1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
5 *
6 * Copyright 2012 Google, Inc.
7 */
8
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
10
11 #include "util.h"
12 #include "bset.h"
13
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
18
19 #ifdef CONFIG_BCACHE_DEBUG
20
bch_dump_bset(struct btree_keys * b,struct bset * i,unsigned int set)21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
22 {
23 struct bkey *k, *next;
24
25 for (k = i->start; k < bset_bkey_last(i); k = next) {
26 next = bkey_next(k);
27
28 pr_err("block %u key %u/%u: ", set,
29 (unsigned int) ((u64 *) k - i->d), i->keys);
30
31 if (b->ops->key_dump)
32 b->ops->key_dump(b, k);
33 else
34 pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
35
36 if (next < bset_bkey_last(i) &&
37 bkey_cmp(k, b->ops->is_extents ?
38 &START_KEY(next) : next) > 0)
39 pr_err("Key skipped backwards\n");
40 }
41 }
42
bch_dump_bucket(struct btree_keys * b)43 void bch_dump_bucket(struct btree_keys *b)
44 {
45 unsigned int i;
46
47 console_lock();
48 for (i = 0; i <= b->nsets; i++)
49 bch_dump_bset(b, b->set[i].data,
50 bset_sector_offset(b, b->set[i].data));
51 console_unlock();
52 }
53
__bch_count_data(struct btree_keys * b)54 int __bch_count_data(struct btree_keys *b)
55 {
56 unsigned int ret = 0;
57 struct btree_iter iter;
58 struct bkey *k;
59
60 if (b->ops->is_extents)
61 for_each_key(b, k, &iter)
62 ret += KEY_SIZE(k);
63 return ret;
64 }
65
__bch_check_keys(struct btree_keys * b,const char * fmt,...)66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
67 {
68 va_list args;
69 struct bkey *k, *p = NULL;
70 struct btree_iter iter;
71 const char *err;
72
73 for_each_key(b, k, &iter) {
74 if (b->ops->is_extents) {
75 err = "Keys out of order";
76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 goto bug;
78
79 if (bch_ptr_invalid(b, k))
80 continue;
81
82 err = "Overlapping keys";
83 if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 goto bug;
85 } else {
86 if (bch_ptr_bad(b, k))
87 continue;
88
89 err = "Duplicate keys";
90 if (p && !bkey_cmp(p, k))
91 goto bug;
92 }
93 p = k;
94 }
95 #if 0
96 err = "Key larger than btree node key";
97 if (p && bkey_cmp(p, &b->key) > 0)
98 goto bug;
99 #endif
100 return;
101 bug:
102 bch_dump_bucket(b);
103
104 va_start(args, fmt);
105 vprintk(fmt, args);
106 va_end(args);
107
108 panic("bch_check_keys error: %s:\n", err);
109 }
110
bch_btree_iter_next_check(struct btree_iter * iter)111 static void bch_btree_iter_next_check(struct btree_iter *iter)
112 {
113 struct bkey *k = iter->data->k, *next = bkey_next(k);
114
115 if (next < iter->data->end &&
116 bkey_cmp(k, iter->b->ops->is_extents ?
117 &START_KEY(next) : next) > 0) {
118 bch_dump_bucket(iter->b);
119 panic("Key skipped backwards\n");
120 }
121 }
122
123 #else
124
bch_btree_iter_next_check(struct btree_iter * iter)125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
126
127 #endif
128
129 /* Keylists */
130
__bch_keylist_realloc(struct keylist * l,unsigned int u64s)131 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
132 {
133 size_t oldsize = bch_keylist_nkeys(l);
134 size_t newsize = oldsize + u64s;
135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 uint64_t *new_keys;
137
138 newsize = roundup_pow_of_two(newsize);
139
140 if (newsize <= KEYLIST_INLINE ||
141 roundup_pow_of_two(oldsize) == newsize)
142 return 0;
143
144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
145
146 if (!new_keys)
147 return -ENOMEM;
148
149 if (!old_keys)
150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
151
152 l->keys_p = new_keys;
153 l->top_p = new_keys + oldsize;
154
155 return 0;
156 }
157
bch_keylist_pop(struct keylist * l)158 struct bkey *bch_keylist_pop(struct keylist *l)
159 {
160 struct bkey *k = l->keys;
161
162 if (k == l->top)
163 return NULL;
164
165 while (bkey_next(k) != l->top)
166 k = bkey_next(k);
167
168 return l->top = k;
169 }
170
bch_keylist_pop_front(struct keylist * l)171 void bch_keylist_pop_front(struct keylist *l)
172 {
173 l->top_p -= bkey_u64s(l->keys);
174
175 memmove(l->keys,
176 bkey_next(l->keys),
177 bch_keylist_bytes(l));
178 }
179
180 /* Key/pointer manipulation */
181
bch_bkey_copy_single_ptr(struct bkey * dest,const struct bkey * src,unsigned int i)182 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
183 unsigned int i)
184 {
185 BUG_ON(i > KEY_PTRS(src));
186
187 /* Only copy the header, key, and one pointer. */
188 memcpy(dest, src, 2 * sizeof(uint64_t));
189 dest->ptr[0] = src->ptr[i];
190 SET_KEY_PTRS(dest, 1);
191 /* We didn't copy the checksum so clear that bit. */
192 SET_KEY_CSUM(dest, 0);
193 }
194
__bch_cut_front(const struct bkey * where,struct bkey * k)195 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
196 {
197 unsigned int i, len = 0;
198
199 if (bkey_cmp(where, &START_KEY(k)) <= 0)
200 return false;
201
202 if (bkey_cmp(where, k) < 0)
203 len = KEY_OFFSET(k) - KEY_OFFSET(where);
204 else
205 bkey_copy_key(k, where);
206
207 for (i = 0; i < KEY_PTRS(k); i++)
208 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
209
210 BUG_ON(len > KEY_SIZE(k));
211 SET_KEY_SIZE(k, len);
212 return true;
213 }
214
__bch_cut_back(const struct bkey * where,struct bkey * k)215 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
216 {
217 unsigned int len = 0;
218
219 if (bkey_cmp(where, k) >= 0)
220 return false;
221
222 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
223
224 if (bkey_cmp(where, &START_KEY(k)) > 0)
225 len = KEY_OFFSET(where) - KEY_START(k);
226
227 bkey_copy_key(k, where);
228
229 BUG_ON(len > KEY_SIZE(k));
230 SET_KEY_SIZE(k, len);
231 return true;
232 }
233
234 /* Auxiliary search trees */
235
236 /* 32 bits total: */
237 #define BKEY_MID_BITS 3
238 #define BKEY_EXPONENT_BITS 7
239 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
241
242 struct bkey_float {
243 unsigned int exponent:BKEY_EXPONENT_BITS;
244 unsigned int m:BKEY_MID_BITS;
245 unsigned int mantissa:BKEY_MANTISSA_BITS;
246 } __packed;
247
248 /*
249 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250 * it used to be 64, but I realized the lookup code would touch slightly less
251 * memory if it was 128.
252 *
253 * It definites the number of bytes (in struct bset) per struct bkey_float in
254 * the auxiliar search tree - when we're done searching the bset_float tree we
255 * have this many bytes left that we do a linear search over.
256 *
257 * Since (after level 5) every level of the bset_tree is on a new cacheline,
258 * we're touching one fewer cacheline in the bset tree in exchange for one more
259 * cacheline in the linear search - but the linear search might stop before it
260 * gets to the second cacheline.
261 */
262
263 #define BSET_CACHELINE 128
264
265 /* Space required for the btree node keys */
btree_keys_bytes(struct btree_keys * b)266 static inline size_t btree_keys_bytes(struct btree_keys *b)
267 {
268 return PAGE_SIZE << b->page_order;
269 }
270
btree_keys_cachelines(struct btree_keys * b)271 static inline size_t btree_keys_cachelines(struct btree_keys *b)
272 {
273 return btree_keys_bytes(b) / BSET_CACHELINE;
274 }
275
276 /* Space required for the auxiliary search trees */
bset_tree_bytes(struct btree_keys * b)277 static inline size_t bset_tree_bytes(struct btree_keys *b)
278 {
279 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
280 }
281
282 /* Space required for the prev pointers */
bset_prev_bytes(struct btree_keys * b)283 static inline size_t bset_prev_bytes(struct btree_keys *b)
284 {
285 return btree_keys_cachelines(b) * sizeof(uint8_t);
286 }
287
288 /* Memory allocation */
289
bch_btree_keys_free(struct btree_keys * b)290 void bch_btree_keys_free(struct btree_keys *b)
291 {
292 struct bset_tree *t = b->set;
293
294 if (bset_prev_bytes(b) < PAGE_SIZE)
295 kfree(t->prev);
296 else
297 free_pages((unsigned long) t->prev,
298 get_order(bset_prev_bytes(b)));
299
300 if (bset_tree_bytes(b) < PAGE_SIZE)
301 kfree(t->tree);
302 else
303 free_pages((unsigned long) t->tree,
304 get_order(bset_tree_bytes(b)));
305
306 free_pages((unsigned long) t->data, b->page_order);
307
308 t->prev = NULL;
309 t->tree = NULL;
310 t->data = NULL;
311 }
312 EXPORT_SYMBOL(bch_btree_keys_free);
313
bch_btree_keys_alloc(struct btree_keys * b,unsigned int page_order,gfp_t gfp)314 int bch_btree_keys_alloc(struct btree_keys *b,
315 unsigned int page_order,
316 gfp_t gfp)
317 {
318 struct bset_tree *t = b->set;
319
320 BUG_ON(t->data);
321
322 b->page_order = page_order;
323
324 t->data = (void *) __get_free_pages(gfp, b->page_order);
325 if (!t->data)
326 goto err;
327
328 t->tree = bset_tree_bytes(b) < PAGE_SIZE
329 ? kmalloc(bset_tree_bytes(b), gfp)
330 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
331 if (!t->tree)
332 goto err;
333
334 t->prev = bset_prev_bytes(b) < PAGE_SIZE
335 ? kmalloc(bset_prev_bytes(b), gfp)
336 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
337 if (!t->prev)
338 goto err;
339
340 return 0;
341 err:
342 bch_btree_keys_free(b);
343 return -ENOMEM;
344 }
345 EXPORT_SYMBOL(bch_btree_keys_alloc);
346
bch_btree_keys_init(struct btree_keys * b,const struct btree_keys_ops * ops,bool * expensive_debug_checks)347 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348 bool *expensive_debug_checks)
349 {
350 b->ops = ops;
351 b->expensive_debug_checks = expensive_debug_checks;
352 b->nsets = 0;
353 b->last_set_unwritten = 0;
354
355 /*
356 * struct btree_keys in embedded in struct btree, and struct
357 * bset_tree is embedded into struct btree_keys. They are all
358 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
359 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
360 * don't have to initiate b->set[].size and b->set[].data here
361 * any more.
362 */
363 }
364 EXPORT_SYMBOL(bch_btree_keys_init);
365
366 /* Binary tree stuff for auxiliary search trees */
367
368 /*
369 * return array index next to j when does in-order traverse
370 * of a binary tree which is stored in a linear array
371 */
inorder_next(unsigned int j,unsigned int size)372 static unsigned int inorder_next(unsigned int j, unsigned int size)
373 {
374 if (j * 2 + 1 < size) {
375 j = j * 2 + 1;
376
377 while (j * 2 < size)
378 j *= 2;
379 } else
380 j >>= ffz(j) + 1;
381
382 return j;
383 }
384
385 /*
386 * return array index previous to j when does in-order traverse
387 * of a binary tree which is stored in a linear array
388 */
inorder_prev(unsigned int j,unsigned int size)389 static unsigned int inorder_prev(unsigned int j, unsigned int size)
390 {
391 if (j * 2 < size) {
392 j = j * 2;
393
394 while (j * 2 + 1 < size)
395 j = j * 2 + 1;
396 } else
397 j >>= ffs(j);
398
399 return j;
400 }
401
402 /*
403 * I have no idea why this code works... and I'm the one who wrote it
404 *
405 * However, I do know what it does:
406 * Given a binary tree constructed in an array (i.e. how you normally implement
407 * a heap), it converts a node in the tree - referenced by array index - to the
408 * index it would have if you did an inorder traversal.
409 *
410 * Also tested for every j, size up to size somewhere around 6 million.
411 *
412 * The binary tree starts at array index 1, not 0
413 * extra is a function of size:
414 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
415 */
__to_inorder(unsigned int j,unsigned int size,unsigned int extra)416 static unsigned int __to_inorder(unsigned int j,
417 unsigned int size,
418 unsigned int extra)
419 {
420 unsigned int b = fls(j);
421 unsigned int shift = fls(size - 1) - b;
422
423 j ^= 1U << (b - 1);
424 j <<= 1;
425 j |= 1;
426 j <<= shift;
427
428 if (j > extra)
429 j -= (j - extra) >> 1;
430
431 return j;
432 }
433
434 /*
435 * Return the cacheline index in bset_tree->data, where j is index
436 * from a linear array which stores the auxiliar binary tree
437 */
to_inorder(unsigned int j,struct bset_tree * t)438 static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
439 {
440 return __to_inorder(j, t->size, t->extra);
441 }
442
__inorder_to_tree(unsigned int j,unsigned int size,unsigned int extra)443 static unsigned int __inorder_to_tree(unsigned int j,
444 unsigned int size,
445 unsigned int extra)
446 {
447 unsigned int shift;
448
449 if (j > extra)
450 j += j - extra;
451
452 shift = ffs(j);
453
454 j >>= shift;
455 j |= roundup_pow_of_two(size) >> shift;
456
457 return j;
458 }
459
460 /*
461 * Return an index from a linear array which stores the auxiliar binary
462 * tree, j is the cacheline index of t->data.
463 */
inorder_to_tree(unsigned int j,struct bset_tree * t)464 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
465 {
466 return __inorder_to_tree(j, t->size, t->extra);
467 }
468
469 #if 0
470 void inorder_test(void)
471 {
472 unsigned long done = 0;
473 ktime_t start = ktime_get();
474
475 for (unsigned int size = 2;
476 size < 65536000;
477 size++) {
478 unsigned int extra =
479 (size - rounddown_pow_of_two(size - 1)) << 1;
480 unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
481
482 if (!(size % 4096))
483 pr_notice("loop %u, %llu per us\n", size,
484 done / ktime_us_delta(ktime_get(), start));
485
486 while (1) {
487 if (__inorder_to_tree(i, size, extra) != j)
488 panic("size %10u j %10u i %10u", size, j, i);
489
490 if (__to_inorder(j, size, extra) != i)
491 panic("size %10u j %10u i %10u", size, j, i);
492
493 if (j == rounddown_pow_of_two(size) - 1)
494 break;
495
496 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
497
498 j = inorder_next(j, size);
499 i++;
500 }
501
502 done += size - 1;
503 }
504 }
505 #endif
506
507 /*
508 * Cacheline/offset <-> bkey pointer arithmetic:
509 *
510 * t->tree is a binary search tree in an array; each node corresponds to a key
511 * in one cacheline in t->set (BSET_CACHELINE bytes).
512 *
513 * This means we don't have to store the full index of the key that a node in
514 * the binary tree points to; to_inorder() gives us the cacheline, and then
515 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
516 *
517 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
518 * make this work.
519 *
520 * To construct the bfloat for an arbitrary key we need to know what the key
521 * immediately preceding it is: we have to check if the two keys differ in the
522 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
523 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
524 */
525
cacheline_to_bkey(struct bset_tree * t,unsigned int cacheline,unsigned int offset)526 static struct bkey *cacheline_to_bkey(struct bset_tree *t,
527 unsigned int cacheline,
528 unsigned int offset)
529 {
530 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
531 }
532
bkey_to_cacheline(struct bset_tree * t,struct bkey * k)533 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
534 {
535 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
536 }
537
bkey_to_cacheline_offset(struct bset_tree * t,unsigned int cacheline,struct bkey * k)538 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
539 unsigned int cacheline,
540 struct bkey *k)
541 {
542 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
543 }
544
tree_to_bkey(struct bset_tree * t,unsigned int j)545 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
546 {
547 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
548 }
549
tree_to_prev_bkey(struct bset_tree * t,unsigned int j)550 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
551 {
552 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
553 }
554
555 /*
556 * For the write set - the one we're currently inserting keys into - we don't
557 * maintain a full search tree, we just keep a simple lookup table in t->prev.
558 */
table_to_bkey(struct bset_tree * t,unsigned int cacheline)559 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
560 {
561 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
562 }
563
shrd128(uint64_t high,uint64_t low,uint8_t shift)564 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
565 {
566 low >>= shift;
567 low |= (high << 1) << (63U - shift);
568 return low;
569 }
570
571 /*
572 * Calculate mantissa value for struct bkey_float.
573 * If most significant bit of f->exponent is not set, then
574 * - f->exponent >> 6 is 0
575 * - p[0] points to bkey->low
576 * - p[-1] borrows bits from KEY_INODE() of bkey->high
577 * if most isgnificant bits of f->exponent is set, then
578 * - f->exponent >> 6 is 1
579 * - p[0] points to bits from KEY_INODE() of bkey->high
580 * - p[-1] points to other bits from KEY_INODE() of
581 * bkey->high too.
582 * See make_bfloat() to check when most significant bit of f->exponent
583 * is set or not.
584 */
bfloat_mantissa(const struct bkey * k,struct bkey_float * f)585 static inline unsigned int bfloat_mantissa(const struct bkey *k,
586 struct bkey_float *f)
587 {
588 const uint64_t *p = &k->low - (f->exponent >> 6);
589
590 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
591 }
592
make_bfloat(struct bset_tree * t,unsigned int j)593 static void make_bfloat(struct bset_tree *t, unsigned int j)
594 {
595 struct bkey_float *f = &t->tree[j];
596 struct bkey *m = tree_to_bkey(t, j);
597 struct bkey *p = tree_to_prev_bkey(t, j);
598
599 struct bkey *l = is_power_of_2(j)
600 ? t->data->start
601 : tree_to_prev_bkey(t, j >> ffs(j));
602
603 struct bkey *r = is_power_of_2(j + 1)
604 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
605 : tree_to_bkey(t, j >> (ffz(j) + 1));
606
607 BUG_ON(m < l || m > r);
608 BUG_ON(bkey_next(p) != m);
609
610 /*
611 * If l and r have different KEY_INODE values (different backing
612 * device), f->exponent records how many least significant bits
613 * are different in KEY_INODE values and sets most significant
614 * bits to 1 (by +64).
615 * If l and r have same KEY_INODE value, f->exponent records
616 * how many different bits in least significant bits of bkey->low.
617 * See bfloat_mantiss() how the most significant bit of
618 * f->exponent is used to calculate bfloat mantissa value.
619 */
620 if (KEY_INODE(l) != KEY_INODE(r))
621 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
622 else
623 f->exponent = fls64(r->low ^ l->low);
624
625 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
626
627 /*
628 * Setting f->exponent = 127 flags this node as failed, and causes the
629 * lookup code to fall back to comparing against the original key.
630 */
631
632 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
633 f->mantissa = bfloat_mantissa(m, f) - 1;
634 else
635 f->exponent = 127;
636 }
637
bset_alloc_tree(struct btree_keys * b,struct bset_tree * t)638 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
639 {
640 if (t != b->set) {
641 unsigned int j = roundup(t[-1].size,
642 64 / sizeof(struct bkey_float));
643
644 t->tree = t[-1].tree + j;
645 t->prev = t[-1].prev + j;
646 }
647
648 while (t < b->set + MAX_BSETS)
649 t++->size = 0;
650 }
651
bch_bset_build_unwritten_tree(struct btree_keys * b)652 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
653 {
654 struct bset_tree *t = bset_tree_last(b);
655
656 BUG_ON(b->last_set_unwritten);
657 b->last_set_unwritten = 1;
658
659 bset_alloc_tree(b, t);
660
661 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
662 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
663 t->size = 1;
664 }
665 }
666
bch_bset_init_next(struct btree_keys * b,struct bset * i,uint64_t magic)667 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
668 {
669 if (i != b->set->data) {
670 b->set[++b->nsets].data = i;
671 i->seq = b->set->data->seq;
672 } else
673 get_random_bytes(&i->seq, sizeof(uint64_t));
674
675 i->magic = magic;
676 i->version = 0;
677 i->keys = 0;
678
679 bch_bset_build_unwritten_tree(b);
680 }
681 EXPORT_SYMBOL(bch_bset_init_next);
682
683 /*
684 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
685 * accelerate bkey search in a btree node (pointed by bset_tree->data in
686 * memory). After search in the auxiliar tree by calling bset_search_tree(),
687 * a struct bset_search_iter is returned which indicates range [l, r] from
688 * bset_tree->data where the searching bkey might be inside. Then a followed
689 * linear comparison does the exact search, see __bch_bset_search() for how
690 * the auxiliary tree is used.
691 */
bch_bset_build_written_tree(struct btree_keys * b)692 void bch_bset_build_written_tree(struct btree_keys *b)
693 {
694 struct bset_tree *t = bset_tree_last(b);
695 struct bkey *prev = NULL, *k = t->data->start;
696 unsigned int j, cacheline = 1;
697
698 b->last_set_unwritten = 0;
699
700 bset_alloc_tree(b, t);
701
702 t->size = min_t(unsigned int,
703 bkey_to_cacheline(t, bset_bkey_last(t->data)),
704 b->set->tree + btree_keys_cachelines(b) - t->tree);
705
706 if (t->size < 2) {
707 t->size = 0;
708 return;
709 }
710
711 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
712
713 /* First we figure out where the first key in each cacheline is */
714 for (j = inorder_next(0, t->size);
715 j;
716 j = inorder_next(j, t->size)) {
717 while (bkey_to_cacheline(t, k) < cacheline)
718 prev = k, k = bkey_next(k);
719
720 t->prev[j] = bkey_u64s(prev);
721 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
722 }
723
724 while (bkey_next(k) != bset_bkey_last(t->data))
725 k = bkey_next(k);
726
727 t->end = *k;
728
729 /* Then we build the tree */
730 for (j = inorder_next(0, t->size);
731 j;
732 j = inorder_next(j, t->size))
733 make_bfloat(t, j);
734 }
735 EXPORT_SYMBOL(bch_bset_build_written_tree);
736
737 /* Insert */
738
bch_bset_fix_invalidated_key(struct btree_keys * b,struct bkey * k)739 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
740 {
741 struct bset_tree *t;
742 unsigned int inorder, j = 1;
743
744 for (t = b->set; t <= bset_tree_last(b); t++)
745 if (k < bset_bkey_last(t->data))
746 goto found_set;
747
748 BUG();
749 found_set:
750 if (!t->size || !bset_written(b, t))
751 return;
752
753 inorder = bkey_to_cacheline(t, k);
754
755 if (k == t->data->start)
756 goto fix_left;
757
758 if (bkey_next(k) == bset_bkey_last(t->data)) {
759 t->end = *k;
760 goto fix_right;
761 }
762
763 j = inorder_to_tree(inorder, t);
764
765 if (j &&
766 j < t->size &&
767 k == tree_to_bkey(t, j))
768 fix_left: do {
769 make_bfloat(t, j);
770 j = j * 2;
771 } while (j < t->size);
772
773 j = inorder_to_tree(inorder + 1, t);
774
775 if (j &&
776 j < t->size &&
777 k == tree_to_prev_bkey(t, j))
778 fix_right: do {
779 make_bfloat(t, j);
780 j = j * 2 + 1;
781 } while (j < t->size);
782 }
783 EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
784
bch_bset_fix_lookup_table(struct btree_keys * b,struct bset_tree * t,struct bkey * k)785 static void bch_bset_fix_lookup_table(struct btree_keys *b,
786 struct bset_tree *t,
787 struct bkey *k)
788 {
789 unsigned int shift = bkey_u64s(k);
790 unsigned int j = bkey_to_cacheline(t, k);
791
792 /* We're getting called from btree_split() or btree_gc, just bail out */
793 if (!t->size)
794 return;
795
796 /*
797 * k is the key we just inserted; we need to find the entry in the
798 * lookup table for the first key that is strictly greater than k:
799 * it's either k's cacheline or the next one
800 */
801 while (j < t->size &&
802 table_to_bkey(t, j) <= k)
803 j++;
804
805 /*
806 * Adjust all the lookup table entries, and find a new key for any that
807 * have gotten too big
808 */
809 for (; j < t->size; j++) {
810 t->prev[j] += shift;
811
812 if (t->prev[j] > 7) {
813 k = table_to_bkey(t, j - 1);
814
815 while (k < cacheline_to_bkey(t, j, 0))
816 k = bkey_next(k);
817
818 t->prev[j] = bkey_to_cacheline_offset(t, j, k);
819 }
820 }
821
822 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
823 return;
824
825 /* Possibly add a new entry to the end of the lookup table */
826
827 for (k = table_to_bkey(t, t->size - 1);
828 k != bset_bkey_last(t->data);
829 k = bkey_next(k))
830 if (t->size == bkey_to_cacheline(t, k)) {
831 t->prev[t->size] =
832 bkey_to_cacheline_offset(t, t->size, k);
833 t->size++;
834 }
835 }
836
837 /*
838 * Tries to merge l and r: l should be lower than r
839 * Returns true if we were able to merge. If we did merge, l will be the merged
840 * key, r will be untouched.
841 */
bch_bkey_try_merge(struct btree_keys * b,struct bkey * l,struct bkey * r)842 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
843 {
844 if (!b->ops->key_merge)
845 return false;
846
847 /*
848 * Generic header checks
849 * Assumes left and right are in order
850 * Left and right must be exactly aligned
851 */
852 if (!bch_bkey_equal_header(l, r) ||
853 bkey_cmp(l, &START_KEY(r)))
854 return false;
855
856 return b->ops->key_merge(b, l, r);
857 }
858 EXPORT_SYMBOL(bch_bkey_try_merge);
859
bch_bset_insert(struct btree_keys * b,struct bkey * where,struct bkey * insert)860 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
861 struct bkey *insert)
862 {
863 struct bset_tree *t = bset_tree_last(b);
864
865 BUG_ON(!b->last_set_unwritten);
866 BUG_ON(bset_byte_offset(b, t->data) +
867 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
868 PAGE_SIZE << b->page_order);
869
870 memmove((uint64_t *) where + bkey_u64s(insert),
871 where,
872 (void *) bset_bkey_last(t->data) - (void *) where);
873
874 t->data->keys += bkey_u64s(insert);
875 bkey_copy(where, insert);
876 bch_bset_fix_lookup_table(b, t, where);
877 }
878 EXPORT_SYMBOL(bch_bset_insert);
879
bch_btree_insert_key(struct btree_keys * b,struct bkey * k,struct bkey * replace_key)880 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
881 struct bkey *replace_key)
882 {
883 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
884 struct bset *i = bset_tree_last(b)->data;
885 struct bkey *m, *prev = NULL;
886 struct btree_iter iter;
887 struct bkey preceding_key_on_stack = ZERO_KEY;
888 struct bkey *preceding_key_p = &preceding_key_on_stack;
889
890 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
891
892 /*
893 * If k has preceding key, preceding_key_p will be set to address
894 * of k's preceding key; otherwise preceding_key_p will be set
895 * to NULL inside preceding_key().
896 */
897 if (b->ops->is_extents)
898 preceding_key(&START_KEY(k), &preceding_key_p);
899 else
900 preceding_key(k, &preceding_key_p);
901
902 m = bch_btree_iter_init(b, &iter, preceding_key_p);
903
904 if (b->ops->insert_fixup(b, k, &iter, replace_key))
905 return status;
906
907 status = BTREE_INSERT_STATUS_INSERT;
908
909 while (m != bset_bkey_last(i) &&
910 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
911 prev = m, m = bkey_next(m);
912
913 /* prev is in the tree, if we merge we're done */
914 status = BTREE_INSERT_STATUS_BACK_MERGE;
915 if (prev &&
916 bch_bkey_try_merge(b, prev, k))
917 goto merged;
918 #if 0
919 status = BTREE_INSERT_STATUS_OVERWROTE;
920 if (m != bset_bkey_last(i) &&
921 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
922 goto copy;
923 #endif
924 status = BTREE_INSERT_STATUS_FRONT_MERGE;
925 if (m != bset_bkey_last(i) &&
926 bch_bkey_try_merge(b, k, m))
927 goto copy;
928
929 bch_bset_insert(b, m, k);
930 copy: bkey_copy(m, k);
931 merged:
932 return status;
933 }
934 EXPORT_SYMBOL(bch_btree_insert_key);
935
936 /* Lookup */
937
938 struct bset_search_iter {
939 struct bkey *l, *r;
940 };
941
bset_search_write_set(struct bset_tree * t,const struct bkey * search)942 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
943 const struct bkey *search)
944 {
945 unsigned int li = 0, ri = t->size;
946
947 while (li + 1 != ri) {
948 unsigned int m = (li + ri) >> 1;
949
950 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
951 ri = m;
952 else
953 li = m;
954 }
955
956 return (struct bset_search_iter) {
957 table_to_bkey(t, li),
958 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
959 };
960 }
961
bset_search_tree(struct bset_tree * t,const struct bkey * search)962 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
963 const struct bkey *search)
964 {
965 struct bkey *l, *r;
966 struct bkey_float *f;
967 unsigned int inorder, j, n = 1;
968
969 do {
970 unsigned int p = n << 4;
971
972 if (p < t->size)
973 prefetch(&t->tree[p]);
974
975 j = n;
976 f = &t->tree[j];
977
978 if (likely(f->exponent != 127)) {
979 if (f->mantissa >= bfloat_mantissa(search, f))
980 n = j * 2;
981 else
982 n = j * 2 + 1;
983 } else {
984 if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
985 n = j * 2;
986 else
987 n = j * 2 + 1;
988 }
989 } while (n < t->size);
990
991 inorder = to_inorder(j, t);
992
993 /*
994 * n would have been the node we recursed to - the low bit tells us if
995 * we recursed left or recursed right.
996 */
997 if (n & 1) {
998 l = cacheline_to_bkey(t, inorder, f->m);
999
1000 if (++inorder != t->size) {
1001 f = &t->tree[inorder_next(j, t->size)];
1002 r = cacheline_to_bkey(t, inorder, f->m);
1003 } else
1004 r = bset_bkey_last(t->data);
1005 } else {
1006 r = cacheline_to_bkey(t, inorder, f->m);
1007
1008 if (--inorder) {
1009 f = &t->tree[inorder_prev(j, t->size)];
1010 l = cacheline_to_bkey(t, inorder, f->m);
1011 } else
1012 l = t->data->start;
1013 }
1014
1015 return (struct bset_search_iter) {l, r};
1016 }
1017
__bch_bset_search(struct btree_keys * b,struct bset_tree * t,const struct bkey * search)1018 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1019 const struct bkey *search)
1020 {
1021 struct bset_search_iter i;
1022
1023 /*
1024 * First, we search for a cacheline, then lastly we do a linear search
1025 * within that cacheline.
1026 *
1027 * To search for the cacheline, there's three different possibilities:
1028 * * The set is too small to have a search tree, so we just do a linear
1029 * search over the whole set.
1030 * * The set is the one we're currently inserting into; keeping a full
1031 * auxiliary search tree up to date would be too expensive, so we
1032 * use a much simpler lookup table to do a binary search -
1033 * bset_search_write_set().
1034 * * Or we use the auxiliary search tree we constructed earlier -
1035 * bset_search_tree()
1036 */
1037
1038 if (unlikely(!t->size)) {
1039 i.l = t->data->start;
1040 i.r = bset_bkey_last(t->data);
1041 } else if (bset_written(b, t)) {
1042 /*
1043 * Each node in the auxiliary search tree covers a certain range
1044 * of bits, and keys above and below the set it covers might
1045 * differ outside those bits - so we have to special case the
1046 * start and end - handle that here:
1047 */
1048
1049 if (unlikely(bkey_cmp(search, &t->end) >= 0))
1050 return bset_bkey_last(t->data);
1051
1052 if (unlikely(bkey_cmp(search, t->data->start) < 0))
1053 return t->data->start;
1054
1055 i = bset_search_tree(t, search);
1056 } else {
1057 BUG_ON(!b->nsets &&
1058 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1059
1060 i = bset_search_write_set(t, search);
1061 }
1062
1063 if (btree_keys_expensive_checks(b)) {
1064 BUG_ON(bset_written(b, t) &&
1065 i.l != t->data->start &&
1066 bkey_cmp(tree_to_prev_bkey(t,
1067 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1068 search) > 0);
1069
1070 BUG_ON(i.r != bset_bkey_last(t->data) &&
1071 bkey_cmp(i.r, search) <= 0);
1072 }
1073
1074 while (likely(i.l != i.r) &&
1075 bkey_cmp(i.l, search) <= 0)
1076 i.l = bkey_next(i.l);
1077
1078 return i.l;
1079 }
1080 EXPORT_SYMBOL(__bch_bset_search);
1081
1082 /* Btree iterator */
1083
1084 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1085 struct btree_iter_set);
1086
btree_iter_cmp(struct btree_iter_set l,struct btree_iter_set r)1087 static inline bool btree_iter_cmp(struct btree_iter_set l,
1088 struct btree_iter_set r)
1089 {
1090 return bkey_cmp(l.k, r.k) > 0;
1091 }
1092
btree_iter_end(struct btree_iter * iter)1093 static inline bool btree_iter_end(struct btree_iter *iter)
1094 {
1095 return !iter->used;
1096 }
1097
bch_btree_iter_push(struct btree_iter * iter,struct bkey * k,struct bkey * end)1098 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1099 struct bkey *end)
1100 {
1101 if (k != end)
1102 BUG_ON(!heap_add(iter,
1103 ((struct btree_iter_set) { k, end }),
1104 btree_iter_cmp));
1105 }
1106
__bch_btree_iter_init(struct btree_keys * b,struct btree_iter * iter,struct bkey * search,struct bset_tree * start)1107 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1108 struct btree_iter *iter,
1109 struct bkey *search,
1110 struct bset_tree *start)
1111 {
1112 struct bkey *ret = NULL;
1113
1114 iter->size = ARRAY_SIZE(iter->data);
1115 iter->used = 0;
1116
1117 #ifdef CONFIG_BCACHE_DEBUG
1118 iter->b = b;
1119 #endif
1120
1121 for (; start <= bset_tree_last(b); start++) {
1122 ret = bch_bset_search(b, start, search);
1123 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1124 }
1125
1126 return ret;
1127 }
1128
bch_btree_iter_init(struct btree_keys * b,struct btree_iter * iter,struct bkey * search)1129 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1130 struct btree_iter *iter,
1131 struct bkey *search)
1132 {
1133 return __bch_btree_iter_init(b, iter, search, b->set);
1134 }
1135 EXPORT_SYMBOL(bch_btree_iter_init);
1136
__bch_btree_iter_next(struct btree_iter * iter,btree_iter_cmp_fn * cmp)1137 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1138 btree_iter_cmp_fn *cmp)
1139 {
1140 struct btree_iter_set b __maybe_unused;
1141 struct bkey *ret = NULL;
1142
1143 if (!btree_iter_end(iter)) {
1144 bch_btree_iter_next_check(iter);
1145
1146 ret = iter->data->k;
1147 iter->data->k = bkey_next(iter->data->k);
1148
1149 if (iter->data->k > iter->data->end) {
1150 WARN_ONCE(1, "bset was corrupt!\n");
1151 iter->data->k = iter->data->end;
1152 }
1153
1154 if (iter->data->k == iter->data->end)
1155 heap_pop(iter, b, cmp);
1156 else
1157 heap_sift(iter, 0, cmp);
1158 }
1159
1160 return ret;
1161 }
1162
bch_btree_iter_next(struct btree_iter * iter)1163 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1164 {
1165 return __bch_btree_iter_next(iter, btree_iter_cmp);
1166
1167 }
1168 EXPORT_SYMBOL(bch_btree_iter_next);
1169
bch_btree_iter_next_filter(struct btree_iter * iter,struct btree_keys * b,ptr_filter_fn fn)1170 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1171 struct btree_keys *b, ptr_filter_fn fn)
1172 {
1173 struct bkey *ret;
1174
1175 do {
1176 ret = bch_btree_iter_next(iter);
1177 } while (ret && fn(b, ret));
1178
1179 return ret;
1180 }
1181
1182 /* Mergesort */
1183
bch_bset_sort_state_free(struct bset_sort_state * state)1184 void bch_bset_sort_state_free(struct bset_sort_state *state)
1185 {
1186 mempool_exit(&state->pool);
1187 }
1188
bch_bset_sort_state_init(struct bset_sort_state * state,unsigned int page_order)1189 int bch_bset_sort_state_init(struct bset_sort_state *state,
1190 unsigned int page_order)
1191 {
1192 spin_lock_init(&state->time.lock);
1193
1194 state->page_order = page_order;
1195 state->crit_factor = int_sqrt(1 << page_order);
1196
1197 return mempool_init_page_pool(&state->pool, 1, page_order);
1198 }
1199 EXPORT_SYMBOL(bch_bset_sort_state_init);
1200
btree_mergesort(struct btree_keys * b,struct bset * out,struct btree_iter * iter,bool fixup,bool remove_stale)1201 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1202 struct btree_iter *iter,
1203 bool fixup, bool remove_stale)
1204 {
1205 int i;
1206 struct bkey *k, *last = NULL;
1207 BKEY_PADDED(k) tmp;
1208 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1209 ? bch_ptr_bad
1210 : bch_ptr_invalid;
1211
1212 /* Heapify the iterator, using our comparison function */
1213 for (i = iter->used / 2 - 1; i >= 0; --i)
1214 heap_sift(iter, i, b->ops->sort_cmp);
1215
1216 while (!btree_iter_end(iter)) {
1217 if (b->ops->sort_fixup && fixup)
1218 k = b->ops->sort_fixup(iter, &tmp.k);
1219 else
1220 k = NULL;
1221
1222 if (!k)
1223 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1224
1225 if (bad(b, k))
1226 continue;
1227
1228 if (!last) {
1229 last = out->start;
1230 bkey_copy(last, k);
1231 } else if (!bch_bkey_try_merge(b, last, k)) {
1232 last = bkey_next(last);
1233 bkey_copy(last, k);
1234 }
1235 }
1236
1237 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1238
1239 pr_debug("sorted %i keys", out->keys);
1240 }
1241
__btree_sort(struct btree_keys * b,struct btree_iter * iter,unsigned int start,unsigned int order,bool fixup,struct bset_sort_state * state)1242 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1243 unsigned int start, unsigned int order, bool fixup,
1244 struct bset_sort_state *state)
1245 {
1246 uint64_t start_time;
1247 bool used_mempool = false;
1248 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1249 order);
1250 if (!out) {
1251 struct page *outp;
1252
1253 BUG_ON(order > state->page_order);
1254
1255 outp = mempool_alloc(&state->pool, GFP_NOIO);
1256 out = page_address(outp);
1257 used_mempool = true;
1258 order = state->page_order;
1259 }
1260
1261 start_time = local_clock();
1262
1263 btree_mergesort(b, out, iter, fixup, false);
1264 b->nsets = start;
1265
1266 if (!start && order == b->page_order) {
1267 /*
1268 * Our temporary buffer is the same size as the btree node's
1269 * buffer, we can just swap buffers instead of doing a big
1270 * memcpy()
1271 */
1272
1273 out->magic = b->set->data->magic;
1274 out->seq = b->set->data->seq;
1275 out->version = b->set->data->version;
1276 swap(out, b->set->data);
1277 } else {
1278 b->set[start].data->keys = out->keys;
1279 memcpy(b->set[start].data->start, out->start,
1280 (void *) bset_bkey_last(out) - (void *) out->start);
1281 }
1282
1283 if (used_mempool)
1284 mempool_free(virt_to_page(out), &state->pool);
1285 else
1286 free_pages((unsigned long) out, order);
1287
1288 bch_bset_build_written_tree(b);
1289
1290 if (!start)
1291 bch_time_stats_update(&state->time, start_time);
1292 }
1293
bch_btree_sort_partial(struct btree_keys * b,unsigned int start,struct bset_sort_state * state)1294 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1295 struct bset_sort_state *state)
1296 {
1297 size_t order = b->page_order, keys = 0;
1298 struct btree_iter iter;
1299 int oldsize = bch_count_data(b);
1300
1301 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1302
1303 if (start) {
1304 unsigned int i;
1305
1306 for (i = start; i <= b->nsets; i++)
1307 keys += b->set[i].data->keys;
1308
1309 order = get_order(__set_bytes(b->set->data, keys));
1310 }
1311
1312 __btree_sort(b, &iter, start, order, false, state);
1313
1314 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1315 }
1316 EXPORT_SYMBOL(bch_btree_sort_partial);
1317
bch_btree_sort_and_fix_extents(struct btree_keys * b,struct btree_iter * iter,struct bset_sort_state * state)1318 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1319 struct btree_iter *iter,
1320 struct bset_sort_state *state)
1321 {
1322 __btree_sort(b, iter, 0, b->page_order, true, state);
1323 }
1324
bch_btree_sort_into(struct btree_keys * b,struct btree_keys * new,struct bset_sort_state * state)1325 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1326 struct bset_sort_state *state)
1327 {
1328 uint64_t start_time = local_clock();
1329 struct btree_iter iter;
1330
1331 bch_btree_iter_init(b, &iter, NULL);
1332
1333 btree_mergesort(b, new->set->data, &iter, false, true);
1334
1335 bch_time_stats_update(&state->time, start_time);
1336
1337 new->set->size = 0; // XXX: why?
1338 }
1339
1340 #define SORT_CRIT (4096 / sizeof(uint64_t))
1341
bch_btree_sort_lazy(struct btree_keys * b,struct bset_sort_state * state)1342 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1343 {
1344 unsigned int crit = SORT_CRIT;
1345 int i;
1346
1347 /* Don't sort if nothing to do */
1348 if (!b->nsets)
1349 goto out;
1350
1351 for (i = b->nsets - 1; i >= 0; --i) {
1352 crit *= state->crit_factor;
1353
1354 if (b->set[i].data->keys < crit) {
1355 bch_btree_sort_partial(b, i, state);
1356 return;
1357 }
1358 }
1359
1360 /* Sort if we'd overflow */
1361 if (b->nsets + 1 == MAX_BSETS) {
1362 bch_btree_sort(b, state);
1363 return;
1364 }
1365
1366 out:
1367 bch_bset_build_written_tree(b);
1368 }
1369 EXPORT_SYMBOL(bch_btree_sort_lazy);
1370
bch_btree_keys_stats(struct btree_keys * b,struct bset_stats * stats)1371 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1372 {
1373 unsigned int i;
1374
1375 for (i = 0; i <= b->nsets; i++) {
1376 struct bset_tree *t = &b->set[i];
1377 size_t bytes = t->data->keys * sizeof(uint64_t);
1378 size_t j;
1379
1380 if (bset_written(b, t)) {
1381 stats->sets_written++;
1382 stats->bytes_written += bytes;
1383
1384 stats->floats += t->size - 1;
1385
1386 for (j = 1; j < t->size; j++)
1387 if (t->tree[j].exponent == 127)
1388 stats->failed++;
1389 } else {
1390 stats->sets_unwritten++;
1391 stats->bytes_unwritten += bytes;
1392 }
1393 }
1394 }
1395