1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/iommu.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
42 #include <asm/gart.h>
43 #include <asm/dma.h>
44
45 #include "amd_iommu_proto.h"
46 #include "amd_iommu_types.h"
47 #include "irq_remapping.h"
48
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
50
51 #define LOOP_TIMEOUT 100000
52
53 /* IO virtual address start page frame number */
54 #define IOVA_START_PFN (1)
55 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
56
57 /* Reserved IOVA ranges */
58 #define MSI_RANGE_START (0xfee00000)
59 #define MSI_RANGE_END (0xfeefffff)
60 #define HT_RANGE_START (0xfd00000000ULL)
61 #define HT_RANGE_END (0xffffffffffULL)
62
63 /*
64 * This bitmap is used to advertise the page sizes our hardware support
65 * to the IOMMU core, which will then use this information to split
66 * physically contiguous memory regions it is mapping into page sizes
67 * that we support.
68 *
69 * 512GB Pages are not supported due to a hardware bug
70 */
71 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
72
73 static DEFINE_SPINLOCK(pd_bitmap_lock);
74
75 /* List of all available dev_data structures */
76 static LLIST_HEAD(dev_data_list);
77
78 LIST_HEAD(ioapic_map);
79 LIST_HEAD(hpet_map);
80 LIST_HEAD(acpihid_map);
81
82 /*
83 * Domain for untranslated devices - only allocated
84 * if iommu=pt passed on kernel cmd line.
85 */
86 const struct iommu_ops amd_iommu_ops;
87
88 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
89 int amd_iommu_max_glx_val = -1;
90
91 static const struct dma_map_ops amd_iommu_dma_ops;
92
93 /*
94 * general struct to manage commands send to an IOMMU
95 */
96 struct iommu_cmd {
97 u32 data[4];
98 };
99
100 struct kmem_cache *amd_iommu_irq_cache;
101
102 static void update_domain(struct protection_domain *domain);
103 static int protection_domain_init(struct protection_domain *domain);
104 static void detach_device(struct device *dev);
105 static void iova_domain_flush_tlb(struct iova_domain *iovad);
106
107 /*
108 * Data container for a dma_ops specific protection domain
109 */
110 struct dma_ops_domain {
111 /* generic protection domain information */
112 struct protection_domain domain;
113
114 /* IOVA RB-Tree */
115 struct iova_domain iovad;
116 };
117
118 static struct iova_domain reserved_iova_ranges;
119 static struct lock_class_key reserved_rbtree_key;
120
121 /****************************************************************************
122 *
123 * Helper functions
124 *
125 ****************************************************************************/
126
match_hid_uid(struct device * dev,struct acpihid_map_entry * entry)127 static inline int match_hid_uid(struct device *dev,
128 struct acpihid_map_entry *entry)
129 {
130 struct acpi_device *adev = ACPI_COMPANION(dev);
131 const char *hid, *uid;
132
133 if (!adev)
134 return -ENODEV;
135
136 hid = acpi_device_hid(adev);
137 uid = acpi_device_uid(adev);
138
139 if (!hid || !(*hid))
140 return -ENODEV;
141
142 if (!uid || !(*uid))
143 return strcmp(hid, entry->hid);
144
145 if (!(*entry->uid))
146 return strcmp(hid, entry->hid);
147
148 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
149 }
150
get_pci_device_id(struct device * dev)151 static inline u16 get_pci_device_id(struct device *dev)
152 {
153 struct pci_dev *pdev = to_pci_dev(dev);
154
155 return pci_dev_id(pdev);
156 }
157
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)158 static inline int get_acpihid_device_id(struct device *dev,
159 struct acpihid_map_entry **entry)
160 {
161 struct acpihid_map_entry *p;
162
163 list_for_each_entry(p, &acpihid_map, list) {
164 if (!match_hid_uid(dev, p)) {
165 if (entry)
166 *entry = p;
167 return p->devid;
168 }
169 }
170 return -EINVAL;
171 }
172
get_device_id(struct device * dev)173 static inline int get_device_id(struct device *dev)
174 {
175 int devid;
176
177 if (dev_is_pci(dev))
178 devid = get_pci_device_id(dev);
179 else
180 devid = get_acpihid_device_id(dev, NULL);
181
182 return devid;
183 }
184
to_pdomain(struct iommu_domain * dom)185 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
186 {
187 return container_of(dom, struct protection_domain, domain);
188 }
189
to_dma_ops_domain(struct protection_domain * domain)190 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
191 {
192 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
193 return container_of(domain, struct dma_ops_domain, domain);
194 }
195
alloc_dev_data(u16 devid)196 static struct iommu_dev_data *alloc_dev_data(u16 devid)
197 {
198 struct iommu_dev_data *dev_data;
199
200 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
201 if (!dev_data)
202 return NULL;
203
204 spin_lock_init(&dev_data->lock);
205 dev_data->devid = devid;
206 ratelimit_default_init(&dev_data->rs);
207
208 llist_add(&dev_data->dev_data_list, &dev_data_list);
209 return dev_data;
210 }
211
search_dev_data(u16 devid)212 static struct iommu_dev_data *search_dev_data(u16 devid)
213 {
214 struct iommu_dev_data *dev_data;
215 struct llist_node *node;
216
217 if (llist_empty(&dev_data_list))
218 return NULL;
219
220 node = dev_data_list.first;
221 llist_for_each_entry(dev_data, node, dev_data_list) {
222 if (dev_data->devid == devid)
223 return dev_data;
224 }
225
226 return NULL;
227 }
228
clone_alias(struct pci_dev * pdev,u16 alias,void * data)229 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
230 {
231 u16 devid = pci_dev_id(pdev);
232
233 if (devid == alias)
234 return 0;
235
236 amd_iommu_rlookup_table[alias] =
237 amd_iommu_rlookup_table[devid];
238 memcpy(amd_iommu_dev_table[alias].data,
239 amd_iommu_dev_table[devid].data,
240 sizeof(amd_iommu_dev_table[alias].data));
241
242 return 0;
243 }
244
clone_aliases(struct pci_dev * pdev)245 static void clone_aliases(struct pci_dev *pdev)
246 {
247 if (!pdev)
248 return;
249
250 /*
251 * The IVRS alias stored in the alias table may not be
252 * part of the PCI DMA aliases if it's bus differs
253 * from the original device.
254 */
255 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
256
257 pci_for_each_dma_alias(pdev, clone_alias, NULL);
258 }
259
setup_aliases(struct device * dev)260 static struct pci_dev *setup_aliases(struct device *dev)
261 {
262 struct pci_dev *pdev = to_pci_dev(dev);
263 u16 ivrs_alias;
264
265 /* For ACPI HID devices, there are no aliases */
266 if (!dev_is_pci(dev))
267 return NULL;
268
269 /*
270 * Add the IVRS alias to the pci aliases if it is on the same
271 * bus. The IVRS table may know about a quirk that we don't.
272 */
273 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
274 if (ivrs_alias != pci_dev_id(pdev) &&
275 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
276 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
277 pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
278 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
279 }
280
281 clone_aliases(pdev);
282
283 return pdev;
284 }
285
find_dev_data(u16 devid)286 static struct iommu_dev_data *find_dev_data(u16 devid)
287 {
288 struct iommu_dev_data *dev_data;
289 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
290
291 dev_data = search_dev_data(devid);
292
293 if (dev_data == NULL) {
294 dev_data = alloc_dev_data(devid);
295 if (!dev_data)
296 return NULL;
297
298 if (translation_pre_enabled(iommu))
299 dev_data->defer_attach = true;
300 }
301
302 return dev_data;
303 }
304
get_dev_data(struct device * dev)305 struct iommu_dev_data *get_dev_data(struct device *dev)
306 {
307 return dev->archdata.iommu;
308 }
309 EXPORT_SYMBOL(get_dev_data);
310
311 /*
312 * Find or create an IOMMU group for a acpihid device.
313 */
acpihid_device_group(struct device * dev)314 static struct iommu_group *acpihid_device_group(struct device *dev)
315 {
316 struct acpihid_map_entry *p, *entry = NULL;
317 int devid;
318
319 devid = get_acpihid_device_id(dev, &entry);
320 if (devid < 0)
321 return ERR_PTR(devid);
322
323 list_for_each_entry(p, &acpihid_map, list) {
324 if ((devid == p->devid) && p->group)
325 entry->group = p->group;
326 }
327
328 if (!entry->group)
329 entry->group = generic_device_group(dev);
330 else
331 iommu_group_ref_get(entry->group);
332
333 return entry->group;
334 }
335
pci_iommuv2_capable(struct pci_dev * pdev)336 static bool pci_iommuv2_capable(struct pci_dev *pdev)
337 {
338 static const int caps[] = {
339 PCI_EXT_CAP_ID_ATS,
340 PCI_EXT_CAP_ID_PRI,
341 PCI_EXT_CAP_ID_PASID,
342 };
343 int i, pos;
344
345 if (pci_ats_disabled())
346 return false;
347
348 for (i = 0; i < 3; ++i) {
349 pos = pci_find_ext_capability(pdev, caps[i]);
350 if (pos == 0)
351 return false;
352 }
353
354 return true;
355 }
356
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)357 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
358 {
359 struct iommu_dev_data *dev_data;
360
361 dev_data = get_dev_data(&pdev->dev);
362
363 return dev_data->errata & (1 << erratum) ? true : false;
364 }
365
366 /*
367 * This function checks if the driver got a valid device from the caller to
368 * avoid dereferencing invalid pointers.
369 */
check_device(struct device * dev)370 static bool check_device(struct device *dev)
371 {
372 int devid;
373
374 if (!dev || !dev->dma_mask)
375 return false;
376
377 devid = get_device_id(dev);
378 if (devid < 0)
379 return false;
380
381 /* Out of our scope? */
382 if (devid > amd_iommu_last_bdf)
383 return false;
384
385 if (amd_iommu_rlookup_table[devid] == NULL)
386 return false;
387
388 return true;
389 }
390
init_iommu_group(struct device * dev)391 static void init_iommu_group(struct device *dev)
392 {
393 struct iommu_group *group;
394
395 group = iommu_group_get_for_dev(dev);
396 if (IS_ERR(group))
397 return;
398
399 iommu_group_put(group);
400 }
401
iommu_init_device(struct device * dev)402 static int iommu_init_device(struct device *dev)
403 {
404 struct iommu_dev_data *dev_data;
405 struct amd_iommu *iommu;
406 int devid;
407
408 if (dev->archdata.iommu)
409 return 0;
410
411 devid = get_device_id(dev);
412 if (devid < 0)
413 return devid;
414
415 iommu = amd_iommu_rlookup_table[devid];
416
417 dev_data = find_dev_data(devid);
418 if (!dev_data)
419 return -ENOMEM;
420
421 dev_data->pdev = setup_aliases(dev);
422
423 /*
424 * By default we use passthrough mode for IOMMUv2 capable device.
425 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
426 * invalid address), we ignore the capability for the device so
427 * it'll be forced to go into translation mode.
428 */
429 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
430 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
431 struct amd_iommu *iommu;
432
433 iommu = amd_iommu_rlookup_table[dev_data->devid];
434 dev_data->iommu_v2 = iommu->is_iommu_v2;
435 }
436
437 dev->archdata.iommu = dev_data;
438
439 iommu_device_link(&iommu->iommu, dev);
440
441 return 0;
442 }
443
iommu_ignore_device(struct device * dev)444 static void iommu_ignore_device(struct device *dev)
445 {
446 int devid;
447
448 devid = get_device_id(dev);
449 if (devid < 0)
450 return;
451
452 amd_iommu_rlookup_table[devid] = NULL;
453 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
454
455 setup_aliases(dev);
456 }
457
iommu_uninit_device(struct device * dev)458 static void iommu_uninit_device(struct device *dev)
459 {
460 struct iommu_dev_data *dev_data;
461 struct amd_iommu *iommu;
462 int devid;
463
464 devid = get_device_id(dev);
465 if (devid < 0)
466 return;
467
468 iommu = amd_iommu_rlookup_table[devid];
469
470 dev_data = search_dev_data(devid);
471 if (!dev_data)
472 return;
473
474 if (dev_data->domain)
475 detach_device(dev);
476
477 iommu_device_unlink(&iommu->iommu, dev);
478
479 iommu_group_remove_device(dev);
480
481 /* Remove dma-ops */
482 dev->dma_ops = NULL;
483
484 /*
485 * We keep dev_data around for unplugged devices and reuse it when the
486 * device is re-plugged - not doing so would introduce a ton of races.
487 */
488 }
489
490 /*
491 * Helper function to get the first pte of a large mapping
492 */
first_pte_l7(u64 * pte,unsigned long * page_size,unsigned long * count)493 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
494 unsigned long *count)
495 {
496 unsigned long pte_mask, pg_size, cnt;
497 u64 *fpte;
498
499 pg_size = PTE_PAGE_SIZE(*pte);
500 cnt = PAGE_SIZE_PTE_COUNT(pg_size);
501 pte_mask = ~((cnt << 3) - 1);
502 fpte = (u64 *)(((unsigned long)pte) & pte_mask);
503
504 if (page_size)
505 *page_size = pg_size;
506
507 if (count)
508 *count = cnt;
509
510 return fpte;
511 }
512
513 /****************************************************************************
514 *
515 * Interrupt handling functions
516 *
517 ****************************************************************************/
518
dump_dte_entry(u16 devid)519 static void dump_dte_entry(u16 devid)
520 {
521 int i;
522
523 for (i = 0; i < 4; ++i)
524 pr_err("DTE[%d]: %016llx\n", i,
525 amd_iommu_dev_table[devid].data[i]);
526 }
527
dump_command(unsigned long phys_addr)528 static void dump_command(unsigned long phys_addr)
529 {
530 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
531 int i;
532
533 for (i = 0; i < 4; ++i)
534 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
535 }
536
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)537 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
538 u64 address, int flags)
539 {
540 struct iommu_dev_data *dev_data = NULL;
541 struct pci_dev *pdev;
542
543 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
544 devid & 0xff);
545 if (pdev)
546 dev_data = get_dev_data(&pdev->dev);
547
548 if (dev_data && __ratelimit(&dev_data->rs)) {
549 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
550 domain_id, address, flags);
551 } else if (printk_ratelimit()) {
552 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
553 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
554 domain_id, address, flags);
555 }
556
557 if (pdev)
558 pci_dev_put(pdev);
559 }
560
iommu_print_event(struct amd_iommu * iommu,void * __evt)561 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
562 {
563 struct device *dev = iommu->iommu.dev;
564 int type, devid, pasid, flags, tag;
565 volatile u32 *event = __evt;
566 int count = 0;
567 u64 address;
568
569 retry:
570 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
571 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
572 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
573 (event[1] & EVENT_DOMID_MASK_LO);
574 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
575 address = (u64)(((u64)event[3]) << 32) | event[2];
576
577 if (type == 0) {
578 /* Did we hit the erratum? */
579 if (++count == LOOP_TIMEOUT) {
580 pr_err("No event written to event log\n");
581 return;
582 }
583 udelay(1);
584 goto retry;
585 }
586
587 if (type == EVENT_TYPE_IO_FAULT) {
588 amd_iommu_report_page_fault(devid, pasid, address, flags);
589 return;
590 }
591
592 switch (type) {
593 case EVENT_TYPE_ILL_DEV:
594 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
595 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 pasid, address, flags);
597 dump_dte_entry(devid);
598 break;
599 case EVENT_TYPE_DEV_TAB_ERR:
600 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
601 "address=0x%llx flags=0x%04x]\n",
602 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
603 address, flags);
604 break;
605 case EVENT_TYPE_PAGE_TAB_ERR:
606 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
607 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 pasid, address, flags);
609 break;
610 case EVENT_TYPE_ILL_CMD:
611 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
612 dump_command(address);
613 break;
614 case EVENT_TYPE_CMD_HARD_ERR:
615 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
616 address, flags);
617 break;
618 case EVENT_TYPE_IOTLB_INV_TO:
619 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
620 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 address);
622 break;
623 case EVENT_TYPE_INV_DEV_REQ:
624 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
625 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
626 pasid, address, flags);
627 break;
628 case EVENT_TYPE_INV_PPR_REQ:
629 pasid = ((event[0] >> 16) & 0xFFFF)
630 | ((event[1] << 6) & 0xF0000);
631 tag = event[1] & 0x03FF;
632 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
633 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
634 pasid, address, flags, tag);
635 break;
636 default:
637 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
638 event[0], event[1], event[2], event[3]);
639 }
640
641 memset(__evt, 0, 4 * sizeof(u32));
642 }
643
iommu_poll_events(struct amd_iommu * iommu)644 static void iommu_poll_events(struct amd_iommu *iommu)
645 {
646 u32 head, tail;
647
648 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
649 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
650
651 while (head != tail) {
652 iommu_print_event(iommu, iommu->evt_buf + head);
653 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
654 }
655
656 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
657 }
658
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)659 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
660 {
661 struct amd_iommu_fault fault;
662
663 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
664 pr_err_ratelimited("Unknown PPR request received\n");
665 return;
666 }
667
668 fault.address = raw[1];
669 fault.pasid = PPR_PASID(raw[0]);
670 fault.device_id = PPR_DEVID(raw[0]);
671 fault.tag = PPR_TAG(raw[0]);
672 fault.flags = PPR_FLAGS(raw[0]);
673
674 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
675 }
676
iommu_poll_ppr_log(struct amd_iommu * iommu)677 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
678 {
679 u32 head, tail;
680
681 if (iommu->ppr_log == NULL)
682 return;
683
684 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
685 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
686
687 while (head != tail) {
688 volatile u64 *raw;
689 u64 entry[2];
690 int i;
691
692 raw = (u64 *)(iommu->ppr_log + head);
693
694 /*
695 * Hardware bug: Interrupt may arrive before the entry is
696 * written to memory. If this happens we need to wait for the
697 * entry to arrive.
698 */
699 for (i = 0; i < LOOP_TIMEOUT; ++i) {
700 if (PPR_REQ_TYPE(raw[0]) != 0)
701 break;
702 udelay(1);
703 }
704
705 /* Avoid memcpy function-call overhead */
706 entry[0] = raw[0];
707 entry[1] = raw[1];
708
709 /*
710 * To detect the hardware bug we need to clear the entry
711 * back to zero.
712 */
713 raw[0] = raw[1] = 0UL;
714
715 /* Update head pointer of hardware ring-buffer */
716 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
717 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
718
719 /* Handle PPR entry */
720 iommu_handle_ppr_entry(iommu, entry);
721
722 /* Refresh ring-buffer information */
723 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
724 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
725 }
726 }
727
728 #ifdef CONFIG_IRQ_REMAP
729 static int (*iommu_ga_log_notifier)(u32);
730
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))731 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
732 {
733 iommu_ga_log_notifier = notifier;
734
735 return 0;
736 }
737 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
738
iommu_poll_ga_log(struct amd_iommu * iommu)739 static void iommu_poll_ga_log(struct amd_iommu *iommu)
740 {
741 u32 head, tail, cnt = 0;
742
743 if (iommu->ga_log == NULL)
744 return;
745
746 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
747 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
748
749 while (head != tail) {
750 volatile u64 *raw;
751 u64 log_entry;
752
753 raw = (u64 *)(iommu->ga_log + head);
754 cnt++;
755
756 /* Avoid memcpy function-call overhead */
757 log_entry = *raw;
758
759 /* Update head pointer of hardware ring-buffer */
760 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
761 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
762
763 /* Handle GA entry */
764 switch (GA_REQ_TYPE(log_entry)) {
765 case GA_GUEST_NR:
766 if (!iommu_ga_log_notifier)
767 break;
768
769 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
770 __func__, GA_DEVID(log_entry),
771 GA_TAG(log_entry));
772
773 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
774 pr_err("GA log notifier failed.\n");
775 break;
776 default:
777 break;
778 }
779 }
780 }
781 #endif /* CONFIG_IRQ_REMAP */
782
783 #define AMD_IOMMU_INT_MASK \
784 (MMIO_STATUS_EVT_INT_MASK | \
785 MMIO_STATUS_PPR_INT_MASK | \
786 MMIO_STATUS_GALOG_INT_MASK)
787
amd_iommu_int_thread(int irq,void * data)788 irqreturn_t amd_iommu_int_thread(int irq, void *data)
789 {
790 struct amd_iommu *iommu = (struct amd_iommu *) data;
791 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
792
793 while (status & AMD_IOMMU_INT_MASK) {
794 /* Enable EVT and PPR and GA interrupts again */
795 writel(AMD_IOMMU_INT_MASK,
796 iommu->mmio_base + MMIO_STATUS_OFFSET);
797
798 if (status & MMIO_STATUS_EVT_INT_MASK) {
799 pr_devel("Processing IOMMU Event Log\n");
800 iommu_poll_events(iommu);
801 }
802
803 if (status & MMIO_STATUS_PPR_INT_MASK) {
804 pr_devel("Processing IOMMU PPR Log\n");
805 iommu_poll_ppr_log(iommu);
806 }
807
808 #ifdef CONFIG_IRQ_REMAP
809 if (status & MMIO_STATUS_GALOG_INT_MASK) {
810 pr_devel("Processing IOMMU GA Log\n");
811 iommu_poll_ga_log(iommu);
812 }
813 #endif
814
815 /*
816 * Hardware bug: ERBT1312
817 * When re-enabling interrupt (by writing 1
818 * to clear the bit), the hardware might also try to set
819 * the interrupt bit in the event status register.
820 * In this scenario, the bit will be set, and disable
821 * subsequent interrupts.
822 *
823 * Workaround: The IOMMU driver should read back the
824 * status register and check if the interrupt bits are cleared.
825 * If not, driver will need to go through the interrupt handler
826 * again and re-clear the bits
827 */
828 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
829 }
830 return IRQ_HANDLED;
831 }
832
amd_iommu_int_handler(int irq,void * data)833 irqreturn_t amd_iommu_int_handler(int irq, void *data)
834 {
835 return IRQ_WAKE_THREAD;
836 }
837
838 /****************************************************************************
839 *
840 * IOMMU command queuing functions
841 *
842 ****************************************************************************/
843
wait_on_sem(volatile u64 * sem)844 static int wait_on_sem(volatile u64 *sem)
845 {
846 int i = 0;
847
848 while (*sem == 0 && i < LOOP_TIMEOUT) {
849 udelay(1);
850 i += 1;
851 }
852
853 if (i == LOOP_TIMEOUT) {
854 pr_alert("Completion-Wait loop timed out\n");
855 return -EIO;
856 }
857
858 return 0;
859 }
860
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)861 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
862 struct iommu_cmd *cmd)
863 {
864 u8 *target;
865
866 target = iommu->cmd_buf + iommu->cmd_buf_tail;
867
868 iommu->cmd_buf_tail += sizeof(*cmd);
869 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
870
871 /* Copy command to buffer */
872 memcpy(target, cmd, sizeof(*cmd));
873
874 /* Tell the IOMMU about it */
875 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
876 }
877
build_completion_wait(struct iommu_cmd * cmd,u64 address)878 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
879 {
880 u64 paddr = iommu_virt_to_phys((void *)address);
881
882 WARN_ON(address & 0x7ULL);
883
884 memset(cmd, 0, sizeof(*cmd));
885 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
886 cmd->data[1] = upper_32_bits(paddr);
887 cmd->data[2] = 1;
888 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
889 }
890
build_inv_dte(struct iommu_cmd * cmd,u16 devid)891 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
892 {
893 memset(cmd, 0, sizeof(*cmd));
894 cmd->data[0] = devid;
895 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
896 }
897
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)898 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
899 size_t size, u16 domid, int pde)
900 {
901 u64 pages;
902 bool s;
903
904 pages = iommu_num_pages(address, size, PAGE_SIZE);
905 s = false;
906
907 if (pages > 1) {
908 /*
909 * If we have to flush more than one page, flush all
910 * TLB entries for this domain
911 */
912 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
913 s = true;
914 }
915
916 address &= PAGE_MASK;
917
918 memset(cmd, 0, sizeof(*cmd));
919 cmd->data[1] |= domid;
920 cmd->data[2] = lower_32_bits(address);
921 cmd->data[3] = upper_32_bits(address);
922 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
923 if (s) /* size bit - we flush more than one 4kb page */
924 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
925 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
926 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
927 }
928
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)929 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
930 u64 address, size_t size)
931 {
932 u64 pages;
933 bool s;
934
935 pages = iommu_num_pages(address, size, PAGE_SIZE);
936 s = false;
937
938 if (pages > 1) {
939 /*
940 * If we have to flush more than one page, flush all
941 * TLB entries for this domain
942 */
943 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
944 s = true;
945 }
946
947 address &= PAGE_MASK;
948
949 memset(cmd, 0, sizeof(*cmd));
950 cmd->data[0] = devid;
951 cmd->data[0] |= (qdep & 0xff) << 24;
952 cmd->data[1] = devid;
953 cmd->data[2] = lower_32_bits(address);
954 cmd->data[3] = upper_32_bits(address);
955 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
956 if (s)
957 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
958 }
959
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)960 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
961 u64 address, bool size)
962 {
963 memset(cmd, 0, sizeof(*cmd));
964
965 address &= ~(0xfffULL);
966
967 cmd->data[0] = pasid;
968 cmd->data[1] = domid;
969 cmd->data[2] = lower_32_bits(address);
970 cmd->data[3] = upper_32_bits(address);
971 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
972 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
973 if (size)
974 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
975 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
976 }
977
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)978 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
979 int qdep, u64 address, bool size)
980 {
981 memset(cmd, 0, sizeof(*cmd));
982
983 address &= ~(0xfffULL);
984
985 cmd->data[0] = devid;
986 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
987 cmd->data[0] |= (qdep & 0xff) << 24;
988 cmd->data[1] = devid;
989 cmd->data[1] |= (pasid & 0xff) << 16;
990 cmd->data[2] = lower_32_bits(address);
991 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
992 cmd->data[3] = upper_32_bits(address);
993 if (size)
994 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
995 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
996 }
997
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)998 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
999 int status, int tag, bool gn)
1000 {
1001 memset(cmd, 0, sizeof(*cmd));
1002
1003 cmd->data[0] = devid;
1004 if (gn) {
1005 cmd->data[1] = pasid;
1006 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1007 }
1008 cmd->data[3] = tag & 0x1ff;
1009 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1010
1011 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1012 }
1013
build_inv_all(struct iommu_cmd * cmd)1014 static void build_inv_all(struct iommu_cmd *cmd)
1015 {
1016 memset(cmd, 0, sizeof(*cmd));
1017 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1018 }
1019
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1020 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1021 {
1022 memset(cmd, 0, sizeof(*cmd));
1023 cmd->data[0] = devid;
1024 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1025 }
1026
1027 /*
1028 * Writes the command to the IOMMUs command buffer and informs the
1029 * hardware about the new command.
1030 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1031 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1032 struct iommu_cmd *cmd,
1033 bool sync)
1034 {
1035 unsigned int count = 0;
1036 u32 left, next_tail;
1037
1038 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1039 again:
1040 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1041
1042 if (left <= 0x20) {
1043 /* Skip udelay() the first time around */
1044 if (count++) {
1045 if (count == LOOP_TIMEOUT) {
1046 pr_err("Command buffer timeout\n");
1047 return -EIO;
1048 }
1049
1050 udelay(1);
1051 }
1052
1053 /* Update head and recheck remaining space */
1054 iommu->cmd_buf_head = readl(iommu->mmio_base +
1055 MMIO_CMD_HEAD_OFFSET);
1056
1057 goto again;
1058 }
1059
1060 copy_cmd_to_buffer(iommu, cmd);
1061
1062 /* Do we need to make sure all commands are processed? */
1063 iommu->need_sync = sync;
1064
1065 return 0;
1066 }
1067
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1068 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1069 struct iommu_cmd *cmd,
1070 bool sync)
1071 {
1072 unsigned long flags;
1073 int ret;
1074
1075 raw_spin_lock_irqsave(&iommu->lock, flags);
1076 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1077 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1078
1079 return ret;
1080 }
1081
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1082 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1083 {
1084 return iommu_queue_command_sync(iommu, cmd, true);
1085 }
1086
1087 /*
1088 * This function queues a completion wait command into the command
1089 * buffer of an IOMMU
1090 */
iommu_completion_wait(struct amd_iommu * iommu)1091 static int iommu_completion_wait(struct amd_iommu *iommu)
1092 {
1093 struct iommu_cmd cmd;
1094 unsigned long flags;
1095 int ret;
1096
1097 if (!iommu->need_sync)
1098 return 0;
1099
1100
1101 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1102
1103 raw_spin_lock_irqsave(&iommu->lock, flags);
1104
1105 iommu->cmd_sem = 0;
1106
1107 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1108 if (ret)
1109 goto out_unlock;
1110
1111 ret = wait_on_sem(&iommu->cmd_sem);
1112
1113 out_unlock:
1114 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1115
1116 return ret;
1117 }
1118
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1119 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1120 {
1121 struct iommu_cmd cmd;
1122
1123 build_inv_dte(&cmd, devid);
1124
1125 return iommu_queue_command(iommu, &cmd);
1126 }
1127
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1128 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1129 {
1130 u32 devid;
1131
1132 for (devid = 0; devid <= 0xffff; ++devid)
1133 iommu_flush_dte(iommu, devid);
1134
1135 iommu_completion_wait(iommu);
1136 }
1137
1138 /*
1139 * This function uses heavy locking and may disable irqs for some time. But
1140 * this is no issue because it is only called during resume.
1141 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1142 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1143 {
1144 u32 dom_id;
1145
1146 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1147 struct iommu_cmd cmd;
1148 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1149 dom_id, 1);
1150 iommu_queue_command(iommu, &cmd);
1151 }
1152
1153 iommu_completion_wait(iommu);
1154 }
1155
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1156 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1157 {
1158 struct iommu_cmd cmd;
1159
1160 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1161 dom_id, 1);
1162 iommu_queue_command(iommu, &cmd);
1163
1164 iommu_completion_wait(iommu);
1165 }
1166
amd_iommu_flush_all(struct amd_iommu * iommu)1167 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1168 {
1169 struct iommu_cmd cmd;
1170
1171 build_inv_all(&cmd);
1172
1173 iommu_queue_command(iommu, &cmd);
1174 iommu_completion_wait(iommu);
1175 }
1176
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1177 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1178 {
1179 struct iommu_cmd cmd;
1180
1181 build_inv_irt(&cmd, devid);
1182
1183 iommu_queue_command(iommu, &cmd);
1184 }
1185
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1186 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1187 {
1188 u32 devid;
1189
1190 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1191 iommu_flush_irt(iommu, devid);
1192
1193 iommu_completion_wait(iommu);
1194 }
1195
iommu_flush_all_caches(struct amd_iommu * iommu)1196 void iommu_flush_all_caches(struct amd_iommu *iommu)
1197 {
1198 if (iommu_feature(iommu, FEATURE_IA)) {
1199 amd_iommu_flush_all(iommu);
1200 } else {
1201 amd_iommu_flush_dte_all(iommu);
1202 amd_iommu_flush_irt_all(iommu);
1203 amd_iommu_flush_tlb_all(iommu);
1204 }
1205 }
1206
1207 /*
1208 * Command send function for flushing on-device TLB
1209 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1210 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1211 u64 address, size_t size)
1212 {
1213 struct amd_iommu *iommu;
1214 struct iommu_cmd cmd;
1215 int qdep;
1216
1217 qdep = dev_data->ats.qdep;
1218 iommu = amd_iommu_rlookup_table[dev_data->devid];
1219
1220 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1221
1222 return iommu_queue_command(iommu, &cmd);
1223 }
1224
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1225 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1226 {
1227 struct amd_iommu *iommu = data;
1228
1229 return iommu_flush_dte(iommu, alias);
1230 }
1231
1232 /*
1233 * Command send function for invalidating a device table entry
1234 */
device_flush_dte(struct iommu_dev_data * dev_data)1235 static int device_flush_dte(struct iommu_dev_data *dev_data)
1236 {
1237 struct amd_iommu *iommu;
1238 u16 alias;
1239 int ret;
1240
1241 iommu = amd_iommu_rlookup_table[dev_data->devid];
1242
1243 if (dev_data->pdev)
1244 ret = pci_for_each_dma_alias(dev_data->pdev,
1245 device_flush_dte_alias, iommu);
1246 else
1247 ret = iommu_flush_dte(iommu, dev_data->devid);
1248 if (ret)
1249 return ret;
1250
1251 alias = amd_iommu_alias_table[dev_data->devid];
1252 if (alias != dev_data->devid) {
1253 ret = iommu_flush_dte(iommu, alias);
1254 if (ret)
1255 return ret;
1256 }
1257
1258 if (dev_data->ats.enabled)
1259 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1260
1261 return ret;
1262 }
1263
1264 /*
1265 * TLB invalidation function which is called from the mapping functions.
1266 * It invalidates a single PTE if the range to flush is within a single
1267 * page. Otherwise it flushes the whole TLB of the IOMMU.
1268 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1269 static void __domain_flush_pages(struct protection_domain *domain,
1270 u64 address, size_t size, int pde)
1271 {
1272 struct iommu_dev_data *dev_data;
1273 struct iommu_cmd cmd;
1274 int ret = 0, i;
1275
1276 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1277
1278 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1279 if (!domain->dev_iommu[i])
1280 continue;
1281
1282 /*
1283 * Devices of this domain are behind this IOMMU
1284 * We need a TLB flush
1285 */
1286 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1287 }
1288
1289 list_for_each_entry(dev_data, &domain->dev_list, list) {
1290
1291 if (!dev_data->ats.enabled)
1292 continue;
1293
1294 ret |= device_flush_iotlb(dev_data, address, size);
1295 }
1296
1297 WARN_ON(ret);
1298 }
1299
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1300 static void domain_flush_pages(struct protection_domain *domain,
1301 u64 address, size_t size)
1302 {
1303 __domain_flush_pages(domain, address, size, 0);
1304 }
1305
1306 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1307 static void domain_flush_tlb(struct protection_domain *domain)
1308 {
1309 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1310 }
1311
1312 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1313 static void domain_flush_tlb_pde(struct protection_domain *domain)
1314 {
1315 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1316 }
1317
domain_flush_complete(struct protection_domain * domain)1318 static void domain_flush_complete(struct protection_domain *domain)
1319 {
1320 int i;
1321
1322 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1323 if (domain && !domain->dev_iommu[i])
1324 continue;
1325
1326 /*
1327 * Devices of this domain are behind this IOMMU
1328 * We need to wait for completion of all commands.
1329 */
1330 iommu_completion_wait(amd_iommus[i]);
1331 }
1332 }
1333
1334 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1335 static void domain_flush_np_cache(struct protection_domain *domain,
1336 dma_addr_t iova, size_t size)
1337 {
1338 if (unlikely(amd_iommu_np_cache)) {
1339 unsigned long flags;
1340
1341 spin_lock_irqsave(&domain->lock, flags);
1342 domain_flush_pages(domain, iova, size);
1343 domain_flush_complete(domain);
1344 spin_unlock_irqrestore(&domain->lock, flags);
1345 }
1346 }
1347
1348
1349 /*
1350 * This function flushes the DTEs for all devices in domain
1351 */
domain_flush_devices(struct protection_domain * domain)1352 static void domain_flush_devices(struct protection_domain *domain)
1353 {
1354 struct iommu_dev_data *dev_data;
1355
1356 list_for_each_entry(dev_data, &domain->dev_list, list)
1357 device_flush_dte(dev_data);
1358 }
1359
1360 /****************************************************************************
1361 *
1362 * The functions below are used the create the page table mappings for
1363 * unity mapped regions.
1364 *
1365 ****************************************************************************/
1366
free_page_list(struct page * freelist)1367 static void free_page_list(struct page *freelist)
1368 {
1369 while (freelist != NULL) {
1370 unsigned long p = (unsigned long)page_address(freelist);
1371 freelist = freelist->freelist;
1372 free_page(p);
1373 }
1374 }
1375
free_pt_page(unsigned long pt,struct page * freelist)1376 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1377 {
1378 struct page *p = virt_to_page((void *)pt);
1379
1380 p->freelist = freelist;
1381
1382 return p;
1383 }
1384
1385 #define DEFINE_FREE_PT_FN(LVL, FN) \
1386 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1387 { \
1388 unsigned long p; \
1389 u64 *pt; \
1390 int i; \
1391 \
1392 pt = (u64 *)__pt; \
1393 \
1394 for (i = 0; i < 512; ++i) { \
1395 /* PTE present? */ \
1396 if (!IOMMU_PTE_PRESENT(pt[i])) \
1397 continue; \
1398 \
1399 /* Large PTE? */ \
1400 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1401 PM_PTE_LEVEL(pt[i]) == 7) \
1402 continue; \
1403 \
1404 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1405 freelist = FN(p, freelist); \
1406 } \
1407 \
1408 return free_pt_page((unsigned long)pt, freelist); \
1409 }
1410
DEFINE_FREE_PT_FN(l2,free_pt_page)1411 DEFINE_FREE_PT_FN(l2, free_pt_page)
1412 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1413 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1414 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1415 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1416
1417 static struct page *free_sub_pt(unsigned long root, int mode,
1418 struct page *freelist)
1419 {
1420 switch (mode) {
1421 case PAGE_MODE_NONE:
1422 case PAGE_MODE_7_LEVEL:
1423 break;
1424 case PAGE_MODE_1_LEVEL:
1425 freelist = free_pt_page(root, freelist);
1426 break;
1427 case PAGE_MODE_2_LEVEL:
1428 freelist = free_pt_l2(root, freelist);
1429 break;
1430 case PAGE_MODE_3_LEVEL:
1431 freelist = free_pt_l3(root, freelist);
1432 break;
1433 case PAGE_MODE_4_LEVEL:
1434 freelist = free_pt_l4(root, freelist);
1435 break;
1436 case PAGE_MODE_5_LEVEL:
1437 freelist = free_pt_l5(root, freelist);
1438 break;
1439 case PAGE_MODE_6_LEVEL:
1440 freelist = free_pt_l6(root, freelist);
1441 break;
1442 default:
1443 BUG();
1444 }
1445
1446 return freelist;
1447 }
1448
free_pagetable(struct protection_domain * domain)1449 static void free_pagetable(struct protection_domain *domain)
1450 {
1451 unsigned long root = (unsigned long)domain->pt_root;
1452 struct page *freelist = NULL;
1453
1454 BUG_ON(domain->mode < PAGE_MODE_NONE ||
1455 domain->mode > PAGE_MODE_6_LEVEL);
1456
1457 freelist = free_sub_pt(root, domain->mode, freelist);
1458
1459 free_page_list(freelist);
1460 }
1461
1462 /*
1463 * This function is used to add another level to an IO page table. Adding
1464 * another level increases the size of the address space by 9 bits to a size up
1465 * to 64 bits.
1466 */
increase_address_space(struct protection_domain * domain,unsigned long address,gfp_t gfp)1467 static bool increase_address_space(struct protection_domain *domain,
1468 unsigned long address,
1469 gfp_t gfp)
1470 {
1471 unsigned long flags;
1472 bool ret = false;
1473 u64 *pte;
1474
1475 spin_lock_irqsave(&domain->lock, flags);
1476
1477 if (address <= PM_LEVEL_SIZE(domain->mode) ||
1478 WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1479 goto out;
1480
1481 pte = (void *)get_zeroed_page(gfp);
1482 if (!pte)
1483 goto out;
1484
1485 *pte = PM_LEVEL_PDE(domain->mode,
1486 iommu_virt_to_phys(domain->pt_root));
1487 domain->pt_root = pte;
1488 domain->mode += 1;
1489
1490 ret = true;
1491
1492 out:
1493 spin_unlock_irqrestore(&domain->lock, flags);
1494
1495 return ret;
1496 }
1497
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp,bool * updated)1498 static u64 *alloc_pte(struct protection_domain *domain,
1499 unsigned long address,
1500 unsigned long page_size,
1501 u64 **pte_page,
1502 gfp_t gfp,
1503 bool *updated)
1504 {
1505 int level, end_lvl;
1506 u64 *pte, *page;
1507
1508 BUG_ON(!is_power_of_2(page_size));
1509
1510 while (address > PM_LEVEL_SIZE(domain->mode))
1511 *updated = increase_address_space(domain, address, gfp) || *updated;
1512
1513 level = domain->mode - 1;
1514 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1515 address = PAGE_SIZE_ALIGN(address, page_size);
1516 end_lvl = PAGE_SIZE_LEVEL(page_size);
1517
1518 while (level > end_lvl) {
1519 u64 __pte, __npte;
1520 int pte_level;
1521
1522 __pte = *pte;
1523 pte_level = PM_PTE_LEVEL(__pte);
1524
1525 /*
1526 * If we replace a series of large PTEs, we need
1527 * to tear down all of them.
1528 */
1529 if (IOMMU_PTE_PRESENT(__pte) &&
1530 pte_level == PAGE_MODE_7_LEVEL) {
1531 unsigned long count, i;
1532 u64 *lpte;
1533
1534 lpte = first_pte_l7(pte, NULL, &count);
1535
1536 /*
1537 * Unmap the replicated PTEs that still match the
1538 * original large mapping
1539 */
1540 for (i = 0; i < count; ++i)
1541 cmpxchg64(&lpte[i], __pte, 0ULL);
1542
1543 *updated = true;
1544 continue;
1545 }
1546
1547 if (!IOMMU_PTE_PRESENT(__pte) ||
1548 pte_level == PAGE_MODE_NONE) {
1549 page = (u64 *)get_zeroed_page(gfp);
1550
1551 if (!page)
1552 return NULL;
1553
1554 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1555
1556 /* pte could have been changed somewhere. */
1557 if (cmpxchg64(pte, __pte, __npte) != __pte)
1558 free_page((unsigned long)page);
1559 else if (IOMMU_PTE_PRESENT(__pte))
1560 *updated = true;
1561
1562 continue;
1563 }
1564
1565 /* No level skipping support yet */
1566 if (pte_level != level)
1567 return NULL;
1568
1569 level -= 1;
1570
1571 pte = IOMMU_PTE_PAGE(__pte);
1572
1573 if (pte_page && level == end_lvl)
1574 *pte_page = pte;
1575
1576 pte = &pte[PM_LEVEL_INDEX(level, address)];
1577 }
1578
1579 return pte;
1580 }
1581
1582 /*
1583 * This function checks if there is a PTE for a given dma address. If
1584 * there is one, it returns the pointer to it.
1585 */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1586 static u64 *fetch_pte(struct protection_domain *domain,
1587 unsigned long address,
1588 unsigned long *page_size)
1589 {
1590 int level;
1591 u64 *pte;
1592
1593 *page_size = 0;
1594
1595 if (address > PM_LEVEL_SIZE(domain->mode))
1596 return NULL;
1597
1598 level = domain->mode - 1;
1599 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1600 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1601
1602 while (level > 0) {
1603
1604 /* Not Present */
1605 if (!IOMMU_PTE_PRESENT(*pte))
1606 return NULL;
1607
1608 /* Large PTE */
1609 if (PM_PTE_LEVEL(*pte) == 7 ||
1610 PM_PTE_LEVEL(*pte) == 0)
1611 break;
1612
1613 /* No level skipping support yet */
1614 if (PM_PTE_LEVEL(*pte) != level)
1615 return NULL;
1616
1617 level -= 1;
1618
1619 /* Walk to the next level */
1620 pte = IOMMU_PTE_PAGE(*pte);
1621 pte = &pte[PM_LEVEL_INDEX(level, address)];
1622 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1623 }
1624
1625 /*
1626 * If we have a series of large PTEs, make
1627 * sure to return a pointer to the first one.
1628 */
1629 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1630 pte = first_pte_l7(pte, page_size, NULL);
1631
1632 return pte;
1633 }
1634
free_clear_pte(u64 * pte,u64 pteval,struct page * freelist)1635 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1636 {
1637 unsigned long pt;
1638 int mode;
1639
1640 while (cmpxchg64(pte, pteval, 0) != pteval) {
1641 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1642 pteval = *pte;
1643 }
1644
1645 if (!IOMMU_PTE_PRESENT(pteval))
1646 return freelist;
1647
1648 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1649 mode = IOMMU_PTE_MODE(pteval);
1650
1651 return free_sub_pt(pt, mode, freelist);
1652 }
1653
1654 /*
1655 * Generic mapping functions. It maps a physical address into a DMA
1656 * address space. It allocates the page table pages if necessary.
1657 * In the future it can be extended to a generic mapping function
1658 * supporting all features of AMD IOMMU page tables like level skipping
1659 * and full 64 bit address spaces.
1660 */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,unsigned long page_size,int prot,gfp_t gfp)1661 static int iommu_map_page(struct protection_domain *dom,
1662 unsigned long bus_addr,
1663 unsigned long phys_addr,
1664 unsigned long page_size,
1665 int prot,
1666 gfp_t gfp)
1667 {
1668 struct page *freelist = NULL;
1669 bool updated = false;
1670 u64 __pte, *pte;
1671 int ret, i, count;
1672
1673 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1674 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1675
1676 ret = -EINVAL;
1677 if (!(prot & IOMMU_PROT_MASK))
1678 goto out;
1679
1680 count = PAGE_SIZE_PTE_COUNT(page_size);
1681 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1682
1683 ret = -ENOMEM;
1684 if (!pte)
1685 goto out;
1686
1687 for (i = 0; i < count; ++i)
1688 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1689
1690 if (freelist != NULL)
1691 updated = true;
1692
1693 if (count > 1) {
1694 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1695 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1696 } else
1697 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1698
1699 if (prot & IOMMU_PROT_IR)
1700 __pte |= IOMMU_PTE_IR;
1701 if (prot & IOMMU_PROT_IW)
1702 __pte |= IOMMU_PTE_IW;
1703
1704 for (i = 0; i < count; ++i)
1705 pte[i] = __pte;
1706
1707 ret = 0;
1708
1709 out:
1710 if (updated) {
1711 unsigned long flags;
1712
1713 spin_lock_irqsave(&dom->lock, flags);
1714 update_domain(dom);
1715 spin_unlock_irqrestore(&dom->lock, flags);
1716 }
1717
1718 /* Everything flushed out, free pages now */
1719 free_page_list(freelist);
1720
1721 return ret;
1722 }
1723
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1724 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1725 unsigned long bus_addr,
1726 unsigned long page_size)
1727 {
1728 unsigned long long unmapped;
1729 unsigned long unmap_size;
1730 u64 *pte;
1731
1732 BUG_ON(!is_power_of_2(page_size));
1733
1734 unmapped = 0;
1735
1736 while (unmapped < page_size) {
1737
1738 pte = fetch_pte(dom, bus_addr, &unmap_size);
1739
1740 if (pte) {
1741 int i, count;
1742
1743 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1744 for (i = 0; i < count; i++)
1745 pte[i] = 0ULL;
1746 }
1747
1748 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1749 unmapped += unmap_size;
1750 }
1751
1752 BUG_ON(unmapped && !is_power_of_2(unmapped));
1753
1754 return unmapped;
1755 }
1756
1757 /****************************************************************************
1758 *
1759 * The next functions belong to the address allocator for the dma_ops
1760 * interface functions.
1761 *
1762 ****************************************************************************/
1763
1764
dma_ops_alloc_iova(struct device * dev,struct dma_ops_domain * dma_dom,unsigned int pages,u64 dma_mask)1765 static unsigned long dma_ops_alloc_iova(struct device *dev,
1766 struct dma_ops_domain *dma_dom,
1767 unsigned int pages, u64 dma_mask)
1768 {
1769 unsigned long pfn = 0;
1770
1771 pages = __roundup_pow_of_two(pages);
1772
1773 if (dma_mask > DMA_BIT_MASK(32))
1774 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1775 IOVA_PFN(DMA_BIT_MASK(32)), false);
1776
1777 if (!pfn)
1778 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1779 IOVA_PFN(dma_mask), true);
1780
1781 return (pfn << PAGE_SHIFT);
1782 }
1783
dma_ops_free_iova(struct dma_ops_domain * dma_dom,unsigned long address,unsigned int pages)1784 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1785 unsigned long address,
1786 unsigned int pages)
1787 {
1788 pages = __roundup_pow_of_two(pages);
1789 address >>= PAGE_SHIFT;
1790
1791 free_iova_fast(&dma_dom->iovad, address, pages);
1792 }
1793
1794 /****************************************************************************
1795 *
1796 * The next functions belong to the domain allocation. A domain is
1797 * allocated for every IOMMU as the default domain. If device isolation
1798 * is enabled, every device get its own domain. The most important thing
1799 * about domains is the page table mapping the DMA address space they
1800 * contain.
1801 *
1802 ****************************************************************************/
1803
domain_id_alloc(void)1804 static u16 domain_id_alloc(void)
1805 {
1806 int id;
1807
1808 spin_lock(&pd_bitmap_lock);
1809 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1810 BUG_ON(id == 0);
1811 if (id > 0 && id < MAX_DOMAIN_ID)
1812 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1813 else
1814 id = 0;
1815 spin_unlock(&pd_bitmap_lock);
1816
1817 return id;
1818 }
1819
domain_id_free(int id)1820 static void domain_id_free(int id)
1821 {
1822 spin_lock(&pd_bitmap_lock);
1823 if (id > 0 && id < MAX_DOMAIN_ID)
1824 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1825 spin_unlock(&pd_bitmap_lock);
1826 }
1827
free_gcr3_tbl_level1(u64 * tbl)1828 static void free_gcr3_tbl_level1(u64 *tbl)
1829 {
1830 u64 *ptr;
1831 int i;
1832
1833 for (i = 0; i < 512; ++i) {
1834 if (!(tbl[i] & GCR3_VALID))
1835 continue;
1836
1837 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1838
1839 free_page((unsigned long)ptr);
1840 }
1841 }
1842
free_gcr3_tbl_level2(u64 * tbl)1843 static void free_gcr3_tbl_level2(u64 *tbl)
1844 {
1845 u64 *ptr;
1846 int i;
1847
1848 for (i = 0; i < 512; ++i) {
1849 if (!(tbl[i] & GCR3_VALID))
1850 continue;
1851
1852 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1853
1854 free_gcr3_tbl_level1(ptr);
1855 }
1856 }
1857
free_gcr3_table(struct protection_domain * domain)1858 static void free_gcr3_table(struct protection_domain *domain)
1859 {
1860 if (domain->glx == 2)
1861 free_gcr3_tbl_level2(domain->gcr3_tbl);
1862 else if (domain->glx == 1)
1863 free_gcr3_tbl_level1(domain->gcr3_tbl);
1864 else
1865 BUG_ON(domain->glx != 0);
1866
1867 free_page((unsigned long)domain->gcr3_tbl);
1868 }
1869
dma_ops_domain_flush_tlb(struct dma_ops_domain * dom)1870 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1871 {
1872 unsigned long flags;
1873
1874 spin_lock_irqsave(&dom->domain.lock, flags);
1875 domain_flush_tlb(&dom->domain);
1876 domain_flush_complete(&dom->domain);
1877 spin_unlock_irqrestore(&dom->domain.lock, flags);
1878 }
1879
iova_domain_flush_tlb(struct iova_domain * iovad)1880 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1881 {
1882 struct dma_ops_domain *dom;
1883
1884 dom = container_of(iovad, struct dma_ops_domain, iovad);
1885
1886 dma_ops_domain_flush_tlb(dom);
1887 }
1888
1889 /*
1890 * Free a domain, only used if something went wrong in the
1891 * allocation path and we need to free an already allocated page table
1892 */
dma_ops_domain_free(struct dma_ops_domain * dom)1893 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1894 {
1895 if (!dom)
1896 return;
1897
1898 put_iova_domain(&dom->iovad);
1899
1900 free_pagetable(&dom->domain);
1901
1902 if (dom->domain.id)
1903 domain_id_free(dom->domain.id);
1904
1905 kfree(dom);
1906 }
1907
1908 /*
1909 * Allocates a new protection domain usable for the dma_ops functions.
1910 * It also initializes the page table and the address allocator data
1911 * structures required for the dma_ops interface
1912 */
dma_ops_domain_alloc(void)1913 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1914 {
1915 struct dma_ops_domain *dma_dom;
1916
1917 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1918 if (!dma_dom)
1919 return NULL;
1920
1921 if (protection_domain_init(&dma_dom->domain))
1922 goto free_dma_dom;
1923
1924 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1925 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1926 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1927 if (!dma_dom->domain.pt_root)
1928 goto free_dma_dom;
1929
1930 init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1931
1932 if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1933 goto free_dma_dom;
1934
1935 /* Initialize reserved ranges */
1936 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1937
1938 return dma_dom;
1939
1940 free_dma_dom:
1941 dma_ops_domain_free(dma_dom);
1942
1943 return NULL;
1944 }
1945
1946 /*
1947 * little helper function to check whether a given protection domain is a
1948 * dma_ops domain
1949 */
dma_ops_domain(struct protection_domain * domain)1950 static bool dma_ops_domain(struct protection_domain *domain)
1951 {
1952 return domain->flags & PD_DMA_OPS_MASK;
1953 }
1954
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1955 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1956 bool ats, bool ppr)
1957 {
1958 u64 pte_root = 0;
1959 u64 flags = 0;
1960 u32 old_domid;
1961
1962 if (domain->mode != PAGE_MODE_NONE)
1963 pte_root = iommu_virt_to_phys(domain->pt_root);
1964
1965 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1966 << DEV_ENTRY_MODE_SHIFT;
1967 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1968
1969 flags = amd_iommu_dev_table[devid].data[1];
1970
1971 if (ats)
1972 flags |= DTE_FLAG_IOTLB;
1973
1974 if (ppr) {
1975 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1976
1977 if (iommu_feature(iommu, FEATURE_EPHSUP))
1978 pte_root |= 1ULL << DEV_ENTRY_PPR;
1979 }
1980
1981 if (domain->flags & PD_IOMMUV2_MASK) {
1982 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1983 u64 glx = domain->glx;
1984 u64 tmp;
1985
1986 pte_root |= DTE_FLAG_GV;
1987 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1988
1989 /* First mask out possible old values for GCR3 table */
1990 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1991 flags &= ~tmp;
1992
1993 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1994 flags &= ~tmp;
1995
1996 /* Encode GCR3 table into DTE */
1997 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1998 pte_root |= tmp;
1999
2000 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2001 flags |= tmp;
2002
2003 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2004 flags |= tmp;
2005 }
2006
2007 flags &= ~DEV_DOMID_MASK;
2008 flags |= domain->id;
2009
2010 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
2011 amd_iommu_dev_table[devid].data[1] = flags;
2012 amd_iommu_dev_table[devid].data[0] = pte_root;
2013
2014 /*
2015 * A kdump kernel might be replacing a domain ID that was copied from
2016 * the previous kernel--if so, it needs to flush the translation cache
2017 * entries for the old domain ID that is being overwritten
2018 */
2019 if (old_domid) {
2020 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2021
2022 amd_iommu_flush_tlb_domid(iommu, old_domid);
2023 }
2024 }
2025
clear_dte_entry(u16 devid)2026 static void clear_dte_entry(u16 devid)
2027 {
2028 /* remove entry from the device table seen by the hardware */
2029 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
2030 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2031
2032 amd_iommu_apply_erratum_63(devid);
2033 }
2034
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)2035 static void do_attach(struct iommu_dev_data *dev_data,
2036 struct protection_domain *domain)
2037 {
2038 struct amd_iommu *iommu;
2039 bool ats;
2040
2041 iommu = amd_iommu_rlookup_table[dev_data->devid];
2042 ats = dev_data->ats.enabled;
2043
2044 /* Update data structures */
2045 dev_data->domain = domain;
2046 list_add(&dev_data->list, &domain->dev_list);
2047
2048 /* Do reference counting */
2049 domain->dev_iommu[iommu->index] += 1;
2050 domain->dev_cnt += 1;
2051
2052 /* Update device table */
2053 set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
2054 clone_aliases(dev_data->pdev);
2055
2056 device_flush_dte(dev_data);
2057 }
2058
do_detach(struct iommu_dev_data * dev_data)2059 static void do_detach(struct iommu_dev_data *dev_data)
2060 {
2061 struct protection_domain *domain = dev_data->domain;
2062 struct amd_iommu *iommu;
2063
2064 iommu = amd_iommu_rlookup_table[dev_data->devid];
2065
2066 /* Update data structures */
2067 dev_data->domain = NULL;
2068 list_del(&dev_data->list);
2069 clear_dte_entry(dev_data->devid);
2070 clone_aliases(dev_data->pdev);
2071
2072 /* Flush the DTE entry */
2073 device_flush_dte(dev_data);
2074
2075 /* Flush IOTLB */
2076 domain_flush_tlb_pde(domain);
2077
2078 /* Wait for the flushes to finish */
2079 domain_flush_complete(domain);
2080
2081 /* decrease reference counters - needs to happen after the flushes */
2082 domain->dev_iommu[iommu->index] -= 1;
2083 domain->dev_cnt -= 1;
2084 }
2085
pdev_iommuv2_disable(struct pci_dev * pdev)2086 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2087 {
2088 pci_disable_ats(pdev);
2089 pci_disable_pri(pdev);
2090 pci_disable_pasid(pdev);
2091 }
2092
2093 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2094 static int pri_reset_while_enabled(struct pci_dev *pdev)
2095 {
2096 u16 control;
2097 int pos;
2098
2099 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2100 if (!pos)
2101 return -EINVAL;
2102
2103 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2104 control |= PCI_PRI_CTRL_RESET;
2105 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2106
2107 return 0;
2108 }
2109
pdev_iommuv2_enable(struct pci_dev * pdev)2110 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2111 {
2112 bool reset_enable;
2113 int reqs, ret;
2114
2115 /* FIXME: Hardcode number of outstanding requests for now */
2116 reqs = 32;
2117 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2118 reqs = 1;
2119 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2120
2121 /* Only allow access to user-accessible pages */
2122 ret = pci_enable_pasid(pdev, 0);
2123 if (ret)
2124 goto out_err;
2125
2126 /* First reset the PRI state of the device */
2127 ret = pci_reset_pri(pdev);
2128 if (ret)
2129 goto out_err;
2130
2131 /* Enable PRI */
2132 ret = pci_enable_pri(pdev, reqs);
2133 if (ret)
2134 goto out_err;
2135
2136 if (reset_enable) {
2137 ret = pri_reset_while_enabled(pdev);
2138 if (ret)
2139 goto out_err;
2140 }
2141
2142 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2143 if (ret)
2144 goto out_err;
2145
2146 return 0;
2147
2148 out_err:
2149 pci_disable_pri(pdev);
2150 pci_disable_pasid(pdev);
2151
2152 return ret;
2153 }
2154
2155 /*
2156 * If a device is not yet associated with a domain, this function makes the
2157 * device visible in the domain
2158 */
attach_device(struct device * dev,struct protection_domain * domain)2159 static int attach_device(struct device *dev,
2160 struct protection_domain *domain)
2161 {
2162 struct pci_dev *pdev;
2163 struct iommu_dev_data *dev_data;
2164 unsigned long flags;
2165 int ret;
2166
2167 spin_lock_irqsave(&domain->lock, flags);
2168
2169 dev_data = get_dev_data(dev);
2170
2171 spin_lock(&dev_data->lock);
2172
2173 ret = -EBUSY;
2174 if (dev_data->domain != NULL)
2175 goto out;
2176
2177 if (!dev_is_pci(dev))
2178 goto skip_ats_check;
2179
2180 pdev = to_pci_dev(dev);
2181 if (domain->flags & PD_IOMMUV2_MASK) {
2182 ret = -EINVAL;
2183 if (!dev_data->passthrough)
2184 goto out;
2185
2186 if (dev_data->iommu_v2) {
2187 if (pdev_iommuv2_enable(pdev) != 0)
2188 goto out;
2189
2190 dev_data->ats.enabled = true;
2191 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2192 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
2193 }
2194 } else if (amd_iommu_iotlb_sup &&
2195 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2196 dev_data->ats.enabled = true;
2197 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2198 }
2199
2200 skip_ats_check:
2201 ret = 0;
2202
2203 do_attach(dev_data, domain);
2204
2205 /*
2206 * We might boot into a crash-kernel here. The crashed kernel
2207 * left the caches in the IOMMU dirty. So we have to flush
2208 * here to evict all dirty stuff.
2209 */
2210 domain_flush_tlb_pde(domain);
2211
2212 domain_flush_complete(domain);
2213
2214 out:
2215 spin_unlock(&dev_data->lock);
2216
2217 spin_unlock_irqrestore(&domain->lock, flags);
2218
2219 return ret;
2220 }
2221
2222 /*
2223 * Removes a device from a protection domain (with devtable_lock held)
2224 */
detach_device(struct device * dev)2225 static void detach_device(struct device *dev)
2226 {
2227 struct protection_domain *domain;
2228 struct iommu_dev_data *dev_data;
2229 unsigned long flags;
2230
2231 dev_data = get_dev_data(dev);
2232 domain = dev_data->domain;
2233
2234 spin_lock_irqsave(&domain->lock, flags);
2235
2236 spin_lock(&dev_data->lock);
2237
2238 /*
2239 * First check if the device is still attached. It might already
2240 * be detached from its domain because the generic
2241 * iommu_detach_group code detached it and we try again here in
2242 * our alias handling.
2243 */
2244 if (WARN_ON(!dev_data->domain))
2245 goto out;
2246
2247 do_detach(dev_data);
2248
2249 if (!dev_is_pci(dev))
2250 goto out;
2251
2252 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2253 pdev_iommuv2_disable(to_pci_dev(dev));
2254 else if (dev_data->ats.enabled)
2255 pci_disable_ats(to_pci_dev(dev));
2256
2257 dev_data->ats.enabled = false;
2258
2259 out:
2260 spin_unlock(&dev_data->lock);
2261
2262 spin_unlock_irqrestore(&domain->lock, flags);
2263 }
2264
amd_iommu_add_device(struct device * dev)2265 static int amd_iommu_add_device(struct device *dev)
2266 {
2267 struct iommu_dev_data *dev_data;
2268 struct iommu_domain *domain;
2269 struct amd_iommu *iommu;
2270 int ret, devid;
2271
2272 if (!check_device(dev) || get_dev_data(dev))
2273 return 0;
2274
2275 devid = get_device_id(dev);
2276 if (devid < 0)
2277 return devid;
2278
2279 iommu = amd_iommu_rlookup_table[devid];
2280
2281 ret = iommu_init_device(dev);
2282 if (ret) {
2283 if (ret != -ENOTSUPP)
2284 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2285
2286 iommu_ignore_device(dev);
2287 dev->dma_ops = NULL;
2288 goto out;
2289 }
2290 init_iommu_group(dev);
2291
2292 dev_data = get_dev_data(dev);
2293
2294 BUG_ON(!dev_data);
2295
2296 if (dev_data->iommu_v2)
2297 iommu_request_dm_for_dev(dev);
2298
2299 /* Domains are initialized for this device - have a look what we ended up with */
2300 domain = iommu_get_domain_for_dev(dev);
2301 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2302 dev_data->passthrough = true;
2303 else
2304 dev->dma_ops = &amd_iommu_dma_ops;
2305
2306 out:
2307 iommu_completion_wait(iommu);
2308
2309 return 0;
2310 }
2311
amd_iommu_remove_device(struct device * dev)2312 static void amd_iommu_remove_device(struct device *dev)
2313 {
2314 struct amd_iommu *iommu;
2315 int devid;
2316
2317 if (!check_device(dev))
2318 return;
2319
2320 devid = get_device_id(dev);
2321 if (devid < 0)
2322 return;
2323
2324 iommu = amd_iommu_rlookup_table[devid];
2325
2326 iommu_uninit_device(dev);
2327 iommu_completion_wait(iommu);
2328 }
2329
amd_iommu_device_group(struct device * dev)2330 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2331 {
2332 if (dev_is_pci(dev))
2333 return pci_device_group(dev);
2334
2335 return acpihid_device_group(dev);
2336 }
2337
2338 /*****************************************************************************
2339 *
2340 * The next functions belong to the dma_ops mapping/unmapping code.
2341 *
2342 *****************************************************************************/
2343
2344 /*
2345 * In the dma_ops path we only have the struct device. This function
2346 * finds the corresponding IOMMU, the protection domain and the
2347 * requestor id for a given device.
2348 * If the device is not yet associated with a domain this is also done
2349 * in this function.
2350 */
get_domain(struct device * dev)2351 static struct protection_domain *get_domain(struct device *dev)
2352 {
2353 struct protection_domain *domain;
2354 struct iommu_domain *io_domain;
2355
2356 if (!check_device(dev))
2357 return ERR_PTR(-EINVAL);
2358
2359 domain = get_dev_data(dev)->domain;
2360 if (domain == NULL && get_dev_data(dev)->defer_attach) {
2361 get_dev_data(dev)->defer_attach = false;
2362 io_domain = iommu_get_domain_for_dev(dev);
2363 domain = to_pdomain(io_domain);
2364 attach_device(dev, domain);
2365 }
2366 if (domain == NULL)
2367 return ERR_PTR(-EBUSY);
2368
2369 if (!dma_ops_domain(domain))
2370 return ERR_PTR(-EBUSY);
2371
2372 return domain;
2373 }
2374
update_device_table(struct protection_domain * domain)2375 static void update_device_table(struct protection_domain *domain)
2376 {
2377 struct iommu_dev_data *dev_data;
2378
2379 list_for_each_entry(dev_data, &domain->dev_list, list) {
2380 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2381 dev_data->iommu_v2);
2382 clone_aliases(dev_data->pdev);
2383 }
2384 }
2385
update_domain(struct protection_domain * domain)2386 static void update_domain(struct protection_domain *domain)
2387 {
2388 update_device_table(domain);
2389
2390 domain_flush_devices(domain);
2391 domain_flush_tlb_pde(domain);
2392 }
2393
dir2prot(enum dma_data_direction direction)2394 static int dir2prot(enum dma_data_direction direction)
2395 {
2396 if (direction == DMA_TO_DEVICE)
2397 return IOMMU_PROT_IR;
2398 else if (direction == DMA_FROM_DEVICE)
2399 return IOMMU_PROT_IW;
2400 else if (direction == DMA_BIDIRECTIONAL)
2401 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2402 else
2403 return 0;
2404 }
2405
2406 /*
2407 * This function contains common code for mapping of a physically
2408 * contiguous memory region into DMA address space. It is used by all
2409 * mapping functions provided with this IOMMU driver.
2410 * Must be called with the domain lock held.
2411 */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,enum dma_data_direction direction,u64 dma_mask)2412 static dma_addr_t __map_single(struct device *dev,
2413 struct dma_ops_domain *dma_dom,
2414 phys_addr_t paddr,
2415 size_t size,
2416 enum dma_data_direction direction,
2417 u64 dma_mask)
2418 {
2419 dma_addr_t offset = paddr & ~PAGE_MASK;
2420 dma_addr_t address, start, ret;
2421 unsigned long flags;
2422 unsigned int pages;
2423 int prot = 0;
2424 int i;
2425
2426 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2427 paddr &= PAGE_MASK;
2428
2429 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2430 if (!address)
2431 goto out;
2432
2433 prot = dir2prot(direction);
2434
2435 start = address;
2436 for (i = 0; i < pages; ++i) {
2437 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2438 PAGE_SIZE, prot, GFP_ATOMIC);
2439 if (ret)
2440 goto out_unmap;
2441
2442 paddr += PAGE_SIZE;
2443 start += PAGE_SIZE;
2444 }
2445 address += offset;
2446
2447 domain_flush_np_cache(&dma_dom->domain, address, size);
2448
2449 out:
2450 return address;
2451
2452 out_unmap:
2453
2454 for (--i; i >= 0; --i) {
2455 start -= PAGE_SIZE;
2456 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2457 }
2458
2459 spin_lock_irqsave(&dma_dom->domain.lock, flags);
2460 domain_flush_tlb(&dma_dom->domain);
2461 domain_flush_complete(&dma_dom->domain);
2462 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2463
2464 dma_ops_free_iova(dma_dom, address, pages);
2465
2466 return DMA_MAPPING_ERROR;
2467 }
2468
2469 /*
2470 * Does the reverse of the __map_single function. Must be called with
2471 * the domain lock held too
2472 */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2473 static void __unmap_single(struct dma_ops_domain *dma_dom,
2474 dma_addr_t dma_addr,
2475 size_t size,
2476 int dir)
2477 {
2478 dma_addr_t i, start;
2479 unsigned int pages;
2480
2481 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2482 dma_addr &= PAGE_MASK;
2483 start = dma_addr;
2484
2485 for (i = 0; i < pages; ++i) {
2486 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2487 start += PAGE_SIZE;
2488 }
2489
2490 if (amd_iommu_unmap_flush) {
2491 unsigned long flags;
2492
2493 spin_lock_irqsave(&dma_dom->domain.lock, flags);
2494 domain_flush_tlb(&dma_dom->domain);
2495 domain_flush_complete(&dma_dom->domain);
2496 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2497 dma_ops_free_iova(dma_dom, dma_addr, pages);
2498 } else {
2499 pages = __roundup_pow_of_two(pages);
2500 queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2501 }
2502 }
2503
2504 /*
2505 * The exported map_single function for dma_ops.
2506 */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)2507 static dma_addr_t map_page(struct device *dev, struct page *page,
2508 unsigned long offset, size_t size,
2509 enum dma_data_direction dir,
2510 unsigned long attrs)
2511 {
2512 phys_addr_t paddr = page_to_phys(page) + offset;
2513 struct protection_domain *domain;
2514 struct dma_ops_domain *dma_dom;
2515 u64 dma_mask;
2516
2517 domain = get_domain(dev);
2518 if (PTR_ERR(domain) == -EINVAL)
2519 return (dma_addr_t)paddr;
2520 else if (IS_ERR(domain))
2521 return DMA_MAPPING_ERROR;
2522
2523 dma_mask = *dev->dma_mask;
2524 dma_dom = to_dma_ops_domain(domain);
2525
2526 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2527 }
2528
2529 /*
2530 * The exported unmap_single function for dma_ops.
2531 */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)2532 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2533 enum dma_data_direction dir, unsigned long attrs)
2534 {
2535 struct protection_domain *domain;
2536 struct dma_ops_domain *dma_dom;
2537
2538 domain = get_domain(dev);
2539 if (IS_ERR(domain))
2540 return;
2541
2542 dma_dom = to_dma_ops_domain(domain);
2543
2544 __unmap_single(dma_dom, dma_addr, size, dir);
2545 }
2546
sg_num_pages(struct device * dev,struct scatterlist * sglist,int nelems)2547 static int sg_num_pages(struct device *dev,
2548 struct scatterlist *sglist,
2549 int nelems)
2550 {
2551 unsigned long mask, boundary_size;
2552 struct scatterlist *s;
2553 int i, npages = 0;
2554
2555 mask = dma_get_seg_boundary(dev);
2556 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2557 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2558
2559 for_each_sg(sglist, s, nelems, i) {
2560 int p, n;
2561
2562 s->dma_address = npages << PAGE_SHIFT;
2563 p = npages % boundary_size;
2564 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2565 if (p + n > boundary_size)
2566 npages += boundary_size - p;
2567 npages += n;
2568 }
2569
2570 return npages;
2571 }
2572
2573 /*
2574 * The exported map_sg function for dma_ops (handles scatter-gather
2575 * lists).
2576 */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,unsigned long attrs)2577 static int map_sg(struct device *dev, struct scatterlist *sglist,
2578 int nelems, enum dma_data_direction direction,
2579 unsigned long attrs)
2580 {
2581 int mapped_pages = 0, npages = 0, prot = 0, i;
2582 struct protection_domain *domain;
2583 struct dma_ops_domain *dma_dom;
2584 struct scatterlist *s;
2585 unsigned long address;
2586 u64 dma_mask;
2587 int ret;
2588
2589 domain = get_domain(dev);
2590 if (IS_ERR(domain))
2591 return 0;
2592
2593 dma_dom = to_dma_ops_domain(domain);
2594 dma_mask = *dev->dma_mask;
2595
2596 npages = sg_num_pages(dev, sglist, nelems);
2597
2598 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2599 if (!address)
2600 goto out_err;
2601
2602 prot = dir2prot(direction);
2603
2604 /* Map all sg entries */
2605 for_each_sg(sglist, s, nelems, i) {
2606 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2607
2608 for (j = 0; j < pages; ++j) {
2609 unsigned long bus_addr, phys_addr;
2610
2611 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2612 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2613 ret = iommu_map_page(domain, bus_addr, phys_addr,
2614 PAGE_SIZE, prot,
2615 GFP_ATOMIC | __GFP_NOWARN);
2616 if (ret)
2617 goto out_unmap;
2618
2619 mapped_pages += 1;
2620 }
2621 }
2622
2623 /* Everything is mapped - write the right values into s->dma_address */
2624 for_each_sg(sglist, s, nelems, i) {
2625 /*
2626 * Add in the remaining piece of the scatter-gather offset that
2627 * was masked out when we were determining the physical address
2628 * via (sg_phys(s) & PAGE_MASK) earlier.
2629 */
2630 s->dma_address += address + (s->offset & ~PAGE_MASK);
2631 s->dma_length = s->length;
2632 }
2633
2634 if (s)
2635 domain_flush_np_cache(domain, s->dma_address, s->dma_length);
2636
2637 return nelems;
2638
2639 out_unmap:
2640 dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2641 npages, ret);
2642
2643 for_each_sg(sglist, s, nelems, i) {
2644 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2645
2646 for (j = 0; j < pages; ++j) {
2647 unsigned long bus_addr;
2648
2649 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2650 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2651
2652 if (--mapped_pages == 0)
2653 goto out_free_iova;
2654 }
2655 }
2656
2657 out_free_iova:
2658 free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2659
2660 out_err:
2661 return 0;
2662 }
2663
2664 /*
2665 * The exported map_sg function for dma_ops (handles scatter-gather
2666 * lists).
2667 */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)2668 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2669 int nelems, enum dma_data_direction dir,
2670 unsigned long attrs)
2671 {
2672 struct protection_domain *domain;
2673 struct dma_ops_domain *dma_dom;
2674 unsigned long startaddr;
2675 int npages;
2676
2677 domain = get_domain(dev);
2678 if (IS_ERR(domain))
2679 return;
2680
2681 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2682 dma_dom = to_dma_ops_domain(domain);
2683 npages = sg_num_pages(dev, sglist, nelems);
2684
2685 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2686 }
2687
2688 /*
2689 * The exported alloc_coherent function for dma_ops.
2690 */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,unsigned long attrs)2691 static void *alloc_coherent(struct device *dev, size_t size,
2692 dma_addr_t *dma_addr, gfp_t flag,
2693 unsigned long attrs)
2694 {
2695 u64 dma_mask = dev->coherent_dma_mask;
2696 struct protection_domain *domain;
2697 struct dma_ops_domain *dma_dom;
2698 struct page *page;
2699
2700 domain = get_domain(dev);
2701 if (PTR_ERR(domain) == -EINVAL) {
2702 page = alloc_pages(flag, get_order(size));
2703 *dma_addr = page_to_phys(page);
2704 return page_address(page);
2705 } else if (IS_ERR(domain))
2706 return NULL;
2707
2708 dma_dom = to_dma_ops_domain(domain);
2709 size = PAGE_ALIGN(size);
2710 dma_mask = dev->coherent_dma_mask;
2711 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2712 flag |= __GFP_ZERO;
2713
2714 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2715 if (!page) {
2716 if (!gfpflags_allow_blocking(flag))
2717 return NULL;
2718
2719 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2720 get_order(size), flag & __GFP_NOWARN);
2721 if (!page)
2722 return NULL;
2723 }
2724
2725 if (!dma_mask)
2726 dma_mask = *dev->dma_mask;
2727
2728 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2729 size, DMA_BIDIRECTIONAL, dma_mask);
2730
2731 if (*dma_addr == DMA_MAPPING_ERROR)
2732 goto out_free;
2733
2734 return page_address(page);
2735
2736 out_free:
2737
2738 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2739 __free_pages(page, get_order(size));
2740
2741 return NULL;
2742 }
2743
2744 /*
2745 * The exported free_coherent function for dma_ops.
2746 */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,unsigned long attrs)2747 static void free_coherent(struct device *dev, size_t size,
2748 void *virt_addr, dma_addr_t dma_addr,
2749 unsigned long attrs)
2750 {
2751 struct protection_domain *domain;
2752 struct dma_ops_domain *dma_dom;
2753 struct page *page;
2754
2755 page = virt_to_page(virt_addr);
2756 size = PAGE_ALIGN(size);
2757
2758 domain = get_domain(dev);
2759 if (IS_ERR(domain))
2760 goto free_mem;
2761
2762 dma_dom = to_dma_ops_domain(domain);
2763
2764 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2765
2766 free_mem:
2767 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2768 __free_pages(page, get_order(size));
2769 }
2770
2771 /*
2772 * This function is called by the DMA layer to find out if we can handle a
2773 * particular device. It is part of the dma_ops.
2774 */
amd_iommu_dma_supported(struct device * dev,u64 mask)2775 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2776 {
2777 if (!dma_direct_supported(dev, mask))
2778 return 0;
2779 return check_device(dev);
2780 }
2781
2782 static const struct dma_map_ops amd_iommu_dma_ops = {
2783 .alloc = alloc_coherent,
2784 .free = free_coherent,
2785 .map_page = map_page,
2786 .unmap_page = unmap_page,
2787 .map_sg = map_sg,
2788 .unmap_sg = unmap_sg,
2789 .dma_supported = amd_iommu_dma_supported,
2790 .mmap = dma_common_mmap,
2791 .get_sgtable = dma_common_get_sgtable,
2792 };
2793
init_reserved_iova_ranges(void)2794 static int init_reserved_iova_ranges(void)
2795 {
2796 struct pci_dev *pdev = NULL;
2797 struct iova *val;
2798
2799 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2800
2801 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2802 &reserved_rbtree_key);
2803
2804 /* MSI memory range */
2805 val = reserve_iova(&reserved_iova_ranges,
2806 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2807 if (!val) {
2808 pr_err("Reserving MSI range failed\n");
2809 return -ENOMEM;
2810 }
2811
2812 /* HT memory range */
2813 val = reserve_iova(&reserved_iova_ranges,
2814 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2815 if (!val) {
2816 pr_err("Reserving HT range failed\n");
2817 return -ENOMEM;
2818 }
2819
2820 /*
2821 * Memory used for PCI resources
2822 * FIXME: Check whether we can reserve the PCI-hole completly
2823 */
2824 for_each_pci_dev(pdev) {
2825 int i;
2826
2827 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2828 struct resource *r = &pdev->resource[i];
2829
2830 if (!(r->flags & IORESOURCE_MEM))
2831 continue;
2832
2833 val = reserve_iova(&reserved_iova_ranges,
2834 IOVA_PFN(r->start),
2835 IOVA_PFN(r->end));
2836 if (!val) {
2837 pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2838 return -ENOMEM;
2839 }
2840 }
2841 }
2842
2843 return 0;
2844 }
2845
amd_iommu_init_api(void)2846 int __init amd_iommu_init_api(void)
2847 {
2848 int ret, err = 0;
2849
2850 ret = iova_cache_get();
2851 if (ret)
2852 return ret;
2853
2854 ret = init_reserved_iova_ranges();
2855 if (ret)
2856 return ret;
2857
2858 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2859 if (err)
2860 return err;
2861 #ifdef CONFIG_ARM_AMBA
2862 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2863 if (err)
2864 return err;
2865 #endif
2866 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2867 if (err)
2868 return err;
2869
2870 return 0;
2871 }
2872
amd_iommu_init_dma_ops(void)2873 int __init amd_iommu_init_dma_ops(void)
2874 {
2875 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2876 iommu_detected = 1;
2877
2878 if (amd_iommu_unmap_flush)
2879 pr_info("IO/TLB flush on unmap enabled\n");
2880 else
2881 pr_info("Lazy IO/TLB flushing enabled\n");
2882
2883 return 0;
2884
2885 }
2886
2887 /*****************************************************************************
2888 *
2889 * The following functions belong to the exported interface of AMD IOMMU
2890 *
2891 * This interface allows access to lower level functions of the IOMMU
2892 * like protection domain handling and assignement of devices to domains
2893 * which is not possible with the dma_ops interface.
2894 *
2895 *****************************************************************************/
2896
cleanup_domain(struct protection_domain * domain)2897 static void cleanup_domain(struct protection_domain *domain)
2898 {
2899 struct iommu_dev_data *entry;
2900 unsigned long flags;
2901
2902 spin_lock_irqsave(&domain->lock, flags);
2903
2904 while (!list_empty(&domain->dev_list)) {
2905 entry = list_first_entry(&domain->dev_list,
2906 struct iommu_dev_data, list);
2907 BUG_ON(!entry->domain);
2908 do_detach(entry);
2909 }
2910
2911 spin_unlock_irqrestore(&domain->lock, flags);
2912 }
2913
protection_domain_free(struct protection_domain * domain)2914 static void protection_domain_free(struct protection_domain *domain)
2915 {
2916 if (!domain)
2917 return;
2918
2919 if (domain->id)
2920 domain_id_free(domain->id);
2921
2922 kfree(domain);
2923 }
2924
protection_domain_init(struct protection_domain * domain)2925 static int protection_domain_init(struct protection_domain *domain)
2926 {
2927 spin_lock_init(&domain->lock);
2928 mutex_init(&domain->api_lock);
2929 domain->id = domain_id_alloc();
2930 if (!domain->id)
2931 return -ENOMEM;
2932 INIT_LIST_HEAD(&domain->dev_list);
2933
2934 return 0;
2935 }
2936
protection_domain_alloc(void)2937 static struct protection_domain *protection_domain_alloc(void)
2938 {
2939 struct protection_domain *domain;
2940
2941 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2942 if (!domain)
2943 return NULL;
2944
2945 if (protection_domain_init(domain))
2946 goto out_err;
2947
2948 return domain;
2949
2950 out_err:
2951 kfree(domain);
2952
2953 return NULL;
2954 }
2955
amd_iommu_domain_alloc(unsigned type)2956 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2957 {
2958 struct protection_domain *pdomain;
2959 struct dma_ops_domain *dma_domain;
2960
2961 switch (type) {
2962 case IOMMU_DOMAIN_UNMANAGED:
2963 pdomain = protection_domain_alloc();
2964 if (!pdomain)
2965 return NULL;
2966
2967 pdomain->mode = PAGE_MODE_3_LEVEL;
2968 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2969 if (!pdomain->pt_root) {
2970 protection_domain_free(pdomain);
2971 return NULL;
2972 }
2973
2974 pdomain->domain.geometry.aperture_start = 0;
2975 pdomain->domain.geometry.aperture_end = ~0ULL;
2976 pdomain->domain.geometry.force_aperture = true;
2977
2978 break;
2979 case IOMMU_DOMAIN_DMA:
2980 dma_domain = dma_ops_domain_alloc();
2981 if (!dma_domain) {
2982 pr_err("Failed to allocate\n");
2983 return NULL;
2984 }
2985 pdomain = &dma_domain->domain;
2986 break;
2987 case IOMMU_DOMAIN_IDENTITY:
2988 pdomain = protection_domain_alloc();
2989 if (!pdomain)
2990 return NULL;
2991
2992 pdomain->mode = PAGE_MODE_NONE;
2993 break;
2994 default:
2995 return NULL;
2996 }
2997
2998 return &pdomain->domain;
2999 }
3000
amd_iommu_domain_free(struct iommu_domain * dom)3001 static void amd_iommu_domain_free(struct iommu_domain *dom)
3002 {
3003 struct protection_domain *domain;
3004 struct dma_ops_domain *dma_dom;
3005
3006 domain = to_pdomain(dom);
3007
3008 if (domain->dev_cnt > 0)
3009 cleanup_domain(domain);
3010
3011 BUG_ON(domain->dev_cnt != 0);
3012
3013 if (!dom)
3014 return;
3015
3016 switch (dom->type) {
3017 case IOMMU_DOMAIN_DMA:
3018 /* Now release the domain */
3019 dma_dom = to_dma_ops_domain(domain);
3020 dma_ops_domain_free(dma_dom);
3021 break;
3022 default:
3023 if (domain->mode != PAGE_MODE_NONE)
3024 free_pagetable(domain);
3025
3026 if (domain->flags & PD_IOMMUV2_MASK)
3027 free_gcr3_table(domain);
3028
3029 protection_domain_free(domain);
3030 break;
3031 }
3032 }
3033
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)3034 static void amd_iommu_detach_device(struct iommu_domain *dom,
3035 struct device *dev)
3036 {
3037 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3038 struct amd_iommu *iommu;
3039 int devid;
3040
3041 if (!check_device(dev))
3042 return;
3043
3044 devid = get_device_id(dev);
3045 if (devid < 0)
3046 return;
3047
3048 if (dev_data->domain != NULL)
3049 detach_device(dev);
3050
3051 iommu = amd_iommu_rlookup_table[devid];
3052 if (!iommu)
3053 return;
3054
3055 #ifdef CONFIG_IRQ_REMAP
3056 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3057 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3058 dev_data->use_vapic = 0;
3059 #endif
3060
3061 iommu_completion_wait(iommu);
3062 }
3063
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3064 static int amd_iommu_attach_device(struct iommu_domain *dom,
3065 struct device *dev)
3066 {
3067 struct protection_domain *domain = to_pdomain(dom);
3068 struct iommu_dev_data *dev_data;
3069 struct amd_iommu *iommu;
3070 int ret;
3071
3072 if (!check_device(dev))
3073 return -EINVAL;
3074
3075 dev_data = dev->archdata.iommu;
3076
3077 iommu = amd_iommu_rlookup_table[dev_data->devid];
3078 if (!iommu)
3079 return -EINVAL;
3080
3081 if (dev_data->domain)
3082 detach_device(dev);
3083
3084 ret = attach_device(dev, domain);
3085
3086 #ifdef CONFIG_IRQ_REMAP
3087 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3088 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3089 dev_data->use_vapic = 1;
3090 else
3091 dev_data->use_vapic = 0;
3092 }
3093 #endif
3094
3095 iommu_completion_wait(iommu);
3096
3097 return ret;
3098 }
3099
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3100 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3101 phys_addr_t paddr, size_t page_size, int iommu_prot)
3102 {
3103 struct protection_domain *domain = to_pdomain(dom);
3104 int prot = 0;
3105 int ret;
3106
3107 if (domain->mode == PAGE_MODE_NONE)
3108 return -EINVAL;
3109
3110 if (iommu_prot & IOMMU_READ)
3111 prot |= IOMMU_PROT_IR;
3112 if (iommu_prot & IOMMU_WRITE)
3113 prot |= IOMMU_PROT_IW;
3114
3115 mutex_lock(&domain->api_lock);
3116 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3117 mutex_unlock(&domain->api_lock);
3118
3119 domain_flush_np_cache(domain, iova, page_size);
3120
3121 return ret;
3122 }
3123
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)3124 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3125 size_t page_size,
3126 struct iommu_iotlb_gather *gather)
3127 {
3128 struct protection_domain *domain = to_pdomain(dom);
3129 size_t unmap_size;
3130
3131 if (domain->mode == PAGE_MODE_NONE)
3132 return 0;
3133
3134 mutex_lock(&domain->api_lock);
3135 unmap_size = iommu_unmap_page(domain, iova, page_size);
3136 mutex_unlock(&domain->api_lock);
3137
3138 return unmap_size;
3139 }
3140
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3141 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3142 dma_addr_t iova)
3143 {
3144 struct protection_domain *domain = to_pdomain(dom);
3145 unsigned long offset_mask, pte_pgsize;
3146 u64 *pte, __pte;
3147
3148 if (domain->mode == PAGE_MODE_NONE)
3149 return iova;
3150
3151 pte = fetch_pte(domain, iova, &pte_pgsize);
3152
3153 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3154 return 0;
3155
3156 offset_mask = pte_pgsize - 1;
3157 __pte = __sme_clr(*pte & PM_ADDR_MASK);
3158
3159 return (__pte & ~offset_mask) | (iova & offset_mask);
3160 }
3161
amd_iommu_capable(enum iommu_cap cap)3162 static bool amd_iommu_capable(enum iommu_cap cap)
3163 {
3164 switch (cap) {
3165 case IOMMU_CAP_CACHE_COHERENCY:
3166 return true;
3167 case IOMMU_CAP_INTR_REMAP:
3168 return (irq_remapping_enabled == 1);
3169 case IOMMU_CAP_NOEXEC:
3170 return false;
3171 default:
3172 break;
3173 }
3174
3175 return false;
3176 }
3177
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)3178 static void amd_iommu_get_resv_regions(struct device *dev,
3179 struct list_head *head)
3180 {
3181 struct iommu_resv_region *region;
3182 struct unity_map_entry *entry;
3183 int devid;
3184
3185 devid = get_device_id(dev);
3186 if (devid < 0)
3187 return;
3188
3189 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3190 int type, prot = 0;
3191 size_t length;
3192
3193 if (devid < entry->devid_start || devid > entry->devid_end)
3194 continue;
3195
3196 type = IOMMU_RESV_DIRECT;
3197 length = entry->address_end - entry->address_start;
3198 if (entry->prot & IOMMU_PROT_IR)
3199 prot |= IOMMU_READ;
3200 if (entry->prot & IOMMU_PROT_IW)
3201 prot |= IOMMU_WRITE;
3202 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3203 /* Exclusion range */
3204 type = IOMMU_RESV_RESERVED;
3205
3206 region = iommu_alloc_resv_region(entry->address_start,
3207 length, prot, type);
3208 if (!region) {
3209 dev_err(dev, "Out of memory allocating dm-regions\n");
3210 return;
3211 }
3212 list_add_tail(®ion->list, head);
3213 }
3214
3215 region = iommu_alloc_resv_region(MSI_RANGE_START,
3216 MSI_RANGE_END - MSI_RANGE_START + 1,
3217 0, IOMMU_RESV_MSI);
3218 if (!region)
3219 return;
3220 list_add_tail(®ion->list, head);
3221
3222 region = iommu_alloc_resv_region(HT_RANGE_START,
3223 HT_RANGE_END - HT_RANGE_START + 1,
3224 0, IOMMU_RESV_RESERVED);
3225 if (!region)
3226 return;
3227 list_add_tail(®ion->list, head);
3228 }
3229
amd_iommu_put_resv_regions(struct device * dev,struct list_head * head)3230 static void amd_iommu_put_resv_regions(struct device *dev,
3231 struct list_head *head)
3232 {
3233 struct iommu_resv_region *entry, *next;
3234
3235 list_for_each_entry_safe(entry, next, head, list)
3236 kfree(entry);
3237 }
3238
amd_iommu_apply_resv_region(struct device * dev,struct iommu_domain * domain,struct iommu_resv_region * region)3239 static void amd_iommu_apply_resv_region(struct device *dev,
3240 struct iommu_domain *domain,
3241 struct iommu_resv_region *region)
3242 {
3243 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3244 unsigned long start, end;
3245
3246 start = IOVA_PFN(region->start);
3247 end = IOVA_PFN(region->start + region->length - 1);
3248
3249 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3250 }
3251
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)3252 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3253 struct device *dev)
3254 {
3255 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3256 return dev_data->defer_attach;
3257 }
3258
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)3259 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3260 {
3261 struct protection_domain *dom = to_pdomain(domain);
3262 unsigned long flags;
3263
3264 spin_lock_irqsave(&dom->lock, flags);
3265 domain_flush_tlb_pde(dom);
3266 domain_flush_complete(dom);
3267 spin_unlock_irqrestore(&dom->lock, flags);
3268 }
3269
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)3270 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
3271 struct iommu_iotlb_gather *gather)
3272 {
3273 amd_iommu_flush_iotlb_all(domain);
3274 }
3275
3276 const struct iommu_ops amd_iommu_ops = {
3277 .capable = amd_iommu_capable,
3278 .domain_alloc = amd_iommu_domain_alloc,
3279 .domain_free = amd_iommu_domain_free,
3280 .attach_dev = amd_iommu_attach_device,
3281 .detach_dev = amd_iommu_detach_device,
3282 .map = amd_iommu_map,
3283 .unmap = amd_iommu_unmap,
3284 .iova_to_phys = amd_iommu_iova_to_phys,
3285 .add_device = amd_iommu_add_device,
3286 .remove_device = amd_iommu_remove_device,
3287 .device_group = amd_iommu_device_group,
3288 .get_resv_regions = amd_iommu_get_resv_regions,
3289 .put_resv_regions = amd_iommu_put_resv_regions,
3290 .apply_resv_region = amd_iommu_apply_resv_region,
3291 .is_attach_deferred = amd_iommu_is_attach_deferred,
3292 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3293 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3294 .iotlb_sync = amd_iommu_iotlb_sync,
3295 };
3296
3297 /*****************************************************************************
3298 *
3299 * The next functions do a basic initialization of IOMMU for pass through
3300 * mode
3301 *
3302 * In passthrough mode the IOMMU is initialized and enabled but not used for
3303 * DMA-API translation.
3304 *
3305 *****************************************************************************/
3306
3307 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3308 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3309 {
3310 return atomic_notifier_chain_register(&ppr_notifier, nb);
3311 }
3312 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3313
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3314 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3315 {
3316 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3317 }
3318 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3319
amd_iommu_domain_direct_map(struct iommu_domain * dom)3320 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3321 {
3322 struct protection_domain *domain = to_pdomain(dom);
3323 unsigned long flags;
3324
3325 spin_lock_irqsave(&domain->lock, flags);
3326
3327 /* Update data structure */
3328 domain->mode = PAGE_MODE_NONE;
3329
3330 /* Make changes visible to IOMMUs */
3331 update_domain(domain);
3332
3333 /* Page-table is not visible to IOMMU anymore, so free it */
3334 free_pagetable(domain);
3335
3336 spin_unlock_irqrestore(&domain->lock, flags);
3337 }
3338 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3339
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3340 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3341 {
3342 struct protection_domain *domain = to_pdomain(dom);
3343 unsigned long flags;
3344 int levels, ret;
3345
3346 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3347 return -EINVAL;
3348
3349 /* Number of GCR3 table levels required */
3350 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3351 levels += 1;
3352
3353 if (levels > amd_iommu_max_glx_val)
3354 return -EINVAL;
3355
3356 spin_lock_irqsave(&domain->lock, flags);
3357
3358 /*
3359 * Save us all sanity checks whether devices already in the
3360 * domain support IOMMUv2. Just force that the domain has no
3361 * devices attached when it is switched into IOMMUv2 mode.
3362 */
3363 ret = -EBUSY;
3364 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3365 goto out;
3366
3367 ret = -ENOMEM;
3368 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3369 if (domain->gcr3_tbl == NULL)
3370 goto out;
3371
3372 domain->glx = levels;
3373 domain->flags |= PD_IOMMUV2_MASK;
3374
3375 update_domain(domain);
3376
3377 ret = 0;
3378
3379 out:
3380 spin_unlock_irqrestore(&domain->lock, flags);
3381
3382 return ret;
3383 }
3384 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3385
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3386 static int __flush_pasid(struct protection_domain *domain, int pasid,
3387 u64 address, bool size)
3388 {
3389 struct iommu_dev_data *dev_data;
3390 struct iommu_cmd cmd;
3391 int i, ret;
3392
3393 if (!(domain->flags & PD_IOMMUV2_MASK))
3394 return -EINVAL;
3395
3396 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3397
3398 /*
3399 * IOMMU TLB needs to be flushed before Device TLB to
3400 * prevent device TLB refill from IOMMU TLB
3401 */
3402 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3403 if (domain->dev_iommu[i] == 0)
3404 continue;
3405
3406 ret = iommu_queue_command(amd_iommus[i], &cmd);
3407 if (ret != 0)
3408 goto out;
3409 }
3410
3411 /* Wait until IOMMU TLB flushes are complete */
3412 domain_flush_complete(domain);
3413
3414 /* Now flush device TLBs */
3415 list_for_each_entry(dev_data, &domain->dev_list, list) {
3416 struct amd_iommu *iommu;
3417 int qdep;
3418
3419 /*
3420 There might be non-IOMMUv2 capable devices in an IOMMUv2
3421 * domain.
3422 */
3423 if (!dev_data->ats.enabled)
3424 continue;
3425
3426 qdep = dev_data->ats.qdep;
3427 iommu = amd_iommu_rlookup_table[dev_data->devid];
3428
3429 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3430 qdep, address, size);
3431
3432 ret = iommu_queue_command(iommu, &cmd);
3433 if (ret != 0)
3434 goto out;
3435 }
3436
3437 /* Wait until all device TLBs are flushed */
3438 domain_flush_complete(domain);
3439
3440 ret = 0;
3441
3442 out:
3443
3444 return ret;
3445 }
3446
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3447 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3448 u64 address)
3449 {
3450 return __flush_pasid(domain, pasid, address, false);
3451 }
3452
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3453 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3454 u64 address)
3455 {
3456 struct protection_domain *domain = to_pdomain(dom);
3457 unsigned long flags;
3458 int ret;
3459
3460 spin_lock_irqsave(&domain->lock, flags);
3461 ret = __amd_iommu_flush_page(domain, pasid, address);
3462 spin_unlock_irqrestore(&domain->lock, flags);
3463
3464 return ret;
3465 }
3466 EXPORT_SYMBOL(amd_iommu_flush_page);
3467
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3468 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3469 {
3470 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3471 true);
3472 }
3473
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3474 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3475 {
3476 struct protection_domain *domain = to_pdomain(dom);
3477 unsigned long flags;
3478 int ret;
3479
3480 spin_lock_irqsave(&domain->lock, flags);
3481 ret = __amd_iommu_flush_tlb(domain, pasid);
3482 spin_unlock_irqrestore(&domain->lock, flags);
3483
3484 return ret;
3485 }
3486 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3487
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3488 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3489 {
3490 int index;
3491 u64 *pte;
3492
3493 while (true) {
3494
3495 index = (pasid >> (9 * level)) & 0x1ff;
3496 pte = &root[index];
3497
3498 if (level == 0)
3499 break;
3500
3501 if (!(*pte & GCR3_VALID)) {
3502 if (!alloc)
3503 return NULL;
3504
3505 root = (void *)get_zeroed_page(GFP_ATOMIC);
3506 if (root == NULL)
3507 return NULL;
3508
3509 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3510 }
3511
3512 root = iommu_phys_to_virt(*pte & PAGE_MASK);
3513
3514 level -= 1;
3515 }
3516
3517 return pte;
3518 }
3519
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3520 static int __set_gcr3(struct protection_domain *domain, int pasid,
3521 unsigned long cr3)
3522 {
3523 u64 *pte;
3524
3525 if (domain->mode != PAGE_MODE_NONE)
3526 return -EINVAL;
3527
3528 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3529 if (pte == NULL)
3530 return -ENOMEM;
3531
3532 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3533
3534 return __amd_iommu_flush_tlb(domain, pasid);
3535 }
3536
__clear_gcr3(struct protection_domain * domain,int pasid)3537 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3538 {
3539 u64 *pte;
3540
3541 if (domain->mode != PAGE_MODE_NONE)
3542 return -EINVAL;
3543
3544 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3545 if (pte == NULL)
3546 return 0;
3547
3548 *pte = 0;
3549
3550 return __amd_iommu_flush_tlb(domain, pasid);
3551 }
3552
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3553 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3554 unsigned long cr3)
3555 {
3556 struct protection_domain *domain = to_pdomain(dom);
3557 unsigned long flags;
3558 int ret;
3559
3560 spin_lock_irqsave(&domain->lock, flags);
3561 ret = __set_gcr3(domain, pasid, cr3);
3562 spin_unlock_irqrestore(&domain->lock, flags);
3563
3564 return ret;
3565 }
3566 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3567
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3568 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3569 {
3570 struct protection_domain *domain = to_pdomain(dom);
3571 unsigned long flags;
3572 int ret;
3573
3574 spin_lock_irqsave(&domain->lock, flags);
3575 ret = __clear_gcr3(domain, pasid);
3576 spin_unlock_irqrestore(&domain->lock, flags);
3577
3578 return ret;
3579 }
3580 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3581
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3582 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3583 int status, int tag)
3584 {
3585 struct iommu_dev_data *dev_data;
3586 struct amd_iommu *iommu;
3587 struct iommu_cmd cmd;
3588
3589 dev_data = get_dev_data(&pdev->dev);
3590 iommu = amd_iommu_rlookup_table[dev_data->devid];
3591
3592 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3593 tag, dev_data->pri_tlp);
3594
3595 return iommu_queue_command(iommu, &cmd);
3596 }
3597 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3598
amd_iommu_get_v2_domain(struct pci_dev * pdev)3599 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3600 {
3601 struct protection_domain *pdomain;
3602
3603 pdomain = get_domain(&pdev->dev);
3604 if (IS_ERR(pdomain))
3605 return NULL;
3606
3607 /* Only return IOMMUv2 domains */
3608 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3609 return NULL;
3610
3611 return &pdomain->domain;
3612 }
3613 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3614
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3615 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3616 {
3617 struct iommu_dev_data *dev_data;
3618
3619 if (!amd_iommu_v2_supported())
3620 return;
3621
3622 dev_data = get_dev_data(&pdev->dev);
3623 dev_data->errata |= (1 << erratum);
3624 }
3625 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3626
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3627 int amd_iommu_device_info(struct pci_dev *pdev,
3628 struct amd_iommu_device_info *info)
3629 {
3630 int max_pasids;
3631 int pos;
3632
3633 if (pdev == NULL || info == NULL)
3634 return -EINVAL;
3635
3636 if (!amd_iommu_v2_supported())
3637 return -EINVAL;
3638
3639 memset(info, 0, sizeof(*info));
3640
3641 if (!pci_ats_disabled()) {
3642 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3643 if (pos)
3644 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3645 }
3646
3647 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3648 if (pos)
3649 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3650
3651 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3652 if (pos) {
3653 int features;
3654
3655 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3656 max_pasids = min(max_pasids, (1 << 20));
3657
3658 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3659 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3660
3661 features = pci_pasid_features(pdev);
3662 if (features & PCI_PASID_CAP_EXEC)
3663 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3664 if (features & PCI_PASID_CAP_PRIV)
3665 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3666 }
3667
3668 return 0;
3669 }
3670 EXPORT_SYMBOL(amd_iommu_device_info);
3671
3672 #ifdef CONFIG_IRQ_REMAP
3673
3674 /*****************************************************************************
3675 *
3676 * Interrupt Remapping Implementation
3677 *
3678 *****************************************************************************/
3679
3680 static struct irq_chip amd_ir_chip;
3681 static DEFINE_SPINLOCK(iommu_table_lock);
3682
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3683 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3684 {
3685 u64 dte;
3686
3687 dte = amd_iommu_dev_table[devid].data[2];
3688 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3689 dte |= iommu_virt_to_phys(table->table);
3690 dte |= DTE_IRQ_REMAP_INTCTL;
3691 dte |= DTE_IRQ_TABLE_LEN;
3692 dte |= DTE_IRQ_REMAP_ENABLE;
3693
3694 amd_iommu_dev_table[devid].data[2] = dte;
3695 }
3696
get_irq_table(u16 devid)3697 static struct irq_remap_table *get_irq_table(u16 devid)
3698 {
3699 struct irq_remap_table *table;
3700
3701 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3702 "%s: no iommu for devid %x\n", __func__, devid))
3703 return NULL;
3704
3705 table = irq_lookup_table[devid];
3706 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3707 return NULL;
3708
3709 return table;
3710 }
3711
__alloc_irq_table(void)3712 static struct irq_remap_table *__alloc_irq_table(void)
3713 {
3714 struct irq_remap_table *table;
3715
3716 table = kzalloc(sizeof(*table), GFP_KERNEL);
3717 if (!table)
3718 return NULL;
3719
3720 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3721 if (!table->table) {
3722 kfree(table);
3723 return NULL;
3724 }
3725 raw_spin_lock_init(&table->lock);
3726
3727 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3728 memset(table->table, 0,
3729 MAX_IRQS_PER_TABLE * sizeof(u32));
3730 else
3731 memset(table->table, 0,
3732 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3733 return table;
3734 }
3735
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3736 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3737 struct irq_remap_table *table)
3738 {
3739 irq_lookup_table[devid] = table;
3740 set_dte_irq_entry(devid, table);
3741 iommu_flush_dte(iommu, devid);
3742 }
3743
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3744 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3745 void *data)
3746 {
3747 struct irq_remap_table *table = data;
3748
3749 irq_lookup_table[alias] = table;
3750 set_dte_irq_entry(alias, table);
3751
3752 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3753
3754 return 0;
3755 }
3756
alloc_irq_table(u16 devid,struct pci_dev * pdev)3757 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3758 {
3759 struct irq_remap_table *table = NULL;
3760 struct irq_remap_table *new_table = NULL;
3761 struct amd_iommu *iommu;
3762 unsigned long flags;
3763 u16 alias;
3764
3765 spin_lock_irqsave(&iommu_table_lock, flags);
3766
3767 iommu = amd_iommu_rlookup_table[devid];
3768 if (!iommu)
3769 goto out_unlock;
3770
3771 table = irq_lookup_table[devid];
3772 if (table)
3773 goto out_unlock;
3774
3775 alias = amd_iommu_alias_table[devid];
3776 table = irq_lookup_table[alias];
3777 if (table) {
3778 set_remap_table_entry(iommu, devid, table);
3779 goto out_wait;
3780 }
3781 spin_unlock_irqrestore(&iommu_table_lock, flags);
3782
3783 /* Nothing there yet, allocate new irq remapping table */
3784 new_table = __alloc_irq_table();
3785 if (!new_table)
3786 return NULL;
3787
3788 spin_lock_irqsave(&iommu_table_lock, flags);
3789
3790 table = irq_lookup_table[devid];
3791 if (table)
3792 goto out_unlock;
3793
3794 table = irq_lookup_table[alias];
3795 if (table) {
3796 set_remap_table_entry(iommu, devid, table);
3797 goto out_wait;
3798 }
3799
3800 table = new_table;
3801 new_table = NULL;
3802
3803 if (pdev)
3804 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3805 table);
3806 else
3807 set_remap_table_entry(iommu, devid, table);
3808
3809 if (devid != alias)
3810 set_remap_table_entry(iommu, alias, table);
3811
3812 out_wait:
3813 iommu_completion_wait(iommu);
3814
3815 out_unlock:
3816 spin_unlock_irqrestore(&iommu_table_lock, flags);
3817
3818 if (new_table) {
3819 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3820 kfree(new_table);
3821 }
3822 return table;
3823 }
3824
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)3825 static int alloc_irq_index(u16 devid, int count, bool align,
3826 struct pci_dev *pdev)
3827 {
3828 struct irq_remap_table *table;
3829 int index, c, alignment = 1;
3830 unsigned long flags;
3831 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3832
3833 if (!iommu)
3834 return -ENODEV;
3835
3836 table = alloc_irq_table(devid, pdev);
3837 if (!table)
3838 return -ENODEV;
3839
3840 if (align)
3841 alignment = roundup_pow_of_two(count);
3842
3843 raw_spin_lock_irqsave(&table->lock, flags);
3844
3845 /* Scan table for free entries */
3846 for (index = ALIGN(table->min_index, alignment), c = 0;
3847 index < MAX_IRQS_PER_TABLE;) {
3848 if (!iommu->irte_ops->is_allocated(table, index)) {
3849 c += 1;
3850 } else {
3851 c = 0;
3852 index = ALIGN(index + 1, alignment);
3853 continue;
3854 }
3855
3856 if (c == count) {
3857 for (; c != 0; --c)
3858 iommu->irte_ops->set_allocated(table, index - c + 1);
3859
3860 index -= count - 1;
3861 goto out;
3862 }
3863
3864 index++;
3865 }
3866
3867 index = -ENOSPC;
3868
3869 out:
3870 raw_spin_unlock_irqrestore(&table->lock, flags);
3871
3872 return index;
3873 }
3874
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3875 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3876 struct amd_ir_data *data)
3877 {
3878 struct irq_remap_table *table;
3879 struct amd_iommu *iommu;
3880 unsigned long flags;
3881 struct irte_ga *entry;
3882
3883 iommu = amd_iommu_rlookup_table[devid];
3884 if (iommu == NULL)
3885 return -EINVAL;
3886
3887 table = get_irq_table(devid);
3888 if (!table)
3889 return -ENOMEM;
3890
3891 raw_spin_lock_irqsave(&table->lock, flags);
3892
3893 entry = (struct irte_ga *)table->table;
3894 entry = &entry[index];
3895 entry->lo.fields_remap.valid = 0;
3896 entry->hi.val = irte->hi.val;
3897 entry->lo.val = irte->lo.val;
3898 entry->lo.fields_remap.valid = 1;
3899 if (data)
3900 data->ref = entry;
3901
3902 raw_spin_unlock_irqrestore(&table->lock, flags);
3903
3904 iommu_flush_irt(iommu, devid);
3905 iommu_completion_wait(iommu);
3906
3907 return 0;
3908 }
3909
modify_irte(u16 devid,int index,union irte * irte)3910 static int modify_irte(u16 devid, int index, union irte *irte)
3911 {
3912 struct irq_remap_table *table;
3913 struct amd_iommu *iommu;
3914 unsigned long flags;
3915
3916 iommu = amd_iommu_rlookup_table[devid];
3917 if (iommu == NULL)
3918 return -EINVAL;
3919
3920 table = get_irq_table(devid);
3921 if (!table)
3922 return -ENOMEM;
3923
3924 raw_spin_lock_irqsave(&table->lock, flags);
3925 table->table[index] = irte->val;
3926 raw_spin_unlock_irqrestore(&table->lock, flags);
3927
3928 iommu_flush_irt(iommu, devid);
3929 iommu_completion_wait(iommu);
3930
3931 return 0;
3932 }
3933
free_irte(u16 devid,int index)3934 static void free_irte(u16 devid, int index)
3935 {
3936 struct irq_remap_table *table;
3937 struct amd_iommu *iommu;
3938 unsigned long flags;
3939
3940 iommu = amd_iommu_rlookup_table[devid];
3941 if (iommu == NULL)
3942 return;
3943
3944 table = get_irq_table(devid);
3945 if (!table)
3946 return;
3947
3948 raw_spin_lock_irqsave(&table->lock, flags);
3949 iommu->irte_ops->clear_allocated(table, index);
3950 raw_spin_unlock_irqrestore(&table->lock, flags);
3951
3952 iommu_flush_irt(iommu, devid);
3953 iommu_completion_wait(iommu);
3954 }
3955
irte_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3956 static void irte_prepare(void *entry,
3957 u32 delivery_mode, u32 dest_mode,
3958 u8 vector, u32 dest_apicid, int devid)
3959 {
3960 union irte *irte = (union irte *) entry;
3961
3962 irte->val = 0;
3963 irte->fields.vector = vector;
3964 irte->fields.int_type = delivery_mode;
3965 irte->fields.destination = dest_apicid;
3966 irte->fields.dm = dest_mode;
3967 irte->fields.valid = 1;
3968 }
3969
irte_ga_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3970 static void irte_ga_prepare(void *entry,
3971 u32 delivery_mode, u32 dest_mode,
3972 u8 vector, u32 dest_apicid, int devid)
3973 {
3974 struct irte_ga *irte = (struct irte_ga *) entry;
3975
3976 irte->lo.val = 0;
3977 irte->hi.val = 0;
3978 irte->lo.fields_remap.int_type = delivery_mode;
3979 irte->lo.fields_remap.dm = dest_mode;
3980 irte->hi.fields.vector = vector;
3981 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3982 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3983 irte->lo.fields_remap.valid = 1;
3984 }
3985
irte_activate(void * entry,u16 devid,u16 index)3986 static void irte_activate(void *entry, u16 devid, u16 index)
3987 {
3988 union irte *irte = (union irte *) entry;
3989
3990 irte->fields.valid = 1;
3991 modify_irte(devid, index, irte);
3992 }
3993
irte_ga_activate(void * entry,u16 devid,u16 index)3994 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3995 {
3996 struct irte_ga *irte = (struct irte_ga *) entry;
3997
3998 irte->lo.fields_remap.valid = 1;
3999 modify_irte_ga(devid, index, irte, NULL);
4000 }
4001
irte_deactivate(void * entry,u16 devid,u16 index)4002 static void irte_deactivate(void *entry, u16 devid, u16 index)
4003 {
4004 union irte *irte = (union irte *) entry;
4005
4006 irte->fields.valid = 0;
4007 modify_irte(devid, index, irte);
4008 }
4009
irte_ga_deactivate(void * entry,u16 devid,u16 index)4010 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
4011 {
4012 struct irte_ga *irte = (struct irte_ga *) entry;
4013
4014 irte->lo.fields_remap.valid = 0;
4015 modify_irte_ga(devid, index, irte, NULL);
4016 }
4017
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)4018 static void irte_set_affinity(void *entry, u16 devid, u16 index,
4019 u8 vector, u32 dest_apicid)
4020 {
4021 union irte *irte = (union irte *) entry;
4022
4023 irte->fields.vector = vector;
4024 irte->fields.destination = dest_apicid;
4025 modify_irte(devid, index, irte);
4026 }
4027
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)4028 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
4029 u8 vector, u32 dest_apicid)
4030 {
4031 struct irte_ga *irte = (struct irte_ga *) entry;
4032
4033 if (!irte->lo.fields_remap.guest_mode) {
4034 irte->hi.fields.vector = vector;
4035 irte->lo.fields_remap.destination =
4036 APICID_TO_IRTE_DEST_LO(dest_apicid);
4037 irte->hi.fields.destination =
4038 APICID_TO_IRTE_DEST_HI(dest_apicid);
4039 modify_irte_ga(devid, index, irte, NULL);
4040 }
4041 }
4042
4043 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)4044 static void irte_set_allocated(struct irq_remap_table *table, int index)
4045 {
4046 table->table[index] = IRTE_ALLOCATED;
4047 }
4048
irte_ga_set_allocated(struct irq_remap_table * table,int index)4049 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4050 {
4051 struct irte_ga *ptr = (struct irte_ga *)table->table;
4052 struct irte_ga *irte = &ptr[index];
4053
4054 memset(&irte->lo.val, 0, sizeof(u64));
4055 memset(&irte->hi.val, 0, sizeof(u64));
4056 irte->hi.fields.vector = 0xff;
4057 }
4058
irte_is_allocated(struct irq_remap_table * table,int index)4059 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4060 {
4061 union irte *ptr = (union irte *)table->table;
4062 union irte *irte = &ptr[index];
4063
4064 return irte->val != 0;
4065 }
4066
irte_ga_is_allocated(struct irq_remap_table * table,int index)4067 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4068 {
4069 struct irte_ga *ptr = (struct irte_ga *)table->table;
4070 struct irte_ga *irte = &ptr[index];
4071
4072 return irte->hi.fields.vector != 0;
4073 }
4074
irte_clear_allocated(struct irq_remap_table * table,int index)4075 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4076 {
4077 table->table[index] = 0;
4078 }
4079
irte_ga_clear_allocated(struct irq_remap_table * table,int index)4080 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4081 {
4082 struct irte_ga *ptr = (struct irte_ga *)table->table;
4083 struct irte_ga *irte = &ptr[index];
4084
4085 memset(&irte->lo.val, 0, sizeof(u64));
4086 memset(&irte->hi.val, 0, sizeof(u64));
4087 }
4088
get_devid(struct irq_alloc_info * info)4089 static int get_devid(struct irq_alloc_info *info)
4090 {
4091 int devid = -1;
4092
4093 switch (info->type) {
4094 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4095 devid = get_ioapic_devid(info->ioapic_id);
4096 break;
4097 case X86_IRQ_ALLOC_TYPE_HPET:
4098 devid = get_hpet_devid(info->hpet_id);
4099 break;
4100 case X86_IRQ_ALLOC_TYPE_MSI:
4101 case X86_IRQ_ALLOC_TYPE_MSIX:
4102 devid = get_device_id(&info->msi_dev->dev);
4103 break;
4104 default:
4105 BUG_ON(1);
4106 break;
4107 }
4108
4109 return devid;
4110 }
4111
get_ir_irq_domain(struct irq_alloc_info * info)4112 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4113 {
4114 struct amd_iommu *iommu;
4115 int devid;
4116
4117 if (!info)
4118 return NULL;
4119
4120 devid = get_devid(info);
4121 if (devid >= 0) {
4122 iommu = amd_iommu_rlookup_table[devid];
4123 if (iommu)
4124 return iommu->ir_domain;
4125 }
4126
4127 return NULL;
4128 }
4129
get_irq_domain(struct irq_alloc_info * info)4130 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4131 {
4132 struct amd_iommu *iommu;
4133 int devid;
4134
4135 if (!info)
4136 return NULL;
4137
4138 switch (info->type) {
4139 case X86_IRQ_ALLOC_TYPE_MSI:
4140 case X86_IRQ_ALLOC_TYPE_MSIX:
4141 devid = get_device_id(&info->msi_dev->dev);
4142 if (devid < 0)
4143 return NULL;
4144
4145 iommu = amd_iommu_rlookup_table[devid];
4146 if (iommu)
4147 return iommu->msi_domain;
4148 break;
4149 default:
4150 break;
4151 }
4152
4153 return NULL;
4154 }
4155
4156 struct irq_remap_ops amd_iommu_irq_ops = {
4157 .prepare = amd_iommu_prepare,
4158 .enable = amd_iommu_enable,
4159 .disable = amd_iommu_disable,
4160 .reenable = amd_iommu_reenable,
4161 .enable_faulting = amd_iommu_enable_faulting,
4162 .get_ir_irq_domain = get_ir_irq_domain,
4163 .get_irq_domain = get_irq_domain,
4164 };
4165
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)4166 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4167 struct irq_cfg *irq_cfg,
4168 struct irq_alloc_info *info,
4169 int devid, int index, int sub_handle)
4170 {
4171 struct irq_2_irte *irte_info = &data->irq_2_irte;
4172 struct msi_msg *msg = &data->msi_entry;
4173 struct IO_APIC_route_entry *entry;
4174 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4175
4176 if (!iommu)
4177 return;
4178
4179 data->irq_2_irte.devid = devid;
4180 data->irq_2_irte.index = index + sub_handle;
4181 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4182 apic->irq_dest_mode, irq_cfg->vector,
4183 irq_cfg->dest_apicid, devid);
4184
4185 switch (info->type) {
4186 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4187 /* Setup IOAPIC entry */
4188 entry = info->ioapic_entry;
4189 info->ioapic_entry = NULL;
4190 memset(entry, 0, sizeof(*entry));
4191 entry->vector = index;
4192 entry->mask = 0;
4193 entry->trigger = info->ioapic_trigger;
4194 entry->polarity = info->ioapic_polarity;
4195 /* Mask level triggered irqs. */
4196 if (info->ioapic_trigger)
4197 entry->mask = 1;
4198 break;
4199
4200 case X86_IRQ_ALLOC_TYPE_HPET:
4201 case X86_IRQ_ALLOC_TYPE_MSI:
4202 case X86_IRQ_ALLOC_TYPE_MSIX:
4203 msg->address_hi = MSI_ADDR_BASE_HI;
4204 msg->address_lo = MSI_ADDR_BASE_LO;
4205 msg->data = irte_info->index;
4206 break;
4207
4208 default:
4209 BUG_ON(1);
4210 break;
4211 }
4212 }
4213
4214 struct amd_irte_ops irte_32_ops = {
4215 .prepare = irte_prepare,
4216 .activate = irte_activate,
4217 .deactivate = irte_deactivate,
4218 .set_affinity = irte_set_affinity,
4219 .set_allocated = irte_set_allocated,
4220 .is_allocated = irte_is_allocated,
4221 .clear_allocated = irte_clear_allocated,
4222 };
4223
4224 struct amd_irte_ops irte_128_ops = {
4225 .prepare = irte_ga_prepare,
4226 .activate = irte_ga_activate,
4227 .deactivate = irte_ga_deactivate,
4228 .set_affinity = irte_ga_set_affinity,
4229 .set_allocated = irte_ga_set_allocated,
4230 .is_allocated = irte_ga_is_allocated,
4231 .clear_allocated = irte_ga_clear_allocated,
4232 };
4233
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)4234 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4235 unsigned int nr_irqs, void *arg)
4236 {
4237 struct irq_alloc_info *info = arg;
4238 struct irq_data *irq_data;
4239 struct amd_ir_data *data = NULL;
4240 struct irq_cfg *cfg;
4241 int i, ret, devid;
4242 int index;
4243
4244 if (!info)
4245 return -EINVAL;
4246 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4247 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4248 return -EINVAL;
4249
4250 /*
4251 * With IRQ remapping enabled, don't need contiguous CPU vectors
4252 * to support multiple MSI interrupts.
4253 */
4254 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4255 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4256
4257 devid = get_devid(info);
4258 if (devid < 0)
4259 return -EINVAL;
4260
4261 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4262 if (ret < 0)
4263 return ret;
4264
4265 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4266 struct irq_remap_table *table;
4267 struct amd_iommu *iommu;
4268
4269 table = alloc_irq_table(devid, NULL);
4270 if (table) {
4271 if (!table->min_index) {
4272 /*
4273 * Keep the first 32 indexes free for IOAPIC
4274 * interrupts.
4275 */
4276 table->min_index = 32;
4277 iommu = amd_iommu_rlookup_table[devid];
4278 for (i = 0; i < 32; ++i)
4279 iommu->irte_ops->set_allocated(table, i);
4280 }
4281 WARN_ON(table->min_index != 32);
4282 index = info->ioapic_pin;
4283 } else {
4284 index = -ENOMEM;
4285 }
4286 } else if (info->type == X86_IRQ_ALLOC_TYPE_MSI ||
4287 info->type == X86_IRQ_ALLOC_TYPE_MSIX) {
4288 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4289
4290 index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev);
4291 } else {
4292 index = alloc_irq_index(devid, nr_irqs, false, NULL);
4293 }
4294
4295 if (index < 0) {
4296 pr_warn("Failed to allocate IRTE\n");
4297 ret = index;
4298 goto out_free_parent;
4299 }
4300
4301 for (i = 0; i < nr_irqs; i++) {
4302 irq_data = irq_domain_get_irq_data(domain, virq + i);
4303 cfg = irqd_cfg(irq_data);
4304 if (!irq_data || !cfg) {
4305 ret = -EINVAL;
4306 goto out_free_data;
4307 }
4308
4309 ret = -ENOMEM;
4310 data = kzalloc(sizeof(*data), GFP_KERNEL);
4311 if (!data)
4312 goto out_free_data;
4313
4314 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4315 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4316 else
4317 data->entry = kzalloc(sizeof(struct irte_ga),
4318 GFP_KERNEL);
4319 if (!data->entry) {
4320 kfree(data);
4321 goto out_free_data;
4322 }
4323
4324 irq_data->hwirq = (devid << 16) + i;
4325 irq_data->chip_data = data;
4326 irq_data->chip = &amd_ir_chip;
4327 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4328 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4329 }
4330
4331 return 0;
4332
4333 out_free_data:
4334 for (i--; i >= 0; i--) {
4335 irq_data = irq_domain_get_irq_data(domain, virq + i);
4336 if (irq_data)
4337 kfree(irq_data->chip_data);
4338 }
4339 for (i = 0; i < nr_irqs; i++)
4340 free_irte(devid, index + i);
4341 out_free_parent:
4342 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4343 return ret;
4344 }
4345
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4346 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4347 unsigned int nr_irqs)
4348 {
4349 struct irq_2_irte *irte_info;
4350 struct irq_data *irq_data;
4351 struct amd_ir_data *data;
4352 int i;
4353
4354 for (i = 0; i < nr_irqs; i++) {
4355 irq_data = irq_domain_get_irq_data(domain, virq + i);
4356 if (irq_data && irq_data->chip_data) {
4357 data = irq_data->chip_data;
4358 irte_info = &data->irq_2_irte;
4359 free_irte(irte_info->devid, irte_info->index);
4360 kfree(data->entry);
4361 kfree(data);
4362 }
4363 }
4364 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4365 }
4366
4367 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4368 struct amd_ir_data *ir_data,
4369 struct irq_2_irte *irte_info,
4370 struct irq_cfg *cfg);
4371
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)4372 static int irq_remapping_activate(struct irq_domain *domain,
4373 struct irq_data *irq_data, bool reserve)
4374 {
4375 struct amd_ir_data *data = irq_data->chip_data;
4376 struct irq_2_irte *irte_info = &data->irq_2_irte;
4377 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4378 struct irq_cfg *cfg = irqd_cfg(irq_data);
4379
4380 if (!iommu)
4381 return 0;
4382
4383 iommu->irte_ops->activate(data->entry, irte_info->devid,
4384 irte_info->index);
4385 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4386 return 0;
4387 }
4388
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)4389 static void irq_remapping_deactivate(struct irq_domain *domain,
4390 struct irq_data *irq_data)
4391 {
4392 struct amd_ir_data *data = irq_data->chip_data;
4393 struct irq_2_irte *irte_info = &data->irq_2_irte;
4394 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4395
4396 if (iommu)
4397 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4398 irte_info->index);
4399 }
4400
4401 static const struct irq_domain_ops amd_ir_domain_ops = {
4402 .alloc = irq_remapping_alloc,
4403 .free = irq_remapping_free,
4404 .activate = irq_remapping_activate,
4405 .deactivate = irq_remapping_deactivate,
4406 };
4407
amd_iommu_activate_guest_mode(void * data)4408 int amd_iommu_activate_guest_mode(void *data)
4409 {
4410 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4411 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4412
4413 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4414 !entry || entry->lo.fields_vapic.guest_mode)
4415 return 0;
4416
4417 entry->lo.val = 0;
4418 entry->hi.val = 0;
4419
4420 entry->lo.fields_vapic.guest_mode = 1;
4421 entry->lo.fields_vapic.ga_log_intr = 1;
4422 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
4423 entry->hi.fields.vector = ir_data->ga_vector;
4424 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
4425
4426 return modify_irte_ga(ir_data->irq_2_irte.devid,
4427 ir_data->irq_2_irte.index, entry, NULL);
4428 }
4429 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
4430
amd_iommu_deactivate_guest_mode(void * data)4431 int amd_iommu_deactivate_guest_mode(void *data)
4432 {
4433 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4434 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4435 struct irq_cfg *cfg = ir_data->cfg;
4436
4437 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4438 !entry || !entry->lo.fields_vapic.guest_mode)
4439 return 0;
4440
4441 entry->lo.val = 0;
4442 entry->hi.val = 0;
4443
4444 entry->lo.fields_remap.dm = apic->irq_dest_mode;
4445 entry->lo.fields_remap.int_type = apic->irq_delivery_mode;
4446 entry->hi.fields.vector = cfg->vector;
4447 entry->lo.fields_remap.destination =
4448 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4449 entry->hi.fields.destination =
4450 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4451
4452 return modify_irte_ga(ir_data->irq_2_irte.devid,
4453 ir_data->irq_2_irte.index, entry, NULL);
4454 }
4455 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
4456
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)4457 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4458 {
4459 int ret;
4460 struct amd_iommu *iommu;
4461 struct amd_iommu_pi_data *pi_data = vcpu_info;
4462 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4463 struct amd_ir_data *ir_data = data->chip_data;
4464 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4465 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4466
4467 /* Note:
4468 * This device has never been set up for guest mode.
4469 * we should not modify the IRTE
4470 */
4471 if (!dev_data || !dev_data->use_vapic)
4472 return 0;
4473
4474 ir_data->cfg = irqd_cfg(data);
4475 pi_data->ir_data = ir_data;
4476
4477 /* Note:
4478 * SVM tries to set up for VAPIC mode, but we are in
4479 * legacy mode. So, we force legacy mode instead.
4480 */
4481 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4482 pr_debug("%s: Fall back to using intr legacy remap\n",
4483 __func__);
4484 pi_data->is_guest_mode = false;
4485 }
4486
4487 iommu = amd_iommu_rlookup_table[irte_info->devid];
4488 if (iommu == NULL)
4489 return -EINVAL;
4490
4491 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4492 if (pi_data->is_guest_mode) {
4493 ir_data->ga_root_ptr = (pi_data->base >> 12);
4494 ir_data->ga_vector = vcpu_pi_info->vector;
4495 ir_data->ga_tag = pi_data->ga_tag;
4496 ret = amd_iommu_activate_guest_mode(ir_data);
4497 if (!ret)
4498 ir_data->cached_ga_tag = pi_data->ga_tag;
4499 } else {
4500 ret = amd_iommu_deactivate_guest_mode(ir_data);
4501
4502 /*
4503 * This communicates the ga_tag back to the caller
4504 * so that it can do all the necessary clean up.
4505 */
4506 if (!ret)
4507 ir_data->cached_ga_tag = 0;
4508 }
4509
4510 return ret;
4511 }
4512
4513
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4514 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4515 struct amd_ir_data *ir_data,
4516 struct irq_2_irte *irte_info,
4517 struct irq_cfg *cfg)
4518 {
4519
4520 /*
4521 * Atomically updates the IRTE with the new destination, vector
4522 * and flushes the interrupt entry cache.
4523 */
4524 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4525 irte_info->index, cfg->vector,
4526 cfg->dest_apicid);
4527 }
4528
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4529 static int amd_ir_set_affinity(struct irq_data *data,
4530 const struct cpumask *mask, bool force)
4531 {
4532 struct amd_ir_data *ir_data = data->chip_data;
4533 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4534 struct irq_cfg *cfg = irqd_cfg(data);
4535 struct irq_data *parent = data->parent_data;
4536 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4537 int ret;
4538
4539 if (!iommu)
4540 return -ENODEV;
4541
4542 ret = parent->chip->irq_set_affinity(parent, mask, force);
4543 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4544 return ret;
4545
4546 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4547 /*
4548 * After this point, all the interrupts will start arriving
4549 * at the new destination. So, time to cleanup the previous
4550 * vector allocation.
4551 */
4552 send_cleanup_vector(cfg);
4553
4554 return IRQ_SET_MASK_OK_DONE;
4555 }
4556
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4557 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4558 {
4559 struct amd_ir_data *ir_data = irq_data->chip_data;
4560
4561 *msg = ir_data->msi_entry;
4562 }
4563
4564 static struct irq_chip amd_ir_chip = {
4565 .name = "AMD-IR",
4566 .irq_ack = apic_ack_irq,
4567 .irq_set_affinity = amd_ir_set_affinity,
4568 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4569 .irq_compose_msi_msg = ir_compose_msi_msg,
4570 };
4571
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4572 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4573 {
4574 struct fwnode_handle *fn;
4575
4576 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4577 if (!fn)
4578 return -ENOMEM;
4579 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4580 irq_domain_free_fwnode(fn);
4581 if (!iommu->ir_domain)
4582 return -ENOMEM;
4583
4584 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4585 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4586 "AMD-IR-MSI",
4587 iommu->index);
4588 return 0;
4589 }
4590
amd_iommu_update_ga(int cpu,bool is_run,void * data)4591 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4592 {
4593 unsigned long flags;
4594 struct amd_iommu *iommu;
4595 struct irq_remap_table *table;
4596 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4597 int devid = ir_data->irq_2_irte.devid;
4598 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4599 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4600
4601 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4602 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4603 return 0;
4604
4605 iommu = amd_iommu_rlookup_table[devid];
4606 if (!iommu)
4607 return -ENODEV;
4608
4609 table = get_irq_table(devid);
4610 if (!table)
4611 return -ENODEV;
4612
4613 raw_spin_lock_irqsave(&table->lock, flags);
4614
4615 if (ref->lo.fields_vapic.guest_mode) {
4616 if (cpu >= 0) {
4617 ref->lo.fields_vapic.destination =
4618 APICID_TO_IRTE_DEST_LO(cpu);
4619 ref->hi.fields.destination =
4620 APICID_TO_IRTE_DEST_HI(cpu);
4621 }
4622 ref->lo.fields_vapic.is_run = is_run;
4623 barrier();
4624 }
4625
4626 raw_spin_unlock_irqrestore(&table->lock, flags);
4627
4628 iommu_flush_irt(iommu, devid);
4629 iommu_completion_wait(iommu);
4630 return 0;
4631 }
4632 EXPORT_SYMBOL(amd_iommu_update_ga);
4633 #endif
4634