• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 
17 #include <linux/blkdev.h>
18 #include <linux/buffer_head.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27 
28 unsigned int bch_cutoff_writeback;
29 unsigned int bch_cutoff_writeback_sync;
30 
31 static const char bcache_magic[] = {
32 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35 
36 static const char invalid_uuid[] = {
37 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40 
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 bool bcache_is_reboot;
44 LIST_HEAD(bch_cache_sets);
45 static LIST_HEAD(uncached_devices);
46 
47 static int bcache_major;
48 static DEFINE_IDA(bcache_device_idx);
49 static wait_queue_head_t unregister_wait;
50 struct workqueue_struct *bcache_wq;
51 struct workqueue_struct *bch_journal_wq;
52 
53 
54 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
55 /* limitation of partitions number on single bcache device */
56 #define BCACHE_MINORS		128
57 /* limitation of bcache devices number on single system */
58 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
59 
60 /* Superblock */
61 
read_super(struct cache_sb * sb,struct block_device * bdev,struct page ** res)62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
63 			      struct page **res)
64 {
65 	const char *err;
66 	struct cache_sb *s;
67 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
68 	unsigned int i;
69 
70 	if (!bh)
71 		return "IO error";
72 
73 	s = (struct cache_sb *) bh->b_data;
74 
75 	sb->offset		= le64_to_cpu(s->offset);
76 	sb->version		= le64_to_cpu(s->version);
77 
78 	memcpy(sb->magic,	s->magic, 16);
79 	memcpy(sb->uuid,	s->uuid, 16);
80 	memcpy(sb->set_uuid,	s->set_uuid, 16);
81 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
82 
83 	sb->flags		= le64_to_cpu(s->flags);
84 	sb->seq			= le64_to_cpu(s->seq);
85 	sb->last_mount		= le32_to_cpu(s->last_mount);
86 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
87 	sb->keys		= le16_to_cpu(s->keys);
88 
89 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
90 		sb->d[i] = le64_to_cpu(s->d[i]);
91 
92 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
93 		 sb->version, sb->flags, sb->seq, sb->keys);
94 
95 	err = "Not a bcache superblock";
96 	if (sb->offset != SB_SECTOR)
97 		goto err;
98 
99 	if (memcmp(sb->magic, bcache_magic, 16))
100 		goto err;
101 
102 	err = "Too many journal buckets";
103 	if (sb->keys > SB_JOURNAL_BUCKETS)
104 		goto err;
105 
106 	err = "Bad checksum";
107 	if (s->csum != csum_set(s))
108 		goto err;
109 
110 	err = "Bad UUID";
111 	if (bch_is_zero(sb->uuid, 16))
112 		goto err;
113 
114 	sb->block_size	= le16_to_cpu(s->block_size);
115 
116 	err = "Superblock block size smaller than device block size";
117 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
118 		goto err;
119 
120 	switch (sb->version) {
121 	case BCACHE_SB_VERSION_BDEV:
122 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
123 		break;
124 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
125 		sb->data_offset	= le64_to_cpu(s->data_offset);
126 
127 		err = "Bad data offset";
128 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
129 			goto err;
130 
131 		break;
132 	case BCACHE_SB_VERSION_CDEV:
133 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
134 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
135 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
136 
137 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
138 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
139 
140 		err = "Too many buckets";
141 		if (sb->nbuckets > LONG_MAX)
142 			goto err;
143 
144 		err = "Not enough buckets";
145 		if (sb->nbuckets < 1 << 7)
146 			goto err;
147 
148 		err = "Bad block/bucket size";
149 		if (!is_power_of_2(sb->block_size) ||
150 		    sb->block_size > PAGE_SECTORS ||
151 		    !is_power_of_2(sb->bucket_size) ||
152 		    sb->bucket_size < PAGE_SECTORS)
153 			goto err;
154 
155 		err = "Invalid superblock: device too small";
156 		if (get_capacity(bdev->bd_disk) <
157 		    sb->bucket_size * sb->nbuckets)
158 			goto err;
159 
160 		err = "Bad UUID";
161 		if (bch_is_zero(sb->set_uuid, 16))
162 			goto err;
163 
164 		err = "Bad cache device number in set";
165 		if (!sb->nr_in_set ||
166 		    sb->nr_in_set <= sb->nr_this_dev ||
167 		    sb->nr_in_set > MAX_CACHES_PER_SET)
168 			goto err;
169 
170 		err = "Journal buckets not sequential";
171 		for (i = 0; i < sb->keys; i++)
172 			if (sb->d[i] != sb->first_bucket + i)
173 				goto err;
174 
175 		err = "Too many journal buckets";
176 		if (sb->first_bucket + sb->keys > sb->nbuckets)
177 			goto err;
178 
179 		err = "Invalid superblock: first bucket comes before end of super";
180 		if (sb->first_bucket * sb->bucket_size < 16)
181 			goto err;
182 
183 		break;
184 	default:
185 		err = "Unsupported superblock version";
186 		goto err;
187 	}
188 
189 	sb->last_mount = (u32)ktime_get_real_seconds();
190 	err = NULL;
191 
192 	get_page(bh->b_page);
193 	*res = bh->b_page;
194 err:
195 	put_bh(bh);
196 	return err;
197 }
198 
write_bdev_super_endio(struct bio * bio)199 static void write_bdev_super_endio(struct bio *bio)
200 {
201 	struct cached_dev *dc = bio->bi_private;
202 
203 	if (bio->bi_status)
204 		bch_count_backing_io_errors(dc, bio);
205 
206 	closure_put(&dc->sb_write);
207 }
208 
__write_super(struct cache_sb * sb,struct bio * bio)209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 	struct cache_sb *out = page_address(bio_first_page_all(bio));
212 	unsigned int i;
213 
214 	bio->bi_iter.bi_sector	= SB_SECTOR;
215 	bio->bi_iter.bi_size	= SB_SIZE;
216 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
217 	bch_bio_map(bio, NULL);
218 
219 	out->offset		= cpu_to_le64(sb->offset);
220 	out->version		= cpu_to_le64(sb->version);
221 
222 	memcpy(out->uuid,	sb->uuid, 16);
223 	memcpy(out->set_uuid,	sb->set_uuid, 16);
224 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
225 
226 	out->flags		= cpu_to_le64(sb->flags);
227 	out->seq		= cpu_to_le64(sb->seq);
228 
229 	out->last_mount		= cpu_to_le32(sb->last_mount);
230 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
231 	out->keys		= cpu_to_le16(sb->keys);
232 
233 	for (i = 0; i < sb->keys; i++)
234 		out->d[i] = cpu_to_le64(sb->d[i]);
235 
236 	out->csum = csum_set(out);
237 
238 	pr_debug("ver %llu, flags %llu, seq %llu",
239 		 sb->version, sb->flags, sb->seq);
240 
241 	submit_bio(bio);
242 }
243 
bch_write_bdev_super_unlock(struct closure * cl)244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247 
248 	up(&dc->sb_write_mutex);
249 }
250 
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 	struct closure *cl = &dc->sb_write;
254 	struct bio *bio = &dc->sb_bio;
255 
256 	down(&dc->sb_write_mutex);
257 	closure_init(cl, parent);
258 
259 	bio_reset(bio);
260 	bio_set_dev(bio, dc->bdev);
261 	bio->bi_end_io	= write_bdev_super_endio;
262 	bio->bi_private = dc;
263 
264 	closure_get(cl);
265 	/* I/O request sent to backing device */
266 	__write_super(&dc->sb, bio);
267 
268 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
269 }
270 
write_super_endio(struct bio * bio)271 static void write_super_endio(struct bio *bio)
272 {
273 	struct cache *ca = bio->bi_private;
274 
275 	/* is_read = 0 */
276 	bch_count_io_errors(ca, bio->bi_status, 0,
277 			    "writing superblock");
278 	closure_put(&ca->set->sb_write);
279 }
280 
bcache_write_super_unlock(struct closure * cl)281 static void bcache_write_super_unlock(struct closure *cl)
282 {
283 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
284 
285 	up(&c->sb_write_mutex);
286 }
287 
bcache_write_super(struct cache_set * c)288 void bcache_write_super(struct cache_set *c)
289 {
290 	struct closure *cl = &c->sb_write;
291 	struct cache *ca;
292 	unsigned int i;
293 
294 	down(&c->sb_write_mutex);
295 	closure_init(cl, &c->cl);
296 
297 	c->sb.seq++;
298 
299 	for_each_cache(ca, c, i) {
300 		struct bio *bio = &ca->sb_bio;
301 
302 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
303 		ca->sb.seq		= c->sb.seq;
304 		ca->sb.last_mount	= c->sb.last_mount;
305 
306 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
307 
308 		bio_reset(bio);
309 		bio_set_dev(bio, ca->bdev);
310 		bio->bi_end_io	= write_super_endio;
311 		bio->bi_private = ca;
312 
313 		closure_get(cl);
314 		__write_super(&ca->sb, bio);
315 	}
316 
317 	closure_return_with_destructor(cl, bcache_write_super_unlock);
318 }
319 
320 /* UUID io */
321 
uuid_endio(struct bio * bio)322 static void uuid_endio(struct bio *bio)
323 {
324 	struct closure *cl = bio->bi_private;
325 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
326 
327 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
328 	bch_bbio_free(bio, c);
329 	closure_put(cl);
330 }
331 
uuid_io_unlock(struct closure * cl)332 static void uuid_io_unlock(struct closure *cl)
333 {
334 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
335 
336 	up(&c->uuid_write_mutex);
337 }
338 
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
340 		    struct bkey *k, struct closure *parent)
341 {
342 	struct closure *cl = &c->uuid_write;
343 	struct uuid_entry *u;
344 	unsigned int i;
345 	char buf[80];
346 
347 	BUG_ON(!parent);
348 	down(&c->uuid_write_mutex);
349 	closure_init(cl, parent);
350 
351 	for (i = 0; i < KEY_PTRS(k); i++) {
352 		struct bio *bio = bch_bbio_alloc(c);
353 
354 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
355 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
356 
357 		bio->bi_end_io	= uuid_endio;
358 		bio->bi_private = cl;
359 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
360 		bch_bio_map(bio, c->uuids);
361 
362 		bch_submit_bbio(bio, c, k, i);
363 
364 		if (op != REQ_OP_WRITE)
365 			break;
366 	}
367 
368 	bch_extent_to_text(buf, sizeof(buf), k);
369 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
370 
371 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
372 		if (!bch_is_zero(u->uuid, 16))
373 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
374 				 u - c->uuids, u->uuid, u->label,
375 				 u->first_reg, u->last_reg, u->invalidated);
376 
377 	closure_return_with_destructor(cl, uuid_io_unlock);
378 }
379 
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
381 {
382 	struct bkey *k = &j->uuid_bucket;
383 
384 	if (__bch_btree_ptr_invalid(c, k))
385 		return "bad uuid pointer";
386 
387 	bkey_copy(&c->uuid_bucket, k);
388 	uuid_io(c, REQ_OP_READ, 0, k, cl);
389 
390 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
391 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
392 		struct uuid_entry	*u1 = (void *) c->uuids;
393 		int i;
394 
395 		closure_sync(cl);
396 
397 		/*
398 		 * Since the new uuid entry is bigger than the old, we have to
399 		 * convert starting at the highest memory address and work down
400 		 * in order to do it in place
401 		 */
402 
403 		for (i = c->nr_uuids - 1;
404 		     i >= 0;
405 		     --i) {
406 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
407 			memcpy(u1[i].label,	u0[i].label, 32);
408 
409 			u1[i].first_reg		= u0[i].first_reg;
410 			u1[i].last_reg		= u0[i].last_reg;
411 			u1[i].invalidated	= u0[i].invalidated;
412 
413 			u1[i].flags	= 0;
414 			u1[i].sectors	= 0;
415 		}
416 	}
417 
418 	return NULL;
419 }
420 
__uuid_write(struct cache_set * c)421 static int __uuid_write(struct cache_set *c)
422 {
423 	BKEY_PADDED(key) k;
424 	struct closure cl;
425 	struct cache *ca;
426 
427 	closure_init_stack(&cl);
428 	lockdep_assert_held(&bch_register_lock);
429 
430 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
431 		return 1;
432 
433 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
435 	closure_sync(&cl);
436 
437 	/* Only one bucket used for uuid write */
438 	ca = PTR_CACHE(c, &k.key, 0);
439 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
440 
441 	bkey_copy(&c->uuid_bucket, &k.key);
442 	bkey_put(c, &k.key);
443 	return 0;
444 }
445 
bch_uuid_write(struct cache_set * c)446 int bch_uuid_write(struct cache_set *c)
447 {
448 	int ret = __uuid_write(c);
449 
450 	if (!ret)
451 		bch_journal_meta(c, NULL);
452 
453 	return ret;
454 }
455 
uuid_find(struct cache_set * c,const char * uuid)456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
457 {
458 	struct uuid_entry *u;
459 
460 	for (u = c->uuids;
461 	     u < c->uuids + c->nr_uuids; u++)
462 		if (!memcmp(u->uuid, uuid, 16))
463 			return u;
464 
465 	return NULL;
466 }
467 
uuid_find_empty(struct cache_set * c)468 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
469 {
470 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
471 
472 	return uuid_find(c, zero_uuid);
473 }
474 
475 /*
476  * Bucket priorities/gens:
477  *
478  * For each bucket, we store on disk its
479  *   8 bit gen
480  *  16 bit priority
481  *
482  * See alloc.c for an explanation of the gen. The priority is used to implement
483  * lru (and in the future other) cache replacement policies; for most purposes
484  * it's just an opaque integer.
485  *
486  * The gens and the priorities don't have a whole lot to do with each other, and
487  * it's actually the gens that must be written out at specific times - it's no
488  * big deal if the priorities don't get written, if we lose them we just reuse
489  * buckets in suboptimal order.
490  *
491  * On disk they're stored in a packed array, and in as many buckets are required
492  * to fit them all. The buckets we use to store them form a list; the journal
493  * header points to the first bucket, the first bucket points to the second
494  * bucket, et cetera.
495  *
496  * This code is used by the allocation code; periodically (whenever it runs out
497  * of buckets to allocate from) the allocation code will invalidate some
498  * buckets, but it can't use those buckets until their new gens are safely on
499  * disk.
500  */
501 
prio_endio(struct bio * bio)502 static void prio_endio(struct bio *bio)
503 {
504 	struct cache *ca = bio->bi_private;
505 
506 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
507 	bch_bbio_free(bio, ca->set);
508 	closure_put(&ca->prio);
509 }
510 
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)511 static void prio_io(struct cache *ca, uint64_t bucket, int op,
512 		    unsigned long op_flags)
513 {
514 	struct closure *cl = &ca->prio;
515 	struct bio *bio = bch_bbio_alloc(ca->set);
516 
517 	closure_init_stack(cl);
518 
519 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
520 	bio_set_dev(bio, ca->bdev);
521 	bio->bi_iter.bi_size	= bucket_bytes(ca);
522 
523 	bio->bi_end_io	= prio_endio;
524 	bio->bi_private = ca;
525 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
526 	bch_bio_map(bio, ca->disk_buckets);
527 
528 	closure_bio_submit(ca->set, bio, &ca->prio);
529 	closure_sync(cl);
530 }
531 
bch_prio_write(struct cache * ca,bool wait)532 int bch_prio_write(struct cache *ca, bool wait)
533 {
534 	int i;
535 	struct bucket *b;
536 	struct closure cl;
537 
538 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu",
539 		 fifo_used(&ca->free[RESERVE_PRIO]),
540 		 fifo_used(&ca->free[RESERVE_NONE]),
541 		 fifo_used(&ca->free_inc));
542 
543 	/*
544 	 * Pre-check if there are enough free buckets. In the non-blocking
545 	 * scenario it's better to fail early rather than starting to allocate
546 	 * buckets and do a cleanup later in case of failure.
547 	 */
548 	if (!wait) {
549 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
550 			       fifo_used(&ca->free[RESERVE_NONE]);
551 		if (prio_buckets(ca) > avail)
552 			return -ENOMEM;
553 	}
554 
555 	closure_init_stack(&cl);
556 
557 	lockdep_assert_held(&ca->set->bucket_lock);
558 
559 	ca->disk_buckets->seq++;
560 
561 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
562 			&ca->meta_sectors_written);
563 
564 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
565 		long bucket;
566 		struct prio_set *p = ca->disk_buckets;
567 		struct bucket_disk *d = p->data;
568 		struct bucket_disk *end = d + prios_per_bucket(ca);
569 
570 		for (b = ca->buckets + i * prios_per_bucket(ca);
571 		     b < ca->buckets + ca->sb.nbuckets && d < end;
572 		     b++, d++) {
573 			d->prio = cpu_to_le16(b->prio);
574 			d->gen = b->gen;
575 		}
576 
577 		p->next_bucket	= ca->prio_buckets[i + 1];
578 		p->magic	= pset_magic(&ca->sb);
579 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
580 
581 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
582 		BUG_ON(bucket == -1);
583 
584 		mutex_unlock(&ca->set->bucket_lock);
585 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
586 		mutex_lock(&ca->set->bucket_lock);
587 
588 		ca->prio_buckets[i] = bucket;
589 		atomic_dec_bug(&ca->buckets[bucket].pin);
590 	}
591 
592 	mutex_unlock(&ca->set->bucket_lock);
593 
594 	bch_journal_meta(ca->set, &cl);
595 	closure_sync(&cl);
596 
597 	mutex_lock(&ca->set->bucket_lock);
598 
599 	/*
600 	 * Don't want the old priorities to get garbage collected until after we
601 	 * finish writing the new ones, and they're journalled
602 	 */
603 	for (i = 0; i < prio_buckets(ca); i++) {
604 		if (ca->prio_last_buckets[i])
605 			__bch_bucket_free(ca,
606 				&ca->buckets[ca->prio_last_buckets[i]]);
607 
608 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
609 	}
610 	return 0;
611 }
612 
prio_read(struct cache * ca,uint64_t bucket)613 static void prio_read(struct cache *ca, uint64_t bucket)
614 {
615 	struct prio_set *p = ca->disk_buckets;
616 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
617 	struct bucket *b;
618 	unsigned int bucket_nr = 0;
619 
620 	for (b = ca->buckets;
621 	     b < ca->buckets + ca->sb.nbuckets;
622 	     b++, d++) {
623 		if (d == end) {
624 			ca->prio_buckets[bucket_nr] = bucket;
625 			ca->prio_last_buckets[bucket_nr] = bucket;
626 			bucket_nr++;
627 
628 			prio_io(ca, bucket, REQ_OP_READ, 0);
629 
630 			if (p->csum !=
631 			    bch_crc64(&p->magic, bucket_bytes(ca) - 8))
632 				pr_warn("bad csum reading priorities");
633 
634 			if (p->magic != pset_magic(&ca->sb))
635 				pr_warn("bad magic reading priorities");
636 
637 			bucket = p->next_bucket;
638 			d = p->data;
639 		}
640 
641 		b->prio = le16_to_cpu(d->prio);
642 		b->gen = b->last_gc = d->gen;
643 	}
644 }
645 
646 /* Bcache device */
647 
open_dev(struct block_device * b,fmode_t mode)648 static int open_dev(struct block_device *b, fmode_t mode)
649 {
650 	struct bcache_device *d = b->bd_disk->private_data;
651 
652 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
653 		return -ENXIO;
654 
655 	closure_get(&d->cl);
656 	return 0;
657 }
658 
release_dev(struct gendisk * b,fmode_t mode)659 static void release_dev(struct gendisk *b, fmode_t mode)
660 {
661 	struct bcache_device *d = b->private_data;
662 
663 	closure_put(&d->cl);
664 }
665 
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)666 static int ioctl_dev(struct block_device *b, fmode_t mode,
667 		     unsigned int cmd, unsigned long arg)
668 {
669 	struct bcache_device *d = b->bd_disk->private_data;
670 
671 	return d->ioctl(d, mode, cmd, arg);
672 }
673 
674 static const struct block_device_operations bcache_ops = {
675 	.open		= open_dev,
676 	.release	= release_dev,
677 	.ioctl		= ioctl_dev,
678 	.owner		= THIS_MODULE,
679 };
680 
bcache_device_stop(struct bcache_device * d)681 void bcache_device_stop(struct bcache_device *d)
682 {
683 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
684 		/*
685 		 * closure_fn set to
686 		 * - cached device: cached_dev_flush()
687 		 * - flash dev: flash_dev_flush()
688 		 */
689 		closure_queue(&d->cl);
690 }
691 
bcache_device_unlink(struct bcache_device * d)692 static void bcache_device_unlink(struct bcache_device *d)
693 {
694 	lockdep_assert_held(&bch_register_lock);
695 
696 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
697 		unsigned int i;
698 		struct cache *ca;
699 
700 		sysfs_remove_link(&d->c->kobj, d->name);
701 		sysfs_remove_link(&d->kobj, "cache");
702 
703 		for_each_cache(ca, d->c, i)
704 			bd_unlink_disk_holder(ca->bdev, d->disk);
705 	}
706 }
707 
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)708 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
709 			       const char *name)
710 {
711 	unsigned int i;
712 	struct cache *ca;
713 	int ret;
714 
715 	for_each_cache(ca, d->c, i)
716 		bd_link_disk_holder(ca->bdev, d->disk);
717 
718 	snprintf(d->name, BCACHEDEVNAME_SIZE,
719 		 "%s%u", name, d->id);
720 
721 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
722 	if (ret < 0)
723 		pr_err("Couldn't create device -> cache set symlink");
724 
725 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
726 	if (ret < 0)
727 		pr_err("Couldn't create cache set -> device symlink");
728 
729 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
730 }
731 
bcache_device_detach(struct bcache_device * d)732 static void bcache_device_detach(struct bcache_device *d)
733 {
734 	lockdep_assert_held(&bch_register_lock);
735 
736 	atomic_dec(&d->c->attached_dev_nr);
737 
738 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
739 		struct uuid_entry *u = d->c->uuids + d->id;
740 
741 		SET_UUID_FLASH_ONLY(u, 0);
742 		memcpy(u->uuid, invalid_uuid, 16);
743 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
744 		bch_uuid_write(d->c);
745 	}
746 
747 	bcache_device_unlink(d);
748 
749 	d->c->devices[d->id] = NULL;
750 	closure_put(&d->c->caching);
751 	d->c = NULL;
752 }
753 
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)754 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
755 				 unsigned int id)
756 {
757 	d->id = id;
758 	d->c = c;
759 	c->devices[id] = d;
760 
761 	if (id >= c->devices_max_used)
762 		c->devices_max_used = id + 1;
763 
764 	closure_get(&c->caching);
765 }
766 
first_minor_to_idx(int first_minor)767 static inline int first_minor_to_idx(int first_minor)
768 {
769 	return (first_minor/BCACHE_MINORS);
770 }
771 
idx_to_first_minor(int idx)772 static inline int idx_to_first_minor(int idx)
773 {
774 	return (idx * BCACHE_MINORS);
775 }
776 
bcache_device_free(struct bcache_device * d)777 static void bcache_device_free(struct bcache_device *d)
778 {
779 	struct gendisk *disk = d->disk;
780 
781 	lockdep_assert_held(&bch_register_lock);
782 
783 	if (disk)
784 		pr_info("%s stopped", disk->disk_name);
785 	else
786 		pr_err("bcache device (NULL gendisk) stopped");
787 
788 	if (d->c)
789 		bcache_device_detach(d);
790 
791 	if (disk) {
792 		if (disk->flags & GENHD_FL_UP)
793 			del_gendisk(disk);
794 
795 		if (disk->queue)
796 			blk_cleanup_queue(disk->queue);
797 
798 		ida_simple_remove(&bcache_device_idx,
799 				  first_minor_to_idx(disk->first_minor));
800 		put_disk(disk);
801 	}
802 
803 	bioset_exit(&d->bio_split);
804 	kvfree(d->full_dirty_stripes);
805 	kvfree(d->stripe_sectors_dirty);
806 
807 	closure_debug_destroy(&d->cl);
808 }
809 
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors)810 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
811 			      sector_t sectors)
812 {
813 	struct request_queue *q;
814 	const size_t max_stripes = min_t(size_t, INT_MAX,
815 					 SIZE_MAX / sizeof(atomic_t));
816 	size_t n;
817 	int idx;
818 
819 	if (!d->stripe_size)
820 		d->stripe_size = 1 << 31;
821 
822 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
823 
824 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
825 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
826 			(unsigned int)d->nr_stripes);
827 		return -ENOMEM;
828 	}
829 
830 	n = d->nr_stripes * sizeof(atomic_t);
831 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
832 	if (!d->stripe_sectors_dirty)
833 		return -ENOMEM;
834 
835 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
836 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
837 	if (!d->full_dirty_stripes)
838 		return -ENOMEM;
839 
840 	idx = ida_simple_get(&bcache_device_idx, 0,
841 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
842 	if (idx < 0)
843 		return idx;
844 
845 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
846 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
847 		goto err;
848 
849 	d->disk = alloc_disk(BCACHE_MINORS);
850 	if (!d->disk)
851 		goto err;
852 
853 	set_capacity(d->disk, sectors);
854 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
855 
856 	d->disk->major		= bcache_major;
857 	d->disk->first_minor	= idx_to_first_minor(idx);
858 	d->disk->fops		= &bcache_ops;
859 	d->disk->private_data	= d;
860 
861 	q = blk_alloc_queue(GFP_KERNEL);
862 	if (!q)
863 		return -ENOMEM;
864 
865 	blk_queue_make_request(q, NULL);
866 	d->disk->queue			= q;
867 	q->queuedata			= d;
868 	q->backing_dev_info->congested_data = d;
869 	q->limits.max_hw_sectors	= UINT_MAX;
870 	q->limits.max_sectors		= UINT_MAX;
871 	q->limits.max_segment_size	= UINT_MAX;
872 	q->limits.max_segments		= BIO_MAX_PAGES;
873 	blk_queue_max_discard_sectors(q, UINT_MAX);
874 	q->limits.discard_granularity	= 512;
875 	q->limits.io_min		= block_size;
876 	q->limits.logical_block_size	= block_size;
877 	q->limits.physical_block_size	= block_size;
878 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
879 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
880 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
881 
882 	blk_queue_write_cache(q, true, true);
883 
884 	return 0;
885 
886 err:
887 	ida_simple_remove(&bcache_device_idx, idx);
888 	return -ENOMEM;
889 
890 }
891 
892 /* Cached device */
893 
calc_cached_dev_sectors(struct cache_set * c)894 static void calc_cached_dev_sectors(struct cache_set *c)
895 {
896 	uint64_t sectors = 0;
897 	struct cached_dev *dc;
898 
899 	list_for_each_entry(dc, &c->cached_devs, list)
900 		sectors += bdev_sectors(dc->bdev);
901 
902 	c->cached_dev_sectors = sectors;
903 }
904 
905 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)906 static int cached_dev_status_update(void *arg)
907 {
908 	struct cached_dev *dc = arg;
909 	struct request_queue *q;
910 
911 	/*
912 	 * If this delayed worker is stopping outside, directly quit here.
913 	 * dc->io_disable might be set via sysfs interface, so check it
914 	 * here too.
915 	 */
916 	while (!kthread_should_stop() && !dc->io_disable) {
917 		q = bdev_get_queue(dc->bdev);
918 		if (blk_queue_dying(q))
919 			dc->offline_seconds++;
920 		else
921 			dc->offline_seconds = 0;
922 
923 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
924 			pr_err("%s: device offline for %d seconds",
925 			       dc->backing_dev_name,
926 			       BACKING_DEV_OFFLINE_TIMEOUT);
927 			pr_err("%s: disable I/O request due to backing "
928 			       "device offline", dc->disk.name);
929 			dc->io_disable = true;
930 			/* let others know earlier that io_disable is true */
931 			smp_mb();
932 			bcache_device_stop(&dc->disk);
933 			break;
934 		}
935 		schedule_timeout_interruptible(HZ);
936 	}
937 
938 	wait_for_kthread_stop();
939 	return 0;
940 }
941 
942 
bch_cached_dev_run(struct cached_dev * dc)943 int bch_cached_dev_run(struct cached_dev *dc)
944 {
945 	struct bcache_device *d = &dc->disk;
946 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
947 	char *env[] = {
948 		"DRIVER=bcache",
949 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
950 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
951 		NULL,
952 	};
953 
954 	if (dc->io_disable) {
955 		pr_err("I/O disabled on cached dev %s",
956 		       dc->backing_dev_name);
957 		kfree(env[1]);
958 		kfree(env[2]);
959 		kfree(buf);
960 		return -EIO;
961 	}
962 
963 	if (atomic_xchg(&dc->running, 1)) {
964 		kfree(env[1]);
965 		kfree(env[2]);
966 		kfree(buf);
967 		pr_info("cached dev %s is running already",
968 		       dc->backing_dev_name);
969 		return -EBUSY;
970 	}
971 
972 	if (!d->c &&
973 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
974 		struct closure cl;
975 
976 		closure_init_stack(&cl);
977 
978 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
979 		bch_write_bdev_super(dc, &cl);
980 		closure_sync(&cl);
981 	}
982 
983 	add_disk(d->disk);
984 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
985 	/*
986 	 * won't show up in the uevent file, use udevadm monitor -e instead
987 	 * only class / kset properties are persistent
988 	 */
989 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
990 	kfree(env[1]);
991 	kfree(env[2]);
992 	kfree(buf);
993 
994 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
995 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
996 			      &d->kobj, "bcache")) {
997 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks");
998 		return -ENOMEM;
999 	}
1000 
1001 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1002 					       dc, "bcache_status_update");
1003 	if (IS_ERR(dc->status_update_thread)) {
1004 		pr_warn("failed to create bcache_status_update kthread, "
1005 			"continue to run without monitoring backing "
1006 			"device status");
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1014  * work dc->writeback_rate_update is running. Wait until the routine
1015  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1016  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1017  * seconds, give up waiting here and continue to cancel it too.
1018  */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1019 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1020 {
1021 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1022 
1023 	do {
1024 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1025 			      &dc->disk.flags))
1026 			break;
1027 		time_out--;
1028 		schedule_timeout_interruptible(1);
1029 	} while (time_out > 0);
1030 
1031 	if (time_out == 0)
1032 		pr_warn("give up waiting for dc->writeback_write_update to quit");
1033 
1034 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1035 }
1036 
cached_dev_detach_finish(struct work_struct * w)1037 static void cached_dev_detach_finish(struct work_struct *w)
1038 {
1039 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1040 	struct closure cl;
1041 
1042 	closure_init_stack(&cl);
1043 
1044 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1045 	BUG_ON(refcount_read(&dc->count));
1046 
1047 
1048 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1049 		cancel_writeback_rate_update_dwork(dc);
1050 
1051 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1052 		kthread_stop(dc->writeback_thread);
1053 		dc->writeback_thread = NULL;
1054 	}
1055 
1056 	memset(&dc->sb.set_uuid, 0, 16);
1057 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1058 
1059 	bch_write_bdev_super(dc, &cl);
1060 	closure_sync(&cl);
1061 
1062 	mutex_lock(&bch_register_lock);
1063 
1064 	calc_cached_dev_sectors(dc->disk.c);
1065 	bcache_device_detach(&dc->disk);
1066 	list_move(&dc->list, &uncached_devices);
1067 
1068 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1069 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1070 
1071 	mutex_unlock(&bch_register_lock);
1072 
1073 	pr_info("Caching disabled for %s", dc->backing_dev_name);
1074 
1075 	/* Drop ref we took in cached_dev_detach() */
1076 	closure_put(&dc->disk.cl);
1077 }
1078 
bch_cached_dev_detach(struct cached_dev * dc)1079 void bch_cached_dev_detach(struct cached_dev *dc)
1080 {
1081 	lockdep_assert_held(&bch_register_lock);
1082 
1083 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1084 		return;
1085 
1086 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1087 		return;
1088 
1089 	/*
1090 	 * Block the device from being closed and freed until we're finished
1091 	 * detaching
1092 	 */
1093 	closure_get(&dc->disk.cl);
1094 
1095 	bch_writeback_queue(dc);
1096 
1097 	cached_dev_put(dc);
1098 }
1099 
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1100 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1101 			  uint8_t *set_uuid)
1102 {
1103 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1104 	struct uuid_entry *u;
1105 	struct cached_dev *exist_dc, *t;
1106 	int ret = 0;
1107 
1108 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1109 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1110 		return -ENOENT;
1111 
1112 	if (dc->disk.c) {
1113 		pr_err("Can't attach %s: already attached",
1114 		       dc->backing_dev_name);
1115 		return -EINVAL;
1116 	}
1117 
1118 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1119 		pr_err("Can't attach %s: shutting down",
1120 		       dc->backing_dev_name);
1121 		return -EINVAL;
1122 	}
1123 
1124 	if (dc->sb.block_size < c->sb.block_size) {
1125 		/* Will die */
1126 		pr_err("Couldn't attach %s: block size less than set's block size",
1127 		       dc->backing_dev_name);
1128 		return -EINVAL;
1129 	}
1130 
1131 	/* Check whether already attached */
1132 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1133 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1134 			pr_err("Tried to attach %s but duplicate UUID already attached",
1135 				dc->backing_dev_name);
1136 
1137 			return -EINVAL;
1138 		}
1139 	}
1140 
1141 	u = uuid_find(c, dc->sb.uuid);
1142 
1143 	if (u &&
1144 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1145 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1146 		memcpy(u->uuid, invalid_uuid, 16);
1147 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1148 		u = NULL;
1149 	}
1150 
1151 	if (!u) {
1152 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1153 			pr_err("Couldn't find uuid for %s in set",
1154 			       dc->backing_dev_name);
1155 			return -ENOENT;
1156 		}
1157 
1158 		u = uuid_find_empty(c);
1159 		if (!u) {
1160 			pr_err("Not caching %s, no room for UUID",
1161 			       dc->backing_dev_name);
1162 			return -EINVAL;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * Deadlocks since we're called via sysfs...
1168 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1169 	 */
1170 
1171 	if (bch_is_zero(u->uuid, 16)) {
1172 		struct closure cl;
1173 
1174 		closure_init_stack(&cl);
1175 
1176 		memcpy(u->uuid, dc->sb.uuid, 16);
1177 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1178 		u->first_reg = u->last_reg = rtime;
1179 		bch_uuid_write(c);
1180 
1181 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1182 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1183 
1184 		bch_write_bdev_super(dc, &cl);
1185 		closure_sync(&cl);
1186 	} else {
1187 		u->last_reg = rtime;
1188 		bch_uuid_write(c);
1189 	}
1190 
1191 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1192 	list_move(&dc->list, &c->cached_devs);
1193 	calc_cached_dev_sectors(c);
1194 
1195 	/*
1196 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1197 	 * cached_dev_get()
1198 	 */
1199 	smp_wmb();
1200 	refcount_set(&dc->count, 1);
1201 
1202 	/* Block writeback thread, but spawn it */
1203 	down_write(&dc->writeback_lock);
1204 	if (bch_cached_dev_writeback_start(dc)) {
1205 		up_write(&dc->writeback_lock);
1206 		pr_err("Couldn't start writeback facilities for %s",
1207 		       dc->disk.disk->disk_name);
1208 		return -ENOMEM;
1209 	}
1210 
1211 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1212 		atomic_set(&dc->has_dirty, 1);
1213 		bch_writeback_queue(dc);
1214 	}
1215 
1216 	bch_sectors_dirty_init(&dc->disk);
1217 
1218 	ret = bch_cached_dev_run(dc);
1219 	if (ret && (ret != -EBUSY)) {
1220 		up_write(&dc->writeback_lock);
1221 		/*
1222 		 * bch_register_lock is held, bcache_device_stop() is not
1223 		 * able to be directly called. The kthread and kworker
1224 		 * created previously in bch_cached_dev_writeback_start()
1225 		 * have to be stopped manually here.
1226 		 */
1227 		kthread_stop(dc->writeback_thread);
1228 		cancel_writeback_rate_update_dwork(dc);
1229 		pr_err("Couldn't run cached device %s",
1230 		       dc->backing_dev_name);
1231 		return ret;
1232 	}
1233 
1234 	bcache_device_link(&dc->disk, c, "bdev");
1235 	atomic_inc(&c->attached_dev_nr);
1236 
1237 	/* Allow the writeback thread to proceed */
1238 	up_write(&dc->writeback_lock);
1239 
1240 	pr_info("Caching %s as %s on set %pU",
1241 		dc->backing_dev_name,
1242 		dc->disk.disk->disk_name,
1243 		dc->disk.c->sb.set_uuid);
1244 	return 0;
1245 }
1246 
1247 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1248 void bch_cached_dev_release(struct kobject *kobj)
1249 {
1250 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1251 					     disk.kobj);
1252 	kfree(dc);
1253 	module_put(THIS_MODULE);
1254 }
1255 
cached_dev_free(struct closure * cl)1256 static void cached_dev_free(struct closure *cl)
1257 {
1258 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1259 
1260 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1261 		cancel_writeback_rate_update_dwork(dc);
1262 
1263 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1264 		kthread_stop(dc->writeback_thread);
1265 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1266 		kthread_stop(dc->status_update_thread);
1267 
1268 	mutex_lock(&bch_register_lock);
1269 
1270 	if (atomic_read(&dc->running))
1271 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1272 	bcache_device_free(&dc->disk);
1273 	list_del(&dc->list);
1274 
1275 	mutex_unlock(&bch_register_lock);
1276 
1277 	if (!IS_ERR_OR_NULL(dc->bdev))
1278 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1279 
1280 	wake_up(&unregister_wait);
1281 
1282 	kobject_put(&dc->disk.kobj);
1283 }
1284 
cached_dev_flush(struct closure * cl)1285 static void cached_dev_flush(struct closure *cl)
1286 {
1287 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1288 	struct bcache_device *d = &dc->disk;
1289 
1290 	mutex_lock(&bch_register_lock);
1291 	bcache_device_unlink(d);
1292 	mutex_unlock(&bch_register_lock);
1293 
1294 	bch_cache_accounting_destroy(&dc->accounting);
1295 	kobject_del(&d->kobj);
1296 
1297 	continue_at(cl, cached_dev_free, system_wq);
1298 }
1299 
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1300 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1301 {
1302 	int ret;
1303 	struct io *io;
1304 	struct request_queue *q = bdev_get_queue(dc->bdev);
1305 
1306 	__module_get(THIS_MODULE);
1307 	INIT_LIST_HEAD(&dc->list);
1308 	closure_init(&dc->disk.cl, NULL);
1309 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1310 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1311 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1312 	sema_init(&dc->sb_write_mutex, 1);
1313 	INIT_LIST_HEAD(&dc->io_lru);
1314 	spin_lock_init(&dc->io_lock);
1315 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1316 
1317 	dc->sequential_cutoff		= 4 << 20;
1318 
1319 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1320 		list_add(&io->lru, &dc->io_lru);
1321 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1322 	}
1323 
1324 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1325 
1326 	if (dc->disk.stripe_size)
1327 		dc->partial_stripes_expensive =
1328 			q->limits.raid_partial_stripes_expensive;
1329 
1330 	ret = bcache_device_init(&dc->disk, block_size,
1331 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1332 	if (ret)
1333 		return ret;
1334 
1335 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1336 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1337 		    q->backing_dev_info->ra_pages);
1338 
1339 	atomic_set(&dc->io_errors, 0);
1340 	dc->io_disable = false;
1341 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1342 	/* default to auto */
1343 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1344 
1345 	bch_cached_dev_request_init(dc);
1346 	bch_cached_dev_writeback_init(dc);
1347 	return 0;
1348 }
1349 
1350 /* Cached device - bcache superblock */
1351 
register_bdev(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cached_dev * dc)1352 static int register_bdev(struct cache_sb *sb, struct page *sb_page,
1353 				 struct block_device *bdev,
1354 				 struct cached_dev *dc)
1355 {
1356 	const char *err = "cannot allocate memory";
1357 	struct cache_set *c;
1358 	int ret = -ENOMEM;
1359 
1360 	bdevname(bdev, dc->backing_dev_name);
1361 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1362 	dc->bdev = bdev;
1363 	dc->bdev->bd_holder = dc;
1364 
1365 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1366 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1367 	get_page(sb_page);
1368 
1369 
1370 	if (cached_dev_init(dc, sb->block_size << 9))
1371 		goto err;
1372 
1373 	err = "error creating kobject";
1374 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1375 			"bcache"))
1376 		goto err;
1377 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1378 		goto err;
1379 
1380 	pr_info("registered backing device %s", dc->backing_dev_name);
1381 
1382 	list_add(&dc->list, &uncached_devices);
1383 	/* attach to a matched cache set if it exists */
1384 	list_for_each_entry(c, &bch_cache_sets, list)
1385 		bch_cached_dev_attach(dc, c, NULL);
1386 
1387 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1388 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1389 		err = "failed to run cached device";
1390 		ret = bch_cached_dev_run(dc);
1391 		if (ret)
1392 			goto err;
1393 	}
1394 
1395 	return 0;
1396 err:
1397 	pr_notice("error %s: %s", dc->backing_dev_name, err);
1398 	bcache_device_stop(&dc->disk);
1399 	return ret;
1400 }
1401 
1402 /* Flash only volumes */
1403 
1404 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1405 void bch_flash_dev_release(struct kobject *kobj)
1406 {
1407 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1408 					       kobj);
1409 	kfree(d);
1410 }
1411 
flash_dev_free(struct closure * cl)1412 static void flash_dev_free(struct closure *cl)
1413 {
1414 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1415 
1416 	mutex_lock(&bch_register_lock);
1417 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1418 			&d->c->flash_dev_dirty_sectors);
1419 	bcache_device_free(d);
1420 	mutex_unlock(&bch_register_lock);
1421 	kobject_put(&d->kobj);
1422 }
1423 
flash_dev_flush(struct closure * cl)1424 static void flash_dev_flush(struct closure *cl)
1425 {
1426 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1427 
1428 	mutex_lock(&bch_register_lock);
1429 	bcache_device_unlink(d);
1430 	mutex_unlock(&bch_register_lock);
1431 	kobject_del(&d->kobj);
1432 	continue_at(cl, flash_dev_free, system_wq);
1433 }
1434 
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1435 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1436 {
1437 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1438 					  GFP_KERNEL);
1439 	if (!d)
1440 		return -ENOMEM;
1441 
1442 	closure_init(&d->cl, NULL);
1443 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1444 
1445 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1446 
1447 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1448 		goto err;
1449 
1450 	bcache_device_attach(d, c, u - c->uuids);
1451 	bch_sectors_dirty_init(d);
1452 	bch_flash_dev_request_init(d);
1453 	add_disk(d->disk);
1454 
1455 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1456 		goto err;
1457 
1458 	bcache_device_link(d, c, "volume");
1459 
1460 	return 0;
1461 err:
1462 	kobject_put(&d->kobj);
1463 	return -ENOMEM;
1464 }
1465 
flash_devs_run(struct cache_set * c)1466 static int flash_devs_run(struct cache_set *c)
1467 {
1468 	int ret = 0;
1469 	struct uuid_entry *u;
1470 
1471 	for (u = c->uuids;
1472 	     u < c->uuids + c->nr_uuids && !ret;
1473 	     u++)
1474 		if (UUID_FLASH_ONLY(u))
1475 			ret = flash_dev_run(c, u);
1476 
1477 	return ret;
1478 }
1479 
bch_flash_dev_create(struct cache_set * c,uint64_t size)1480 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1481 {
1482 	struct uuid_entry *u;
1483 
1484 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1485 		return -EINTR;
1486 
1487 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1488 		return -EPERM;
1489 
1490 	u = uuid_find_empty(c);
1491 	if (!u) {
1492 		pr_err("Can't create volume, no room for UUID");
1493 		return -EINVAL;
1494 	}
1495 
1496 	get_random_bytes(u->uuid, 16);
1497 	memset(u->label, 0, 32);
1498 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1499 
1500 	SET_UUID_FLASH_ONLY(u, 1);
1501 	u->sectors = size >> 9;
1502 
1503 	bch_uuid_write(c);
1504 
1505 	return flash_dev_run(c, u);
1506 }
1507 
bch_cached_dev_error(struct cached_dev * dc)1508 bool bch_cached_dev_error(struct cached_dev *dc)
1509 {
1510 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1511 		return false;
1512 
1513 	dc->io_disable = true;
1514 	/* make others know io_disable is true earlier */
1515 	smp_mb();
1516 
1517 	pr_err("stop %s: too many IO errors on backing device %s\n",
1518 		dc->disk.disk->disk_name, dc->backing_dev_name);
1519 
1520 	bcache_device_stop(&dc->disk);
1521 	return true;
1522 }
1523 
1524 /* Cache set */
1525 
1526 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1527 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1528 {
1529 	va_list args;
1530 
1531 	if (c->on_error != ON_ERROR_PANIC &&
1532 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1533 		return false;
1534 
1535 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1536 		pr_info("CACHE_SET_IO_DISABLE already set");
1537 
1538 	/*
1539 	 * XXX: we can be called from atomic context
1540 	 * acquire_console_sem();
1541 	 */
1542 
1543 	pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1544 
1545 	va_start(args, fmt);
1546 	vprintk(fmt, args);
1547 	va_end(args);
1548 
1549 	pr_err(", disabling caching\n");
1550 
1551 	if (c->on_error == ON_ERROR_PANIC)
1552 		panic("panic forced after error\n");
1553 
1554 	bch_cache_set_unregister(c);
1555 	return true;
1556 }
1557 
1558 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1559 void bch_cache_set_release(struct kobject *kobj)
1560 {
1561 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1562 
1563 	kfree(c);
1564 	module_put(THIS_MODULE);
1565 }
1566 
cache_set_free(struct closure * cl)1567 static void cache_set_free(struct closure *cl)
1568 {
1569 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1570 	struct cache *ca;
1571 	unsigned int i;
1572 
1573 	debugfs_remove(c->debug);
1574 
1575 	bch_open_buckets_free(c);
1576 	bch_btree_cache_free(c);
1577 	bch_journal_free(c);
1578 
1579 	mutex_lock(&bch_register_lock);
1580 	for_each_cache(ca, c, i)
1581 		if (ca) {
1582 			ca->set = NULL;
1583 			c->cache[ca->sb.nr_this_dev] = NULL;
1584 			kobject_put(&ca->kobj);
1585 		}
1586 
1587 	bch_bset_sort_state_free(&c->sort);
1588 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1589 
1590 	if (c->moving_gc_wq)
1591 		destroy_workqueue(c->moving_gc_wq);
1592 	bioset_exit(&c->bio_split);
1593 	mempool_exit(&c->fill_iter);
1594 	mempool_exit(&c->bio_meta);
1595 	mempool_exit(&c->search);
1596 	kfree(c->devices);
1597 
1598 	list_del(&c->list);
1599 	mutex_unlock(&bch_register_lock);
1600 
1601 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1602 	wake_up(&unregister_wait);
1603 
1604 	closure_debug_destroy(&c->cl);
1605 	kobject_put(&c->kobj);
1606 }
1607 
cache_set_flush(struct closure * cl)1608 static void cache_set_flush(struct closure *cl)
1609 {
1610 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1611 	struct cache *ca;
1612 	struct btree *b;
1613 	unsigned int i;
1614 
1615 	bch_cache_accounting_destroy(&c->accounting);
1616 
1617 	kobject_put(&c->internal);
1618 	kobject_del(&c->kobj);
1619 
1620 	if (!IS_ERR_OR_NULL(c->gc_thread))
1621 		kthread_stop(c->gc_thread);
1622 
1623 	if (!IS_ERR_OR_NULL(c->root))
1624 		list_add(&c->root->list, &c->btree_cache);
1625 
1626 	/*
1627 	 * Avoid flushing cached nodes if cache set is retiring
1628 	 * due to too many I/O errors detected.
1629 	 */
1630 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1631 		list_for_each_entry(b, &c->btree_cache, list) {
1632 			mutex_lock(&b->write_lock);
1633 			if (btree_node_dirty(b))
1634 				__bch_btree_node_write(b, NULL);
1635 			mutex_unlock(&b->write_lock);
1636 		}
1637 
1638 	for_each_cache(ca, c, i)
1639 		if (ca->alloc_thread)
1640 			kthread_stop(ca->alloc_thread);
1641 
1642 	if (c->journal.cur) {
1643 		cancel_delayed_work_sync(&c->journal.work);
1644 		/* flush last journal entry if needed */
1645 		c->journal.work.work.func(&c->journal.work.work);
1646 	}
1647 
1648 	closure_return(cl);
1649 }
1650 
1651 /*
1652  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1653  * cache set is unregistering due to too many I/O errors. In this condition,
1654  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1655  * value and whether the broken cache has dirty data:
1656  *
1657  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1658  *  BCH_CACHED_STOP_AUTO               0               NO
1659  *  BCH_CACHED_STOP_AUTO               1               YES
1660  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1661  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1662  *
1663  * The expected behavior is, if stop_when_cache_set_failed is configured to
1664  * "auto" via sysfs interface, the bcache device will not be stopped if the
1665  * backing device is clean on the broken cache device.
1666  */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1667 static void conditional_stop_bcache_device(struct cache_set *c,
1668 					   struct bcache_device *d,
1669 					   struct cached_dev *dc)
1670 {
1671 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1672 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1673 			d->disk->disk_name, c->sb.set_uuid);
1674 		bcache_device_stop(d);
1675 	} else if (atomic_read(&dc->has_dirty)) {
1676 		/*
1677 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1678 		 * and dc->has_dirty == 1
1679 		 */
1680 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1681 			d->disk->disk_name);
1682 		/*
1683 		 * There might be a small time gap that cache set is
1684 		 * released but bcache device is not. Inside this time
1685 		 * gap, regular I/O requests will directly go into
1686 		 * backing device as no cache set attached to. This
1687 		 * behavior may also introduce potential inconsistence
1688 		 * data in writeback mode while cache is dirty.
1689 		 * Therefore before calling bcache_device_stop() due
1690 		 * to a broken cache device, dc->io_disable should be
1691 		 * explicitly set to true.
1692 		 */
1693 		dc->io_disable = true;
1694 		/* make others know io_disable is true earlier */
1695 		smp_mb();
1696 		bcache_device_stop(d);
1697 	} else {
1698 		/*
1699 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1700 		 * and dc->has_dirty == 0
1701 		 */
1702 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1703 			d->disk->disk_name);
1704 	}
1705 }
1706 
__cache_set_unregister(struct closure * cl)1707 static void __cache_set_unregister(struct closure *cl)
1708 {
1709 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1710 	struct cached_dev *dc;
1711 	struct bcache_device *d;
1712 	size_t i;
1713 
1714 	mutex_lock(&bch_register_lock);
1715 
1716 	for (i = 0; i < c->devices_max_used; i++) {
1717 		d = c->devices[i];
1718 		if (!d)
1719 			continue;
1720 
1721 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1722 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1723 			dc = container_of(d, struct cached_dev, disk);
1724 			bch_cached_dev_detach(dc);
1725 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1726 				conditional_stop_bcache_device(c, d, dc);
1727 		} else {
1728 			bcache_device_stop(d);
1729 		}
1730 	}
1731 
1732 	mutex_unlock(&bch_register_lock);
1733 
1734 	continue_at(cl, cache_set_flush, system_wq);
1735 }
1736 
bch_cache_set_stop(struct cache_set * c)1737 void bch_cache_set_stop(struct cache_set *c)
1738 {
1739 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1740 		/* closure_fn set to __cache_set_unregister() */
1741 		closure_queue(&c->caching);
1742 }
1743 
bch_cache_set_unregister(struct cache_set * c)1744 void bch_cache_set_unregister(struct cache_set *c)
1745 {
1746 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1747 	bch_cache_set_stop(c);
1748 }
1749 
1750 #define alloc_bucket_pages(gfp, c)			\
1751 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1752 
bch_cache_set_alloc(struct cache_sb * sb)1753 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1754 {
1755 	int iter_size;
1756 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1757 
1758 	if (!c)
1759 		return NULL;
1760 
1761 	__module_get(THIS_MODULE);
1762 	closure_init(&c->cl, NULL);
1763 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1764 
1765 	closure_init(&c->caching, &c->cl);
1766 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1767 
1768 	/* Maybe create continue_at_noreturn() and use it here? */
1769 	closure_set_stopped(&c->cl);
1770 	closure_put(&c->cl);
1771 
1772 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1773 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1774 
1775 	bch_cache_accounting_init(&c->accounting, &c->cl);
1776 
1777 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1778 	c->sb.block_size	= sb->block_size;
1779 	c->sb.bucket_size	= sb->bucket_size;
1780 	c->sb.nr_in_set		= sb->nr_in_set;
1781 	c->sb.last_mount	= sb->last_mount;
1782 	c->bucket_bits		= ilog2(sb->bucket_size);
1783 	c->block_bits		= ilog2(sb->block_size);
1784 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1785 	c->devices_max_used	= 0;
1786 	atomic_set(&c->attached_dev_nr, 0);
1787 	c->btree_pages		= bucket_pages(c);
1788 	if (c->btree_pages > BTREE_MAX_PAGES)
1789 		c->btree_pages = max_t(int, c->btree_pages / 4,
1790 				       BTREE_MAX_PAGES);
1791 
1792 	sema_init(&c->sb_write_mutex, 1);
1793 	mutex_init(&c->bucket_lock);
1794 	init_waitqueue_head(&c->btree_cache_wait);
1795 	init_waitqueue_head(&c->bucket_wait);
1796 	init_waitqueue_head(&c->gc_wait);
1797 	sema_init(&c->uuid_write_mutex, 1);
1798 
1799 	spin_lock_init(&c->btree_gc_time.lock);
1800 	spin_lock_init(&c->btree_split_time.lock);
1801 	spin_lock_init(&c->btree_read_time.lock);
1802 
1803 	bch_moving_init_cache_set(c);
1804 
1805 	INIT_LIST_HEAD(&c->list);
1806 	INIT_LIST_HEAD(&c->cached_devs);
1807 	INIT_LIST_HEAD(&c->btree_cache);
1808 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1809 	INIT_LIST_HEAD(&c->btree_cache_freed);
1810 	INIT_LIST_HEAD(&c->data_buckets);
1811 
1812 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1813 		sizeof(struct btree_iter_set);
1814 
1815 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1816 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1817 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1818 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1819 				bucket_pages(c)) ||
1820 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1821 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1822 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1823 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1824 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1825 						WQ_MEM_RECLAIM, 0)) ||
1826 	    bch_journal_alloc(c) ||
1827 	    bch_btree_cache_alloc(c) ||
1828 	    bch_open_buckets_alloc(c) ||
1829 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1830 		goto err;
1831 
1832 	c->congested_read_threshold_us	= 2000;
1833 	c->congested_write_threshold_us	= 20000;
1834 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1835 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1836 
1837 	return c;
1838 err:
1839 	bch_cache_set_unregister(c);
1840 	return NULL;
1841 }
1842 
run_cache_set(struct cache_set * c)1843 static int run_cache_set(struct cache_set *c)
1844 {
1845 	const char *err = "cannot allocate memory";
1846 	struct cached_dev *dc, *t;
1847 	struct cache *ca;
1848 	struct closure cl;
1849 	unsigned int i;
1850 	LIST_HEAD(journal);
1851 	struct journal_replay *l;
1852 
1853 	closure_init_stack(&cl);
1854 
1855 	for_each_cache(ca, c, i)
1856 		c->nbuckets += ca->sb.nbuckets;
1857 	set_gc_sectors(c);
1858 
1859 	if (CACHE_SYNC(&c->sb)) {
1860 		struct bkey *k;
1861 		struct jset *j;
1862 
1863 		err = "cannot allocate memory for journal";
1864 		if (bch_journal_read(c, &journal))
1865 			goto err;
1866 
1867 		pr_debug("btree_journal_read() done");
1868 
1869 		err = "no journal entries found";
1870 		if (list_empty(&journal))
1871 			goto err;
1872 
1873 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1874 
1875 		err = "IO error reading priorities";
1876 		for_each_cache(ca, c, i)
1877 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1878 
1879 		/*
1880 		 * If prio_read() fails it'll call cache_set_error and we'll
1881 		 * tear everything down right away, but if we perhaps checked
1882 		 * sooner we could avoid journal replay.
1883 		 */
1884 
1885 		k = &j->btree_root;
1886 
1887 		err = "bad btree root";
1888 		if (__bch_btree_ptr_invalid(c, k))
1889 			goto err;
1890 
1891 		err = "error reading btree root";
1892 		c->root = bch_btree_node_get(c, NULL, k,
1893 					     j->btree_level,
1894 					     true, NULL);
1895 		if (IS_ERR_OR_NULL(c->root))
1896 			goto err;
1897 
1898 		list_del_init(&c->root->list);
1899 		rw_unlock(true, c->root);
1900 
1901 		err = uuid_read(c, j, &cl);
1902 		if (err)
1903 			goto err;
1904 
1905 		err = "error in recovery";
1906 		if (bch_btree_check(c))
1907 			goto err;
1908 
1909 		/*
1910 		 * bch_btree_check() may occupy too much system memory which
1911 		 * has negative effects to user space application (e.g. data
1912 		 * base) performance. Shrink the mca cache memory proactively
1913 		 * here to avoid competing memory with user space workloads..
1914 		 */
1915 		if (!c->shrinker_disabled) {
1916 			struct shrink_control sc;
1917 
1918 			sc.gfp_mask = GFP_KERNEL;
1919 			sc.nr_to_scan = c->btree_cache_used * c->btree_pages;
1920 			/* first run to clear b->accessed tag */
1921 			c->shrink.scan_objects(&c->shrink, &sc);
1922 			/* second run to reap non-accessed nodes */
1923 			c->shrink.scan_objects(&c->shrink, &sc);
1924 		}
1925 
1926 		bch_journal_mark(c, &journal);
1927 		bch_initial_gc_finish(c);
1928 		pr_debug("btree_check() done");
1929 
1930 		/*
1931 		 * bcache_journal_next() can't happen sooner, or
1932 		 * btree_gc_finish() will give spurious errors about last_gc >
1933 		 * gc_gen - this is a hack but oh well.
1934 		 */
1935 		bch_journal_next(&c->journal);
1936 
1937 		err = "error starting allocator thread";
1938 		for_each_cache(ca, c, i)
1939 			if (bch_cache_allocator_start(ca))
1940 				goto err;
1941 
1942 		/*
1943 		 * First place it's safe to allocate: btree_check() and
1944 		 * btree_gc_finish() have to run before we have buckets to
1945 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1946 		 * entry to be written so bcache_journal_next() has to be called
1947 		 * first.
1948 		 *
1949 		 * If the uuids were in the old format we have to rewrite them
1950 		 * before the next journal entry is written:
1951 		 */
1952 		if (j->version < BCACHE_JSET_VERSION_UUID)
1953 			__uuid_write(c);
1954 
1955 		err = "bcache: replay journal failed";
1956 		if (bch_journal_replay(c, &journal))
1957 			goto err;
1958 	} else {
1959 		pr_notice("invalidating existing data");
1960 
1961 		for_each_cache(ca, c, i) {
1962 			unsigned int j;
1963 
1964 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1965 					      2, SB_JOURNAL_BUCKETS);
1966 
1967 			for (j = 0; j < ca->sb.keys; j++)
1968 				ca->sb.d[j] = ca->sb.first_bucket + j;
1969 		}
1970 
1971 		bch_initial_gc_finish(c);
1972 
1973 		err = "error starting allocator thread";
1974 		for_each_cache(ca, c, i)
1975 			if (bch_cache_allocator_start(ca))
1976 				goto err;
1977 
1978 		mutex_lock(&c->bucket_lock);
1979 		for_each_cache(ca, c, i)
1980 			bch_prio_write(ca, true);
1981 		mutex_unlock(&c->bucket_lock);
1982 
1983 		err = "cannot allocate new UUID bucket";
1984 		if (__uuid_write(c))
1985 			goto err;
1986 
1987 		err = "cannot allocate new btree root";
1988 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1989 		if (IS_ERR_OR_NULL(c->root))
1990 			goto err;
1991 
1992 		mutex_lock(&c->root->write_lock);
1993 		bkey_copy_key(&c->root->key, &MAX_KEY);
1994 		bch_btree_node_write(c->root, &cl);
1995 		mutex_unlock(&c->root->write_lock);
1996 
1997 		bch_btree_set_root(c->root);
1998 		rw_unlock(true, c->root);
1999 
2000 		/*
2001 		 * We don't want to write the first journal entry until
2002 		 * everything is set up - fortunately journal entries won't be
2003 		 * written until the SET_CACHE_SYNC() here:
2004 		 */
2005 		SET_CACHE_SYNC(&c->sb, true);
2006 
2007 		bch_journal_next(&c->journal);
2008 		bch_journal_meta(c, &cl);
2009 	}
2010 
2011 	err = "error starting gc thread";
2012 	if (bch_gc_thread_start(c))
2013 		goto err;
2014 
2015 	closure_sync(&cl);
2016 	c->sb.last_mount = (u32)ktime_get_real_seconds();
2017 	bcache_write_super(c);
2018 
2019 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2020 		bch_cached_dev_attach(dc, c, NULL);
2021 
2022 	flash_devs_run(c);
2023 
2024 	set_bit(CACHE_SET_RUNNING, &c->flags);
2025 	return 0;
2026 err:
2027 	while (!list_empty(&journal)) {
2028 		l = list_first_entry(&journal, struct journal_replay, list);
2029 		list_del(&l->list);
2030 		kfree(l);
2031 	}
2032 
2033 	closure_sync(&cl);
2034 
2035 	bch_cache_set_error(c, "%s", err);
2036 
2037 	return -EIO;
2038 }
2039 
can_attach_cache(struct cache * ca,struct cache_set * c)2040 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2041 {
2042 	return ca->sb.block_size	== c->sb.block_size &&
2043 		ca->sb.bucket_size	== c->sb.bucket_size &&
2044 		ca->sb.nr_in_set	== c->sb.nr_in_set;
2045 }
2046 
register_cache_set(struct cache * ca)2047 static const char *register_cache_set(struct cache *ca)
2048 {
2049 	char buf[12];
2050 	const char *err = "cannot allocate memory";
2051 	struct cache_set *c;
2052 
2053 	list_for_each_entry(c, &bch_cache_sets, list)
2054 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2055 			if (c->cache[ca->sb.nr_this_dev])
2056 				return "duplicate cache set member";
2057 
2058 			if (!can_attach_cache(ca, c))
2059 				return "cache sb does not match set";
2060 
2061 			if (!CACHE_SYNC(&ca->sb))
2062 				SET_CACHE_SYNC(&c->sb, false);
2063 
2064 			goto found;
2065 		}
2066 
2067 	c = bch_cache_set_alloc(&ca->sb);
2068 	if (!c)
2069 		return err;
2070 
2071 	err = "error creating kobject";
2072 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2073 	    kobject_add(&c->internal, &c->kobj, "internal"))
2074 		goto err;
2075 
2076 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2077 		goto err;
2078 
2079 	bch_debug_init_cache_set(c);
2080 
2081 	list_add(&c->list, &bch_cache_sets);
2082 found:
2083 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2084 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2085 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2086 		goto err;
2087 
2088 	if (ca->sb.seq > c->sb.seq) {
2089 		c->sb.version		= ca->sb.version;
2090 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2091 		c->sb.flags             = ca->sb.flags;
2092 		c->sb.seq		= ca->sb.seq;
2093 		pr_debug("set version = %llu", c->sb.version);
2094 	}
2095 
2096 	kobject_get(&ca->kobj);
2097 	ca->set = c;
2098 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2099 	c->cache_by_alloc[c->caches_loaded++] = ca;
2100 
2101 	if (c->caches_loaded == c->sb.nr_in_set) {
2102 		err = "failed to run cache set";
2103 		if (run_cache_set(c) < 0)
2104 			goto err;
2105 	}
2106 
2107 	return NULL;
2108 err:
2109 	bch_cache_set_unregister(c);
2110 	return err;
2111 }
2112 
2113 /* Cache device */
2114 
2115 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2116 void bch_cache_release(struct kobject *kobj)
2117 {
2118 	struct cache *ca = container_of(kobj, struct cache, kobj);
2119 	unsigned int i;
2120 
2121 	if (ca->set) {
2122 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2123 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2124 	}
2125 
2126 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2127 	kfree(ca->prio_buckets);
2128 	vfree(ca->buckets);
2129 
2130 	free_heap(&ca->heap);
2131 	free_fifo(&ca->free_inc);
2132 
2133 	for (i = 0; i < RESERVE_NR; i++)
2134 		free_fifo(&ca->free[i]);
2135 
2136 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2137 		put_page(bio_first_page_all(&ca->sb_bio));
2138 
2139 	if (!IS_ERR_OR_NULL(ca->bdev))
2140 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2141 
2142 	kfree(ca);
2143 	module_put(THIS_MODULE);
2144 }
2145 
cache_alloc(struct cache * ca)2146 static int cache_alloc(struct cache *ca)
2147 {
2148 	size_t free;
2149 	size_t btree_buckets;
2150 	struct bucket *b;
2151 	int ret = -ENOMEM;
2152 	const char *err = NULL;
2153 
2154 	__module_get(THIS_MODULE);
2155 	kobject_init(&ca->kobj, &bch_cache_ktype);
2156 
2157 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2158 
2159 	/*
2160 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2161 	 * and in bch_journal_replay(), tree node may split,
2162 	 * so bucket of RESERVE_BTREE type is needed,
2163 	 * the worst situation is all journal buckets are valid journal,
2164 	 * and all the keys need to replay,
2165 	 * so the number of  RESERVE_BTREE type buckets should be as much
2166 	 * as journal buckets
2167 	 */
2168 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2169 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2170 	if (!free) {
2171 		ret = -EPERM;
2172 		err = "ca->sb.nbuckets is too small";
2173 		goto err_free;
2174 	}
2175 
2176 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2177 						GFP_KERNEL)) {
2178 		err = "ca->free[RESERVE_BTREE] alloc failed";
2179 		goto err_btree_alloc;
2180 	}
2181 
2182 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2183 							GFP_KERNEL)) {
2184 		err = "ca->free[RESERVE_PRIO] alloc failed";
2185 		goto err_prio_alloc;
2186 	}
2187 
2188 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2189 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2190 		goto err_movinggc_alloc;
2191 	}
2192 
2193 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2194 		err = "ca->free[RESERVE_NONE] alloc failed";
2195 		goto err_none_alloc;
2196 	}
2197 
2198 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2199 		err = "ca->free_inc alloc failed";
2200 		goto err_free_inc_alloc;
2201 	}
2202 
2203 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2204 		err = "ca->heap alloc failed";
2205 		goto err_heap_alloc;
2206 	}
2207 
2208 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2209 			      ca->sb.nbuckets));
2210 	if (!ca->buckets) {
2211 		err = "ca->buckets alloc failed";
2212 		goto err_buckets_alloc;
2213 	}
2214 
2215 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2216 				   prio_buckets(ca), 2),
2217 				   GFP_KERNEL);
2218 	if (!ca->prio_buckets) {
2219 		err = "ca->prio_buckets alloc failed";
2220 		goto err_prio_buckets_alloc;
2221 	}
2222 
2223 	ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2224 	if (!ca->disk_buckets) {
2225 		err = "ca->disk_buckets alloc failed";
2226 		goto err_disk_buckets_alloc;
2227 	}
2228 
2229 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2230 
2231 	for_each_bucket(b, ca)
2232 		atomic_set(&b->pin, 0);
2233 	return 0;
2234 
2235 err_disk_buckets_alloc:
2236 	kfree(ca->prio_buckets);
2237 err_prio_buckets_alloc:
2238 	vfree(ca->buckets);
2239 err_buckets_alloc:
2240 	free_heap(&ca->heap);
2241 err_heap_alloc:
2242 	free_fifo(&ca->free_inc);
2243 err_free_inc_alloc:
2244 	free_fifo(&ca->free[RESERVE_NONE]);
2245 err_none_alloc:
2246 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2247 err_movinggc_alloc:
2248 	free_fifo(&ca->free[RESERVE_PRIO]);
2249 err_prio_alloc:
2250 	free_fifo(&ca->free[RESERVE_BTREE]);
2251 err_btree_alloc:
2252 err_free:
2253 	module_put(THIS_MODULE);
2254 	if (err)
2255 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2256 	return ret;
2257 }
2258 
register_cache(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cache * ca)2259 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2260 				struct block_device *bdev, struct cache *ca)
2261 {
2262 	const char *err = NULL; /* must be set for any error case */
2263 	int ret = 0;
2264 
2265 	bdevname(bdev, ca->cache_dev_name);
2266 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2267 	ca->bdev = bdev;
2268 	ca->bdev->bd_holder = ca;
2269 
2270 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2271 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2272 	get_page(sb_page);
2273 
2274 	if (blk_queue_discard(bdev_get_queue(bdev)))
2275 		ca->discard = CACHE_DISCARD(&ca->sb);
2276 
2277 	ret = cache_alloc(ca);
2278 	if (ret != 0) {
2279 		/*
2280 		 * If we failed here, it means ca->kobj is not initialized yet,
2281 		 * kobject_put() won't be called and there is no chance to
2282 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2283 		 * explicitly call blkdev_put() here.
2284 		 */
2285 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2286 		if (ret == -ENOMEM)
2287 			err = "cache_alloc(): -ENOMEM";
2288 		else if (ret == -EPERM)
2289 			err = "cache_alloc(): cache device is too small";
2290 		else
2291 			err = "cache_alloc(): unknown error";
2292 		goto err;
2293 	}
2294 
2295 	if (kobject_add(&ca->kobj,
2296 			&part_to_dev(bdev->bd_part)->kobj,
2297 			"bcache")) {
2298 		err = "error calling kobject_add";
2299 		ret = -ENOMEM;
2300 		goto out;
2301 	}
2302 
2303 	mutex_lock(&bch_register_lock);
2304 	err = register_cache_set(ca);
2305 	mutex_unlock(&bch_register_lock);
2306 
2307 	if (err) {
2308 		ret = -ENODEV;
2309 		goto out;
2310 	}
2311 
2312 	pr_info("registered cache device %s", ca->cache_dev_name);
2313 
2314 out:
2315 	kobject_put(&ca->kobj);
2316 
2317 err:
2318 	if (err)
2319 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2320 
2321 	return ret;
2322 }
2323 
2324 /* Global interfaces/init */
2325 
2326 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2327 			       const char *buffer, size_t size);
2328 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2329 					 struct kobj_attribute *attr,
2330 					 const char *buffer, size_t size);
2331 
2332 kobj_attribute_write(register,		register_bcache);
2333 kobj_attribute_write(register_quiet,	register_bcache);
2334 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2335 
bch_is_open_backing(struct block_device * bdev)2336 static bool bch_is_open_backing(struct block_device *bdev)
2337 {
2338 	struct cache_set *c, *tc;
2339 	struct cached_dev *dc, *t;
2340 
2341 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2342 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2343 			if (dc->bdev == bdev)
2344 				return true;
2345 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2346 		if (dc->bdev == bdev)
2347 			return true;
2348 	return false;
2349 }
2350 
bch_is_open_cache(struct block_device * bdev)2351 static bool bch_is_open_cache(struct block_device *bdev)
2352 {
2353 	struct cache_set *c, *tc;
2354 	struct cache *ca;
2355 	unsigned int i;
2356 
2357 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2358 		for_each_cache(ca, c, i)
2359 			if (ca->bdev == bdev)
2360 				return true;
2361 	return false;
2362 }
2363 
bch_is_open(struct block_device * bdev)2364 static bool bch_is_open(struct block_device *bdev)
2365 {
2366 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2367 }
2368 
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2369 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2370 			       const char *buffer, size_t size)
2371 {
2372 	ssize_t ret = -EINVAL;
2373 	const char *err = "cannot allocate memory";
2374 	char *path = NULL;
2375 	struct cache_sb *sb = NULL;
2376 	struct block_device *bdev = NULL;
2377 	struct page *sb_page = NULL;
2378 
2379 	if (!try_module_get(THIS_MODULE))
2380 		return -EBUSY;
2381 
2382 	/* For latest state of bcache_is_reboot */
2383 	smp_mb();
2384 	if (bcache_is_reboot)
2385 		return -EBUSY;
2386 
2387 	path = kstrndup(buffer, size, GFP_KERNEL);
2388 	if (!path)
2389 		goto err;
2390 
2391 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2392 	if (!sb)
2393 		goto err;
2394 
2395 	err = "failed to open device";
2396 	bdev = blkdev_get_by_path(strim(path),
2397 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2398 				  sb);
2399 	if (IS_ERR(bdev)) {
2400 		if (bdev == ERR_PTR(-EBUSY)) {
2401 			bdev = lookup_bdev(strim(path));
2402 			mutex_lock(&bch_register_lock);
2403 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2404 				err = "device already registered";
2405 			else
2406 				err = "device busy";
2407 			mutex_unlock(&bch_register_lock);
2408 			if (!IS_ERR(bdev))
2409 				bdput(bdev);
2410 			if (attr == &ksysfs_register_quiet)
2411 				goto quiet_out;
2412 		}
2413 		goto err;
2414 	}
2415 
2416 	err = "failed to set blocksize";
2417 	if (set_blocksize(bdev, 4096))
2418 		goto err_close;
2419 
2420 	err = read_super(sb, bdev, &sb_page);
2421 	if (err)
2422 		goto err_close;
2423 
2424 	err = "failed to register device";
2425 	if (SB_IS_BDEV(sb)) {
2426 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2427 
2428 		if (!dc)
2429 			goto err_close;
2430 
2431 		mutex_lock(&bch_register_lock);
2432 		ret = register_bdev(sb, sb_page, bdev, dc);
2433 		mutex_unlock(&bch_register_lock);
2434 		/* blkdev_put() will be called in cached_dev_free() */
2435 		if (ret < 0)
2436 			goto err;
2437 	} else {
2438 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2439 
2440 		if (!ca)
2441 			goto err_close;
2442 
2443 		/* blkdev_put() will be called in bch_cache_release() */
2444 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2445 			goto err;
2446 	}
2447 quiet_out:
2448 	ret = size;
2449 out:
2450 	if (sb_page)
2451 		put_page(sb_page);
2452 	kfree(sb);
2453 	kfree(path);
2454 	module_put(THIS_MODULE);
2455 	return ret;
2456 
2457 err_close:
2458 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2459 err:
2460 	pr_info("error %s: %s", path, err);
2461 	goto out;
2462 }
2463 
2464 
2465 struct pdev {
2466 	struct list_head list;
2467 	struct cached_dev *dc;
2468 };
2469 
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2470 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2471 					 struct kobj_attribute *attr,
2472 					 const char *buffer,
2473 					 size_t size)
2474 {
2475 	LIST_HEAD(pending_devs);
2476 	ssize_t ret = size;
2477 	struct cached_dev *dc, *tdc;
2478 	struct pdev *pdev, *tpdev;
2479 	struct cache_set *c, *tc;
2480 
2481 	mutex_lock(&bch_register_lock);
2482 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2483 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2484 		if (!pdev)
2485 			break;
2486 		pdev->dc = dc;
2487 		list_add(&pdev->list, &pending_devs);
2488 	}
2489 
2490 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2491 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2492 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2493 			char *set_uuid = c->sb.uuid;
2494 
2495 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2496 				list_del(&pdev->list);
2497 				kfree(pdev);
2498 				break;
2499 			}
2500 		}
2501 	}
2502 	mutex_unlock(&bch_register_lock);
2503 
2504 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2505 		pr_info("delete pdev %p", pdev);
2506 		list_del(&pdev->list);
2507 		bcache_device_stop(&pdev->dc->disk);
2508 		kfree(pdev);
2509 	}
2510 
2511 	return ret;
2512 }
2513 
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2514 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2515 {
2516 	if (bcache_is_reboot)
2517 		return NOTIFY_DONE;
2518 
2519 	if (code == SYS_DOWN ||
2520 	    code == SYS_HALT ||
2521 	    code == SYS_POWER_OFF) {
2522 		DEFINE_WAIT(wait);
2523 		unsigned long start = jiffies;
2524 		bool stopped = false;
2525 
2526 		struct cache_set *c, *tc;
2527 		struct cached_dev *dc, *tdc;
2528 
2529 		mutex_lock(&bch_register_lock);
2530 
2531 		if (bcache_is_reboot)
2532 			goto out;
2533 
2534 		/* New registration is rejected since now */
2535 		bcache_is_reboot = true;
2536 		/*
2537 		 * Make registering caller (if there is) on other CPU
2538 		 * core know bcache_is_reboot set to true earlier
2539 		 */
2540 		smp_mb();
2541 
2542 		if (list_empty(&bch_cache_sets) &&
2543 		    list_empty(&uncached_devices))
2544 			goto out;
2545 
2546 		mutex_unlock(&bch_register_lock);
2547 
2548 		pr_info("Stopping all devices:");
2549 
2550 		/*
2551 		 * The reason bch_register_lock is not held to call
2552 		 * bch_cache_set_stop() and bcache_device_stop() is to
2553 		 * avoid potential deadlock during reboot, because cache
2554 		 * set or bcache device stopping process will acqurie
2555 		 * bch_register_lock too.
2556 		 *
2557 		 * We are safe here because bcache_is_reboot sets to
2558 		 * true already, register_bcache() will reject new
2559 		 * registration now. bcache_is_reboot also makes sure
2560 		 * bcache_reboot() won't be re-entered on by other thread,
2561 		 * so there is no race in following list iteration by
2562 		 * list_for_each_entry_safe().
2563 		 */
2564 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2565 			bch_cache_set_stop(c);
2566 
2567 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2568 			bcache_device_stop(&dc->disk);
2569 
2570 
2571 		/*
2572 		 * Give an early chance for other kthreads and
2573 		 * kworkers to stop themselves
2574 		 */
2575 		schedule();
2576 
2577 		/* What's a condition variable? */
2578 		while (1) {
2579 			long timeout = start + 10 * HZ - jiffies;
2580 
2581 			mutex_lock(&bch_register_lock);
2582 			stopped = list_empty(&bch_cache_sets) &&
2583 				list_empty(&uncached_devices);
2584 
2585 			if (timeout < 0 || stopped)
2586 				break;
2587 
2588 			prepare_to_wait(&unregister_wait, &wait,
2589 					TASK_UNINTERRUPTIBLE);
2590 
2591 			mutex_unlock(&bch_register_lock);
2592 			schedule_timeout(timeout);
2593 		}
2594 
2595 		finish_wait(&unregister_wait, &wait);
2596 
2597 		if (stopped)
2598 			pr_info("All devices stopped");
2599 		else
2600 			pr_notice("Timeout waiting for devices to be closed");
2601 out:
2602 		mutex_unlock(&bch_register_lock);
2603 	}
2604 
2605 	return NOTIFY_DONE;
2606 }
2607 
2608 static struct notifier_block reboot = {
2609 	.notifier_call	= bcache_reboot,
2610 	.priority	= INT_MAX, /* before any real devices */
2611 };
2612 
bcache_exit(void)2613 static void bcache_exit(void)
2614 {
2615 	bch_debug_exit();
2616 	bch_request_exit();
2617 	if (bcache_kobj)
2618 		kobject_put(bcache_kobj);
2619 	if (bcache_wq)
2620 		destroy_workqueue(bcache_wq);
2621 	if (bch_journal_wq)
2622 		destroy_workqueue(bch_journal_wq);
2623 
2624 	if (bcache_major)
2625 		unregister_blkdev(bcache_major, "bcache");
2626 	unregister_reboot_notifier(&reboot);
2627 	mutex_destroy(&bch_register_lock);
2628 }
2629 
2630 /* Check and fixup module parameters */
check_module_parameters(void)2631 static void check_module_parameters(void)
2632 {
2633 	if (bch_cutoff_writeback_sync == 0)
2634 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2635 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2636 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
2637 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2638 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2639 	}
2640 
2641 	if (bch_cutoff_writeback == 0)
2642 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2643 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2644 		pr_warn("set bch_cutoff_writeback (%u) to max value %u",
2645 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2646 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2647 	}
2648 
2649 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2650 		pr_warn("set bch_cutoff_writeback (%u) to %u",
2651 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2652 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2653 	}
2654 }
2655 
bcache_init(void)2656 static int __init bcache_init(void)
2657 {
2658 	static const struct attribute *files[] = {
2659 		&ksysfs_register.attr,
2660 		&ksysfs_register_quiet.attr,
2661 		&ksysfs_pendings_cleanup.attr,
2662 		NULL
2663 	};
2664 
2665 	check_module_parameters();
2666 
2667 	mutex_init(&bch_register_lock);
2668 	init_waitqueue_head(&unregister_wait);
2669 	register_reboot_notifier(&reboot);
2670 
2671 	bcache_major = register_blkdev(0, "bcache");
2672 	if (bcache_major < 0) {
2673 		unregister_reboot_notifier(&reboot);
2674 		mutex_destroy(&bch_register_lock);
2675 		return bcache_major;
2676 	}
2677 
2678 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2679 	if (!bcache_wq)
2680 		goto err;
2681 
2682 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2683 	if (!bch_journal_wq)
2684 		goto err;
2685 
2686 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2687 	if (!bcache_kobj)
2688 		goto err;
2689 
2690 	if (bch_request_init() ||
2691 	    sysfs_create_files(bcache_kobj, files))
2692 		goto err;
2693 
2694 	bch_debug_init();
2695 	closure_debug_init();
2696 
2697 	bcache_is_reboot = false;
2698 
2699 	return 0;
2700 err:
2701 	bcache_exit();
2702 	return -ENOMEM;
2703 }
2704 
2705 /*
2706  * Module hooks
2707  */
2708 module_exit(bcache_exit);
2709 module_init(bcache_init);
2710 
2711 module_param(bch_cutoff_writeback, uint, 0);
2712 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2713 
2714 module_param(bch_cutoff_writeback_sync, uint, 0);
2715 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2716 
2717 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2718 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2719 MODULE_LICENSE("GPL");
2720