1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43
44 #include <drm/ttm/ttm_bo_api.h>
45 #include <drm/ttm/ttm_bo_driver.h>
46 #include <drm/ttm/ttm_placement.h>
47 #include <drm/ttm/ttm_module.h>
48 #include <drm/ttm/ttm_page_alloc.h>
49
50 #include <drm/drm_debugfs.h>
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "bif/bif_4_1_d.h"
59
60 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
61 struct ttm_mem_reg *mem, unsigned num_pages,
62 uint64_t offset, unsigned window,
63 struct amdgpu_ring *ring,
64 uint64_t *addr);
65
66 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
67 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
68
amdgpu_invalidate_caches(struct ttm_bo_device * bdev,uint32_t flags)69 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
70 {
71 return 0;
72 }
73
74 /**
75 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
76 * memory request.
77 *
78 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
79 * @type: The type of memory requested
80 * @man: The memory type manager for each domain
81 *
82 * This is called by ttm_bo_init_mm() when a buffer object is being
83 * initialized.
84 */
amdgpu_init_mem_type(struct ttm_bo_device * bdev,uint32_t type,struct ttm_mem_type_manager * man)85 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
86 struct ttm_mem_type_manager *man)
87 {
88 struct amdgpu_device *adev;
89
90 adev = amdgpu_ttm_adev(bdev);
91
92 switch (type) {
93 case TTM_PL_SYSTEM:
94 /* System memory */
95 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
96 man->available_caching = TTM_PL_MASK_CACHING;
97 man->default_caching = TTM_PL_FLAG_CACHED;
98 break;
99 case TTM_PL_TT:
100 /* GTT memory */
101 man->func = &amdgpu_gtt_mgr_func;
102 man->gpu_offset = adev->gmc.gart_start;
103 man->available_caching = TTM_PL_MASK_CACHING;
104 man->default_caching = TTM_PL_FLAG_CACHED;
105 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
106 break;
107 case TTM_PL_VRAM:
108 /* "On-card" video ram */
109 man->func = &amdgpu_vram_mgr_func;
110 man->gpu_offset = adev->gmc.vram_start;
111 man->flags = TTM_MEMTYPE_FLAG_FIXED |
112 TTM_MEMTYPE_FLAG_MAPPABLE;
113 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
114 man->default_caching = TTM_PL_FLAG_WC;
115 break;
116 case AMDGPU_PL_GDS:
117 case AMDGPU_PL_GWS:
118 case AMDGPU_PL_OA:
119 /* On-chip GDS memory*/
120 man->func = &ttm_bo_manager_func;
121 man->gpu_offset = 0;
122 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
123 man->available_caching = TTM_PL_FLAG_UNCACHED;
124 man->default_caching = TTM_PL_FLAG_UNCACHED;
125 break;
126 default:
127 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
128 return -EINVAL;
129 }
130 return 0;
131 }
132
133 /**
134 * amdgpu_evict_flags - Compute placement flags
135 *
136 * @bo: The buffer object to evict
137 * @placement: Possible destination(s) for evicted BO
138 *
139 * Fill in placement data when ttm_bo_evict() is called
140 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)141 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
142 struct ttm_placement *placement)
143 {
144 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
145 struct amdgpu_bo *abo;
146 static const struct ttm_place placements = {
147 .fpfn = 0,
148 .lpfn = 0,
149 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
150 };
151
152 /* Don't handle scatter gather BOs */
153 if (bo->type == ttm_bo_type_sg) {
154 placement->num_placement = 0;
155 placement->num_busy_placement = 0;
156 return;
157 }
158
159 /* Object isn't an AMDGPU object so ignore */
160 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
161 placement->placement = &placements;
162 placement->busy_placement = &placements;
163 placement->num_placement = 1;
164 placement->num_busy_placement = 1;
165 return;
166 }
167
168 abo = ttm_to_amdgpu_bo(bo);
169 switch (bo->mem.mem_type) {
170 case AMDGPU_PL_GDS:
171 case AMDGPU_PL_GWS:
172 case AMDGPU_PL_OA:
173 placement->num_placement = 0;
174 placement->num_busy_placement = 0;
175 return;
176
177 case TTM_PL_VRAM:
178 if (!adev->mman.buffer_funcs_enabled) {
179 /* Move to system memory */
180 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
181 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
182 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
183 amdgpu_bo_in_cpu_visible_vram(abo)) {
184
185 /* Try evicting to the CPU inaccessible part of VRAM
186 * first, but only set GTT as busy placement, so this
187 * BO will be evicted to GTT rather than causing other
188 * BOs to be evicted from VRAM
189 */
190 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
191 AMDGPU_GEM_DOMAIN_GTT);
192 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
193 abo->placements[0].lpfn = 0;
194 abo->placement.busy_placement = &abo->placements[1];
195 abo->placement.num_busy_placement = 1;
196 } else {
197 /* Move to GTT memory */
198 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
199 }
200 break;
201 case TTM_PL_TT:
202 default:
203 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
204 break;
205 }
206 *placement = abo->placement;
207 }
208
209 /**
210 * amdgpu_verify_access - Verify access for a mmap call
211 *
212 * @bo: The buffer object to map
213 * @filp: The file pointer from the process performing the mmap
214 *
215 * This is called by ttm_bo_mmap() to verify whether a process
216 * has the right to mmap a BO to their process space.
217 */
amdgpu_verify_access(struct ttm_buffer_object * bo,struct file * filp)218 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
219 {
220 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
221
222 /*
223 * Don't verify access for KFD BOs. They don't have a GEM
224 * object associated with them.
225 */
226 if (abo->kfd_bo)
227 return 0;
228
229 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
230 return -EPERM;
231 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
232 filp->private_data);
233 }
234
235 /**
236 * amdgpu_move_null - Register memory for a buffer object
237 *
238 * @bo: The bo to assign the memory to
239 * @new_mem: The memory to be assigned.
240 *
241 * Assign the memory from new_mem to the memory of the buffer object bo.
242 */
amdgpu_move_null(struct ttm_buffer_object * bo,struct ttm_mem_reg * new_mem)243 static void amdgpu_move_null(struct ttm_buffer_object *bo,
244 struct ttm_mem_reg *new_mem)
245 {
246 struct ttm_mem_reg *old_mem = &bo->mem;
247
248 BUG_ON(old_mem->mm_node != NULL);
249 *old_mem = *new_mem;
250 new_mem->mm_node = NULL;
251 }
252
253 /**
254 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
255 *
256 * @bo: The bo to assign the memory to.
257 * @mm_node: Memory manager node for drm allocator.
258 * @mem: The region where the bo resides.
259 *
260 */
amdgpu_mm_node_addr(struct ttm_buffer_object * bo,struct drm_mm_node * mm_node,struct ttm_mem_reg * mem)261 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
262 struct drm_mm_node *mm_node,
263 struct ttm_mem_reg *mem)
264 {
265 uint64_t addr = 0;
266
267 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
268 addr = mm_node->start << PAGE_SHIFT;
269 addr += bo->bdev->man[mem->mem_type].gpu_offset;
270 }
271 return addr;
272 }
273
274 /**
275 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
276 * @offset. It also modifies the offset to be within the drm_mm_node returned
277 *
278 * @mem: The region where the bo resides.
279 * @offset: The offset that drm_mm_node is used for finding.
280 *
281 */
amdgpu_find_mm_node(struct ttm_mem_reg * mem,unsigned long * offset)282 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
283 unsigned long *offset)
284 {
285 struct drm_mm_node *mm_node = mem->mm_node;
286
287 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
288 *offset -= (mm_node->size << PAGE_SHIFT);
289 ++mm_node;
290 }
291 return mm_node;
292 }
293
294 /**
295 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
296 *
297 * The function copies @size bytes from {src->mem + src->offset} to
298 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
299 * move and different for a BO to BO copy.
300 *
301 * @f: Returns the last fence if multiple jobs are submitted.
302 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,struct amdgpu_copy_mem * src,struct amdgpu_copy_mem * dst,uint64_t size,struct dma_resv * resv,struct dma_fence ** f)303 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
304 struct amdgpu_copy_mem *src,
305 struct amdgpu_copy_mem *dst,
306 uint64_t size,
307 struct dma_resv *resv,
308 struct dma_fence **f)
309 {
310 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
311 struct drm_mm_node *src_mm, *dst_mm;
312 uint64_t src_node_start, dst_node_start, src_node_size,
313 dst_node_size, src_page_offset, dst_page_offset;
314 struct dma_fence *fence = NULL;
315 int r = 0;
316 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
317 AMDGPU_GPU_PAGE_SIZE);
318
319 if (!adev->mman.buffer_funcs_enabled) {
320 DRM_ERROR("Trying to move memory with ring turned off.\n");
321 return -EINVAL;
322 }
323
324 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
325 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
326 src->offset;
327 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
328 src_page_offset = src_node_start & (PAGE_SIZE - 1);
329
330 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
331 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
332 dst->offset;
333 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
334 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
335
336 mutex_lock(&adev->mman.gtt_window_lock);
337
338 while (size) {
339 unsigned long cur_size;
340 uint64_t from = src_node_start, to = dst_node_start;
341 struct dma_fence *next;
342
343 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
344 * begins at an offset, then adjust the size accordingly
345 */
346 cur_size = min3(min(src_node_size, dst_node_size), size,
347 GTT_MAX_BYTES);
348 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
349 cur_size + dst_page_offset > GTT_MAX_BYTES)
350 cur_size -= max(src_page_offset, dst_page_offset);
351
352 /* Map only what needs to be accessed. Map src to window 0 and
353 * dst to window 1
354 */
355 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
356 r = amdgpu_map_buffer(src->bo, src->mem,
357 PFN_UP(cur_size + src_page_offset),
358 src_node_start, 0, ring,
359 &from);
360 if (r)
361 goto error;
362 /* Adjust the offset because amdgpu_map_buffer returns
363 * start of mapped page
364 */
365 from += src_page_offset;
366 }
367
368 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
369 r = amdgpu_map_buffer(dst->bo, dst->mem,
370 PFN_UP(cur_size + dst_page_offset),
371 dst_node_start, 1, ring,
372 &to);
373 if (r)
374 goto error;
375 to += dst_page_offset;
376 }
377
378 r = amdgpu_copy_buffer(ring, from, to, cur_size,
379 resv, &next, false, true);
380 if (r)
381 goto error;
382
383 dma_fence_put(fence);
384 fence = next;
385
386 size -= cur_size;
387 if (!size)
388 break;
389
390 src_node_size -= cur_size;
391 if (!src_node_size) {
392 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
393 src->mem);
394 src_node_size = (src_mm->size << PAGE_SHIFT);
395 src_page_offset = 0;
396 } else {
397 src_node_start += cur_size;
398 src_page_offset = src_node_start & (PAGE_SIZE - 1);
399 }
400 dst_node_size -= cur_size;
401 if (!dst_node_size) {
402 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
403 dst->mem);
404 dst_node_size = (dst_mm->size << PAGE_SHIFT);
405 dst_page_offset = 0;
406 } else {
407 dst_node_start += cur_size;
408 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
409 }
410 }
411 error:
412 mutex_unlock(&adev->mman.gtt_window_lock);
413 if (f)
414 *f = dma_fence_get(fence);
415 dma_fence_put(fence);
416 return r;
417 }
418
419 /**
420 * amdgpu_move_blit - Copy an entire buffer to another buffer
421 *
422 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
423 * help move buffers to and from VRAM.
424 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,bool no_wait_gpu,struct ttm_mem_reg * new_mem,struct ttm_mem_reg * old_mem)425 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
426 bool evict, bool no_wait_gpu,
427 struct ttm_mem_reg *new_mem,
428 struct ttm_mem_reg *old_mem)
429 {
430 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
431 struct amdgpu_copy_mem src, dst;
432 struct dma_fence *fence = NULL;
433 int r;
434
435 src.bo = bo;
436 dst.bo = bo;
437 src.mem = old_mem;
438 dst.mem = new_mem;
439 src.offset = 0;
440 dst.offset = 0;
441
442 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
443 new_mem->num_pages << PAGE_SHIFT,
444 bo->base.resv, &fence);
445 if (r)
446 goto error;
447
448 /* clear the space being freed */
449 if (old_mem->mem_type == TTM_PL_VRAM &&
450 (ttm_to_amdgpu_bo(bo)->flags &
451 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
452 struct dma_fence *wipe_fence = NULL;
453
454 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
455 NULL, &wipe_fence);
456 if (r) {
457 goto error;
458 } else if (wipe_fence) {
459 dma_fence_put(fence);
460 fence = wipe_fence;
461 }
462 }
463
464 /* Always block for VM page tables before committing the new location */
465 if (bo->type == ttm_bo_type_kernel)
466 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
467 else
468 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
469 dma_fence_put(fence);
470 return r;
471
472 error:
473 if (fence)
474 dma_fence_wait(fence, false);
475 dma_fence_put(fence);
476 return r;
477 }
478
479 /**
480 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
481 *
482 * Called by amdgpu_bo_move().
483 */
amdgpu_move_vram_ram(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)484 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
485 struct ttm_operation_ctx *ctx,
486 struct ttm_mem_reg *new_mem)
487 {
488 struct amdgpu_device *adev;
489 struct ttm_mem_reg *old_mem = &bo->mem;
490 struct ttm_mem_reg tmp_mem;
491 struct ttm_place placements;
492 struct ttm_placement placement;
493 int r;
494
495 adev = amdgpu_ttm_adev(bo->bdev);
496
497 /* create space/pages for new_mem in GTT space */
498 tmp_mem = *new_mem;
499 tmp_mem.mm_node = NULL;
500 placement.num_placement = 1;
501 placement.placement = &placements;
502 placement.num_busy_placement = 1;
503 placement.busy_placement = &placements;
504 placements.fpfn = 0;
505 placements.lpfn = 0;
506 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
507 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
508 if (unlikely(r)) {
509 pr_err("Failed to find GTT space for blit from VRAM\n");
510 return r;
511 }
512
513 /* set caching flags */
514 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
515 if (unlikely(r)) {
516 goto out_cleanup;
517 }
518
519 /* Bind the memory to the GTT space */
520 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
521 if (unlikely(r)) {
522 goto out_cleanup;
523 }
524
525 /* blit VRAM to GTT */
526 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
527 if (unlikely(r)) {
528 goto out_cleanup;
529 }
530
531 /* move BO (in tmp_mem) to new_mem */
532 r = ttm_bo_move_ttm(bo, ctx, new_mem);
533 out_cleanup:
534 ttm_bo_mem_put(bo, &tmp_mem);
535 return r;
536 }
537
538 /**
539 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
540 *
541 * Called by amdgpu_bo_move().
542 */
amdgpu_move_ram_vram(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)543 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
544 struct ttm_operation_ctx *ctx,
545 struct ttm_mem_reg *new_mem)
546 {
547 struct amdgpu_device *adev;
548 struct ttm_mem_reg *old_mem = &bo->mem;
549 struct ttm_mem_reg tmp_mem;
550 struct ttm_placement placement;
551 struct ttm_place placements;
552 int r;
553
554 adev = amdgpu_ttm_adev(bo->bdev);
555
556 /* make space in GTT for old_mem buffer */
557 tmp_mem = *new_mem;
558 tmp_mem.mm_node = NULL;
559 placement.num_placement = 1;
560 placement.placement = &placements;
561 placement.num_busy_placement = 1;
562 placement.busy_placement = &placements;
563 placements.fpfn = 0;
564 placements.lpfn = 0;
565 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
566 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
567 if (unlikely(r)) {
568 pr_err("Failed to find GTT space for blit to VRAM\n");
569 return r;
570 }
571
572 /* move/bind old memory to GTT space */
573 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
574 if (unlikely(r)) {
575 goto out_cleanup;
576 }
577
578 /* copy to VRAM */
579 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
580 if (unlikely(r)) {
581 goto out_cleanup;
582 }
583 out_cleanup:
584 ttm_bo_mem_put(bo, &tmp_mem);
585 return r;
586 }
587
588 /**
589 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
590 *
591 * Called by amdgpu_bo_move()
592 */
amdgpu_mem_visible(struct amdgpu_device * adev,struct ttm_mem_reg * mem)593 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
594 struct ttm_mem_reg *mem)
595 {
596 struct drm_mm_node *nodes = mem->mm_node;
597
598 if (mem->mem_type == TTM_PL_SYSTEM ||
599 mem->mem_type == TTM_PL_TT)
600 return true;
601 if (mem->mem_type != TTM_PL_VRAM)
602 return false;
603
604 /* ttm_mem_reg_ioremap only supports contiguous memory */
605 if (nodes->size != mem->num_pages)
606 return false;
607
608 return ((nodes->start + nodes->size) << PAGE_SHIFT)
609 <= adev->gmc.visible_vram_size;
610 }
611
612 /**
613 * amdgpu_bo_move - Move a buffer object to a new memory location
614 *
615 * Called by ttm_bo_handle_move_mem()
616 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_mem_reg * new_mem)617 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
618 struct ttm_operation_ctx *ctx,
619 struct ttm_mem_reg *new_mem)
620 {
621 struct amdgpu_device *adev;
622 struct amdgpu_bo *abo;
623 struct ttm_mem_reg *old_mem = &bo->mem;
624 int r;
625
626 /* Can't move a pinned BO */
627 abo = ttm_to_amdgpu_bo(bo);
628 if (WARN_ON_ONCE(abo->pin_count > 0))
629 return -EINVAL;
630
631 adev = amdgpu_ttm_adev(bo->bdev);
632
633 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
634 amdgpu_move_null(bo, new_mem);
635 return 0;
636 }
637 if ((old_mem->mem_type == TTM_PL_TT &&
638 new_mem->mem_type == TTM_PL_SYSTEM) ||
639 (old_mem->mem_type == TTM_PL_SYSTEM &&
640 new_mem->mem_type == TTM_PL_TT)) {
641 /* bind is enough */
642 amdgpu_move_null(bo, new_mem);
643 return 0;
644 }
645 if (old_mem->mem_type == AMDGPU_PL_GDS ||
646 old_mem->mem_type == AMDGPU_PL_GWS ||
647 old_mem->mem_type == AMDGPU_PL_OA ||
648 new_mem->mem_type == AMDGPU_PL_GDS ||
649 new_mem->mem_type == AMDGPU_PL_GWS ||
650 new_mem->mem_type == AMDGPU_PL_OA) {
651 /* Nothing to save here */
652 amdgpu_move_null(bo, new_mem);
653 return 0;
654 }
655
656 if (!adev->mman.buffer_funcs_enabled) {
657 r = -ENODEV;
658 goto memcpy;
659 }
660
661 if (old_mem->mem_type == TTM_PL_VRAM &&
662 new_mem->mem_type == TTM_PL_SYSTEM) {
663 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
664 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
665 new_mem->mem_type == TTM_PL_VRAM) {
666 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
667 } else {
668 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
669 new_mem, old_mem);
670 }
671
672 if (r) {
673 memcpy:
674 /* Check that all memory is CPU accessible */
675 if (!amdgpu_mem_visible(adev, old_mem) ||
676 !amdgpu_mem_visible(adev, new_mem)) {
677 pr_err("Move buffer fallback to memcpy unavailable\n");
678 return r;
679 }
680
681 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
682 if (r)
683 return r;
684 }
685
686 if (bo->type == ttm_bo_type_device &&
687 new_mem->mem_type == TTM_PL_VRAM &&
688 old_mem->mem_type != TTM_PL_VRAM) {
689 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
690 * accesses the BO after it's moved.
691 */
692 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
693 }
694
695 /* update statistics */
696 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
697 return 0;
698 }
699
700 /**
701 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
702 *
703 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
704 */
amdgpu_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)705 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
706 {
707 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
708 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
709 struct drm_mm_node *mm_node = mem->mm_node;
710
711 mem->bus.addr = NULL;
712 mem->bus.offset = 0;
713 mem->bus.size = mem->num_pages << PAGE_SHIFT;
714 mem->bus.base = 0;
715 mem->bus.is_iomem = false;
716 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
717 return -EINVAL;
718 switch (mem->mem_type) {
719 case TTM_PL_SYSTEM:
720 /* system memory */
721 return 0;
722 case TTM_PL_TT:
723 break;
724 case TTM_PL_VRAM:
725 mem->bus.offset = mem->start << PAGE_SHIFT;
726 /* check if it's visible */
727 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
728 return -EINVAL;
729 /* Only physically contiguous buffers apply. In a contiguous
730 * buffer, size of the first mm_node would match the number of
731 * pages in ttm_mem_reg.
732 */
733 if (adev->mman.aper_base_kaddr &&
734 (mm_node->size == mem->num_pages))
735 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
736 mem->bus.offset;
737
738 mem->bus.base = adev->gmc.aper_base;
739 mem->bus.is_iomem = true;
740 break;
741 default:
742 return -EINVAL;
743 }
744 return 0;
745 }
746
amdgpu_ttm_io_mem_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)747 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
748 {
749 }
750
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)751 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
752 unsigned long page_offset)
753 {
754 struct drm_mm_node *mm;
755 unsigned long offset = (page_offset << PAGE_SHIFT);
756
757 mm = amdgpu_find_mm_node(&bo->mem, &offset);
758 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
759 (offset >> PAGE_SHIFT);
760 }
761
762 /*
763 * TTM backend functions.
764 */
765 struct amdgpu_ttm_tt {
766 struct ttm_dma_tt ttm;
767 u64 offset;
768 uint64_t userptr;
769 struct task_struct *usertask;
770 uint32_t userflags;
771 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
772 struct hmm_range *range;
773 #endif
774 };
775
776 /**
777 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
778 * memory and start HMM tracking CPU page table update
779 *
780 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
781 * once afterwards to stop HMM tracking
782 */
783 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
784
785 #define MAX_RETRY_HMM_RANGE_FAULT 16
786
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages)787 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
788 {
789 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
790 struct ttm_tt *ttm = bo->tbo.ttm;
791 struct amdgpu_ttm_tt *gtt = (void *)ttm;
792 struct mm_struct *mm;
793 unsigned long start = gtt->userptr;
794 struct vm_area_struct *vma;
795 struct hmm_range *range;
796 unsigned long i;
797 uint64_t *pfns;
798 int r = 0;
799
800 if (unlikely(!mirror)) {
801 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
802 return -EFAULT;
803 }
804
805 mm = mirror->hmm->mmu_notifier.mm;
806 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
807 return -ESRCH;
808
809 range = kzalloc(sizeof(*range), GFP_KERNEL);
810 if (unlikely(!range)) {
811 r = -ENOMEM;
812 goto out;
813 }
814
815 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
816 if (unlikely(!pfns)) {
817 r = -ENOMEM;
818 goto out_free_ranges;
819 }
820
821 amdgpu_hmm_init_range(range);
822 range->default_flags = range->flags[HMM_PFN_VALID];
823 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
824 0 : range->flags[HMM_PFN_WRITE];
825 range->pfn_flags_mask = 0;
826 range->pfns = pfns;
827 range->start = start;
828 range->end = start + ttm->num_pages * PAGE_SIZE;
829
830 hmm_range_register(range, mirror);
831
832 /*
833 * Just wait for range to be valid, safe to ignore return value as we
834 * will use the return value of hmm_range_fault() below under the
835 * mmap_sem to ascertain the validity of the range.
836 */
837 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
838
839 down_read(&mm->mmap_sem);
840 vma = find_vma(mm, start);
841 if (unlikely(!vma || start < vma->vm_start)) {
842 r = -EFAULT;
843 goto out_unlock;
844 }
845 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
846 vma->vm_file)) {
847 r = -EPERM;
848 goto out_unlock;
849 }
850
851 r = hmm_range_fault(range, 0);
852 up_read(&mm->mmap_sem);
853
854 if (unlikely(r < 0))
855 goto out_free_pfns;
856
857 for (i = 0; i < ttm->num_pages; i++) {
858 pages[i] = hmm_device_entry_to_page(range, pfns[i]);
859 if (unlikely(!pages[i])) {
860 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
861 i, pfns[i]);
862 r = -ENOMEM;
863
864 goto out_free_pfns;
865 }
866 }
867
868 gtt->range = range;
869 mmput(mm);
870
871 return 0;
872
873 out_unlock:
874 up_read(&mm->mmap_sem);
875 out_free_pfns:
876 hmm_range_unregister(range);
877 kvfree(pfns);
878 out_free_ranges:
879 kfree(range);
880 out:
881 mmput(mm);
882 return r;
883 }
884
885 /**
886 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
887 * Check if the pages backing this ttm range have been invalidated
888 *
889 * Returns: true if pages are still valid
890 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm)891 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
892 {
893 struct amdgpu_ttm_tt *gtt = (void *)ttm;
894 bool r = false;
895
896 if (!gtt || !gtt->userptr)
897 return false;
898
899 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
900 gtt->userptr, ttm->num_pages);
901
902 WARN_ONCE(!gtt->range || !gtt->range->pfns,
903 "No user pages to check\n");
904
905 if (gtt->range) {
906 r = hmm_range_valid(gtt->range);
907 hmm_range_unregister(gtt->range);
908
909 kvfree(gtt->range->pfns);
910 kfree(gtt->range);
911 gtt->range = NULL;
912 }
913
914 return r;
915 }
916 #endif
917
918 /**
919 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
920 *
921 * Called by amdgpu_cs_list_validate(). This creates the page list
922 * that backs user memory and will ultimately be mapped into the device
923 * address space.
924 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)925 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
926 {
927 unsigned long i;
928
929 for (i = 0; i < ttm->num_pages; ++i)
930 ttm->pages[i] = pages ? pages[i] : NULL;
931 }
932
933 /**
934 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
935 *
936 * Called by amdgpu_ttm_backend_bind()
937 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_tt * ttm)938 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
939 {
940 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
941 struct amdgpu_ttm_tt *gtt = (void *)ttm;
942 unsigned nents;
943 int r;
944
945 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
946 enum dma_data_direction direction = write ?
947 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
948
949 /* Allocate an SG array and squash pages into it */
950 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
951 ttm->num_pages << PAGE_SHIFT,
952 GFP_KERNEL);
953 if (r)
954 goto release_sg;
955
956 /* Map SG to device */
957 r = -ENOMEM;
958 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
959 if (nents != ttm->sg->nents)
960 goto release_sg;
961
962 /* convert SG to linear array of pages and dma addresses */
963 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
964 gtt->ttm.dma_address, ttm->num_pages);
965
966 return 0;
967
968 release_sg:
969 kfree(ttm->sg);
970 return r;
971 }
972
973 /**
974 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
975 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_tt * ttm)976 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
977 {
978 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
979 struct amdgpu_ttm_tt *gtt = (void *)ttm;
980
981 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
982 enum dma_data_direction direction = write ?
983 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
984
985 /* double check that we don't free the table twice */
986 if (!ttm->sg->sgl)
987 return;
988
989 /* unmap the pages mapped to the device */
990 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
991
992 sg_free_table(ttm->sg);
993
994 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
995 if (gtt->range &&
996 ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
997 gtt->range->pfns[0]))
998 WARN_ONCE(1, "Missing get_user_page_done\n");
999 #endif
1000 }
1001
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)1002 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1003 struct ttm_buffer_object *tbo,
1004 uint64_t flags)
1005 {
1006 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1007 struct ttm_tt *ttm = tbo->ttm;
1008 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1009 int r;
1010
1011 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1012 uint64_t page_idx = 1;
1013
1014 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1015 ttm->pages, gtt->ttm.dma_address, flags);
1016 if (r)
1017 goto gart_bind_fail;
1018
1019 /* Patch mtype of the second part BO */
1020 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1021 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1022
1023 r = amdgpu_gart_bind(adev,
1024 gtt->offset + (page_idx << PAGE_SHIFT),
1025 ttm->num_pages - page_idx,
1026 &ttm->pages[page_idx],
1027 &(gtt->ttm.dma_address[page_idx]), flags);
1028 } else {
1029 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1030 ttm->pages, gtt->ttm.dma_address, flags);
1031 }
1032
1033 gart_bind_fail:
1034 if (r)
1035 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1036 ttm->num_pages, gtt->offset);
1037
1038 return r;
1039 }
1040
1041 /**
1042 * amdgpu_ttm_backend_bind - Bind GTT memory
1043 *
1044 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1045 * This handles binding GTT memory to the device address space.
1046 */
amdgpu_ttm_backend_bind(struct ttm_tt * ttm,struct ttm_mem_reg * bo_mem)1047 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1048 struct ttm_mem_reg *bo_mem)
1049 {
1050 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1051 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1052 uint64_t flags;
1053 int r = 0;
1054
1055 if (gtt->userptr) {
1056 r = amdgpu_ttm_tt_pin_userptr(ttm);
1057 if (r) {
1058 DRM_ERROR("failed to pin userptr\n");
1059 return r;
1060 }
1061 }
1062 if (!ttm->num_pages) {
1063 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1064 ttm->num_pages, bo_mem, ttm);
1065 }
1066
1067 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1068 bo_mem->mem_type == AMDGPU_PL_GWS ||
1069 bo_mem->mem_type == AMDGPU_PL_OA)
1070 return -EINVAL;
1071
1072 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1073 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1074 return 0;
1075 }
1076
1077 /* compute PTE flags relevant to this BO memory */
1078 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1079
1080 /* bind pages into GART page tables */
1081 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1082 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1083 ttm->pages, gtt->ttm.dma_address, flags);
1084
1085 if (r)
1086 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1087 ttm->num_pages, gtt->offset);
1088 return r;
1089 }
1090
1091 /**
1092 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1093 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)1094 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1095 {
1096 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1097 struct ttm_operation_ctx ctx = { false, false };
1098 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1099 struct ttm_mem_reg tmp;
1100 struct ttm_placement placement;
1101 struct ttm_place placements;
1102 uint64_t addr, flags;
1103 int r;
1104
1105 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1106 return 0;
1107
1108 addr = amdgpu_gmc_agp_addr(bo);
1109 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1110 bo->mem.start = addr >> PAGE_SHIFT;
1111 } else {
1112
1113 /* allocate GART space */
1114 tmp = bo->mem;
1115 tmp.mm_node = NULL;
1116 placement.num_placement = 1;
1117 placement.placement = &placements;
1118 placement.num_busy_placement = 1;
1119 placement.busy_placement = &placements;
1120 placements.fpfn = 0;
1121 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1122 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1123 TTM_PL_FLAG_TT;
1124
1125 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1126 if (unlikely(r))
1127 return r;
1128
1129 /* compute PTE flags for this buffer object */
1130 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1131
1132 /* Bind pages */
1133 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1134 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1135 if (unlikely(r)) {
1136 ttm_bo_mem_put(bo, &tmp);
1137 return r;
1138 }
1139
1140 ttm_bo_mem_put(bo, &bo->mem);
1141 bo->mem = tmp;
1142 }
1143
1144 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1145 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1146
1147 return 0;
1148 }
1149
1150 /**
1151 * amdgpu_ttm_recover_gart - Rebind GTT pages
1152 *
1153 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1154 * rebind GTT pages during a GPU reset.
1155 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1156 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1157 {
1158 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1159 uint64_t flags;
1160 int r;
1161
1162 if (!tbo->ttm)
1163 return 0;
1164
1165 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1166 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1167
1168 return r;
1169 }
1170
1171 /**
1172 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1173 *
1174 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1175 * ttm_tt_destroy().
1176 */
amdgpu_ttm_backend_unbind(struct ttm_tt * ttm)1177 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1178 {
1179 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1180 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1181 int r;
1182
1183 /* if the pages have userptr pinning then clear that first */
1184 if (gtt->userptr)
1185 amdgpu_ttm_tt_unpin_userptr(ttm);
1186
1187 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1188 return 0;
1189
1190 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1191 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1192 if (r)
1193 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1194 gtt->ttm.ttm.num_pages, gtt->offset);
1195 return r;
1196 }
1197
amdgpu_ttm_backend_destroy(struct ttm_tt * ttm)1198 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1199 {
1200 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1201
1202 if (gtt->usertask)
1203 put_task_struct(gtt->usertask);
1204
1205 ttm_dma_tt_fini(>t->ttm);
1206 kfree(gtt);
1207 }
1208
1209 static struct ttm_backend_func amdgpu_backend_func = {
1210 .bind = &amdgpu_ttm_backend_bind,
1211 .unbind = &amdgpu_ttm_backend_unbind,
1212 .destroy = &amdgpu_ttm_backend_destroy,
1213 };
1214
1215 /**
1216 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1217 *
1218 * @bo: The buffer object to create a GTT ttm_tt object around
1219 *
1220 * Called by ttm_tt_create().
1221 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1222 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1223 uint32_t page_flags)
1224 {
1225 struct amdgpu_device *adev;
1226 struct amdgpu_ttm_tt *gtt;
1227
1228 adev = amdgpu_ttm_adev(bo->bdev);
1229
1230 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1231 if (gtt == NULL) {
1232 return NULL;
1233 }
1234 gtt->ttm.ttm.func = &amdgpu_backend_func;
1235
1236 /* allocate space for the uninitialized page entries */
1237 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1238 kfree(gtt);
1239 return NULL;
1240 }
1241 return >t->ttm.ttm;
1242 }
1243
1244 /**
1245 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1246 *
1247 * Map the pages of a ttm_tt object to an address space visible
1248 * to the underlying device.
1249 */
amdgpu_ttm_tt_populate(struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1250 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1251 struct ttm_operation_ctx *ctx)
1252 {
1253 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1254 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1255 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1256
1257 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1258 if (gtt && gtt->userptr) {
1259 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1260 if (!ttm->sg)
1261 return -ENOMEM;
1262
1263 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1264 ttm->state = tt_unbound;
1265 return 0;
1266 }
1267
1268 if (slave && ttm->sg) {
1269 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1270 gtt->ttm.dma_address,
1271 ttm->num_pages);
1272 ttm->state = tt_unbound;
1273 return 0;
1274 }
1275
1276 #ifdef CONFIG_SWIOTLB
1277 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1278 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1279 }
1280 #endif
1281
1282 /* fall back to generic helper to populate the page array
1283 * and map them to the device */
1284 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1285 }
1286
1287 /**
1288 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1289 *
1290 * Unmaps pages of a ttm_tt object from the device address space and
1291 * unpopulates the page array backing it.
1292 */
amdgpu_ttm_tt_unpopulate(struct ttm_tt * ttm)1293 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1294 {
1295 struct amdgpu_device *adev;
1296 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1297 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1298
1299 if (gtt && gtt->userptr) {
1300 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1301 kfree(ttm->sg);
1302 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1303 return;
1304 }
1305
1306 if (slave)
1307 return;
1308
1309 adev = amdgpu_ttm_adev(ttm->bdev);
1310
1311 #ifdef CONFIG_SWIOTLB
1312 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1313 ttm_dma_unpopulate(>t->ttm, adev->dev);
1314 return;
1315 }
1316 #endif
1317
1318 /* fall back to generic helper to unmap and unpopulate array */
1319 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1320 }
1321
1322 /**
1323 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1324 * task
1325 *
1326 * @ttm: The ttm_tt object to bind this userptr object to
1327 * @addr: The address in the current tasks VM space to use
1328 * @flags: Requirements of userptr object.
1329 *
1330 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1331 * to current task
1332 */
amdgpu_ttm_tt_set_userptr(struct ttm_tt * ttm,uint64_t addr,uint32_t flags)1333 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1334 uint32_t flags)
1335 {
1336 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1337
1338 if (gtt == NULL)
1339 return -EINVAL;
1340
1341 gtt->userptr = addr;
1342 gtt->userflags = flags;
1343
1344 if (gtt->usertask)
1345 put_task_struct(gtt->usertask);
1346 gtt->usertask = current->group_leader;
1347 get_task_struct(gtt->usertask);
1348
1349 return 0;
1350 }
1351
1352 /**
1353 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1354 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1355 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1356 {
1357 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1358
1359 if (gtt == NULL)
1360 return NULL;
1361
1362 if (gtt->usertask == NULL)
1363 return NULL;
1364
1365 return gtt->usertask->mm;
1366 }
1367
1368 /**
1369 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1370 * address range for the current task.
1371 *
1372 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end)1373 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1374 unsigned long end)
1375 {
1376 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1377 unsigned long size;
1378
1379 if (gtt == NULL || !gtt->userptr)
1380 return false;
1381
1382 /* Return false if no part of the ttm_tt object lies within
1383 * the range
1384 */
1385 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1386 if (gtt->userptr > end || gtt->userptr + size <= start)
1387 return false;
1388
1389 return true;
1390 }
1391
1392 /**
1393 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1394 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1395 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1396 {
1397 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1398
1399 if (gtt == NULL || !gtt->userptr)
1400 return false;
1401
1402 return true;
1403 }
1404
1405 /**
1406 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1407 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1408 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1409 {
1410 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1411
1412 if (gtt == NULL)
1413 return false;
1414
1415 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1416 }
1417
1418 /**
1419 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1420 *
1421 * @ttm: The ttm_tt object to compute the flags for
1422 * @mem: The memory registry backing this ttm_tt object
1423 *
1424 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1425 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_mem_reg * mem)1426 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1427 {
1428 uint64_t flags = 0;
1429
1430 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1431 flags |= AMDGPU_PTE_VALID;
1432
1433 if (mem && mem->mem_type == TTM_PL_TT) {
1434 flags |= AMDGPU_PTE_SYSTEM;
1435
1436 if (ttm->caching_state == tt_cached)
1437 flags |= AMDGPU_PTE_SNOOPED;
1438 }
1439
1440 return flags;
1441 }
1442
1443 /**
1444 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1445 *
1446 * @ttm: The ttm_tt object to compute the flags for
1447 * @mem: The memory registry backing this ttm_tt object
1448
1449 * Figure out the flags to use for a VM PTE (Page Table Entry).
1450 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_mem_reg * mem)1451 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1452 struct ttm_mem_reg *mem)
1453 {
1454 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1455
1456 flags |= adev->gart.gart_pte_flags;
1457 flags |= AMDGPU_PTE_READABLE;
1458
1459 if (!amdgpu_ttm_tt_is_readonly(ttm))
1460 flags |= AMDGPU_PTE_WRITEABLE;
1461
1462 return flags;
1463 }
1464
1465 /**
1466 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1467 * object.
1468 *
1469 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1470 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1471 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1472 * used to clean out a memory space.
1473 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1474 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1475 const struct ttm_place *place)
1476 {
1477 unsigned long num_pages = bo->mem.num_pages;
1478 struct drm_mm_node *node = bo->mem.mm_node;
1479 struct dma_resv_list *flist;
1480 struct dma_fence *f;
1481 int i;
1482
1483 /* Don't evict VM page tables while they are busy, otherwise we can't
1484 * cleanly handle page faults.
1485 */
1486 if (bo->type == ttm_bo_type_kernel &&
1487 !dma_resv_test_signaled_rcu(bo->base.resv, true))
1488 return false;
1489
1490 /* If bo is a KFD BO, check if the bo belongs to the current process.
1491 * If true, then return false as any KFD process needs all its BOs to
1492 * be resident to run successfully
1493 */
1494 flist = dma_resv_get_list(bo->base.resv);
1495 if (flist) {
1496 for (i = 0; i < flist->shared_count; ++i) {
1497 f = rcu_dereference_protected(flist->shared[i],
1498 dma_resv_held(bo->base.resv));
1499 if (amdkfd_fence_check_mm(f, current->mm))
1500 return false;
1501 }
1502 }
1503
1504 switch (bo->mem.mem_type) {
1505 case TTM_PL_TT:
1506 return true;
1507
1508 case TTM_PL_VRAM:
1509 /* Check each drm MM node individually */
1510 while (num_pages) {
1511 if (place->fpfn < (node->start + node->size) &&
1512 !(place->lpfn && place->lpfn <= node->start))
1513 return true;
1514
1515 num_pages -= node->size;
1516 ++node;
1517 }
1518 return false;
1519
1520 default:
1521 break;
1522 }
1523
1524 return ttm_bo_eviction_valuable(bo, place);
1525 }
1526
1527 /**
1528 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1529 *
1530 * @bo: The buffer object to read/write
1531 * @offset: Offset into buffer object
1532 * @buf: Secondary buffer to write/read from
1533 * @len: Length in bytes of access
1534 * @write: true if writing
1535 *
1536 * This is used to access VRAM that backs a buffer object via MMIO
1537 * access for debugging purposes.
1538 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1539 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1540 unsigned long offset,
1541 void *buf, int len, int write)
1542 {
1543 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1544 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1545 struct drm_mm_node *nodes;
1546 uint32_t value = 0;
1547 int ret = 0;
1548 uint64_t pos;
1549 unsigned long flags;
1550
1551 if (bo->mem.mem_type != TTM_PL_VRAM)
1552 return -EIO;
1553
1554 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1555 pos = (nodes->start << PAGE_SHIFT) + offset;
1556
1557 while (len && pos < adev->gmc.mc_vram_size) {
1558 uint64_t aligned_pos = pos & ~(uint64_t)3;
1559 uint32_t bytes = 4 - (pos & 3);
1560 uint32_t shift = (pos & 3) * 8;
1561 uint32_t mask = 0xffffffff << shift;
1562
1563 if (len < bytes) {
1564 mask &= 0xffffffff >> (bytes - len) * 8;
1565 bytes = len;
1566 }
1567
1568 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1569 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1570 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1571 if (!write || mask != 0xffffffff)
1572 value = RREG32_NO_KIQ(mmMM_DATA);
1573 if (write) {
1574 value &= ~mask;
1575 value |= (*(uint32_t *)buf << shift) & mask;
1576 WREG32_NO_KIQ(mmMM_DATA, value);
1577 }
1578 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1579 if (!write) {
1580 value = (value & mask) >> shift;
1581 memcpy(buf, &value, bytes);
1582 }
1583
1584 ret += bytes;
1585 buf = (uint8_t *)buf + bytes;
1586 pos += bytes;
1587 len -= bytes;
1588 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1589 ++nodes;
1590 pos = (nodes->start << PAGE_SHIFT);
1591 }
1592 }
1593
1594 return ret;
1595 }
1596
1597 static struct ttm_bo_driver amdgpu_bo_driver = {
1598 .ttm_tt_create = &amdgpu_ttm_tt_create,
1599 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1600 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1601 .invalidate_caches = &amdgpu_invalidate_caches,
1602 .init_mem_type = &amdgpu_init_mem_type,
1603 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1604 .evict_flags = &amdgpu_evict_flags,
1605 .move = &amdgpu_bo_move,
1606 .verify_access = &amdgpu_verify_access,
1607 .move_notify = &amdgpu_bo_move_notify,
1608 .release_notify = &amdgpu_bo_release_notify,
1609 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1610 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1611 .io_mem_free = &amdgpu_ttm_io_mem_free,
1612 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1613 .access_memory = &amdgpu_ttm_access_memory,
1614 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1615 };
1616
1617 /*
1618 * Firmware Reservation functions
1619 */
1620 /**
1621 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1622 *
1623 * @adev: amdgpu_device pointer
1624 *
1625 * free fw reserved vram if it has been reserved.
1626 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1627 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1628 {
1629 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1630 NULL, &adev->fw_vram_usage.va);
1631 }
1632
1633 /**
1634 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * create bo vram reservation from fw.
1639 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1640 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1641 {
1642 uint64_t vram_size = adev->gmc.visible_vram_size;
1643 int r;
1644
1645 adev->fw_vram_usage.va = NULL;
1646 adev->fw_vram_usage.reserved_bo = NULL;
1647
1648 if (adev->fw_vram_usage.size == 0 ||
1649 adev->fw_vram_usage.size > vram_size)
1650 return 0;
1651
1652 return amdgpu_bo_create_kernel_at(adev,
1653 adev->fw_vram_usage.start_offset,
1654 adev->fw_vram_usage.size,
1655 AMDGPU_GEM_DOMAIN_VRAM,
1656 &adev->fw_vram_usage.reserved_bo,
1657 &adev->fw_vram_usage.va);
1658 return r;
1659 }
1660
1661 /**
1662 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1663 * gtt/vram related fields.
1664 *
1665 * This initializes all of the memory space pools that the TTM layer
1666 * will need such as the GTT space (system memory mapped to the device),
1667 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1668 * can be mapped per VMID.
1669 */
amdgpu_ttm_init(struct amdgpu_device * adev)1670 int amdgpu_ttm_init(struct amdgpu_device *adev)
1671 {
1672 uint64_t gtt_size;
1673 int r;
1674 u64 vis_vram_limit;
1675 void *stolen_vga_buf;
1676
1677 mutex_init(&adev->mman.gtt_window_lock);
1678
1679 /* No others user of address space so set it to 0 */
1680 r = ttm_bo_device_init(&adev->mman.bdev,
1681 &amdgpu_bo_driver,
1682 adev->ddev->anon_inode->i_mapping,
1683 dma_addressing_limited(adev->dev));
1684 if (r) {
1685 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1686 return r;
1687 }
1688 adev->mman.initialized = true;
1689
1690 /* We opt to avoid OOM on system pages allocations */
1691 adev->mman.bdev.no_retry = true;
1692
1693 /* Initialize VRAM pool with all of VRAM divided into pages */
1694 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1695 adev->gmc.real_vram_size >> PAGE_SHIFT);
1696 if (r) {
1697 DRM_ERROR("Failed initializing VRAM heap.\n");
1698 return r;
1699 }
1700
1701 /* Reduce size of CPU-visible VRAM if requested */
1702 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1703 if (amdgpu_vis_vram_limit > 0 &&
1704 vis_vram_limit <= adev->gmc.visible_vram_size)
1705 adev->gmc.visible_vram_size = vis_vram_limit;
1706
1707 /* Change the size here instead of the init above so only lpfn is affected */
1708 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1709 #ifdef CONFIG_64BIT
1710 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1711 adev->gmc.visible_vram_size);
1712 #endif
1713
1714 /*
1715 *The reserved vram for firmware must be pinned to the specified
1716 *place on the VRAM, so reserve it early.
1717 */
1718 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1719 if (r) {
1720 return r;
1721 }
1722
1723 /* allocate memory as required for VGA
1724 * This is used for VGA emulation and pre-OS scanout buffers to
1725 * avoid display artifacts while transitioning between pre-OS
1726 * and driver. */
1727 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1728 AMDGPU_GEM_DOMAIN_VRAM,
1729 &adev->stolen_vga_memory,
1730 NULL, &stolen_vga_buf);
1731 if (r)
1732 return r;
1733
1734 /*
1735 * reserve one TMR (64K) memory at the top of VRAM which holds
1736 * IP Discovery data and is protected by PSP.
1737 */
1738 r = amdgpu_bo_create_kernel_at(adev,
1739 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1740 DISCOVERY_TMR_SIZE,
1741 AMDGPU_GEM_DOMAIN_VRAM,
1742 &adev->discovery_memory,
1743 NULL);
1744 if (r)
1745 return r;
1746
1747 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1748 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1749
1750 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1751 * or whatever the user passed on module init */
1752 if (amdgpu_gtt_size == -1) {
1753 struct sysinfo si;
1754
1755 si_meminfo(&si);
1756 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1757 adev->gmc.mc_vram_size),
1758 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1759 }
1760 else
1761 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1762
1763 /* Initialize GTT memory pool */
1764 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1765 if (r) {
1766 DRM_ERROR("Failed initializing GTT heap.\n");
1767 return r;
1768 }
1769 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1770 (unsigned)(gtt_size / (1024 * 1024)));
1771
1772 /* Initialize various on-chip memory pools */
1773 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1774 adev->gds.gds_size);
1775 if (r) {
1776 DRM_ERROR("Failed initializing GDS heap.\n");
1777 return r;
1778 }
1779
1780 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1781 adev->gds.gws_size);
1782 if (r) {
1783 DRM_ERROR("Failed initializing gws heap.\n");
1784 return r;
1785 }
1786
1787 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1788 adev->gds.oa_size);
1789 if (r) {
1790 DRM_ERROR("Failed initializing oa heap.\n");
1791 return r;
1792 }
1793
1794 /* Register debugfs entries for amdgpu_ttm */
1795 r = amdgpu_ttm_debugfs_init(adev);
1796 if (r) {
1797 DRM_ERROR("Failed to init debugfs\n");
1798 return r;
1799 }
1800 return 0;
1801 }
1802
1803 /**
1804 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1805 */
amdgpu_ttm_late_init(struct amdgpu_device * adev)1806 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1807 {
1808 void *stolen_vga_buf;
1809 /* return the VGA stolen memory (if any) back to VRAM */
1810 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1811
1812 /* return the IP Discovery TMR memory back to VRAM */
1813 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1814 }
1815
1816 /**
1817 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1818 */
amdgpu_ttm_fini(struct amdgpu_device * adev)1819 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1820 {
1821 if (!adev->mman.initialized)
1822 return;
1823
1824 amdgpu_ttm_debugfs_fini(adev);
1825 amdgpu_ttm_fw_reserve_vram_fini(adev);
1826 if (adev->mman.aper_base_kaddr)
1827 iounmap(adev->mman.aper_base_kaddr);
1828 adev->mman.aper_base_kaddr = NULL;
1829
1830 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1831 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1832 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1833 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1834 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1835 ttm_bo_device_release(&adev->mman.bdev);
1836 adev->mman.initialized = false;
1837 DRM_INFO("amdgpu: ttm finalized\n");
1838 }
1839
1840 /**
1841 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1842 *
1843 * @adev: amdgpu_device pointer
1844 * @enable: true when we can use buffer functions.
1845 *
1846 * Enable/disable use of buffer functions during suspend/resume. This should
1847 * only be called at bootup or when userspace isn't running.
1848 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)1849 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1850 {
1851 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1852 uint64_t size;
1853 int r;
1854
1855 if (!adev->mman.initialized || adev->in_gpu_reset ||
1856 adev->mman.buffer_funcs_enabled == enable)
1857 return;
1858
1859 if (enable) {
1860 struct amdgpu_ring *ring;
1861 struct drm_sched_rq *rq;
1862
1863 ring = adev->mman.buffer_funcs_ring;
1864 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1865 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1866 if (r) {
1867 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1868 r);
1869 return;
1870 }
1871 } else {
1872 drm_sched_entity_destroy(&adev->mman.entity);
1873 dma_fence_put(man->move);
1874 man->move = NULL;
1875 }
1876
1877 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1878 if (enable)
1879 size = adev->gmc.real_vram_size;
1880 else
1881 size = adev->gmc.visible_vram_size;
1882 man->size = size >> PAGE_SHIFT;
1883 adev->mman.buffer_funcs_enabled = enable;
1884 }
1885
amdgpu_mmap(struct file * filp,struct vm_area_struct * vma)1886 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1887 {
1888 struct drm_file *file_priv = filp->private_data;
1889 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1890
1891 if (adev == NULL)
1892 return -EINVAL;
1893
1894 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1895 }
1896
amdgpu_map_buffer(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,unsigned num_pages,uint64_t offset,unsigned window,struct amdgpu_ring * ring,uint64_t * addr)1897 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1898 struct ttm_mem_reg *mem, unsigned num_pages,
1899 uint64_t offset, unsigned window,
1900 struct amdgpu_ring *ring,
1901 uint64_t *addr)
1902 {
1903 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1904 struct amdgpu_device *adev = ring->adev;
1905 struct ttm_tt *ttm = bo->ttm;
1906 struct amdgpu_job *job;
1907 unsigned num_dw, num_bytes;
1908 dma_addr_t *dma_address;
1909 struct dma_fence *fence;
1910 uint64_t src_addr, dst_addr;
1911 uint64_t flags;
1912 int r;
1913
1914 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1915 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1916
1917 *addr = adev->gmc.gart_start;
1918 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1919 AMDGPU_GPU_PAGE_SIZE;
1920
1921 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1922 while (num_dw & 0x7)
1923 num_dw++;
1924
1925 num_bytes = num_pages * 8;
1926
1927 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1928 if (r)
1929 return r;
1930
1931 src_addr = num_dw * 4;
1932 src_addr += job->ibs[0].gpu_addr;
1933
1934 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1935 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1936 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1937 dst_addr, num_bytes);
1938
1939 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1940 WARN_ON(job->ibs[0].length_dw > num_dw);
1941
1942 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
1943 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1944 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1945 &job->ibs[0].ptr[num_dw]);
1946 if (r)
1947 goto error_free;
1948
1949 r = amdgpu_job_submit(job, &adev->mman.entity,
1950 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1951 if (r)
1952 goto error_free;
1953
1954 dma_fence_put(fence);
1955
1956 return r;
1957
1958 error_free:
1959 amdgpu_job_free(job);
1960 return r;
1961 }
1962
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush)1963 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1964 uint64_t dst_offset, uint32_t byte_count,
1965 struct dma_resv *resv,
1966 struct dma_fence **fence, bool direct_submit,
1967 bool vm_needs_flush)
1968 {
1969 struct amdgpu_device *adev = ring->adev;
1970 struct amdgpu_job *job;
1971
1972 uint32_t max_bytes;
1973 unsigned num_loops, num_dw;
1974 unsigned i;
1975 int r;
1976
1977 if (direct_submit && !ring->sched.ready) {
1978 DRM_ERROR("Trying to move memory with ring turned off.\n");
1979 return -EINVAL;
1980 }
1981
1982 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1983 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1984 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1985
1986 /* for IB padding */
1987 while (num_dw & 0x7)
1988 num_dw++;
1989
1990 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1991 if (r)
1992 return r;
1993
1994 if (vm_needs_flush) {
1995 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1996 job->vm_needs_flush = true;
1997 }
1998 if (resv) {
1999 r = amdgpu_sync_resv(adev, &job->sync, resv,
2000 AMDGPU_FENCE_OWNER_UNDEFINED,
2001 false);
2002 if (r) {
2003 DRM_ERROR("sync failed (%d).\n", r);
2004 goto error_free;
2005 }
2006 }
2007
2008 for (i = 0; i < num_loops; i++) {
2009 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2010
2011 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2012 dst_offset, cur_size_in_bytes);
2013
2014 src_offset += cur_size_in_bytes;
2015 dst_offset += cur_size_in_bytes;
2016 byte_count -= cur_size_in_bytes;
2017 }
2018
2019 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2020 WARN_ON(job->ibs[0].length_dw > num_dw);
2021 if (direct_submit)
2022 r = amdgpu_job_submit_direct(job, ring, fence);
2023 else
2024 r = amdgpu_job_submit(job, &adev->mman.entity,
2025 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2026 if (r)
2027 goto error_free;
2028
2029 return r;
2030
2031 error_free:
2032 amdgpu_job_free(job);
2033 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2034 return r;
2035 }
2036
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** fence)2037 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2038 uint32_t src_data,
2039 struct dma_resv *resv,
2040 struct dma_fence **fence)
2041 {
2042 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2043 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2044 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2045
2046 struct drm_mm_node *mm_node;
2047 unsigned long num_pages;
2048 unsigned int num_loops, num_dw;
2049
2050 struct amdgpu_job *job;
2051 int r;
2052
2053 if (!adev->mman.buffer_funcs_enabled) {
2054 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2055 return -EINVAL;
2056 }
2057
2058 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2059 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2060 if (r)
2061 return r;
2062 }
2063
2064 num_pages = bo->tbo.num_pages;
2065 mm_node = bo->tbo.mem.mm_node;
2066 num_loops = 0;
2067 while (num_pages) {
2068 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2069
2070 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2071 num_pages -= mm_node->size;
2072 ++mm_node;
2073 }
2074 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2075
2076 /* for IB padding */
2077 num_dw += 64;
2078
2079 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2080 if (r)
2081 return r;
2082
2083 if (resv) {
2084 r = amdgpu_sync_resv(adev, &job->sync, resv,
2085 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2086 if (r) {
2087 DRM_ERROR("sync failed (%d).\n", r);
2088 goto error_free;
2089 }
2090 }
2091
2092 num_pages = bo->tbo.num_pages;
2093 mm_node = bo->tbo.mem.mm_node;
2094
2095 while (num_pages) {
2096 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2097 uint64_t dst_addr;
2098
2099 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2100 while (byte_count) {
2101 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2102 max_bytes);
2103
2104 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2105 dst_addr, cur_size_in_bytes);
2106
2107 dst_addr += cur_size_in_bytes;
2108 byte_count -= cur_size_in_bytes;
2109 }
2110
2111 num_pages -= mm_node->size;
2112 ++mm_node;
2113 }
2114
2115 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2116 WARN_ON(job->ibs[0].length_dw > num_dw);
2117 r = amdgpu_job_submit(job, &adev->mman.entity,
2118 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2119 if (r)
2120 goto error_free;
2121
2122 return 0;
2123
2124 error_free:
2125 amdgpu_job_free(job);
2126 return r;
2127 }
2128
2129 #if defined(CONFIG_DEBUG_FS)
2130
amdgpu_mm_dump_table(struct seq_file * m,void * data)2131 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2132 {
2133 struct drm_info_node *node = (struct drm_info_node *)m->private;
2134 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2135 struct drm_device *dev = node->minor->dev;
2136 struct amdgpu_device *adev = dev->dev_private;
2137 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2138 struct drm_printer p = drm_seq_file_printer(m);
2139
2140 man->func->debug(man, &p);
2141 return 0;
2142 }
2143
2144 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2145 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2146 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2147 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2148 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2149 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2150 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2151 #ifdef CONFIG_SWIOTLB
2152 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2153 #endif
2154 };
2155
2156 /**
2157 * amdgpu_ttm_vram_read - Linear read access to VRAM
2158 *
2159 * Accesses VRAM via MMIO for debugging purposes.
2160 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2161 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2162 size_t size, loff_t *pos)
2163 {
2164 struct amdgpu_device *adev = file_inode(f)->i_private;
2165 ssize_t result = 0;
2166 int r;
2167
2168 if (size & 0x3 || *pos & 0x3)
2169 return -EINVAL;
2170
2171 if (*pos >= adev->gmc.mc_vram_size)
2172 return -ENXIO;
2173
2174 while (size) {
2175 unsigned long flags;
2176 uint32_t value;
2177
2178 if (*pos >= adev->gmc.mc_vram_size)
2179 return result;
2180
2181 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2182 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2183 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2184 value = RREG32_NO_KIQ(mmMM_DATA);
2185 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2186
2187 r = put_user(value, (uint32_t *)buf);
2188 if (r)
2189 return r;
2190
2191 result += 4;
2192 buf += 4;
2193 *pos += 4;
2194 size -= 4;
2195 }
2196
2197 return result;
2198 }
2199
2200 /**
2201 * amdgpu_ttm_vram_write - Linear write access to VRAM
2202 *
2203 * Accesses VRAM via MMIO for debugging purposes.
2204 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2205 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2206 size_t size, loff_t *pos)
2207 {
2208 struct amdgpu_device *adev = file_inode(f)->i_private;
2209 ssize_t result = 0;
2210 int r;
2211
2212 if (size & 0x3 || *pos & 0x3)
2213 return -EINVAL;
2214
2215 if (*pos >= adev->gmc.mc_vram_size)
2216 return -ENXIO;
2217
2218 while (size) {
2219 unsigned long flags;
2220 uint32_t value;
2221
2222 if (*pos >= adev->gmc.mc_vram_size)
2223 return result;
2224
2225 r = get_user(value, (uint32_t *)buf);
2226 if (r)
2227 return r;
2228
2229 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2230 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2231 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2232 WREG32_NO_KIQ(mmMM_DATA, value);
2233 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2234
2235 result += 4;
2236 buf += 4;
2237 *pos += 4;
2238 size -= 4;
2239 }
2240
2241 return result;
2242 }
2243
2244 static const struct file_operations amdgpu_ttm_vram_fops = {
2245 .owner = THIS_MODULE,
2246 .read = amdgpu_ttm_vram_read,
2247 .write = amdgpu_ttm_vram_write,
2248 .llseek = default_llseek,
2249 };
2250
2251 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2252
2253 /**
2254 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2255 */
amdgpu_ttm_gtt_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2256 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2257 size_t size, loff_t *pos)
2258 {
2259 struct amdgpu_device *adev = file_inode(f)->i_private;
2260 ssize_t result = 0;
2261 int r;
2262
2263 while (size) {
2264 loff_t p = *pos / PAGE_SIZE;
2265 unsigned off = *pos & ~PAGE_MASK;
2266 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2267 struct page *page;
2268 void *ptr;
2269
2270 if (p >= adev->gart.num_cpu_pages)
2271 return result;
2272
2273 page = adev->gart.pages[p];
2274 if (page) {
2275 ptr = kmap(page);
2276 ptr += off;
2277
2278 r = copy_to_user(buf, ptr, cur_size);
2279 kunmap(adev->gart.pages[p]);
2280 } else
2281 r = clear_user(buf, cur_size);
2282
2283 if (r)
2284 return -EFAULT;
2285
2286 result += cur_size;
2287 buf += cur_size;
2288 *pos += cur_size;
2289 size -= cur_size;
2290 }
2291
2292 return result;
2293 }
2294
2295 static const struct file_operations amdgpu_ttm_gtt_fops = {
2296 .owner = THIS_MODULE,
2297 .read = amdgpu_ttm_gtt_read,
2298 .llseek = default_llseek
2299 };
2300
2301 #endif
2302
2303 /**
2304 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2305 *
2306 * This function is used to read memory that has been mapped to the
2307 * GPU and the known addresses are not physical addresses but instead
2308 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2309 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2310 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2311 size_t size, loff_t *pos)
2312 {
2313 struct amdgpu_device *adev = file_inode(f)->i_private;
2314 struct iommu_domain *dom;
2315 ssize_t result = 0;
2316 int r;
2317
2318 /* retrieve the IOMMU domain if any for this device */
2319 dom = iommu_get_domain_for_dev(adev->dev);
2320
2321 while (size) {
2322 phys_addr_t addr = *pos & PAGE_MASK;
2323 loff_t off = *pos & ~PAGE_MASK;
2324 size_t bytes = PAGE_SIZE - off;
2325 unsigned long pfn;
2326 struct page *p;
2327 void *ptr;
2328
2329 bytes = bytes < size ? bytes : size;
2330
2331 /* Translate the bus address to a physical address. If
2332 * the domain is NULL it means there is no IOMMU active
2333 * and the address translation is the identity
2334 */
2335 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2336
2337 pfn = addr >> PAGE_SHIFT;
2338 if (!pfn_valid(pfn))
2339 return -EPERM;
2340
2341 p = pfn_to_page(pfn);
2342 if (p->mapping != adev->mman.bdev.dev_mapping)
2343 return -EPERM;
2344
2345 ptr = kmap(p);
2346 r = copy_to_user(buf, ptr + off, bytes);
2347 kunmap(p);
2348 if (r)
2349 return -EFAULT;
2350
2351 size -= bytes;
2352 *pos += bytes;
2353 result += bytes;
2354 }
2355
2356 return result;
2357 }
2358
2359 /**
2360 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2361 *
2362 * This function is used to write memory that has been mapped to the
2363 * GPU and the known addresses are not physical addresses but instead
2364 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2365 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2366 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2367 size_t size, loff_t *pos)
2368 {
2369 struct amdgpu_device *adev = file_inode(f)->i_private;
2370 struct iommu_domain *dom;
2371 ssize_t result = 0;
2372 int r;
2373
2374 dom = iommu_get_domain_for_dev(adev->dev);
2375
2376 while (size) {
2377 phys_addr_t addr = *pos & PAGE_MASK;
2378 loff_t off = *pos & ~PAGE_MASK;
2379 size_t bytes = PAGE_SIZE - off;
2380 unsigned long pfn;
2381 struct page *p;
2382 void *ptr;
2383
2384 bytes = bytes < size ? bytes : size;
2385
2386 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2387
2388 pfn = addr >> PAGE_SHIFT;
2389 if (!pfn_valid(pfn))
2390 return -EPERM;
2391
2392 p = pfn_to_page(pfn);
2393 if (p->mapping != adev->mman.bdev.dev_mapping)
2394 return -EPERM;
2395
2396 ptr = kmap(p);
2397 r = copy_from_user(ptr + off, buf, bytes);
2398 kunmap(p);
2399 if (r)
2400 return -EFAULT;
2401
2402 size -= bytes;
2403 *pos += bytes;
2404 result += bytes;
2405 }
2406
2407 return result;
2408 }
2409
2410 static const struct file_operations amdgpu_ttm_iomem_fops = {
2411 .owner = THIS_MODULE,
2412 .read = amdgpu_iomem_read,
2413 .write = amdgpu_iomem_write,
2414 .llseek = default_llseek
2415 };
2416
2417 static const struct {
2418 char *name;
2419 const struct file_operations *fops;
2420 int domain;
2421 } ttm_debugfs_entries[] = {
2422 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2423 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2424 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2425 #endif
2426 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2427 };
2428
2429 #endif
2430
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2431 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2432 {
2433 #if defined(CONFIG_DEBUG_FS)
2434 unsigned count;
2435
2436 struct drm_minor *minor = adev->ddev->primary;
2437 struct dentry *ent, *root = minor->debugfs_root;
2438
2439 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2440 ent = debugfs_create_file(
2441 ttm_debugfs_entries[count].name,
2442 S_IFREG | S_IRUGO, root,
2443 adev,
2444 ttm_debugfs_entries[count].fops);
2445 if (IS_ERR(ent))
2446 return PTR_ERR(ent);
2447 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2448 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2449 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2450 i_size_write(ent->d_inode, adev->gmc.gart_size);
2451 adev->mman.debugfs_entries[count] = ent;
2452 }
2453
2454 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2455
2456 #ifdef CONFIG_SWIOTLB
2457 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2458 --count;
2459 #endif
2460
2461 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2462 #else
2463 return 0;
2464 #endif
2465 }
2466
amdgpu_ttm_debugfs_fini(struct amdgpu_device * adev)2467 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2468 {
2469 #if defined(CONFIG_DEBUG_FS)
2470 unsigned i;
2471
2472 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2473 debugfs_remove(adev->mman.debugfs_entries[i]);
2474 #endif
2475 }
2476