1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
61
62 #include <asm/unaligned.h>
63
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
71
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
74
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 bool, 0444);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
95
96 static int ath5k_init(struct ieee80211_hw *hw);
97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 bool skip_pcu);
99
100 /* Known SREVs */
101 static const struct ath5k_srev_name srev_names[] = {
102 #ifdef CONFIG_ATH5K_AHB
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
104 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
105 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
107 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
109 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
110 #else
111 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
112 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
113 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
114 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
115 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
116 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
117 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
118 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
119 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
120 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
121 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
122 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
123 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
124 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
125 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
126 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
127 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
128 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
129 #endif
130 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
131 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
132 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
133 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
134 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
135 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
136 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
137 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
138 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
139 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
140 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
141 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
142 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
143 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
144 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
145 #ifdef CONFIG_ATH5K_AHB
146 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
147 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
148 #endif
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
150 };
151
152 static const struct ieee80211_rate ath5k_rates[] = {
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
169 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170 IEEE80211_RATE_SUPPORTS_10MHZ },
171 { .bitrate = 90,
172 .hw_value = ATH5K_RATE_CODE_9M,
173 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174 IEEE80211_RATE_SUPPORTS_10MHZ },
175 { .bitrate = 120,
176 .hw_value = ATH5K_RATE_CODE_12M,
177 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178 IEEE80211_RATE_SUPPORTS_10MHZ },
179 { .bitrate = 180,
180 .hw_value = ATH5K_RATE_CODE_18M,
181 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182 IEEE80211_RATE_SUPPORTS_10MHZ },
183 { .bitrate = 240,
184 .hw_value = ATH5K_RATE_CODE_24M,
185 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186 IEEE80211_RATE_SUPPORTS_10MHZ },
187 { .bitrate = 360,
188 .hw_value = ATH5K_RATE_CODE_36M,
189 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190 IEEE80211_RATE_SUPPORTS_10MHZ },
191 { .bitrate = 480,
192 .hw_value = ATH5K_RATE_CODE_48M,
193 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194 IEEE80211_RATE_SUPPORTS_10MHZ },
195 { .bitrate = 540,
196 .hw_value = ATH5K_RATE_CODE_54M,
197 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198 IEEE80211_RATE_SUPPORTS_10MHZ },
199 };
200
ath5k_extend_tsf(struct ath5k_hw * ah,u32 rstamp)201 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
202 {
203 u64 tsf = ath5k_hw_get_tsf64(ah);
204
205 if ((tsf & 0x7fff) < rstamp)
206 tsf -= 0x8000;
207
208 return (tsf & ~0x7fff) | rstamp;
209 }
210
211 const char *
ath5k_chip_name(enum ath5k_srev_type type,u_int16_t val)212 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
213 {
214 const char *name = "xxxxx";
215 unsigned int i;
216
217 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218 if (srev_names[i].sr_type != type)
219 continue;
220
221 if ((val & 0xf0) == srev_names[i].sr_val)
222 name = srev_names[i].sr_name;
223
224 if ((val & 0xff) == srev_names[i].sr_val) {
225 name = srev_names[i].sr_name;
226 break;
227 }
228 }
229
230 return name;
231 }
ath5k_ioread32(void * hw_priv,u32 reg_offset)232 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
233 {
234 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 return ath5k_hw_reg_read(ah, reg_offset);
236 }
237
ath5k_iowrite32(void * hw_priv,u32 val,u32 reg_offset)238 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
239 {
240 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241 ath5k_hw_reg_write(ah, val, reg_offset);
242 }
243
244 static const struct ath_ops ath5k_common_ops = {
245 .read = ath5k_ioread32,
246 .write = ath5k_iowrite32,
247 };
248
249 /***********************\
250 * Driver Initialization *
251 \***********************/
252
ath5k_reg_notifier(struct wiphy * wiphy,struct regulatory_request * request)253 static void ath5k_reg_notifier(struct wiphy *wiphy,
254 struct regulatory_request *request)
255 {
256 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257 struct ath5k_hw *ah = hw->priv;
258 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
259
260 ath_reg_notifier_apply(wiphy, request, regulatory);
261 }
262
263 /********************\
264 * Channel/mode setup *
265 \********************/
266
267 /*
268 * Returns true for the channel numbers used.
269 */
270 #ifdef CONFIG_ATH5K_TEST_CHANNELS
ath5k_is_standard_channel(short chan,enum nl80211_band band)271 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
272 {
273 return true;
274 }
275
276 #else
ath5k_is_standard_channel(short chan,enum nl80211_band band)277 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
278 {
279 if (band == NL80211_BAND_2GHZ && chan <= 14)
280 return true;
281
282 return /* UNII 1,2 */
283 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284 /* midband */
285 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286 /* UNII-3 */
287 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288 /* 802.11j 5.030-5.080 GHz (20MHz) */
289 (chan == 8 || chan == 12 || chan == 16) ||
290 /* 802.11j 4.9GHz (20MHz) */
291 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
292 }
293 #endif
294
295 static unsigned int
ath5k_setup_channels(struct ath5k_hw * ah,struct ieee80211_channel * channels,unsigned int mode,unsigned int max)296 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297 unsigned int mode, unsigned int max)
298 {
299 unsigned int count, size, freq, ch;
300 enum nl80211_band band;
301
302 switch (mode) {
303 case AR5K_MODE_11A:
304 /* 1..220, but 2GHz frequencies are filtered by check_channel */
305 size = 220;
306 band = NL80211_BAND_5GHZ;
307 break;
308 case AR5K_MODE_11B:
309 case AR5K_MODE_11G:
310 size = 26;
311 band = NL80211_BAND_2GHZ;
312 break;
313 default:
314 ATH5K_WARN(ah, "bad mode, not copying channels\n");
315 return 0;
316 }
317
318 count = 0;
319 for (ch = 1; ch <= size && count < max; ch++) {
320 freq = ieee80211_channel_to_frequency(ch, band);
321
322 if (freq == 0) /* mapping failed - not a standard channel */
323 continue;
324
325 /* Write channel info, needed for ath5k_channel_ok() */
326 channels[count].center_freq = freq;
327 channels[count].band = band;
328 channels[count].hw_value = mode;
329
330 /* Check if channel is supported by the chipset */
331 if (!ath5k_channel_ok(ah, &channels[count]))
332 continue;
333
334 if (!ath5k_is_standard_channel(ch, band))
335 continue;
336
337 count++;
338 }
339
340 return count;
341 }
342
343 static void
ath5k_setup_rate_idx(struct ath5k_hw * ah,struct ieee80211_supported_band * b)344 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
345 {
346 u8 i;
347
348 for (i = 0; i < AR5K_MAX_RATES; i++)
349 ah->rate_idx[b->band][i] = -1;
350
351 for (i = 0; i < b->n_bitrates; i++) {
352 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353 if (b->bitrates[i].hw_value_short)
354 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
355 }
356 }
357
358 static int
ath5k_setup_bands(struct ieee80211_hw * hw)359 ath5k_setup_bands(struct ieee80211_hw *hw)
360 {
361 struct ath5k_hw *ah = hw->priv;
362 struct ieee80211_supported_band *sband;
363 int max_c, count_c = 0;
364 int i;
365
366 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
367 max_c = ARRAY_SIZE(ah->channels);
368
369 /* 2GHz band */
370 sband = &ah->sbands[NL80211_BAND_2GHZ];
371 sband->band = NL80211_BAND_2GHZ;
372 sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
373
374 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375 /* G mode */
376 memcpy(sband->bitrates, &ath5k_rates[0],
377 sizeof(struct ieee80211_rate) * 12);
378 sband->n_bitrates = 12;
379
380 sband->channels = ah->channels;
381 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382 AR5K_MODE_11G, max_c);
383
384 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
385 count_c = sband->n_channels;
386 max_c -= count_c;
387 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388 /* B mode */
389 memcpy(sband->bitrates, &ath5k_rates[0],
390 sizeof(struct ieee80211_rate) * 4);
391 sband->n_bitrates = 4;
392
393 /* 5211 only supports B rates and uses 4bit rate codes
394 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395 * fix them up here:
396 */
397 if (ah->ah_version == AR5K_AR5211) {
398 for (i = 0; i < 4; i++) {
399 sband->bitrates[i].hw_value =
400 sband->bitrates[i].hw_value & 0xF;
401 sband->bitrates[i].hw_value_short =
402 sband->bitrates[i].hw_value_short & 0xF;
403 }
404 }
405
406 sband->channels = ah->channels;
407 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 AR5K_MODE_11B, max_c);
409
410 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
411 count_c = sband->n_channels;
412 max_c -= count_c;
413 }
414 ath5k_setup_rate_idx(ah, sband);
415
416 /* 5GHz band, A mode */
417 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418 sband = &ah->sbands[NL80211_BAND_5GHZ];
419 sband->band = NL80211_BAND_5GHZ;
420 sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
421
422 memcpy(sband->bitrates, &ath5k_rates[4],
423 sizeof(struct ieee80211_rate) * 8);
424 sband->n_bitrates = 8;
425
426 sband->channels = &ah->channels[count_c];
427 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428 AR5K_MODE_11A, max_c);
429
430 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
431 }
432 ath5k_setup_rate_idx(ah, sband);
433
434 ath5k_debug_dump_bands(ah);
435
436 return 0;
437 }
438
439 /*
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la ath5k_init.
443 *
444 * Called with ah->lock.
445 */
446 int
ath5k_chan_set(struct ath5k_hw * ah,struct cfg80211_chan_def * chandef)447 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
448 {
449 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450 "channel set, resetting (%u -> %u MHz)\n",
451 ah->curchan->center_freq, chandef->chan->center_freq);
452
453 switch (chandef->width) {
454 case NL80211_CHAN_WIDTH_20:
455 case NL80211_CHAN_WIDTH_20_NOHT:
456 ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457 break;
458 case NL80211_CHAN_WIDTH_5:
459 ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460 break;
461 case NL80211_CHAN_WIDTH_10:
462 ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463 break;
464 default:
465 WARN_ON(1);
466 return -EINVAL;
467 }
468
469 /*
470 * To switch channels clear any pending DMA operations;
471 * wait long enough for the RX fifo to drain, reset the
472 * hardware at the new frequency, and then re-enable
473 * the relevant bits of the h/w.
474 */
475 return ath5k_reset(ah, chandef->chan, true);
476 }
477
ath5k_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)478 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
479 {
480 struct ath5k_vif_iter_data *iter_data = data;
481 int i;
482 struct ath5k_vif *avf = (void *)vif->drv_priv;
483
484 if (iter_data->hw_macaddr)
485 for (i = 0; i < ETH_ALEN; i++)
486 iter_data->mask[i] &=
487 ~(iter_data->hw_macaddr[i] ^ mac[i]);
488
489 if (!iter_data->found_active) {
490 iter_data->found_active = true;
491 memcpy(iter_data->active_mac, mac, ETH_ALEN);
492 }
493
494 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495 if (ether_addr_equal(iter_data->hw_macaddr, mac))
496 iter_data->need_set_hw_addr = false;
497
498 if (!iter_data->any_assoc) {
499 if (avf->assoc)
500 iter_data->any_assoc = true;
501 }
502
503 /* Calculate combined mode - when APs are active, operate in AP mode.
504 * Otherwise use the mode of the new interface. This can currently
505 * only deal with combinations of APs and STAs. Only one ad-hoc
506 * interfaces is allowed.
507 */
508 if (avf->opmode == NL80211_IFTYPE_AP)
509 iter_data->opmode = NL80211_IFTYPE_AP;
510 else {
511 if (avf->opmode == NL80211_IFTYPE_STATION)
512 iter_data->n_stas++;
513 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 iter_data->opmode = avf->opmode;
515 }
516 }
517
518 void
ath5k_update_bssid_mask_and_opmode(struct ath5k_hw * ah,struct ieee80211_vif * vif)519 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520 struct ieee80211_vif *vif)
521 {
522 struct ath_common *common = ath5k_hw_common(ah);
523 struct ath5k_vif_iter_data iter_data;
524 u32 rfilt;
525
526 /*
527 * Use the hardware MAC address as reference, the hardware uses it
528 * together with the BSSID mask when matching addresses.
529 */
530 iter_data.hw_macaddr = common->macaddr;
531 eth_broadcast_addr(iter_data.mask);
532 iter_data.found_active = false;
533 iter_data.need_set_hw_addr = true;
534 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535 iter_data.n_stas = 0;
536
537 if (vif)
538 ath5k_vif_iter(&iter_data, vif->addr, vif);
539
540 /* Get list of all active MAC addresses */
541 ieee80211_iterate_active_interfaces_atomic(
542 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543 ath5k_vif_iter, &iter_data);
544 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
545
546 ah->opmode = iter_data.opmode;
547 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548 /* Nothing active, default to station mode */
549 ah->opmode = NL80211_IFTYPE_STATION;
550
551 ath5k_hw_set_opmode(ah, ah->opmode);
552 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553 ah->opmode, ath_opmode_to_string(ah->opmode));
554
555 if (iter_data.need_set_hw_addr && iter_data.found_active)
556 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
557
558 if (ath5k_hw_hasbssidmask(ah))
559 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
560
561 /* Set up RX Filter */
562 if (iter_data.n_stas > 1) {
563 /* If you have multiple STA interfaces connected to
564 * different APs, ARPs are not received (most of the time?)
565 * Enabling PROMISC appears to fix that problem.
566 */
567 ah->filter_flags |= AR5K_RX_FILTER_PROM;
568 }
569
570 rfilt = ah->filter_flags;
571 ath5k_hw_set_rx_filter(ah, rfilt);
572 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
573 }
574
575 static inline int
ath5k_hw_to_driver_rix(struct ath5k_hw * ah,int hw_rix)576 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
577 {
578 int rix;
579
580 /* return base rate on errors */
581 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582 "hw_rix out of bounds: %x\n", hw_rix))
583 return 0;
584
585 rix = ah->rate_idx[ah->curchan->band][hw_rix];
586 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587 rix = 0;
588
589 return rix;
590 }
591
592 /***************\
593 * Buffers setup *
594 \***************/
595
596 static
ath5k_rx_skb_alloc(struct ath5k_hw * ah,dma_addr_t * skb_addr)597 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
598 {
599 struct ath_common *common = ath5k_hw_common(ah);
600 struct sk_buff *skb;
601
602 /*
603 * Allocate buffer with headroom_needed space for the
604 * fake physical layer header at the start.
605 */
606 skb = ath_rxbuf_alloc(common,
607 common->rx_bufsize,
608 GFP_ATOMIC);
609
610 if (!skb) {
611 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612 common->rx_bufsize);
613 return NULL;
614 }
615
616 *skb_addr = dma_map_single(ah->dev,
617 skb->data, common->rx_bufsize,
618 DMA_FROM_DEVICE);
619
620 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622 dev_kfree_skb(skb);
623 return NULL;
624 }
625 return skb;
626 }
627
628 static int
ath5k_rxbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)629 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
630 {
631 struct sk_buff *skb = bf->skb;
632 struct ath5k_desc *ds;
633 int ret;
634
635 if (!skb) {
636 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637 if (!skb)
638 return -ENOMEM;
639 bf->skb = skb;
640 }
641
642 /*
643 * Setup descriptors. For receive we always terminate
644 * the descriptor list with a self-linked entry so we'll
645 * not get overrun under high load (as can happen with a
646 * 5212 when ANI processing enables PHY error frames).
647 *
648 * To ensure the last descriptor is self-linked we create
649 * each descriptor as self-linked and add it to the end. As
650 * each additional descriptor is added the previous self-linked
651 * entry is "fixed" naturally. This should be safe even
652 * if DMA is happening. When processing RX interrupts we
653 * never remove/process the last, self-linked, entry on the
654 * descriptor list. This ensures the hardware always has
655 * someplace to write a new frame.
656 */
657 ds = bf->desc;
658 ds->ds_link = bf->daddr; /* link to self */
659 ds->ds_data = bf->skbaddr;
660 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661 if (ret) {
662 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663 return ret;
664 }
665
666 if (ah->rxlink != NULL)
667 *ah->rxlink = bf->daddr;
668 ah->rxlink = &ds->ds_link;
669 return 0;
670 }
671
get_hw_packet_type(struct sk_buff * skb)672 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
673 {
674 struct ieee80211_hdr *hdr;
675 enum ath5k_pkt_type htype;
676 __le16 fc;
677
678 hdr = (struct ieee80211_hdr *)skb->data;
679 fc = hdr->frame_control;
680
681 if (ieee80211_is_beacon(fc))
682 htype = AR5K_PKT_TYPE_BEACON;
683 else if (ieee80211_is_probe_resp(fc))
684 htype = AR5K_PKT_TYPE_PROBE_RESP;
685 else if (ieee80211_is_atim(fc))
686 htype = AR5K_PKT_TYPE_ATIM;
687 else if (ieee80211_is_pspoll(fc))
688 htype = AR5K_PKT_TYPE_PSPOLL;
689 else
690 htype = AR5K_PKT_TYPE_NORMAL;
691
692 return htype;
693 }
694
695 static struct ieee80211_rate *
ath5k_get_rate(const struct ieee80211_hw * hw,const struct ieee80211_tx_info * info,struct ath5k_buf * bf,int idx)696 ath5k_get_rate(const struct ieee80211_hw *hw,
697 const struct ieee80211_tx_info *info,
698 struct ath5k_buf *bf, int idx)
699 {
700 /*
701 * convert a ieee80211_tx_rate RC-table entry to
702 * the respective ieee80211_rate struct
703 */
704 if (bf->rates[idx].idx < 0) {
705 return NULL;
706 }
707
708 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
709 }
710
711 static u16
ath5k_get_rate_hw_value(const struct ieee80211_hw * hw,const struct ieee80211_tx_info * info,struct ath5k_buf * bf,int idx)712 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713 const struct ieee80211_tx_info *info,
714 struct ath5k_buf *bf, int idx)
715 {
716 struct ieee80211_rate *rate;
717 u16 hw_rate;
718 u8 rc_flags;
719
720 rate = ath5k_get_rate(hw, info, bf, idx);
721 if (!rate)
722 return 0;
723
724 rc_flags = bf->rates[idx].flags;
725 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726 rate->hw_value_short : rate->hw_value;
727
728 return hw_rate;
729 }
730
731 static int
ath5k_txbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf,struct ath5k_txq * txq,int padsize,struct ieee80211_tx_control * control)732 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733 struct ath5k_txq *txq, int padsize,
734 struct ieee80211_tx_control *control)
735 {
736 struct ath5k_desc *ds = bf->desc;
737 struct sk_buff *skb = bf->skb;
738 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740 struct ieee80211_rate *rate;
741 unsigned int mrr_rate[3], mrr_tries[3];
742 int i, ret;
743 u16 hw_rate;
744 u16 cts_rate = 0;
745 u16 duration = 0;
746 u8 rc_flags;
747
748 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
749
750 /* XXX endianness */
751 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752 DMA_TO_DEVICE);
753
754 if (dma_mapping_error(ah->dev, bf->skbaddr))
755 return -ENOSPC;
756
757 ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
758 ARRAY_SIZE(bf->rates));
759
760 rate = ath5k_get_rate(ah->hw, info, bf, 0);
761
762 if (!rate) {
763 ret = -EINVAL;
764 goto err_unmap;
765 }
766
767 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
768 flags |= AR5K_TXDESC_NOACK;
769
770 rc_flags = bf->rates[0].flags;
771
772 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
773
774 pktlen = skb->len;
775
776 /* FIXME: If we are in g mode and rate is a CCK rate
777 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
778 * from tx power (value is in dB units already) */
779 if (info->control.hw_key) {
780 keyidx = info->control.hw_key->hw_key_idx;
781 pktlen += info->control.hw_key->icv_len;
782 }
783 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
784 flags |= AR5K_TXDESC_RTSENA;
785 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
786 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
787 info->control.vif, pktlen, info));
788 }
789 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
790 flags |= AR5K_TXDESC_CTSENA;
791 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
792 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
793 info->control.vif, pktlen, info));
794 }
795
796 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
797 ieee80211_get_hdrlen_from_skb(skb), padsize,
798 get_hw_packet_type(skb),
799 (ah->ah_txpower.txp_requested * 2),
800 hw_rate,
801 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
802 cts_rate, duration);
803 if (ret)
804 goto err_unmap;
805
806 /* Set up MRR descriptor */
807 if (ah->ah_capabilities.cap_has_mrr_support) {
808 memset(mrr_rate, 0, sizeof(mrr_rate));
809 memset(mrr_tries, 0, sizeof(mrr_tries));
810
811 for (i = 0; i < 3; i++) {
812
813 rate = ath5k_get_rate(ah->hw, info, bf, i);
814 if (!rate)
815 break;
816
817 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
818 mrr_tries[i] = bf->rates[i].count;
819 }
820
821 ath5k_hw_setup_mrr_tx_desc(ah, ds,
822 mrr_rate[0], mrr_tries[0],
823 mrr_rate[1], mrr_tries[1],
824 mrr_rate[2], mrr_tries[2]);
825 }
826
827 ds->ds_link = 0;
828 ds->ds_data = bf->skbaddr;
829
830 spin_lock_bh(&txq->lock);
831 list_add_tail(&bf->list, &txq->q);
832 txq->txq_len++;
833 if (txq->link == NULL) /* is this first packet? */
834 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
835 else /* no, so only link it */
836 *txq->link = bf->daddr;
837
838 txq->link = &ds->ds_link;
839 ath5k_hw_start_tx_dma(ah, txq->qnum);
840 spin_unlock_bh(&txq->lock);
841
842 return 0;
843 err_unmap:
844 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
845 return ret;
846 }
847
848 /*******************\
849 * Descriptors setup *
850 \*******************/
851
852 static int
ath5k_desc_alloc(struct ath5k_hw * ah)853 ath5k_desc_alloc(struct ath5k_hw *ah)
854 {
855 struct ath5k_desc *ds;
856 struct ath5k_buf *bf;
857 dma_addr_t da;
858 unsigned int i;
859 int ret;
860
861 /* allocate descriptors */
862 ah->desc_len = sizeof(struct ath5k_desc) *
863 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
864
865 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
866 &ah->desc_daddr, GFP_KERNEL);
867 if (ah->desc == NULL) {
868 ATH5K_ERR(ah, "can't allocate descriptors\n");
869 ret = -ENOMEM;
870 goto err;
871 }
872 ds = ah->desc;
873 da = ah->desc_daddr;
874 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
875 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
876
877 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
878 sizeof(struct ath5k_buf), GFP_KERNEL);
879 if (bf == NULL) {
880 ATH5K_ERR(ah, "can't allocate bufptr\n");
881 ret = -ENOMEM;
882 goto err_free;
883 }
884 ah->bufptr = bf;
885
886 INIT_LIST_HEAD(&ah->rxbuf);
887 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
888 bf->desc = ds;
889 bf->daddr = da;
890 list_add_tail(&bf->list, &ah->rxbuf);
891 }
892
893 INIT_LIST_HEAD(&ah->txbuf);
894 ah->txbuf_len = ATH_TXBUF;
895 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
896 bf->desc = ds;
897 bf->daddr = da;
898 list_add_tail(&bf->list, &ah->txbuf);
899 }
900
901 /* beacon buffers */
902 INIT_LIST_HEAD(&ah->bcbuf);
903 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
904 bf->desc = ds;
905 bf->daddr = da;
906 list_add_tail(&bf->list, &ah->bcbuf);
907 }
908
909 return 0;
910 err_free:
911 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
912 err:
913 ah->desc = NULL;
914 return ret;
915 }
916
917 void
ath5k_txbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)918 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
919 {
920 BUG_ON(!bf);
921 if (!bf->skb)
922 return;
923 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
924 DMA_TO_DEVICE);
925 ieee80211_free_txskb(ah->hw, bf->skb);
926 bf->skb = NULL;
927 bf->skbaddr = 0;
928 bf->desc->ds_data = 0;
929 }
930
931 void
ath5k_rxbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)932 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
933 {
934 struct ath_common *common = ath5k_hw_common(ah);
935
936 BUG_ON(!bf);
937 if (!bf->skb)
938 return;
939 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
940 DMA_FROM_DEVICE);
941 dev_kfree_skb_any(bf->skb);
942 bf->skb = NULL;
943 bf->skbaddr = 0;
944 bf->desc->ds_data = 0;
945 }
946
947 static void
ath5k_desc_free(struct ath5k_hw * ah)948 ath5k_desc_free(struct ath5k_hw *ah)
949 {
950 struct ath5k_buf *bf;
951
952 list_for_each_entry(bf, &ah->txbuf, list)
953 ath5k_txbuf_free_skb(ah, bf);
954 list_for_each_entry(bf, &ah->rxbuf, list)
955 ath5k_rxbuf_free_skb(ah, bf);
956 list_for_each_entry(bf, &ah->bcbuf, list)
957 ath5k_txbuf_free_skb(ah, bf);
958
959 /* Free memory associated with all descriptors */
960 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
961 ah->desc = NULL;
962 ah->desc_daddr = 0;
963
964 kfree(ah->bufptr);
965 ah->bufptr = NULL;
966 }
967
968
969 /**************\
970 * Queues setup *
971 \**************/
972
973 static struct ath5k_txq *
ath5k_txq_setup(struct ath5k_hw * ah,int qtype,int subtype)974 ath5k_txq_setup(struct ath5k_hw *ah,
975 int qtype, int subtype)
976 {
977 struct ath5k_txq *txq;
978 struct ath5k_txq_info qi = {
979 .tqi_subtype = subtype,
980 /* XXX: default values not correct for B and XR channels,
981 * but who cares? */
982 .tqi_aifs = AR5K_TUNE_AIFS,
983 .tqi_cw_min = AR5K_TUNE_CWMIN,
984 .tqi_cw_max = AR5K_TUNE_CWMAX
985 };
986 int qnum;
987
988 /*
989 * Enable interrupts only for EOL and DESC conditions.
990 * We mark tx descriptors to receive a DESC interrupt
991 * when a tx queue gets deep; otherwise we wait for the
992 * EOL to reap descriptors. Note that this is done to
993 * reduce interrupt load and this only defers reaping
994 * descriptors, never transmitting frames. Aside from
995 * reducing interrupts this also permits more concurrency.
996 * The only potential downside is if the tx queue backs
997 * up in which case the top half of the kernel may backup
998 * due to a lack of tx descriptors.
999 */
1000 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1001 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1002 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1003 if (qnum < 0) {
1004 /*
1005 * NB: don't print a message, this happens
1006 * normally on parts with too few tx queues
1007 */
1008 return ERR_PTR(qnum);
1009 }
1010 txq = &ah->txqs[qnum];
1011 if (!txq->setup) {
1012 txq->qnum = qnum;
1013 txq->link = NULL;
1014 INIT_LIST_HEAD(&txq->q);
1015 spin_lock_init(&txq->lock);
1016 txq->setup = true;
1017 txq->txq_len = 0;
1018 txq->txq_max = ATH5K_TXQ_LEN_MAX;
1019 txq->txq_poll_mark = false;
1020 txq->txq_stuck = 0;
1021 }
1022 return &ah->txqs[qnum];
1023 }
1024
1025 static int
ath5k_beaconq_setup(struct ath5k_hw * ah)1026 ath5k_beaconq_setup(struct ath5k_hw *ah)
1027 {
1028 struct ath5k_txq_info qi = {
1029 /* XXX: default values not correct for B and XR channels,
1030 * but who cares? */
1031 .tqi_aifs = AR5K_TUNE_AIFS,
1032 .tqi_cw_min = AR5K_TUNE_CWMIN,
1033 .tqi_cw_max = AR5K_TUNE_CWMAX,
1034 /* NB: for dynamic turbo, don't enable any other interrupts */
1035 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1036 };
1037
1038 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1039 }
1040
1041 static int
ath5k_beaconq_config(struct ath5k_hw * ah)1042 ath5k_beaconq_config(struct ath5k_hw *ah)
1043 {
1044 struct ath5k_txq_info qi;
1045 int ret;
1046
1047 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1048 if (ret)
1049 goto err;
1050
1051 if (ah->opmode == NL80211_IFTYPE_AP ||
1052 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1053 /*
1054 * Always burst out beacon and CAB traffic
1055 * (aifs = cwmin = cwmax = 0)
1056 */
1057 qi.tqi_aifs = 0;
1058 qi.tqi_cw_min = 0;
1059 qi.tqi_cw_max = 0;
1060 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1061 /*
1062 * Adhoc mode; backoff between 0 and (2 * cw_min).
1063 */
1064 qi.tqi_aifs = 0;
1065 qi.tqi_cw_min = 0;
1066 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1067 }
1068
1069 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1070 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1071 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1072
1073 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1074 if (ret) {
1075 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1076 "hardware queue!\n", __func__);
1077 goto err;
1078 }
1079 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1080 if (ret)
1081 goto err;
1082
1083 /* reconfigure cabq with ready time to 80% of beacon_interval */
1084 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1085 if (ret)
1086 goto err;
1087
1088 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1089 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1090 if (ret)
1091 goto err;
1092
1093 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1094 err:
1095 return ret;
1096 }
1097
1098 /**
1099 * ath5k_drain_tx_buffs - Empty tx buffers
1100 *
1101 * @ah The &struct ath5k_hw
1102 *
1103 * Empty tx buffers from all queues in preparation
1104 * of a reset or during shutdown.
1105 *
1106 * NB: this assumes output has been stopped and
1107 * we do not need to block ath5k_tx_tasklet
1108 */
1109 static void
ath5k_drain_tx_buffs(struct ath5k_hw * ah)1110 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1111 {
1112 struct ath5k_txq *txq;
1113 struct ath5k_buf *bf, *bf0;
1114 int i;
1115
1116 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1117 if (ah->txqs[i].setup) {
1118 txq = &ah->txqs[i];
1119 spin_lock_bh(&txq->lock);
1120 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1121 ath5k_debug_printtxbuf(ah, bf);
1122
1123 ath5k_txbuf_free_skb(ah, bf);
1124
1125 spin_lock(&ah->txbuflock);
1126 list_move_tail(&bf->list, &ah->txbuf);
1127 ah->txbuf_len++;
1128 txq->txq_len--;
1129 spin_unlock(&ah->txbuflock);
1130 }
1131 txq->link = NULL;
1132 txq->txq_poll_mark = false;
1133 spin_unlock_bh(&txq->lock);
1134 }
1135 }
1136 }
1137
1138 static void
ath5k_txq_release(struct ath5k_hw * ah)1139 ath5k_txq_release(struct ath5k_hw *ah)
1140 {
1141 struct ath5k_txq *txq = ah->txqs;
1142 unsigned int i;
1143
1144 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1145 if (txq->setup) {
1146 ath5k_hw_release_tx_queue(ah, txq->qnum);
1147 txq->setup = false;
1148 }
1149 }
1150
1151
1152 /*************\
1153 * RX Handling *
1154 \*************/
1155
1156 /*
1157 * Enable the receive h/w following a reset.
1158 */
1159 static int
ath5k_rx_start(struct ath5k_hw * ah)1160 ath5k_rx_start(struct ath5k_hw *ah)
1161 {
1162 struct ath_common *common = ath5k_hw_common(ah);
1163 struct ath5k_buf *bf;
1164 int ret;
1165
1166 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1167
1168 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1169 common->cachelsz, common->rx_bufsize);
1170
1171 spin_lock_bh(&ah->rxbuflock);
1172 ah->rxlink = NULL;
1173 list_for_each_entry(bf, &ah->rxbuf, list) {
1174 ret = ath5k_rxbuf_setup(ah, bf);
1175 if (ret != 0) {
1176 spin_unlock_bh(&ah->rxbuflock);
1177 goto err;
1178 }
1179 }
1180 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1181 ath5k_hw_set_rxdp(ah, bf->daddr);
1182 spin_unlock_bh(&ah->rxbuflock);
1183
1184 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1185 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1186 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1187
1188 return 0;
1189 err:
1190 return ret;
1191 }
1192
1193 /*
1194 * Disable the receive logic on PCU (DRU)
1195 * In preparation for a shutdown.
1196 *
1197 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1198 * does.
1199 */
1200 static void
ath5k_rx_stop(struct ath5k_hw * ah)1201 ath5k_rx_stop(struct ath5k_hw *ah)
1202 {
1203
1204 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1205 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1206
1207 ath5k_debug_printrxbuffs(ah);
1208 }
1209
1210 static unsigned int
ath5k_rx_decrypted(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1211 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1212 struct ath5k_rx_status *rs)
1213 {
1214 struct ath_common *common = ath5k_hw_common(ah);
1215 struct ieee80211_hdr *hdr = (void *)skb->data;
1216 unsigned int keyix, hlen;
1217
1218 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1219 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1220 return RX_FLAG_DECRYPTED;
1221
1222 /* Apparently when a default key is used to decrypt the packet
1223 the hw does not set the index used to decrypt. In such cases
1224 get the index from the packet. */
1225 hlen = ieee80211_hdrlen(hdr->frame_control);
1226 if (ieee80211_has_protected(hdr->frame_control) &&
1227 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1228 skb->len >= hlen + 4) {
1229 keyix = skb->data[hlen + 3] >> 6;
1230
1231 if (test_bit(keyix, common->keymap))
1232 return RX_FLAG_DECRYPTED;
1233 }
1234
1235 return 0;
1236 }
1237
1238
1239 static void
ath5k_check_ibss_tsf(struct ath5k_hw * ah,struct sk_buff * skb,struct ieee80211_rx_status * rxs)1240 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1241 struct ieee80211_rx_status *rxs)
1242 {
1243 u64 tsf, bc_tstamp;
1244 u32 hw_tu;
1245 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1246
1247 if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1248 /*
1249 * Received an IBSS beacon with the same BSSID. Hardware *must*
1250 * have updated the local TSF. We have to work around various
1251 * hardware bugs, though...
1252 */
1253 tsf = ath5k_hw_get_tsf64(ah);
1254 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1255 hw_tu = TSF_TO_TU(tsf);
1256
1257 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1258 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1259 (unsigned long long)bc_tstamp,
1260 (unsigned long long)rxs->mactime,
1261 (unsigned long long)(rxs->mactime - bc_tstamp),
1262 (unsigned long long)tsf);
1263
1264 /*
1265 * Sometimes the HW will give us a wrong tstamp in the rx
1266 * status, causing the timestamp extension to go wrong.
1267 * (This seems to happen especially with beacon frames bigger
1268 * than 78 byte (incl. FCS))
1269 * But we know that the receive timestamp must be later than the
1270 * timestamp of the beacon since HW must have synced to that.
1271 *
1272 * NOTE: here we assume mactime to be after the frame was
1273 * received, not like mac80211 which defines it at the start.
1274 */
1275 if (bc_tstamp > rxs->mactime) {
1276 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1277 "fixing mactime from %llx to %llx\n",
1278 (unsigned long long)rxs->mactime,
1279 (unsigned long long)tsf);
1280 rxs->mactime = tsf;
1281 }
1282
1283 /*
1284 * Local TSF might have moved higher than our beacon timers,
1285 * in that case we have to update them to continue sending
1286 * beacons. This also takes care of synchronizing beacon sending
1287 * times with other stations.
1288 */
1289 if (hw_tu >= ah->nexttbtt)
1290 ath5k_beacon_update_timers(ah, bc_tstamp);
1291
1292 /* Check if the beacon timers are still correct, because a TSF
1293 * update might have created a window between them - for a
1294 * longer description see the comment of this function: */
1295 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1296 ath5k_beacon_update_timers(ah, bc_tstamp);
1297 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1298 "fixed beacon timers after beacon receive\n");
1299 }
1300 }
1301 }
1302
1303 /*
1304 * Compute padding position. skb must contain an IEEE 802.11 frame
1305 */
ath5k_common_padpos(struct sk_buff * skb)1306 static int ath5k_common_padpos(struct sk_buff *skb)
1307 {
1308 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1309 __le16 frame_control = hdr->frame_control;
1310 int padpos = 24;
1311
1312 if (ieee80211_has_a4(frame_control))
1313 padpos += ETH_ALEN;
1314
1315 if (ieee80211_is_data_qos(frame_control))
1316 padpos += IEEE80211_QOS_CTL_LEN;
1317
1318 return padpos;
1319 }
1320
1321 /*
1322 * This function expects an 802.11 frame and returns the number of
1323 * bytes added, or -1 if we don't have enough header room.
1324 */
ath5k_add_padding(struct sk_buff * skb)1325 static int ath5k_add_padding(struct sk_buff *skb)
1326 {
1327 int padpos = ath5k_common_padpos(skb);
1328 int padsize = padpos & 3;
1329
1330 if (padsize && skb->len > padpos) {
1331
1332 if (skb_headroom(skb) < padsize)
1333 return -1;
1334
1335 skb_push(skb, padsize);
1336 memmove(skb->data, skb->data + padsize, padpos);
1337 return padsize;
1338 }
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * The MAC header is padded to have 32-bit boundary if the
1345 * packet payload is non-zero. The general calculation for
1346 * padsize would take into account odd header lengths:
1347 * padsize = 4 - (hdrlen & 3); however, since only
1348 * even-length headers are used, padding can only be 0 or 2
1349 * bytes and we can optimize this a bit. We must not try to
1350 * remove padding from short control frames that do not have a
1351 * payload.
1352 *
1353 * This function expects an 802.11 frame and returns the number of
1354 * bytes removed.
1355 */
ath5k_remove_padding(struct sk_buff * skb)1356 static int ath5k_remove_padding(struct sk_buff *skb)
1357 {
1358 int padpos = ath5k_common_padpos(skb);
1359 int padsize = padpos & 3;
1360
1361 if (padsize && skb->len >= padpos + padsize) {
1362 memmove(skb->data + padsize, skb->data, padpos);
1363 skb_pull(skb, padsize);
1364 return padsize;
1365 }
1366
1367 return 0;
1368 }
1369
1370 static void
ath5k_receive_frame(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1371 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1372 struct ath5k_rx_status *rs)
1373 {
1374 struct ieee80211_rx_status *rxs;
1375 struct ath_common *common = ath5k_hw_common(ah);
1376
1377 ath5k_remove_padding(skb);
1378
1379 rxs = IEEE80211_SKB_RXCB(skb);
1380
1381 rxs->flag = 0;
1382 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1383 rxs->flag |= RX_FLAG_MMIC_ERROR;
1384 if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1385 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1386
1387
1388 /*
1389 * always extend the mac timestamp, since this information is
1390 * also needed for proper IBSS merging.
1391 *
1392 * XXX: it might be too late to do it here, since rs_tstamp is
1393 * 15bit only. that means TSF extension has to be done within
1394 * 32768usec (about 32ms). it might be necessary to move this to
1395 * the interrupt handler, like it is done in madwifi.
1396 */
1397 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1398 rxs->flag |= RX_FLAG_MACTIME_END;
1399
1400 rxs->freq = ah->curchan->center_freq;
1401 rxs->band = ah->curchan->band;
1402
1403 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1404
1405 rxs->antenna = rs->rs_antenna;
1406
1407 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1408 ah->stats.antenna_rx[rs->rs_antenna]++;
1409 else
1410 ah->stats.antenna_rx[0]++; /* invalid */
1411
1412 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1413 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1414 switch (ah->ah_bwmode) {
1415 case AR5K_BWMODE_5MHZ:
1416 rxs->bw = RATE_INFO_BW_5;
1417 break;
1418 case AR5K_BWMODE_10MHZ:
1419 rxs->bw = RATE_INFO_BW_10;
1420 break;
1421 default:
1422 break;
1423 }
1424
1425 if (rs->rs_rate ==
1426 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1427 rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1428
1429 trace_ath5k_rx(ah, skb);
1430
1431 if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1432 ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1433
1434 /* check beacons in IBSS mode */
1435 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1436 ath5k_check_ibss_tsf(ah, skb, rxs);
1437 }
1438
1439 ieee80211_rx(ah->hw, skb);
1440 }
1441
1442 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1443 *
1444 * Check if we want to further process this frame or not. Also update
1445 * statistics. Return true if we want this frame, false if not.
1446 */
1447 static bool
ath5k_receive_frame_ok(struct ath5k_hw * ah,struct ath5k_rx_status * rs)1448 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1449 {
1450 ah->stats.rx_all_count++;
1451 ah->stats.rx_bytes_count += rs->rs_datalen;
1452
1453 if (unlikely(rs->rs_status)) {
1454 unsigned int filters;
1455
1456 if (rs->rs_status & AR5K_RXERR_CRC)
1457 ah->stats.rxerr_crc++;
1458 if (rs->rs_status & AR5K_RXERR_FIFO)
1459 ah->stats.rxerr_fifo++;
1460 if (rs->rs_status & AR5K_RXERR_PHY) {
1461 ah->stats.rxerr_phy++;
1462 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1463 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1464
1465 /*
1466 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1467 * These restarts happen when the radio resynchronizes to a stronger frame
1468 * while receiving a weaker frame. Here we receive the prefix of the weak
1469 * frame. Since these are incomplete packets, mark their CRC as invalid.
1470 */
1471 if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1472 rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1473 rs->rs_status |= AR5K_RXERR_CRC;
1474 rs->rs_status &= ~AR5K_RXERR_PHY;
1475 } else {
1476 return false;
1477 }
1478 }
1479 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1480 /*
1481 * Decrypt error. If the error occurred
1482 * because there was no hardware key, then
1483 * let the frame through so the upper layers
1484 * can process it. This is necessary for 5210
1485 * parts which have no way to setup a ``clear''
1486 * key cache entry.
1487 *
1488 * XXX do key cache faulting
1489 */
1490 ah->stats.rxerr_decrypt++;
1491 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1492 !(rs->rs_status & AR5K_RXERR_CRC))
1493 return true;
1494 }
1495 if (rs->rs_status & AR5K_RXERR_MIC) {
1496 ah->stats.rxerr_mic++;
1497 return true;
1498 }
1499
1500 /*
1501 * Reject any frames with non-crypto errors, and take into account the
1502 * current FIF_* filters.
1503 */
1504 filters = AR5K_RXERR_DECRYPT;
1505 if (ah->fif_filter_flags & FIF_FCSFAIL)
1506 filters |= AR5K_RXERR_CRC;
1507
1508 if (rs->rs_status & ~filters)
1509 return false;
1510 }
1511
1512 if (unlikely(rs->rs_more)) {
1513 ah->stats.rxerr_jumbo++;
1514 return false;
1515 }
1516 return true;
1517 }
1518
1519 static void
ath5k_set_current_imask(struct ath5k_hw * ah)1520 ath5k_set_current_imask(struct ath5k_hw *ah)
1521 {
1522 enum ath5k_int imask;
1523 unsigned long flags;
1524
1525 if (test_bit(ATH_STAT_RESET, ah->status))
1526 return;
1527
1528 spin_lock_irqsave(&ah->irqlock, flags);
1529 imask = ah->imask;
1530 if (ah->rx_pending)
1531 imask &= ~AR5K_INT_RX_ALL;
1532 if (ah->tx_pending)
1533 imask &= ~AR5K_INT_TX_ALL;
1534 ath5k_hw_set_imr(ah, imask);
1535 spin_unlock_irqrestore(&ah->irqlock, flags);
1536 }
1537
1538 static void
ath5k_tasklet_rx(unsigned long data)1539 ath5k_tasklet_rx(unsigned long data)
1540 {
1541 struct ath5k_rx_status rs = {};
1542 struct sk_buff *skb, *next_skb;
1543 dma_addr_t next_skb_addr;
1544 struct ath5k_hw *ah = (void *)data;
1545 struct ath_common *common = ath5k_hw_common(ah);
1546 struct ath5k_buf *bf;
1547 struct ath5k_desc *ds;
1548 int ret;
1549
1550 spin_lock(&ah->rxbuflock);
1551 if (list_empty(&ah->rxbuf)) {
1552 ATH5K_WARN(ah, "empty rx buf pool\n");
1553 goto unlock;
1554 }
1555 do {
1556 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1557 BUG_ON(bf->skb == NULL);
1558 skb = bf->skb;
1559 ds = bf->desc;
1560
1561 /* bail if HW is still using self-linked descriptor */
1562 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1563 break;
1564
1565 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1566 if (unlikely(ret == -EINPROGRESS))
1567 break;
1568 else if (unlikely(ret)) {
1569 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1570 ah->stats.rxerr_proc++;
1571 break;
1572 }
1573
1574 if (ath5k_receive_frame_ok(ah, &rs)) {
1575 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1576
1577 /*
1578 * If we can't replace bf->skb with a new skb under
1579 * memory pressure, just skip this packet
1580 */
1581 if (!next_skb)
1582 goto next;
1583
1584 dma_unmap_single(ah->dev, bf->skbaddr,
1585 common->rx_bufsize,
1586 DMA_FROM_DEVICE);
1587
1588 skb_put(skb, rs.rs_datalen);
1589
1590 ath5k_receive_frame(ah, skb, &rs);
1591
1592 bf->skb = next_skb;
1593 bf->skbaddr = next_skb_addr;
1594 }
1595 next:
1596 list_move_tail(&bf->list, &ah->rxbuf);
1597 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1598 unlock:
1599 spin_unlock(&ah->rxbuflock);
1600 ah->rx_pending = false;
1601 ath5k_set_current_imask(ah);
1602 }
1603
1604
1605 /*************\
1606 * TX Handling *
1607 \*************/
1608
1609 void
ath5k_tx_queue(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath5k_txq * txq,struct ieee80211_tx_control * control)1610 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1611 struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1612 {
1613 struct ath5k_hw *ah = hw->priv;
1614 struct ath5k_buf *bf;
1615 unsigned long flags;
1616 int padsize;
1617
1618 trace_ath5k_tx(ah, skb, txq);
1619
1620 /*
1621 * The hardware expects the header padded to 4 byte boundaries.
1622 * If this is not the case, we add the padding after the header.
1623 */
1624 padsize = ath5k_add_padding(skb);
1625 if (padsize < 0) {
1626 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1627 " headroom to pad");
1628 goto drop_packet;
1629 }
1630
1631 if (txq->txq_len >= txq->txq_max &&
1632 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1633 ieee80211_stop_queue(hw, txq->qnum);
1634
1635 spin_lock_irqsave(&ah->txbuflock, flags);
1636 if (list_empty(&ah->txbuf)) {
1637 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1638 spin_unlock_irqrestore(&ah->txbuflock, flags);
1639 ieee80211_stop_queues(hw);
1640 goto drop_packet;
1641 }
1642 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1643 list_del(&bf->list);
1644 ah->txbuf_len--;
1645 if (list_empty(&ah->txbuf))
1646 ieee80211_stop_queues(hw);
1647 spin_unlock_irqrestore(&ah->txbuflock, flags);
1648
1649 bf->skb = skb;
1650
1651 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1652 bf->skb = NULL;
1653 spin_lock_irqsave(&ah->txbuflock, flags);
1654 list_add_tail(&bf->list, &ah->txbuf);
1655 ah->txbuf_len++;
1656 spin_unlock_irqrestore(&ah->txbuflock, flags);
1657 goto drop_packet;
1658 }
1659 return;
1660
1661 drop_packet:
1662 ieee80211_free_txskb(hw, skb);
1663 }
1664
1665 static void
ath5k_tx_frame_completed(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_txq * txq,struct ath5k_tx_status * ts,struct ath5k_buf * bf)1666 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1667 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1668 struct ath5k_buf *bf)
1669 {
1670 struct ieee80211_tx_info *info;
1671 u8 tries[3];
1672 int i;
1673 int size = 0;
1674
1675 ah->stats.tx_all_count++;
1676 ah->stats.tx_bytes_count += skb->len;
1677 info = IEEE80211_SKB_CB(skb);
1678
1679 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1680 memcpy(info->status.rates, bf->rates, size);
1681
1682 tries[0] = info->status.rates[0].count;
1683 tries[1] = info->status.rates[1].count;
1684 tries[2] = info->status.rates[2].count;
1685
1686 ieee80211_tx_info_clear_status(info);
1687
1688 for (i = 0; i < ts->ts_final_idx; i++) {
1689 struct ieee80211_tx_rate *r =
1690 &info->status.rates[i];
1691
1692 r->count = tries[i];
1693 }
1694
1695 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1696 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1697
1698 if (unlikely(ts->ts_status)) {
1699 ah->stats.ack_fail++;
1700 if (ts->ts_status & AR5K_TXERR_FILT) {
1701 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1702 ah->stats.txerr_filt++;
1703 }
1704 if (ts->ts_status & AR5K_TXERR_XRETRY)
1705 ah->stats.txerr_retry++;
1706 if (ts->ts_status & AR5K_TXERR_FIFO)
1707 ah->stats.txerr_fifo++;
1708 } else {
1709 info->flags |= IEEE80211_TX_STAT_ACK;
1710 info->status.ack_signal = ts->ts_rssi;
1711
1712 /* count the successful attempt as well */
1713 info->status.rates[ts->ts_final_idx].count++;
1714 }
1715
1716 /*
1717 * Remove MAC header padding before giving the frame
1718 * back to mac80211.
1719 */
1720 ath5k_remove_padding(skb);
1721
1722 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1723 ah->stats.antenna_tx[ts->ts_antenna]++;
1724 else
1725 ah->stats.antenna_tx[0]++; /* invalid */
1726
1727 trace_ath5k_tx_complete(ah, skb, txq, ts);
1728 ieee80211_tx_status(ah->hw, skb);
1729 }
1730
1731 static void
ath5k_tx_processq(struct ath5k_hw * ah,struct ath5k_txq * txq)1732 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1733 {
1734 struct ath5k_tx_status ts = {};
1735 struct ath5k_buf *bf, *bf0;
1736 struct ath5k_desc *ds;
1737 struct sk_buff *skb;
1738 int ret;
1739
1740 spin_lock(&txq->lock);
1741 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1742
1743 txq->txq_poll_mark = false;
1744
1745 /* skb might already have been processed last time. */
1746 if (bf->skb != NULL) {
1747 ds = bf->desc;
1748
1749 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1750 if (unlikely(ret == -EINPROGRESS))
1751 break;
1752 else if (unlikely(ret)) {
1753 ATH5K_ERR(ah,
1754 "error %d while processing "
1755 "queue %u\n", ret, txq->qnum);
1756 break;
1757 }
1758
1759 skb = bf->skb;
1760 bf->skb = NULL;
1761
1762 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1763 DMA_TO_DEVICE);
1764 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1765 }
1766
1767 /*
1768 * It's possible that the hardware can say the buffer is
1769 * completed when it hasn't yet loaded the ds_link from
1770 * host memory and moved on.
1771 * Always keep the last descriptor to avoid HW races...
1772 */
1773 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1774 spin_lock(&ah->txbuflock);
1775 list_move_tail(&bf->list, &ah->txbuf);
1776 ah->txbuf_len++;
1777 txq->txq_len--;
1778 spin_unlock(&ah->txbuflock);
1779 }
1780 }
1781 spin_unlock(&txq->lock);
1782 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1783 ieee80211_wake_queue(ah->hw, txq->qnum);
1784 }
1785
1786 static void
ath5k_tasklet_tx(unsigned long data)1787 ath5k_tasklet_tx(unsigned long data)
1788 {
1789 int i;
1790 struct ath5k_hw *ah = (void *)data;
1791
1792 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1793 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1794 ath5k_tx_processq(ah, &ah->txqs[i]);
1795
1796 ah->tx_pending = false;
1797 ath5k_set_current_imask(ah);
1798 }
1799
1800
1801 /*****************\
1802 * Beacon handling *
1803 \*****************/
1804
1805 /*
1806 * Setup the beacon frame for transmit.
1807 */
1808 static int
ath5k_beacon_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)1809 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1810 {
1811 struct sk_buff *skb = bf->skb;
1812 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1813 struct ath5k_desc *ds;
1814 int ret = 0;
1815 u8 antenna;
1816 u32 flags;
1817 const int padsize = 0;
1818
1819 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1820 DMA_TO_DEVICE);
1821 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1822 "skbaddr %llx\n", skb, skb->data, skb->len,
1823 (unsigned long long)bf->skbaddr);
1824
1825 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1826 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1827 dev_kfree_skb_any(skb);
1828 bf->skb = NULL;
1829 return -EIO;
1830 }
1831
1832 ds = bf->desc;
1833 antenna = ah->ah_tx_ant;
1834
1835 flags = AR5K_TXDESC_NOACK;
1836 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1837 ds->ds_link = bf->daddr; /* self-linked */
1838 flags |= AR5K_TXDESC_VEOL;
1839 } else
1840 ds->ds_link = 0;
1841
1842 /*
1843 * If we use multiple antennas on AP and use
1844 * the Sectored AP scenario, switch antenna every
1845 * 4 beacons to make sure everybody hears our AP.
1846 * When a client tries to associate, hw will keep
1847 * track of the tx antenna to be used for this client
1848 * automatically, based on ACKed packets.
1849 *
1850 * Note: AP still listens and transmits RTS on the
1851 * default antenna which is supposed to be an omni.
1852 *
1853 * Note2: On sectored scenarios it's possible to have
1854 * multiple antennas (1 omni -- the default -- and 14
1855 * sectors), so if we choose to actually support this
1856 * mode, we need to allow the user to set how many antennas
1857 * we have and tweak the code below to send beacons
1858 * on all of them.
1859 */
1860 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1861 antenna = ah->bsent & 4 ? 2 : 1;
1862
1863
1864 /* FIXME: If we are in g mode and rate is a CCK rate
1865 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1866 * from tx power (value is in dB units already) */
1867 ds->ds_data = bf->skbaddr;
1868 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1869 ieee80211_get_hdrlen_from_skb(skb), padsize,
1870 AR5K_PKT_TYPE_BEACON,
1871 (ah->ah_txpower.txp_requested * 2),
1872 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1873 1, AR5K_TXKEYIX_INVALID,
1874 antenna, flags, 0, 0);
1875 if (ret)
1876 goto err_unmap;
1877
1878 return 0;
1879 err_unmap:
1880 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1881 return ret;
1882 }
1883
1884 /*
1885 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1886 * this is called only once at config_bss time, for AP we do it every
1887 * SWBA interrupt so that the TIM will reflect buffered frames.
1888 *
1889 * Called with the beacon lock.
1890 */
1891 int
ath5k_beacon_update(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1892 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1893 {
1894 int ret;
1895 struct ath5k_hw *ah = hw->priv;
1896 struct ath5k_vif *avf;
1897 struct sk_buff *skb;
1898
1899 if (WARN_ON(!vif)) {
1900 ret = -EINVAL;
1901 goto out;
1902 }
1903
1904 skb = ieee80211_beacon_get(hw, vif);
1905
1906 if (!skb) {
1907 ret = -ENOMEM;
1908 goto out;
1909 }
1910
1911 avf = (void *)vif->drv_priv;
1912 ath5k_txbuf_free_skb(ah, avf->bbuf);
1913 avf->bbuf->skb = skb;
1914 ret = ath5k_beacon_setup(ah, avf->bbuf);
1915 out:
1916 return ret;
1917 }
1918
1919 /*
1920 * Transmit a beacon frame at SWBA. Dynamic updates to the
1921 * frame contents are done as needed and the slot time is
1922 * also adjusted based on current state.
1923 *
1924 * This is called from software irq context (beacontq tasklets)
1925 * or user context from ath5k_beacon_config.
1926 */
1927 static void
ath5k_beacon_send(struct ath5k_hw * ah)1928 ath5k_beacon_send(struct ath5k_hw *ah)
1929 {
1930 struct ieee80211_vif *vif;
1931 struct ath5k_vif *avf;
1932 struct ath5k_buf *bf;
1933 struct sk_buff *skb;
1934 int err;
1935
1936 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1937
1938 /*
1939 * Check if the previous beacon has gone out. If
1940 * not, don't don't try to post another: skip this
1941 * period and wait for the next. Missed beacons
1942 * indicate a problem and should not occur. If we
1943 * miss too many consecutive beacons reset the device.
1944 */
1945 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1946 ah->bmisscount++;
1947 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1948 "missed %u consecutive beacons\n", ah->bmisscount);
1949 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1950 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1951 "stuck beacon time (%u missed)\n",
1952 ah->bmisscount);
1953 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1954 "stuck beacon, resetting\n");
1955 ieee80211_queue_work(ah->hw, &ah->reset_work);
1956 }
1957 return;
1958 }
1959 if (unlikely(ah->bmisscount != 0)) {
1960 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1961 "resume beacon xmit after %u misses\n",
1962 ah->bmisscount);
1963 ah->bmisscount = 0;
1964 }
1965
1966 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1967 ah->num_mesh_vifs > 1) ||
1968 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1969 u64 tsf = ath5k_hw_get_tsf64(ah);
1970 u32 tsftu = TSF_TO_TU(tsf);
1971 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1972 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1973 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1974 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1975 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1976 } else /* only one interface */
1977 vif = ah->bslot[0];
1978
1979 if (!vif)
1980 return;
1981
1982 avf = (void *)vif->drv_priv;
1983 bf = avf->bbuf;
1984
1985 /*
1986 * Stop any current dma and put the new frame on the queue.
1987 * This should never fail since we check above that no frames
1988 * are still pending on the queue.
1989 */
1990 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1991 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1992 /* NB: hw still stops DMA, so proceed */
1993 }
1994
1995 /* refresh the beacon for AP or MESH mode */
1996 if (ah->opmode == NL80211_IFTYPE_AP ||
1997 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1998 err = ath5k_beacon_update(ah->hw, vif);
1999 if (err)
2000 return;
2001 }
2002
2003 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2004 ah->opmode == NL80211_IFTYPE_MONITOR)) {
2005 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2006 return;
2007 }
2008
2009 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2010
2011 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2012 ath5k_hw_start_tx_dma(ah, ah->bhalq);
2013 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2014 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2015
2016 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2017 while (skb) {
2018 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2019
2020 if (ah->cabq->txq_len >= ah->cabq->txq_max)
2021 break;
2022
2023 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2024 }
2025
2026 ah->bsent++;
2027 }
2028
2029 /**
2030 * ath5k_beacon_update_timers - update beacon timers
2031 *
2032 * @ah: struct ath5k_hw pointer we are operating on
2033 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2034 * beacon timer update based on the current HW TSF.
2035 *
2036 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2037 * of a received beacon or the current local hardware TSF and write it to the
2038 * beacon timer registers.
2039 *
2040 * This is called in a variety of situations, e.g. when a beacon is received,
2041 * when a TSF update has been detected, but also when an new IBSS is created or
2042 * when we otherwise know we have to update the timers, but we keep it in this
2043 * function to have it all together in one place.
2044 */
2045 void
ath5k_beacon_update_timers(struct ath5k_hw * ah,u64 bc_tsf)2046 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2047 {
2048 u32 nexttbtt, intval, hw_tu, bc_tu;
2049 u64 hw_tsf;
2050
2051 intval = ah->bintval & AR5K_BEACON_PERIOD;
2052 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2053 + ah->num_mesh_vifs > 1) {
2054 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
2055 if (intval < 15)
2056 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2057 intval);
2058 }
2059 if (WARN_ON(!intval))
2060 return;
2061
2062 /* beacon TSF converted to TU */
2063 bc_tu = TSF_TO_TU(bc_tsf);
2064
2065 /* current TSF converted to TU */
2066 hw_tsf = ath5k_hw_get_tsf64(ah);
2067 hw_tu = TSF_TO_TU(hw_tsf);
2068
2069 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2070 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2071 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2072 * configuration we need to make sure it is bigger than that. */
2073
2074 if (bc_tsf == -1) {
2075 /*
2076 * no beacons received, called internally.
2077 * just need to refresh timers based on HW TSF.
2078 */
2079 nexttbtt = roundup(hw_tu + FUDGE, intval);
2080 } else if (bc_tsf == 0) {
2081 /*
2082 * no beacon received, probably called by ath5k_reset_tsf().
2083 * reset TSF to start with 0.
2084 */
2085 nexttbtt = intval;
2086 intval |= AR5K_BEACON_RESET_TSF;
2087 } else if (bc_tsf > hw_tsf) {
2088 /*
2089 * beacon received, SW merge happened but HW TSF not yet updated.
2090 * not possible to reconfigure timers yet, but next time we
2091 * receive a beacon with the same BSSID, the hardware will
2092 * automatically update the TSF and then we need to reconfigure
2093 * the timers.
2094 */
2095 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2096 "need to wait for HW TSF sync\n");
2097 return;
2098 } else {
2099 /*
2100 * most important case for beacon synchronization between STA.
2101 *
2102 * beacon received and HW TSF has been already updated by HW.
2103 * update next TBTT based on the TSF of the beacon, but make
2104 * sure it is ahead of our local TSF timer.
2105 */
2106 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2107 }
2108 #undef FUDGE
2109
2110 ah->nexttbtt = nexttbtt;
2111
2112 intval |= AR5K_BEACON_ENA;
2113 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2114
2115 /*
2116 * debugging output last in order to preserve the time critical aspect
2117 * of this function
2118 */
2119 if (bc_tsf == -1)
2120 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2121 "reconfigured timers based on HW TSF\n");
2122 else if (bc_tsf == 0)
2123 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2124 "reset HW TSF and timers\n");
2125 else
2126 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2127 "updated timers based on beacon TSF\n");
2128
2129 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2130 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2131 (unsigned long long) bc_tsf,
2132 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2133 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2134 intval & AR5K_BEACON_PERIOD,
2135 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2136 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2137 }
2138
2139 /**
2140 * ath5k_beacon_config - Configure the beacon queues and interrupts
2141 *
2142 * @ah: struct ath5k_hw pointer we are operating on
2143 *
2144 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2145 * interrupts to detect TSF updates only.
2146 */
2147 void
ath5k_beacon_config(struct ath5k_hw * ah)2148 ath5k_beacon_config(struct ath5k_hw *ah)
2149 {
2150 spin_lock_bh(&ah->block);
2151 ah->bmisscount = 0;
2152 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2153
2154 if (ah->enable_beacon) {
2155 /*
2156 * In IBSS mode we use a self-linked tx descriptor and let the
2157 * hardware send the beacons automatically. We have to load it
2158 * only once here.
2159 * We use the SWBA interrupt only to keep track of the beacon
2160 * timers in order to detect automatic TSF updates.
2161 */
2162 ath5k_beaconq_config(ah);
2163
2164 ah->imask |= AR5K_INT_SWBA;
2165
2166 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2167 if (ath5k_hw_hasveol(ah))
2168 ath5k_beacon_send(ah);
2169 } else
2170 ath5k_beacon_update_timers(ah, -1);
2171 } else {
2172 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2173 }
2174
2175 ath5k_hw_set_imr(ah, ah->imask);
2176 spin_unlock_bh(&ah->block);
2177 }
2178
ath5k_tasklet_beacon(unsigned long data)2179 static void ath5k_tasklet_beacon(unsigned long data)
2180 {
2181 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2182
2183 /*
2184 * Software beacon alert--time to send a beacon.
2185 *
2186 * In IBSS mode we use this interrupt just to
2187 * keep track of the next TBTT (target beacon
2188 * transmission time) in order to detect whether
2189 * automatic TSF updates happened.
2190 */
2191 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2192 /* XXX: only if VEOL supported */
2193 u64 tsf = ath5k_hw_get_tsf64(ah);
2194 ah->nexttbtt += ah->bintval;
2195 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2196 "SWBA nexttbtt: %x hw_tu: %x "
2197 "TSF: %llx\n",
2198 ah->nexttbtt,
2199 TSF_TO_TU(tsf),
2200 (unsigned long long) tsf);
2201 } else {
2202 spin_lock(&ah->block);
2203 ath5k_beacon_send(ah);
2204 spin_unlock(&ah->block);
2205 }
2206 }
2207
2208
2209 /********************\
2210 * Interrupt handling *
2211 \********************/
2212
2213 static void
ath5k_intr_calibration_poll(struct ath5k_hw * ah)2214 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2215 {
2216 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2217 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2218 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2219
2220 /* Run ANI only when calibration is not active */
2221
2222 ah->ah_cal_next_ani = jiffies +
2223 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2224 tasklet_schedule(&ah->ani_tasklet);
2225
2226 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2227 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2228 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2229
2230 /* Run calibration only when another calibration
2231 * is not running.
2232 *
2233 * Note: This is for both full/short calibration,
2234 * if it's time for a full one, ath5k_calibrate_work will deal
2235 * with it. */
2236
2237 ah->ah_cal_next_short = jiffies +
2238 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2239 ieee80211_queue_work(ah->hw, &ah->calib_work);
2240 }
2241 /* we could use SWI to generate enough interrupts to meet our
2242 * calibration interval requirements, if necessary:
2243 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2244 }
2245
2246 static void
ath5k_schedule_rx(struct ath5k_hw * ah)2247 ath5k_schedule_rx(struct ath5k_hw *ah)
2248 {
2249 ah->rx_pending = true;
2250 tasklet_schedule(&ah->rxtq);
2251 }
2252
2253 static void
ath5k_schedule_tx(struct ath5k_hw * ah)2254 ath5k_schedule_tx(struct ath5k_hw *ah)
2255 {
2256 ah->tx_pending = true;
2257 tasklet_schedule(&ah->txtq);
2258 }
2259
2260 static irqreturn_t
ath5k_intr(int irq,void * dev_id)2261 ath5k_intr(int irq, void *dev_id)
2262 {
2263 struct ath5k_hw *ah = dev_id;
2264 enum ath5k_int status;
2265 unsigned int counter = 1000;
2266
2267
2268 /*
2269 * If hw is not ready (or detached) and we get an
2270 * interrupt, or if we have no interrupts pending
2271 * (that means it's not for us) skip it.
2272 *
2273 * NOTE: Group 0/1 PCI interface registers are not
2274 * supported on WiSOCs, so we can't check for pending
2275 * interrupts (ISR belongs to another register group
2276 * so we are ok).
2277 */
2278 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2279 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2280 !ath5k_hw_is_intr_pending(ah))))
2281 return IRQ_NONE;
2282
2283 /** Main loop **/
2284 do {
2285 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2286
2287 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2288 status, ah->imask);
2289
2290 /*
2291 * Fatal hw error -> Log and reset
2292 *
2293 * Fatal errors are unrecoverable so we have to
2294 * reset the card. These errors include bus and
2295 * dma errors.
2296 */
2297 if (unlikely(status & AR5K_INT_FATAL)) {
2298
2299 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2300 "fatal int, resetting\n");
2301 ieee80211_queue_work(ah->hw, &ah->reset_work);
2302
2303 /*
2304 * RX Overrun -> Count and reset if needed
2305 *
2306 * Receive buffers are full. Either the bus is busy or
2307 * the CPU is not fast enough to process all received
2308 * frames.
2309 */
2310 } else if (unlikely(status & AR5K_INT_RXORN)) {
2311
2312 /*
2313 * Older chipsets need a reset to come out of this
2314 * condition, but we treat it as RX for newer chips.
2315 * We don't know exactly which versions need a reset
2316 * this guess is copied from the HAL.
2317 */
2318 ah->stats.rxorn_intr++;
2319
2320 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2321 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2322 "rx overrun, resetting\n");
2323 ieee80211_queue_work(ah->hw, &ah->reset_work);
2324 } else
2325 ath5k_schedule_rx(ah);
2326
2327 } else {
2328
2329 /* Software Beacon Alert -> Schedule beacon tasklet */
2330 if (status & AR5K_INT_SWBA)
2331 tasklet_hi_schedule(&ah->beacontq);
2332
2333 /*
2334 * No more RX descriptors -> Just count
2335 *
2336 * NB: the hardware should re-read the link when
2337 * RXE bit is written, but it doesn't work at
2338 * least on older hardware revs.
2339 */
2340 if (status & AR5K_INT_RXEOL)
2341 ah->stats.rxeol_intr++;
2342
2343
2344 /* TX Underrun -> Bump tx trigger level */
2345 if (status & AR5K_INT_TXURN)
2346 ath5k_hw_update_tx_triglevel(ah, true);
2347
2348 /* RX -> Schedule rx tasklet */
2349 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2350 ath5k_schedule_rx(ah);
2351
2352 /* TX -> Schedule tx tasklet */
2353 if (status & (AR5K_INT_TXOK
2354 | AR5K_INT_TXDESC
2355 | AR5K_INT_TXERR
2356 | AR5K_INT_TXEOL))
2357 ath5k_schedule_tx(ah);
2358
2359 /* Missed beacon -> TODO
2360 if (status & AR5K_INT_BMISS)
2361 */
2362
2363 /* MIB event -> Update counters and notify ANI */
2364 if (status & AR5K_INT_MIB) {
2365 ah->stats.mib_intr++;
2366 ath5k_hw_update_mib_counters(ah);
2367 ath5k_ani_mib_intr(ah);
2368 }
2369
2370 /* GPIO -> Notify RFKill layer */
2371 if (status & AR5K_INT_GPIO)
2372 tasklet_schedule(&ah->rf_kill.toggleq);
2373
2374 }
2375
2376 if (ath5k_get_bus_type(ah) == ATH_AHB)
2377 break;
2378
2379 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2380
2381 /*
2382 * Until we handle rx/tx interrupts mask them on IMR
2383 *
2384 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2385 * and unset after we 've handled the interrupts.
2386 */
2387 if (ah->rx_pending || ah->tx_pending)
2388 ath5k_set_current_imask(ah);
2389
2390 if (unlikely(!counter))
2391 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2392
2393 /* Fire up calibration poll */
2394 ath5k_intr_calibration_poll(ah);
2395
2396 return IRQ_HANDLED;
2397 }
2398
2399 /*
2400 * Periodically recalibrate the PHY to account
2401 * for temperature/environment changes.
2402 */
2403 static void
ath5k_calibrate_work(struct work_struct * work)2404 ath5k_calibrate_work(struct work_struct *work)
2405 {
2406 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2407 calib_work);
2408
2409 /* Should we run a full calibration ? */
2410 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2411
2412 ah->ah_cal_next_full = jiffies +
2413 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2414 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2415
2416 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2417 "running full calibration\n");
2418
2419 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2420 /*
2421 * Rfgain is out of bounds, reset the chip
2422 * to load new gain values.
2423 */
2424 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2425 "got new rfgain, resetting\n");
2426 ieee80211_queue_work(ah->hw, &ah->reset_work);
2427 }
2428 } else
2429 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2430
2431
2432 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2433 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2434 ah->curchan->hw_value);
2435
2436 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2437 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2438 ieee80211_frequency_to_channel(
2439 ah->curchan->center_freq));
2440
2441 /* Clear calibration flags */
2442 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2443 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2444 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2445 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2446 }
2447
2448
2449 static void
ath5k_tasklet_ani(unsigned long data)2450 ath5k_tasklet_ani(unsigned long data)
2451 {
2452 struct ath5k_hw *ah = (void *)data;
2453
2454 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2455 ath5k_ani_calibration(ah);
2456 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2457 }
2458
2459
2460 static void
ath5k_tx_complete_poll_work(struct work_struct * work)2461 ath5k_tx_complete_poll_work(struct work_struct *work)
2462 {
2463 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2464 tx_complete_work.work);
2465 struct ath5k_txq *txq;
2466 int i;
2467 bool needreset = false;
2468
2469 if (!test_bit(ATH_STAT_STARTED, ah->status))
2470 return;
2471
2472 mutex_lock(&ah->lock);
2473
2474 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2475 if (ah->txqs[i].setup) {
2476 txq = &ah->txqs[i];
2477 spin_lock_bh(&txq->lock);
2478 if (txq->txq_len > 1) {
2479 if (txq->txq_poll_mark) {
2480 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2481 "TX queue stuck %d\n",
2482 txq->qnum);
2483 needreset = true;
2484 txq->txq_stuck++;
2485 spin_unlock_bh(&txq->lock);
2486 break;
2487 } else {
2488 txq->txq_poll_mark = true;
2489 }
2490 }
2491 spin_unlock_bh(&txq->lock);
2492 }
2493 }
2494
2495 if (needreset) {
2496 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2497 "TX queues stuck, resetting\n");
2498 ath5k_reset(ah, NULL, true);
2499 }
2500
2501 mutex_unlock(&ah->lock);
2502
2503 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2504 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2505 }
2506
2507
2508 /*************************\
2509 * Initialization routines *
2510 \*************************/
2511
2512 static const struct ieee80211_iface_limit if_limits[] = {
2513 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2514 { .max = 4, .types =
2515 #ifdef CONFIG_MAC80211_MESH
2516 BIT(NL80211_IFTYPE_MESH_POINT) |
2517 #endif
2518 BIT(NL80211_IFTYPE_AP) },
2519 };
2520
2521 static const struct ieee80211_iface_combination if_comb = {
2522 .limits = if_limits,
2523 .n_limits = ARRAY_SIZE(if_limits),
2524 .max_interfaces = 2048,
2525 .num_different_channels = 1,
2526 };
2527
2528 int
ath5k_init_ah(struct ath5k_hw * ah,const struct ath_bus_ops * bus_ops)2529 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2530 {
2531 struct ieee80211_hw *hw = ah->hw;
2532 struct ath_common *common;
2533 int ret;
2534 int csz;
2535
2536 /* Initialize driver private data */
2537 SET_IEEE80211_DEV(hw, ah->dev);
2538 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2539 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2540 ieee80211_hw_set(hw, MFP_CAPABLE);
2541 ieee80211_hw_set(hw, SIGNAL_DBM);
2542 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2543 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2544
2545 hw->wiphy->interface_modes =
2546 BIT(NL80211_IFTYPE_AP) |
2547 BIT(NL80211_IFTYPE_STATION) |
2548 BIT(NL80211_IFTYPE_ADHOC) |
2549 BIT(NL80211_IFTYPE_MESH_POINT);
2550
2551 hw->wiphy->iface_combinations = &if_comb;
2552 hw->wiphy->n_iface_combinations = 1;
2553
2554 /* SW support for IBSS_RSN is provided by mac80211 */
2555 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2556
2557 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2558
2559 /* both antennas can be configured as RX or TX */
2560 hw->wiphy->available_antennas_tx = 0x3;
2561 hw->wiphy->available_antennas_rx = 0x3;
2562
2563 hw->extra_tx_headroom = 2;
2564
2565 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2566
2567 /*
2568 * Mark the device as detached to avoid processing
2569 * interrupts until setup is complete.
2570 */
2571 __set_bit(ATH_STAT_INVALID, ah->status);
2572
2573 ah->opmode = NL80211_IFTYPE_STATION;
2574 ah->bintval = 1000;
2575 mutex_init(&ah->lock);
2576 spin_lock_init(&ah->rxbuflock);
2577 spin_lock_init(&ah->txbuflock);
2578 spin_lock_init(&ah->block);
2579 spin_lock_init(&ah->irqlock);
2580
2581 /* Setup interrupt handler */
2582 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2583 if (ret) {
2584 ATH5K_ERR(ah, "request_irq failed\n");
2585 goto err;
2586 }
2587
2588 common = ath5k_hw_common(ah);
2589 common->ops = &ath5k_common_ops;
2590 common->bus_ops = bus_ops;
2591 common->ah = ah;
2592 common->hw = hw;
2593 common->priv = ah;
2594 common->clockrate = 40;
2595
2596 /*
2597 * Cache line size is used to size and align various
2598 * structures used to communicate with the hardware.
2599 */
2600 ath5k_read_cachesize(common, &csz);
2601 common->cachelsz = csz << 2; /* convert to bytes */
2602
2603 spin_lock_init(&common->cc_lock);
2604
2605 /* Initialize device */
2606 ret = ath5k_hw_init(ah);
2607 if (ret)
2608 goto err_irq;
2609
2610 /* Set up multi-rate retry capabilities */
2611 if (ah->ah_capabilities.cap_has_mrr_support) {
2612 hw->max_rates = 4;
2613 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2614 AR5K_INIT_RETRY_LONG);
2615 }
2616
2617 hw->vif_data_size = sizeof(struct ath5k_vif);
2618
2619 /* Finish private driver data initialization */
2620 ret = ath5k_init(hw);
2621 if (ret)
2622 goto err_ah;
2623
2624 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2625 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2626 ah->ah_mac_srev,
2627 ah->ah_phy_revision);
2628
2629 if (!ah->ah_single_chip) {
2630 /* Single chip radio (!RF5111) */
2631 if (ah->ah_radio_5ghz_revision &&
2632 !ah->ah_radio_2ghz_revision) {
2633 /* No 5GHz support -> report 2GHz radio */
2634 if (!test_bit(AR5K_MODE_11A,
2635 ah->ah_capabilities.cap_mode)) {
2636 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2637 ath5k_chip_name(AR5K_VERSION_RAD,
2638 ah->ah_radio_5ghz_revision),
2639 ah->ah_radio_5ghz_revision);
2640 /* No 2GHz support (5110 and some
2641 * 5GHz only cards) -> report 5GHz radio */
2642 } else if (!test_bit(AR5K_MODE_11B,
2643 ah->ah_capabilities.cap_mode)) {
2644 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2645 ath5k_chip_name(AR5K_VERSION_RAD,
2646 ah->ah_radio_5ghz_revision),
2647 ah->ah_radio_5ghz_revision);
2648 /* Multiband radio */
2649 } else {
2650 ATH5K_INFO(ah, "RF%s multiband radio found"
2651 " (0x%x)\n",
2652 ath5k_chip_name(AR5K_VERSION_RAD,
2653 ah->ah_radio_5ghz_revision),
2654 ah->ah_radio_5ghz_revision);
2655 }
2656 }
2657 /* Multi chip radio (RF5111 - RF2111) ->
2658 * report both 2GHz/5GHz radios */
2659 else if (ah->ah_radio_5ghz_revision &&
2660 ah->ah_radio_2ghz_revision) {
2661 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2662 ath5k_chip_name(AR5K_VERSION_RAD,
2663 ah->ah_radio_5ghz_revision),
2664 ah->ah_radio_5ghz_revision);
2665 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2666 ath5k_chip_name(AR5K_VERSION_RAD,
2667 ah->ah_radio_2ghz_revision),
2668 ah->ah_radio_2ghz_revision);
2669 }
2670 }
2671
2672 ath5k_debug_init_device(ah);
2673
2674 /* ready to process interrupts */
2675 __clear_bit(ATH_STAT_INVALID, ah->status);
2676
2677 return 0;
2678 err_ah:
2679 ath5k_hw_deinit(ah);
2680 err_irq:
2681 free_irq(ah->irq, ah);
2682 err:
2683 return ret;
2684 }
2685
2686 static int
ath5k_stop_locked(struct ath5k_hw * ah)2687 ath5k_stop_locked(struct ath5k_hw *ah)
2688 {
2689
2690 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2691 test_bit(ATH_STAT_INVALID, ah->status));
2692
2693 /*
2694 * Shutdown the hardware and driver:
2695 * stop output from above
2696 * disable interrupts
2697 * turn off timers
2698 * turn off the radio
2699 * clear transmit machinery
2700 * clear receive machinery
2701 * drain and release tx queues
2702 * reclaim beacon resources
2703 * power down hardware
2704 *
2705 * Note that some of this work is not possible if the
2706 * hardware is gone (invalid).
2707 */
2708 ieee80211_stop_queues(ah->hw);
2709
2710 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2711 ath5k_led_off(ah);
2712 ath5k_hw_set_imr(ah, 0);
2713 synchronize_irq(ah->irq);
2714 ath5k_rx_stop(ah);
2715 ath5k_hw_dma_stop(ah);
2716 ath5k_drain_tx_buffs(ah);
2717 ath5k_hw_phy_disable(ah);
2718 }
2719
2720 return 0;
2721 }
2722
ath5k_start(struct ieee80211_hw * hw)2723 int ath5k_start(struct ieee80211_hw *hw)
2724 {
2725 struct ath5k_hw *ah = hw->priv;
2726 struct ath_common *common = ath5k_hw_common(ah);
2727 int ret, i;
2728
2729 mutex_lock(&ah->lock);
2730
2731 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2732
2733 /*
2734 * Stop anything previously setup. This is safe
2735 * no matter this is the first time through or not.
2736 */
2737 ath5k_stop_locked(ah);
2738
2739 /*
2740 * The basic interface to setting the hardware in a good
2741 * state is ``reset''. On return the hardware is known to
2742 * be powered up and with interrupts disabled. This must
2743 * be followed by initialization of the appropriate bits
2744 * and then setup of the interrupt mask.
2745 */
2746 ah->curchan = ah->hw->conf.chandef.chan;
2747 ah->imask = AR5K_INT_RXOK
2748 | AR5K_INT_RXERR
2749 | AR5K_INT_RXEOL
2750 | AR5K_INT_RXORN
2751 | AR5K_INT_TXDESC
2752 | AR5K_INT_TXEOL
2753 | AR5K_INT_FATAL
2754 | AR5K_INT_GLOBAL
2755 | AR5K_INT_MIB;
2756
2757 ret = ath5k_reset(ah, NULL, false);
2758 if (ret)
2759 goto done;
2760
2761 if (!ath5k_modparam_no_hw_rfkill_switch)
2762 ath5k_rfkill_hw_start(ah);
2763
2764 /*
2765 * Reset the key cache since some parts do not reset the
2766 * contents on initial power up or resume from suspend.
2767 */
2768 for (i = 0; i < common->keymax; i++)
2769 ath_hw_keyreset(common, (u16) i);
2770
2771 /* Use higher rates for acks instead of base
2772 * rate */
2773 ah->ah_ack_bitrate_high = true;
2774
2775 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2776 ah->bslot[i] = NULL;
2777
2778 ret = 0;
2779 done:
2780 mutex_unlock(&ah->lock);
2781
2782 set_bit(ATH_STAT_STARTED, ah->status);
2783 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2784 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2785
2786 return ret;
2787 }
2788
ath5k_stop_tasklets(struct ath5k_hw * ah)2789 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2790 {
2791 ah->rx_pending = false;
2792 ah->tx_pending = false;
2793 tasklet_kill(&ah->rxtq);
2794 tasklet_kill(&ah->txtq);
2795 tasklet_kill(&ah->beacontq);
2796 tasklet_kill(&ah->ani_tasklet);
2797 }
2798
2799 /*
2800 * Stop the device, grabbing the top-level lock to protect
2801 * against concurrent entry through ath5k_init (which can happen
2802 * if another thread does a system call and the thread doing the
2803 * stop is preempted).
2804 */
ath5k_stop(struct ieee80211_hw * hw)2805 void ath5k_stop(struct ieee80211_hw *hw)
2806 {
2807 struct ath5k_hw *ah = hw->priv;
2808 int ret;
2809
2810 mutex_lock(&ah->lock);
2811 ret = ath5k_stop_locked(ah);
2812 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2813 /*
2814 * Don't set the card in full sleep mode!
2815 *
2816 * a) When the device is in this state it must be carefully
2817 * woken up or references to registers in the PCI clock
2818 * domain may freeze the bus (and system). This varies
2819 * by chip and is mostly an issue with newer parts
2820 * (madwifi sources mentioned srev >= 0x78) that go to
2821 * sleep more quickly.
2822 *
2823 * b) On older chips full sleep results a weird behaviour
2824 * during wakeup. I tested various cards with srev < 0x78
2825 * and they don't wake up after module reload, a second
2826 * module reload is needed to bring the card up again.
2827 *
2828 * Until we figure out what's going on don't enable
2829 * full chip reset on any chip (this is what Legacy HAL
2830 * and Sam's HAL do anyway). Instead Perform a full reset
2831 * on the device (same as initial state after attach) and
2832 * leave it idle (keep MAC/BB on warm reset) */
2833 ret = ath5k_hw_on_hold(ah);
2834
2835 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2836 "putting device to sleep\n");
2837 }
2838
2839 mutex_unlock(&ah->lock);
2840
2841 ath5k_stop_tasklets(ah);
2842
2843 clear_bit(ATH_STAT_STARTED, ah->status);
2844 cancel_delayed_work_sync(&ah->tx_complete_work);
2845
2846 if (!ath5k_modparam_no_hw_rfkill_switch)
2847 ath5k_rfkill_hw_stop(ah);
2848 }
2849
2850 /*
2851 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2852 * and change to the given channel.
2853 *
2854 * This should be called with ah->lock.
2855 */
2856 static int
ath5k_reset(struct ath5k_hw * ah,struct ieee80211_channel * chan,bool skip_pcu)2857 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2858 bool skip_pcu)
2859 {
2860 struct ath_common *common = ath5k_hw_common(ah);
2861 int ret, ani_mode;
2862 bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2863
2864 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2865
2866 __set_bit(ATH_STAT_RESET, ah->status);
2867
2868 ath5k_hw_set_imr(ah, 0);
2869 synchronize_irq(ah->irq);
2870 ath5k_stop_tasklets(ah);
2871
2872 /* Save ani mode and disable ANI during
2873 * reset. If we don't we might get false
2874 * PHY error interrupts. */
2875 ani_mode = ah->ani_state.ani_mode;
2876 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2877
2878 /* We are going to empty hw queues
2879 * so we should also free any remaining
2880 * tx buffers */
2881 ath5k_drain_tx_buffs(ah);
2882
2883 /* Stop PCU */
2884 ath5k_hw_stop_rx_pcu(ah);
2885
2886 /* Stop DMA
2887 *
2888 * Note: If DMA didn't stop continue
2889 * since only a reset will fix it.
2890 */
2891 ret = ath5k_hw_dma_stop(ah);
2892
2893 /* RF Bus grant won't work if we have pending
2894 * frames
2895 */
2896 if (ret && fast) {
2897 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2898 "DMA didn't stop, falling back to normal reset\n");
2899 fast = false;
2900 }
2901
2902 if (chan)
2903 ah->curchan = chan;
2904
2905 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2906 if (ret) {
2907 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2908 goto err;
2909 }
2910
2911 ret = ath5k_rx_start(ah);
2912 if (ret) {
2913 ATH5K_ERR(ah, "can't start recv logic\n");
2914 goto err;
2915 }
2916
2917 ath5k_ani_init(ah, ani_mode);
2918
2919 /*
2920 * Set calibration intervals
2921 *
2922 * Note: We don't need to run calibration imediately
2923 * since some initial calibration is done on reset
2924 * even for fast channel switching. Also on scanning
2925 * this will get set again and again and it won't get
2926 * executed unless we connect somewhere and spend some
2927 * time on the channel (that's what calibration needs
2928 * anyway to be accurate).
2929 */
2930 ah->ah_cal_next_full = jiffies +
2931 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2932 ah->ah_cal_next_ani = jiffies +
2933 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2934 ah->ah_cal_next_short = jiffies +
2935 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2936
2937 ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2938
2939 /* clear survey data and cycle counters */
2940 memset(&ah->survey, 0, sizeof(ah->survey));
2941 spin_lock_bh(&common->cc_lock);
2942 ath_hw_cycle_counters_update(common);
2943 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2944 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2945 spin_unlock_bh(&common->cc_lock);
2946
2947 /*
2948 * Change channels and update the h/w rate map if we're switching;
2949 * e.g. 11a to 11b/g.
2950 *
2951 * We may be doing a reset in response to an ioctl that changes the
2952 * channel so update any state that might change as a result.
2953 *
2954 * XXX needed?
2955 */
2956 /* ath5k_chan_change(ah, c); */
2957
2958 __clear_bit(ATH_STAT_RESET, ah->status);
2959
2960 ath5k_beacon_config(ah);
2961 /* intrs are enabled by ath5k_beacon_config */
2962
2963 ieee80211_wake_queues(ah->hw);
2964
2965 return 0;
2966 err:
2967 return ret;
2968 }
2969
ath5k_reset_work(struct work_struct * work)2970 static void ath5k_reset_work(struct work_struct *work)
2971 {
2972 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2973 reset_work);
2974
2975 mutex_lock(&ah->lock);
2976 ath5k_reset(ah, NULL, true);
2977 mutex_unlock(&ah->lock);
2978 }
2979
2980 static int
ath5k_init(struct ieee80211_hw * hw)2981 ath5k_init(struct ieee80211_hw *hw)
2982 {
2983
2984 struct ath5k_hw *ah = hw->priv;
2985 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2986 struct ath5k_txq *txq;
2987 u8 mac[ETH_ALEN] = {};
2988 int ret;
2989
2990
2991 /*
2992 * Collect the channel list. The 802.11 layer
2993 * is responsible for filtering this list based
2994 * on settings like the phy mode and regulatory
2995 * domain restrictions.
2996 */
2997 ret = ath5k_setup_bands(hw);
2998 if (ret) {
2999 ATH5K_ERR(ah, "can't get channels\n");
3000 goto err;
3001 }
3002
3003 /*
3004 * Allocate tx+rx descriptors and populate the lists.
3005 */
3006 ret = ath5k_desc_alloc(ah);
3007 if (ret) {
3008 ATH5K_ERR(ah, "can't allocate descriptors\n");
3009 goto err;
3010 }
3011
3012 /*
3013 * Allocate hardware transmit queues: one queue for
3014 * beacon frames and one data queue for each QoS
3015 * priority. Note that hw functions handle resetting
3016 * these queues at the needed time.
3017 */
3018 ret = ath5k_beaconq_setup(ah);
3019 if (ret < 0) {
3020 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3021 goto err_desc;
3022 }
3023 ah->bhalq = ret;
3024 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3025 if (IS_ERR(ah->cabq)) {
3026 ATH5K_ERR(ah, "can't setup cab queue\n");
3027 ret = PTR_ERR(ah->cabq);
3028 goto err_bhal;
3029 }
3030
3031 /* 5211 and 5212 usually support 10 queues but we better rely on the
3032 * capability information */
3033 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3034 /* This order matches mac80211's queue priority, so we can
3035 * directly use the mac80211 queue number without any mapping */
3036 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3037 if (IS_ERR(txq)) {
3038 ATH5K_ERR(ah, "can't setup xmit queue\n");
3039 ret = PTR_ERR(txq);
3040 goto err_queues;
3041 }
3042 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3043 if (IS_ERR(txq)) {
3044 ATH5K_ERR(ah, "can't setup xmit queue\n");
3045 ret = PTR_ERR(txq);
3046 goto err_queues;
3047 }
3048 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3049 if (IS_ERR(txq)) {
3050 ATH5K_ERR(ah, "can't setup xmit queue\n");
3051 ret = PTR_ERR(txq);
3052 goto err_queues;
3053 }
3054 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3055 if (IS_ERR(txq)) {
3056 ATH5K_ERR(ah, "can't setup xmit queue\n");
3057 ret = PTR_ERR(txq);
3058 goto err_queues;
3059 }
3060 hw->queues = 4;
3061 } else {
3062 /* older hardware (5210) can only support one data queue */
3063 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3064 if (IS_ERR(txq)) {
3065 ATH5K_ERR(ah, "can't setup xmit queue\n");
3066 ret = PTR_ERR(txq);
3067 goto err_queues;
3068 }
3069 hw->queues = 1;
3070 }
3071
3072 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3073 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3074 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3075 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3076
3077 INIT_WORK(&ah->reset_work, ath5k_reset_work);
3078 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3079 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3080
3081 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3082 if (ret) {
3083 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3084 goto err_queues;
3085 }
3086
3087 SET_IEEE80211_PERM_ADDR(hw, mac);
3088 /* All MAC address bits matter for ACKs */
3089 ath5k_update_bssid_mask_and_opmode(ah, NULL);
3090
3091 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3092 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3093 if (ret) {
3094 ATH5K_ERR(ah, "can't initialize regulatory system\n");
3095 goto err_queues;
3096 }
3097
3098 ret = ieee80211_register_hw(hw);
3099 if (ret) {
3100 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3101 goto err_queues;
3102 }
3103
3104 if (!ath_is_world_regd(regulatory))
3105 regulatory_hint(hw->wiphy, regulatory->alpha2);
3106
3107 ath5k_init_leds(ah);
3108
3109 ath5k_sysfs_register(ah);
3110
3111 return 0;
3112 err_queues:
3113 ath5k_txq_release(ah);
3114 err_bhal:
3115 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3116 err_desc:
3117 ath5k_desc_free(ah);
3118 err:
3119 return ret;
3120 }
3121
3122 void
ath5k_deinit_ah(struct ath5k_hw * ah)3123 ath5k_deinit_ah(struct ath5k_hw *ah)
3124 {
3125 struct ieee80211_hw *hw = ah->hw;
3126
3127 /*
3128 * NB: the order of these is important:
3129 * o call the 802.11 layer before detaching ath5k_hw to
3130 * ensure callbacks into the driver to delete global
3131 * key cache entries can be handled
3132 * o reclaim the tx queue data structures after calling
3133 * the 802.11 layer as we'll get called back to reclaim
3134 * node state and potentially want to use them
3135 * o to cleanup the tx queues the hal is called, so detach
3136 * it last
3137 * XXX: ??? detach ath5k_hw ???
3138 * Other than that, it's straightforward...
3139 */
3140 ieee80211_unregister_hw(hw);
3141 ath5k_desc_free(ah);
3142 ath5k_txq_release(ah);
3143 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3144 ath5k_unregister_leds(ah);
3145
3146 ath5k_sysfs_unregister(ah);
3147 /*
3148 * NB: can't reclaim these until after ieee80211_ifdetach
3149 * returns because we'll get called back to reclaim node
3150 * state and potentially want to use them.
3151 */
3152 ath5k_hw_deinit(ah);
3153 free_irq(ah->irq, ah);
3154 }
3155
3156 bool
ath5k_any_vif_assoc(struct ath5k_hw * ah)3157 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3158 {
3159 struct ath5k_vif_iter_data iter_data;
3160 iter_data.hw_macaddr = NULL;
3161 iter_data.any_assoc = false;
3162 iter_data.need_set_hw_addr = false;
3163 iter_data.found_active = true;
3164
3165 ieee80211_iterate_active_interfaces_atomic(
3166 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3167 ath5k_vif_iter, &iter_data);
3168 return iter_data.any_assoc;
3169 }
3170
3171 void
ath5k_set_beacon_filter(struct ieee80211_hw * hw,bool enable)3172 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3173 {
3174 struct ath5k_hw *ah = hw->priv;
3175 u32 rfilt;
3176 rfilt = ath5k_hw_get_rx_filter(ah);
3177 if (enable)
3178 rfilt |= AR5K_RX_FILTER_BEACON;
3179 else
3180 rfilt &= ~AR5K_RX_FILTER_BEACON;
3181 ath5k_hw_set_rx_filter(ah, rfilt);
3182 ah->filter_flags = rfilt;
3183 }
3184
_ath5k_printk(const struct ath5k_hw * ah,const char * level,const char * fmt,...)3185 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3186 const char *fmt, ...)
3187 {
3188 struct va_format vaf;
3189 va_list args;
3190
3191 va_start(args, fmt);
3192
3193 vaf.fmt = fmt;
3194 vaf.va = &args;
3195
3196 if (ah && ah->hw)
3197 printk("%s" pr_fmt("%s: %pV"),
3198 level, wiphy_name(ah->hw->wiphy), &vaf);
3199 else
3200 printk("%s" pr_fmt("%pV"), level, &vaf);
3201
3202 va_end(args);
3203 }
3204