658 "mm/page_alloc:dead", NULL,
7659 page_alloc_cpu_dead);
7660 WARN_ON(ret < 0);
7661 }
7662
7663 /*
7664 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7665 * or min_free_kbytes changes.
7666 */
calculate_totalreserve_pages(void)7667 static void calculate_totalreserve_pages(void)
7668 {
7669 struct pglist_data *pgdat;
7670 unsigned long reserve_pages = 0;
7671 enum zone_type i, j;
7672
7673 for_each_online_pgdat(pgdat) {
7674
7675 pgdat->totalreserve_pages = 0;
7676
7677 for (i = 0; i < MAX_NR_ZONES; i++) {
7678 struct zone *zone = pgdat->node_zones + i;
7679 long max = 0;
7680 unsigned long managed_pages = zone_managed_pages(zone);
7681
7682 /* Find valid and maximum lowmem_reserve in the zone */
7683 for (j = i; j < MAX_NR_ZONES; j++) {
7684 if (zone->lowmem_reserve[j] > max)
7685 max = zone->lowmem_reserve[j];
7686 }
7687
7688 /* we treat the high watermark as reserved pages. */
7689 max += high_wmark_pages(zone);
7690
7691 if (max > managed_pages)
7692 max = managed_pages;
7693
7694 pgdat->totalreserve_pages += max;
7695
7696 reserve_pages += max;
7697 }
7698 }
7699 totalreserve_pages = reserve_pages;
7700 }
7701
7702 /*
7703 * setup_per_zone_lowmem_reserve - called whenever
7704 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7705 * has a correct pages reserved value, so an adequate number of
7706 * pages are left in the zone after a successful __alloc_pages().
7707 */
setup_per_zone_lowmem_reserve(void)7708 static void setup_per_zone_lowmem_reserve(void)
7709 {
7710 struct pglist_data *pgdat;
7711 enum zone_type j, idx;
7712
7713 for_each_online_pgdat(pgdat) {
7714 for (j = 0; j < MAX_NR_ZONES; j++) {
7715 struct zone *zone = pgdat->node_zones + j;
7716 unsigned long managed_pages = zone_managed_pages(zone);
7717
7718 zone->lowmem_reserve[j] = 0;
7719
7720 idx = j;
7721 while (idx) {
7722 struct zone *lower_zone;
7723
7724 idx--;
7725 lower_zone = pgdat->node_zones + idx;
7726
7727 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7728 sysctl_lowmem_reserve_ratio[idx] = 0;
7729 lower_zone->lowmem_reserve[j] = 0;
7730 } else {
7731 lower_zone->lowmem_reserve[j] =
7732 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7733 }
7734 managed_pages += zone_managed_pages(lower_zone);
7735 }
7736 }
7737 }
7738
7739 /* update totalreserve_pages */
7740 calculate_totalreserve_pages();
7741 }
7742
__setup_per_zone_wmarks(void)7743 static void __setup_per_zone_wmarks(void)
7744 {
7745 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7746 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
7747 unsigned long lowmem_pages = 0;
7748 struct zone *zone;
7749 unsigned long flags;
7750
7751 /* Calculate total number of !ZONE_HIGHMEM pages */
7752 for_each_zone(zone) {
7753 if (!is_highmem(zone))
7754 lowmem_pages += zone_managed_pages(zone);
7755 }
7756
7757 for_each_zone(zone) {
7758 u64 tmp, low;
7759
7760 spin_lock_irqsave(&zone->lock, flags);
7761 tmp = (u64)pages_min * zone_managed_pages(zone);
7762 do_div(tmp, lowmem_pages);
7763 low = (u64)pages_low * zone_managed_pages(zone);
7764 do_div(low, vm_total_pages);
7765 if (is_highmem(zone)) {
7766 /*
7767 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7768 * need highmem pages, so cap pages_min to a small
7769 * value here.
7770 *
7771 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7772 * deltas control async page reclaim, and so should
7773 * not be capped for highmem.
7774 */
7775 unsigned long min_pages;
7776
7777 min_pages = zone_managed_pages(zone) / 1024;
7778 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7779 zone->_watermark[WMARK_MIN] = min_pages;
7780 } else {
7781 /*
7782 * If it's a lowmem zone, reserve a number of pages
7783 * proportionate to the zone's size.
7784 */
7785 zone->_watermark[WMARK_MIN] = tmp;
7786 }
7787
7788 /*
7789 * Set the kswapd watermarks distance according to the
7790 * scale factor in proportion to available memory, but
7791 * ensure a minimum size on small systems.
7792 */
7793 tmp = max_t(u64, tmp >> 2,
7794 mult_frac(zone_managed_pages(zone),
7795 watermark_scale_factor, 10000));
7796
7797 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) +
7798 low + tmp;
7799 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) +
7800 low + tmp * 2;
7801 zone->watermark_boost = 0;
7802
7803 spin_unlock_irqrestore(&zone->lock, flags);
7804 }
7805
7806 /* update totalreserve_pages */
7807 calculate_totalreserve_pages();
7808 }
7809
7810 /**
7811 * setup_per_zone_wmarks - called when min_free_kbytes changes
7812 * or when memory is hot-{added|removed}
7813 *
7814 * Ensures that the watermark[min,low,high] values for each zone are set
7815 * correctly with respect to min_free_kbytes.
7816 */
setup_per_zone_wmarks(void)7817 void setup_per_zone_wmarks(void)
7818 {
7819 static DEFINE_SPINLOCK(lock);
7820
7821 spin_lock(&lock);
7822 __setup_per_zone_wmarks();
7823 spin_unlock(&lock);
7824 }
7825
7826 /*
7827 * Initialise min_free_kbytes.
7828 *
7829 * For small machines we want it small (128k min). For large machines
7830 * we want it large (64MB max). But it is not linear, because network
7831 * bandwidth does not increase linearly with machine size. We use
7832 *
7833 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7834 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7835 *
7836 * which yields
7837 *
7838 * 16MB: 512k
7839 * 32MB: 724k
7840 * 64MB: 1024k
7841 * 128MB: 1448k
7842 * 256MB: 2048k
7843 * 512MB: 2896k
7844 * 1024MB: 4096k
7845 * 2048MB: 5792k
7846 * 4096MB: 8192k
7847 * 8192MB: 11584k
7848 * 16384MB: 16384k
7849 */
init_per_zone_wmark_min(void)7850 int __meminit init_per_zone_wmark_min(void)
7851 {
7852 unsigned long lowmem_kbytes;
7853 int new_min_free_kbytes;
7854
7855 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7856 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7857
7858 if (new_min_free_kbytes > user_min_free_kbytes) {
7859 min_free_kbytes = new_min_free_kbytes;
7860 if (min_free_kbytes < 128)
7861 min_free_kbytes = 128;
7862 if (min_free_kbytes > 65536)
7863 min_free_kbytes = 65536;
7864 } else {
7865 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7866 new_min_free_kbytes, user_min_free_kbytes);
7867 }
7868 setup_per_zone_wmarks();
7869 refresh_zone_stat_thresholds();
7870 setup_per_zone_lowmem_reserve();
7871
7872 #ifdef CONFIG_NUMA
7873 setup_min_unmapped_ratio();
7874 setup_min_slab_ratio();
7875 #endif
7876
7877 return 0;
7878 }
core_initcall(init_per_zone_wmark_min)7879 core_initcall(init_per_zone_wmark_min)
7880
7881 /*
7882 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7883 * that we can call two helper functions whenever min_free_kbytes
7884 * or extra_free_kbytes changes.
7885 */
7886 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7887 void __user *buffer, size_t *length, loff_t *ppos)
7888 {
7889 int rc;
7890
7891 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7892 if (rc)
7893 return rc;
7894
7895 if (write) {
7896 user_min_free_kbytes = min_free_kbytes;
7897 setup_per_zone_wmarks();
7898 }
7899 return 0;
7900 }
7901
watermark_boost_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7902 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7903 void __user *buffer, size_t *length, loff_t *ppos)
7904 {
7905 int rc;
7906
7907 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7908 if (rc)
7909 return rc;
7910
7911 return 0;
7912 }
7913
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7914 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7915 void __user *buffer, size_t *length, loff_t *ppos)
7916 {
7917 int rc;
7918
7919 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7920 if (rc)
7921 return rc;
7922
7923 if (write)
7924 setup_per_zone_wmarks();
7925
7926 return 0;
7927 }
7928
7929 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)7930 static void setup_min_unmapped_ratio(void)
7931 {
7932 pg_data_t *pgdat;
7933 struct zone *zone;
7934
7935 for_each_online_pgdat(pgdat)
7936 pgdat->min_unmapped_pages = 0;
7937
7938 for_each_zone(zone)
7939 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7940 sysctl_min_unmapped_ratio) / 100;
7941 }
7942
7943
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7944 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7945 void __user *buffer, size_t *length, loff_t *ppos)
7946 {
7947 int rc;
7948
7949 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7950 if (rc)
7951 return rc;
7952
7953 setup_min_unmapped_ratio();
7954
7955 return 0;
7956 }
7957
setup_min_slab_ratio(void)7958 static void setup_min_slab_ratio(void)
7959 {
7960 pg_data_t *pgdat;
7961 struct zone *zone;
7962
7963 for_each_online_pgdat(pgdat)
7964 pgdat->min_slab_pages = 0;
7965
7966 for_each_zone(zone)
7967 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7968 sysctl_min_slab_ratio) / 100;
7969 }
7970
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7971 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7972 void __user *buffer, size_t *length, loff_t *ppos)
7973 {
7974 int rc;
7975
7976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7977 if (rc)
7978 return rc;
7979
7980 setup_min_slab_ratio();
7981
7982 return 0;
7983 }
7984 #endif
7985
7986 /*
7987 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7988 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7989 * whenever sysctl_lowmem_reserve_ratio changes.
7990 *
7991 * The reserve ratio obviously has absolutely no relation with the
7992 * minimum watermarks. The lowmem reserve ratio can only make sense
7993 * if in function of the boot time zone sizes.
7994 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)7995 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7996 void __user *buffer, size_t *length, loff_t *ppos)
7997 {
7998 proc_dointvec_minmax(table, write, buffer, length, ppos);
7999 setup_per_zone_lowmem_reserve();
8000 return 0;
8001 }
8002
8003 /*
8004 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8005 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8006 * pagelist can have before it gets flushed back to buddy allocator.
8007 */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)8008 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8009 void __user *buffer, size_t *length, loff_t *ppos)
8010 {
8011 struct zone *zone;
8012 int old_percpu_pagelist_fraction;
8013 int ret;
8014
8015 mutex_lock(&pcp_batch_high_lock);
8016 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8017
8018 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8019 if (!write || ret < 0)
8020 goto out;
8021
8022 /* Sanity checking to avoid pcp imbalance */
8023 if (percpu_pagelist_fraction &&
8024 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8025 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8026 ret = -EINVAL;
8027 goto out;
8028 }
8029
8030 /* No change? */
8031 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8032 goto out;
8033
8034 for_each_populated_zone(zone) {
8035 unsigned int cpu;
8036
8037 for_each_possible_cpu(cpu)
8038 pageset_set_high_and_batch(zone,
8039 per_cpu_ptr(zone->pageset, cpu));
8040 }
8041 out:
8042 mutex_unlock(&pcp_batch_high_lock);
8043 return ret;
8044 }
8045
8046 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8047 /*
8048 * Returns the number of pages that arch has reserved but
8049 * is not known to alloc_large_system_hash().
8050 */
arch_reserved_kernel_pages(void)8051 static unsigned long __init arch_reserved_kernel_pages(void)
8052 {
8053 return 0;
8054 }
8055 #endif
8056
8057 /*
8058 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8059 * machines. As memory size is increased the scale is also increased but at
8060 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8061 * quadruples the scale is increased by one, which means the size of hash table
8062 * only doubles, instead of quadrupling as well.
8063 * Because 32-bit systems cannot have large physical memory, where this scaling
8064 * makes sense, it is disabled on such platforms.
8065 */
8066 #if __BITS_PER_LONG > 32
8067 #define ADAPT_SCALE_BASE (64ul << 30)
8068 #define ADAPT_SCALE_SHIFT 2
8069 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8070 #endif
8071
8072 /*
8073 * allocate a large system hash table from bootmem
8074 * - it is assumed that the hash table must contain an exact power-of-2
8075 * quantity of entries
8076 * - limit is the number of hash buckets, not the total allocation size
8077 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8078 void *__init alloc_large_system_hash(const char *tablename,
8079 unsigned long bucketsize,
8080 unsigned long numentries,
8081 int scale,
8082 int flags,
8083 unsigned int *_hash_shift,
8084 unsigned int *_hash_mask,
8085 unsigned long low_limit,
8086 unsigned long high_limit)
8087 {
8088 unsigned long long max = high_limit;
8089 unsigned long log2qty, size;
8090 void *table = NULL;
8091 gfp_t gfp_flags;
8092 bool virt;
8093
8094 /* allow the kernel cmdline to have a say */
8095 if (!numentries) {
8096 /* round applicable memory size up to nearest megabyte */
8097 numentries = nr_kernel_pages;
8098 numentries -= arch_reserved_kernel_pages();
8099
8100 /* It isn't necessary when PAGE_SIZE >= 1MB */
8101 if (PAGE_SHIFT < 20)
8102 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8103
8104 #if __BITS_PER_LONG > 32
8105 if (!high_limit) {
8106 unsigned long adapt;
8107
8108 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8109 adapt <<= ADAPT_SCALE_SHIFT)
8110 scale++;
8111 }
8112 #endif
8113
8114 /* limit to 1 bucket per 2^scale bytes of low memory */
8115 if (scale > PAGE_SHIFT)
8116 numentries >>= (scale - PAGE_SHIFT);
8117 else
8118 numentries <<= (PAGE_SHIFT - scale);
8119
8120 /* Make sure we've got at least a 0-order allocation.. */
8121 if (unlikely(flags & HASH_SMALL)) {
8122 /* Makes no sense without HASH_EARLY */
8123 WARN_ON(!(flags & HASH_EARLY));
8124 if (!(numentries >> *_hash_shift)) {
8125 numentries = 1UL << *_hash_shift;
8126 BUG_ON(!numentries);
8127 }
8128 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8129 numentries = PAGE_SIZE / bucketsize;
8130 }
8131 numentries = roundup_pow_of_two(numentries);
8132
8133 /* limit allocation size to 1/16 total memory by default */
8134 if (max == 0) {
8135 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8136 do_div(max, bucketsize);
8137 }
8138 max = min(max, 0x80000000ULL);
8139
8140 if (numentries < low_limit)
8141 numentries = low_limit;
8142 if (numentries > max)
8143 numentries = max;
8144
8145 log2qty = ilog2(numentries);
8146
8147 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8148 do {
8149 virt = false;
8150 size = bucketsize << log2qty;
8151 if (flags & HASH_EARLY) {
8152 if (flags & HASH_ZERO)
8153 table = memblock_alloc(size, SMP_CACHE_BYTES);
8154 else
8155 table = memblock_alloc_raw(size,
8156 SMP_CACHE_BYTES);
8157 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8158 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8159 virt = true;
8160 } else {
8161 /*
8162 * If bucketsize is not a power-of-two, we may free
8163 * some pages at the end of hash table which
8164 * alloc_pages_exact() automatically does
8165 */
8166 table = alloc_pages_exact(size, gfp_flags);
8167 kmemleak_alloc(table, size, 1, gfp_flags);
8168 }
8169 } while (!table && size > PAGE_SIZE && --log2qty);
8170
8171 if (!table)
8172 panic("Failed to allocate %s hash table\n", tablename);
8173
8174 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8175 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8176 virt ? "vmalloc" : "linear");
8177
8178 if (_hash_shift)
8179 *_hash_shift = log2qty;
8180 if (_hash_mask)
8181 *_hash_mask = (1 << log2qty) - 1;
8182
8183 return table;
8184 }
8185
8186 /*
8187 * This function checks whether pageblock includes unmovable pages or not.
8188 * If @count is not zero, it is okay to include less @count unmovable pages
8189 *
8190 * PageLRU check without isolation or lru_lock could race so that
8191 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8192 * check without lock_page also may miss some movable non-lru pages at
8193 * race condition. So you can't expect this function should be exact.
8194 */
has_unmovable_pages(struct zone * zone,struct page * page,int count,int migratetype,int flags)8195 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8196 int migratetype, int flags)
8197 {
8198 unsigned long found;
8199 unsigned long iter = 0;
8200 unsigned long pfn = page_to_pfn(page);
8201 const char *reason = "unmovable page";
8202
8203 /*
8204 * TODO we could make this much more efficient by not checking every
8205 * page in the range if we know all of them are in MOVABLE_ZONE and
8206 * that the movable zone guarantees that pages are migratable but
8207 * the later is not the case right now unfortunatelly. E.g. movablecore
8208 * can still lead to having bootmem allocations in zone_movable.
8209 */
8210
8211 if (is_migrate_cma_page(page)) {
8212 /*
8213 * CMA allocations (alloc_contig_range) really need to mark
8214 * isolate CMA pageblocks even when they are not movable in fact
8215 * so consider them movable here.
8216 */
8217 if (is_migrate_cma(migratetype))
8218 return false;
8219
8220 reason = "CMA page";
8221 goto unmovable;
8222 }
8223
8224 for (found = 0; iter < pageblock_nr_pages; iter++) {
8225 unsigned long check = pfn + iter;
8226
8227 if (!pfn_valid_within(check))
8228 continue;
8229
8230 page = pfn_to_page(check);
8231
8232 if (PageReserved(page))
8233 goto unmovable;
8234
8235 /*
8236 * If the zone is movable and we have ruled out all reserved
8237 * pages then it should be reasonably safe to assume the rest
8238 * is movable.
8239 */
8240 if (zone_idx(zone) == ZONE_MOVABLE)
8241 continue;
8242
8243 /*
8244 * Hugepages are not in LRU lists, but they're movable.
8245 * We need not scan over tail pages because we don't
8246 * handle each tail page individually in migration.
8247 */
8248 if (PageHuge(page)) {
8249 struct page *head = compound_head(page);
8250 unsigned int skip_pages;
8251
8252 if (!hugepage_migration_supported(page_hstate(head)))
8253 goto unmovable;
8254
8255 skip_pages = compound_nr(head) - (page - head);
8256 iter += skip_pages - 1;
8257 continue;
8258 }
8259
8260 /*
8261 * We can't use page_count without pin a page
8262 * because another CPU can free compound page.
8263 * This check already skips compound tails of THP
8264 * because their page->_refcount is zero at all time.
8265 */
8266 if (!page_ref_count(page)) {
8267 if (PageBuddy(page))
8268 iter += (1 << page_order(page)) - 1;
8269 continue;
8270 }
8271
8272 /*
8273 * The HWPoisoned page may be not in buddy system, and
8274 * page_count() is not 0.
8275 */
8276 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8277 continue;
8278
8279 if (__PageMovable(page))
8280 continue;
8281
8282 if (!PageLRU(page))
8283 found++;
8284 /*
8285 * If there are RECLAIMABLE pages, we need to check
8286 * it. But now, memory offline itself doesn't call
8287 * shrink_node_slabs() and it still to be fixed.
8288 */
8289 /*
8290 * If the page is not RAM, page_count()should be 0.
8291 * we don't need more check. This is an _used_ not-movable page.
8292 *
8293 * The problematic thing here is PG_reserved pages. PG_reserved
8294 * is set to both of a memory hole page and a _used_ kernel
8295 * page at boot.
8296 */
8297 if (found > count)
8298 goto unmovable;
8299 }
8300 return false;
8301 unmovable:
8302 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8303 if (flags & REPORT_FAILURE)
8304 dump_page(pfn_to_page(pfn + iter), reason);
8305 return true;
8306 }
8307
8308 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8309 static unsigned long pfn_max_align_down(unsigned long pfn)
8310 {
8311 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8312 pageblock_nr_pages) - 1);
8313 }
8314
pfn_max_align_up(unsigned long pfn)8315 static unsigned long pfn_max_align_up(unsigned long pfn)
8316 {
8317 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8318 pageblock_nr_pages));
8319 }
8320
8321 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)8322 static int __alloc_contig_migrate_range(struct compact_control *cc,
8323 unsigned long start, unsigned long end)
8324 {
8325 /* This function is based on compact_zone() from compaction.c. */
8326 unsigned long nr_reclaimed;
8327 unsigned long pfn = start;
8328 unsigned int tries = 0;
8329 int ret = 0;
8330
8331 migrate_prep();
8332
8333 while (pfn < end || !list_empty(&cc->migratepages)) {
8334 if (fatal_signal_pending(current)) {
8335 ret = -EINTR;
8336 break;
8337 }
8338
8339 if (list_empty(&cc->migratepages)) {
8340 cc->nr_migratepages = 0;
8341 pfn = isolate_migratepages_range(cc, pfn, end);
8342 if (!pfn) {
8343 ret = -EINTR;
8344 break;
8345 }
8346 tries = 0;
8347 } else if (++tries == 5) {
8348 ret = ret < 0 ? ret : -EBUSY;
8349 break;
8350 }
8351
8352 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8353 &cc->migratepages);
8354 cc->nr_migratepages -= nr_reclaimed;
8355
8356 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8357 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8358 }
8359 if (ret < 0) {
8360 putback_movable_pages(&cc->migratepages);
8361 return ret;
8362 }
8363 return 0;
8364 }
8365
8366 /**
8367 * alloc_contig_range() -- tries to allocate given range of pages
8368 * @start: start PFN to allocate
8369 * @end: one-past-the-last PFN to allocate
8370 * @migratetype: migratetype of the underlaying pageblocks (either
8371 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8372 * in range must have the same migratetype and it must
8373 * be either of the two.
8374 * @gfp_mask: GFP mask to use during compaction
8375 *
8376 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8377 * aligned. The PFN range must belong to a single zone.
8378 *
8379 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8380 * pageblocks in the range. Once isolated, the pageblocks should not
8381 * be modified by others.
8382 *
8383 * Return: zero on success or negative error code. On success all
8384 * pages which PFN is in [start, end) are allocated for the caller and
8385 * need to be freed with free_contig_range().
8386 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)8387 int alloc_contig_range(unsigned long start, unsigned long end,
8388 unsigned migratetype, gfp_t gfp_mask)
8389 {
8390 unsigned long outer_start, outer_end;
8391 unsigned int order;
8392 int ret = 0;
8393
8394 struct compact_control cc = {
8395 .nr_migratepages = 0,
8396 .order = -1,
8397 .zone = page_zone(pfn_to_page(start)),
8398 .mode = MIGRATE_SYNC,
8399 .ignore_skip_hint = true,
8400 .no_set_skip_hint = true,
8401 .gfp_mask = current_gfp_context(gfp_mask),
8402 };
8403 INIT_LIST_HEAD(&cc.migratepages);
8404
8405 /*
8406 * What we do here is we mark all pageblocks in range as
8407 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8408 * have different sizes, and due to the way page allocator
8409 * work, we align the range to biggest of the two pages so
8410 * that page allocator won't try to merge buddies from
8411 * different pageblocks and change MIGRATE_ISOLATE to some
8412 * other migration type.
8413 *
8414 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8415 * migrate the pages from an unaligned range (ie. pages that
8416 * we are interested in). This will put all the pages in
8417 * range back to page allocator as MIGRATE_ISOLATE.
8418 *
8419 * When this is done, we take the pages in range from page
8420 * allocator removing them from the buddy system. This way
8421 * page allocator will never consider using them.
8422 *
8423 * This lets us mark the pageblocks back as
8424 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8425 * aligned range but not in the unaligned, original range are
8426 * put back to page allocator so that buddy can use them.
8427 */
8428
8429 ret = start_isolate_page_range(pfn_max_align_down(start),
8430 pfn_max_align_up(end), migratetype, 0);
8431 if (ret < 0)
8432 return ret;
8433
8434 /*
8435 * In case of -EBUSY, we'd like to know which page causes problem.
8436 * So, just fall through. test_pages_isolated() has a tracepoint
8437 * which will report the busy page.
8438 *
8439 * It is possible that busy pages could become available before
8440 * the call to test_pages_isolated, and the range will actually be
8441 * allocated. So, if we fall through be sure to clear ret so that
8442 * -EBUSY is not accidentally used or returned to caller.
8443 */
8444 ret = __alloc_contig_migrate_range(&cc, start, end);
8445 if (ret && ret != -EBUSY)
8446 goto done;
8447 ret =0;
8448
8449 /*
8450 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8451 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8452 * more, all pages in [start, end) are free in page allocator.
8453 * What we are going to do is to allocate all pages from
8454 * [start, end) (that is remove them from page allocator).
8455 *
8456 * The only problem is that pages at the beginning and at the
8457 * end of interesting range may be not aligned with pages that
8458 * page allocator holds, ie. they can be part of higher order
8459 * pages. Because of this, we reserve the bigger range and
8460 * once this is done free the pages we are not interested in.
8461 *
8462 * We don't have to hold zone->lock here because the pages are
8463 * isolated thus they won't get removed from buddy.
8464 */
8465
8466 lru_add_drain_all();
8467
8468 order = 0;
8469 outer_start = start;
8470 while (!PageBuddy(pfn_to_page(outer_start))) {
8471 if (++order >= MAX_ORDER) {
8472 outer_start = start;
8473 break;
8474 }
8475 outer_start &= ~0UL << order;
8476 }
8477
8478 if (outer_start != start) {
8479 order = page_order(pfn_to_page(outer_start));
8480
8481 /*
8482 * outer_start page could be small order buddy page and
8483 * it doesn't include start page. Adjust outer_start
8484 * in this case to report failed page properly
8485 * on tracepoint in test_pages_isolated()
8486 */
8487 if (outer_start + (1UL << order) <= start)
8488 outer_start = start;
8489 }
8490
8491 /* Make sure the range is really isolated. */
8492 if (test_pages_isolated(outer_start, end, false)) {
8493 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8494 __func__, outer_start, end);
8495 ret = -EBUSY;
8496 goto done;
8497 }
8498
8499 /* Grab isolated pages from freelists. */
8500 outer_end = isolate_freepages_range(&cc, outer_start, end);
8501 if (!outer_end) {
8502 ret = -EBUSY;
8503 goto done;
8504 }
8505
8506 /* Free head and tail (if any) */
8507 if (start != outer_start)
8508 free_contig_range(outer_start, start - outer_start);
8509 if (end != outer_end)
8510 free_contig_range(end, outer_end - end);
8511
8512 done:
8513 undo_isolate_page_range(pfn_max_align_down(start),
8514 pfn_max_align_up(end), migratetype);
8515 return ret;
8516 }
8517 #endif /* CONFIG_CONTIG_ALLOC */
8518
free_contig_range(unsigned long pfn,unsigned int nr_pages)8519 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8520 {
8521 unsigned int count = 0;
8522
8523 for (; nr_pages--; pfn++) {
8524 struct page *page = pfn_to_page(pfn);
8525
8526 count += page_count(page) != 1;
8527 __free_page(page);
8528 }
8529 WARN(count != 0, "%d pages are still in use!\n", count);
8530 }
8531
8532 /*
8533 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8534 * page high values need to be recalulated.
8535 */
zone_pcp_update(struct zone * zone)8536 void __meminit zone_pcp_update(struct zone *zone)
8537 {
8538 unsigned cpu;
8539 mutex_lock(&pcp_batch_high_lock);
8540 for_each_possible_cpu(cpu)
8541 pageset_set_high_and_batch(zone,
8542 per_cpu_ptr(zone->pageset, cpu));
8543 mutex_unlock(&pcp_batch_high_lock);
8544 }
8545
zone_pcp_reset(struct zone * zone)8546 void zone_pcp_reset(struct zone *zone)
8547 {
8548 unsigned long flags;
8549 int cpu;
8550 struct per_cpu_pageset *pset;
8551
8552 /* avoid races with drain_pages() */
8553 local_irq_save(flags);
8554 if (zone->pageset != &boot_pageset) {
8555 for_each_online_cpu(cpu) {
8556 pset = per_cpu_ptr(zone->pageset, cpu);
8557 drain_zonestat(zone, pset);
8558 }
8559 free_percpu(zone->pageset);
8560 zone->pageset = &boot_pageset;
8561 }
8562 local_irq_restore(flags);
8563 }
8564
8565 #ifdef CONFIG_MEMORY_HOTREMOVE
8566 /*
8567 * All pages in the range must be in a single zone and isolated
8568 * before calling this.
8569 */
8570 unsigned long
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)8571 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8572 {
8573 struct page *page;
8574 struct zone *zone;
8575 unsigned int order, i;
8576 unsigned long pfn;
8577 unsigned long flags;
8578 unsigned long offlined_pages = 0;
8579
8580 /* find the first valid pfn */
8581 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8582 if (pfn_valid(pfn))
8583 break;
8584 if (pfn == end_pfn)
8585 return offlined_pages;
8586
8587 offline_mem_sections(pfn, end_pfn);
8588 zone = page_zone(pfn_to_page(pfn));
8589 spin_lock_irqsave(&zone->lock, flags);
8590 pfn = start_pfn;
8591 while (pfn < end_pfn) {
8592 if (!pfn_valid(pfn)) {
8593 pfn++;
8594 continue;
8595 }
8596 page = pfn_to_page(pfn);
8597 /*
8598 * The HWPoisoned page may be not in buddy system, and
8599 * page_count() is not 0.
8600 */
8601 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8602 pfn++;
8603 SetPageReserved(page);
8604 offlined_pages++;
8605 continue;
8606 }
8607
8608 BUG_ON(page_count(page));
8609 BUG_ON(!PageBuddy(page));
8610 order = page_order(page);
8611 offlined_pages += 1 << order;
8612 #ifdef CONFIG_DEBUG_VM
8613 pr_info("remove from free list %lx %d %lx\n",
8614 pfn, 1 << order, end_pfn);
8615 #endif
8616 del_page_from_free_area(page, &zone->free_area[order]);
8617 for (i = 0; i < (1 << order); i++)
8618 SetPageReserved((page+i));
8619 pfn += (1 << order);
8620 }
8621 spin_unlock_irqrestore(&zone->lock, flags);
8622
8623 return offlined_pages;
8624 }
8625 #endif
8626
is_free_buddy_page(struct page * page)8627 bool is_free_buddy_page(struct page *page)
8628 {
8629 struct zone *zone = page_zone(page);
8630 unsigned long pfn = page_to_pfn(page);
8631 unsigned long flags;
8632 unsigned int order;
8633
8634 spin_lock_irqsave(&zone->lock, flags);
8635 for (order = 0; order < MAX_ORDER; order++) {
8636 struct page *page_head = page - (pfn & ((1 << order) - 1));
8637
8638 if (PageBuddy(page_head) && page_order(page_head) >= order)
8639 break;
8640 }
8641 spin_unlock_irqrestore(&zone->lock, flags);
8642
8643 return order < MAX_ORDER;
8644 }
8645
8646 #ifdef CONFIG_MEMORY_FAILURE
8647 /*
8648 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8649 * test is performed under the zone lock to prevent a race against page
8650 * allocation.
8651 */
set_hwpoison_free_buddy_page(struct page * page)8652 bool set_hwpoison_free_buddy_page(struct page *page)
8653 {
8654 struct zone *zone = page_zone(page);
8655 unsigned long pfn = page_to_pfn(page);
8656 unsigned long flags;
8657 unsigned int order;
8658 bool hwpoisoned = false;
8659
8660 spin_lock_irqsave(&zone->lock, flags);
8661 for (order = 0; order < MAX_ORDER; order++) {
8662 struct page *page_head = page - (pfn & ((1 << order) - 1));
8663
8664 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8665 if (!TestSetPageHWPoison(page))
8666 hwpoisoned = true;
8667 break;
8668 }
8669 }
8670 spin_unlock_irqrestore(&zone->lock, flags);
8671
8672 return hwpoisoned;
8673 }
8674 #endif
8675