1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16
17 #include <linux/blkdev.h>
18 #include <linux/buffer_head.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27
28 unsigned int bch_cutoff_writeback;
29 unsigned int bch_cutoff_writeback_sync;
30
31 static const char bcache_magic[] = {
32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35
36 static const char invalid_uuid[] = {
37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 bool bcache_is_reboot;
44 LIST_HEAD(bch_cache_sets);
45 static LIST_HEAD(uncached_devices);
46
47 static int bcache_major;
48 static DEFINE_IDA(bcache_device_idx);
49 static wait_queue_head_t unregister_wait;
50 struct workqueue_struct *bcache_wq;
51 struct workqueue_struct *bch_journal_wq;
52
53
54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
55 /* limitation of partitions number on single bcache device */
56 #define BCACHE_MINORS 128
57 /* limitation of bcache devices number on single system */
58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
59
60 /* Superblock */
61
read_super(struct cache_sb * sb,struct block_device * bdev,struct page ** res)62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
63 struct page **res)
64 {
65 const char *err;
66 struct cache_sb *s;
67 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
68 unsigned int i;
69
70 if (!bh)
71 return "IO error";
72
73 s = (struct cache_sb *) bh->b_data;
74
75 sb->offset = le64_to_cpu(s->offset);
76 sb->version = le64_to_cpu(s->version);
77
78 memcpy(sb->magic, s->magic, 16);
79 memcpy(sb->uuid, s->uuid, 16);
80 memcpy(sb->set_uuid, s->set_uuid, 16);
81 memcpy(sb->label, s->label, SB_LABEL_SIZE);
82
83 sb->flags = le64_to_cpu(s->flags);
84 sb->seq = le64_to_cpu(s->seq);
85 sb->last_mount = le32_to_cpu(s->last_mount);
86 sb->first_bucket = le16_to_cpu(s->first_bucket);
87 sb->keys = le16_to_cpu(s->keys);
88
89 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
90 sb->d[i] = le64_to_cpu(s->d[i]);
91
92 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
93 sb->version, sb->flags, sb->seq, sb->keys);
94
95 err = "Not a bcache superblock";
96 if (sb->offset != SB_SECTOR)
97 goto err;
98
99 if (memcmp(sb->magic, bcache_magic, 16))
100 goto err;
101
102 err = "Too many journal buckets";
103 if (sb->keys > SB_JOURNAL_BUCKETS)
104 goto err;
105
106 err = "Bad checksum";
107 if (s->csum != csum_set(s))
108 goto err;
109
110 err = "Bad UUID";
111 if (bch_is_zero(sb->uuid, 16))
112 goto err;
113
114 sb->block_size = le16_to_cpu(s->block_size);
115
116 err = "Superblock block size smaller than device block size";
117 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
118 goto err;
119
120 switch (sb->version) {
121 case BCACHE_SB_VERSION_BDEV:
122 sb->data_offset = BDEV_DATA_START_DEFAULT;
123 break;
124 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
125 sb->data_offset = le64_to_cpu(s->data_offset);
126
127 err = "Bad data offset";
128 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
129 goto err;
130
131 break;
132 case BCACHE_SB_VERSION_CDEV:
133 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
134 sb->nbuckets = le64_to_cpu(s->nbuckets);
135 sb->bucket_size = le16_to_cpu(s->bucket_size);
136
137 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
138 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
139
140 err = "Too many buckets";
141 if (sb->nbuckets > LONG_MAX)
142 goto err;
143
144 err = "Not enough buckets";
145 if (sb->nbuckets < 1 << 7)
146 goto err;
147
148 err = "Bad block/bucket size";
149 if (!is_power_of_2(sb->block_size) ||
150 sb->block_size > PAGE_SECTORS ||
151 !is_power_of_2(sb->bucket_size) ||
152 sb->bucket_size < PAGE_SECTORS)
153 goto err;
154
155 err = "Invalid superblock: device too small";
156 if (get_capacity(bdev->bd_disk) <
157 sb->bucket_size * sb->nbuckets)
158 goto err;
159
160 err = "Bad UUID";
161 if (bch_is_zero(sb->set_uuid, 16))
162 goto err;
163
164 err = "Bad cache device number in set";
165 if (!sb->nr_in_set ||
166 sb->nr_in_set <= sb->nr_this_dev ||
167 sb->nr_in_set > MAX_CACHES_PER_SET)
168 goto err;
169
170 err = "Journal buckets not sequential";
171 for (i = 0; i < sb->keys; i++)
172 if (sb->d[i] != sb->first_bucket + i)
173 goto err;
174
175 err = "Too many journal buckets";
176 if (sb->first_bucket + sb->keys > sb->nbuckets)
177 goto err;
178
179 err = "Invalid superblock: first bucket comes before end of super";
180 if (sb->first_bucket * sb->bucket_size < 16)
181 goto err;
182
183 break;
184 default:
185 err = "Unsupported superblock version";
186 goto err;
187 }
188
189 sb->last_mount = (u32)ktime_get_real_seconds();
190 err = NULL;
191
192 get_page(bh->b_page);
193 *res = bh->b_page;
194 err:
195 put_bh(bh);
196 return err;
197 }
198
write_bdev_super_endio(struct bio * bio)199 static void write_bdev_super_endio(struct bio *bio)
200 {
201 struct cached_dev *dc = bio->bi_private;
202
203 if (bio->bi_status)
204 bch_count_backing_io_errors(dc, bio);
205
206 closure_put(&dc->sb_write);
207 }
208
__write_super(struct cache_sb * sb,struct bio * bio)209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 struct cache_sb *out = page_address(bio_first_page_all(bio));
212 unsigned int i;
213
214 bio->bi_iter.bi_sector = SB_SECTOR;
215 bio->bi_iter.bi_size = SB_SIZE;
216 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
217 bch_bio_map(bio, NULL);
218
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
221
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
225
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
228
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
232
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
235
236 out->csum = csum_set(out);
237
238 pr_debug("ver %llu, flags %llu, seq %llu",
239 sb->version, sb->flags, sb->seq);
240
241 submit_bio(bio);
242 }
243
bch_write_bdev_super_unlock(struct closure * cl)244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248 up(&dc->sb_write_mutex);
249 }
250
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
255
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
258
259 bio_reset(bio);
260 bio_set_dev(bio, dc->bdev);
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
263
264 closure_get(cl);
265 /* I/O request sent to backing device */
266 __write_super(&dc->sb, bio);
267
268 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
269 }
270
write_super_endio(struct bio * bio)271 static void write_super_endio(struct bio *bio)
272 {
273 struct cache *ca = bio->bi_private;
274
275 /* is_read = 0 */
276 bch_count_io_errors(ca, bio->bi_status, 0,
277 "writing superblock");
278 closure_put(&ca->set->sb_write);
279 }
280
bcache_write_super_unlock(struct closure * cl)281 static void bcache_write_super_unlock(struct closure *cl)
282 {
283 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
284
285 up(&c->sb_write_mutex);
286 }
287
bcache_write_super(struct cache_set * c)288 void bcache_write_super(struct cache_set *c)
289 {
290 struct closure *cl = &c->sb_write;
291 struct cache *ca;
292 unsigned int i;
293
294 down(&c->sb_write_mutex);
295 closure_init(cl, &c->cl);
296
297 c->sb.seq++;
298
299 for_each_cache(ca, c, i) {
300 struct bio *bio = &ca->sb_bio;
301
302 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
303 ca->sb.seq = c->sb.seq;
304 ca->sb.last_mount = c->sb.last_mount;
305
306 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
307
308 bio_reset(bio);
309 bio_set_dev(bio, ca->bdev);
310 bio->bi_end_io = write_super_endio;
311 bio->bi_private = ca;
312
313 closure_get(cl);
314 __write_super(&ca->sb, bio);
315 }
316
317 closure_return_with_destructor(cl, bcache_write_super_unlock);
318 }
319
320 /* UUID io */
321
uuid_endio(struct bio * bio)322 static void uuid_endio(struct bio *bio)
323 {
324 struct closure *cl = bio->bi_private;
325 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
326
327 cache_set_err_on(bio->bi_status, c, "accessing uuids");
328 bch_bbio_free(bio, c);
329 closure_put(cl);
330 }
331
uuid_io_unlock(struct closure * cl)332 static void uuid_io_unlock(struct closure *cl)
333 {
334 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
335
336 up(&c->uuid_write_mutex);
337 }
338
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
340 struct bkey *k, struct closure *parent)
341 {
342 struct closure *cl = &c->uuid_write;
343 struct uuid_entry *u;
344 unsigned int i;
345 char buf[80];
346
347 BUG_ON(!parent);
348 down(&c->uuid_write_mutex);
349 closure_init(cl, parent);
350
351 for (i = 0; i < KEY_PTRS(k); i++) {
352 struct bio *bio = bch_bbio_alloc(c);
353
354 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
355 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
356
357 bio->bi_end_io = uuid_endio;
358 bio->bi_private = cl;
359 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
360 bch_bio_map(bio, c->uuids);
361
362 bch_submit_bbio(bio, c, k, i);
363
364 if (op != REQ_OP_WRITE)
365 break;
366 }
367
368 bch_extent_to_text(buf, sizeof(buf), k);
369 pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
370
371 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
372 if (!bch_is_zero(u->uuid, 16))
373 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
374 u - c->uuids, u->uuid, u->label,
375 u->first_reg, u->last_reg, u->invalidated);
376
377 closure_return_with_destructor(cl, uuid_io_unlock);
378 }
379
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
381 {
382 struct bkey *k = &j->uuid_bucket;
383
384 if (__bch_btree_ptr_invalid(c, k))
385 return "bad uuid pointer";
386
387 bkey_copy(&c->uuid_bucket, k);
388 uuid_io(c, REQ_OP_READ, 0, k, cl);
389
390 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
391 struct uuid_entry_v0 *u0 = (void *) c->uuids;
392 struct uuid_entry *u1 = (void *) c->uuids;
393 int i;
394
395 closure_sync(cl);
396
397 /*
398 * Since the new uuid entry is bigger than the old, we have to
399 * convert starting at the highest memory address and work down
400 * in order to do it in place
401 */
402
403 for (i = c->nr_uuids - 1;
404 i >= 0;
405 --i) {
406 memcpy(u1[i].uuid, u0[i].uuid, 16);
407 memcpy(u1[i].label, u0[i].label, 32);
408
409 u1[i].first_reg = u0[i].first_reg;
410 u1[i].last_reg = u0[i].last_reg;
411 u1[i].invalidated = u0[i].invalidated;
412
413 u1[i].flags = 0;
414 u1[i].sectors = 0;
415 }
416 }
417
418 return NULL;
419 }
420
__uuid_write(struct cache_set * c)421 static int __uuid_write(struct cache_set *c)
422 {
423 BKEY_PADDED(key) k;
424 struct closure cl;
425 struct cache *ca;
426
427 closure_init_stack(&cl);
428 lockdep_assert_held(&bch_register_lock);
429
430 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
431 return 1;
432
433 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
435 closure_sync(&cl);
436
437 /* Only one bucket used for uuid write */
438 ca = PTR_CACHE(c, &k.key, 0);
439 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
440
441 bkey_copy(&c->uuid_bucket, &k.key);
442 bkey_put(c, &k.key);
443 return 0;
444 }
445
bch_uuid_write(struct cache_set * c)446 int bch_uuid_write(struct cache_set *c)
447 {
448 int ret = __uuid_write(c);
449
450 if (!ret)
451 bch_journal_meta(c, NULL);
452
453 return ret;
454 }
455
uuid_find(struct cache_set * c,const char * uuid)456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
457 {
458 struct uuid_entry *u;
459
460 for (u = c->uuids;
461 u < c->uuids + c->nr_uuids; u++)
462 if (!memcmp(u->uuid, uuid, 16))
463 return u;
464
465 return NULL;
466 }
467
uuid_find_empty(struct cache_set * c)468 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
469 {
470 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
471
472 return uuid_find(c, zero_uuid);
473 }
474
475 /*
476 * Bucket priorities/gens:
477 *
478 * For each bucket, we store on disk its
479 * 8 bit gen
480 * 16 bit priority
481 *
482 * See alloc.c for an explanation of the gen. The priority is used to implement
483 * lru (and in the future other) cache replacement policies; for most purposes
484 * it's just an opaque integer.
485 *
486 * The gens and the priorities don't have a whole lot to do with each other, and
487 * it's actually the gens that must be written out at specific times - it's no
488 * big deal if the priorities don't get written, if we lose them we just reuse
489 * buckets in suboptimal order.
490 *
491 * On disk they're stored in a packed array, and in as many buckets are required
492 * to fit them all. The buckets we use to store them form a list; the journal
493 * header points to the first bucket, the first bucket points to the second
494 * bucket, et cetera.
495 *
496 * This code is used by the allocation code; periodically (whenever it runs out
497 * of buckets to allocate from) the allocation code will invalidate some
498 * buckets, but it can't use those buckets until their new gens are safely on
499 * disk.
500 */
501
prio_endio(struct bio * bio)502 static void prio_endio(struct bio *bio)
503 {
504 struct cache *ca = bio->bi_private;
505
506 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
507 bch_bbio_free(bio, ca->set);
508 closure_put(&ca->prio);
509 }
510
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)511 static void prio_io(struct cache *ca, uint64_t bucket, int op,
512 unsigned long op_flags)
513 {
514 struct closure *cl = &ca->prio;
515 struct bio *bio = bch_bbio_alloc(ca->set);
516
517 closure_init_stack(cl);
518
519 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
520 bio_set_dev(bio, ca->bdev);
521 bio->bi_iter.bi_size = bucket_bytes(ca);
522
523 bio->bi_end_io = prio_endio;
524 bio->bi_private = ca;
525 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
526 bch_bio_map(bio, ca->disk_buckets);
527
528 closure_bio_submit(ca->set, bio, &ca->prio);
529 closure_sync(cl);
530 }
531
bch_prio_write(struct cache * ca,bool wait)532 int bch_prio_write(struct cache *ca, bool wait)
533 {
534 int i;
535 struct bucket *b;
536 struct closure cl;
537
538 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu",
539 fifo_used(&ca->free[RESERVE_PRIO]),
540 fifo_used(&ca->free[RESERVE_NONE]),
541 fifo_used(&ca->free_inc));
542
543 /*
544 * Pre-check if there are enough free buckets. In the non-blocking
545 * scenario it's better to fail early rather than starting to allocate
546 * buckets and do a cleanup later in case of failure.
547 */
548 if (!wait) {
549 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
550 fifo_used(&ca->free[RESERVE_NONE]);
551 if (prio_buckets(ca) > avail)
552 return -ENOMEM;
553 }
554
555 closure_init_stack(&cl);
556
557 lockdep_assert_held(&ca->set->bucket_lock);
558
559 ca->disk_buckets->seq++;
560
561 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
562 &ca->meta_sectors_written);
563
564 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
565 long bucket;
566 struct prio_set *p = ca->disk_buckets;
567 struct bucket_disk *d = p->data;
568 struct bucket_disk *end = d + prios_per_bucket(ca);
569
570 for (b = ca->buckets + i * prios_per_bucket(ca);
571 b < ca->buckets + ca->sb.nbuckets && d < end;
572 b++, d++) {
573 d->prio = cpu_to_le16(b->prio);
574 d->gen = b->gen;
575 }
576
577 p->next_bucket = ca->prio_buckets[i + 1];
578 p->magic = pset_magic(&ca->sb);
579 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
580
581 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
582 BUG_ON(bucket == -1);
583
584 mutex_unlock(&ca->set->bucket_lock);
585 prio_io(ca, bucket, REQ_OP_WRITE, 0);
586 mutex_lock(&ca->set->bucket_lock);
587
588 ca->prio_buckets[i] = bucket;
589 atomic_dec_bug(&ca->buckets[bucket].pin);
590 }
591
592 mutex_unlock(&ca->set->bucket_lock);
593
594 bch_journal_meta(ca->set, &cl);
595 closure_sync(&cl);
596
597 mutex_lock(&ca->set->bucket_lock);
598
599 /*
600 * Don't want the old priorities to get garbage collected until after we
601 * finish writing the new ones, and they're journalled
602 */
603 for (i = 0; i < prio_buckets(ca); i++) {
604 if (ca->prio_last_buckets[i])
605 __bch_bucket_free(ca,
606 &ca->buckets[ca->prio_last_buckets[i]]);
607
608 ca->prio_last_buckets[i] = ca->prio_buckets[i];
609 }
610 return 0;
611 }
612
prio_read(struct cache * ca,uint64_t bucket)613 static void prio_read(struct cache *ca, uint64_t bucket)
614 {
615 struct prio_set *p = ca->disk_buckets;
616 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
617 struct bucket *b;
618 unsigned int bucket_nr = 0;
619
620 for (b = ca->buckets;
621 b < ca->buckets + ca->sb.nbuckets;
622 b++, d++) {
623 if (d == end) {
624 ca->prio_buckets[bucket_nr] = bucket;
625 ca->prio_last_buckets[bucket_nr] = bucket;
626 bucket_nr++;
627
628 prio_io(ca, bucket, REQ_OP_READ, 0);
629
630 if (p->csum !=
631 bch_crc64(&p->magic, bucket_bytes(ca) - 8))
632 pr_warn("bad csum reading priorities");
633
634 if (p->magic != pset_magic(&ca->sb))
635 pr_warn("bad magic reading priorities");
636
637 bucket = p->next_bucket;
638 d = p->data;
639 }
640
641 b->prio = le16_to_cpu(d->prio);
642 b->gen = b->last_gc = d->gen;
643 }
644 }
645
646 /* Bcache device */
647
open_dev(struct block_device * b,fmode_t mode)648 static int open_dev(struct block_device *b, fmode_t mode)
649 {
650 struct bcache_device *d = b->bd_disk->private_data;
651
652 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
653 return -ENXIO;
654
655 closure_get(&d->cl);
656 return 0;
657 }
658
release_dev(struct gendisk * b,fmode_t mode)659 static void release_dev(struct gendisk *b, fmode_t mode)
660 {
661 struct bcache_device *d = b->private_data;
662
663 closure_put(&d->cl);
664 }
665
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)666 static int ioctl_dev(struct block_device *b, fmode_t mode,
667 unsigned int cmd, unsigned long arg)
668 {
669 struct bcache_device *d = b->bd_disk->private_data;
670
671 return d->ioctl(d, mode, cmd, arg);
672 }
673
674 static const struct block_device_operations bcache_ops = {
675 .open = open_dev,
676 .release = release_dev,
677 .ioctl = ioctl_dev,
678 .owner = THIS_MODULE,
679 };
680
bcache_device_stop(struct bcache_device * d)681 void bcache_device_stop(struct bcache_device *d)
682 {
683 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
684 /*
685 * closure_fn set to
686 * - cached device: cached_dev_flush()
687 * - flash dev: flash_dev_flush()
688 */
689 closure_queue(&d->cl);
690 }
691
bcache_device_unlink(struct bcache_device * d)692 static void bcache_device_unlink(struct bcache_device *d)
693 {
694 lockdep_assert_held(&bch_register_lock);
695
696 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
697 unsigned int i;
698 struct cache *ca;
699
700 sysfs_remove_link(&d->c->kobj, d->name);
701 sysfs_remove_link(&d->kobj, "cache");
702
703 for_each_cache(ca, d->c, i)
704 bd_unlink_disk_holder(ca->bdev, d->disk);
705 }
706 }
707
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)708 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
709 const char *name)
710 {
711 unsigned int i;
712 struct cache *ca;
713 int ret;
714
715 for_each_cache(ca, d->c, i)
716 bd_link_disk_holder(ca->bdev, d->disk);
717
718 snprintf(d->name, BCACHEDEVNAME_SIZE,
719 "%s%u", name, d->id);
720
721 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
722 if (ret < 0)
723 pr_err("Couldn't create device -> cache set symlink");
724
725 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
726 if (ret < 0)
727 pr_err("Couldn't create cache set -> device symlink");
728
729 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
730 }
731
bcache_device_detach(struct bcache_device * d)732 static void bcache_device_detach(struct bcache_device *d)
733 {
734 lockdep_assert_held(&bch_register_lock);
735
736 atomic_dec(&d->c->attached_dev_nr);
737
738 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
739 struct uuid_entry *u = d->c->uuids + d->id;
740
741 SET_UUID_FLASH_ONLY(u, 0);
742 memcpy(u->uuid, invalid_uuid, 16);
743 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
744 bch_uuid_write(d->c);
745 }
746
747 bcache_device_unlink(d);
748
749 d->c->devices[d->id] = NULL;
750 closure_put(&d->c->caching);
751 d->c = NULL;
752 }
753
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)754 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
755 unsigned int id)
756 {
757 d->id = id;
758 d->c = c;
759 c->devices[id] = d;
760
761 if (id >= c->devices_max_used)
762 c->devices_max_used = id + 1;
763
764 closure_get(&c->caching);
765 }
766
first_minor_to_idx(int first_minor)767 static inline int first_minor_to_idx(int first_minor)
768 {
769 return (first_minor/BCACHE_MINORS);
770 }
771
idx_to_first_minor(int idx)772 static inline int idx_to_first_minor(int idx)
773 {
774 return (idx * BCACHE_MINORS);
775 }
776
bcache_device_free(struct bcache_device * d)777 static void bcache_device_free(struct bcache_device *d)
778 {
779 struct gendisk *disk = d->disk;
780
781 lockdep_assert_held(&bch_register_lock);
782
783 if (disk)
784 pr_info("%s stopped", disk->disk_name);
785 else
786 pr_err("bcache device (NULL gendisk) stopped");
787
788 if (d->c)
789 bcache_device_detach(d);
790
791 if (disk) {
792 if (disk->flags & GENHD_FL_UP)
793 del_gendisk(disk);
794
795 if (disk->queue)
796 blk_cleanup_queue(disk->queue);
797
798 ida_simple_remove(&bcache_device_idx,
799 first_minor_to_idx(disk->first_minor));
800 put_disk(disk);
801 }
802
803 bioset_exit(&d->bio_split);
804 kvfree(d->full_dirty_stripes);
805 kvfree(d->stripe_sectors_dirty);
806
807 closure_debug_destroy(&d->cl);
808 }
809
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors)810 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
811 sector_t sectors)
812 {
813 struct request_queue *q;
814 const size_t max_stripes = min_t(size_t, INT_MAX,
815 SIZE_MAX / sizeof(atomic_t));
816 size_t n;
817 int idx;
818
819 if (!d->stripe_size)
820 d->stripe_size = 1 << 31;
821
822 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
823
824 if (!d->nr_stripes || d->nr_stripes > max_stripes) {
825 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
826 (unsigned int)d->nr_stripes);
827 return -ENOMEM;
828 }
829
830 n = d->nr_stripes * sizeof(atomic_t);
831 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
832 if (!d->stripe_sectors_dirty)
833 return -ENOMEM;
834
835 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
836 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
837 if (!d->full_dirty_stripes)
838 return -ENOMEM;
839
840 idx = ida_simple_get(&bcache_device_idx, 0,
841 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
842 if (idx < 0)
843 return idx;
844
845 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
846 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
847 goto err;
848
849 d->disk = alloc_disk(BCACHE_MINORS);
850 if (!d->disk)
851 goto err;
852
853 set_capacity(d->disk, sectors);
854 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
855
856 d->disk->major = bcache_major;
857 d->disk->first_minor = idx_to_first_minor(idx);
858 d->disk->fops = &bcache_ops;
859 d->disk->private_data = d;
860
861 q = blk_alloc_queue(GFP_KERNEL);
862 if (!q)
863 return -ENOMEM;
864
865 blk_queue_make_request(q, NULL);
866 d->disk->queue = q;
867 q->queuedata = d;
868 q->backing_dev_info->congested_data = d;
869 q->limits.max_hw_sectors = UINT_MAX;
870 q->limits.max_sectors = UINT_MAX;
871 q->limits.max_segment_size = UINT_MAX;
872 q->limits.max_segments = BIO_MAX_PAGES;
873 blk_queue_max_discard_sectors(q, UINT_MAX);
874 q->limits.discard_granularity = 512;
875 q->limits.io_min = block_size;
876 q->limits.logical_block_size = block_size;
877 q->limits.physical_block_size = block_size;
878 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
879 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
880 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
881
882 blk_queue_write_cache(q, true, true);
883
884 return 0;
885
886 err:
887 ida_simple_remove(&bcache_device_idx, idx);
888 return -ENOMEM;
889
890 }
891
892 /* Cached device */
893
calc_cached_dev_sectors(struct cache_set * c)894 static void calc_cached_dev_sectors(struct cache_set *c)
895 {
896 uint64_t sectors = 0;
897 struct cached_dev *dc;
898
899 list_for_each_entry(dc, &c->cached_devs, list)
900 sectors += bdev_sectors(dc->bdev);
901
902 c->cached_dev_sectors = sectors;
903 }
904
905 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)906 static int cached_dev_status_update(void *arg)
907 {
908 struct cached_dev *dc = arg;
909 struct request_queue *q;
910
911 /*
912 * If this delayed worker is stopping outside, directly quit here.
913 * dc->io_disable might be set via sysfs interface, so check it
914 * here too.
915 */
916 while (!kthread_should_stop() && !dc->io_disable) {
917 q = bdev_get_queue(dc->bdev);
918 if (blk_queue_dying(q))
919 dc->offline_seconds++;
920 else
921 dc->offline_seconds = 0;
922
923 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
924 pr_err("%s: device offline for %d seconds",
925 dc->backing_dev_name,
926 BACKING_DEV_OFFLINE_TIMEOUT);
927 pr_err("%s: disable I/O request due to backing "
928 "device offline", dc->disk.name);
929 dc->io_disable = true;
930 /* let others know earlier that io_disable is true */
931 smp_mb();
932 bcache_device_stop(&dc->disk);
933 break;
934 }
935 schedule_timeout_interruptible(HZ);
936 }
937
938 wait_for_kthread_stop();
939 return 0;
940 }
941
942
bch_cached_dev_run(struct cached_dev * dc)943 int bch_cached_dev_run(struct cached_dev *dc)
944 {
945 struct bcache_device *d = &dc->disk;
946 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
947 char *env[] = {
948 "DRIVER=bcache",
949 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
950 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
951 NULL,
952 };
953
954 if (dc->io_disable) {
955 pr_err("I/O disabled on cached dev %s",
956 dc->backing_dev_name);
957 kfree(env[1]);
958 kfree(env[2]);
959 kfree(buf);
960 return -EIO;
961 }
962
963 if (atomic_xchg(&dc->running, 1)) {
964 kfree(env[1]);
965 kfree(env[2]);
966 kfree(buf);
967 pr_info("cached dev %s is running already",
968 dc->backing_dev_name);
969 return -EBUSY;
970 }
971
972 if (!d->c &&
973 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
974 struct closure cl;
975
976 closure_init_stack(&cl);
977
978 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
979 bch_write_bdev_super(dc, &cl);
980 closure_sync(&cl);
981 }
982
983 add_disk(d->disk);
984 bd_link_disk_holder(dc->bdev, dc->disk.disk);
985 /*
986 * won't show up in the uevent file, use udevadm monitor -e instead
987 * only class / kset properties are persistent
988 */
989 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
990 kfree(env[1]);
991 kfree(env[2]);
992 kfree(buf);
993
994 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
995 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
996 &d->kobj, "bcache")) {
997 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks");
998 return -ENOMEM;
999 }
1000
1001 dc->status_update_thread = kthread_run(cached_dev_status_update,
1002 dc, "bcache_status_update");
1003 if (IS_ERR(dc->status_update_thread)) {
1004 pr_warn("failed to create bcache_status_update kthread, "
1005 "continue to run without monitoring backing "
1006 "device status");
1007 }
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1014 * work dc->writeback_rate_update is running. Wait until the routine
1015 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1016 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1017 * seconds, give up waiting here and continue to cancel it too.
1018 */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1019 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1020 {
1021 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1022
1023 do {
1024 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1025 &dc->disk.flags))
1026 break;
1027 time_out--;
1028 schedule_timeout_interruptible(1);
1029 } while (time_out > 0);
1030
1031 if (time_out == 0)
1032 pr_warn("give up waiting for dc->writeback_write_update to quit");
1033
1034 cancel_delayed_work_sync(&dc->writeback_rate_update);
1035 }
1036
cached_dev_detach_finish(struct work_struct * w)1037 static void cached_dev_detach_finish(struct work_struct *w)
1038 {
1039 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1040 struct closure cl;
1041
1042 closure_init_stack(&cl);
1043
1044 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1045 BUG_ON(refcount_read(&dc->count));
1046
1047
1048 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1049 cancel_writeback_rate_update_dwork(dc);
1050
1051 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1052 kthread_stop(dc->writeback_thread);
1053 dc->writeback_thread = NULL;
1054 }
1055
1056 memset(&dc->sb.set_uuid, 0, 16);
1057 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1058
1059 bch_write_bdev_super(dc, &cl);
1060 closure_sync(&cl);
1061
1062 mutex_lock(&bch_register_lock);
1063
1064 calc_cached_dev_sectors(dc->disk.c);
1065 bcache_device_detach(&dc->disk);
1066 list_move(&dc->list, &uncached_devices);
1067
1068 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1069 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1070
1071 mutex_unlock(&bch_register_lock);
1072
1073 pr_info("Caching disabled for %s", dc->backing_dev_name);
1074
1075 /* Drop ref we took in cached_dev_detach() */
1076 closure_put(&dc->disk.cl);
1077 }
1078
bch_cached_dev_detach(struct cached_dev * dc)1079 void bch_cached_dev_detach(struct cached_dev *dc)
1080 {
1081 lockdep_assert_held(&bch_register_lock);
1082
1083 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1084 return;
1085
1086 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1087 return;
1088
1089 /*
1090 * Block the device from being closed and freed until we're finished
1091 * detaching
1092 */
1093 closure_get(&dc->disk.cl);
1094
1095 bch_writeback_queue(dc);
1096
1097 cached_dev_put(dc);
1098 }
1099
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1100 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1101 uint8_t *set_uuid)
1102 {
1103 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1104 struct uuid_entry *u;
1105 struct cached_dev *exist_dc, *t;
1106 int ret = 0;
1107
1108 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1109 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1110 return -ENOENT;
1111
1112 if (dc->disk.c) {
1113 pr_err("Can't attach %s: already attached",
1114 dc->backing_dev_name);
1115 return -EINVAL;
1116 }
1117
1118 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1119 pr_err("Can't attach %s: shutting down",
1120 dc->backing_dev_name);
1121 return -EINVAL;
1122 }
1123
1124 if (dc->sb.block_size < c->sb.block_size) {
1125 /* Will die */
1126 pr_err("Couldn't attach %s: block size less than set's block size",
1127 dc->backing_dev_name);
1128 return -EINVAL;
1129 }
1130
1131 /* Check whether already attached */
1132 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1133 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1134 pr_err("Tried to attach %s but duplicate UUID already attached",
1135 dc->backing_dev_name);
1136
1137 return -EINVAL;
1138 }
1139 }
1140
1141 u = uuid_find(c, dc->sb.uuid);
1142
1143 if (u &&
1144 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1145 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1146 memcpy(u->uuid, invalid_uuid, 16);
1147 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1148 u = NULL;
1149 }
1150
1151 if (!u) {
1152 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1153 pr_err("Couldn't find uuid for %s in set",
1154 dc->backing_dev_name);
1155 return -ENOENT;
1156 }
1157
1158 u = uuid_find_empty(c);
1159 if (!u) {
1160 pr_err("Not caching %s, no room for UUID",
1161 dc->backing_dev_name);
1162 return -EINVAL;
1163 }
1164 }
1165
1166 /*
1167 * Deadlocks since we're called via sysfs...
1168 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1169 */
1170
1171 if (bch_is_zero(u->uuid, 16)) {
1172 struct closure cl;
1173
1174 closure_init_stack(&cl);
1175
1176 memcpy(u->uuid, dc->sb.uuid, 16);
1177 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1178 u->first_reg = u->last_reg = rtime;
1179 bch_uuid_write(c);
1180
1181 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1182 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1183
1184 bch_write_bdev_super(dc, &cl);
1185 closure_sync(&cl);
1186 } else {
1187 u->last_reg = rtime;
1188 bch_uuid_write(c);
1189 }
1190
1191 bcache_device_attach(&dc->disk, c, u - c->uuids);
1192 list_move(&dc->list, &c->cached_devs);
1193 calc_cached_dev_sectors(c);
1194
1195 /*
1196 * dc->c must be set before dc->count != 0 - paired with the mb in
1197 * cached_dev_get()
1198 */
1199 smp_wmb();
1200 refcount_set(&dc->count, 1);
1201
1202 /* Block writeback thread, but spawn it */
1203 down_write(&dc->writeback_lock);
1204 if (bch_cached_dev_writeback_start(dc)) {
1205 up_write(&dc->writeback_lock);
1206 pr_err("Couldn't start writeback facilities for %s",
1207 dc->disk.disk->disk_name);
1208 return -ENOMEM;
1209 }
1210
1211 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1212 atomic_set(&dc->has_dirty, 1);
1213 bch_writeback_queue(dc);
1214 }
1215
1216 bch_sectors_dirty_init(&dc->disk);
1217
1218 ret = bch_cached_dev_run(dc);
1219 if (ret && (ret != -EBUSY)) {
1220 up_write(&dc->writeback_lock);
1221 /*
1222 * bch_register_lock is held, bcache_device_stop() is not
1223 * able to be directly called. The kthread and kworker
1224 * created previously in bch_cached_dev_writeback_start()
1225 * have to be stopped manually here.
1226 */
1227 kthread_stop(dc->writeback_thread);
1228 cancel_writeback_rate_update_dwork(dc);
1229 pr_err("Couldn't run cached device %s",
1230 dc->backing_dev_name);
1231 return ret;
1232 }
1233
1234 bcache_device_link(&dc->disk, c, "bdev");
1235 atomic_inc(&c->attached_dev_nr);
1236
1237 /* Allow the writeback thread to proceed */
1238 up_write(&dc->writeback_lock);
1239
1240 pr_info("Caching %s as %s on set %pU",
1241 dc->backing_dev_name,
1242 dc->disk.disk->disk_name,
1243 dc->disk.c->sb.set_uuid);
1244 return 0;
1245 }
1246
1247 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1248 void bch_cached_dev_release(struct kobject *kobj)
1249 {
1250 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1251 disk.kobj);
1252 kfree(dc);
1253 module_put(THIS_MODULE);
1254 }
1255
cached_dev_free(struct closure * cl)1256 static void cached_dev_free(struct closure *cl)
1257 {
1258 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1259
1260 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1261 cancel_writeback_rate_update_dwork(dc);
1262
1263 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1264 kthread_stop(dc->writeback_thread);
1265 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1266 kthread_stop(dc->status_update_thread);
1267
1268 mutex_lock(&bch_register_lock);
1269
1270 if (atomic_read(&dc->running))
1271 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1272 bcache_device_free(&dc->disk);
1273 list_del(&dc->list);
1274
1275 mutex_unlock(&bch_register_lock);
1276
1277 if (!IS_ERR_OR_NULL(dc->bdev))
1278 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1279
1280 wake_up(&unregister_wait);
1281
1282 kobject_put(&dc->disk.kobj);
1283 }
1284
cached_dev_flush(struct closure * cl)1285 static void cached_dev_flush(struct closure *cl)
1286 {
1287 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1288 struct bcache_device *d = &dc->disk;
1289
1290 mutex_lock(&bch_register_lock);
1291 bcache_device_unlink(d);
1292 mutex_unlock(&bch_register_lock);
1293
1294 bch_cache_accounting_destroy(&dc->accounting);
1295 kobject_del(&d->kobj);
1296
1297 continue_at(cl, cached_dev_free, system_wq);
1298 }
1299
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1300 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1301 {
1302 int ret;
1303 struct io *io;
1304 struct request_queue *q = bdev_get_queue(dc->bdev);
1305
1306 __module_get(THIS_MODULE);
1307 INIT_LIST_HEAD(&dc->list);
1308 closure_init(&dc->disk.cl, NULL);
1309 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1310 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1311 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1312 sema_init(&dc->sb_write_mutex, 1);
1313 INIT_LIST_HEAD(&dc->io_lru);
1314 spin_lock_init(&dc->io_lock);
1315 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1316
1317 dc->sequential_cutoff = 4 << 20;
1318
1319 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1320 list_add(&io->lru, &dc->io_lru);
1321 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1322 }
1323
1324 dc->disk.stripe_size = q->limits.io_opt >> 9;
1325
1326 if (dc->disk.stripe_size)
1327 dc->partial_stripes_expensive =
1328 q->limits.raid_partial_stripes_expensive;
1329
1330 ret = bcache_device_init(&dc->disk, block_size,
1331 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1332 if (ret)
1333 return ret;
1334
1335 dc->disk.disk->queue->backing_dev_info->ra_pages =
1336 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1337 q->backing_dev_info->ra_pages);
1338
1339 atomic_set(&dc->io_errors, 0);
1340 dc->io_disable = false;
1341 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1342 /* default to auto */
1343 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1344
1345 bch_cached_dev_request_init(dc);
1346 bch_cached_dev_writeback_init(dc);
1347 return 0;
1348 }
1349
1350 /* Cached device - bcache superblock */
1351
register_bdev(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cached_dev * dc)1352 static int register_bdev(struct cache_sb *sb, struct page *sb_page,
1353 struct block_device *bdev,
1354 struct cached_dev *dc)
1355 {
1356 const char *err = "cannot allocate memory";
1357 struct cache_set *c;
1358 int ret = -ENOMEM;
1359
1360 bdevname(bdev, dc->backing_dev_name);
1361 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1362 dc->bdev = bdev;
1363 dc->bdev->bd_holder = dc;
1364
1365 bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1366 bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1367 get_page(sb_page);
1368
1369
1370 if (cached_dev_init(dc, sb->block_size << 9))
1371 goto err;
1372
1373 err = "error creating kobject";
1374 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1375 "bcache"))
1376 goto err;
1377 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1378 goto err;
1379
1380 pr_info("registered backing device %s", dc->backing_dev_name);
1381
1382 list_add(&dc->list, &uncached_devices);
1383 /* attach to a matched cache set if it exists */
1384 list_for_each_entry(c, &bch_cache_sets, list)
1385 bch_cached_dev_attach(dc, c, NULL);
1386
1387 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1388 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1389 err = "failed to run cached device";
1390 ret = bch_cached_dev_run(dc);
1391 if (ret)
1392 goto err;
1393 }
1394
1395 return 0;
1396 err:
1397 pr_notice("error %s: %s", dc->backing_dev_name, err);
1398 bcache_device_stop(&dc->disk);
1399 return ret;
1400 }
1401
1402 /* Flash only volumes */
1403
1404 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1405 void bch_flash_dev_release(struct kobject *kobj)
1406 {
1407 struct bcache_device *d = container_of(kobj, struct bcache_device,
1408 kobj);
1409 kfree(d);
1410 }
1411
flash_dev_free(struct closure * cl)1412 static void flash_dev_free(struct closure *cl)
1413 {
1414 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1415
1416 mutex_lock(&bch_register_lock);
1417 atomic_long_sub(bcache_dev_sectors_dirty(d),
1418 &d->c->flash_dev_dirty_sectors);
1419 bcache_device_free(d);
1420 mutex_unlock(&bch_register_lock);
1421 kobject_put(&d->kobj);
1422 }
1423
flash_dev_flush(struct closure * cl)1424 static void flash_dev_flush(struct closure *cl)
1425 {
1426 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1427
1428 mutex_lock(&bch_register_lock);
1429 bcache_device_unlink(d);
1430 mutex_unlock(&bch_register_lock);
1431 kobject_del(&d->kobj);
1432 continue_at(cl, flash_dev_free, system_wq);
1433 }
1434
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1435 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1436 {
1437 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1438 GFP_KERNEL);
1439 if (!d)
1440 return -ENOMEM;
1441
1442 closure_init(&d->cl, NULL);
1443 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1444
1445 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1446
1447 if (bcache_device_init(d, block_bytes(c), u->sectors))
1448 goto err;
1449
1450 bcache_device_attach(d, c, u - c->uuids);
1451 bch_sectors_dirty_init(d);
1452 bch_flash_dev_request_init(d);
1453 add_disk(d->disk);
1454
1455 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1456 goto err;
1457
1458 bcache_device_link(d, c, "volume");
1459
1460 return 0;
1461 err:
1462 kobject_put(&d->kobj);
1463 return -ENOMEM;
1464 }
1465
flash_devs_run(struct cache_set * c)1466 static int flash_devs_run(struct cache_set *c)
1467 {
1468 int ret = 0;
1469 struct uuid_entry *u;
1470
1471 for (u = c->uuids;
1472 u < c->uuids + c->nr_uuids && !ret;
1473 u++)
1474 if (UUID_FLASH_ONLY(u))
1475 ret = flash_dev_run(c, u);
1476
1477 return ret;
1478 }
1479
bch_flash_dev_create(struct cache_set * c,uint64_t size)1480 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1481 {
1482 struct uuid_entry *u;
1483
1484 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1485 return -EINTR;
1486
1487 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1488 return -EPERM;
1489
1490 u = uuid_find_empty(c);
1491 if (!u) {
1492 pr_err("Can't create volume, no room for UUID");
1493 return -EINVAL;
1494 }
1495
1496 get_random_bytes(u->uuid, 16);
1497 memset(u->label, 0, 32);
1498 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1499
1500 SET_UUID_FLASH_ONLY(u, 1);
1501 u->sectors = size >> 9;
1502
1503 bch_uuid_write(c);
1504
1505 return flash_dev_run(c, u);
1506 }
1507
bch_cached_dev_error(struct cached_dev * dc)1508 bool bch_cached_dev_error(struct cached_dev *dc)
1509 {
1510 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1511 return false;
1512
1513 dc->io_disable = true;
1514 /* make others know io_disable is true earlier */
1515 smp_mb();
1516
1517 pr_err("stop %s: too many IO errors on backing device %s\n",
1518 dc->disk.disk->disk_name, dc->backing_dev_name);
1519
1520 bcache_device_stop(&dc->disk);
1521 return true;
1522 }
1523
1524 /* Cache set */
1525
1526 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1527 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1528 {
1529 va_list args;
1530
1531 if (c->on_error != ON_ERROR_PANIC &&
1532 test_bit(CACHE_SET_STOPPING, &c->flags))
1533 return false;
1534
1535 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1536 pr_info("CACHE_SET_IO_DISABLE already set");
1537
1538 /*
1539 * XXX: we can be called from atomic context
1540 * acquire_console_sem();
1541 */
1542
1543 pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1544
1545 va_start(args, fmt);
1546 vprintk(fmt, args);
1547 va_end(args);
1548
1549 pr_err(", disabling caching\n");
1550
1551 if (c->on_error == ON_ERROR_PANIC)
1552 panic("panic forced after error\n");
1553
1554 bch_cache_set_unregister(c);
1555 return true;
1556 }
1557
1558 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1559 void bch_cache_set_release(struct kobject *kobj)
1560 {
1561 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1562
1563 kfree(c);
1564 module_put(THIS_MODULE);
1565 }
1566
cache_set_free(struct closure * cl)1567 static void cache_set_free(struct closure *cl)
1568 {
1569 struct cache_set *c = container_of(cl, struct cache_set, cl);
1570 struct cache *ca;
1571 unsigned int i;
1572
1573 debugfs_remove(c->debug);
1574
1575 bch_open_buckets_free(c);
1576 bch_btree_cache_free(c);
1577 bch_journal_free(c);
1578
1579 mutex_lock(&bch_register_lock);
1580 for_each_cache(ca, c, i)
1581 if (ca) {
1582 ca->set = NULL;
1583 c->cache[ca->sb.nr_this_dev] = NULL;
1584 kobject_put(&ca->kobj);
1585 }
1586
1587 bch_bset_sort_state_free(&c->sort);
1588 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1589
1590 if (c->moving_gc_wq)
1591 destroy_workqueue(c->moving_gc_wq);
1592 bioset_exit(&c->bio_split);
1593 mempool_exit(&c->fill_iter);
1594 mempool_exit(&c->bio_meta);
1595 mempool_exit(&c->search);
1596 kfree(c->devices);
1597
1598 list_del(&c->list);
1599 mutex_unlock(&bch_register_lock);
1600
1601 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1602 wake_up(&unregister_wait);
1603
1604 closure_debug_destroy(&c->cl);
1605 kobject_put(&c->kobj);
1606 }
1607
cache_set_flush(struct closure * cl)1608 static void cache_set_flush(struct closure *cl)
1609 {
1610 struct cache_set *c = container_of(cl, struct cache_set, caching);
1611 struct cache *ca;
1612 struct btree *b;
1613 unsigned int i;
1614
1615 bch_cache_accounting_destroy(&c->accounting);
1616
1617 kobject_put(&c->internal);
1618 kobject_del(&c->kobj);
1619
1620 if (!IS_ERR_OR_NULL(c->gc_thread))
1621 kthread_stop(c->gc_thread);
1622
1623 if (!IS_ERR_OR_NULL(c->root))
1624 list_add(&c->root->list, &c->btree_cache);
1625
1626 /*
1627 * Avoid flushing cached nodes if cache set is retiring
1628 * due to too many I/O errors detected.
1629 */
1630 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1631 list_for_each_entry(b, &c->btree_cache, list) {
1632 mutex_lock(&b->write_lock);
1633 if (btree_node_dirty(b))
1634 __bch_btree_node_write(b, NULL);
1635 mutex_unlock(&b->write_lock);
1636 }
1637
1638 for_each_cache(ca, c, i)
1639 if (ca->alloc_thread)
1640 kthread_stop(ca->alloc_thread);
1641
1642 if (c->journal.cur) {
1643 cancel_delayed_work_sync(&c->journal.work);
1644 /* flush last journal entry if needed */
1645 c->journal.work.work.func(&c->journal.work.work);
1646 }
1647
1648 closure_return(cl);
1649 }
1650
1651 /*
1652 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1653 * cache set is unregistering due to too many I/O errors. In this condition,
1654 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1655 * value and whether the broken cache has dirty data:
1656 *
1657 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1658 * BCH_CACHED_STOP_AUTO 0 NO
1659 * BCH_CACHED_STOP_AUTO 1 YES
1660 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1661 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1662 *
1663 * The expected behavior is, if stop_when_cache_set_failed is configured to
1664 * "auto" via sysfs interface, the bcache device will not be stopped if the
1665 * backing device is clean on the broken cache device.
1666 */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1667 static void conditional_stop_bcache_device(struct cache_set *c,
1668 struct bcache_device *d,
1669 struct cached_dev *dc)
1670 {
1671 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1672 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1673 d->disk->disk_name, c->sb.set_uuid);
1674 bcache_device_stop(d);
1675 } else if (atomic_read(&dc->has_dirty)) {
1676 /*
1677 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1678 * and dc->has_dirty == 1
1679 */
1680 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1681 d->disk->disk_name);
1682 /*
1683 * There might be a small time gap that cache set is
1684 * released but bcache device is not. Inside this time
1685 * gap, regular I/O requests will directly go into
1686 * backing device as no cache set attached to. This
1687 * behavior may also introduce potential inconsistence
1688 * data in writeback mode while cache is dirty.
1689 * Therefore before calling bcache_device_stop() due
1690 * to a broken cache device, dc->io_disable should be
1691 * explicitly set to true.
1692 */
1693 dc->io_disable = true;
1694 /* make others know io_disable is true earlier */
1695 smp_mb();
1696 bcache_device_stop(d);
1697 } else {
1698 /*
1699 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1700 * and dc->has_dirty == 0
1701 */
1702 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1703 d->disk->disk_name);
1704 }
1705 }
1706
__cache_set_unregister(struct closure * cl)1707 static void __cache_set_unregister(struct closure *cl)
1708 {
1709 struct cache_set *c = container_of(cl, struct cache_set, caching);
1710 struct cached_dev *dc;
1711 struct bcache_device *d;
1712 size_t i;
1713
1714 mutex_lock(&bch_register_lock);
1715
1716 for (i = 0; i < c->devices_max_used; i++) {
1717 d = c->devices[i];
1718 if (!d)
1719 continue;
1720
1721 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1722 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1723 dc = container_of(d, struct cached_dev, disk);
1724 bch_cached_dev_detach(dc);
1725 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1726 conditional_stop_bcache_device(c, d, dc);
1727 } else {
1728 bcache_device_stop(d);
1729 }
1730 }
1731
1732 mutex_unlock(&bch_register_lock);
1733
1734 continue_at(cl, cache_set_flush, system_wq);
1735 }
1736
bch_cache_set_stop(struct cache_set * c)1737 void bch_cache_set_stop(struct cache_set *c)
1738 {
1739 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1740 /* closure_fn set to __cache_set_unregister() */
1741 closure_queue(&c->caching);
1742 }
1743
bch_cache_set_unregister(struct cache_set * c)1744 void bch_cache_set_unregister(struct cache_set *c)
1745 {
1746 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1747 bch_cache_set_stop(c);
1748 }
1749
1750 #define alloc_bucket_pages(gfp, c) \
1751 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1752
bch_cache_set_alloc(struct cache_sb * sb)1753 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1754 {
1755 int iter_size;
1756 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1757
1758 if (!c)
1759 return NULL;
1760
1761 __module_get(THIS_MODULE);
1762 closure_init(&c->cl, NULL);
1763 set_closure_fn(&c->cl, cache_set_free, system_wq);
1764
1765 closure_init(&c->caching, &c->cl);
1766 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1767
1768 /* Maybe create continue_at_noreturn() and use it here? */
1769 closure_set_stopped(&c->cl);
1770 closure_put(&c->cl);
1771
1772 kobject_init(&c->kobj, &bch_cache_set_ktype);
1773 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1774
1775 bch_cache_accounting_init(&c->accounting, &c->cl);
1776
1777 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1778 c->sb.block_size = sb->block_size;
1779 c->sb.bucket_size = sb->bucket_size;
1780 c->sb.nr_in_set = sb->nr_in_set;
1781 c->sb.last_mount = sb->last_mount;
1782 c->bucket_bits = ilog2(sb->bucket_size);
1783 c->block_bits = ilog2(sb->block_size);
1784 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1785 c->devices_max_used = 0;
1786 atomic_set(&c->attached_dev_nr, 0);
1787 c->btree_pages = bucket_pages(c);
1788 if (c->btree_pages > BTREE_MAX_PAGES)
1789 c->btree_pages = max_t(int, c->btree_pages / 4,
1790 BTREE_MAX_PAGES);
1791
1792 sema_init(&c->sb_write_mutex, 1);
1793 mutex_init(&c->bucket_lock);
1794 init_waitqueue_head(&c->btree_cache_wait);
1795 init_waitqueue_head(&c->bucket_wait);
1796 init_waitqueue_head(&c->gc_wait);
1797 sema_init(&c->uuid_write_mutex, 1);
1798
1799 spin_lock_init(&c->btree_gc_time.lock);
1800 spin_lock_init(&c->btree_split_time.lock);
1801 spin_lock_init(&c->btree_read_time.lock);
1802
1803 bch_moving_init_cache_set(c);
1804
1805 INIT_LIST_HEAD(&c->list);
1806 INIT_LIST_HEAD(&c->cached_devs);
1807 INIT_LIST_HEAD(&c->btree_cache);
1808 INIT_LIST_HEAD(&c->btree_cache_freeable);
1809 INIT_LIST_HEAD(&c->btree_cache_freed);
1810 INIT_LIST_HEAD(&c->data_buckets);
1811
1812 iter_size = (sb->bucket_size / sb->block_size + 1) *
1813 sizeof(struct btree_iter_set);
1814
1815 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1816 mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1817 mempool_init_kmalloc_pool(&c->bio_meta, 2,
1818 sizeof(struct bbio) + sizeof(struct bio_vec) *
1819 bucket_pages(c)) ||
1820 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1821 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1822 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1823 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1824 !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1825 WQ_MEM_RECLAIM, 0)) ||
1826 bch_journal_alloc(c) ||
1827 bch_btree_cache_alloc(c) ||
1828 bch_open_buckets_alloc(c) ||
1829 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1830 goto err;
1831
1832 c->congested_read_threshold_us = 2000;
1833 c->congested_write_threshold_us = 20000;
1834 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1835 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1836
1837 return c;
1838 err:
1839 bch_cache_set_unregister(c);
1840 return NULL;
1841 }
1842
run_cache_set(struct cache_set * c)1843 static int run_cache_set(struct cache_set *c)
1844 {
1845 const char *err = "cannot allocate memory";
1846 struct cached_dev *dc, *t;
1847 struct cache *ca;
1848 struct closure cl;
1849 unsigned int i;
1850 LIST_HEAD(journal);
1851 struct journal_replay *l;
1852
1853 closure_init_stack(&cl);
1854
1855 for_each_cache(ca, c, i)
1856 c->nbuckets += ca->sb.nbuckets;
1857 set_gc_sectors(c);
1858
1859 if (CACHE_SYNC(&c->sb)) {
1860 struct bkey *k;
1861 struct jset *j;
1862
1863 err = "cannot allocate memory for journal";
1864 if (bch_journal_read(c, &journal))
1865 goto err;
1866
1867 pr_debug("btree_journal_read() done");
1868
1869 err = "no journal entries found";
1870 if (list_empty(&journal))
1871 goto err;
1872
1873 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1874
1875 err = "IO error reading priorities";
1876 for_each_cache(ca, c, i)
1877 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1878
1879 /*
1880 * If prio_read() fails it'll call cache_set_error and we'll
1881 * tear everything down right away, but if we perhaps checked
1882 * sooner we could avoid journal replay.
1883 */
1884
1885 k = &j->btree_root;
1886
1887 err = "bad btree root";
1888 if (__bch_btree_ptr_invalid(c, k))
1889 goto err;
1890
1891 err = "error reading btree root";
1892 c->root = bch_btree_node_get(c, NULL, k,
1893 j->btree_level,
1894 true, NULL);
1895 if (IS_ERR_OR_NULL(c->root))
1896 goto err;
1897
1898 list_del_init(&c->root->list);
1899 rw_unlock(true, c->root);
1900
1901 err = uuid_read(c, j, &cl);
1902 if (err)
1903 goto err;
1904
1905 err = "error in recovery";
1906 if (bch_btree_check(c))
1907 goto err;
1908
1909 /*
1910 * bch_btree_check() may occupy too much system memory which
1911 * has negative effects to user space application (e.g. data
1912 * base) performance. Shrink the mca cache memory proactively
1913 * here to avoid competing memory with user space workloads..
1914 */
1915 if (!c->shrinker_disabled) {
1916 struct shrink_control sc;
1917
1918 sc.gfp_mask = GFP_KERNEL;
1919 sc.nr_to_scan = c->btree_cache_used * c->btree_pages;
1920 /* first run to clear b->accessed tag */
1921 c->shrink.scan_objects(&c->shrink, &sc);
1922 /* second run to reap non-accessed nodes */
1923 c->shrink.scan_objects(&c->shrink, &sc);
1924 }
1925
1926 bch_journal_mark(c, &journal);
1927 bch_initial_gc_finish(c);
1928 pr_debug("btree_check() done");
1929
1930 /*
1931 * bcache_journal_next() can't happen sooner, or
1932 * btree_gc_finish() will give spurious errors about last_gc >
1933 * gc_gen - this is a hack but oh well.
1934 */
1935 bch_journal_next(&c->journal);
1936
1937 err = "error starting allocator thread";
1938 for_each_cache(ca, c, i)
1939 if (bch_cache_allocator_start(ca))
1940 goto err;
1941
1942 /*
1943 * First place it's safe to allocate: btree_check() and
1944 * btree_gc_finish() have to run before we have buckets to
1945 * allocate, and bch_bucket_alloc_set() might cause a journal
1946 * entry to be written so bcache_journal_next() has to be called
1947 * first.
1948 *
1949 * If the uuids were in the old format we have to rewrite them
1950 * before the next journal entry is written:
1951 */
1952 if (j->version < BCACHE_JSET_VERSION_UUID)
1953 __uuid_write(c);
1954
1955 err = "bcache: replay journal failed";
1956 if (bch_journal_replay(c, &journal))
1957 goto err;
1958 } else {
1959 pr_notice("invalidating existing data");
1960
1961 for_each_cache(ca, c, i) {
1962 unsigned int j;
1963
1964 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1965 2, SB_JOURNAL_BUCKETS);
1966
1967 for (j = 0; j < ca->sb.keys; j++)
1968 ca->sb.d[j] = ca->sb.first_bucket + j;
1969 }
1970
1971 bch_initial_gc_finish(c);
1972
1973 err = "error starting allocator thread";
1974 for_each_cache(ca, c, i)
1975 if (bch_cache_allocator_start(ca))
1976 goto err;
1977
1978 mutex_lock(&c->bucket_lock);
1979 for_each_cache(ca, c, i)
1980 bch_prio_write(ca, true);
1981 mutex_unlock(&c->bucket_lock);
1982
1983 err = "cannot allocate new UUID bucket";
1984 if (__uuid_write(c))
1985 goto err;
1986
1987 err = "cannot allocate new btree root";
1988 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1989 if (IS_ERR_OR_NULL(c->root))
1990 goto err;
1991
1992 mutex_lock(&c->root->write_lock);
1993 bkey_copy_key(&c->root->key, &MAX_KEY);
1994 bch_btree_node_write(c->root, &cl);
1995 mutex_unlock(&c->root->write_lock);
1996
1997 bch_btree_set_root(c->root);
1998 rw_unlock(true, c->root);
1999
2000 /*
2001 * We don't want to write the first journal entry until
2002 * everything is set up - fortunately journal entries won't be
2003 * written until the SET_CACHE_SYNC() here:
2004 */
2005 SET_CACHE_SYNC(&c->sb, true);
2006
2007 bch_journal_next(&c->journal);
2008 bch_journal_meta(c, &cl);
2009 }
2010
2011 err = "error starting gc thread";
2012 if (bch_gc_thread_start(c))
2013 goto err;
2014
2015 closure_sync(&cl);
2016 c->sb.last_mount = (u32)ktime_get_real_seconds();
2017 bcache_write_super(c);
2018
2019 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2020 bch_cached_dev_attach(dc, c, NULL);
2021
2022 flash_devs_run(c);
2023
2024 set_bit(CACHE_SET_RUNNING, &c->flags);
2025 return 0;
2026 err:
2027 while (!list_empty(&journal)) {
2028 l = list_first_entry(&journal, struct journal_replay, list);
2029 list_del(&l->list);
2030 kfree(l);
2031 }
2032
2033 closure_sync(&cl);
2034
2035 bch_cache_set_error(c, "%s", err);
2036
2037 return -EIO;
2038 }
2039
can_attach_cache(struct cache * ca,struct cache_set * c)2040 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2041 {
2042 return ca->sb.block_size == c->sb.block_size &&
2043 ca->sb.bucket_size == c->sb.bucket_size &&
2044 ca->sb.nr_in_set == c->sb.nr_in_set;
2045 }
2046
register_cache_set(struct cache * ca)2047 static const char *register_cache_set(struct cache *ca)
2048 {
2049 char buf[12];
2050 const char *err = "cannot allocate memory";
2051 struct cache_set *c;
2052
2053 list_for_each_entry(c, &bch_cache_sets, list)
2054 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2055 if (c->cache[ca->sb.nr_this_dev])
2056 return "duplicate cache set member";
2057
2058 if (!can_attach_cache(ca, c))
2059 return "cache sb does not match set";
2060
2061 if (!CACHE_SYNC(&ca->sb))
2062 SET_CACHE_SYNC(&c->sb, false);
2063
2064 goto found;
2065 }
2066
2067 c = bch_cache_set_alloc(&ca->sb);
2068 if (!c)
2069 return err;
2070
2071 err = "error creating kobject";
2072 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2073 kobject_add(&c->internal, &c->kobj, "internal"))
2074 goto err;
2075
2076 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2077 goto err;
2078
2079 bch_debug_init_cache_set(c);
2080
2081 list_add(&c->list, &bch_cache_sets);
2082 found:
2083 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2084 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2085 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2086 goto err;
2087
2088 if (ca->sb.seq > c->sb.seq) {
2089 c->sb.version = ca->sb.version;
2090 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2091 c->sb.flags = ca->sb.flags;
2092 c->sb.seq = ca->sb.seq;
2093 pr_debug("set version = %llu", c->sb.version);
2094 }
2095
2096 kobject_get(&ca->kobj);
2097 ca->set = c;
2098 ca->set->cache[ca->sb.nr_this_dev] = ca;
2099 c->cache_by_alloc[c->caches_loaded++] = ca;
2100
2101 if (c->caches_loaded == c->sb.nr_in_set) {
2102 err = "failed to run cache set";
2103 if (run_cache_set(c) < 0)
2104 goto err;
2105 }
2106
2107 return NULL;
2108 err:
2109 bch_cache_set_unregister(c);
2110 return err;
2111 }
2112
2113 /* Cache device */
2114
2115 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2116 void bch_cache_release(struct kobject *kobj)
2117 {
2118 struct cache *ca = container_of(kobj, struct cache, kobj);
2119 unsigned int i;
2120
2121 if (ca->set) {
2122 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2123 ca->set->cache[ca->sb.nr_this_dev] = NULL;
2124 }
2125
2126 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2127 kfree(ca->prio_buckets);
2128 vfree(ca->buckets);
2129
2130 free_heap(&ca->heap);
2131 free_fifo(&ca->free_inc);
2132
2133 for (i = 0; i < RESERVE_NR; i++)
2134 free_fifo(&ca->free[i]);
2135
2136 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2137 put_page(bio_first_page_all(&ca->sb_bio));
2138
2139 if (!IS_ERR_OR_NULL(ca->bdev))
2140 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2141
2142 kfree(ca);
2143 module_put(THIS_MODULE);
2144 }
2145
cache_alloc(struct cache * ca)2146 static int cache_alloc(struct cache *ca)
2147 {
2148 size_t free;
2149 size_t btree_buckets;
2150 struct bucket *b;
2151 int ret = -ENOMEM;
2152 const char *err = NULL;
2153
2154 __module_get(THIS_MODULE);
2155 kobject_init(&ca->kobj, &bch_cache_ktype);
2156
2157 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2158
2159 /*
2160 * when ca->sb.njournal_buckets is not zero, journal exists,
2161 * and in bch_journal_replay(), tree node may split,
2162 * so bucket of RESERVE_BTREE type is needed,
2163 * the worst situation is all journal buckets are valid journal,
2164 * and all the keys need to replay,
2165 * so the number of RESERVE_BTREE type buckets should be as much
2166 * as journal buckets
2167 */
2168 btree_buckets = ca->sb.njournal_buckets ?: 8;
2169 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2170 if (!free) {
2171 ret = -EPERM;
2172 err = "ca->sb.nbuckets is too small";
2173 goto err_free;
2174 }
2175
2176 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2177 GFP_KERNEL)) {
2178 err = "ca->free[RESERVE_BTREE] alloc failed";
2179 goto err_btree_alloc;
2180 }
2181
2182 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2183 GFP_KERNEL)) {
2184 err = "ca->free[RESERVE_PRIO] alloc failed";
2185 goto err_prio_alloc;
2186 }
2187
2188 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2189 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2190 goto err_movinggc_alloc;
2191 }
2192
2193 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2194 err = "ca->free[RESERVE_NONE] alloc failed";
2195 goto err_none_alloc;
2196 }
2197
2198 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2199 err = "ca->free_inc alloc failed";
2200 goto err_free_inc_alloc;
2201 }
2202
2203 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2204 err = "ca->heap alloc failed";
2205 goto err_heap_alloc;
2206 }
2207
2208 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2209 ca->sb.nbuckets));
2210 if (!ca->buckets) {
2211 err = "ca->buckets alloc failed";
2212 goto err_buckets_alloc;
2213 }
2214
2215 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2216 prio_buckets(ca), 2),
2217 GFP_KERNEL);
2218 if (!ca->prio_buckets) {
2219 err = "ca->prio_buckets alloc failed";
2220 goto err_prio_buckets_alloc;
2221 }
2222
2223 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2224 if (!ca->disk_buckets) {
2225 err = "ca->disk_buckets alloc failed";
2226 goto err_disk_buckets_alloc;
2227 }
2228
2229 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2230
2231 for_each_bucket(b, ca)
2232 atomic_set(&b->pin, 0);
2233 return 0;
2234
2235 err_disk_buckets_alloc:
2236 kfree(ca->prio_buckets);
2237 err_prio_buckets_alloc:
2238 vfree(ca->buckets);
2239 err_buckets_alloc:
2240 free_heap(&ca->heap);
2241 err_heap_alloc:
2242 free_fifo(&ca->free_inc);
2243 err_free_inc_alloc:
2244 free_fifo(&ca->free[RESERVE_NONE]);
2245 err_none_alloc:
2246 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2247 err_movinggc_alloc:
2248 free_fifo(&ca->free[RESERVE_PRIO]);
2249 err_prio_alloc:
2250 free_fifo(&ca->free[RESERVE_BTREE]);
2251 err_btree_alloc:
2252 err_free:
2253 module_put(THIS_MODULE);
2254 if (err)
2255 pr_notice("error %s: %s", ca->cache_dev_name, err);
2256 return ret;
2257 }
2258
register_cache(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cache * ca)2259 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2260 struct block_device *bdev, struct cache *ca)
2261 {
2262 const char *err = NULL; /* must be set for any error case */
2263 int ret = 0;
2264
2265 bdevname(bdev, ca->cache_dev_name);
2266 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2267 ca->bdev = bdev;
2268 ca->bdev->bd_holder = ca;
2269
2270 bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2271 bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2272 get_page(sb_page);
2273
2274 if (blk_queue_discard(bdev_get_queue(bdev)))
2275 ca->discard = CACHE_DISCARD(&ca->sb);
2276
2277 ret = cache_alloc(ca);
2278 if (ret != 0) {
2279 /*
2280 * If we failed here, it means ca->kobj is not initialized yet,
2281 * kobject_put() won't be called and there is no chance to
2282 * call blkdev_put() to bdev in bch_cache_release(). So we
2283 * explicitly call blkdev_put() here.
2284 */
2285 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2286 if (ret == -ENOMEM)
2287 err = "cache_alloc(): -ENOMEM";
2288 else if (ret == -EPERM)
2289 err = "cache_alloc(): cache device is too small";
2290 else
2291 err = "cache_alloc(): unknown error";
2292 goto err;
2293 }
2294
2295 if (kobject_add(&ca->kobj,
2296 &part_to_dev(bdev->bd_part)->kobj,
2297 "bcache")) {
2298 err = "error calling kobject_add";
2299 ret = -ENOMEM;
2300 goto out;
2301 }
2302
2303 mutex_lock(&bch_register_lock);
2304 err = register_cache_set(ca);
2305 mutex_unlock(&bch_register_lock);
2306
2307 if (err) {
2308 ret = -ENODEV;
2309 goto out;
2310 }
2311
2312 pr_info("registered cache device %s", ca->cache_dev_name);
2313
2314 out:
2315 kobject_put(&ca->kobj);
2316
2317 err:
2318 if (err)
2319 pr_notice("error %s: %s", ca->cache_dev_name, err);
2320
2321 return ret;
2322 }
2323
2324 /* Global interfaces/init */
2325
2326 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2327 const char *buffer, size_t size);
2328 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2329 struct kobj_attribute *attr,
2330 const char *buffer, size_t size);
2331
2332 kobj_attribute_write(register, register_bcache);
2333 kobj_attribute_write(register_quiet, register_bcache);
2334 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2335
bch_is_open_backing(struct block_device * bdev)2336 static bool bch_is_open_backing(struct block_device *bdev)
2337 {
2338 struct cache_set *c, *tc;
2339 struct cached_dev *dc, *t;
2340
2341 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2342 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2343 if (dc->bdev == bdev)
2344 return true;
2345 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2346 if (dc->bdev == bdev)
2347 return true;
2348 return false;
2349 }
2350
bch_is_open_cache(struct block_device * bdev)2351 static bool bch_is_open_cache(struct block_device *bdev)
2352 {
2353 struct cache_set *c, *tc;
2354 struct cache *ca;
2355 unsigned int i;
2356
2357 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2358 for_each_cache(ca, c, i)
2359 if (ca->bdev == bdev)
2360 return true;
2361 return false;
2362 }
2363
bch_is_open(struct block_device * bdev)2364 static bool bch_is_open(struct block_device *bdev)
2365 {
2366 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2367 }
2368
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2369 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2370 const char *buffer, size_t size)
2371 {
2372 ssize_t ret = -EINVAL;
2373 const char *err = "cannot allocate memory";
2374 char *path = NULL;
2375 struct cache_sb *sb = NULL;
2376 struct block_device *bdev = NULL;
2377 struct page *sb_page = NULL;
2378
2379 if (!try_module_get(THIS_MODULE))
2380 return -EBUSY;
2381
2382 /* For latest state of bcache_is_reboot */
2383 smp_mb();
2384 if (bcache_is_reboot)
2385 return -EBUSY;
2386
2387 path = kstrndup(buffer, size, GFP_KERNEL);
2388 if (!path)
2389 goto err;
2390
2391 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2392 if (!sb)
2393 goto err;
2394
2395 err = "failed to open device";
2396 bdev = blkdev_get_by_path(strim(path),
2397 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2398 sb);
2399 if (IS_ERR(bdev)) {
2400 if (bdev == ERR_PTR(-EBUSY)) {
2401 bdev = lookup_bdev(strim(path));
2402 mutex_lock(&bch_register_lock);
2403 if (!IS_ERR(bdev) && bch_is_open(bdev))
2404 err = "device already registered";
2405 else
2406 err = "device busy";
2407 mutex_unlock(&bch_register_lock);
2408 if (!IS_ERR(bdev))
2409 bdput(bdev);
2410 if (attr == &ksysfs_register_quiet)
2411 goto quiet_out;
2412 }
2413 goto err;
2414 }
2415
2416 err = "failed to set blocksize";
2417 if (set_blocksize(bdev, 4096))
2418 goto err_close;
2419
2420 err = read_super(sb, bdev, &sb_page);
2421 if (err)
2422 goto err_close;
2423
2424 err = "failed to register device";
2425 if (SB_IS_BDEV(sb)) {
2426 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2427
2428 if (!dc)
2429 goto err_close;
2430
2431 mutex_lock(&bch_register_lock);
2432 ret = register_bdev(sb, sb_page, bdev, dc);
2433 mutex_unlock(&bch_register_lock);
2434 /* blkdev_put() will be called in cached_dev_free() */
2435 if (ret < 0)
2436 goto err;
2437 } else {
2438 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2439
2440 if (!ca)
2441 goto err_close;
2442
2443 /* blkdev_put() will be called in bch_cache_release() */
2444 if (register_cache(sb, sb_page, bdev, ca) != 0)
2445 goto err;
2446 }
2447 quiet_out:
2448 ret = size;
2449 out:
2450 if (sb_page)
2451 put_page(sb_page);
2452 kfree(sb);
2453 kfree(path);
2454 module_put(THIS_MODULE);
2455 return ret;
2456
2457 err_close:
2458 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2459 err:
2460 pr_info("error %s: %s", path, err);
2461 goto out;
2462 }
2463
2464
2465 struct pdev {
2466 struct list_head list;
2467 struct cached_dev *dc;
2468 };
2469
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2470 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2471 struct kobj_attribute *attr,
2472 const char *buffer,
2473 size_t size)
2474 {
2475 LIST_HEAD(pending_devs);
2476 ssize_t ret = size;
2477 struct cached_dev *dc, *tdc;
2478 struct pdev *pdev, *tpdev;
2479 struct cache_set *c, *tc;
2480
2481 mutex_lock(&bch_register_lock);
2482 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2483 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2484 if (!pdev)
2485 break;
2486 pdev->dc = dc;
2487 list_add(&pdev->list, &pending_devs);
2488 }
2489
2490 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2491 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2492 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2493 char *set_uuid = c->sb.uuid;
2494
2495 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2496 list_del(&pdev->list);
2497 kfree(pdev);
2498 break;
2499 }
2500 }
2501 }
2502 mutex_unlock(&bch_register_lock);
2503
2504 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2505 pr_info("delete pdev %p", pdev);
2506 list_del(&pdev->list);
2507 bcache_device_stop(&pdev->dc->disk);
2508 kfree(pdev);
2509 }
2510
2511 return ret;
2512 }
2513
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2514 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2515 {
2516 if (bcache_is_reboot)
2517 return NOTIFY_DONE;
2518
2519 if (code == SYS_DOWN ||
2520 code == SYS_HALT ||
2521 code == SYS_POWER_OFF) {
2522 DEFINE_WAIT(wait);
2523 unsigned long start = jiffies;
2524 bool stopped = false;
2525
2526 struct cache_set *c, *tc;
2527 struct cached_dev *dc, *tdc;
2528
2529 mutex_lock(&bch_register_lock);
2530
2531 if (bcache_is_reboot)
2532 goto out;
2533
2534 /* New registration is rejected since now */
2535 bcache_is_reboot = true;
2536 /*
2537 * Make registering caller (if there is) on other CPU
2538 * core know bcache_is_reboot set to true earlier
2539 */
2540 smp_mb();
2541
2542 if (list_empty(&bch_cache_sets) &&
2543 list_empty(&uncached_devices))
2544 goto out;
2545
2546 mutex_unlock(&bch_register_lock);
2547
2548 pr_info("Stopping all devices:");
2549
2550 /*
2551 * The reason bch_register_lock is not held to call
2552 * bch_cache_set_stop() and bcache_device_stop() is to
2553 * avoid potential deadlock during reboot, because cache
2554 * set or bcache device stopping process will acqurie
2555 * bch_register_lock too.
2556 *
2557 * We are safe here because bcache_is_reboot sets to
2558 * true already, register_bcache() will reject new
2559 * registration now. bcache_is_reboot also makes sure
2560 * bcache_reboot() won't be re-entered on by other thread,
2561 * so there is no race in following list iteration by
2562 * list_for_each_entry_safe().
2563 */
2564 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2565 bch_cache_set_stop(c);
2566
2567 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2568 bcache_device_stop(&dc->disk);
2569
2570
2571 /*
2572 * Give an early chance for other kthreads and
2573 * kworkers to stop themselves
2574 */
2575 schedule();
2576
2577 /* What's a condition variable? */
2578 while (1) {
2579 long timeout = start + 10 * HZ - jiffies;
2580
2581 mutex_lock(&bch_register_lock);
2582 stopped = list_empty(&bch_cache_sets) &&
2583 list_empty(&uncached_devices);
2584
2585 if (timeout < 0 || stopped)
2586 break;
2587
2588 prepare_to_wait(&unregister_wait, &wait,
2589 TASK_UNINTERRUPTIBLE);
2590
2591 mutex_unlock(&bch_register_lock);
2592 schedule_timeout(timeout);
2593 }
2594
2595 finish_wait(&unregister_wait, &wait);
2596
2597 if (stopped)
2598 pr_info("All devices stopped");
2599 else
2600 pr_notice("Timeout waiting for devices to be closed");
2601 out:
2602 mutex_unlock(&bch_register_lock);
2603 }
2604
2605 return NOTIFY_DONE;
2606 }
2607
2608 static struct notifier_block reboot = {
2609 .notifier_call = bcache_reboot,
2610 .priority = INT_MAX, /* before any real devices */
2611 };
2612
bcache_exit(void)2613 static void bcache_exit(void)
2614 {
2615 bch_debug_exit();
2616 bch_request_exit();
2617 if (bcache_kobj)
2618 kobject_put(bcache_kobj);
2619 if (bcache_wq)
2620 destroy_workqueue(bcache_wq);
2621 if (bch_journal_wq)
2622 destroy_workqueue(bch_journal_wq);
2623
2624 if (bcache_major)
2625 unregister_blkdev(bcache_major, "bcache");
2626 unregister_reboot_notifier(&reboot);
2627 mutex_destroy(&bch_register_lock);
2628 }
2629
2630 /* Check and fixup module parameters */
check_module_parameters(void)2631 static void check_module_parameters(void)
2632 {
2633 if (bch_cutoff_writeback_sync == 0)
2634 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2635 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2636 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
2637 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2638 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2639 }
2640
2641 if (bch_cutoff_writeback == 0)
2642 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2643 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2644 pr_warn("set bch_cutoff_writeback (%u) to max value %u",
2645 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2646 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2647 }
2648
2649 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2650 pr_warn("set bch_cutoff_writeback (%u) to %u",
2651 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2652 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2653 }
2654 }
2655
bcache_init(void)2656 static int __init bcache_init(void)
2657 {
2658 static const struct attribute *files[] = {
2659 &ksysfs_register.attr,
2660 &ksysfs_register_quiet.attr,
2661 &ksysfs_pendings_cleanup.attr,
2662 NULL
2663 };
2664
2665 check_module_parameters();
2666
2667 mutex_init(&bch_register_lock);
2668 init_waitqueue_head(&unregister_wait);
2669 register_reboot_notifier(&reboot);
2670
2671 bcache_major = register_blkdev(0, "bcache");
2672 if (bcache_major < 0) {
2673 unregister_reboot_notifier(&reboot);
2674 mutex_destroy(&bch_register_lock);
2675 return bcache_major;
2676 }
2677
2678 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2679 if (!bcache_wq)
2680 goto err;
2681
2682 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2683 if (!bch_journal_wq)
2684 goto err;
2685
2686 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2687 if (!bcache_kobj)
2688 goto err;
2689
2690 if (bch_request_init() ||
2691 sysfs_create_files(bcache_kobj, files))
2692 goto err;
2693
2694 bch_debug_init();
2695 closure_debug_init();
2696
2697 bcache_is_reboot = false;
2698
2699 return 0;
2700 err:
2701 bcache_exit();
2702 return -ENOMEM;
2703 }
2704
2705 /*
2706 * Module hooks
2707 */
2708 module_exit(bcache_exit);
2709 module_init(bcache_init);
2710
2711 module_param(bch_cutoff_writeback, uint, 0);
2712 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2713
2714 module_param(bch_cutoff_writeback_sync, uint, 0);
2715 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2716
2717 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2718 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2719 MODULE_LICENSE("GPL");
2720