• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/iommu.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
42 #include <asm/gart.h>
43 #include <asm/dma.h>
44 
45 #include "amd_iommu_proto.h"
46 #include "amd_iommu_types.h"
47 #include "irq_remapping.h"
48 
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
50 
51 #define LOOP_TIMEOUT	100000
52 
53 /* IO virtual address start page frame number */
54 #define IOVA_START_PFN		(1)
55 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
56 
57 /* Reserved IOVA ranges */
58 #define MSI_RANGE_START		(0xfee00000)
59 #define MSI_RANGE_END		(0xfeefffff)
60 #define HT_RANGE_START		(0xfd00000000ULL)
61 #define HT_RANGE_END		(0xffffffffffULL)
62 
63 /*
64  * This bitmap is used to advertise the page sizes our hardware support
65  * to the IOMMU core, which will then use this information to split
66  * physically contiguous memory regions it is mapping into page sizes
67  * that we support.
68  *
69  * 512GB Pages are not supported due to a hardware bug
70  */
71 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
72 
73 static DEFINE_SPINLOCK(pd_bitmap_lock);
74 
75 /* List of all available dev_data structures */
76 static LLIST_HEAD(dev_data_list);
77 
78 LIST_HEAD(ioapic_map);
79 LIST_HEAD(hpet_map);
80 LIST_HEAD(acpihid_map);
81 
82 /*
83  * Domain for untranslated devices - only allocated
84  * if iommu=pt passed on kernel cmd line.
85  */
86 const struct iommu_ops amd_iommu_ops;
87 
88 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
89 int amd_iommu_max_glx_val = -1;
90 
91 static const struct dma_map_ops amd_iommu_dma_ops;
92 
93 /*
94  * general struct to manage commands send to an IOMMU
95  */
96 struct iommu_cmd {
97 	u32 data[4];
98 };
99 
100 struct kmem_cache *amd_iommu_irq_cache;
101 
102 static void update_domain(struct protection_domain *domain);
103 static int protection_domain_init(struct protection_domain *domain);
104 static void detach_device(struct device *dev);
105 static void iova_domain_flush_tlb(struct iova_domain *iovad);
106 
107 /*
108  * Data container for a dma_ops specific protection domain
109  */
110 struct dma_ops_domain {
111 	/* generic protection domain information */
112 	struct protection_domain domain;
113 
114 	/* IOVA RB-Tree */
115 	struct iova_domain iovad;
116 };
117 
118 static struct iova_domain reserved_iova_ranges;
119 static struct lock_class_key reserved_rbtree_key;
120 
121 /****************************************************************************
122  *
123  * Helper functions
124  *
125  ****************************************************************************/
126 
match_hid_uid(struct device * dev,struct acpihid_map_entry * entry)127 static inline int match_hid_uid(struct device *dev,
128 				struct acpihid_map_entry *entry)
129 {
130 	struct acpi_device *adev = ACPI_COMPANION(dev);
131 	const char *hid, *uid;
132 
133 	if (!adev)
134 		return -ENODEV;
135 
136 	hid = acpi_device_hid(adev);
137 	uid = acpi_device_uid(adev);
138 
139 	if (!hid || !(*hid))
140 		return -ENODEV;
141 
142 	if (!uid || !(*uid))
143 		return strcmp(hid, entry->hid);
144 
145 	if (!(*entry->uid))
146 		return strcmp(hid, entry->hid);
147 
148 	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
149 }
150 
get_pci_device_id(struct device * dev)151 static inline u16 get_pci_device_id(struct device *dev)
152 {
153 	struct pci_dev *pdev = to_pci_dev(dev);
154 
155 	return pci_dev_id(pdev);
156 }
157 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)158 static inline int get_acpihid_device_id(struct device *dev,
159 					struct acpihid_map_entry **entry)
160 {
161 	struct acpihid_map_entry *p;
162 
163 	list_for_each_entry(p, &acpihid_map, list) {
164 		if (!match_hid_uid(dev, p)) {
165 			if (entry)
166 				*entry = p;
167 			return p->devid;
168 		}
169 	}
170 	return -EINVAL;
171 }
172 
get_device_id(struct device * dev)173 static inline int get_device_id(struct device *dev)
174 {
175 	int devid;
176 
177 	if (dev_is_pci(dev))
178 		devid = get_pci_device_id(dev);
179 	else
180 		devid = get_acpihid_device_id(dev, NULL);
181 
182 	return devid;
183 }
184 
to_pdomain(struct iommu_domain * dom)185 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
186 {
187 	return container_of(dom, struct protection_domain, domain);
188 }
189 
to_dma_ops_domain(struct protection_domain * domain)190 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
191 {
192 	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
193 	return container_of(domain, struct dma_ops_domain, domain);
194 }
195 
alloc_dev_data(u16 devid)196 static struct iommu_dev_data *alloc_dev_data(u16 devid)
197 {
198 	struct iommu_dev_data *dev_data;
199 
200 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
201 	if (!dev_data)
202 		return NULL;
203 
204 	spin_lock_init(&dev_data->lock);
205 	dev_data->devid = devid;
206 	ratelimit_default_init(&dev_data->rs);
207 
208 	llist_add(&dev_data->dev_data_list, &dev_data_list);
209 	return dev_data;
210 }
211 
search_dev_data(u16 devid)212 static struct iommu_dev_data *search_dev_data(u16 devid)
213 {
214 	struct iommu_dev_data *dev_data;
215 	struct llist_node *node;
216 
217 	if (llist_empty(&dev_data_list))
218 		return NULL;
219 
220 	node = dev_data_list.first;
221 	llist_for_each_entry(dev_data, node, dev_data_list) {
222 		if (dev_data->devid == devid)
223 			return dev_data;
224 	}
225 
226 	return NULL;
227 }
228 
clone_alias(struct pci_dev * pdev,u16 alias,void * data)229 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
230 {
231 	u16 devid = pci_dev_id(pdev);
232 
233 	if (devid == alias)
234 		return 0;
235 
236 	amd_iommu_rlookup_table[alias] =
237 		amd_iommu_rlookup_table[devid];
238 	memcpy(amd_iommu_dev_table[alias].data,
239 	       amd_iommu_dev_table[devid].data,
240 	       sizeof(amd_iommu_dev_table[alias].data));
241 
242 	return 0;
243 }
244 
clone_aliases(struct pci_dev * pdev)245 static void clone_aliases(struct pci_dev *pdev)
246 {
247 	if (!pdev)
248 		return;
249 
250 	/*
251 	 * The IVRS alias stored in the alias table may not be
252 	 * part of the PCI DMA aliases if it's bus differs
253 	 * from the original device.
254 	 */
255 	clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
256 
257 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
258 }
259 
setup_aliases(struct device * dev)260 static struct pci_dev *setup_aliases(struct device *dev)
261 {
262 	struct pci_dev *pdev = to_pci_dev(dev);
263 	u16 ivrs_alias;
264 
265 	/* For ACPI HID devices, there are no aliases */
266 	if (!dev_is_pci(dev))
267 		return NULL;
268 
269 	/*
270 	 * Add the IVRS alias to the pci aliases if it is on the same
271 	 * bus. The IVRS table may know about a quirk that we don't.
272 	 */
273 	ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
274 	if (ivrs_alias != pci_dev_id(pdev) &&
275 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
276 		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
277 		pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
278 			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
279 	}
280 
281 	clone_aliases(pdev);
282 
283 	return pdev;
284 }
285 
find_dev_data(u16 devid)286 static struct iommu_dev_data *find_dev_data(u16 devid)
287 {
288 	struct iommu_dev_data *dev_data;
289 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
290 
291 	dev_data = search_dev_data(devid);
292 
293 	if (dev_data == NULL) {
294 		dev_data = alloc_dev_data(devid);
295 		if (!dev_data)
296 			return NULL;
297 
298 		if (translation_pre_enabled(iommu))
299 			dev_data->defer_attach = true;
300 	}
301 
302 	return dev_data;
303 }
304 
get_dev_data(struct device * dev)305 struct iommu_dev_data *get_dev_data(struct device *dev)
306 {
307 	return dev->archdata.iommu;
308 }
309 EXPORT_SYMBOL(get_dev_data);
310 
311 /*
312 * Find or create an IOMMU group for a acpihid device.
313 */
acpihid_device_group(struct device * dev)314 static struct iommu_group *acpihid_device_group(struct device *dev)
315 {
316 	struct acpihid_map_entry *p, *entry = NULL;
317 	int devid;
318 
319 	devid = get_acpihid_device_id(dev, &entry);
320 	if (devid < 0)
321 		return ERR_PTR(devid);
322 
323 	list_for_each_entry(p, &acpihid_map, list) {
324 		if ((devid == p->devid) && p->group)
325 			entry->group = p->group;
326 	}
327 
328 	if (!entry->group)
329 		entry->group = generic_device_group(dev);
330 	else
331 		iommu_group_ref_get(entry->group);
332 
333 	return entry->group;
334 }
335 
pci_iommuv2_capable(struct pci_dev * pdev)336 static bool pci_iommuv2_capable(struct pci_dev *pdev)
337 {
338 	static const int caps[] = {
339 		PCI_EXT_CAP_ID_ATS,
340 		PCI_EXT_CAP_ID_PRI,
341 		PCI_EXT_CAP_ID_PASID,
342 	};
343 	int i, pos;
344 
345 	if (pci_ats_disabled())
346 		return false;
347 
348 	for (i = 0; i < 3; ++i) {
349 		pos = pci_find_ext_capability(pdev, caps[i]);
350 		if (pos == 0)
351 			return false;
352 	}
353 
354 	return true;
355 }
356 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)357 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
358 {
359 	struct iommu_dev_data *dev_data;
360 
361 	dev_data = get_dev_data(&pdev->dev);
362 
363 	return dev_data->errata & (1 << erratum) ? true : false;
364 }
365 
366 /*
367  * This function checks if the driver got a valid device from the caller to
368  * avoid dereferencing invalid pointers.
369  */
check_device(struct device * dev)370 static bool check_device(struct device *dev)
371 {
372 	int devid;
373 
374 	if (!dev || !dev->dma_mask)
375 		return false;
376 
377 	devid = get_device_id(dev);
378 	if (devid < 0)
379 		return false;
380 
381 	/* Out of our scope? */
382 	if (devid > amd_iommu_last_bdf)
383 		return false;
384 
385 	if (amd_iommu_rlookup_table[devid] == NULL)
386 		return false;
387 
388 	return true;
389 }
390 
init_iommu_group(struct device * dev)391 static void init_iommu_group(struct device *dev)
392 {
393 	struct iommu_group *group;
394 
395 	group = iommu_group_get_for_dev(dev);
396 	if (IS_ERR(group))
397 		return;
398 
399 	iommu_group_put(group);
400 }
401 
iommu_init_device(struct device * dev)402 static int iommu_init_device(struct device *dev)
403 {
404 	struct iommu_dev_data *dev_data;
405 	struct amd_iommu *iommu;
406 	int devid;
407 
408 	if (dev->archdata.iommu)
409 		return 0;
410 
411 	devid = get_device_id(dev);
412 	if (devid < 0)
413 		return devid;
414 
415 	iommu = amd_iommu_rlookup_table[devid];
416 
417 	dev_data = find_dev_data(devid);
418 	if (!dev_data)
419 		return -ENOMEM;
420 
421 	dev_data->pdev = setup_aliases(dev);
422 
423 	/*
424 	 * By default we use passthrough mode for IOMMUv2 capable device.
425 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
426 	 * invalid address), we ignore the capability for the device so
427 	 * it'll be forced to go into translation mode.
428 	 */
429 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
430 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
431 		struct amd_iommu *iommu;
432 
433 		iommu = amd_iommu_rlookup_table[dev_data->devid];
434 		dev_data->iommu_v2 = iommu->is_iommu_v2;
435 	}
436 
437 	dev->archdata.iommu = dev_data;
438 
439 	iommu_device_link(&iommu->iommu, dev);
440 
441 	return 0;
442 }
443 
iommu_ignore_device(struct device * dev)444 static void iommu_ignore_device(struct device *dev)
445 {
446 	int devid;
447 
448 	devid = get_device_id(dev);
449 	if (devid < 0)
450 		return;
451 
452 	amd_iommu_rlookup_table[devid] = NULL;
453 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
454 
455 	setup_aliases(dev);
456 }
457 
iommu_uninit_device(struct device * dev)458 static void iommu_uninit_device(struct device *dev)
459 {
460 	struct iommu_dev_data *dev_data;
461 	struct amd_iommu *iommu;
462 	int devid;
463 
464 	devid = get_device_id(dev);
465 	if (devid < 0)
466 		return;
467 
468 	iommu = amd_iommu_rlookup_table[devid];
469 
470 	dev_data = search_dev_data(devid);
471 	if (!dev_data)
472 		return;
473 
474 	if (dev_data->domain)
475 		detach_device(dev);
476 
477 	iommu_device_unlink(&iommu->iommu, dev);
478 
479 	iommu_group_remove_device(dev);
480 
481 	/* Remove dma-ops */
482 	dev->dma_ops = NULL;
483 
484 	/*
485 	 * We keep dev_data around for unplugged devices and reuse it when the
486 	 * device is re-plugged - not doing so would introduce a ton of races.
487 	 */
488 }
489 
490 /*
491  * Helper function to get the first pte of a large mapping
492  */
first_pte_l7(u64 * pte,unsigned long * page_size,unsigned long * count)493 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
494 			 unsigned long *count)
495 {
496 	unsigned long pte_mask, pg_size, cnt;
497 	u64 *fpte;
498 
499 	pg_size  = PTE_PAGE_SIZE(*pte);
500 	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
501 	pte_mask = ~((cnt << 3) - 1);
502 	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
503 
504 	if (page_size)
505 		*page_size = pg_size;
506 
507 	if (count)
508 		*count = cnt;
509 
510 	return fpte;
511 }
512 
513 /****************************************************************************
514  *
515  * Interrupt handling functions
516  *
517  ****************************************************************************/
518 
dump_dte_entry(u16 devid)519 static void dump_dte_entry(u16 devid)
520 {
521 	int i;
522 
523 	for (i = 0; i < 4; ++i)
524 		pr_err("DTE[%d]: %016llx\n", i,
525 			amd_iommu_dev_table[devid].data[i]);
526 }
527 
dump_command(unsigned long phys_addr)528 static void dump_command(unsigned long phys_addr)
529 {
530 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
531 	int i;
532 
533 	for (i = 0; i < 4; ++i)
534 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
535 }
536 
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)537 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
538 					u64 address, int flags)
539 {
540 	struct iommu_dev_data *dev_data = NULL;
541 	struct pci_dev *pdev;
542 
543 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
544 					   devid & 0xff);
545 	if (pdev)
546 		dev_data = get_dev_data(&pdev->dev);
547 
548 	if (dev_data && __ratelimit(&dev_data->rs)) {
549 		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
550 			domain_id, address, flags);
551 	} else if (printk_ratelimit()) {
552 		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
553 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
554 			domain_id, address, flags);
555 	}
556 
557 	if (pdev)
558 		pci_dev_put(pdev);
559 }
560 
iommu_print_event(struct amd_iommu * iommu,void * __evt)561 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
562 {
563 	struct device *dev = iommu->iommu.dev;
564 	int type, devid, pasid, flags, tag;
565 	volatile u32 *event = __evt;
566 	int count = 0;
567 	u64 address;
568 
569 retry:
570 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
571 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
572 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
573 		  (event[1] & EVENT_DOMID_MASK_LO);
574 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
575 	address = (u64)(((u64)event[3]) << 32) | event[2];
576 
577 	if (type == 0) {
578 		/* Did we hit the erratum? */
579 		if (++count == LOOP_TIMEOUT) {
580 			pr_err("No event written to event log\n");
581 			return;
582 		}
583 		udelay(1);
584 		goto retry;
585 	}
586 
587 	if (type == EVENT_TYPE_IO_FAULT) {
588 		amd_iommu_report_page_fault(devid, pasid, address, flags);
589 		return;
590 	}
591 
592 	switch (type) {
593 	case EVENT_TYPE_ILL_DEV:
594 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
595 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 			pasid, address, flags);
597 		dump_dte_entry(devid);
598 		break;
599 	case EVENT_TYPE_DEV_TAB_ERR:
600 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
601 			"address=0x%llx flags=0x%04x]\n",
602 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
603 			address, flags);
604 		break;
605 	case EVENT_TYPE_PAGE_TAB_ERR:
606 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
607 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 			pasid, address, flags);
609 		break;
610 	case EVENT_TYPE_ILL_CMD:
611 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
612 		dump_command(address);
613 		break;
614 	case EVENT_TYPE_CMD_HARD_ERR:
615 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
616 			address, flags);
617 		break;
618 	case EVENT_TYPE_IOTLB_INV_TO:
619 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
620 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 			address);
622 		break;
623 	case EVENT_TYPE_INV_DEV_REQ:
624 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
625 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
626 			pasid, address, flags);
627 		break;
628 	case EVENT_TYPE_INV_PPR_REQ:
629 		pasid = ((event[0] >> 16) & 0xFFFF)
630 			| ((event[1] << 6) & 0xF0000);
631 		tag = event[1] & 0x03FF;
632 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
633 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
634 			pasid, address, flags, tag);
635 		break;
636 	default:
637 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
638 			event[0], event[1], event[2], event[3]);
639 	}
640 
641 	memset(__evt, 0, 4 * sizeof(u32));
642 }
643 
iommu_poll_events(struct amd_iommu * iommu)644 static void iommu_poll_events(struct amd_iommu *iommu)
645 {
646 	u32 head, tail;
647 
648 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
649 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
650 
651 	while (head != tail) {
652 		iommu_print_event(iommu, iommu->evt_buf + head);
653 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
654 	}
655 
656 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
657 }
658 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)659 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
660 {
661 	struct amd_iommu_fault fault;
662 
663 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
664 		pr_err_ratelimited("Unknown PPR request received\n");
665 		return;
666 	}
667 
668 	fault.address   = raw[1];
669 	fault.pasid     = PPR_PASID(raw[0]);
670 	fault.device_id = PPR_DEVID(raw[0]);
671 	fault.tag       = PPR_TAG(raw[0]);
672 	fault.flags     = PPR_FLAGS(raw[0]);
673 
674 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
675 }
676 
iommu_poll_ppr_log(struct amd_iommu * iommu)677 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
678 {
679 	u32 head, tail;
680 
681 	if (iommu->ppr_log == NULL)
682 		return;
683 
684 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
685 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
686 
687 	while (head != tail) {
688 		volatile u64 *raw;
689 		u64 entry[2];
690 		int i;
691 
692 		raw = (u64 *)(iommu->ppr_log + head);
693 
694 		/*
695 		 * Hardware bug: Interrupt may arrive before the entry is
696 		 * written to memory. If this happens we need to wait for the
697 		 * entry to arrive.
698 		 */
699 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
700 			if (PPR_REQ_TYPE(raw[0]) != 0)
701 				break;
702 			udelay(1);
703 		}
704 
705 		/* Avoid memcpy function-call overhead */
706 		entry[0] = raw[0];
707 		entry[1] = raw[1];
708 
709 		/*
710 		 * To detect the hardware bug we need to clear the entry
711 		 * back to zero.
712 		 */
713 		raw[0] = raw[1] = 0UL;
714 
715 		/* Update head pointer of hardware ring-buffer */
716 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
717 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
718 
719 		/* Handle PPR entry */
720 		iommu_handle_ppr_entry(iommu, entry);
721 
722 		/* Refresh ring-buffer information */
723 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
724 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
725 	}
726 }
727 
728 #ifdef CONFIG_IRQ_REMAP
729 static int (*iommu_ga_log_notifier)(u32);
730 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))731 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
732 {
733 	iommu_ga_log_notifier = notifier;
734 
735 	return 0;
736 }
737 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
738 
iommu_poll_ga_log(struct amd_iommu * iommu)739 static void iommu_poll_ga_log(struct amd_iommu *iommu)
740 {
741 	u32 head, tail, cnt = 0;
742 
743 	if (iommu->ga_log == NULL)
744 		return;
745 
746 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
747 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
748 
749 	while (head != tail) {
750 		volatile u64 *raw;
751 		u64 log_entry;
752 
753 		raw = (u64 *)(iommu->ga_log + head);
754 		cnt++;
755 
756 		/* Avoid memcpy function-call overhead */
757 		log_entry = *raw;
758 
759 		/* Update head pointer of hardware ring-buffer */
760 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
761 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
762 
763 		/* Handle GA entry */
764 		switch (GA_REQ_TYPE(log_entry)) {
765 		case GA_GUEST_NR:
766 			if (!iommu_ga_log_notifier)
767 				break;
768 
769 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
770 				 __func__, GA_DEVID(log_entry),
771 				 GA_TAG(log_entry));
772 
773 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
774 				pr_err("GA log notifier failed.\n");
775 			break;
776 		default:
777 			break;
778 		}
779 	}
780 }
781 #endif /* CONFIG_IRQ_REMAP */
782 
783 #define AMD_IOMMU_INT_MASK	\
784 	(MMIO_STATUS_EVT_INT_MASK | \
785 	 MMIO_STATUS_PPR_INT_MASK | \
786 	 MMIO_STATUS_GALOG_INT_MASK)
787 
amd_iommu_int_thread(int irq,void * data)788 irqreturn_t amd_iommu_int_thread(int irq, void *data)
789 {
790 	struct amd_iommu *iommu = (struct amd_iommu *) data;
791 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
792 
793 	while (status & AMD_IOMMU_INT_MASK) {
794 		/* Enable EVT and PPR and GA interrupts again */
795 		writel(AMD_IOMMU_INT_MASK,
796 			iommu->mmio_base + MMIO_STATUS_OFFSET);
797 
798 		if (status & MMIO_STATUS_EVT_INT_MASK) {
799 			pr_devel("Processing IOMMU Event Log\n");
800 			iommu_poll_events(iommu);
801 		}
802 
803 		if (status & MMIO_STATUS_PPR_INT_MASK) {
804 			pr_devel("Processing IOMMU PPR Log\n");
805 			iommu_poll_ppr_log(iommu);
806 		}
807 
808 #ifdef CONFIG_IRQ_REMAP
809 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
810 			pr_devel("Processing IOMMU GA Log\n");
811 			iommu_poll_ga_log(iommu);
812 		}
813 #endif
814 
815 		/*
816 		 * Hardware bug: ERBT1312
817 		 * When re-enabling interrupt (by writing 1
818 		 * to clear the bit), the hardware might also try to set
819 		 * the interrupt bit in the event status register.
820 		 * In this scenario, the bit will be set, and disable
821 		 * subsequent interrupts.
822 		 *
823 		 * Workaround: The IOMMU driver should read back the
824 		 * status register and check if the interrupt bits are cleared.
825 		 * If not, driver will need to go through the interrupt handler
826 		 * again and re-clear the bits
827 		 */
828 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
829 	}
830 	return IRQ_HANDLED;
831 }
832 
amd_iommu_int_handler(int irq,void * data)833 irqreturn_t amd_iommu_int_handler(int irq, void *data)
834 {
835 	return IRQ_WAKE_THREAD;
836 }
837 
838 /****************************************************************************
839  *
840  * IOMMU command queuing functions
841  *
842  ****************************************************************************/
843 
wait_on_sem(volatile u64 * sem)844 static int wait_on_sem(volatile u64 *sem)
845 {
846 	int i = 0;
847 
848 	while (*sem == 0 && i < LOOP_TIMEOUT) {
849 		udelay(1);
850 		i += 1;
851 	}
852 
853 	if (i == LOOP_TIMEOUT) {
854 		pr_alert("Completion-Wait loop timed out\n");
855 		return -EIO;
856 	}
857 
858 	return 0;
859 }
860 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)861 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
862 			       struct iommu_cmd *cmd)
863 {
864 	u8 *target;
865 
866 	target = iommu->cmd_buf + iommu->cmd_buf_tail;
867 
868 	iommu->cmd_buf_tail += sizeof(*cmd);
869 	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
870 
871 	/* Copy command to buffer */
872 	memcpy(target, cmd, sizeof(*cmd));
873 
874 	/* Tell the IOMMU about it */
875 	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
876 }
877 
build_completion_wait(struct iommu_cmd * cmd,u64 address)878 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
879 {
880 	u64 paddr = iommu_virt_to_phys((void *)address);
881 
882 	WARN_ON(address & 0x7ULL);
883 
884 	memset(cmd, 0, sizeof(*cmd));
885 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
886 	cmd->data[1] = upper_32_bits(paddr);
887 	cmd->data[2] = 1;
888 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
889 }
890 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)891 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
892 {
893 	memset(cmd, 0, sizeof(*cmd));
894 	cmd->data[0] = devid;
895 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
896 }
897 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)898 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
899 				  size_t size, u16 domid, int pde)
900 {
901 	u64 pages;
902 	bool s;
903 
904 	pages = iommu_num_pages(address, size, PAGE_SIZE);
905 	s     = false;
906 
907 	if (pages > 1) {
908 		/*
909 		 * If we have to flush more than one page, flush all
910 		 * TLB entries for this domain
911 		 */
912 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
913 		s = true;
914 	}
915 
916 	address &= PAGE_MASK;
917 
918 	memset(cmd, 0, sizeof(*cmd));
919 	cmd->data[1] |= domid;
920 	cmd->data[2]  = lower_32_bits(address);
921 	cmd->data[3]  = upper_32_bits(address);
922 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
923 	if (s) /* size bit - we flush more than one 4kb page */
924 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
925 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
926 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
927 }
928 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)929 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
930 				  u64 address, size_t size)
931 {
932 	u64 pages;
933 	bool s;
934 
935 	pages = iommu_num_pages(address, size, PAGE_SIZE);
936 	s     = false;
937 
938 	if (pages > 1) {
939 		/*
940 		 * If we have to flush more than one page, flush all
941 		 * TLB entries for this domain
942 		 */
943 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
944 		s = true;
945 	}
946 
947 	address &= PAGE_MASK;
948 
949 	memset(cmd, 0, sizeof(*cmd));
950 	cmd->data[0]  = devid;
951 	cmd->data[0] |= (qdep & 0xff) << 24;
952 	cmd->data[1]  = devid;
953 	cmd->data[2]  = lower_32_bits(address);
954 	cmd->data[3]  = upper_32_bits(address);
955 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
956 	if (s)
957 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
958 }
959 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)960 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
961 				  u64 address, bool size)
962 {
963 	memset(cmd, 0, sizeof(*cmd));
964 
965 	address &= ~(0xfffULL);
966 
967 	cmd->data[0]  = pasid;
968 	cmd->data[1]  = domid;
969 	cmd->data[2]  = lower_32_bits(address);
970 	cmd->data[3]  = upper_32_bits(address);
971 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
972 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
973 	if (size)
974 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
975 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
976 }
977 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)978 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
979 				  int qdep, u64 address, bool size)
980 {
981 	memset(cmd, 0, sizeof(*cmd));
982 
983 	address &= ~(0xfffULL);
984 
985 	cmd->data[0]  = devid;
986 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
987 	cmd->data[0] |= (qdep  & 0xff) << 24;
988 	cmd->data[1]  = devid;
989 	cmd->data[1] |= (pasid & 0xff) << 16;
990 	cmd->data[2]  = lower_32_bits(address);
991 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
992 	cmd->data[3]  = upper_32_bits(address);
993 	if (size)
994 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
995 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
996 }
997 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)998 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
999 			       int status, int tag, bool gn)
1000 {
1001 	memset(cmd, 0, sizeof(*cmd));
1002 
1003 	cmd->data[0]  = devid;
1004 	if (gn) {
1005 		cmd->data[1]  = pasid;
1006 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1007 	}
1008 	cmd->data[3]  = tag & 0x1ff;
1009 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1010 
1011 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1012 }
1013 
build_inv_all(struct iommu_cmd * cmd)1014 static void build_inv_all(struct iommu_cmd *cmd)
1015 {
1016 	memset(cmd, 0, sizeof(*cmd));
1017 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1018 }
1019 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1020 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1021 {
1022 	memset(cmd, 0, sizeof(*cmd));
1023 	cmd->data[0] = devid;
1024 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1025 }
1026 
1027 /*
1028  * Writes the command to the IOMMUs command buffer and informs the
1029  * hardware about the new command.
1030  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1031 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1032 				      struct iommu_cmd *cmd,
1033 				      bool sync)
1034 {
1035 	unsigned int count = 0;
1036 	u32 left, next_tail;
1037 
1038 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1039 again:
1040 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1041 
1042 	if (left <= 0x20) {
1043 		/* Skip udelay() the first time around */
1044 		if (count++) {
1045 			if (count == LOOP_TIMEOUT) {
1046 				pr_err("Command buffer timeout\n");
1047 				return -EIO;
1048 			}
1049 
1050 			udelay(1);
1051 		}
1052 
1053 		/* Update head and recheck remaining space */
1054 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1055 					    MMIO_CMD_HEAD_OFFSET);
1056 
1057 		goto again;
1058 	}
1059 
1060 	copy_cmd_to_buffer(iommu, cmd);
1061 
1062 	/* Do we need to make sure all commands are processed? */
1063 	iommu->need_sync = sync;
1064 
1065 	return 0;
1066 }
1067 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1068 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1069 				    struct iommu_cmd *cmd,
1070 				    bool sync)
1071 {
1072 	unsigned long flags;
1073 	int ret;
1074 
1075 	raw_spin_lock_irqsave(&iommu->lock, flags);
1076 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1077 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1078 
1079 	return ret;
1080 }
1081 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1082 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1083 {
1084 	return iommu_queue_command_sync(iommu, cmd, true);
1085 }
1086 
1087 /*
1088  * This function queues a completion wait command into the command
1089  * buffer of an IOMMU
1090  */
iommu_completion_wait(struct amd_iommu * iommu)1091 static int iommu_completion_wait(struct amd_iommu *iommu)
1092 {
1093 	struct iommu_cmd cmd;
1094 	unsigned long flags;
1095 	int ret;
1096 
1097 	if (!iommu->need_sync)
1098 		return 0;
1099 
1100 
1101 	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1102 
1103 	raw_spin_lock_irqsave(&iommu->lock, flags);
1104 
1105 	iommu->cmd_sem = 0;
1106 
1107 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1108 	if (ret)
1109 		goto out_unlock;
1110 
1111 	ret = wait_on_sem(&iommu->cmd_sem);
1112 
1113 out_unlock:
1114 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1115 
1116 	return ret;
1117 }
1118 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1119 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1120 {
1121 	struct iommu_cmd cmd;
1122 
1123 	build_inv_dte(&cmd, devid);
1124 
1125 	return iommu_queue_command(iommu, &cmd);
1126 }
1127 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1128 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1129 {
1130 	u32 devid;
1131 
1132 	for (devid = 0; devid <= 0xffff; ++devid)
1133 		iommu_flush_dte(iommu, devid);
1134 
1135 	iommu_completion_wait(iommu);
1136 }
1137 
1138 /*
1139  * This function uses heavy locking and may disable irqs for some time. But
1140  * this is no issue because it is only called during resume.
1141  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1142 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1143 {
1144 	u32 dom_id;
1145 
1146 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1147 		struct iommu_cmd cmd;
1148 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1149 				      dom_id, 1);
1150 		iommu_queue_command(iommu, &cmd);
1151 	}
1152 
1153 	iommu_completion_wait(iommu);
1154 }
1155 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1156 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1157 {
1158 	struct iommu_cmd cmd;
1159 
1160 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1161 			      dom_id, 1);
1162 	iommu_queue_command(iommu, &cmd);
1163 
1164 	iommu_completion_wait(iommu);
1165 }
1166 
amd_iommu_flush_all(struct amd_iommu * iommu)1167 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1168 {
1169 	struct iommu_cmd cmd;
1170 
1171 	build_inv_all(&cmd);
1172 
1173 	iommu_queue_command(iommu, &cmd);
1174 	iommu_completion_wait(iommu);
1175 }
1176 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1177 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1178 {
1179 	struct iommu_cmd cmd;
1180 
1181 	build_inv_irt(&cmd, devid);
1182 
1183 	iommu_queue_command(iommu, &cmd);
1184 }
1185 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1186 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1187 {
1188 	u32 devid;
1189 
1190 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1191 		iommu_flush_irt(iommu, devid);
1192 
1193 	iommu_completion_wait(iommu);
1194 }
1195 
iommu_flush_all_caches(struct amd_iommu * iommu)1196 void iommu_flush_all_caches(struct amd_iommu *iommu)
1197 {
1198 	if (iommu_feature(iommu, FEATURE_IA)) {
1199 		amd_iommu_flush_all(iommu);
1200 	} else {
1201 		amd_iommu_flush_dte_all(iommu);
1202 		amd_iommu_flush_irt_all(iommu);
1203 		amd_iommu_flush_tlb_all(iommu);
1204 	}
1205 }
1206 
1207 /*
1208  * Command send function for flushing on-device TLB
1209  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1210 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1211 			      u64 address, size_t size)
1212 {
1213 	struct amd_iommu *iommu;
1214 	struct iommu_cmd cmd;
1215 	int qdep;
1216 
1217 	qdep     = dev_data->ats.qdep;
1218 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1219 
1220 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1221 
1222 	return iommu_queue_command(iommu, &cmd);
1223 }
1224 
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1225 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1226 {
1227 	struct amd_iommu *iommu = data;
1228 
1229 	return iommu_flush_dte(iommu, alias);
1230 }
1231 
1232 /*
1233  * Command send function for invalidating a device table entry
1234  */
device_flush_dte(struct iommu_dev_data * dev_data)1235 static int device_flush_dte(struct iommu_dev_data *dev_data)
1236 {
1237 	struct amd_iommu *iommu;
1238 	u16 alias;
1239 	int ret;
1240 
1241 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1242 
1243 	if (dev_data->pdev)
1244 		ret = pci_for_each_dma_alias(dev_data->pdev,
1245 					     device_flush_dte_alias, iommu);
1246 	else
1247 		ret = iommu_flush_dte(iommu, dev_data->devid);
1248 	if (ret)
1249 		return ret;
1250 
1251 	alias = amd_iommu_alias_table[dev_data->devid];
1252 	if (alias != dev_data->devid) {
1253 		ret = iommu_flush_dte(iommu, alias);
1254 		if (ret)
1255 			return ret;
1256 	}
1257 
1258 	if (dev_data->ats.enabled)
1259 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1260 
1261 	return ret;
1262 }
1263 
1264 /*
1265  * TLB invalidation function which is called from the mapping functions.
1266  * It invalidates a single PTE if the range to flush is within a single
1267  * page. Otherwise it flushes the whole TLB of the IOMMU.
1268  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1269 static void __domain_flush_pages(struct protection_domain *domain,
1270 				 u64 address, size_t size, int pde)
1271 {
1272 	struct iommu_dev_data *dev_data;
1273 	struct iommu_cmd cmd;
1274 	int ret = 0, i;
1275 
1276 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1277 
1278 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1279 		if (!domain->dev_iommu[i])
1280 			continue;
1281 
1282 		/*
1283 		 * Devices of this domain are behind this IOMMU
1284 		 * We need a TLB flush
1285 		 */
1286 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1287 	}
1288 
1289 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1290 
1291 		if (!dev_data->ats.enabled)
1292 			continue;
1293 
1294 		ret |= device_flush_iotlb(dev_data, address, size);
1295 	}
1296 
1297 	WARN_ON(ret);
1298 }
1299 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1300 static void domain_flush_pages(struct protection_domain *domain,
1301 			       u64 address, size_t size)
1302 {
1303 	__domain_flush_pages(domain, address, size, 0);
1304 }
1305 
1306 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1307 static void domain_flush_tlb(struct protection_domain *domain)
1308 {
1309 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1310 }
1311 
1312 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1313 static void domain_flush_tlb_pde(struct protection_domain *domain)
1314 {
1315 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1316 }
1317 
domain_flush_complete(struct protection_domain * domain)1318 static void domain_flush_complete(struct protection_domain *domain)
1319 {
1320 	int i;
1321 
1322 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1323 		if (domain && !domain->dev_iommu[i])
1324 			continue;
1325 
1326 		/*
1327 		 * Devices of this domain are behind this IOMMU
1328 		 * We need to wait for completion of all commands.
1329 		 */
1330 		iommu_completion_wait(amd_iommus[i]);
1331 	}
1332 }
1333 
1334 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1335 static void domain_flush_np_cache(struct protection_domain *domain,
1336 		dma_addr_t iova, size_t size)
1337 {
1338 	if (unlikely(amd_iommu_np_cache)) {
1339 		unsigned long flags;
1340 
1341 		spin_lock_irqsave(&domain->lock, flags);
1342 		domain_flush_pages(domain, iova, size);
1343 		domain_flush_complete(domain);
1344 		spin_unlock_irqrestore(&domain->lock, flags);
1345 	}
1346 }
1347 
1348 
1349 /*
1350  * This function flushes the DTEs for all devices in domain
1351  */
domain_flush_devices(struct protection_domain * domain)1352 static void domain_flush_devices(struct protection_domain *domain)
1353 {
1354 	struct iommu_dev_data *dev_data;
1355 
1356 	list_for_each_entry(dev_data, &domain->dev_list, list)
1357 		device_flush_dte(dev_data);
1358 }
1359 
1360 /****************************************************************************
1361  *
1362  * The functions below are used the create the page table mappings for
1363  * unity mapped regions.
1364  *
1365  ****************************************************************************/
1366 
free_page_list(struct page * freelist)1367 static void free_page_list(struct page *freelist)
1368 {
1369 	while (freelist != NULL) {
1370 		unsigned long p = (unsigned long)page_address(freelist);
1371 		freelist = freelist->freelist;
1372 		free_page(p);
1373 	}
1374 }
1375 
free_pt_page(unsigned long pt,struct page * freelist)1376 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1377 {
1378 	struct page *p = virt_to_page((void *)pt);
1379 
1380 	p->freelist = freelist;
1381 
1382 	return p;
1383 }
1384 
1385 #define DEFINE_FREE_PT_FN(LVL, FN)						\
1386 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
1387 {										\
1388 	unsigned long p;							\
1389 	u64 *pt;								\
1390 	int i;									\
1391 										\
1392 	pt = (u64 *)__pt;							\
1393 										\
1394 	for (i = 0; i < 512; ++i) {						\
1395 		/* PTE present? */						\
1396 		if (!IOMMU_PTE_PRESENT(pt[i]))					\
1397 			continue;						\
1398 										\
1399 		/* Large PTE? */						\
1400 		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
1401 		    PM_PTE_LEVEL(pt[i]) == 7)					\
1402 			continue;						\
1403 										\
1404 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
1405 		freelist = FN(p, freelist);					\
1406 	}									\
1407 										\
1408 	return free_pt_page((unsigned long)pt, freelist);			\
1409 }
1410 
DEFINE_FREE_PT_FN(l2,free_pt_page)1411 DEFINE_FREE_PT_FN(l2, free_pt_page)
1412 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1413 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1414 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1415 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1416 
1417 static struct page *free_sub_pt(unsigned long root, int mode,
1418 				struct page *freelist)
1419 {
1420 	switch (mode) {
1421 	case PAGE_MODE_NONE:
1422 	case PAGE_MODE_7_LEVEL:
1423 		break;
1424 	case PAGE_MODE_1_LEVEL:
1425 		freelist = free_pt_page(root, freelist);
1426 		break;
1427 	case PAGE_MODE_2_LEVEL:
1428 		freelist = free_pt_l2(root, freelist);
1429 		break;
1430 	case PAGE_MODE_3_LEVEL:
1431 		freelist = free_pt_l3(root, freelist);
1432 		break;
1433 	case PAGE_MODE_4_LEVEL:
1434 		freelist = free_pt_l4(root, freelist);
1435 		break;
1436 	case PAGE_MODE_5_LEVEL:
1437 		freelist = free_pt_l5(root, freelist);
1438 		break;
1439 	case PAGE_MODE_6_LEVEL:
1440 		freelist = free_pt_l6(root, freelist);
1441 		break;
1442 	default:
1443 		BUG();
1444 	}
1445 
1446 	return freelist;
1447 }
1448 
free_pagetable(struct protection_domain * domain)1449 static void free_pagetable(struct protection_domain *domain)
1450 {
1451 	unsigned long root = (unsigned long)domain->pt_root;
1452 	struct page *freelist = NULL;
1453 
1454 	BUG_ON(domain->mode < PAGE_MODE_NONE ||
1455 	       domain->mode > PAGE_MODE_6_LEVEL);
1456 
1457 	freelist = free_sub_pt(root, domain->mode, freelist);
1458 
1459 	free_page_list(freelist);
1460 }
1461 
1462 /*
1463  * This function is used to add another level to an IO page table. Adding
1464  * another level increases the size of the address space by 9 bits to a size up
1465  * to 64 bits.
1466  */
increase_address_space(struct protection_domain * domain,unsigned long address,gfp_t gfp)1467 static bool increase_address_space(struct protection_domain *domain,
1468 				   unsigned long address,
1469 				   gfp_t gfp)
1470 {
1471 	unsigned long flags;
1472 	bool ret = false;
1473 	u64 *pte;
1474 
1475 	spin_lock_irqsave(&domain->lock, flags);
1476 
1477 	if (address <= PM_LEVEL_SIZE(domain->mode) ||
1478 	    WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1479 		goto out;
1480 
1481 	pte = (void *)get_zeroed_page(gfp);
1482 	if (!pte)
1483 		goto out;
1484 
1485 	*pte             = PM_LEVEL_PDE(domain->mode,
1486 					iommu_virt_to_phys(domain->pt_root));
1487 	domain->pt_root  = pte;
1488 	domain->mode    += 1;
1489 
1490 	ret = true;
1491 
1492 out:
1493 	spin_unlock_irqrestore(&domain->lock, flags);
1494 
1495 	return ret;
1496 }
1497 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp,bool * updated)1498 static u64 *alloc_pte(struct protection_domain *domain,
1499 		      unsigned long address,
1500 		      unsigned long page_size,
1501 		      u64 **pte_page,
1502 		      gfp_t gfp,
1503 		      bool *updated)
1504 {
1505 	int level, end_lvl;
1506 	u64 *pte, *page;
1507 
1508 	BUG_ON(!is_power_of_2(page_size));
1509 
1510 	while (address > PM_LEVEL_SIZE(domain->mode))
1511 		*updated = increase_address_space(domain, address, gfp) || *updated;
1512 
1513 	level   = domain->mode - 1;
1514 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1515 	address = PAGE_SIZE_ALIGN(address, page_size);
1516 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1517 
1518 	while (level > end_lvl) {
1519 		u64 __pte, __npte;
1520 		int pte_level;
1521 
1522 		__pte     = *pte;
1523 		pte_level = PM_PTE_LEVEL(__pte);
1524 
1525 		/*
1526 		 * If we replace a series of large PTEs, we need
1527 		 * to tear down all of them.
1528 		 */
1529 		if (IOMMU_PTE_PRESENT(__pte) &&
1530 		    pte_level == PAGE_MODE_7_LEVEL) {
1531 			unsigned long count, i;
1532 			u64 *lpte;
1533 
1534 			lpte = first_pte_l7(pte, NULL, &count);
1535 
1536 			/*
1537 			 * Unmap the replicated PTEs that still match the
1538 			 * original large mapping
1539 			 */
1540 			for (i = 0; i < count; ++i)
1541 				cmpxchg64(&lpte[i], __pte, 0ULL);
1542 
1543 			*updated = true;
1544 			continue;
1545 		}
1546 
1547 		if (!IOMMU_PTE_PRESENT(__pte) ||
1548 		    pte_level == PAGE_MODE_NONE) {
1549 			page = (u64 *)get_zeroed_page(gfp);
1550 
1551 			if (!page)
1552 				return NULL;
1553 
1554 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1555 
1556 			/* pte could have been changed somewhere. */
1557 			if (cmpxchg64(pte, __pte, __npte) != __pte)
1558 				free_page((unsigned long)page);
1559 			else if (IOMMU_PTE_PRESENT(__pte))
1560 				*updated = true;
1561 
1562 			continue;
1563 		}
1564 
1565 		/* No level skipping support yet */
1566 		if (pte_level != level)
1567 			return NULL;
1568 
1569 		level -= 1;
1570 
1571 		pte = IOMMU_PTE_PAGE(__pte);
1572 
1573 		if (pte_page && level == end_lvl)
1574 			*pte_page = pte;
1575 
1576 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1577 	}
1578 
1579 	return pte;
1580 }
1581 
1582 /*
1583  * This function checks if there is a PTE for a given dma address. If
1584  * there is one, it returns the pointer to it.
1585  */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1586 static u64 *fetch_pte(struct protection_domain *domain,
1587 		      unsigned long address,
1588 		      unsigned long *page_size)
1589 {
1590 	int level;
1591 	u64 *pte;
1592 
1593 	*page_size = 0;
1594 
1595 	if (address > PM_LEVEL_SIZE(domain->mode))
1596 		return NULL;
1597 
1598 	level	   =  domain->mode - 1;
1599 	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1600 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1601 
1602 	while (level > 0) {
1603 
1604 		/* Not Present */
1605 		if (!IOMMU_PTE_PRESENT(*pte))
1606 			return NULL;
1607 
1608 		/* Large PTE */
1609 		if (PM_PTE_LEVEL(*pte) == 7 ||
1610 		    PM_PTE_LEVEL(*pte) == 0)
1611 			break;
1612 
1613 		/* No level skipping support yet */
1614 		if (PM_PTE_LEVEL(*pte) != level)
1615 			return NULL;
1616 
1617 		level -= 1;
1618 
1619 		/* Walk to the next level */
1620 		pte	   = IOMMU_PTE_PAGE(*pte);
1621 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1622 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1623 	}
1624 
1625 	/*
1626 	 * If we have a series of large PTEs, make
1627 	 * sure to return a pointer to the first one.
1628 	 */
1629 	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1630 		pte = first_pte_l7(pte, page_size, NULL);
1631 
1632 	return pte;
1633 }
1634 
free_clear_pte(u64 * pte,u64 pteval,struct page * freelist)1635 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1636 {
1637 	unsigned long pt;
1638 	int mode;
1639 
1640 	while (cmpxchg64(pte, pteval, 0) != pteval) {
1641 		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1642 		pteval = *pte;
1643 	}
1644 
1645 	if (!IOMMU_PTE_PRESENT(pteval))
1646 		return freelist;
1647 
1648 	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1649 	mode = IOMMU_PTE_MODE(pteval);
1650 
1651 	return free_sub_pt(pt, mode, freelist);
1652 }
1653 
1654 /*
1655  * Generic mapping functions. It maps a physical address into a DMA
1656  * address space. It allocates the page table pages if necessary.
1657  * In the future it can be extended to a generic mapping function
1658  * supporting all features of AMD IOMMU page tables like level skipping
1659  * and full 64 bit address spaces.
1660  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,unsigned long page_size,int prot,gfp_t gfp)1661 static int iommu_map_page(struct protection_domain *dom,
1662 			  unsigned long bus_addr,
1663 			  unsigned long phys_addr,
1664 			  unsigned long page_size,
1665 			  int prot,
1666 			  gfp_t gfp)
1667 {
1668 	struct page *freelist = NULL;
1669 	bool updated = false;
1670 	u64 __pte, *pte;
1671 	int ret, i, count;
1672 
1673 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1674 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1675 
1676 	ret = -EINVAL;
1677 	if (!(prot & IOMMU_PROT_MASK))
1678 		goto out;
1679 
1680 	count = PAGE_SIZE_PTE_COUNT(page_size);
1681 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1682 
1683 	ret = -ENOMEM;
1684 	if (!pte)
1685 		goto out;
1686 
1687 	for (i = 0; i < count; ++i)
1688 		freelist = free_clear_pte(&pte[i], pte[i], freelist);
1689 
1690 	if (freelist != NULL)
1691 		updated = true;
1692 
1693 	if (count > 1) {
1694 		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1695 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1696 	} else
1697 		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1698 
1699 	if (prot & IOMMU_PROT_IR)
1700 		__pte |= IOMMU_PTE_IR;
1701 	if (prot & IOMMU_PROT_IW)
1702 		__pte |= IOMMU_PTE_IW;
1703 
1704 	for (i = 0; i < count; ++i)
1705 		pte[i] = __pte;
1706 
1707 	ret = 0;
1708 
1709 out:
1710 	if (updated) {
1711 		unsigned long flags;
1712 
1713 		spin_lock_irqsave(&dom->lock, flags);
1714 		update_domain(dom);
1715 		spin_unlock_irqrestore(&dom->lock, flags);
1716 	}
1717 
1718 	/* Everything flushed out, free pages now */
1719 	free_page_list(freelist);
1720 
1721 	return ret;
1722 }
1723 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1724 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1725 				      unsigned long bus_addr,
1726 				      unsigned long page_size)
1727 {
1728 	unsigned long long unmapped;
1729 	unsigned long unmap_size;
1730 	u64 *pte;
1731 
1732 	BUG_ON(!is_power_of_2(page_size));
1733 
1734 	unmapped = 0;
1735 
1736 	while (unmapped < page_size) {
1737 
1738 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1739 
1740 		if (pte) {
1741 			int i, count;
1742 
1743 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1744 			for (i = 0; i < count; i++)
1745 				pte[i] = 0ULL;
1746 		}
1747 
1748 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1749 		unmapped += unmap_size;
1750 	}
1751 
1752 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1753 
1754 	return unmapped;
1755 }
1756 
1757 /****************************************************************************
1758  *
1759  * The next functions belong to the address allocator for the dma_ops
1760  * interface functions.
1761  *
1762  ****************************************************************************/
1763 
1764 
dma_ops_alloc_iova(struct device * dev,struct dma_ops_domain * dma_dom,unsigned int pages,u64 dma_mask)1765 static unsigned long dma_ops_alloc_iova(struct device *dev,
1766 					struct dma_ops_domain *dma_dom,
1767 					unsigned int pages, u64 dma_mask)
1768 {
1769 	unsigned long pfn = 0;
1770 
1771 	pages = __roundup_pow_of_two(pages);
1772 
1773 	if (dma_mask > DMA_BIT_MASK(32))
1774 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1775 				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1776 
1777 	if (!pfn)
1778 		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1779 				      IOVA_PFN(dma_mask), true);
1780 
1781 	return (pfn << PAGE_SHIFT);
1782 }
1783 
dma_ops_free_iova(struct dma_ops_domain * dma_dom,unsigned long address,unsigned int pages)1784 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1785 			      unsigned long address,
1786 			      unsigned int pages)
1787 {
1788 	pages = __roundup_pow_of_two(pages);
1789 	address >>= PAGE_SHIFT;
1790 
1791 	free_iova_fast(&dma_dom->iovad, address, pages);
1792 }
1793 
1794 /****************************************************************************
1795  *
1796  * The next functions belong to the domain allocation. A domain is
1797  * allocated for every IOMMU as the default domain. If device isolation
1798  * is enabled, every device get its own domain. The most important thing
1799  * about domains is the page table mapping the DMA address space they
1800  * contain.
1801  *
1802  ****************************************************************************/
1803 
domain_id_alloc(void)1804 static u16 domain_id_alloc(void)
1805 {
1806 	int id;
1807 
1808 	spin_lock(&pd_bitmap_lock);
1809 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1810 	BUG_ON(id == 0);
1811 	if (id > 0 && id < MAX_DOMAIN_ID)
1812 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1813 	else
1814 		id = 0;
1815 	spin_unlock(&pd_bitmap_lock);
1816 
1817 	return id;
1818 }
1819 
domain_id_free(int id)1820 static void domain_id_free(int id)
1821 {
1822 	spin_lock(&pd_bitmap_lock);
1823 	if (id > 0 && id < MAX_DOMAIN_ID)
1824 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1825 	spin_unlock(&pd_bitmap_lock);
1826 }
1827 
free_gcr3_tbl_level1(u64 * tbl)1828 static void free_gcr3_tbl_level1(u64 *tbl)
1829 {
1830 	u64 *ptr;
1831 	int i;
1832 
1833 	for (i = 0; i < 512; ++i) {
1834 		if (!(tbl[i] & GCR3_VALID))
1835 			continue;
1836 
1837 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1838 
1839 		free_page((unsigned long)ptr);
1840 	}
1841 }
1842 
free_gcr3_tbl_level2(u64 * tbl)1843 static void free_gcr3_tbl_level2(u64 *tbl)
1844 {
1845 	u64 *ptr;
1846 	int i;
1847 
1848 	for (i = 0; i < 512; ++i) {
1849 		if (!(tbl[i] & GCR3_VALID))
1850 			continue;
1851 
1852 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1853 
1854 		free_gcr3_tbl_level1(ptr);
1855 	}
1856 }
1857 
free_gcr3_table(struct protection_domain * domain)1858 static void free_gcr3_table(struct protection_domain *domain)
1859 {
1860 	if (domain->glx == 2)
1861 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1862 	else if (domain->glx == 1)
1863 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1864 	else
1865 		BUG_ON(domain->glx != 0);
1866 
1867 	free_page((unsigned long)domain->gcr3_tbl);
1868 }
1869 
dma_ops_domain_flush_tlb(struct dma_ops_domain * dom)1870 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1871 {
1872 	unsigned long flags;
1873 
1874 	spin_lock_irqsave(&dom->domain.lock, flags);
1875 	domain_flush_tlb(&dom->domain);
1876 	domain_flush_complete(&dom->domain);
1877 	spin_unlock_irqrestore(&dom->domain.lock, flags);
1878 }
1879 
iova_domain_flush_tlb(struct iova_domain * iovad)1880 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1881 {
1882 	struct dma_ops_domain *dom;
1883 
1884 	dom = container_of(iovad, struct dma_ops_domain, iovad);
1885 
1886 	dma_ops_domain_flush_tlb(dom);
1887 }
1888 
1889 /*
1890  * Free a domain, only used if something went wrong in the
1891  * allocation path and we need to free an already allocated page table
1892  */
dma_ops_domain_free(struct dma_ops_domain * dom)1893 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1894 {
1895 	if (!dom)
1896 		return;
1897 
1898 	put_iova_domain(&dom->iovad);
1899 
1900 	free_pagetable(&dom->domain);
1901 
1902 	if (dom->domain.id)
1903 		domain_id_free(dom->domain.id);
1904 
1905 	kfree(dom);
1906 }
1907 
1908 /*
1909  * Allocates a new protection domain usable for the dma_ops functions.
1910  * It also initializes the page table and the address allocator data
1911  * structures required for the dma_ops interface
1912  */
dma_ops_domain_alloc(void)1913 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1914 {
1915 	struct dma_ops_domain *dma_dom;
1916 
1917 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1918 	if (!dma_dom)
1919 		return NULL;
1920 
1921 	if (protection_domain_init(&dma_dom->domain))
1922 		goto free_dma_dom;
1923 
1924 	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1925 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1926 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1927 	if (!dma_dom->domain.pt_root)
1928 		goto free_dma_dom;
1929 
1930 	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1931 
1932 	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1933 		goto free_dma_dom;
1934 
1935 	/* Initialize reserved ranges */
1936 	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1937 
1938 	return dma_dom;
1939 
1940 free_dma_dom:
1941 	dma_ops_domain_free(dma_dom);
1942 
1943 	return NULL;
1944 }
1945 
1946 /*
1947  * little helper function to check whether a given protection domain is a
1948  * dma_ops domain
1949  */
dma_ops_domain(struct protection_domain * domain)1950 static bool dma_ops_domain(struct protection_domain *domain)
1951 {
1952 	return domain->flags & PD_DMA_OPS_MASK;
1953 }
1954 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1955 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1956 			  bool ats, bool ppr)
1957 {
1958 	u64 pte_root = 0;
1959 	u64 flags = 0;
1960 	u32 old_domid;
1961 
1962 	if (domain->mode != PAGE_MODE_NONE)
1963 		pte_root = iommu_virt_to_phys(domain->pt_root);
1964 
1965 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1966 		    << DEV_ENTRY_MODE_SHIFT;
1967 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1968 
1969 	flags = amd_iommu_dev_table[devid].data[1];
1970 
1971 	if (ats)
1972 		flags |= DTE_FLAG_IOTLB;
1973 
1974 	if (ppr) {
1975 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1976 
1977 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1978 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1979 	}
1980 
1981 	if (domain->flags & PD_IOMMUV2_MASK) {
1982 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1983 		u64 glx  = domain->glx;
1984 		u64 tmp;
1985 
1986 		pte_root |= DTE_FLAG_GV;
1987 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1988 
1989 		/* First mask out possible old values for GCR3 table */
1990 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1991 		flags    &= ~tmp;
1992 
1993 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1994 		flags    &= ~tmp;
1995 
1996 		/* Encode GCR3 table into DTE */
1997 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1998 		pte_root |= tmp;
1999 
2000 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2001 		flags    |= tmp;
2002 
2003 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2004 		flags    |= tmp;
2005 	}
2006 
2007 	flags &= ~DEV_DOMID_MASK;
2008 	flags |= domain->id;
2009 
2010 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
2011 	amd_iommu_dev_table[devid].data[1]  = flags;
2012 	amd_iommu_dev_table[devid].data[0]  = pte_root;
2013 
2014 	/*
2015 	 * A kdump kernel might be replacing a domain ID that was copied from
2016 	 * the previous kernel--if so, it needs to flush the translation cache
2017 	 * entries for the old domain ID that is being overwritten
2018 	 */
2019 	if (old_domid) {
2020 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2021 
2022 		amd_iommu_flush_tlb_domid(iommu, old_domid);
2023 	}
2024 }
2025 
clear_dte_entry(u16 devid)2026 static void clear_dte_entry(u16 devid)
2027 {
2028 	/* remove entry from the device table seen by the hardware */
2029 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
2030 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2031 
2032 	amd_iommu_apply_erratum_63(devid);
2033 }
2034 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)2035 static void do_attach(struct iommu_dev_data *dev_data,
2036 		      struct protection_domain *domain)
2037 {
2038 	struct amd_iommu *iommu;
2039 	bool ats;
2040 
2041 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2042 	ats   = dev_data->ats.enabled;
2043 
2044 	/* Update data structures */
2045 	dev_data->domain = domain;
2046 	list_add(&dev_data->list, &domain->dev_list);
2047 
2048 	/* Do reference counting */
2049 	domain->dev_iommu[iommu->index] += 1;
2050 	domain->dev_cnt                 += 1;
2051 
2052 	/* Update device table */
2053 	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
2054 	clone_aliases(dev_data->pdev);
2055 
2056 	device_flush_dte(dev_data);
2057 }
2058 
do_detach(struct iommu_dev_data * dev_data)2059 static void do_detach(struct iommu_dev_data *dev_data)
2060 {
2061 	struct protection_domain *domain = dev_data->domain;
2062 	struct amd_iommu *iommu;
2063 
2064 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2065 
2066 	/* Update data structures */
2067 	dev_data->domain = NULL;
2068 	list_del(&dev_data->list);
2069 	clear_dte_entry(dev_data->devid);
2070 	clone_aliases(dev_data->pdev);
2071 
2072 	/* Flush the DTE entry */
2073 	device_flush_dte(dev_data);
2074 
2075 	/* Flush IOTLB */
2076 	domain_flush_tlb_pde(domain);
2077 
2078 	/* Wait for the flushes to finish */
2079 	domain_flush_complete(domain);
2080 
2081 	/* decrease reference counters - needs to happen after the flushes */
2082 	domain->dev_iommu[iommu->index] -= 1;
2083 	domain->dev_cnt                 -= 1;
2084 }
2085 
pdev_iommuv2_disable(struct pci_dev * pdev)2086 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2087 {
2088 	pci_disable_ats(pdev);
2089 	pci_disable_pri(pdev);
2090 	pci_disable_pasid(pdev);
2091 }
2092 
2093 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2094 static int pri_reset_while_enabled(struct pci_dev *pdev)
2095 {
2096 	u16 control;
2097 	int pos;
2098 
2099 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2100 	if (!pos)
2101 		return -EINVAL;
2102 
2103 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2104 	control |= PCI_PRI_CTRL_RESET;
2105 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2106 
2107 	return 0;
2108 }
2109 
pdev_iommuv2_enable(struct pci_dev * pdev)2110 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2111 {
2112 	bool reset_enable;
2113 	int reqs, ret;
2114 
2115 	/* FIXME: Hardcode number of outstanding requests for now */
2116 	reqs = 32;
2117 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2118 		reqs = 1;
2119 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2120 
2121 	/* Only allow access to user-accessible pages */
2122 	ret = pci_enable_pasid(pdev, 0);
2123 	if (ret)
2124 		goto out_err;
2125 
2126 	/* First reset the PRI state of the device */
2127 	ret = pci_reset_pri(pdev);
2128 	if (ret)
2129 		goto out_err;
2130 
2131 	/* Enable PRI */
2132 	ret = pci_enable_pri(pdev, reqs);
2133 	if (ret)
2134 		goto out_err;
2135 
2136 	if (reset_enable) {
2137 		ret = pri_reset_while_enabled(pdev);
2138 		if (ret)
2139 			goto out_err;
2140 	}
2141 
2142 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2143 	if (ret)
2144 		goto out_err;
2145 
2146 	return 0;
2147 
2148 out_err:
2149 	pci_disable_pri(pdev);
2150 	pci_disable_pasid(pdev);
2151 
2152 	return ret;
2153 }
2154 
2155 /*
2156  * If a device is not yet associated with a domain, this function makes the
2157  * device visible in the domain
2158  */
attach_device(struct device * dev,struct protection_domain * domain)2159 static int attach_device(struct device *dev,
2160 			 struct protection_domain *domain)
2161 {
2162 	struct pci_dev *pdev;
2163 	struct iommu_dev_data *dev_data;
2164 	unsigned long flags;
2165 	int ret;
2166 
2167 	spin_lock_irqsave(&domain->lock, flags);
2168 
2169 	dev_data = get_dev_data(dev);
2170 
2171 	spin_lock(&dev_data->lock);
2172 
2173 	ret = -EBUSY;
2174 	if (dev_data->domain != NULL)
2175 		goto out;
2176 
2177 	if (!dev_is_pci(dev))
2178 		goto skip_ats_check;
2179 
2180 	pdev = to_pci_dev(dev);
2181 	if (domain->flags & PD_IOMMUV2_MASK) {
2182 		ret = -EINVAL;
2183 		if (!dev_data->passthrough)
2184 			goto out;
2185 
2186 		if (dev_data->iommu_v2) {
2187 			if (pdev_iommuv2_enable(pdev) != 0)
2188 				goto out;
2189 
2190 			dev_data->ats.enabled = true;
2191 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2192 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2193 		}
2194 	} else if (amd_iommu_iotlb_sup &&
2195 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2196 		dev_data->ats.enabled = true;
2197 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2198 	}
2199 
2200 skip_ats_check:
2201 	ret = 0;
2202 
2203 	do_attach(dev_data, domain);
2204 
2205 	/*
2206 	 * We might boot into a crash-kernel here. The crashed kernel
2207 	 * left the caches in the IOMMU dirty. So we have to flush
2208 	 * here to evict all dirty stuff.
2209 	 */
2210 	domain_flush_tlb_pde(domain);
2211 
2212 	domain_flush_complete(domain);
2213 
2214 out:
2215 	spin_unlock(&dev_data->lock);
2216 
2217 	spin_unlock_irqrestore(&domain->lock, flags);
2218 
2219 	return ret;
2220 }
2221 
2222 /*
2223  * Removes a device from a protection domain (with devtable_lock held)
2224  */
detach_device(struct device * dev)2225 static void detach_device(struct device *dev)
2226 {
2227 	struct protection_domain *domain;
2228 	struct iommu_dev_data *dev_data;
2229 	unsigned long flags;
2230 
2231 	dev_data = get_dev_data(dev);
2232 	domain   = dev_data->domain;
2233 
2234 	spin_lock_irqsave(&domain->lock, flags);
2235 
2236 	spin_lock(&dev_data->lock);
2237 
2238 	/*
2239 	 * First check if the device is still attached. It might already
2240 	 * be detached from its domain because the generic
2241 	 * iommu_detach_group code detached it and we try again here in
2242 	 * our alias handling.
2243 	 */
2244 	if (WARN_ON(!dev_data->domain))
2245 		goto out;
2246 
2247 	do_detach(dev_data);
2248 
2249 	if (!dev_is_pci(dev))
2250 		goto out;
2251 
2252 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2253 		pdev_iommuv2_disable(to_pci_dev(dev));
2254 	else if (dev_data->ats.enabled)
2255 		pci_disable_ats(to_pci_dev(dev));
2256 
2257 	dev_data->ats.enabled = false;
2258 
2259 out:
2260 	spin_unlock(&dev_data->lock);
2261 
2262 	spin_unlock_irqrestore(&domain->lock, flags);
2263 }
2264 
amd_iommu_add_device(struct device * dev)2265 static int amd_iommu_add_device(struct device *dev)
2266 {
2267 	struct iommu_dev_data *dev_data;
2268 	struct iommu_domain *domain;
2269 	struct amd_iommu *iommu;
2270 	int ret, devid;
2271 
2272 	if (!check_device(dev) || get_dev_data(dev))
2273 		return 0;
2274 
2275 	devid = get_device_id(dev);
2276 	if (devid < 0)
2277 		return devid;
2278 
2279 	iommu = amd_iommu_rlookup_table[devid];
2280 
2281 	ret = iommu_init_device(dev);
2282 	if (ret) {
2283 		if (ret != -ENOTSUPP)
2284 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2285 
2286 		iommu_ignore_device(dev);
2287 		dev->dma_ops = NULL;
2288 		goto out;
2289 	}
2290 	init_iommu_group(dev);
2291 
2292 	dev_data = get_dev_data(dev);
2293 
2294 	BUG_ON(!dev_data);
2295 
2296 	if (dev_data->iommu_v2)
2297 		iommu_request_dm_for_dev(dev);
2298 
2299 	/* Domains are initialized for this device - have a look what we ended up with */
2300 	domain = iommu_get_domain_for_dev(dev);
2301 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2302 		dev_data->passthrough = true;
2303 	else
2304 		dev->dma_ops = &amd_iommu_dma_ops;
2305 
2306 out:
2307 	iommu_completion_wait(iommu);
2308 
2309 	return 0;
2310 }
2311 
amd_iommu_remove_device(struct device * dev)2312 static void amd_iommu_remove_device(struct device *dev)
2313 {
2314 	struct amd_iommu *iommu;
2315 	int devid;
2316 
2317 	if (!check_device(dev))
2318 		return;
2319 
2320 	devid = get_device_id(dev);
2321 	if (devid < 0)
2322 		return;
2323 
2324 	iommu = amd_iommu_rlookup_table[devid];
2325 
2326 	iommu_uninit_device(dev);
2327 	iommu_completion_wait(iommu);
2328 }
2329 
amd_iommu_device_group(struct device * dev)2330 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2331 {
2332 	if (dev_is_pci(dev))
2333 		return pci_device_group(dev);
2334 
2335 	return acpihid_device_group(dev);
2336 }
2337 
2338 /*****************************************************************************
2339  *
2340  * The next functions belong to the dma_ops mapping/unmapping code.
2341  *
2342  *****************************************************************************/
2343 
2344 /*
2345  * In the dma_ops path we only have the struct device. This function
2346  * finds the corresponding IOMMU, the protection domain and the
2347  * requestor id for a given device.
2348  * If the device is not yet associated with a domain this is also done
2349  * in this function.
2350  */
get_domain(struct device * dev)2351 static struct protection_domain *get_domain(struct device *dev)
2352 {
2353 	struct protection_domain *domain;
2354 	struct iommu_domain *io_domain;
2355 
2356 	if (!check_device(dev))
2357 		return ERR_PTR(-EINVAL);
2358 
2359 	domain = get_dev_data(dev)->domain;
2360 	if (domain == NULL && get_dev_data(dev)->defer_attach) {
2361 		get_dev_data(dev)->defer_attach = false;
2362 		io_domain = iommu_get_domain_for_dev(dev);
2363 		domain = to_pdomain(io_domain);
2364 		attach_device(dev, domain);
2365 	}
2366 	if (domain == NULL)
2367 		return ERR_PTR(-EBUSY);
2368 
2369 	if (!dma_ops_domain(domain))
2370 		return ERR_PTR(-EBUSY);
2371 
2372 	return domain;
2373 }
2374 
update_device_table(struct protection_domain * domain)2375 static void update_device_table(struct protection_domain *domain)
2376 {
2377 	struct iommu_dev_data *dev_data;
2378 
2379 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2380 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2381 			      dev_data->iommu_v2);
2382 		clone_aliases(dev_data->pdev);
2383 	}
2384 }
2385 
update_domain(struct protection_domain * domain)2386 static void update_domain(struct protection_domain *domain)
2387 {
2388 	update_device_table(domain);
2389 
2390 	domain_flush_devices(domain);
2391 	domain_flush_tlb_pde(domain);
2392 }
2393 
dir2prot(enum dma_data_direction direction)2394 static int dir2prot(enum dma_data_direction direction)
2395 {
2396 	if (direction == DMA_TO_DEVICE)
2397 		return IOMMU_PROT_IR;
2398 	else if (direction == DMA_FROM_DEVICE)
2399 		return IOMMU_PROT_IW;
2400 	else if (direction == DMA_BIDIRECTIONAL)
2401 		return IOMMU_PROT_IW | IOMMU_PROT_IR;
2402 	else
2403 		return 0;
2404 }
2405 
2406 /*
2407  * This function contains common code for mapping of a physically
2408  * contiguous memory region into DMA address space. It is used by all
2409  * mapping functions provided with this IOMMU driver.
2410  * Must be called with the domain lock held.
2411  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,enum dma_data_direction direction,u64 dma_mask)2412 static dma_addr_t __map_single(struct device *dev,
2413 			       struct dma_ops_domain *dma_dom,
2414 			       phys_addr_t paddr,
2415 			       size_t size,
2416 			       enum dma_data_direction direction,
2417 			       u64 dma_mask)
2418 {
2419 	dma_addr_t offset = paddr & ~PAGE_MASK;
2420 	dma_addr_t address, start, ret;
2421 	unsigned long flags;
2422 	unsigned int pages;
2423 	int prot = 0;
2424 	int i;
2425 
2426 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2427 	paddr &= PAGE_MASK;
2428 
2429 	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2430 	if (!address)
2431 		goto out;
2432 
2433 	prot = dir2prot(direction);
2434 
2435 	start = address;
2436 	for (i = 0; i < pages; ++i) {
2437 		ret = iommu_map_page(&dma_dom->domain, start, paddr,
2438 				     PAGE_SIZE, prot, GFP_ATOMIC);
2439 		if (ret)
2440 			goto out_unmap;
2441 
2442 		paddr += PAGE_SIZE;
2443 		start += PAGE_SIZE;
2444 	}
2445 	address += offset;
2446 
2447 	domain_flush_np_cache(&dma_dom->domain, address, size);
2448 
2449 out:
2450 	return address;
2451 
2452 out_unmap:
2453 
2454 	for (--i; i >= 0; --i) {
2455 		start -= PAGE_SIZE;
2456 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2457 	}
2458 
2459 	spin_lock_irqsave(&dma_dom->domain.lock, flags);
2460 	domain_flush_tlb(&dma_dom->domain);
2461 	domain_flush_complete(&dma_dom->domain);
2462 	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2463 
2464 	dma_ops_free_iova(dma_dom, address, pages);
2465 
2466 	return DMA_MAPPING_ERROR;
2467 }
2468 
2469 /*
2470  * Does the reverse of the __map_single function. Must be called with
2471  * the domain lock held too
2472  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2473 static void __unmap_single(struct dma_ops_domain *dma_dom,
2474 			   dma_addr_t dma_addr,
2475 			   size_t size,
2476 			   int dir)
2477 {
2478 	dma_addr_t i, start;
2479 	unsigned int pages;
2480 
2481 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2482 	dma_addr &= PAGE_MASK;
2483 	start = dma_addr;
2484 
2485 	for (i = 0; i < pages; ++i) {
2486 		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2487 		start += PAGE_SIZE;
2488 	}
2489 
2490 	if (amd_iommu_unmap_flush) {
2491 		unsigned long flags;
2492 
2493 		spin_lock_irqsave(&dma_dom->domain.lock, flags);
2494 		domain_flush_tlb(&dma_dom->domain);
2495 		domain_flush_complete(&dma_dom->domain);
2496 		spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2497 		dma_ops_free_iova(dma_dom, dma_addr, pages);
2498 	} else {
2499 		pages = __roundup_pow_of_two(pages);
2500 		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2501 	}
2502 }
2503 
2504 /*
2505  * The exported map_single function for dma_ops.
2506  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)2507 static dma_addr_t map_page(struct device *dev, struct page *page,
2508 			   unsigned long offset, size_t size,
2509 			   enum dma_data_direction dir,
2510 			   unsigned long attrs)
2511 {
2512 	phys_addr_t paddr = page_to_phys(page) + offset;
2513 	struct protection_domain *domain;
2514 	struct dma_ops_domain *dma_dom;
2515 	u64 dma_mask;
2516 
2517 	domain = get_domain(dev);
2518 	if (PTR_ERR(domain) == -EINVAL)
2519 		return (dma_addr_t)paddr;
2520 	else if (IS_ERR(domain))
2521 		return DMA_MAPPING_ERROR;
2522 
2523 	dma_mask = *dev->dma_mask;
2524 	dma_dom = to_dma_ops_domain(domain);
2525 
2526 	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2527 }
2528 
2529 /*
2530  * The exported unmap_single function for dma_ops.
2531  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)2532 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2533 		       enum dma_data_direction dir, unsigned long attrs)
2534 {
2535 	struct protection_domain *domain;
2536 	struct dma_ops_domain *dma_dom;
2537 
2538 	domain = get_domain(dev);
2539 	if (IS_ERR(domain))
2540 		return;
2541 
2542 	dma_dom = to_dma_ops_domain(domain);
2543 
2544 	__unmap_single(dma_dom, dma_addr, size, dir);
2545 }
2546 
sg_num_pages(struct device * dev,struct scatterlist * sglist,int nelems)2547 static int sg_num_pages(struct device *dev,
2548 			struct scatterlist *sglist,
2549 			int nelems)
2550 {
2551 	unsigned long mask, boundary_size;
2552 	struct scatterlist *s;
2553 	int i, npages = 0;
2554 
2555 	mask          = dma_get_seg_boundary(dev);
2556 	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2557 				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2558 
2559 	for_each_sg(sglist, s, nelems, i) {
2560 		int p, n;
2561 
2562 		s->dma_address = npages << PAGE_SHIFT;
2563 		p = npages % boundary_size;
2564 		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2565 		if (p + n > boundary_size)
2566 			npages += boundary_size - p;
2567 		npages += n;
2568 	}
2569 
2570 	return npages;
2571 }
2572 
2573 /*
2574  * The exported map_sg function for dma_ops (handles scatter-gather
2575  * lists).
2576  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,unsigned long attrs)2577 static int map_sg(struct device *dev, struct scatterlist *sglist,
2578 		  int nelems, enum dma_data_direction direction,
2579 		  unsigned long attrs)
2580 {
2581 	int mapped_pages = 0, npages = 0, prot = 0, i;
2582 	struct protection_domain *domain;
2583 	struct dma_ops_domain *dma_dom;
2584 	struct scatterlist *s;
2585 	unsigned long address;
2586 	u64 dma_mask;
2587 	int ret;
2588 
2589 	domain = get_domain(dev);
2590 	if (IS_ERR(domain))
2591 		return 0;
2592 
2593 	dma_dom  = to_dma_ops_domain(domain);
2594 	dma_mask = *dev->dma_mask;
2595 
2596 	npages = sg_num_pages(dev, sglist, nelems);
2597 
2598 	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2599 	if (!address)
2600 		goto out_err;
2601 
2602 	prot = dir2prot(direction);
2603 
2604 	/* Map all sg entries */
2605 	for_each_sg(sglist, s, nelems, i) {
2606 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2607 
2608 		for (j = 0; j < pages; ++j) {
2609 			unsigned long bus_addr, phys_addr;
2610 
2611 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2612 			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2613 			ret = iommu_map_page(domain, bus_addr, phys_addr,
2614 					     PAGE_SIZE, prot,
2615 					     GFP_ATOMIC | __GFP_NOWARN);
2616 			if (ret)
2617 				goto out_unmap;
2618 
2619 			mapped_pages += 1;
2620 		}
2621 	}
2622 
2623 	/* Everything is mapped - write the right values into s->dma_address */
2624 	for_each_sg(sglist, s, nelems, i) {
2625 		/*
2626 		 * Add in the remaining piece of the scatter-gather offset that
2627 		 * was masked out when we were determining the physical address
2628 		 * via (sg_phys(s) & PAGE_MASK) earlier.
2629 		 */
2630 		s->dma_address += address + (s->offset & ~PAGE_MASK);
2631 		s->dma_length   = s->length;
2632 	}
2633 
2634 	if (s)
2635 		domain_flush_np_cache(domain, s->dma_address, s->dma_length);
2636 
2637 	return nelems;
2638 
2639 out_unmap:
2640 	dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2641 		npages, ret);
2642 
2643 	for_each_sg(sglist, s, nelems, i) {
2644 		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2645 
2646 		for (j = 0; j < pages; ++j) {
2647 			unsigned long bus_addr;
2648 
2649 			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2650 			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2651 
2652 			if (--mapped_pages == 0)
2653 				goto out_free_iova;
2654 		}
2655 	}
2656 
2657 out_free_iova:
2658 	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2659 
2660 out_err:
2661 	return 0;
2662 }
2663 
2664 /*
2665  * The exported map_sg function for dma_ops (handles scatter-gather
2666  * lists).
2667  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,unsigned long attrs)2668 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2669 		     int nelems, enum dma_data_direction dir,
2670 		     unsigned long attrs)
2671 {
2672 	struct protection_domain *domain;
2673 	struct dma_ops_domain *dma_dom;
2674 	unsigned long startaddr;
2675 	int npages;
2676 
2677 	domain = get_domain(dev);
2678 	if (IS_ERR(domain))
2679 		return;
2680 
2681 	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2682 	dma_dom   = to_dma_ops_domain(domain);
2683 	npages    = sg_num_pages(dev, sglist, nelems);
2684 
2685 	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2686 }
2687 
2688 /*
2689  * The exported alloc_coherent function for dma_ops.
2690  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,unsigned long attrs)2691 static void *alloc_coherent(struct device *dev, size_t size,
2692 			    dma_addr_t *dma_addr, gfp_t flag,
2693 			    unsigned long attrs)
2694 {
2695 	u64 dma_mask = dev->coherent_dma_mask;
2696 	struct protection_domain *domain;
2697 	struct dma_ops_domain *dma_dom;
2698 	struct page *page;
2699 
2700 	domain = get_domain(dev);
2701 	if (PTR_ERR(domain) == -EINVAL) {
2702 		page = alloc_pages(flag, get_order(size));
2703 		*dma_addr = page_to_phys(page);
2704 		return page_address(page);
2705 	} else if (IS_ERR(domain))
2706 		return NULL;
2707 
2708 	dma_dom   = to_dma_ops_domain(domain);
2709 	size	  = PAGE_ALIGN(size);
2710 	dma_mask  = dev->coherent_dma_mask;
2711 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2712 	flag     |= __GFP_ZERO;
2713 
2714 	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2715 	if (!page) {
2716 		if (!gfpflags_allow_blocking(flag))
2717 			return NULL;
2718 
2719 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2720 					get_order(size), flag & __GFP_NOWARN);
2721 		if (!page)
2722 			return NULL;
2723 	}
2724 
2725 	if (!dma_mask)
2726 		dma_mask = *dev->dma_mask;
2727 
2728 	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2729 				 size, DMA_BIDIRECTIONAL, dma_mask);
2730 
2731 	if (*dma_addr == DMA_MAPPING_ERROR)
2732 		goto out_free;
2733 
2734 	return page_address(page);
2735 
2736 out_free:
2737 
2738 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2739 		__free_pages(page, get_order(size));
2740 
2741 	return NULL;
2742 }
2743 
2744 /*
2745  * The exported free_coherent function for dma_ops.
2746  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,unsigned long attrs)2747 static void free_coherent(struct device *dev, size_t size,
2748 			  void *virt_addr, dma_addr_t dma_addr,
2749 			  unsigned long attrs)
2750 {
2751 	struct protection_domain *domain;
2752 	struct dma_ops_domain *dma_dom;
2753 	struct page *page;
2754 
2755 	page = virt_to_page(virt_addr);
2756 	size = PAGE_ALIGN(size);
2757 
2758 	domain = get_domain(dev);
2759 	if (IS_ERR(domain))
2760 		goto free_mem;
2761 
2762 	dma_dom = to_dma_ops_domain(domain);
2763 
2764 	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2765 
2766 free_mem:
2767 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2768 		__free_pages(page, get_order(size));
2769 }
2770 
2771 /*
2772  * This function is called by the DMA layer to find out if we can handle a
2773  * particular device. It is part of the dma_ops.
2774  */
amd_iommu_dma_supported(struct device * dev,u64 mask)2775 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2776 {
2777 	if (!dma_direct_supported(dev, mask))
2778 		return 0;
2779 	return check_device(dev);
2780 }
2781 
2782 static const struct dma_map_ops amd_iommu_dma_ops = {
2783 	.alloc		= alloc_coherent,
2784 	.free		= free_coherent,
2785 	.map_page	= map_page,
2786 	.unmap_page	= unmap_page,
2787 	.map_sg		= map_sg,
2788 	.unmap_sg	= unmap_sg,
2789 	.dma_supported	= amd_iommu_dma_supported,
2790 	.mmap		= dma_common_mmap,
2791 	.get_sgtable	= dma_common_get_sgtable,
2792 };
2793 
init_reserved_iova_ranges(void)2794 static int init_reserved_iova_ranges(void)
2795 {
2796 	struct pci_dev *pdev = NULL;
2797 	struct iova *val;
2798 
2799 	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2800 
2801 	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2802 			  &reserved_rbtree_key);
2803 
2804 	/* MSI memory range */
2805 	val = reserve_iova(&reserved_iova_ranges,
2806 			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2807 	if (!val) {
2808 		pr_err("Reserving MSI range failed\n");
2809 		return -ENOMEM;
2810 	}
2811 
2812 	/* HT memory range */
2813 	val = reserve_iova(&reserved_iova_ranges,
2814 			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2815 	if (!val) {
2816 		pr_err("Reserving HT range failed\n");
2817 		return -ENOMEM;
2818 	}
2819 
2820 	/*
2821 	 * Memory used for PCI resources
2822 	 * FIXME: Check whether we can reserve the PCI-hole completly
2823 	 */
2824 	for_each_pci_dev(pdev) {
2825 		int i;
2826 
2827 		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2828 			struct resource *r = &pdev->resource[i];
2829 
2830 			if (!(r->flags & IORESOURCE_MEM))
2831 				continue;
2832 
2833 			val = reserve_iova(&reserved_iova_ranges,
2834 					   IOVA_PFN(r->start),
2835 					   IOVA_PFN(r->end));
2836 			if (!val) {
2837 				pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2838 				return -ENOMEM;
2839 			}
2840 		}
2841 	}
2842 
2843 	return 0;
2844 }
2845 
amd_iommu_init_api(void)2846 int __init amd_iommu_init_api(void)
2847 {
2848 	int ret, err = 0;
2849 
2850 	ret = iova_cache_get();
2851 	if (ret)
2852 		return ret;
2853 
2854 	ret = init_reserved_iova_ranges();
2855 	if (ret)
2856 		return ret;
2857 
2858 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2859 	if (err)
2860 		return err;
2861 #ifdef CONFIG_ARM_AMBA
2862 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2863 	if (err)
2864 		return err;
2865 #endif
2866 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2867 	if (err)
2868 		return err;
2869 
2870 	return 0;
2871 }
2872 
amd_iommu_init_dma_ops(void)2873 int __init amd_iommu_init_dma_ops(void)
2874 {
2875 	swiotlb        = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2876 	iommu_detected = 1;
2877 
2878 	if (amd_iommu_unmap_flush)
2879 		pr_info("IO/TLB flush on unmap enabled\n");
2880 	else
2881 		pr_info("Lazy IO/TLB flushing enabled\n");
2882 
2883 	return 0;
2884 
2885 }
2886 
2887 /*****************************************************************************
2888  *
2889  * The following functions belong to the exported interface of AMD IOMMU
2890  *
2891  * This interface allows access to lower level functions of the IOMMU
2892  * like protection domain handling and assignement of devices to domains
2893  * which is not possible with the dma_ops interface.
2894  *
2895  *****************************************************************************/
2896 
cleanup_domain(struct protection_domain * domain)2897 static void cleanup_domain(struct protection_domain *domain)
2898 {
2899 	struct iommu_dev_data *entry;
2900 	unsigned long flags;
2901 
2902 	spin_lock_irqsave(&domain->lock, flags);
2903 
2904 	while (!list_empty(&domain->dev_list)) {
2905 		entry = list_first_entry(&domain->dev_list,
2906 					 struct iommu_dev_data, list);
2907 		BUG_ON(!entry->domain);
2908 		do_detach(entry);
2909 	}
2910 
2911 	spin_unlock_irqrestore(&domain->lock, flags);
2912 }
2913 
protection_domain_free(struct protection_domain * domain)2914 static void protection_domain_free(struct protection_domain *domain)
2915 {
2916 	if (!domain)
2917 		return;
2918 
2919 	if (domain->id)
2920 		domain_id_free(domain->id);
2921 
2922 	kfree(domain);
2923 }
2924 
protection_domain_init(struct protection_domain * domain)2925 static int protection_domain_init(struct protection_domain *domain)
2926 {
2927 	spin_lock_init(&domain->lock);
2928 	mutex_init(&domain->api_lock);
2929 	domain->id = domain_id_alloc();
2930 	if (!domain->id)
2931 		return -ENOMEM;
2932 	INIT_LIST_HEAD(&domain->dev_list);
2933 
2934 	return 0;
2935 }
2936 
protection_domain_alloc(void)2937 static struct protection_domain *protection_domain_alloc(void)
2938 {
2939 	struct protection_domain *domain;
2940 
2941 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2942 	if (!domain)
2943 		return NULL;
2944 
2945 	if (protection_domain_init(domain))
2946 		goto out_err;
2947 
2948 	return domain;
2949 
2950 out_err:
2951 	kfree(domain);
2952 
2953 	return NULL;
2954 }
2955 
amd_iommu_domain_alloc(unsigned type)2956 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2957 {
2958 	struct protection_domain *pdomain;
2959 	struct dma_ops_domain *dma_domain;
2960 
2961 	switch (type) {
2962 	case IOMMU_DOMAIN_UNMANAGED:
2963 		pdomain = protection_domain_alloc();
2964 		if (!pdomain)
2965 			return NULL;
2966 
2967 		pdomain->mode    = PAGE_MODE_3_LEVEL;
2968 		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2969 		if (!pdomain->pt_root) {
2970 			protection_domain_free(pdomain);
2971 			return NULL;
2972 		}
2973 
2974 		pdomain->domain.geometry.aperture_start = 0;
2975 		pdomain->domain.geometry.aperture_end   = ~0ULL;
2976 		pdomain->domain.geometry.force_aperture = true;
2977 
2978 		break;
2979 	case IOMMU_DOMAIN_DMA:
2980 		dma_domain = dma_ops_domain_alloc();
2981 		if (!dma_domain) {
2982 			pr_err("Failed to allocate\n");
2983 			return NULL;
2984 		}
2985 		pdomain = &dma_domain->domain;
2986 		break;
2987 	case IOMMU_DOMAIN_IDENTITY:
2988 		pdomain = protection_domain_alloc();
2989 		if (!pdomain)
2990 			return NULL;
2991 
2992 		pdomain->mode = PAGE_MODE_NONE;
2993 		break;
2994 	default:
2995 		return NULL;
2996 	}
2997 
2998 	return &pdomain->domain;
2999 }
3000 
amd_iommu_domain_free(struct iommu_domain * dom)3001 static void amd_iommu_domain_free(struct iommu_domain *dom)
3002 {
3003 	struct protection_domain *domain;
3004 	struct dma_ops_domain *dma_dom;
3005 
3006 	domain = to_pdomain(dom);
3007 
3008 	if (domain->dev_cnt > 0)
3009 		cleanup_domain(domain);
3010 
3011 	BUG_ON(domain->dev_cnt != 0);
3012 
3013 	if (!dom)
3014 		return;
3015 
3016 	switch (dom->type) {
3017 	case IOMMU_DOMAIN_DMA:
3018 		/* Now release the domain */
3019 		dma_dom = to_dma_ops_domain(domain);
3020 		dma_ops_domain_free(dma_dom);
3021 		break;
3022 	default:
3023 		if (domain->mode != PAGE_MODE_NONE)
3024 			free_pagetable(domain);
3025 
3026 		if (domain->flags & PD_IOMMUV2_MASK)
3027 			free_gcr3_table(domain);
3028 
3029 		protection_domain_free(domain);
3030 		break;
3031 	}
3032 }
3033 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)3034 static void amd_iommu_detach_device(struct iommu_domain *dom,
3035 				    struct device *dev)
3036 {
3037 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3038 	struct amd_iommu *iommu;
3039 	int devid;
3040 
3041 	if (!check_device(dev))
3042 		return;
3043 
3044 	devid = get_device_id(dev);
3045 	if (devid < 0)
3046 		return;
3047 
3048 	if (dev_data->domain != NULL)
3049 		detach_device(dev);
3050 
3051 	iommu = amd_iommu_rlookup_table[devid];
3052 	if (!iommu)
3053 		return;
3054 
3055 #ifdef CONFIG_IRQ_REMAP
3056 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3057 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
3058 		dev_data->use_vapic = 0;
3059 #endif
3060 
3061 	iommu_completion_wait(iommu);
3062 }
3063 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3064 static int amd_iommu_attach_device(struct iommu_domain *dom,
3065 				   struct device *dev)
3066 {
3067 	struct protection_domain *domain = to_pdomain(dom);
3068 	struct iommu_dev_data *dev_data;
3069 	struct amd_iommu *iommu;
3070 	int ret;
3071 
3072 	if (!check_device(dev))
3073 		return -EINVAL;
3074 
3075 	dev_data = dev->archdata.iommu;
3076 
3077 	iommu = amd_iommu_rlookup_table[dev_data->devid];
3078 	if (!iommu)
3079 		return -EINVAL;
3080 
3081 	if (dev_data->domain)
3082 		detach_device(dev);
3083 
3084 	ret = attach_device(dev, domain);
3085 
3086 #ifdef CONFIG_IRQ_REMAP
3087 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3088 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3089 			dev_data->use_vapic = 1;
3090 		else
3091 			dev_data->use_vapic = 0;
3092 	}
3093 #endif
3094 
3095 	iommu_completion_wait(iommu);
3096 
3097 	return ret;
3098 }
3099 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3100 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3101 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3102 {
3103 	struct protection_domain *domain = to_pdomain(dom);
3104 	int prot = 0;
3105 	int ret;
3106 
3107 	if (domain->mode == PAGE_MODE_NONE)
3108 		return -EINVAL;
3109 
3110 	if (iommu_prot & IOMMU_READ)
3111 		prot |= IOMMU_PROT_IR;
3112 	if (iommu_prot & IOMMU_WRITE)
3113 		prot |= IOMMU_PROT_IW;
3114 
3115 	mutex_lock(&domain->api_lock);
3116 	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3117 	mutex_unlock(&domain->api_lock);
3118 
3119 	domain_flush_np_cache(domain, iova, page_size);
3120 
3121 	return ret;
3122 }
3123 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)3124 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3125 			      size_t page_size,
3126 			      struct iommu_iotlb_gather *gather)
3127 {
3128 	struct protection_domain *domain = to_pdomain(dom);
3129 	size_t unmap_size;
3130 
3131 	if (domain->mode == PAGE_MODE_NONE)
3132 		return 0;
3133 
3134 	mutex_lock(&domain->api_lock);
3135 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3136 	mutex_unlock(&domain->api_lock);
3137 
3138 	return unmap_size;
3139 }
3140 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3141 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3142 					  dma_addr_t iova)
3143 {
3144 	struct protection_domain *domain = to_pdomain(dom);
3145 	unsigned long offset_mask, pte_pgsize;
3146 	u64 *pte, __pte;
3147 
3148 	if (domain->mode == PAGE_MODE_NONE)
3149 		return iova;
3150 
3151 	pte = fetch_pte(domain, iova, &pte_pgsize);
3152 
3153 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3154 		return 0;
3155 
3156 	offset_mask = pte_pgsize - 1;
3157 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3158 
3159 	return (__pte & ~offset_mask) | (iova & offset_mask);
3160 }
3161 
amd_iommu_capable(enum iommu_cap cap)3162 static bool amd_iommu_capable(enum iommu_cap cap)
3163 {
3164 	switch (cap) {
3165 	case IOMMU_CAP_CACHE_COHERENCY:
3166 		return true;
3167 	case IOMMU_CAP_INTR_REMAP:
3168 		return (irq_remapping_enabled == 1);
3169 	case IOMMU_CAP_NOEXEC:
3170 		return false;
3171 	default:
3172 		break;
3173 	}
3174 
3175 	return false;
3176 }
3177 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)3178 static void amd_iommu_get_resv_regions(struct device *dev,
3179 				       struct list_head *head)
3180 {
3181 	struct iommu_resv_region *region;
3182 	struct unity_map_entry *entry;
3183 	int devid;
3184 
3185 	devid = get_device_id(dev);
3186 	if (devid < 0)
3187 		return;
3188 
3189 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3190 		int type, prot = 0;
3191 		size_t length;
3192 
3193 		if (devid < entry->devid_start || devid > entry->devid_end)
3194 			continue;
3195 
3196 		type   = IOMMU_RESV_DIRECT;
3197 		length = entry->address_end - entry->address_start;
3198 		if (entry->prot & IOMMU_PROT_IR)
3199 			prot |= IOMMU_READ;
3200 		if (entry->prot & IOMMU_PROT_IW)
3201 			prot |= IOMMU_WRITE;
3202 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3203 			/* Exclusion range */
3204 			type = IOMMU_RESV_RESERVED;
3205 
3206 		region = iommu_alloc_resv_region(entry->address_start,
3207 						 length, prot, type);
3208 		if (!region) {
3209 			dev_err(dev, "Out of memory allocating dm-regions\n");
3210 			return;
3211 		}
3212 		list_add_tail(&region->list, head);
3213 	}
3214 
3215 	region = iommu_alloc_resv_region(MSI_RANGE_START,
3216 					 MSI_RANGE_END - MSI_RANGE_START + 1,
3217 					 0, IOMMU_RESV_MSI);
3218 	if (!region)
3219 		return;
3220 	list_add_tail(&region->list, head);
3221 
3222 	region = iommu_alloc_resv_region(HT_RANGE_START,
3223 					 HT_RANGE_END - HT_RANGE_START + 1,
3224 					 0, IOMMU_RESV_RESERVED);
3225 	if (!region)
3226 		return;
3227 	list_add_tail(&region->list, head);
3228 }
3229 
amd_iommu_put_resv_regions(struct device * dev,struct list_head * head)3230 static void amd_iommu_put_resv_regions(struct device *dev,
3231 				     struct list_head *head)
3232 {
3233 	struct iommu_resv_region *entry, *next;
3234 
3235 	list_for_each_entry_safe(entry, next, head, list)
3236 		kfree(entry);
3237 }
3238 
amd_iommu_apply_resv_region(struct device * dev,struct iommu_domain * domain,struct iommu_resv_region * region)3239 static void amd_iommu_apply_resv_region(struct device *dev,
3240 				      struct iommu_domain *domain,
3241 				      struct iommu_resv_region *region)
3242 {
3243 	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3244 	unsigned long start, end;
3245 
3246 	start = IOVA_PFN(region->start);
3247 	end   = IOVA_PFN(region->start + region->length - 1);
3248 
3249 	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3250 }
3251 
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)3252 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3253 					 struct device *dev)
3254 {
3255 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3256 	return dev_data->defer_attach;
3257 }
3258 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)3259 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3260 {
3261 	struct protection_domain *dom = to_pdomain(domain);
3262 	unsigned long flags;
3263 
3264 	spin_lock_irqsave(&dom->lock, flags);
3265 	domain_flush_tlb_pde(dom);
3266 	domain_flush_complete(dom);
3267 	spin_unlock_irqrestore(&dom->lock, flags);
3268 }
3269 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)3270 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
3271 				 struct iommu_iotlb_gather *gather)
3272 {
3273 	amd_iommu_flush_iotlb_all(domain);
3274 }
3275 
3276 const struct iommu_ops amd_iommu_ops = {
3277 	.capable = amd_iommu_capable,
3278 	.domain_alloc = amd_iommu_domain_alloc,
3279 	.domain_free  = amd_iommu_domain_free,
3280 	.attach_dev = amd_iommu_attach_device,
3281 	.detach_dev = amd_iommu_detach_device,
3282 	.map = amd_iommu_map,
3283 	.unmap = amd_iommu_unmap,
3284 	.iova_to_phys = amd_iommu_iova_to_phys,
3285 	.add_device = amd_iommu_add_device,
3286 	.remove_device = amd_iommu_remove_device,
3287 	.device_group = amd_iommu_device_group,
3288 	.get_resv_regions = amd_iommu_get_resv_regions,
3289 	.put_resv_regions = amd_iommu_put_resv_regions,
3290 	.apply_resv_region = amd_iommu_apply_resv_region,
3291 	.is_attach_deferred = amd_iommu_is_attach_deferred,
3292 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3293 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
3294 	.iotlb_sync = amd_iommu_iotlb_sync,
3295 };
3296 
3297 /*****************************************************************************
3298  *
3299  * The next functions do a basic initialization of IOMMU for pass through
3300  * mode
3301  *
3302  * In passthrough mode the IOMMU is initialized and enabled but not used for
3303  * DMA-API translation.
3304  *
3305  *****************************************************************************/
3306 
3307 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3308 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3309 {
3310 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3311 }
3312 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3313 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3314 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3315 {
3316 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3317 }
3318 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3319 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3320 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3321 {
3322 	struct protection_domain *domain = to_pdomain(dom);
3323 	unsigned long flags;
3324 
3325 	spin_lock_irqsave(&domain->lock, flags);
3326 
3327 	/* Update data structure */
3328 	domain->mode    = PAGE_MODE_NONE;
3329 
3330 	/* Make changes visible to IOMMUs */
3331 	update_domain(domain);
3332 
3333 	/* Page-table is not visible to IOMMU anymore, so free it */
3334 	free_pagetable(domain);
3335 
3336 	spin_unlock_irqrestore(&domain->lock, flags);
3337 }
3338 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3339 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3340 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3341 {
3342 	struct protection_domain *domain = to_pdomain(dom);
3343 	unsigned long flags;
3344 	int levels, ret;
3345 
3346 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3347 		return -EINVAL;
3348 
3349 	/* Number of GCR3 table levels required */
3350 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3351 		levels += 1;
3352 
3353 	if (levels > amd_iommu_max_glx_val)
3354 		return -EINVAL;
3355 
3356 	spin_lock_irqsave(&domain->lock, flags);
3357 
3358 	/*
3359 	 * Save us all sanity checks whether devices already in the
3360 	 * domain support IOMMUv2. Just force that the domain has no
3361 	 * devices attached when it is switched into IOMMUv2 mode.
3362 	 */
3363 	ret = -EBUSY;
3364 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3365 		goto out;
3366 
3367 	ret = -ENOMEM;
3368 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3369 	if (domain->gcr3_tbl == NULL)
3370 		goto out;
3371 
3372 	domain->glx      = levels;
3373 	domain->flags   |= PD_IOMMUV2_MASK;
3374 
3375 	update_domain(domain);
3376 
3377 	ret = 0;
3378 
3379 out:
3380 	spin_unlock_irqrestore(&domain->lock, flags);
3381 
3382 	return ret;
3383 }
3384 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3385 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3386 static int __flush_pasid(struct protection_domain *domain, int pasid,
3387 			 u64 address, bool size)
3388 {
3389 	struct iommu_dev_data *dev_data;
3390 	struct iommu_cmd cmd;
3391 	int i, ret;
3392 
3393 	if (!(domain->flags & PD_IOMMUV2_MASK))
3394 		return -EINVAL;
3395 
3396 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3397 
3398 	/*
3399 	 * IOMMU TLB needs to be flushed before Device TLB to
3400 	 * prevent device TLB refill from IOMMU TLB
3401 	 */
3402 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3403 		if (domain->dev_iommu[i] == 0)
3404 			continue;
3405 
3406 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3407 		if (ret != 0)
3408 			goto out;
3409 	}
3410 
3411 	/* Wait until IOMMU TLB flushes are complete */
3412 	domain_flush_complete(domain);
3413 
3414 	/* Now flush device TLBs */
3415 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3416 		struct amd_iommu *iommu;
3417 		int qdep;
3418 
3419 		/*
3420 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
3421 		 * domain.
3422 		 */
3423 		if (!dev_data->ats.enabled)
3424 			continue;
3425 
3426 		qdep  = dev_data->ats.qdep;
3427 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3428 
3429 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3430 				      qdep, address, size);
3431 
3432 		ret = iommu_queue_command(iommu, &cmd);
3433 		if (ret != 0)
3434 			goto out;
3435 	}
3436 
3437 	/* Wait until all device TLBs are flushed */
3438 	domain_flush_complete(domain);
3439 
3440 	ret = 0;
3441 
3442 out:
3443 
3444 	return ret;
3445 }
3446 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3447 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3448 				  u64 address)
3449 {
3450 	return __flush_pasid(domain, pasid, address, false);
3451 }
3452 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3453 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3454 			 u64 address)
3455 {
3456 	struct protection_domain *domain = to_pdomain(dom);
3457 	unsigned long flags;
3458 	int ret;
3459 
3460 	spin_lock_irqsave(&domain->lock, flags);
3461 	ret = __amd_iommu_flush_page(domain, pasid, address);
3462 	spin_unlock_irqrestore(&domain->lock, flags);
3463 
3464 	return ret;
3465 }
3466 EXPORT_SYMBOL(amd_iommu_flush_page);
3467 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3468 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3469 {
3470 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3471 			     true);
3472 }
3473 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3474 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3475 {
3476 	struct protection_domain *domain = to_pdomain(dom);
3477 	unsigned long flags;
3478 	int ret;
3479 
3480 	spin_lock_irqsave(&domain->lock, flags);
3481 	ret = __amd_iommu_flush_tlb(domain, pasid);
3482 	spin_unlock_irqrestore(&domain->lock, flags);
3483 
3484 	return ret;
3485 }
3486 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3487 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3488 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3489 {
3490 	int index;
3491 	u64 *pte;
3492 
3493 	while (true) {
3494 
3495 		index = (pasid >> (9 * level)) & 0x1ff;
3496 		pte   = &root[index];
3497 
3498 		if (level == 0)
3499 			break;
3500 
3501 		if (!(*pte & GCR3_VALID)) {
3502 			if (!alloc)
3503 				return NULL;
3504 
3505 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3506 			if (root == NULL)
3507 				return NULL;
3508 
3509 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3510 		}
3511 
3512 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3513 
3514 		level -= 1;
3515 	}
3516 
3517 	return pte;
3518 }
3519 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3520 static int __set_gcr3(struct protection_domain *domain, int pasid,
3521 		      unsigned long cr3)
3522 {
3523 	u64 *pte;
3524 
3525 	if (domain->mode != PAGE_MODE_NONE)
3526 		return -EINVAL;
3527 
3528 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3529 	if (pte == NULL)
3530 		return -ENOMEM;
3531 
3532 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3533 
3534 	return __amd_iommu_flush_tlb(domain, pasid);
3535 }
3536 
__clear_gcr3(struct protection_domain * domain,int pasid)3537 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3538 {
3539 	u64 *pte;
3540 
3541 	if (domain->mode != PAGE_MODE_NONE)
3542 		return -EINVAL;
3543 
3544 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3545 	if (pte == NULL)
3546 		return 0;
3547 
3548 	*pte = 0;
3549 
3550 	return __amd_iommu_flush_tlb(domain, pasid);
3551 }
3552 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3553 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3554 			      unsigned long cr3)
3555 {
3556 	struct protection_domain *domain = to_pdomain(dom);
3557 	unsigned long flags;
3558 	int ret;
3559 
3560 	spin_lock_irqsave(&domain->lock, flags);
3561 	ret = __set_gcr3(domain, pasid, cr3);
3562 	spin_unlock_irqrestore(&domain->lock, flags);
3563 
3564 	return ret;
3565 }
3566 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3567 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3568 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3569 {
3570 	struct protection_domain *domain = to_pdomain(dom);
3571 	unsigned long flags;
3572 	int ret;
3573 
3574 	spin_lock_irqsave(&domain->lock, flags);
3575 	ret = __clear_gcr3(domain, pasid);
3576 	spin_unlock_irqrestore(&domain->lock, flags);
3577 
3578 	return ret;
3579 }
3580 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3581 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3582 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3583 			   int status, int tag)
3584 {
3585 	struct iommu_dev_data *dev_data;
3586 	struct amd_iommu *iommu;
3587 	struct iommu_cmd cmd;
3588 
3589 	dev_data = get_dev_data(&pdev->dev);
3590 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3591 
3592 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3593 			   tag, dev_data->pri_tlp);
3594 
3595 	return iommu_queue_command(iommu, &cmd);
3596 }
3597 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3598 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3599 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3600 {
3601 	struct protection_domain *pdomain;
3602 
3603 	pdomain = get_domain(&pdev->dev);
3604 	if (IS_ERR(pdomain))
3605 		return NULL;
3606 
3607 	/* Only return IOMMUv2 domains */
3608 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3609 		return NULL;
3610 
3611 	return &pdomain->domain;
3612 }
3613 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3614 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3615 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3616 {
3617 	struct iommu_dev_data *dev_data;
3618 
3619 	if (!amd_iommu_v2_supported())
3620 		return;
3621 
3622 	dev_data = get_dev_data(&pdev->dev);
3623 	dev_data->errata |= (1 << erratum);
3624 }
3625 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3626 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3627 int amd_iommu_device_info(struct pci_dev *pdev,
3628                           struct amd_iommu_device_info *info)
3629 {
3630 	int max_pasids;
3631 	int pos;
3632 
3633 	if (pdev == NULL || info == NULL)
3634 		return -EINVAL;
3635 
3636 	if (!amd_iommu_v2_supported())
3637 		return -EINVAL;
3638 
3639 	memset(info, 0, sizeof(*info));
3640 
3641 	if (!pci_ats_disabled()) {
3642 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3643 		if (pos)
3644 			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3645 	}
3646 
3647 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3648 	if (pos)
3649 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3650 
3651 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3652 	if (pos) {
3653 		int features;
3654 
3655 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3656 		max_pasids = min(max_pasids, (1 << 20));
3657 
3658 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3659 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3660 
3661 		features = pci_pasid_features(pdev);
3662 		if (features & PCI_PASID_CAP_EXEC)
3663 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3664 		if (features & PCI_PASID_CAP_PRIV)
3665 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3666 	}
3667 
3668 	return 0;
3669 }
3670 EXPORT_SYMBOL(amd_iommu_device_info);
3671 
3672 #ifdef CONFIG_IRQ_REMAP
3673 
3674 /*****************************************************************************
3675  *
3676  * Interrupt Remapping Implementation
3677  *
3678  *****************************************************************************/
3679 
3680 static struct irq_chip amd_ir_chip;
3681 static DEFINE_SPINLOCK(iommu_table_lock);
3682 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3683 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3684 {
3685 	u64 dte;
3686 
3687 	dte	= amd_iommu_dev_table[devid].data[2];
3688 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3689 	dte	|= iommu_virt_to_phys(table->table);
3690 	dte	|= DTE_IRQ_REMAP_INTCTL;
3691 	dte	|= DTE_IRQ_TABLE_LEN;
3692 	dte	|= DTE_IRQ_REMAP_ENABLE;
3693 
3694 	amd_iommu_dev_table[devid].data[2] = dte;
3695 }
3696 
get_irq_table(u16 devid)3697 static struct irq_remap_table *get_irq_table(u16 devid)
3698 {
3699 	struct irq_remap_table *table;
3700 
3701 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3702 		      "%s: no iommu for devid %x\n", __func__, devid))
3703 		return NULL;
3704 
3705 	table = irq_lookup_table[devid];
3706 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3707 		return NULL;
3708 
3709 	return table;
3710 }
3711 
__alloc_irq_table(void)3712 static struct irq_remap_table *__alloc_irq_table(void)
3713 {
3714 	struct irq_remap_table *table;
3715 
3716 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3717 	if (!table)
3718 		return NULL;
3719 
3720 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3721 	if (!table->table) {
3722 		kfree(table);
3723 		return NULL;
3724 	}
3725 	raw_spin_lock_init(&table->lock);
3726 
3727 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3728 		memset(table->table, 0,
3729 		       MAX_IRQS_PER_TABLE * sizeof(u32));
3730 	else
3731 		memset(table->table, 0,
3732 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3733 	return table;
3734 }
3735 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3736 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3737 				  struct irq_remap_table *table)
3738 {
3739 	irq_lookup_table[devid] = table;
3740 	set_dte_irq_entry(devid, table);
3741 	iommu_flush_dte(iommu, devid);
3742 }
3743 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3744 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3745 				       void *data)
3746 {
3747 	struct irq_remap_table *table = data;
3748 
3749 	irq_lookup_table[alias] = table;
3750 	set_dte_irq_entry(alias, table);
3751 
3752 	iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3753 
3754 	return 0;
3755 }
3756 
alloc_irq_table(u16 devid,struct pci_dev * pdev)3757 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3758 {
3759 	struct irq_remap_table *table = NULL;
3760 	struct irq_remap_table *new_table = NULL;
3761 	struct amd_iommu *iommu;
3762 	unsigned long flags;
3763 	u16 alias;
3764 
3765 	spin_lock_irqsave(&iommu_table_lock, flags);
3766 
3767 	iommu = amd_iommu_rlookup_table[devid];
3768 	if (!iommu)
3769 		goto out_unlock;
3770 
3771 	table = irq_lookup_table[devid];
3772 	if (table)
3773 		goto out_unlock;
3774 
3775 	alias = amd_iommu_alias_table[devid];
3776 	table = irq_lookup_table[alias];
3777 	if (table) {
3778 		set_remap_table_entry(iommu, devid, table);
3779 		goto out_wait;
3780 	}
3781 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3782 
3783 	/* Nothing there yet, allocate new irq remapping table */
3784 	new_table = __alloc_irq_table();
3785 	if (!new_table)
3786 		return NULL;
3787 
3788 	spin_lock_irqsave(&iommu_table_lock, flags);
3789 
3790 	table = irq_lookup_table[devid];
3791 	if (table)
3792 		goto out_unlock;
3793 
3794 	table = irq_lookup_table[alias];
3795 	if (table) {
3796 		set_remap_table_entry(iommu, devid, table);
3797 		goto out_wait;
3798 	}
3799 
3800 	table = new_table;
3801 	new_table = NULL;
3802 
3803 	if (pdev)
3804 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3805 				       table);
3806 	else
3807 		set_remap_table_entry(iommu, devid, table);
3808 
3809 	if (devid != alias)
3810 		set_remap_table_entry(iommu, alias, table);
3811 
3812 out_wait:
3813 	iommu_completion_wait(iommu);
3814 
3815 out_unlock:
3816 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3817 
3818 	if (new_table) {
3819 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3820 		kfree(new_table);
3821 	}
3822 	return table;
3823 }
3824 
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)3825 static int alloc_irq_index(u16 devid, int count, bool align,
3826 			   struct pci_dev *pdev)
3827 {
3828 	struct irq_remap_table *table;
3829 	int index, c, alignment = 1;
3830 	unsigned long flags;
3831 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3832 
3833 	if (!iommu)
3834 		return -ENODEV;
3835 
3836 	table = alloc_irq_table(devid, pdev);
3837 	if (!table)
3838 		return -ENODEV;
3839 
3840 	if (align)
3841 		alignment = roundup_pow_of_two(count);
3842 
3843 	raw_spin_lock_irqsave(&table->lock, flags);
3844 
3845 	/* Scan table for free entries */
3846 	for (index = ALIGN(table->min_index, alignment), c = 0;
3847 	     index < MAX_IRQS_PER_TABLE;) {
3848 		if (!iommu->irte_ops->is_allocated(table, index)) {
3849 			c += 1;
3850 		} else {
3851 			c     = 0;
3852 			index = ALIGN(index + 1, alignment);
3853 			continue;
3854 		}
3855 
3856 		if (c == count)	{
3857 			for (; c != 0; --c)
3858 				iommu->irte_ops->set_allocated(table, index - c + 1);
3859 
3860 			index -= count - 1;
3861 			goto out;
3862 		}
3863 
3864 		index++;
3865 	}
3866 
3867 	index = -ENOSPC;
3868 
3869 out:
3870 	raw_spin_unlock_irqrestore(&table->lock, flags);
3871 
3872 	return index;
3873 }
3874 
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3875 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3876 			  struct amd_ir_data *data)
3877 {
3878 	struct irq_remap_table *table;
3879 	struct amd_iommu *iommu;
3880 	unsigned long flags;
3881 	struct irte_ga *entry;
3882 
3883 	iommu = amd_iommu_rlookup_table[devid];
3884 	if (iommu == NULL)
3885 		return -EINVAL;
3886 
3887 	table = get_irq_table(devid);
3888 	if (!table)
3889 		return -ENOMEM;
3890 
3891 	raw_spin_lock_irqsave(&table->lock, flags);
3892 
3893 	entry = (struct irte_ga *)table->table;
3894 	entry = &entry[index];
3895 	entry->lo.fields_remap.valid = 0;
3896 	entry->hi.val = irte->hi.val;
3897 	entry->lo.val = irte->lo.val;
3898 	entry->lo.fields_remap.valid = 1;
3899 	if (data)
3900 		data->ref = entry;
3901 
3902 	raw_spin_unlock_irqrestore(&table->lock, flags);
3903 
3904 	iommu_flush_irt(iommu, devid);
3905 	iommu_completion_wait(iommu);
3906 
3907 	return 0;
3908 }
3909 
modify_irte(u16 devid,int index,union irte * irte)3910 static int modify_irte(u16 devid, int index, union irte *irte)
3911 {
3912 	struct irq_remap_table *table;
3913 	struct amd_iommu *iommu;
3914 	unsigned long flags;
3915 
3916 	iommu = amd_iommu_rlookup_table[devid];
3917 	if (iommu == NULL)
3918 		return -EINVAL;
3919 
3920 	table = get_irq_table(devid);
3921 	if (!table)
3922 		return -ENOMEM;
3923 
3924 	raw_spin_lock_irqsave(&table->lock, flags);
3925 	table->table[index] = irte->val;
3926 	raw_spin_unlock_irqrestore(&table->lock, flags);
3927 
3928 	iommu_flush_irt(iommu, devid);
3929 	iommu_completion_wait(iommu);
3930 
3931 	return 0;
3932 }
3933 
free_irte(u16 devid,int index)3934 static void free_irte(u16 devid, int index)
3935 {
3936 	struct irq_remap_table *table;
3937 	struct amd_iommu *iommu;
3938 	unsigned long flags;
3939 
3940 	iommu = amd_iommu_rlookup_table[devid];
3941 	if (iommu == NULL)
3942 		return;
3943 
3944 	table = get_irq_table(devid);
3945 	if (!table)
3946 		return;
3947 
3948 	raw_spin_lock_irqsave(&table->lock, flags);
3949 	iommu->irte_ops->clear_allocated(table, index);
3950 	raw_spin_unlock_irqrestore(&table->lock, flags);
3951 
3952 	iommu_flush_irt(iommu, devid);
3953 	iommu_completion_wait(iommu);
3954 }
3955 
irte_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3956 static void irte_prepare(void *entry,
3957 			 u32 delivery_mode, u32 dest_mode,
3958 			 u8 vector, u32 dest_apicid, int devid)
3959 {
3960 	union irte *irte = (union irte *) entry;
3961 
3962 	irte->val                = 0;
3963 	irte->fields.vector      = vector;
3964 	irte->fields.int_type    = delivery_mode;
3965 	irte->fields.destination = dest_apicid;
3966 	irte->fields.dm          = dest_mode;
3967 	irte->fields.valid       = 1;
3968 }
3969 
irte_ga_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3970 static void irte_ga_prepare(void *entry,
3971 			    u32 delivery_mode, u32 dest_mode,
3972 			    u8 vector, u32 dest_apicid, int devid)
3973 {
3974 	struct irte_ga *irte = (struct irte_ga *) entry;
3975 
3976 	irte->lo.val                      = 0;
3977 	irte->hi.val                      = 0;
3978 	irte->lo.fields_remap.int_type    = delivery_mode;
3979 	irte->lo.fields_remap.dm          = dest_mode;
3980 	irte->hi.fields.vector            = vector;
3981 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3982 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3983 	irte->lo.fields_remap.valid       = 1;
3984 }
3985 
irte_activate(void * entry,u16 devid,u16 index)3986 static void irte_activate(void *entry, u16 devid, u16 index)
3987 {
3988 	union irte *irte = (union irte *) entry;
3989 
3990 	irte->fields.valid = 1;
3991 	modify_irte(devid, index, irte);
3992 }
3993 
irte_ga_activate(void * entry,u16 devid,u16 index)3994 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3995 {
3996 	struct irte_ga *irte = (struct irte_ga *) entry;
3997 
3998 	irte->lo.fields_remap.valid = 1;
3999 	modify_irte_ga(devid, index, irte, NULL);
4000 }
4001 
irte_deactivate(void * entry,u16 devid,u16 index)4002 static void irte_deactivate(void *entry, u16 devid, u16 index)
4003 {
4004 	union irte *irte = (union irte *) entry;
4005 
4006 	irte->fields.valid = 0;
4007 	modify_irte(devid, index, irte);
4008 }
4009 
irte_ga_deactivate(void * entry,u16 devid,u16 index)4010 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
4011 {
4012 	struct irte_ga *irte = (struct irte_ga *) entry;
4013 
4014 	irte->lo.fields_remap.valid = 0;
4015 	modify_irte_ga(devid, index, irte, NULL);
4016 }
4017 
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)4018 static void irte_set_affinity(void *entry, u16 devid, u16 index,
4019 			      u8 vector, u32 dest_apicid)
4020 {
4021 	union irte *irte = (union irte *) entry;
4022 
4023 	irte->fields.vector = vector;
4024 	irte->fields.destination = dest_apicid;
4025 	modify_irte(devid, index, irte);
4026 }
4027 
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)4028 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
4029 				 u8 vector, u32 dest_apicid)
4030 {
4031 	struct irte_ga *irte = (struct irte_ga *) entry;
4032 
4033 	if (!irte->lo.fields_remap.guest_mode) {
4034 		irte->hi.fields.vector = vector;
4035 		irte->lo.fields_remap.destination =
4036 					APICID_TO_IRTE_DEST_LO(dest_apicid);
4037 		irte->hi.fields.destination =
4038 					APICID_TO_IRTE_DEST_HI(dest_apicid);
4039 		modify_irte_ga(devid, index, irte, NULL);
4040 	}
4041 }
4042 
4043 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)4044 static void irte_set_allocated(struct irq_remap_table *table, int index)
4045 {
4046 	table->table[index] = IRTE_ALLOCATED;
4047 }
4048 
irte_ga_set_allocated(struct irq_remap_table * table,int index)4049 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4050 {
4051 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4052 	struct irte_ga *irte = &ptr[index];
4053 
4054 	memset(&irte->lo.val, 0, sizeof(u64));
4055 	memset(&irte->hi.val, 0, sizeof(u64));
4056 	irte->hi.fields.vector = 0xff;
4057 }
4058 
irte_is_allocated(struct irq_remap_table * table,int index)4059 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4060 {
4061 	union irte *ptr = (union irte *)table->table;
4062 	union irte *irte = &ptr[index];
4063 
4064 	return irte->val != 0;
4065 }
4066 
irte_ga_is_allocated(struct irq_remap_table * table,int index)4067 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4068 {
4069 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4070 	struct irte_ga *irte = &ptr[index];
4071 
4072 	return irte->hi.fields.vector != 0;
4073 }
4074 
irte_clear_allocated(struct irq_remap_table * table,int index)4075 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4076 {
4077 	table->table[index] = 0;
4078 }
4079 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)4080 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4081 {
4082 	struct irte_ga *ptr = (struct irte_ga *)table->table;
4083 	struct irte_ga *irte = &ptr[index];
4084 
4085 	memset(&irte->lo.val, 0, sizeof(u64));
4086 	memset(&irte->hi.val, 0, sizeof(u64));
4087 }
4088 
get_devid(struct irq_alloc_info * info)4089 static int get_devid(struct irq_alloc_info *info)
4090 {
4091 	int devid = -1;
4092 
4093 	switch (info->type) {
4094 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4095 		devid     = get_ioapic_devid(info->ioapic_id);
4096 		break;
4097 	case X86_IRQ_ALLOC_TYPE_HPET:
4098 		devid     = get_hpet_devid(info->hpet_id);
4099 		break;
4100 	case X86_IRQ_ALLOC_TYPE_MSI:
4101 	case X86_IRQ_ALLOC_TYPE_MSIX:
4102 		devid = get_device_id(&info->msi_dev->dev);
4103 		break;
4104 	default:
4105 		BUG_ON(1);
4106 		break;
4107 	}
4108 
4109 	return devid;
4110 }
4111 
get_ir_irq_domain(struct irq_alloc_info * info)4112 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4113 {
4114 	struct amd_iommu *iommu;
4115 	int devid;
4116 
4117 	if (!info)
4118 		return NULL;
4119 
4120 	devid = get_devid(info);
4121 	if (devid >= 0) {
4122 		iommu = amd_iommu_rlookup_table[devid];
4123 		if (iommu)
4124 			return iommu->ir_domain;
4125 	}
4126 
4127 	return NULL;
4128 }
4129 
get_irq_domain(struct irq_alloc_info * info)4130 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4131 {
4132 	struct amd_iommu *iommu;
4133 	int devid;
4134 
4135 	if (!info)
4136 		return NULL;
4137 
4138 	switch (info->type) {
4139 	case X86_IRQ_ALLOC_TYPE_MSI:
4140 	case X86_IRQ_ALLOC_TYPE_MSIX:
4141 		devid = get_device_id(&info->msi_dev->dev);
4142 		if (devid < 0)
4143 			return NULL;
4144 
4145 		iommu = amd_iommu_rlookup_table[devid];
4146 		if (iommu)
4147 			return iommu->msi_domain;
4148 		break;
4149 	default:
4150 		break;
4151 	}
4152 
4153 	return NULL;
4154 }
4155 
4156 struct irq_remap_ops amd_iommu_irq_ops = {
4157 	.prepare		= amd_iommu_prepare,
4158 	.enable			= amd_iommu_enable,
4159 	.disable		= amd_iommu_disable,
4160 	.reenable		= amd_iommu_reenable,
4161 	.enable_faulting	= amd_iommu_enable_faulting,
4162 	.get_ir_irq_domain	= get_ir_irq_domain,
4163 	.get_irq_domain		= get_irq_domain,
4164 };
4165 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)4166 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4167 				       struct irq_cfg *irq_cfg,
4168 				       struct irq_alloc_info *info,
4169 				       int devid, int index, int sub_handle)
4170 {
4171 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4172 	struct msi_msg *msg = &data->msi_entry;
4173 	struct IO_APIC_route_entry *entry;
4174 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4175 
4176 	if (!iommu)
4177 		return;
4178 
4179 	data->irq_2_irte.devid = devid;
4180 	data->irq_2_irte.index = index + sub_handle;
4181 	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4182 				 apic->irq_dest_mode, irq_cfg->vector,
4183 				 irq_cfg->dest_apicid, devid);
4184 
4185 	switch (info->type) {
4186 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4187 		/* Setup IOAPIC entry */
4188 		entry = info->ioapic_entry;
4189 		info->ioapic_entry = NULL;
4190 		memset(entry, 0, sizeof(*entry));
4191 		entry->vector        = index;
4192 		entry->mask          = 0;
4193 		entry->trigger       = info->ioapic_trigger;
4194 		entry->polarity      = info->ioapic_polarity;
4195 		/* Mask level triggered irqs. */
4196 		if (info->ioapic_trigger)
4197 			entry->mask = 1;
4198 		break;
4199 
4200 	case X86_IRQ_ALLOC_TYPE_HPET:
4201 	case X86_IRQ_ALLOC_TYPE_MSI:
4202 	case X86_IRQ_ALLOC_TYPE_MSIX:
4203 		msg->address_hi = MSI_ADDR_BASE_HI;
4204 		msg->address_lo = MSI_ADDR_BASE_LO;
4205 		msg->data = irte_info->index;
4206 		break;
4207 
4208 	default:
4209 		BUG_ON(1);
4210 		break;
4211 	}
4212 }
4213 
4214 struct amd_irte_ops irte_32_ops = {
4215 	.prepare = irte_prepare,
4216 	.activate = irte_activate,
4217 	.deactivate = irte_deactivate,
4218 	.set_affinity = irte_set_affinity,
4219 	.set_allocated = irte_set_allocated,
4220 	.is_allocated = irte_is_allocated,
4221 	.clear_allocated = irte_clear_allocated,
4222 };
4223 
4224 struct amd_irte_ops irte_128_ops = {
4225 	.prepare = irte_ga_prepare,
4226 	.activate = irte_ga_activate,
4227 	.deactivate = irte_ga_deactivate,
4228 	.set_affinity = irte_ga_set_affinity,
4229 	.set_allocated = irte_ga_set_allocated,
4230 	.is_allocated = irte_ga_is_allocated,
4231 	.clear_allocated = irte_ga_clear_allocated,
4232 };
4233 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)4234 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4235 			       unsigned int nr_irqs, void *arg)
4236 {
4237 	struct irq_alloc_info *info = arg;
4238 	struct irq_data *irq_data;
4239 	struct amd_ir_data *data = NULL;
4240 	struct irq_cfg *cfg;
4241 	int i, ret, devid;
4242 	int index;
4243 
4244 	if (!info)
4245 		return -EINVAL;
4246 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4247 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4248 		return -EINVAL;
4249 
4250 	/*
4251 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
4252 	 * to support multiple MSI interrupts.
4253 	 */
4254 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4255 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4256 
4257 	devid = get_devid(info);
4258 	if (devid < 0)
4259 		return -EINVAL;
4260 
4261 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4262 	if (ret < 0)
4263 		return ret;
4264 
4265 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4266 		struct irq_remap_table *table;
4267 		struct amd_iommu *iommu;
4268 
4269 		table = alloc_irq_table(devid, NULL);
4270 		if (table) {
4271 			if (!table->min_index) {
4272 				/*
4273 				 * Keep the first 32 indexes free for IOAPIC
4274 				 * interrupts.
4275 				 */
4276 				table->min_index = 32;
4277 				iommu = amd_iommu_rlookup_table[devid];
4278 				for (i = 0; i < 32; ++i)
4279 					iommu->irte_ops->set_allocated(table, i);
4280 			}
4281 			WARN_ON(table->min_index != 32);
4282 			index = info->ioapic_pin;
4283 		} else {
4284 			index = -ENOMEM;
4285 		}
4286 	} else if (info->type == X86_IRQ_ALLOC_TYPE_MSI ||
4287 		   info->type == X86_IRQ_ALLOC_TYPE_MSIX) {
4288 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4289 
4290 		index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev);
4291 	} else {
4292 		index = alloc_irq_index(devid, nr_irqs, false, NULL);
4293 	}
4294 
4295 	if (index < 0) {
4296 		pr_warn("Failed to allocate IRTE\n");
4297 		ret = index;
4298 		goto out_free_parent;
4299 	}
4300 
4301 	for (i = 0; i < nr_irqs; i++) {
4302 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4303 		cfg = irqd_cfg(irq_data);
4304 		if (!irq_data || !cfg) {
4305 			ret = -EINVAL;
4306 			goto out_free_data;
4307 		}
4308 
4309 		ret = -ENOMEM;
4310 		data = kzalloc(sizeof(*data), GFP_KERNEL);
4311 		if (!data)
4312 			goto out_free_data;
4313 
4314 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4315 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4316 		else
4317 			data->entry = kzalloc(sizeof(struct irte_ga),
4318 						     GFP_KERNEL);
4319 		if (!data->entry) {
4320 			kfree(data);
4321 			goto out_free_data;
4322 		}
4323 
4324 		irq_data->hwirq = (devid << 16) + i;
4325 		irq_data->chip_data = data;
4326 		irq_data->chip = &amd_ir_chip;
4327 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4328 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4329 	}
4330 
4331 	return 0;
4332 
4333 out_free_data:
4334 	for (i--; i >= 0; i--) {
4335 		irq_data = irq_domain_get_irq_data(domain, virq + i);
4336 		if (irq_data)
4337 			kfree(irq_data->chip_data);
4338 	}
4339 	for (i = 0; i < nr_irqs; i++)
4340 		free_irte(devid, index + i);
4341 out_free_parent:
4342 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4343 	return ret;
4344 }
4345 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4346 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4347 			       unsigned int nr_irqs)
4348 {
4349 	struct irq_2_irte *irte_info;
4350 	struct irq_data *irq_data;
4351 	struct amd_ir_data *data;
4352 	int i;
4353 
4354 	for (i = 0; i < nr_irqs; i++) {
4355 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
4356 		if (irq_data && irq_data->chip_data) {
4357 			data = irq_data->chip_data;
4358 			irte_info = &data->irq_2_irte;
4359 			free_irte(irte_info->devid, irte_info->index);
4360 			kfree(data->entry);
4361 			kfree(data);
4362 		}
4363 	}
4364 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4365 }
4366 
4367 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4368 			       struct amd_ir_data *ir_data,
4369 			       struct irq_2_irte *irte_info,
4370 			       struct irq_cfg *cfg);
4371 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)4372 static int irq_remapping_activate(struct irq_domain *domain,
4373 				  struct irq_data *irq_data, bool reserve)
4374 {
4375 	struct amd_ir_data *data = irq_data->chip_data;
4376 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4377 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4378 	struct irq_cfg *cfg = irqd_cfg(irq_data);
4379 
4380 	if (!iommu)
4381 		return 0;
4382 
4383 	iommu->irte_ops->activate(data->entry, irte_info->devid,
4384 				  irte_info->index);
4385 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4386 	return 0;
4387 }
4388 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)4389 static void irq_remapping_deactivate(struct irq_domain *domain,
4390 				     struct irq_data *irq_data)
4391 {
4392 	struct amd_ir_data *data = irq_data->chip_data;
4393 	struct irq_2_irte *irte_info = &data->irq_2_irte;
4394 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4395 
4396 	if (iommu)
4397 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4398 					    irte_info->index);
4399 }
4400 
4401 static const struct irq_domain_ops amd_ir_domain_ops = {
4402 	.alloc = irq_remapping_alloc,
4403 	.free = irq_remapping_free,
4404 	.activate = irq_remapping_activate,
4405 	.deactivate = irq_remapping_deactivate,
4406 };
4407 
amd_iommu_activate_guest_mode(void * data)4408 int amd_iommu_activate_guest_mode(void *data)
4409 {
4410 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4411 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4412 
4413 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4414 	    !entry || entry->lo.fields_vapic.guest_mode)
4415 		return 0;
4416 
4417 	entry->lo.val = 0;
4418 	entry->hi.val = 0;
4419 
4420 	entry->lo.fields_vapic.guest_mode  = 1;
4421 	entry->lo.fields_vapic.ga_log_intr = 1;
4422 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
4423 	entry->hi.fields.vector            = ir_data->ga_vector;
4424 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
4425 
4426 	return modify_irte_ga(ir_data->irq_2_irte.devid,
4427 			      ir_data->irq_2_irte.index, entry, NULL);
4428 }
4429 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
4430 
amd_iommu_deactivate_guest_mode(void * data)4431 int amd_iommu_deactivate_guest_mode(void *data)
4432 {
4433 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4434 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4435 	struct irq_cfg *cfg = ir_data->cfg;
4436 
4437 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4438 	    !entry || !entry->lo.fields_vapic.guest_mode)
4439 		return 0;
4440 
4441 	entry->lo.val = 0;
4442 	entry->hi.val = 0;
4443 
4444 	entry->lo.fields_remap.dm          = apic->irq_dest_mode;
4445 	entry->lo.fields_remap.int_type    = apic->irq_delivery_mode;
4446 	entry->hi.fields.vector            = cfg->vector;
4447 	entry->lo.fields_remap.destination =
4448 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4449 	entry->hi.fields.destination =
4450 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4451 
4452 	return modify_irte_ga(ir_data->irq_2_irte.devid,
4453 			      ir_data->irq_2_irte.index, entry, NULL);
4454 }
4455 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
4456 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)4457 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4458 {
4459 	int ret;
4460 	struct amd_iommu *iommu;
4461 	struct amd_iommu_pi_data *pi_data = vcpu_info;
4462 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4463 	struct amd_ir_data *ir_data = data->chip_data;
4464 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4465 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4466 
4467 	/* Note:
4468 	 * This device has never been set up for guest mode.
4469 	 * we should not modify the IRTE
4470 	 */
4471 	if (!dev_data || !dev_data->use_vapic)
4472 		return 0;
4473 
4474 	ir_data->cfg = irqd_cfg(data);
4475 	pi_data->ir_data = ir_data;
4476 
4477 	/* Note:
4478 	 * SVM tries to set up for VAPIC mode, but we are in
4479 	 * legacy mode. So, we force legacy mode instead.
4480 	 */
4481 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4482 		pr_debug("%s: Fall back to using intr legacy remap\n",
4483 			 __func__);
4484 		pi_data->is_guest_mode = false;
4485 	}
4486 
4487 	iommu = amd_iommu_rlookup_table[irte_info->devid];
4488 	if (iommu == NULL)
4489 		return -EINVAL;
4490 
4491 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4492 	if (pi_data->is_guest_mode) {
4493 		ir_data->ga_root_ptr = (pi_data->base >> 12);
4494 		ir_data->ga_vector = vcpu_pi_info->vector;
4495 		ir_data->ga_tag = pi_data->ga_tag;
4496 		ret = amd_iommu_activate_guest_mode(ir_data);
4497 		if (!ret)
4498 			ir_data->cached_ga_tag = pi_data->ga_tag;
4499 	} else {
4500 		ret = amd_iommu_deactivate_guest_mode(ir_data);
4501 
4502 		/*
4503 		 * This communicates the ga_tag back to the caller
4504 		 * so that it can do all the necessary clean up.
4505 		 */
4506 		if (!ret)
4507 			ir_data->cached_ga_tag = 0;
4508 	}
4509 
4510 	return ret;
4511 }
4512 
4513 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4514 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4515 			       struct amd_ir_data *ir_data,
4516 			       struct irq_2_irte *irte_info,
4517 			       struct irq_cfg *cfg)
4518 {
4519 
4520 	/*
4521 	 * Atomically updates the IRTE with the new destination, vector
4522 	 * and flushes the interrupt entry cache.
4523 	 */
4524 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4525 				      irte_info->index, cfg->vector,
4526 				      cfg->dest_apicid);
4527 }
4528 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4529 static int amd_ir_set_affinity(struct irq_data *data,
4530 			       const struct cpumask *mask, bool force)
4531 {
4532 	struct amd_ir_data *ir_data = data->chip_data;
4533 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4534 	struct irq_cfg *cfg = irqd_cfg(data);
4535 	struct irq_data *parent = data->parent_data;
4536 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4537 	int ret;
4538 
4539 	if (!iommu)
4540 		return -ENODEV;
4541 
4542 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4543 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4544 		return ret;
4545 
4546 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4547 	/*
4548 	 * After this point, all the interrupts will start arriving
4549 	 * at the new destination. So, time to cleanup the previous
4550 	 * vector allocation.
4551 	 */
4552 	send_cleanup_vector(cfg);
4553 
4554 	return IRQ_SET_MASK_OK_DONE;
4555 }
4556 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4557 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4558 {
4559 	struct amd_ir_data *ir_data = irq_data->chip_data;
4560 
4561 	*msg = ir_data->msi_entry;
4562 }
4563 
4564 static struct irq_chip amd_ir_chip = {
4565 	.name			= "AMD-IR",
4566 	.irq_ack		= apic_ack_irq,
4567 	.irq_set_affinity	= amd_ir_set_affinity,
4568 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4569 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4570 };
4571 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4572 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4573 {
4574 	struct fwnode_handle *fn;
4575 
4576 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4577 	if (!fn)
4578 		return -ENOMEM;
4579 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4580 	irq_domain_free_fwnode(fn);
4581 	if (!iommu->ir_domain)
4582 		return -ENOMEM;
4583 
4584 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4585 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4586 							     "AMD-IR-MSI",
4587 							     iommu->index);
4588 	return 0;
4589 }
4590 
amd_iommu_update_ga(int cpu,bool is_run,void * data)4591 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4592 {
4593 	unsigned long flags;
4594 	struct amd_iommu *iommu;
4595 	struct irq_remap_table *table;
4596 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4597 	int devid = ir_data->irq_2_irte.devid;
4598 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4599 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4600 
4601 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4602 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4603 		return 0;
4604 
4605 	iommu = amd_iommu_rlookup_table[devid];
4606 	if (!iommu)
4607 		return -ENODEV;
4608 
4609 	table = get_irq_table(devid);
4610 	if (!table)
4611 		return -ENODEV;
4612 
4613 	raw_spin_lock_irqsave(&table->lock, flags);
4614 
4615 	if (ref->lo.fields_vapic.guest_mode) {
4616 		if (cpu >= 0) {
4617 			ref->lo.fields_vapic.destination =
4618 						APICID_TO_IRTE_DEST_LO(cpu);
4619 			ref->hi.fields.destination =
4620 						APICID_TO_IRTE_DEST_HI(cpu);
4621 		}
4622 		ref->lo.fields_vapic.is_run = is_run;
4623 		barrier();
4624 	}
4625 
4626 	raw_spin_unlock_irqrestore(&table->lock, flags);
4627 
4628 	iommu_flush_irt(iommu, devid);
4629 	iommu_completion_wait(iommu);
4630 	return 0;
4631 }
4632 EXPORT_SYMBOL(amd_iommu_update_ga);
4633 #endif
4634