1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "symbol.h"
35 #include "util/synthetic-events.h"
36 #include "thread_map.h"
37 #include "asm/bug.h"
38 #include "auxtrace.h"
39
40 #include <linux/hash.h>
41
42 #include "event.h"
43 #include "record.h"
44 #include "session.h"
45 #include "debug.h"
46 #include <subcmd/parse-options.h>
47
48 #include "cs-etm.h"
49 #include "intel-pt.h"
50 #include "intel-bts.h"
51 #include "arm-spe.h"
52 #include "s390-cpumsf.h"
53 #include "util/mmap.h"
54
55 #include <linux/ctype.h>
56 #include <linux/kernel.h>
57 #include "symbol/kallsyms.h"
58 #include <internal/lib.h>
59
auxtrace__dont_decode(struct perf_session * session)60 static bool auxtrace__dont_decode(struct perf_session *session)
61 {
62 return !session->itrace_synth_opts ||
63 session->itrace_synth_opts->dont_decode;
64 }
65
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)66 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
67 struct auxtrace_mmap_params *mp,
68 void *userpg, int fd)
69 {
70 struct perf_event_mmap_page *pc = userpg;
71
72 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
73
74 mm->userpg = userpg;
75 mm->mask = mp->mask;
76 mm->len = mp->len;
77 mm->prev = 0;
78 mm->idx = mp->idx;
79 mm->tid = mp->tid;
80 mm->cpu = mp->cpu;
81
82 if (!mp->len) {
83 mm->base = NULL;
84 return 0;
85 }
86
87 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
88 pr_err("Cannot use AUX area tracing mmaps\n");
89 return -1;
90 #endif
91
92 pc->aux_offset = mp->offset;
93 pc->aux_size = mp->len;
94
95 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
96 if (mm->base == MAP_FAILED) {
97 pr_debug2("failed to mmap AUX area\n");
98 mm->base = NULL;
99 return -1;
100 }
101
102 return 0;
103 }
104
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)105 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
106 {
107 if (mm->base) {
108 munmap(mm->base, mm->len);
109 mm->base = NULL;
110 }
111 }
112
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)113 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
114 off_t auxtrace_offset,
115 unsigned int auxtrace_pages,
116 bool auxtrace_overwrite)
117 {
118 if (auxtrace_pages) {
119 mp->offset = auxtrace_offset;
120 mp->len = auxtrace_pages * (size_t)page_size;
121 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
122 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
123 pr_debug2("AUX area mmap length %zu\n", mp->len);
124 } else {
125 mp->len = 0;
126 }
127 }
128
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,int idx,bool per_cpu)129 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
130 struct evlist *evlist, int idx,
131 bool per_cpu)
132 {
133 mp->idx = idx;
134
135 if (per_cpu) {
136 mp->cpu = evlist->core.cpus->map[idx];
137 if (evlist->core.threads)
138 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
139 else
140 mp->tid = -1;
141 } else {
142 mp->cpu = -1;
143 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
144 }
145 }
146
147 #define AUXTRACE_INIT_NR_QUEUES 32
148
auxtrace_alloc_queue_array(unsigned int nr_queues)149 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
150 {
151 struct auxtrace_queue *queue_array;
152 unsigned int max_nr_queues, i;
153
154 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
155 if (nr_queues > max_nr_queues)
156 return NULL;
157
158 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
159 if (!queue_array)
160 return NULL;
161
162 for (i = 0; i < nr_queues; i++) {
163 INIT_LIST_HEAD(&queue_array[i].head);
164 queue_array[i].priv = NULL;
165 }
166
167 return queue_array;
168 }
169
auxtrace_queues__init(struct auxtrace_queues * queues)170 int auxtrace_queues__init(struct auxtrace_queues *queues)
171 {
172 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
173 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
174 if (!queues->queue_array)
175 return -ENOMEM;
176 return 0;
177 }
178
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)179 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
180 unsigned int new_nr_queues)
181 {
182 unsigned int nr_queues = queues->nr_queues;
183 struct auxtrace_queue *queue_array;
184 unsigned int i;
185
186 if (!nr_queues)
187 nr_queues = AUXTRACE_INIT_NR_QUEUES;
188
189 while (nr_queues && nr_queues < new_nr_queues)
190 nr_queues <<= 1;
191
192 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
193 return -EINVAL;
194
195 queue_array = auxtrace_alloc_queue_array(nr_queues);
196 if (!queue_array)
197 return -ENOMEM;
198
199 for (i = 0; i < queues->nr_queues; i++) {
200 list_splice_tail(&queues->queue_array[i].head,
201 &queue_array[i].head);
202 queue_array[i].tid = queues->queue_array[i].tid;
203 queue_array[i].cpu = queues->queue_array[i].cpu;
204 queue_array[i].set = queues->queue_array[i].set;
205 queue_array[i].priv = queues->queue_array[i].priv;
206 }
207
208 queues->nr_queues = nr_queues;
209 queues->queue_array = queue_array;
210
211 return 0;
212 }
213
auxtrace_copy_data(u64 size,struct perf_session * session)214 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
215 {
216 int fd = perf_data__fd(session->data);
217 void *p;
218 ssize_t ret;
219
220 if (size > SSIZE_MAX)
221 return NULL;
222
223 p = malloc(size);
224 if (!p)
225 return NULL;
226
227 ret = readn(fd, p, size);
228 if (ret != (ssize_t)size) {
229 free(p);
230 return NULL;
231 }
232
233 return p;
234 }
235
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)236 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
237 unsigned int idx,
238 struct auxtrace_buffer *buffer)
239 {
240 struct auxtrace_queue *queue;
241 int err;
242
243 if (idx >= queues->nr_queues) {
244 err = auxtrace_queues__grow(queues, idx + 1);
245 if (err)
246 return err;
247 }
248
249 queue = &queues->queue_array[idx];
250
251 if (!queue->set) {
252 queue->set = true;
253 queue->tid = buffer->tid;
254 queue->cpu = buffer->cpu;
255 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
256 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
257 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
258 return -EINVAL;
259 }
260
261 buffer->buffer_nr = queues->next_buffer_nr++;
262
263 list_add_tail(&buffer->list, &queue->head);
264
265 queues->new_data = true;
266 queues->populated = true;
267
268 return 0;
269 }
270
271 /* Limit buffers to 32MiB on 32-bit */
272 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
273
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)274 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
275 unsigned int idx,
276 struct auxtrace_buffer *buffer)
277 {
278 u64 sz = buffer->size;
279 bool consecutive = false;
280 struct auxtrace_buffer *b;
281 int err;
282
283 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
284 b = memdup(buffer, sizeof(struct auxtrace_buffer));
285 if (!b)
286 return -ENOMEM;
287 b->size = BUFFER_LIMIT_FOR_32_BIT;
288 b->consecutive = consecutive;
289 err = auxtrace_queues__queue_buffer(queues, idx, b);
290 if (err) {
291 auxtrace_buffer__free(b);
292 return err;
293 }
294 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
295 sz -= BUFFER_LIMIT_FOR_32_BIT;
296 consecutive = true;
297 }
298
299 buffer->size = sz;
300 buffer->consecutive = consecutive;
301
302 return 0;
303 }
304
filter_cpu(struct perf_session * session,int cpu)305 static bool filter_cpu(struct perf_session *session, int cpu)
306 {
307 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
308
309 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
310 }
311
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)312 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
313 struct perf_session *session,
314 unsigned int idx,
315 struct auxtrace_buffer *buffer,
316 struct auxtrace_buffer **buffer_ptr)
317 {
318 int err = -ENOMEM;
319
320 if (filter_cpu(session, buffer->cpu))
321 return 0;
322
323 buffer = memdup(buffer, sizeof(*buffer));
324 if (!buffer)
325 return -ENOMEM;
326
327 if (session->one_mmap) {
328 buffer->data = buffer->data_offset - session->one_mmap_offset +
329 session->one_mmap_addr;
330 } else if (perf_data__is_pipe(session->data)) {
331 buffer->data = auxtrace_copy_data(buffer->size, session);
332 if (!buffer->data)
333 goto out_free;
334 buffer->data_needs_freeing = true;
335 } else if (BITS_PER_LONG == 32 &&
336 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
337 err = auxtrace_queues__split_buffer(queues, idx, buffer);
338 if (err)
339 goto out_free;
340 }
341
342 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
343 if (err)
344 goto out_free;
345
346 /* FIXME: Doesn't work for split buffer */
347 if (buffer_ptr)
348 *buffer_ptr = buffer;
349
350 return 0;
351
352 out_free:
353 auxtrace_buffer__free(buffer);
354 return err;
355 }
356
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)357 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
358 struct perf_session *session,
359 union perf_event *event, off_t data_offset,
360 struct auxtrace_buffer **buffer_ptr)
361 {
362 struct auxtrace_buffer buffer = {
363 .pid = -1,
364 .tid = event->auxtrace.tid,
365 .cpu = event->auxtrace.cpu,
366 .data_offset = data_offset,
367 .offset = event->auxtrace.offset,
368 .reference = event->auxtrace.reference,
369 .size = event->auxtrace.size,
370 };
371 unsigned int idx = event->auxtrace.idx;
372
373 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
374 buffer_ptr);
375 }
376
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)377 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
378 struct perf_session *session,
379 off_t file_offset, size_t sz)
380 {
381 union perf_event *event;
382 int err;
383 char buf[PERF_SAMPLE_MAX_SIZE];
384
385 err = perf_session__peek_event(session, file_offset, buf,
386 PERF_SAMPLE_MAX_SIZE, &event, NULL);
387 if (err)
388 return err;
389
390 if (event->header.type == PERF_RECORD_AUXTRACE) {
391 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
392 event->header.size != sz) {
393 err = -EINVAL;
394 goto out;
395 }
396 file_offset += event->header.size;
397 err = auxtrace_queues__add_event(queues, session, event,
398 file_offset, NULL);
399 }
400 out:
401 return err;
402 }
403
auxtrace_queues__free(struct auxtrace_queues * queues)404 void auxtrace_queues__free(struct auxtrace_queues *queues)
405 {
406 unsigned int i;
407
408 for (i = 0; i < queues->nr_queues; i++) {
409 while (!list_empty(&queues->queue_array[i].head)) {
410 struct auxtrace_buffer *buffer;
411
412 buffer = list_entry(queues->queue_array[i].head.next,
413 struct auxtrace_buffer, list);
414 list_del_init(&buffer->list);
415 auxtrace_buffer__free(buffer);
416 }
417 }
418
419 zfree(&queues->queue_array);
420 queues->nr_queues = 0;
421 }
422
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)423 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
424 unsigned int pos, unsigned int queue_nr,
425 u64 ordinal)
426 {
427 unsigned int parent;
428
429 while (pos) {
430 parent = (pos - 1) >> 1;
431 if (heap_array[parent].ordinal <= ordinal)
432 break;
433 heap_array[pos] = heap_array[parent];
434 pos = parent;
435 }
436 heap_array[pos].queue_nr = queue_nr;
437 heap_array[pos].ordinal = ordinal;
438 }
439
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)440 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
441 u64 ordinal)
442 {
443 struct auxtrace_heap_item *heap_array;
444
445 if (queue_nr >= heap->heap_sz) {
446 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
447
448 while (heap_sz <= queue_nr)
449 heap_sz <<= 1;
450 heap_array = realloc(heap->heap_array,
451 heap_sz * sizeof(struct auxtrace_heap_item));
452 if (!heap_array)
453 return -ENOMEM;
454 heap->heap_array = heap_array;
455 heap->heap_sz = heap_sz;
456 }
457
458 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
459
460 return 0;
461 }
462
auxtrace_heap__free(struct auxtrace_heap * heap)463 void auxtrace_heap__free(struct auxtrace_heap *heap)
464 {
465 zfree(&heap->heap_array);
466 heap->heap_cnt = 0;
467 heap->heap_sz = 0;
468 }
469
auxtrace_heap__pop(struct auxtrace_heap * heap)470 void auxtrace_heap__pop(struct auxtrace_heap *heap)
471 {
472 unsigned int pos, last, heap_cnt = heap->heap_cnt;
473 struct auxtrace_heap_item *heap_array;
474
475 if (!heap_cnt)
476 return;
477
478 heap->heap_cnt -= 1;
479
480 heap_array = heap->heap_array;
481
482 pos = 0;
483 while (1) {
484 unsigned int left, right;
485
486 left = (pos << 1) + 1;
487 if (left >= heap_cnt)
488 break;
489 right = left + 1;
490 if (right >= heap_cnt) {
491 heap_array[pos] = heap_array[left];
492 return;
493 }
494 if (heap_array[left].ordinal < heap_array[right].ordinal) {
495 heap_array[pos] = heap_array[left];
496 pos = left;
497 } else {
498 heap_array[pos] = heap_array[right];
499 pos = right;
500 }
501 }
502
503 last = heap_cnt - 1;
504 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
505 heap_array[last].ordinal);
506 }
507
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)508 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
509 struct evlist *evlist)
510 {
511 if (itr)
512 return itr->info_priv_size(itr, evlist);
513 return 0;
514 }
515
auxtrace_not_supported(void)516 static int auxtrace_not_supported(void)
517 {
518 pr_err("AUX area tracing is not supported on this architecture\n");
519 return -EINVAL;
520 }
521
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)522 int auxtrace_record__info_fill(struct auxtrace_record *itr,
523 struct perf_session *session,
524 struct perf_record_auxtrace_info *auxtrace_info,
525 size_t priv_size)
526 {
527 if (itr)
528 return itr->info_fill(itr, session, auxtrace_info, priv_size);
529 return auxtrace_not_supported();
530 }
531
auxtrace_record__free(struct auxtrace_record * itr)532 void auxtrace_record__free(struct auxtrace_record *itr)
533 {
534 if (itr)
535 itr->free(itr);
536 }
537
auxtrace_record__snapshot_start(struct auxtrace_record * itr)538 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
539 {
540 if (itr && itr->snapshot_start)
541 return itr->snapshot_start(itr);
542 return 0;
543 }
544
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)545 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
546 {
547 if (!on_exit && itr && itr->snapshot_finish)
548 return itr->snapshot_finish(itr);
549 return 0;
550 }
551
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)552 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
553 struct auxtrace_mmap *mm,
554 unsigned char *data, u64 *head, u64 *old)
555 {
556 if (itr && itr->find_snapshot)
557 return itr->find_snapshot(itr, idx, mm, data, head, old);
558 return 0;
559 }
560
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)561 int auxtrace_record__options(struct auxtrace_record *itr,
562 struct evlist *evlist,
563 struct record_opts *opts)
564 {
565 if (itr)
566 return itr->recording_options(itr, evlist, opts);
567 return 0;
568 }
569
auxtrace_record__reference(struct auxtrace_record * itr)570 u64 auxtrace_record__reference(struct auxtrace_record *itr)
571 {
572 if (itr)
573 return itr->reference(itr);
574 return 0;
575 }
576
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)577 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
578 struct record_opts *opts, const char *str)
579 {
580 if (!str)
581 return 0;
582
583 /* PMU-agnostic options */
584 switch (*str) {
585 case 'e':
586 opts->auxtrace_snapshot_on_exit = true;
587 str++;
588 break;
589 default:
590 break;
591 }
592
593 if (itr)
594 return itr->parse_snapshot_options(itr, opts, str);
595
596 pr_err("No AUX area tracing to snapshot\n");
597 return -EINVAL;
598 }
599
600 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)601 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
602 {
603 *err = 0;
604 return NULL;
605 }
606
auxtrace_index__alloc(struct list_head * head)607 static int auxtrace_index__alloc(struct list_head *head)
608 {
609 struct auxtrace_index *auxtrace_index;
610
611 auxtrace_index = malloc(sizeof(struct auxtrace_index));
612 if (!auxtrace_index)
613 return -ENOMEM;
614
615 auxtrace_index->nr = 0;
616 INIT_LIST_HEAD(&auxtrace_index->list);
617
618 list_add_tail(&auxtrace_index->list, head);
619
620 return 0;
621 }
622
auxtrace_index__free(struct list_head * head)623 void auxtrace_index__free(struct list_head *head)
624 {
625 struct auxtrace_index *auxtrace_index, *n;
626
627 list_for_each_entry_safe(auxtrace_index, n, head, list) {
628 list_del_init(&auxtrace_index->list);
629 free(auxtrace_index);
630 }
631 }
632
auxtrace_index__last(struct list_head * head)633 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
634 {
635 struct auxtrace_index *auxtrace_index;
636 int err;
637
638 if (list_empty(head)) {
639 err = auxtrace_index__alloc(head);
640 if (err)
641 return NULL;
642 }
643
644 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
645
646 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
647 err = auxtrace_index__alloc(head);
648 if (err)
649 return NULL;
650 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
651 list);
652 }
653
654 return auxtrace_index;
655 }
656
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)657 int auxtrace_index__auxtrace_event(struct list_head *head,
658 union perf_event *event, off_t file_offset)
659 {
660 struct auxtrace_index *auxtrace_index;
661 size_t nr;
662
663 auxtrace_index = auxtrace_index__last(head);
664 if (!auxtrace_index)
665 return -ENOMEM;
666
667 nr = auxtrace_index->nr;
668 auxtrace_index->entries[nr].file_offset = file_offset;
669 auxtrace_index->entries[nr].sz = event->header.size;
670 auxtrace_index->nr += 1;
671
672 return 0;
673 }
674
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)675 static int auxtrace_index__do_write(int fd,
676 struct auxtrace_index *auxtrace_index)
677 {
678 struct auxtrace_index_entry ent;
679 size_t i;
680
681 for (i = 0; i < auxtrace_index->nr; i++) {
682 ent.file_offset = auxtrace_index->entries[i].file_offset;
683 ent.sz = auxtrace_index->entries[i].sz;
684 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
685 return -errno;
686 }
687 return 0;
688 }
689
auxtrace_index__write(int fd,struct list_head * head)690 int auxtrace_index__write(int fd, struct list_head *head)
691 {
692 struct auxtrace_index *auxtrace_index;
693 u64 total = 0;
694 int err;
695
696 list_for_each_entry(auxtrace_index, head, list)
697 total += auxtrace_index->nr;
698
699 if (writen(fd, &total, sizeof(total)) != sizeof(total))
700 return -errno;
701
702 list_for_each_entry(auxtrace_index, head, list) {
703 err = auxtrace_index__do_write(fd, auxtrace_index);
704 if (err)
705 return err;
706 }
707
708 return 0;
709 }
710
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)711 static int auxtrace_index__process_entry(int fd, struct list_head *head,
712 bool needs_swap)
713 {
714 struct auxtrace_index *auxtrace_index;
715 struct auxtrace_index_entry ent;
716 size_t nr;
717
718 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
719 return -1;
720
721 auxtrace_index = auxtrace_index__last(head);
722 if (!auxtrace_index)
723 return -1;
724
725 nr = auxtrace_index->nr;
726 if (needs_swap) {
727 auxtrace_index->entries[nr].file_offset =
728 bswap_64(ent.file_offset);
729 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
730 } else {
731 auxtrace_index->entries[nr].file_offset = ent.file_offset;
732 auxtrace_index->entries[nr].sz = ent.sz;
733 }
734
735 auxtrace_index->nr = nr + 1;
736
737 return 0;
738 }
739
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)740 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
741 bool needs_swap)
742 {
743 struct list_head *head = &session->auxtrace_index;
744 u64 nr;
745
746 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
747 return -1;
748
749 if (needs_swap)
750 nr = bswap_64(nr);
751
752 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
753 return -1;
754
755 while (nr--) {
756 int err;
757
758 err = auxtrace_index__process_entry(fd, head, needs_swap);
759 if (err)
760 return -1;
761 }
762
763 return 0;
764 }
765
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)766 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
767 struct perf_session *session,
768 struct auxtrace_index_entry *ent)
769 {
770 return auxtrace_queues__add_indexed_event(queues, session,
771 ent->file_offset, ent->sz);
772 }
773
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)774 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
775 struct perf_session *session)
776 {
777 struct auxtrace_index *auxtrace_index;
778 struct auxtrace_index_entry *ent;
779 size_t i;
780 int err;
781
782 if (auxtrace__dont_decode(session))
783 return 0;
784
785 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
786 for (i = 0; i < auxtrace_index->nr; i++) {
787 ent = &auxtrace_index->entries[i];
788 err = auxtrace_queues__process_index_entry(queues,
789 session,
790 ent);
791 if (err)
792 return err;
793 }
794 }
795 return 0;
796 }
797
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)798 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
799 struct auxtrace_buffer *buffer)
800 {
801 if (buffer) {
802 if (list_is_last(&buffer->list, &queue->head))
803 return NULL;
804 return list_entry(buffer->list.next, struct auxtrace_buffer,
805 list);
806 } else {
807 if (list_empty(&queue->head))
808 return NULL;
809 return list_entry(queue->head.next, struct auxtrace_buffer,
810 list);
811 }
812 }
813
auxtrace_buffer__get_data(struct auxtrace_buffer * buffer,int fd)814 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
815 {
816 size_t adj = buffer->data_offset & (page_size - 1);
817 size_t size = buffer->size + adj;
818 off_t file_offset = buffer->data_offset - adj;
819 void *addr;
820
821 if (buffer->data)
822 return buffer->data;
823
824 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
825 if (addr == MAP_FAILED)
826 return NULL;
827
828 buffer->mmap_addr = addr;
829 buffer->mmap_size = size;
830
831 buffer->data = addr + adj;
832
833 return buffer->data;
834 }
835
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)836 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
837 {
838 if (!buffer->data || !buffer->mmap_addr)
839 return;
840 munmap(buffer->mmap_addr, buffer->mmap_size);
841 buffer->mmap_addr = NULL;
842 buffer->mmap_size = 0;
843 buffer->data = NULL;
844 buffer->use_data = NULL;
845 }
846
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)847 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
848 {
849 auxtrace_buffer__put_data(buffer);
850 if (buffer->data_needs_freeing) {
851 buffer->data_needs_freeing = false;
852 zfree(&buffer->data);
853 buffer->use_data = NULL;
854 buffer->size = 0;
855 }
856 }
857
auxtrace_buffer__free(struct auxtrace_buffer * buffer)858 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
859 {
860 auxtrace_buffer__drop_data(buffer);
861 free(buffer);
862 }
863
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)864 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
865 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
866 const char *msg, u64 timestamp)
867 {
868 size_t size;
869
870 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
871
872 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
873 auxtrace_error->type = type;
874 auxtrace_error->code = code;
875 auxtrace_error->cpu = cpu;
876 auxtrace_error->pid = pid;
877 auxtrace_error->tid = tid;
878 auxtrace_error->fmt = 1;
879 auxtrace_error->ip = ip;
880 auxtrace_error->time = timestamp;
881 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
882
883 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
884 strlen(auxtrace_error->msg) + 1;
885 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
886 }
887
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)888 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
889 struct perf_tool *tool,
890 struct perf_session *session,
891 perf_event__handler_t process)
892 {
893 union perf_event *ev;
894 size_t priv_size;
895 int err;
896
897 pr_debug2("Synthesizing auxtrace information\n");
898 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
899 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
900 if (!ev)
901 return -ENOMEM;
902
903 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
904 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
905 priv_size;
906 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
907 priv_size);
908 if (err)
909 goto out_free;
910
911 err = process(tool, ev, NULL, NULL);
912 out_free:
913 free(ev);
914 return err;
915 }
916
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)917 int perf_event__process_auxtrace_info(struct perf_session *session,
918 union perf_event *event)
919 {
920 enum auxtrace_type type = event->auxtrace_info.type;
921
922 if (dump_trace)
923 fprintf(stdout, " type: %u\n", type);
924
925 switch (type) {
926 case PERF_AUXTRACE_INTEL_PT:
927 return intel_pt_process_auxtrace_info(event, session);
928 case PERF_AUXTRACE_INTEL_BTS:
929 return intel_bts_process_auxtrace_info(event, session);
930 case PERF_AUXTRACE_ARM_SPE:
931 return arm_spe_process_auxtrace_info(event, session);
932 case PERF_AUXTRACE_CS_ETM:
933 return cs_etm__process_auxtrace_info(event, session);
934 case PERF_AUXTRACE_S390_CPUMSF:
935 return s390_cpumsf_process_auxtrace_info(event, session);
936 case PERF_AUXTRACE_UNKNOWN:
937 default:
938 return -EINVAL;
939 }
940 }
941
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)942 s64 perf_event__process_auxtrace(struct perf_session *session,
943 union perf_event *event)
944 {
945 s64 err;
946
947 if (dump_trace)
948 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
949 event->auxtrace.size, event->auxtrace.offset,
950 event->auxtrace.reference, event->auxtrace.idx,
951 event->auxtrace.tid, event->auxtrace.cpu);
952
953 if (auxtrace__dont_decode(session))
954 return event->auxtrace.size;
955
956 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
957 return -EINVAL;
958
959 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
960 if (err < 0)
961 return err;
962
963 return event->auxtrace.size;
964 }
965
966 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
967 #define PERF_ITRACE_DEFAULT_PERIOD 100000
968 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
969 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
970 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
971 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
972
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)973 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
974 bool no_sample)
975 {
976 synth_opts->branches = true;
977 synth_opts->transactions = true;
978 synth_opts->ptwrites = true;
979 synth_opts->pwr_events = true;
980 synth_opts->other_events = true;
981 synth_opts->errors = true;
982 if (no_sample) {
983 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
984 synth_opts->period = 1;
985 synth_opts->calls = true;
986 } else {
987 synth_opts->instructions = true;
988 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
989 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
990 }
991 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
992 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
993 synth_opts->initial_skip = 0;
994 }
995
996 /*
997 * Please check tools/perf/Documentation/perf-script.txt for information
998 * about the options parsed here, which is introduced after this cset,
999 * when support in 'perf script' for these options is introduced.
1000 */
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1001 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1002 int unset)
1003 {
1004 struct itrace_synth_opts *synth_opts = opt->value;
1005 const char *p;
1006 char *endptr;
1007 bool period_type_set = false;
1008 bool period_set = false;
1009
1010 synth_opts->set = true;
1011
1012 if (unset) {
1013 synth_opts->dont_decode = true;
1014 return 0;
1015 }
1016
1017 if (!str) {
1018 itrace_synth_opts__set_default(synth_opts,
1019 synth_opts->default_no_sample);
1020 return 0;
1021 }
1022
1023 for (p = str; *p;) {
1024 switch (*p++) {
1025 case 'i':
1026 synth_opts->instructions = true;
1027 while (*p == ' ' || *p == ',')
1028 p += 1;
1029 if (isdigit(*p)) {
1030 synth_opts->period = strtoull(p, &endptr, 10);
1031 period_set = true;
1032 p = endptr;
1033 while (*p == ' ' || *p == ',')
1034 p += 1;
1035 switch (*p++) {
1036 case 'i':
1037 synth_opts->period_type =
1038 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1039 period_type_set = true;
1040 break;
1041 case 't':
1042 synth_opts->period_type =
1043 PERF_ITRACE_PERIOD_TICKS;
1044 period_type_set = true;
1045 break;
1046 case 'm':
1047 synth_opts->period *= 1000;
1048 /* Fall through */
1049 case 'u':
1050 synth_opts->period *= 1000;
1051 /* Fall through */
1052 case 'n':
1053 if (*p++ != 's')
1054 goto out_err;
1055 synth_opts->period_type =
1056 PERF_ITRACE_PERIOD_NANOSECS;
1057 period_type_set = true;
1058 break;
1059 case '\0':
1060 goto out;
1061 default:
1062 goto out_err;
1063 }
1064 }
1065 break;
1066 case 'b':
1067 synth_opts->branches = true;
1068 break;
1069 case 'x':
1070 synth_opts->transactions = true;
1071 break;
1072 case 'w':
1073 synth_opts->ptwrites = true;
1074 break;
1075 case 'p':
1076 synth_opts->pwr_events = true;
1077 break;
1078 case 'o':
1079 synth_opts->other_events = true;
1080 break;
1081 case 'e':
1082 synth_opts->errors = true;
1083 break;
1084 case 'd':
1085 synth_opts->log = true;
1086 break;
1087 case 'c':
1088 synth_opts->branches = true;
1089 synth_opts->calls = true;
1090 break;
1091 case 'r':
1092 synth_opts->branches = true;
1093 synth_opts->returns = true;
1094 break;
1095 case 'g':
1096 synth_opts->callchain = true;
1097 synth_opts->callchain_sz =
1098 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1099 while (*p == ' ' || *p == ',')
1100 p += 1;
1101 if (isdigit(*p)) {
1102 unsigned int val;
1103
1104 val = strtoul(p, &endptr, 10);
1105 p = endptr;
1106 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1107 goto out_err;
1108 synth_opts->callchain_sz = val;
1109 }
1110 break;
1111 case 'l':
1112 synth_opts->last_branch = true;
1113 synth_opts->last_branch_sz =
1114 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1115 while (*p == ' ' || *p == ',')
1116 p += 1;
1117 if (isdigit(*p)) {
1118 unsigned int val;
1119
1120 val = strtoul(p, &endptr, 10);
1121 p = endptr;
1122 if (!val ||
1123 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1124 goto out_err;
1125 synth_opts->last_branch_sz = val;
1126 }
1127 break;
1128 case 's':
1129 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1130 if (p == endptr)
1131 goto out_err;
1132 p = endptr;
1133 break;
1134 case ' ':
1135 case ',':
1136 break;
1137 default:
1138 goto out_err;
1139 }
1140 }
1141 out:
1142 if (synth_opts->instructions) {
1143 if (!period_type_set)
1144 synth_opts->period_type =
1145 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1146 if (!period_set)
1147 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1148 }
1149
1150 return 0;
1151
1152 out_err:
1153 pr_err("Bad Instruction Tracing options '%s'\n", str);
1154 return -EINVAL;
1155 }
1156
1157 static const char * const auxtrace_error_type_name[] = {
1158 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1159 };
1160
auxtrace_error_name(int type)1161 static const char *auxtrace_error_name(int type)
1162 {
1163 const char *error_type_name = NULL;
1164
1165 if (type < PERF_AUXTRACE_ERROR_MAX)
1166 error_type_name = auxtrace_error_type_name[type];
1167 if (!error_type_name)
1168 error_type_name = "unknown AUX";
1169 return error_type_name;
1170 }
1171
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1172 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1173 {
1174 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1175 unsigned long long nsecs = e->time;
1176 const char *msg = e->msg;
1177 int ret;
1178
1179 ret = fprintf(fp, " %s error type %u",
1180 auxtrace_error_name(e->type), e->type);
1181
1182 if (e->fmt && nsecs) {
1183 unsigned long secs = nsecs / NSEC_PER_SEC;
1184
1185 nsecs -= secs * NSEC_PER_SEC;
1186 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1187 } else {
1188 ret += fprintf(fp, " time 0");
1189 }
1190
1191 if (!e->fmt)
1192 msg = (const char *)&e->time;
1193
1194 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1195 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1196 return ret;
1197 }
1198
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1199 void perf_session__auxtrace_error_inc(struct perf_session *session,
1200 union perf_event *event)
1201 {
1202 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1203
1204 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1205 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1206 }
1207
events_stats__auxtrace_error_warn(const struct events_stats * stats)1208 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1209 {
1210 int i;
1211
1212 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1213 if (!stats->nr_auxtrace_errors[i])
1214 continue;
1215 ui__warning("%u %s errors\n",
1216 stats->nr_auxtrace_errors[i],
1217 auxtrace_error_name(i));
1218 }
1219 }
1220
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1221 int perf_event__process_auxtrace_error(struct perf_session *session,
1222 union perf_event *event)
1223 {
1224 if (auxtrace__dont_decode(session))
1225 return 0;
1226
1227 perf_event__fprintf_auxtrace_error(event, stdout);
1228 return 0;
1229 }
1230
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1231 static int __auxtrace_mmap__read(struct mmap *map,
1232 struct auxtrace_record *itr,
1233 struct perf_tool *tool, process_auxtrace_t fn,
1234 bool snapshot, size_t snapshot_size)
1235 {
1236 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1237 u64 head, old = mm->prev, offset, ref;
1238 unsigned char *data = mm->base;
1239 size_t size, head_off, old_off, len1, len2, padding;
1240 union perf_event ev;
1241 void *data1, *data2;
1242
1243 if (snapshot) {
1244 head = auxtrace_mmap__read_snapshot_head(mm);
1245 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1246 &head, &old))
1247 return -1;
1248 } else {
1249 head = auxtrace_mmap__read_head(mm);
1250 }
1251
1252 if (old == head)
1253 return 0;
1254
1255 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1256 mm->idx, old, head, head - old);
1257
1258 if (mm->mask) {
1259 head_off = head & mm->mask;
1260 old_off = old & mm->mask;
1261 } else {
1262 head_off = head % mm->len;
1263 old_off = old % mm->len;
1264 }
1265
1266 if (head_off > old_off)
1267 size = head_off - old_off;
1268 else
1269 size = mm->len - (old_off - head_off);
1270
1271 if (snapshot && size > snapshot_size)
1272 size = snapshot_size;
1273
1274 ref = auxtrace_record__reference(itr);
1275
1276 if (head > old || size <= head || mm->mask) {
1277 offset = head - size;
1278 } else {
1279 /*
1280 * When the buffer size is not a power of 2, 'head' wraps at the
1281 * highest multiple of the buffer size, so we have to subtract
1282 * the remainder here.
1283 */
1284 u64 rem = (0ULL - mm->len) % mm->len;
1285
1286 offset = head - size - rem;
1287 }
1288
1289 if (size > head_off) {
1290 len1 = size - head_off;
1291 data1 = &data[mm->len - len1];
1292 len2 = head_off;
1293 data2 = &data[0];
1294 } else {
1295 len1 = size;
1296 data1 = &data[head_off - len1];
1297 len2 = 0;
1298 data2 = NULL;
1299 }
1300
1301 if (itr->alignment) {
1302 unsigned int unwanted = len1 % itr->alignment;
1303
1304 len1 -= unwanted;
1305 size -= unwanted;
1306 }
1307
1308 /* padding must be written by fn() e.g. record__process_auxtrace() */
1309 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1310 if (padding)
1311 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1312
1313 memset(&ev, 0, sizeof(ev));
1314 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1315 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1316 ev.auxtrace.size = size + padding;
1317 ev.auxtrace.offset = offset;
1318 ev.auxtrace.reference = ref;
1319 ev.auxtrace.idx = mm->idx;
1320 ev.auxtrace.tid = mm->tid;
1321 ev.auxtrace.cpu = mm->cpu;
1322
1323 if (fn(tool, map, &ev, data1, len1, data2, len2))
1324 return -1;
1325
1326 mm->prev = head;
1327
1328 if (!snapshot) {
1329 auxtrace_mmap__write_tail(mm, head);
1330 if (itr->read_finish) {
1331 int err;
1332
1333 err = itr->read_finish(itr, mm->idx);
1334 if (err < 0)
1335 return err;
1336 }
1337 }
1338
1339 return 1;
1340 }
1341
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn)1342 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1343 struct perf_tool *tool, process_auxtrace_t fn)
1344 {
1345 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1346 }
1347
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1348 int auxtrace_mmap__read_snapshot(struct mmap *map,
1349 struct auxtrace_record *itr,
1350 struct perf_tool *tool, process_auxtrace_t fn,
1351 size_t snapshot_size)
1352 {
1353 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1354 }
1355
1356 /**
1357 * struct auxtrace_cache - hash table to implement a cache
1358 * @hashtable: the hashtable
1359 * @sz: hashtable size (number of hlists)
1360 * @entry_size: size of an entry
1361 * @limit: limit the number of entries to this maximum, when reached the cache
1362 * is dropped and caching begins again with an empty cache
1363 * @cnt: current number of entries
1364 * @bits: hashtable size (@sz = 2^@bits)
1365 */
1366 struct auxtrace_cache {
1367 struct hlist_head *hashtable;
1368 size_t sz;
1369 size_t entry_size;
1370 size_t limit;
1371 size_t cnt;
1372 unsigned int bits;
1373 };
1374
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1375 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1376 unsigned int limit_percent)
1377 {
1378 struct auxtrace_cache *c;
1379 struct hlist_head *ht;
1380 size_t sz, i;
1381
1382 c = zalloc(sizeof(struct auxtrace_cache));
1383 if (!c)
1384 return NULL;
1385
1386 sz = 1UL << bits;
1387
1388 ht = calloc(sz, sizeof(struct hlist_head));
1389 if (!ht)
1390 goto out_free;
1391
1392 for (i = 0; i < sz; i++)
1393 INIT_HLIST_HEAD(&ht[i]);
1394
1395 c->hashtable = ht;
1396 c->sz = sz;
1397 c->entry_size = entry_size;
1398 c->limit = (c->sz * limit_percent) / 100;
1399 c->bits = bits;
1400
1401 return c;
1402
1403 out_free:
1404 free(c);
1405 return NULL;
1406 }
1407
auxtrace_cache__drop(struct auxtrace_cache * c)1408 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1409 {
1410 struct auxtrace_cache_entry *entry;
1411 struct hlist_node *tmp;
1412 size_t i;
1413
1414 if (!c)
1415 return;
1416
1417 for (i = 0; i < c->sz; i++) {
1418 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1419 hlist_del(&entry->hash);
1420 auxtrace_cache__free_entry(c, entry);
1421 }
1422 }
1423
1424 c->cnt = 0;
1425 }
1426
auxtrace_cache__free(struct auxtrace_cache * c)1427 void auxtrace_cache__free(struct auxtrace_cache *c)
1428 {
1429 if (!c)
1430 return;
1431
1432 auxtrace_cache__drop(c);
1433 zfree(&c->hashtable);
1434 free(c);
1435 }
1436
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)1437 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1438 {
1439 return malloc(c->entry_size);
1440 }
1441
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)1442 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1443 void *entry)
1444 {
1445 free(entry);
1446 }
1447
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)1448 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1449 struct auxtrace_cache_entry *entry)
1450 {
1451 if (c->limit && ++c->cnt > c->limit)
1452 auxtrace_cache__drop(c);
1453
1454 entry->key = key;
1455 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1456
1457 return 0;
1458 }
1459
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)1460 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1461 {
1462 struct auxtrace_cache_entry *entry;
1463 struct hlist_head *hlist;
1464
1465 if (!c)
1466 return NULL;
1467
1468 hlist = &c->hashtable[hash_32(key, c->bits)];
1469 hlist_for_each_entry(entry, hlist, hash) {
1470 if (entry->key == key)
1471 return entry;
1472 }
1473
1474 return NULL;
1475 }
1476
addr_filter__free_str(struct addr_filter * filt)1477 static void addr_filter__free_str(struct addr_filter *filt)
1478 {
1479 zfree(&filt->str);
1480 filt->action = NULL;
1481 filt->sym_from = NULL;
1482 filt->sym_to = NULL;
1483 filt->filename = NULL;
1484 }
1485
addr_filter__new(void)1486 static struct addr_filter *addr_filter__new(void)
1487 {
1488 struct addr_filter *filt = zalloc(sizeof(*filt));
1489
1490 if (filt)
1491 INIT_LIST_HEAD(&filt->list);
1492
1493 return filt;
1494 }
1495
addr_filter__free(struct addr_filter * filt)1496 static void addr_filter__free(struct addr_filter *filt)
1497 {
1498 if (filt)
1499 addr_filter__free_str(filt);
1500 free(filt);
1501 }
1502
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)1503 static void addr_filters__add(struct addr_filters *filts,
1504 struct addr_filter *filt)
1505 {
1506 list_add_tail(&filt->list, &filts->head);
1507 filts->cnt += 1;
1508 }
1509
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)1510 static void addr_filters__del(struct addr_filters *filts,
1511 struct addr_filter *filt)
1512 {
1513 list_del_init(&filt->list);
1514 filts->cnt -= 1;
1515 }
1516
addr_filters__init(struct addr_filters * filts)1517 void addr_filters__init(struct addr_filters *filts)
1518 {
1519 INIT_LIST_HEAD(&filts->head);
1520 filts->cnt = 0;
1521 }
1522
addr_filters__exit(struct addr_filters * filts)1523 void addr_filters__exit(struct addr_filters *filts)
1524 {
1525 struct addr_filter *filt, *n;
1526
1527 list_for_each_entry_safe(filt, n, &filts->head, list) {
1528 addr_filters__del(filts, filt);
1529 addr_filter__free(filt);
1530 }
1531 }
1532
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)1533 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1534 const char *str_delim)
1535 {
1536 *inp += strspn(*inp, " ");
1537
1538 if (isdigit(**inp)) {
1539 char *endptr;
1540
1541 if (!num)
1542 return -EINVAL;
1543 errno = 0;
1544 *num = strtoull(*inp, &endptr, 0);
1545 if (errno)
1546 return -errno;
1547 if (endptr == *inp)
1548 return -EINVAL;
1549 *inp = endptr;
1550 } else {
1551 size_t n;
1552
1553 if (!str)
1554 return -EINVAL;
1555 *inp += strspn(*inp, " ");
1556 *str = *inp;
1557 n = strcspn(*inp, str_delim);
1558 if (!n)
1559 return -EINVAL;
1560 *inp += n;
1561 if (**inp) {
1562 **inp = '\0';
1563 *inp += 1;
1564 }
1565 }
1566 return 0;
1567 }
1568
parse_action(struct addr_filter * filt)1569 static int parse_action(struct addr_filter *filt)
1570 {
1571 if (!strcmp(filt->action, "filter")) {
1572 filt->start = true;
1573 filt->range = true;
1574 } else if (!strcmp(filt->action, "start")) {
1575 filt->start = true;
1576 } else if (!strcmp(filt->action, "stop")) {
1577 filt->start = false;
1578 } else if (!strcmp(filt->action, "tracestop")) {
1579 filt->start = false;
1580 filt->range = true;
1581 filt->action += 5; /* Change 'tracestop' to 'stop' */
1582 } else {
1583 return -EINVAL;
1584 }
1585 return 0;
1586 }
1587
parse_sym_idx(char ** inp,int * idx)1588 static int parse_sym_idx(char **inp, int *idx)
1589 {
1590 *idx = -1;
1591
1592 *inp += strspn(*inp, " ");
1593
1594 if (**inp != '#')
1595 return 0;
1596
1597 *inp += 1;
1598
1599 if (**inp == 'g' || **inp == 'G') {
1600 *inp += 1;
1601 *idx = 0;
1602 } else {
1603 unsigned long num;
1604 char *endptr;
1605
1606 errno = 0;
1607 num = strtoul(*inp, &endptr, 0);
1608 if (errno)
1609 return -errno;
1610 if (endptr == *inp || num > INT_MAX)
1611 return -EINVAL;
1612 *inp = endptr;
1613 *idx = num;
1614 }
1615
1616 return 0;
1617 }
1618
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)1619 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1620 {
1621 int err = parse_num_or_str(inp, num, str, " ");
1622
1623 if (!err && *str)
1624 err = parse_sym_idx(inp, idx);
1625
1626 return err;
1627 }
1628
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)1629 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1630 {
1631 char *fstr;
1632 int err;
1633
1634 filt->str = fstr = strdup(*filter_inp);
1635 if (!fstr)
1636 return -ENOMEM;
1637
1638 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1639 if (err)
1640 goto out_err;
1641
1642 err = parse_action(filt);
1643 if (err)
1644 goto out_err;
1645
1646 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1647 &filt->sym_from_idx);
1648 if (err)
1649 goto out_err;
1650
1651 fstr += strspn(fstr, " ");
1652
1653 if (*fstr == '/') {
1654 fstr += 1;
1655 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1656 &filt->sym_to_idx);
1657 if (err)
1658 goto out_err;
1659 filt->range = true;
1660 }
1661
1662 fstr += strspn(fstr, " ");
1663
1664 if (*fstr == '@') {
1665 fstr += 1;
1666 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1667 if (err)
1668 goto out_err;
1669 }
1670
1671 fstr += strspn(fstr, " ,");
1672
1673 *filter_inp += fstr - filt->str;
1674
1675 return 0;
1676
1677 out_err:
1678 addr_filter__free_str(filt);
1679
1680 return err;
1681 }
1682
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)1683 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1684 const char *filter)
1685 {
1686 struct addr_filter *filt;
1687 const char *fstr = filter;
1688 int err;
1689
1690 while (*fstr) {
1691 filt = addr_filter__new();
1692 err = parse_one_filter(filt, &fstr);
1693 if (err) {
1694 addr_filter__free(filt);
1695 addr_filters__exit(filts);
1696 return err;
1697 }
1698 addr_filters__add(filts, filt);
1699 }
1700
1701 return 0;
1702 }
1703
1704 struct sym_args {
1705 const char *name;
1706 u64 start;
1707 u64 size;
1708 int idx;
1709 int cnt;
1710 bool started;
1711 bool global;
1712 bool selected;
1713 bool duplicate;
1714 bool near;
1715 };
1716
kern_sym_match(struct sym_args * args,const char * name,char type)1717 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1718 {
1719 /* A function with the same name, and global or the n'th found or any */
1720 return kallsyms__is_function(type) &&
1721 !strcmp(name, args->name) &&
1722 ((args->global && isupper(type)) ||
1723 (args->selected && ++(args->cnt) == args->idx) ||
1724 (!args->global && !args->selected));
1725 }
1726
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)1727 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1728 {
1729 struct sym_args *args = arg;
1730
1731 if (args->started) {
1732 if (!args->size)
1733 args->size = start - args->start;
1734 if (args->selected) {
1735 if (args->size)
1736 return 1;
1737 } else if (kern_sym_match(args, name, type)) {
1738 args->duplicate = true;
1739 return 1;
1740 }
1741 } else if (kern_sym_match(args, name, type)) {
1742 args->started = true;
1743 args->start = start;
1744 }
1745
1746 return 0;
1747 }
1748
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)1749 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1750 {
1751 struct sym_args *args = arg;
1752
1753 if (kern_sym_match(args, name, type)) {
1754 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1755 ++args->cnt, start, type, name);
1756 args->near = true;
1757 } else if (args->near) {
1758 args->near = false;
1759 pr_err("\t\twhich is near\t\t%s\n", name);
1760 }
1761
1762 return 0;
1763 }
1764
sym_not_found_error(const char * sym_name,int idx)1765 static int sym_not_found_error(const char *sym_name, int idx)
1766 {
1767 if (idx > 0) {
1768 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1769 idx, sym_name);
1770 } else if (!idx) {
1771 pr_err("Global symbol '%s' not found.\n", sym_name);
1772 } else {
1773 pr_err("Symbol '%s' not found.\n", sym_name);
1774 }
1775 pr_err("Note that symbols must be functions.\n");
1776
1777 return -EINVAL;
1778 }
1779
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)1780 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1781 {
1782 struct sym_args args = {
1783 .name = sym_name,
1784 .idx = idx,
1785 .global = !idx,
1786 .selected = idx > 0,
1787 };
1788 int err;
1789
1790 *start = 0;
1791 *size = 0;
1792
1793 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1794 if (err < 0) {
1795 pr_err("Failed to parse /proc/kallsyms\n");
1796 return err;
1797 }
1798
1799 if (args.duplicate) {
1800 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1801 args.cnt = 0;
1802 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1803 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1804 sym_name);
1805 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1806 return -EINVAL;
1807 }
1808
1809 if (!args.started) {
1810 pr_err("Kernel symbol lookup: ");
1811 return sym_not_found_error(sym_name, idx);
1812 }
1813
1814 *start = args.start;
1815 *size = args.size;
1816
1817 return 0;
1818 }
1819
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)1820 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1821 char type, u64 start)
1822 {
1823 struct sym_args *args = arg;
1824
1825 if (!kallsyms__is_function(type))
1826 return 0;
1827
1828 if (!args->started) {
1829 args->started = true;
1830 args->start = start;
1831 }
1832 /* Don't know exactly where the kernel ends, so we add a page */
1833 args->size = round_up(start, page_size) + page_size - args->start;
1834
1835 return 0;
1836 }
1837
addr_filter__entire_kernel(struct addr_filter * filt)1838 static int addr_filter__entire_kernel(struct addr_filter *filt)
1839 {
1840 struct sym_args args = { .started = false };
1841 int err;
1842
1843 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1844 if (err < 0 || !args.started) {
1845 pr_err("Failed to parse /proc/kallsyms\n");
1846 return err;
1847 }
1848
1849 filt->addr = args.start;
1850 filt->size = args.size;
1851
1852 return 0;
1853 }
1854
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)1855 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1856 {
1857 if (start + size >= filt->addr)
1858 return 0;
1859
1860 if (filt->sym_from) {
1861 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1862 filt->sym_to, start, filt->sym_from, filt->addr);
1863 } else {
1864 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1865 filt->sym_to, start, filt->addr);
1866 }
1867
1868 return -EINVAL;
1869 }
1870
addr_filter__resolve_kernel_syms(struct addr_filter * filt)1871 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1872 {
1873 bool no_size = false;
1874 u64 start, size;
1875 int err;
1876
1877 if (symbol_conf.kptr_restrict) {
1878 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1879 return -EINVAL;
1880 }
1881
1882 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1883 return addr_filter__entire_kernel(filt);
1884
1885 if (filt->sym_from) {
1886 err = find_kern_sym(filt->sym_from, &start, &size,
1887 filt->sym_from_idx);
1888 if (err)
1889 return err;
1890 filt->addr = start;
1891 if (filt->range && !filt->size && !filt->sym_to) {
1892 filt->size = size;
1893 no_size = !size;
1894 }
1895 }
1896
1897 if (filt->sym_to) {
1898 err = find_kern_sym(filt->sym_to, &start, &size,
1899 filt->sym_to_idx);
1900 if (err)
1901 return err;
1902
1903 err = check_end_after_start(filt, start, size);
1904 if (err)
1905 return err;
1906 filt->size = start + size - filt->addr;
1907 no_size = !size;
1908 }
1909
1910 /* The very last symbol in kallsyms does not imply a particular size */
1911 if (no_size) {
1912 pr_err("Cannot determine size of symbol '%s'\n",
1913 filt->sym_to ? filt->sym_to : filt->sym_from);
1914 return -EINVAL;
1915 }
1916
1917 return 0;
1918 }
1919
load_dso(const char * name)1920 static struct dso *load_dso(const char *name)
1921 {
1922 struct map *map;
1923 struct dso *dso;
1924
1925 map = dso__new_map(name);
1926 if (!map)
1927 return NULL;
1928
1929 if (map__load(map) < 0)
1930 pr_err("File '%s' not found or has no symbols.\n", name);
1931
1932 dso = dso__get(map->dso);
1933
1934 map__put(map);
1935
1936 return dso;
1937 }
1938
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)1939 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1940 int idx)
1941 {
1942 /* Same name, and global or the n'th found or any */
1943 return !arch__compare_symbol_names(name, sym->name) &&
1944 ((!idx && sym->binding == STB_GLOBAL) ||
1945 (idx > 0 && ++*cnt == idx) ||
1946 idx < 0);
1947 }
1948
print_duplicate_syms(struct dso * dso,const char * sym_name)1949 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1950 {
1951 struct symbol *sym;
1952 bool near = false;
1953 int cnt = 0;
1954
1955 pr_err("Multiple symbols with name '%s'\n", sym_name);
1956
1957 sym = dso__first_symbol(dso);
1958 while (sym) {
1959 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1960 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1961 ++cnt, sym->start,
1962 sym->binding == STB_GLOBAL ? 'g' :
1963 sym->binding == STB_LOCAL ? 'l' : 'w',
1964 sym->name);
1965 near = true;
1966 } else if (near) {
1967 near = false;
1968 pr_err("\t\twhich is near\t\t%s\n", sym->name);
1969 }
1970 sym = dso__next_symbol(sym);
1971 }
1972
1973 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1974 sym_name);
1975 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1976 }
1977
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)1978 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1979 u64 *size, int idx)
1980 {
1981 struct symbol *sym;
1982 int cnt = 0;
1983
1984 *start = 0;
1985 *size = 0;
1986
1987 sym = dso__first_symbol(dso);
1988 while (sym) {
1989 if (*start) {
1990 if (!*size)
1991 *size = sym->start - *start;
1992 if (idx > 0) {
1993 if (*size)
1994 return 1;
1995 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1996 print_duplicate_syms(dso, sym_name);
1997 return -EINVAL;
1998 }
1999 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2000 *start = sym->start;
2001 *size = sym->end - sym->start;
2002 }
2003 sym = dso__next_symbol(sym);
2004 }
2005
2006 if (!*start)
2007 return sym_not_found_error(sym_name, idx);
2008
2009 return 0;
2010 }
2011
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2012 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2013 {
2014 if (dso__data_file_size(dso, NULL)) {
2015 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2016 filt->filename);
2017 return -EINVAL;
2018 }
2019
2020 filt->addr = 0;
2021 filt->size = dso->data.file_size;
2022
2023 return 0;
2024 }
2025
addr_filter__resolve_syms(struct addr_filter * filt)2026 static int addr_filter__resolve_syms(struct addr_filter *filt)
2027 {
2028 u64 start, size;
2029 struct dso *dso;
2030 int err = 0;
2031
2032 if (!filt->sym_from && !filt->sym_to)
2033 return 0;
2034
2035 if (!filt->filename)
2036 return addr_filter__resolve_kernel_syms(filt);
2037
2038 dso = load_dso(filt->filename);
2039 if (!dso) {
2040 pr_err("Failed to load symbols from: %s\n", filt->filename);
2041 return -EINVAL;
2042 }
2043
2044 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2045 err = addr_filter__entire_dso(filt, dso);
2046 goto put_dso;
2047 }
2048
2049 if (filt->sym_from) {
2050 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2051 filt->sym_from_idx);
2052 if (err)
2053 goto put_dso;
2054 filt->addr = start;
2055 if (filt->range && !filt->size && !filt->sym_to)
2056 filt->size = size;
2057 }
2058
2059 if (filt->sym_to) {
2060 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2061 filt->sym_to_idx);
2062 if (err)
2063 goto put_dso;
2064
2065 err = check_end_after_start(filt, start, size);
2066 if (err)
2067 return err;
2068
2069 filt->size = start + size - filt->addr;
2070 }
2071
2072 put_dso:
2073 dso__put(dso);
2074
2075 return err;
2076 }
2077
addr_filter__to_str(struct addr_filter * filt)2078 static char *addr_filter__to_str(struct addr_filter *filt)
2079 {
2080 char filename_buf[PATH_MAX];
2081 const char *at = "";
2082 const char *fn = "";
2083 char *filter;
2084 int err;
2085
2086 if (filt->filename) {
2087 at = "@";
2088 fn = realpath(filt->filename, filename_buf);
2089 if (!fn)
2090 return NULL;
2091 }
2092
2093 if (filt->range) {
2094 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2095 filt->action, filt->addr, filt->size, at, fn);
2096 } else {
2097 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2098 filt->action, filt->addr, at, fn);
2099 }
2100
2101 return err < 0 ? NULL : filter;
2102 }
2103
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2104 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2105 int max_nr)
2106 {
2107 struct addr_filters filts;
2108 struct addr_filter *filt;
2109 int err;
2110
2111 addr_filters__init(&filts);
2112
2113 err = addr_filters__parse_bare_filter(&filts, filter);
2114 if (err)
2115 goto out_exit;
2116
2117 if (filts.cnt > max_nr) {
2118 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2119 filts.cnt, max_nr);
2120 err = -EINVAL;
2121 goto out_exit;
2122 }
2123
2124 list_for_each_entry(filt, &filts.head, list) {
2125 char *new_filter;
2126
2127 err = addr_filter__resolve_syms(filt);
2128 if (err)
2129 goto out_exit;
2130
2131 new_filter = addr_filter__to_str(filt);
2132 if (!new_filter) {
2133 err = -ENOMEM;
2134 goto out_exit;
2135 }
2136
2137 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2138 err = -ENOMEM;
2139 goto out_exit;
2140 }
2141 }
2142
2143 out_exit:
2144 addr_filters__exit(&filts);
2145
2146 if (err) {
2147 pr_err("Failed to parse address filter: '%s'\n", filter);
2148 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2149 pr_err("Where multiple filters are separated by space or comma.\n");
2150 }
2151
2152 return err;
2153 }
2154
perf_evsel__find_pmu(struct evsel * evsel)2155 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
2156 {
2157 struct perf_pmu *pmu = NULL;
2158
2159 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2160 if (pmu->type == evsel->core.attr.type)
2161 break;
2162 }
2163
2164 return pmu;
2165 }
2166
perf_evsel__nr_addr_filter(struct evsel * evsel)2167 static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2168 {
2169 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2170 int nr_addr_filters = 0;
2171
2172 if (!pmu)
2173 return 0;
2174
2175 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2176
2177 return nr_addr_filters;
2178 }
2179
auxtrace_parse_filters(struct evlist * evlist)2180 int auxtrace_parse_filters(struct evlist *evlist)
2181 {
2182 struct evsel *evsel;
2183 char *filter;
2184 int err, max_nr;
2185
2186 evlist__for_each_entry(evlist, evsel) {
2187 filter = evsel->filter;
2188 max_nr = perf_evsel__nr_addr_filter(evsel);
2189 if (!filter || !max_nr)
2190 continue;
2191 evsel->filter = NULL;
2192 err = parse_addr_filter(evsel, filter, max_nr);
2193 free(filter);
2194 if (err)
2195 return err;
2196 pr_debug("Address filter: %s\n", evsel->filter);
2197 }
2198
2199 return 0;
2200 }
2201
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2202 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2203 struct perf_sample *sample, struct perf_tool *tool)
2204 {
2205 if (!session->auxtrace)
2206 return 0;
2207
2208 return session->auxtrace->process_event(session, event, sample, tool);
2209 }
2210
auxtrace__flush_events(struct perf_session * session,struct perf_tool * tool)2211 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2212 {
2213 if (!session->auxtrace)
2214 return 0;
2215
2216 return session->auxtrace->flush_events(session, tool);
2217 }
2218
auxtrace__free_events(struct perf_session * session)2219 void auxtrace__free_events(struct perf_session *session)
2220 {
2221 if (!session->auxtrace)
2222 return;
2223
2224 return session->auxtrace->free_events(session);
2225 }
2226
auxtrace__free(struct perf_session * session)2227 void auxtrace__free(struct perf_session *session)
2228 {
2229 if (!session->auxtrace)
2230 return;
2231
2232 return session->auxtrace->free(session);
2233 }
2234