• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 					struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 				   struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 		       const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_sem
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_sem
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116 
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 	.owner		= THIS_MODULE,
120 	.name		= "ext2",
121 	.mount		= ext4_mount,
122 	.kill_sb	= kill_block_super,
123 	.fs_flags	= FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131 
132 
133 static struct file_system_type ext3_fs_type = {
134 	.owner		= THIS_MODULE,
135 	.name		= "ext3",
136 	.mount		= ext4_mount,
137 	.kill_sb	= kill_block_super,
138 	.fs_flags	= FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 
144 /*
145  * This works like sb_bread() except it uses ERR_PTR for error
146  * returns.  Currently with sb_bread it's impossible to distinguish
147  * between ENOMEM and EIO situations (since both result in a NULL
148  * return.
149  */
150 struct buffer_head *
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153 	struct buffer_head *bh = sb_getblk(sb, block);
154 
155 	if (bh == NULL)
156 		return ERR_PTR(-ENOMEM);
157 	if (buffer_uptodate(bh))
158 		return bh;
159 	ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 	wait_on_buffer(bh);
161 	if (buffer_uptodate(bh))
162 		return bh;
163 	put_bh(bh);
164 	return ERR_PTR(-EIO);
165 }
166 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)167 static int ext4_verify_csum_type(struct super_block *sb,
168 				 struct ext4_super_block *es)
169 {
170 	if (!ext4_has_feature_metadata_csum(sb))
171 		return 1;
172 
173 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 				   struct ext4_super_block *es)
178 {
179 	struct ext4_sb_info *sbi = EXT4_SB(sb);
180 	int offset = offsetof(struct ext4_super_block, s_checksum);
181 	__u32 csum;
182 
183 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184 
185 	return cpu_to_le32(csum);
186 }
187 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 				       struct ext4_super_block *es)
190 {
191 	if (!ext4_has_metadata_csum(sb))
192 		return 1;
193 
194 	return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196 
ext4_superblock_csum_set(struct super_block * sb)197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200 
201 	if (!ext4_has_metadata_csum(sb))
202 		return;
203 
204 	es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206 
ext4_kvmalloc(size_t size,gfp_t flags)207 void *ext4_kvmalloc(size_t size, gfp_t flags)
208 {
209 	void *ret;
210 
211 	ret = kmalloc(size, flags | __GFP_NOWARN);
212 	if (!ret)
213 		ret = __vmalloc(size, flags, PAGE_KERNEL);
214 	return ret;
215 }
216 
ext4_kvzalloc(size_t size,gfp_t flags)217 void *ext4_kvzalloc(size_t size, gfp_t flags)
218 {
219 	void *ret;
220 
221 	ret = kzalloc(size, flags | __GFP_NOWARN);
222 	if (!ret)
223 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224 	return ret;
225 }
226 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228 			       struct ext4_group_desc *bg)
229 {
230 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
231 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
233 }
234 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236 			       struct ext4_group_desc *bg)
237 {
238 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
241 }
242 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244 			      struct ext4_group_desc *bg)
245 {
246 	return le32_to_cpu(bg->bg_inode_table_lo) |
247 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
249 }
250 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)251 __u32 ext4_free_group_clusters(struct super_block *sb,
252 			       struct ext4_group_desc *bg)
253 {
254 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
257 }
258 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)259 __u32 ext4_free_inodes_count(struct super_block *sb,
260 			      struct ext4_group_desc *bg)
261 {
262 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
265 }
266 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)267 __u32 ext4_used_dirs_count(struct super_block *sb,
268 			      struct ext4_group_desc *bg)
269 {
270 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
273 }
274 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)275 __u32 ext4_itable_unused_count(struct super_block *sb,
276 			      struct ext4_group_desc *bg)
277 {
278 	return le16_to_cpu(bg->bg_itable_unused_lo) |
279 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
281 }
282 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)283 void ext4_block_bitmap_set(struct super_block *sb,
284 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
285 {
286 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
289 }
290 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)291 void ext4_inode_bitmap_set(struct super_block *sb,
292 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
293 {
294 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
295 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
297 }
298 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)299 void ext4_inode_table_set(struct super_block *sb,
300 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
301 {
302 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
305 }
306 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)307 void ext4_free_group_clusters_set(struct super_block *sb,
308 				  struct ext4_group_desc *bg, __u32 count)
309 {
310 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
313 }
314 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)315 void ext4_free_inodes_set(struct super_block *sb,
316 			  struct ext4_group_desc *bg, __u32 count)
317 {
318 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
321 }
322 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)323 void ext4_used_dirs_set(struct super_block *sb,
324 			  struct ext4_group_desc *bg, __u32 count)
325 {
326 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
329 }
330 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)331 void ext4_itable_unused_set(struct super_block *sb,
332 			  struct ext4_group_desc *bg, __u32 count)
333 {
334 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
337 }
338 
__ext4_update_tstamp(__le32 * lo,__u8 * hi)339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
340 {
341 	time64_t now = ktime_get_real_seconds();
342 
343 	now = clamp_val(now, 0, (1ull << 40) - 1);
344 
345 	*lo = cpu_to_le32(lower_32_bits(now));
346 	*hi = upper_32_bits(now);
347 }
348 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
350 {
351 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
352 }
353 #define ext4_update_tstamp(es, tstamp) \
354 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
357 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)358 static void __save_error_info(struct super_block *sb, const char *func,
359 			    unsigned int line)
360 {
361 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
362 
363 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364 	if (bdev_read_only(sb->s_bdev))
365 		return;
366 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367 	ext4_update_tstamp(es, s_last_error_time);
368 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369 	es->s_last_error_line = cpu_to_le32(line);
370 	if (!es->s_first_error_time) {
371 		es->s_first_error_time = es->s_last_error_time;
372 		es->s_first_error_time_hi = es->s_last_error_time_hi;
373 		strncpy(es->s_first_error_func, func,
374 			sizeof(es->s_first_error_func));
375 		es->s_first_error_line = cpu_to_le32(line);
376 		es->s_first_error_ino = es->s_last_error_ino;
377 		es->s_first_error_block = es->s_last_error_block;
378 	}
379 	/*
380 	 * Start the daily error reporting function if it hasn't been
381 	 * started already
382 	 */
383 	if (!es->s_error_count)
384 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385 	le32_add_cpu(&es->s_error_count, 1);
386 }
387 
save_error_info(struct super_block * sb,const char * func,unsigned int line)388 static void save_error_info(struct super_block *sb, const char *func,
389 			    unsigned int line)
390 {
391 	__save_error_info(sb, func, line);
392 	ext4_commit_super(sb, 1);
393 }
394 
395 /*
396  * The del_gendisk() function uninitializes the disk-specific data
397  * structures, including the bdi structure, without telling anyone
398  * else.  Once this happens, any attempt to call mark_buffer_dirty()
399  * (for example, by ext4_commit_super), will cause a kernel OOPS.
400  * This is a kludge to prevent these oops until we can put in a proper
401  * hook in del_gendisk() to inform the VFS and file system layers.
402  */
block_device_ejected(struct super_block * sb)403 static int block_device_ejected(struct super_block *sb)
404 {
405 	struct inode *bd_inode = sb->s_bdev->bd_inode;
406 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407 
408 	return bdi->dev == NULL;
409 }
410 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413 	struct super_block		*sb = journal->j_private;
414 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
415 	int				error = is_journal_aborted(journal);
416 	struct ext4_journal_cb_entry	*jce;
417 
418 	BUG_ON(txn->t_state == T_FINISHED);
419 
420 	ext4_process_freed_data(sb, txn->t_tid);
421 
422 	spin_lock(&sbi->s_md_lock);
423 	while (!list_empty(&txn->t_private_list)) {
424 		jce = list_entry(txn->t_private_list.next,
425 				 struct ext4_journal_cb_entry, jce_list);
426 		list_del_init(&jce->jce_list);
427 		spin_unlock(&sbi->s_md_lock);
428 		jce->jce_func(sb, jce, error);
429 		spin_lock(&sbi->s_md_lock);
430 	}
431 	spin_unlock(&sbi->s_md_lock);
432 }
433 
system_going_down(void)434 static bool system_going_down(void)
435 {
436 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 		|| system_state == SYSTEM_RESTART;
438 }
439 
440 /* Deal with the reporting of failure conditions on a filesystem such as
441  * inconsistencies detected or read IO failures.
442  *
443  * On ext2, we can store the error state of the filesystem in the
444  * superblock.  That is not possible on ext4, because we may have other
445  * write ordering constraints on the superblock which prevent us from
446  * writing it out straight away; and given that the journal is about to
447  * be aborted, we can't rely on the current, or future, transactions to
448  * write out the superblock safely.
449  *
450  * We'll just use the jbd2_journal_abort() error code to record an error in
451  * the journal instead.  On recovery, the journal will complain about
452  * that error until we've noted it down and cleared it.
453  */
454 
ext4_handle_error(struct super_block * sb)455 static void ext4_handle_error(struct super_block *sb)
456 {
457 	if (test_opt(sb, WARN_ON_ERROR))
458 		WARN_ON_ONCE(1);
459 
460 	if (sb_rdonly(sb))
461 		return;
462 
463 	if (!test_opt(sb, ERRORS_CONT)) {
464 		journal_t *journal = EXT4_SB(sb)->s_journal;
465 
466 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467 		if (journal)
468 			jbd2_journal_abort(journal, -EIO);
469 	}
470 	/*
471 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 	 * could panic during 'reboot -f' as the underlying device got already
473 	 * disabled.
474 	 */
475 	if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477 		/*
478 		 * Make sure updated value of ->s_mount_flags will be visible
479 		 * before ->s_flags update
480 		 */
481 		smp_wmb();
482 		sb->s_flags |= SB_RDONLY;
483 	} else if (test_opt(sb, ERRORS_PANIC)) {
484 		if (EXT4_SB(sb)->s_journal &&
485 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486 			return;
487 		panic("EXT4-fs (device %s): panic forced after error\n",
488 			sb->s_id);
489 	}
490 }
491 
492 #define ext4_error_ratelimit(sb)					\
493 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
494 			     "EXT4-fs error")
495 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)496 void __ext4_error(struct super_block *sb, const char *function,
497 		  unsigned int line, const char *fmt, ...)
498 {
499 	struct va_format vaf;
500 	va_list args;
501 
502 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503 		return;
504 
505 	trace_ext4_error(sb, function, line);
506 	if (ext4_error_ratelimit(sb)) {
507 		va_start(args, fmt);
508 		vaf.fmt = fmt;
509 		vaf.va = &args;
510 		printk(KERN_CRIT
511 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 		       sb->s_id, function, line, current->comm, &vaf);
513 		va_end(args);
514 	}
515 	save_error_info(sb, function, line);
516 	ext4_handle_error(sb);
517 }
518 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)519 void __ext4_error_inode(struct inode *inode, const char *function,
520 			unsigned int line, ext4_fsblk_t block,
521 			const char *fmt, ...)
522 {
523 	va_list args;
524 	struct va_format vaf;
525 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526 
527 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528 		return;
529 
530 	trace_ext4_error(inode->i_sb, function, line);
531 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 	es->s_last_error_block = cpu_to_le64(block);
533 	if (ext4_error_ratelimit(inode->i_sb)) {
534 		va_start(args, fmt);
535 		vaf.fmt = fmt;
536 		vaf.va = &args;
537 		if (block)
538 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 			       "inode #%lu: block %llu: comm %s: %pV\n",
540 			       inode->i_sb->s_id, function, line, inode->i_ino,
541 			       block, current->comm, &vaf);
542 		else
543 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 			       "inode #%lu: comm %s: %pV\n",
545 			       inode->i_sb->s_id, function, line, inode->i_ino,
546 			       current->comm, &vaf);
547 		va_end(args);
548 	}
549 	save_error_info(inode->i_sb, function, line);
550 	ext4_handle_error(inode->i_sb);
551 }
552 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)553 void __ext4_error_file(struct file *file, const char *function,
554 		       unsigned int line, ext4_fsblk_t block,
555 		       const char *fmt, ...)
556 {
557 	va_list args;
558 	struct va_format vaf;
559 	struct ext4_super_block *es;
560 	struct inode *inode = file_inode(file);
561 	char pathname[80], *path;
562 
563 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564 		return;
565 
566 	trace_ext4_error(inode->i_sb, function, line);
567 	es = EXT4_SB(inode->i_sb)->s_es;
568 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 	if (ext4_error_ratelimit(inode->i_sb)) {
570 		path = file_path(file, pathname, sizeof(pathname));
571 		if (IS_ERR(path))
572 			path = "(unknown)";
573 		va_start(args, fmt);
574 		vaf.fmt = fmt;
575 		vaf.va = &args;
576 		if (block)
577 			printk(KERN_CRIT
578 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 			       "block %llu: comm %s: path %s: %pV\n",
580 			       inode->i_sb->s_id, function, line, inode->i_ino,
581 			       block, current->comm, path, &vaf);
582 		else
583 			printk(KERN_CRIT
584 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 			       "comm %s: path %s: %pV\n",
586 			       inode->i_sb->s_id, function, line, inode->i_ino,
587 			       current->comm, path, &vaf);
588 		va_end(args);
589 	}
590 	save_error_info(inode->i_sb, function, line);
591 	ext4_handle_error(inode->i_sb);
592 }
593 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])594 const char *ext4_decode_error(struct super_block *sb, int errno,
595 			      char nbuf[16])
596 {
597 	char *errstr = NULL;
598 
599 	switch (errno) {
600 	case -EFSCORRUPTED:
601 		errstr = "Corrupt filesystem";
602 		break;
603 	case -EFSBADCRC:
604 		errstr = "Filesystem failed CRC";
605 		break;
606 	case -EIO:
607 		errstr = "IO failure";
608 		break;
609 	case -ENOMEM:
610 		errstr = "Out of memory";
611 		break;
612 	case -EROFS:
613 		if (!sb || (EXT4_SB(sb)->s_journal &&
614 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 			errstr = "Journal has aborted";
616 		else
617 			errstr = "Readonly filesystem";
618 		break;
619 	default:
620 		/* If the caller passed in an extra buffer for unknown
621 		 * errors, textualise them now.  Else we just return
622 		 * NULL. */
623 		if (nbuf) {
624 			/* Check for truncated error codes... */
625 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626 				errstr = nbuf;
627 		}
628 		break;
629 	}
630 
631 	return errstr;
632 }
633 
634 /* __ext4_std_error decodes expected errors from journaling functions
635  * automatically and invokes the appropriate error response.  */
636 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)637 void __ext4_std_error(struct super_block *sb, const char *function,
638 		      unsigned int line, int errno)
639 {
640 	char nbuf[16];
641 	const char *errstr;
642 
643 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644 		return;
645 
646 	/* Special case: if the error is EROFS, and we're not already
647 	 * inside a transaction, then there's really no point in logging
648 	 * an error. */
649 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650 		return;
651 
652 	if (ext4_error_ratelimit(sb)) {
653 		errstr = ext4_decode_error(sb, errno, nbuf);
654 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 		       sb->s_id, function, line, errstr);
656 	}
657 
658 	save_error_info(sb, function, line);
659 	ext4_handle_error(sb);
660 }
661 
662 /*
663  * ext4_abort is a much stronger failure handler than ext4_error.  The
664  * abort function may be used to deal with unrecoverable failures such
665  * as journal IO errors or ENOMEM at a critical moment in log management.
666  *
667  * We unconditionally force the filesystem into an ABORT|READONLY state,
668  * unless the error response on the fs has been set to panic in which
669  * case we take the easy way out and panic immediately.
670  */
671 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)672 void __ext4_abort(struct super_block *sb, const char *function,
673 		unsigned int line, const char *fmt, ...)
674 {
675 	struct va_format vaf;
676 	va_list args;
677 
678 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 		return;
680 
681 	save_error_info(sb, function, line);
682 	va_start(args, fmt);
683 	vaf.fmt = fmt;
684 	vaf.va = &args;
685 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 	       sb->s_id, function, line, &vaf);
687 	va_end(args);
688 
689 	if (sb_rdonly(sb) == 0) {
690 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692 		/*
693 		 * Make sure updated value of ->s_mount_flags will be visible
694 		 * before ->s_flags update
695 		 */
696 		smp_wmb();
697 		sb->s_flags |= SB_RDONLY;
698 		if (EXT4_SB(sb)->s_journal)
699 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 		save_error_info(sb, function, line);
701 	}
702 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 		if (EXT4_SB(sb)->s_journal &&
704 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705 			return;
706 		panic("EXT4-fs panic from previous error\n");
707 	}
708 }
709 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)710 void __ext4_msg(struct super_block *sb,
711 		const char *prefix, const char *fmt, ...)
712 {
713 	struct va_format vaf;
714 	va_list args;
715 
716 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717 		return;
718 
719 	va_start(args, fmt);
720 	vaf.fmt = fmt;
721 	vaf.va = &args;
722 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723 	va_end(args);
724 }
725 
726 #define ext4_warning_ratelimit(sb)					\
727 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
728 			     "EXT4-fs warning")
729 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)730 void __ext4_warning(struct super_block *sb, const char *function,
731 		    unsigned int line, const char *fmt, ...)
732 {
733 	struct va_format vaf;
734 	va_list args;
735 
736 	if (!ext4_warning_ratelimit(sb))
737 		return;
738 
739 	va_start(args, fmt);
740 	vaf.fmt = fmt;
741 	vaf.va = &args;
742 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 	       sb->s_id, function, line, &vaf);
744 	va_end(args);
745 }
746 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748 			  unsigned int line, const char *fmt, ...)
749 {
750 	struct va_format vaf;
751 	va_list args;
752 
753 	if (!ext4_warning_ratelimit(inode->i_sb))
754 		return;
755 
756 	va_start(args, fmt);
757 	vaf.fmt = fmt;
758 	vaf.va = &args;
759 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 	       function, line, inode->i_ino, current->comm, &vaf);
762 	va_end(args);
763 }
764 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766 			     struct super_block *sb, ext4_group_t grp,
767 			     unsigned long ino, ext4_fsblk_t block,
768 			     const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772 	struct va_format vaf;
773 	va_list args;
774 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775 
776 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777 		return;
778 
779 	trace_ext4_error(sb, function, line);
780 	es->s_last_error_ino = cpu_to_le32(ino);
781 	es->s_last_error_block = cpu_to_le64(block);
782 	__save_error_info(sb, function, line);
783 
784 	if (ext4_error_ratelimit(sb)) {
785 		va_start(args, fmt);
786 		vaf.fmt = fmt;
787 		vaf.va = &args;
788 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 		       sb->s_id, function, line, grp);
790 		if (ino)
791 			printk(KERN_CONT "inode %lu: ", ino);
792 		if (block)
793 			printk(KERN_CONT "block %llu:",
794 			       (unsigned long long) block);
795 		printk(KERN_CONT "%pV\n", &vaf);
796 		va_end(args);
797 	}
798 
799 	if (test_opt(sb, WARN_ON_ERROR))
800 		WARN_ON_ONCE(1);
801 
802 	if (test_opt(sb, ERRORS_CONT)) {
803 		ext4_commit_super(sb, 0);
804 		return;
805 	}
806 
807 	ext4_unlock_group(sb, grp);
808 	ext4_commit_super(sb, 1);
809 	ext4_handle_error(sb);
810 	/*
811 	 * We only get here in the ERRORS_RO case; relocking the group
812 	 * may be dangerous, but nothing bad will happen since the
813 	 * filesystem will have already been marked read/only and the
814 	 * journal has been aborted.  We return 1 as a hint to callers
815 	 * who might what to use the return value from
816 	 * ext4_grp_locked_error() to distinguish between the
817 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 	 * aggressively from the ext4 function in question, with a
819 	 * more appropriate error code.
820 	 */
821 	ext4_lock_group(sb, grp);
822 	return;
823 }
824 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826 				     ext4_group_t group,
827 				     unsigned int flags)
828 {
829 	struct ext4_sb_info *sbi = EXT4_SB(sb);
830 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832 	int ret;
833 
834 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836 					    &grp->bb_state);
837 		if (!ret)
838 			percpu_counter_sub(&sbi->s_freeclusters_counter,
839 					   grp->bb_free);
840 	}
841 
842 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844 					    &grp->bb_state);
845 		if (!ret && gdp) {
846 			int count;
847 
848 			count = ext4_free_inodes_count(sb, gdp);
849 			percpu_counter_sub(&sbi->s_freeinodes_counter,
850 					   count);
851 		}
852 	}
853 }
854 
ext4_update_dynamic_rev(struct super_block * sb)855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858 
859 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860 		return;
861 
862 	ext4_warning(sb,
863 		     "updating to rev %d because of new feature flag, "
864 		     "running e2fsck is recommended",
865 		     EXT4_DYNAMIC_REV);
866 
867 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 	/* leave es->s_feature_*compat flags alone */
871 	/* es->s_uuid will be set by e2fsck if empty */
872 
873 	/*
874 	 * The rest of the superblock fields should be zero, and if not it
875 	 * means they are likely already in use, so leave them alone.  We
876 	 * can leave it up to e2fsck to clean up any inconsistencies there.
877 	 */
878 }
879 
880 /*
881  * Open the external journal device
882  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885 	struct block_device *bdev;
886 	char b[BDEVNAME_SIZE];
887 
888 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889 	if (IS_ERR(bdev))
890 		goto fail;
891 	return bdev;
892 
893 fail:
894 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 			__bdevname(dev, b), PTR_ERR(bdev));
896 	return NULL;
897 }
898 
899 /*
900  * Release the journal device
901  */
ext4_blkdev_put(struct block_device * bdev)902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906 
ext4_blkdev_remove(struct ext4_sb_info * sbi)907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909 	struct block_device *bdev;
910 	bdev = sbi->journal_bdev;
911 	if (bdev) {
912 		ext4_blkdev_put(bdev);
913 		sbi->journal_bdev = NULL;
914 	}
915 }
916 
orphan_list_entry(struct list_head * l)917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924 	struct list_head *l;
925 
926 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 		 le32_to_cpu(sbi->s_es->s_last_orphan));
928 
929 	printk(KERN_ERR "sb_info orphan list:\n");
930 	list_for_each(l, &sbi->s_orphan) {
931 		struct inode *inode = orphan_list_entry(l);
932 		printk(KERN_ERR "  "
933 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 		       inode->i_sb->s_id, inode->i_ino, inode,
935 		       inode->i_mode, inode->i_nlink,
936 		       NEXT_ORPHAN(inode));
937 	}
938 }
939 
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942 
ext4_quota_off_umount(struct super_block * sb)943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945 	int type;
946 
947 	/* Use our quota_off function to clear inode flags etc. */
948 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 		ext4_quota_off(sb, type);
950 }
951 
952 /*
953  * This is a helper function which is used in the mount/remount
954  * codepaths (which holds s_umount) to fetch the quota file name.
955  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)956 static inline char *get_qf_name(struct super_block *sb,
957 				struct ext4_sb_info *sbi,
958 				int type)
959 {
960 	return rcu_dereference_protected(sbi->s_qf_names[type],
961 					 lockdep_is_held(&sb->s_umount));
962 }
963 #else
ext4_quota_off_umount(struct super_block * sb)964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968 
ext4_put_super(struct super_block * sb)969 static void ext4_put_super(struct super_block *sb)
970 {
971 	struct ext4_sb_info *sbi = EXT4_SB(sb);
972 	struct ext4_super_block *es = sbi->s_es;
973 	int aborted = 0;
974 	int i, err;
975 
976 	ext4_unregister_li_request(sb);
977 	ext4_quota_off_umount(sb);
978 
979 	destroy_workqueue(sbi->rsv_conversion_wq);
980 
981 	if (sbi->s_journal) {
982 		aborted = is_journal_aborted(sbi->s_journal);
983 		err = jbd2_journal_destroy(sbi->s_journal);
984 		sbi->s_journal = NULL;
985 		if ((err < 0) && !aborted)
986 			ext4_abort(sb, "Couldn't clean up the journal");
987 	}
988 
989 	ext4_unregister_sysfs(sb);
990 	ext4_es_unregister_shrinker(sbi);
991 	del_timer_sync(&sbi->s_err_report);
992 	ext4_release_system_zone(sb);
993 	ext4_mb_release(sb);
994 	ext4_ext_release(sb);
995 
996 	if (!sb_rdonly(sb) && !aborted) {
997 		ext4_clear_feature_journal_needs_recovery(sb);
998 		es->s_state = cpu_to_le16(sbi->s_mount_state);
999 	}
1000 	if (!sb_rdonly(sb))
1001 		ext4_commit_super(sb, 1);
1002 
1003 	for (i = 0; i < sbi->s_gdb_count; i++)
1004 		brelse(sbi->s_group_desc[i]);
1005 	kvfree(sbi->s_group_desc);
1006 	kvfree(sbi->s_flex_groups);
1007 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009 	percpu_counter_destroy(&sbi->s_dirs_counter);
1010 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012 #ifdef CONFIG_QUOTA
1013 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014 		kfree(get_qf_name(sb, sbi, i));
1015 #endif
1016 
1017 	/* Debugging code just in case the in-memory inode orphan list
1018 	 * isn't empty.  The on-disk one can be non-empty if we've
1019 	 * detected an error and taken the fs readonly, but the
1020 	 * in-memory list had better be clean by this point. */
1021 	if (!list_empty(&sbi->s_orphan))
1022 		dump_orphan_list(sb, sbi);
1023 	J_ASSERT(list_empty(&sbi->s_orphan));
1024 
1025 	sync_blockdev(sb->s_bdev);
1026 	invalidate_bdev(sb->s_bdev);
1027 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1028 		/*
1029 		 * Invalidate the journal device's buffers.  We don't want them
1030 		 * floating about in memory - the physical journal device may
1031 		 * hotswapped, and it breaks the `ro-after' testing code.
1032 		 */
1033 		sync_blockdev(sbi->journal_bdev);
1034 		invalidate_bdev(sbi->journal_bdev);
1035 		ext4_blkdev_remove(sbi);
1036 	}
1037 
1038 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039 	sbi->s_ea_inode_cache = NULL;
1040 
1041 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042 	sbi->s_ea_block_cache = NULL;
1043 
1044 	if (sbi->s_mmp_tsk)
1045 		kthread_stop(sbi->s_mmp_tsk);
1046 	brelse(sbi->s_sbh);
1047 	sb->s_fs_info = NULL;
1048 	/*
1049 	 * Now that we are completely done shutting down the
1050 	 * superblock, we need to actually destroy the kobject.
1051 	 */
1052 	kobject_put(&sbi->s_kobj);
1053 	wait_for_completion(&sbi->s_kobj_unregister);
1054 	if (sbi->s_chksum_driver)
1055 		crypto_free_shash(sbi->s_chksum_driver);
1056 	kfree(sbi->s_blockgroup_lock);
1057 	fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059 	utf8_unload(sbi->s_encoding);
1060 #endif
1061 	kfree(sbi);
1062 }
1063 
1064 static struct kmem_cache *ext4_inode_cachep;
1065 
1066 /*
1067  * Called inside transaction, so use GFP_NOFS
1068  */
ext4_alloc_inode(struct super_block * sb)1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1070 {
1071 	struct ext4_inode_info *ei;
1072 
1073 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074 	if (!ei)
1075 		return NULL;
1076 
1077 	inode_set_iversion(&ei->vfs_inode, 1);
1078 	spin_lock_init(&ei->i_raw_lock);
1079 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1080 	spin_lock_init(&ei->i_prealloc_lock);
1081 	ext4_es_init_tree(&ei->i_es_tree);
1082 	rwlock_init(&ei->i_es_lock);
1083 	INIT_LIST_HEAD(&ei->i_es_list);
1084 	ei->i_es_all_nr = 0;
1085 	ei->i_es_shk_nr = 0;
1086 	ei->i_es_shrink_lblk = 0;
1087 	ei->i_reserved_data_blocks = 0;
1088 	ei->i_da_metadata_calc_len = 0;
1089 	ei->i_da_metadata_calc_last_lblock = 0;
1090 	spin_lock_init(&(ei->i_block_reservation_lock));
1091 	ext4_init_pending_tree(&ei->i_pending_tree);
1092 #ifdef CONFIG_QUOTA
1093 	ei->i_reserved_quota = 0;
1094 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095 #endif
1096 	ei->jinode = NULL;
1097 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098 	spin_lock_init(&ei->i_completed_io_lock);
1099 	ei->i_sync_tid = 0;
1100 	ei->i_datasync_tid = 0;
1101 	atomic_set(&ei->i_unwritten, 0);
1102 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103 	return &ei->vfs_inode;
1104 }
1105 
ext4_drop_inode(struct inode * inode)1106 static int ext4_drop_inode(struct inode *inode)
1107 {
1108 	int drop = generic_drop_inode(inode);
1109 
1110 	if (!drop)
1111 		drop = fscrypt_drop_inode(inode);
1112 
1113 	trace_ext4_drop_inode(inode, drop);
1114 	return drop;
1115 }
1116 
ext4_free_in_core_inode(struct inode * inode)1117 static void ext4_free_in_core_inode(struct inode *inode)
1118 {
1119 	fscrypt_free_inode(inode);
1120 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1121 }
1122 
ext4_destroy_inode(struct inode * inode)1123 static void ext4_destroy_inode(struct inode *inode)
1124 {
1125 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1126 		ext4_msg(inode->i_sb, KERN_ERR,
1127 			 "Inode %lu (%p): orphan list check failed!",
1128 			 inode->i_ino, EXT4_I(inode));
1129 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1130 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1131 				true);
1132 		dump_stack();
1133 	}
1134 }
1135 
init_once(void * foo)1136 static void init_once(void *foo)
1137 {
1138 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1139 
1140 	INIT_LIST_HEAD(&ei->i_orphan);
1141 	init_rwsem(&ei->xattr_sem);
1142 	init_rwsem(&ei->i_data_sem);
1143 	init_rwsem(&ei->i_mmap_sem);
1144 	inode_init_once(&ei->vfs_inode);
1145 }
1146 
init_inodecache(void)1147 static int __init init_inodecache(void)
1148 {
1149 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1150 				sizeof(struct ext4_inode_info), 0,
1151 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1152 					SLAB_ACCOUNT),
1153 				offsetof(struct ext4_inode_info, i_data),
1154 				sizeof_field(struct ext4_inode_info, i_data),
1155 				init_once);
1156 	if (ext4_inode_cachep == NULL)
1157 		return -ENOMEM;
1158 	return 0;
1159 }
1160 
destroy_inodecache(void)1161 static void destroy_inodecache(void)
1162 {
1163 	/*
1164 	 * Make sure all delayed rcu free inodes are flushed before we
1165 	 * destroy cache.
1166 	 */
1167 	rcu_barrier();
1168 	kmem_cache_destroy(ext4_inode_cachep);
1169 }
1170 
ext4_clear_inode(struct inode * inode)1171 void ext4_clear_inode(struct inode *inode)
1172 {
1173 	invalidate_inode_buffers(inode);
1174 	clear_inode(inode);
1175 	ext4_discard_preallocations(inode);
1176 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1177 	dquot_drop(inode);
1178 	if (EXT4_I(inode)->jinode) {
1179 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1180 					       EXT4_I(inode)->jinode);
1181 		jbd2_free_inode(EXT4_I(inode)->jinode);
1182 		EXT4_I(inode)->jinode = NULL;
1183 	}
1184 	fscrypt_put_encryption_info(inode);
1185 	fsverity_cleanup_inode(inode);
1186 }
1187 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1188 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1189 					u64 ino, u32 generation)
1190 {
1191 	struct inode *inode;
1192 
1193 	/*
1194 	 * Currently we don't know the generation for parent directory, so
1195 	 * a generation of 0 means "accept any"
1196 	 */
1197 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1198 	if (IS_ERR(inode))
1199 		return ERR_CAST(inode);
1200 	if (generation && inode->i_generation != generation) {
1201 		iput(inode);
1202 		return ERR_PTR(-ESTALE);
1203 	}
1204 
1205 	return inode;
1206 }
1207 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1208 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1209 					int fh_len, int fh_type)
1210 {
1211 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1212 				    ext4_nfs_get_inode);
1213 }
1214 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1215 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1216 					int fh_len, int fh_type)
1217 {
1218 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1219 				    ext4_nfs_get_inode);
1220 }
1221 
ext4_nfs_commit_metadata(struct inode * inode)1222 static int ext4_nfs_commit_metadata(struct inode *inode)
1223 {
1224 	struct writeback_control wbc = {
1225 		.sync_mode = WB_SYNC_ALL
1226 	};
1227 
1228 	trace_ext4_nfs_commit_metadata(inode);
1229 	return ext4_write_inode(inode, &wbc);
1230 }
1231 
1232 /*
1233  * Try to release metadata pages (indirect blocks, directories) which are
1234  * mapped via the block device.  Since these pages could have journal heads
1235  * which would prevent try_to_free_buffers() from freeing them, we must use
1236  * jbd2 layer's try_to_free_buffers() function to release them.
1237  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1238 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1239 				 gfp_t wait)
1240 {
1241 	journal_t *journal = EXT4_SB(sb)->s_journal;
1242 
1243 	WARN_ON(PageChecked(page));
1244 	if (!page_has_buffers(page))
1245 		return 0;
1246 	if (journal)
1247 		return jbd2_journal_try_to_free_buffers(journal, page,
1248 						wait & ~__GFP_DIRECT_RECLAIM);
1249 	return try_to_free_buffers(page);
1250 }
1251 
1252 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1253 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1254 {
1255 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1256 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1257 }
1258 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1259 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1260 							void *fs_data)
1261 {
1262 	handle_t *handle = fs_data;
1263 	int res, res2, credits, retries = 0;
1264 
1265 	/*
1266 	 * Encrypting the root directory is not allowed because e2fsck expects
1267 	 * lost+found to exist and be unencrypted, and encrypting the root
1268 	 * directory would imply encrypting the lost+found directory as well as
1269 	 * the filename "lost+found" itself.
1270 	 */
1271 	if (inode->i_ino == EXT4_ROOT_INO)
1272 		return -EPERM;
1273 
1274 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1275 		return -EINVAL;
1276 
1277 	res = ext4_convert_inline_data(inode);
1278 	if (res)
1279 		return res;
1280 
1281 	/*
1282 	 * If a journal handle was specified, then the encryption context is
1283 	 * being set on a new inode via inheritance and is part of a larger
1284 	 * transaction to create the inode.  Otherwise the encryption context is
1285 	 * being set on an existing inode in its own transaction.  Only in the
1286 	 * latter case should the "retry on ENOSPC" logic be used.
1287 	 */
1288 
1289 	if (handle) {
1290 		res = ext4_xattr_set_handle(handle, inode,
1291 					    EXT4_XATTR_INDEX_ENCRYPTION,
1292 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1293 					    ctx, len, 0);
1294 		if (!res) {
1295 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1296 			ext4_clear_inode_state(inode,
1297 					EXT4_STATE_MAY_INLINE_DATA);
1298 			/*
1299 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1300 			 * S_DAX may be disabled
1301 			 */
1302 			ext4_set_inode_flags(inode);
1303 		}
1304 		return res;
1305 	}
1306 
1307 	res = dquot_initialize(inode);
1308 	if (res)
1309 		return res;
1310 retry:
1311 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1312 				     &credits);
1313 	if (res)
1314 		return res;
1315 
1316 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1317 	if (IS_ERR(handle))
1318 		return PTR_ERR(handle);
1319 
1320 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1321 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1322 				    ctx, len, 0);
1323 	if (!res) {
1324 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1325 		/*
1326 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1327 		 * S_DAX may be disabled
1328 		 */
1329 		ext4_set_inode_flags(inode);
1330 		res = ext4_mark_inode_dirty(handle, inode);
1331 		if (res)
1332 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1333 	}
1334 	res2 = ext4_journal_stop(handle);
1335 
1336 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1337 		goto retry;
1338 	if (!res)
1339 		res = res2;
1340 	return res;
1341 }
1342 
ext4_dummy_context(struct inode * inode)1343 static bool ext4_dummy_context(struct inode *inode)
1344 {
1345 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1346 }
1347 
ext4_has_stable_inodes(struct super_block * sb)1348 static bool ext4_has_stable_inodes(struct super_block *sb)
1349 {
1350 	return ext4_has_feature_stable_inodes(sb);
1351 }
1352 
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1353 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1354 				       int *ino_bits_ret, int *lblk_bits_ret)
1355 {
1356 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1357 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1358 }
1359 
ext4_inline_crypt_enabled(struct super_block * sb)1360 static bool ext4_inline_crypt_enabled(struct super_block *sb)
1361 {
1362 	return test_opt(sb, INLINECRYPT);
1363 }
1364 
1365 static const struct fscrypt_operations ext4_cryptops = {
1366 	.key_prefix		= "ext4:",
1367 	.get_context		= ext4_get_context,
1368 	.set_context		= ext4_set_context,
1369 	.dummy_context		= ext4_dummy_context,
1370 	.empty_dir		= ext4_empty_dir,
1371 	.max_namelen		= EXT4_NAME_LEN,
1372 	.has_stable_inodes	= ext4_has_stable_inodes,
1373 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1374 	.inline_crypt_enabled	= ext4_inline_crypt_enabled,
1375 };
1376 #endif
1377 
1378 #ifdef CONFIG_QUOTA
1379 static const char * const quotatypes[] = INITQFNAMES;
1380 #define QTYPE2NAME(t) (quotatypes[t])
1381 
1382 static int ext4_write_dquot(struct dquot *dquot);
1383 static int ext4_acquire_dquot(struct dquot *dquot);
1384 static int ext4_release_dquot(struct dquot *dquot);
1385 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1386 static int ext4_write_info(struct super_block *sb, int type);
1387 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1388 			 const struct path *path);
1389 static int ext4_quota_on_mount(struct super_block *sb, int type);
1390 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1391 			       size_t len, loff_t off);
1392 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1393 				const char *data, size_t len, loff_t off);
1394 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1395 			     unsigned int flags);
1396 static int ext4_enable_quotas(struct super_block *sb);
1397 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1398 
ext4_get_dquots(struct inode * inode)1399 static struct dquot **ext4_get_dquots(struct inode *inode)
1400 {
1401 	return EXT4_I(inode)->i_dquot;
1402 }
1403 
1404 static const struct dquot_operations ext4_quota_operations = {
1405 	.get_reserved_space	= ext4_get_reserved_space,
1406 	.write_dquot		= ext4_write_dquot,
1407 	.acquire_dquot		= ext4_acquire_dquot,
1408 	.release_dquot		= ext4_release_dquot,
1409 	.mark_dirty		= ext4_mark_dquot_dirty,
1410 	.write_info		= ext4_write_info,
1411 	.alloc_dquot		= dquot_alloc,
1412 	.destroy_dquot		= dquot_destroy,
1413 	.get_projid		= ext4_get_projid,
1414 	.get_inode_usage	= ext4_get_inode_usage,
1415 	.get_next_id		= ext4_get_next_id,
1416 };
1417 
1418 static const struct quotactl_ops ext4_qctl_operations = {
1419 	.quota_on	= ext4_quota_on,
1420 	.quota_off	= ext4_quota_off,
1421 	.quota_sync	= dquot_quota_sync,
1422 	.get_state	= dquot_get_state,
1423 	.set_info	= dquot_set_dqinfo,
1424 	.get_dqblk	= dquot_get_dqblk,
1425 	.set_dqblk	= dquot_set_dqblk,
1426 	.get_nextdqblk	= dquot_get_next_dqblk,
1427 };
1428 #endif
1429 
1430 static const struct super_operations ext4_sops = {
1431 	.alloc_inode	= ext4_alloc_inode,
1432 	.free_inode	= ext4_free_in_core_inode,
1433 	.destroy_inode	= ext4_destroy_inode,
1434 	.write_inode	= ext4_write_inode,
1435 	.dirty_inode	= ext4_dirty_inode,
1436 	.drop_inode	= ext4_drop_inode,
1437 	.evict_inode	= ext4_evict_inode,
1438 	.put_super	= ext4_put_super,
1439 	.sync_fs	= ext4_sync_fs,
1440 	.freeze_fs	= ext4_freeze,
1441 	.unfreeze_fs	= ext4_unfreeze,
1442 	.statfs		= ext4_statfs,
1443 	.remount_fs	= ext4_remount,
1444 	.show_options	= ext4_show_options,
1445 #ifdef CONFIG_QUOTA
1446 	.quota_read	= ext4_quota_read,
1447 	.quota_write	= ext4_quota_write,
1448 	.get_dquots	= ext4_get_dquots,
1449 #endif
1450 	.bdev_try_to_free_page = bdev_try_to_free_page,
1451 };
1452 
1453 static const struct export_operations ext4_export_ops = {
1454 	.fh_to_dentry = ext4_fh_to_dentry,
1455 	.fh_to_parent = ext4_fh_to_parent,
1456 	.get_parent = ext4_get_parent,
1457 	.commit_metadata = ext4_nfs_commit_metadata,
1458 };
1459 
1460 enum {
1461 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1462 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1463 	Opt_nouid32, Opt_debug, Opt_removed,
1464 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1465 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1466 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1467 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1468 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1469 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1470 	Opt_inlinecrypt,
1471 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1472 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1473 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1474 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1475 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1476 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1477 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1478 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1479 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1480 	Opt_dioread_nolock, Opt_dioread_lock,
1481 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1482 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1483 };
1484 
1485 static const match_table_t tokens = {
1486 	{Opt_bsd_df, "bsddf"},
1487 	{Opt_minix_df, "minixdf"},
1488 	{Opt_grpid, "grpid"},
1489 	{Opt_grpid, "bsdgroups"},
1490 	{Opt_nogrpid, "nogrpid"},
1491 	{Opt_nogrpid, "sysvgroups"},
1492 	{Opt_resgid, "resgid=%u"},
1493 	{Opt_resuid, "resuid=%u"},
1494 	{Opt_sb, "sb=%u"},
1495 	{Opt_err_cont, "errors=continue"},
1496 	{Opt_err_panic, "errors=panic"},
1497 	{Opt_err_ro, "errors=remount-ro"},
1498 	{Opt_nouid32, "nouid32"},
1499 	{Opt_debug, "debug"},
1500 	{Opt_removed, "oldalloc"},
1501 	{Opt_removed, "orlov"},
1502 	{Opt_user_xattr, "user_xattr"},
1503 	{Opt_nouser_xattr, "nouser_xattr"},
1504 	{Opt_acl, "acl"},
1505 	{Opt_noacl, "noacl"},
1506 	{Opt_noload, "norecovery"},
1507 	{Opt_noload, "noload"},
1508 	{Opt_removed, "nobh"},
1509 	{Opt_removed, "bh"},
1510 	{Opt_commit, "commit=%u"},
1511 	{Opt_min_batch_time, "min_batch_time=%u"},
1512 	{Opt_max_batch_time, "max_batch_time=%u"},
1513 	{Opt_journal_dev, "journal_dev=%u"},
1514 	{Opt_journal_path, "journal_path=%s"},
1515 	{Opt_journal_checksum, "journal_checksum"},
1516 	{Opt_nojournal_checksum, "nojournal_checksum"},
1517 	{Opt_journal_async_commit, "journal_async_commit"},
1518 	{Opt_abort, "abort"},
1519 	{Opt_data_journal, "data=journal"},
1520 	{Opt_data_ordered, "data=ordered"},
1521 	{Opt_data_writeback, "data=writeback"},
1522 	{Opt_data_err_abort, "data_err=abort"},
1523 	{Opt_data_err_ignore, "data_err=ignore"},
1524 	{Opt_offusrjquota, "usrjquota="},
1525 	{Opt_usrjquota, "usrjquota=%s"},
1526 	{Opt_offgrpjquota, "grpjquota="},
1527 	{Opt_grpjquota, "grpjquota=%s"},
1528 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1529 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1530 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1531 	{Opt_grpquota, "grpquota"},
1532 	{Opt_noquota, "noquota"},
1533 	{Opt_quota, "quota"},
1534 	{Opt_usrquota, "usrquota"},
1535 	{Opt_prjquota, "prjquota"},
1536 	{Opt_barrier, "barrier=%u"},
1537 	{Opt_barrier, "barrier"},
1538 	{Opt_nobarrier, "nobarrier"},
1539 	{Opt_i_version, "i_version"},
1540 	{Opt_dax, "dax"},
1541 	{Opt_stripe, "stripe=%u"},
1542 	{Opt_delalloc, "delalloc"},
1543 	{Opt_warn_on_error, "warn_on_error"},
1544 	{Opt_nowarn_on_error, "nowarn_on_error"},
1545 	{Opt_lazytime, "lazytime"},
1546 	{Opt_nolazytime, "nolazytime"},
1547 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1548 	{Opt_nodelalloc, "nodelalloc"},
1549 	{Opt_removed, "mblk_io_submit"},
1550 	{Opt_removed, "nomblk_io_submit"},
1551 	{Opt_block_validity, "block_validity"},
1552 	{Opt_noblock_validity, "noblock_validity"},
1553 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1554 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1555 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1556 	{Opt_auto_da_alloc, "auto_da_alloc"},
1557 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1558 	{Opt_dioread_nolock, "dioread_nolock"},
1559 	{Opt_dioread_lock, "dioread_lock"},
1560 	{Opt_discard, "discard"},
1561 	{Opt_nodiscard, "nodiscard"},
1562 	{Opt_init_itable, "init_itable=%u"},
1563 	{Opt_init_itable, "init_itable"},
1564 	{Opt_noinit_itable, "noinit_itable"},
1565 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1566 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1567 	{Opt_inlinecrypt, "inlinecrypt"},
1568 	{Opt_nombcache, "nombcache"},
1569 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1570 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1571 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1572 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1573 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1574 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1575 	{Opt_err, NULL},
1576 };
1577 
get_sb_block(void ** data)1578 static ext4_fsblk_t get_sb_block(void **data)
1579 {
1580 	ext4_fsblk_t	sb_block;
1581 	char		*options = (char *) *data;
1582 
1583 	if (!options || strncmp(options, "sb=", 3) != 0)
1584 		return 1;	/* Default location */
1585 
1586 	options += 3;
1587 	/* TODO: use simple_strtoll with >32bit ext4 */
1588 	sb_block = simple_strtoul(options, &options, 0);
1589 	if (*options && *options != ',') {
1590 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1591 		       (char *) *data);
1592 		return 1;
1593 	}
1594 	if (*options == ',')
1595 		options++;
1596 	*data = (void *) options;
1597 
1598 	return sb_block;
1599 }
1600 
1601 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1602 static const char deprecated_msg[] =
1603 	"Mount option \"%s\" will be removed by %s\n"
1604 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1605 
1606 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1607 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1608 {
1609 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1610 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1611 	int ret = -1;
1612 
1613 	if (sb_any_quota_loaded(sb) && !old_qname) {
1614 		ext4_msg(sb, KERN_ERR,
1615 			"Cannot change journaled "
1616 			"quota options when quota turned on");
1617 		return -1;
1618 	}
1619 	if (ext4_has_feature_quota(sb)) {
1620 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1621 			 "ignored when QUOTA feature is enabled");
1622 		return 1;
1623 	}
1624 	qname = match_strdup(args);
1625 	if (!qname) {
1626 		ext4_msg(sb, KERN_ERR,
1627 			"Not enough memory for storing quotafile name");
1628 		return -1;
1629 	}
1630 	if (old_qname) {
1631 		if (strcmp(old_qname, qname) == 0)
1632 			ret = 1;
1633 		else
1634 			ext4_msg(sb, KERN_ERR,
1635 				 "%s quota file already specified",
1636 				 QTYPE2NAME(qtype));
1637 		goto errout;
1638 	}
1639 	if (strchr(qname, '/')) {
1640 		ext4_msg(sb, KERN_ERR,
1641 			"quotafile must be on filesystem root");
1642 		goto errout;
1643 	}
1644 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1645 	set_opt(sb, QUOTA);
1646 	return 1;
1647 errout:
1648 	kfree(qname);
1649 	return ret;
1650 }
1651 
clear_qf_name(struct super_block * sb,int qtype)1652 static int clear_qf_name(struct super_block *sb, int qtype)
1653 {
1654 
1655 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1656 	char *old_qname = get_qf_name(sb, sbi, qtype);
1657 
1658 	if (sb_any_quota_loaded(sb) && old_qname) {
1659 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1660 			" when quota turned on");
1661 		return -1;
1662 	}
1663 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1664 	synchronize_rcu();
1665 	kfree(old_qname);
1666 	return 1;
1667 }
1668 #endif
1669 
1670 #define MOPT_SET	0x0001
1671 #define MOPT_CLEAR	0x0002
1672 #define MOPT_NOSUPPORT	0x0004
1673 #define MOPT_EXPLICIT	0x0008
1674 #define MOPT_CLEAR_ERR	0x0010
1675 #define MOPT_GTE0	0x0020
1676 #ifdef CONFIG_QUOTA
1677 #define MOPT_Q		0
1678 #define MOPT_QFMT	0x0040
1679 #else
1680 #define MOPT_Q		MOPT_NOSUPPORT
1681 #define MOPT_QFMT	MOPT_NOSUPPORT
1682 #endif
1683 #define MOPT_DATAJ	0x0080
1684 #define MOPT_NO_EXT2	0x0100
1685 #define MOPT_NO_EXT3	0x0200
1686 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1687 #define MOPT_STRING	0x0400
1688 
1689 static const struct mount_opts {
1690 	int	token;
1691 	int	mount_opt;
1692 	int	flags;
1693 } ext4_mount_opts[] = {
1694 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1695 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1696 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1697 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1698 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1699 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1700 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1701 	 MOPT_EXT4_ONLY | MOPT_SET},
1702 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1703 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1704 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1705 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1706 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1707 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1708 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1709 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1710 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1711 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1712 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1713 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1714 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1715 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1716 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1717 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1718 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1719 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1720 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1721 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1722 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1723 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1724 	 MOPT_NO_EXT2},
1725 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1726 	 MOPT_NO_EXT2},
1727 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1728 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1729 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1730 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1731 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1732 	{Opt_commit, 0, MOPT_GTE0},
1733 	{Opt_max_batch_time, 0, MOPT_GTE0},
1734 	{Opt_min_batch_time, 0, MOPT_GTE0},
1735 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1736 	{Opt_init_itable, 0, MOPT_GTE0},
1737 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1738 	{Opt_stripe, 0, MOPT_GTE0},
1739 	{Opt_resuid, 0, MOPT_GTE0},
1740 	{Opt_resgid, 0, MOPT_GTE0},
1741 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1742 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1743 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1744 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1745 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1746 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1747 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1748 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1749 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1750 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1751 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1752 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1753 #else
1754 	{Opt_acl, 0, MOPT_NOSUPPORT},
1755 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1756 #endif
1757 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1758 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1759 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1760 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1761 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1762 							MOPT_SET | MOPT_Q},
1763 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1764 							MOPT_SET | MOPT_Q},
1765 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1766 							MOPT_SET | MOPT_Q},
1767 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1768 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1769 							MOPT_CLEAR | MOPT_Q},
1770 	{Opt_usrjquota, 0, MOPT_Q},
1771 	{Opt_grpjquota, 0, MOPT_Q},
1772 	{Opt_offusrjquota, 0, MOPT_Q},
1773 	{Opt_offgrpjquota, 0, MOPT_Q},
1774 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1775 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1776 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1777 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1778 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1779 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1780 	{Opt_inlinecrypt, EXT4_MOUNT_INLINECRYPT, MOPT_SET},
1781 #else
1782 	{Opt_inlinecrypt, EXT4_MOUNT_INLINECRYPT, MOPT_NOSUPPORT},
1783 #endif
1784 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1785 	{Opt_err, 0, 0}
1786 };
1787 
1788 #ifdef CONFIG_UNICODE
1789 static const struct ext4_sb_encodings {
1790 	__u16 magic;
1791 	char *name;
1792 	char *version;
1793 } ext4_sb_encoding_map[] = {
1794 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1795 };
1796 
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)1797 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1798 				 const struct ext4_sb_encodings **encoding,
1799 				 __u16 *flags)
1800 {
1801 	__u16 magic = le16_to_cpu(es->s_encoding);
1802 	int i;
1803 
1804 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1805 		if (magic == ext4_sb_encoding_map[i].magic)
1806 			break;
1807 
1808 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1809 		return -EINVAL;
1810 
1811 	*encoding = &ext4_sb_encoding_map[i];
1812 	*flags = le16_to_cpu(es->s_encoding_flags);
1813 
1814 	return 0;
1815 }
1816 #endif
1817 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1818 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1819 			    substring_t *args, unsigned long *journal_devnum,
1820 			    unsigned int *journal_ioprio, int is_remount)
1821 {
1822 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1823 	const struct mount_opts *m;
1824 	kuid_t uid;
1825 	kgid_t gid;
1826 	int arg = 0;
1827 
1828 #ifdef CONFIG_QUOTA
1829 	if (token == Opt_usrjquota)
1830 		return set_qf_name(sb, USRQUOTA, &args[0]);
1831 	else if (token == Opt_grpjquota)
1832 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1833 	else if (token == Opt_offusrjquota)
1834 		return clear_qf_name(sb, USRQUOTA);
1835 	else if (token == Opt_offgrpjquota)
1836 		return clear_qf_name(sb, GRPQUOTA);
1837 #endif
1838 	switch (token) {
1839 	case Opt_noacl:
1840 	case Opt_nouser_xattr:
1841 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1842 		break;
1843 	case Opt_sb:
1844 		return 1;	/* handled by get_sb_block() */
1845 	case Opt_removed:
1846 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1847 		return 1;
1848 	case Opt_abort:
1849 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1850 		return 1;
1851 	case Opt_i_version:
1852 		sb->s_flags |= SB_I_VERSION;
1853 		return 1;
1854 	case Opt_lazytime:
1855 		sb->s_flags |= SB_LAZYTIME;
1856 		return 1;
1857 	case Opt_nolazytime:
1858 		sb->s_flags &= ~SB_LAZYTIME;
1859 		return 1;
1860 	}
1861 
1862 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1863 		if (token == m->token)
1864 			break;
1865 
1866 	if (m->token == Opt_err) {
1867 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1868 			 "or missing value", opt);
1869 		return -1;
1870 	}
1871 
1872 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1873 		ext4_msg(sb, KERN_ERR,
1874 			 "Mount option \"%s\" incompatible with ext2", opt);
1875 		return -1;
1876 	}
1877 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1878 		ext4_msg(sb, KERN_ERR,
1879 			 "Mount option \"%s\" incompatible with ext3", opt);
1880 		return -1;
1881 	}
1882 
1883 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1884 		return -1;
1885 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1886 		return -1;
1887 	if (m->flags & MOPT_EXPLICIT) {
1888 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1889 			set_opt2(sb, EXPLICIT_DELALLOC);
1890 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1891 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1892 		} else
1893 			return -1;
1894 	}
1895 	if (m->flags & MOPT_CLEAR_ERR)
1896 		clear_opt(sb, ERRORS_MASK);
1897 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1898 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1899 			 "options when quota turned on");
1900 		return -1;
1901 	}
1902 
1903 	if (m->flags & MOPT_NOSUPPORT) {
1904 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1905 	} else if (token == Opt_commit) {
1906 		if (arg == 0)
1907 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1908 		else if (arg > INT_MAX / HZ) {
1909 			ext4_msg(sb, KERN_ERR,
1910 				 "Invalid commit interval %d, "
1911 				 "must be smaller than %d",
1912 				 arg, INT_MAX / HZ);
1913 			return -1;
1914 		}
1915 		sbi->s_commit_interval = HZ * arg;
1916 	} else if (token == Opt_debug_want_extra_isize) {
1917 		if ((arg & 1) ||
1918 		    (arg < 4) ||
1919 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1920 			ext4_msg(sb, KERN_ERR,
1921 				 "Invalid want_extra_isize %d", arg);
1922 			return -1;
1923 		}
1924 		sbi->s_want_extra_isize = arg;
1925 	} else if (token == Opt_max_batch_time) {
1926 		sbi->s_max_batch_time = arg;
1927 	} else if (token == Opt_min_batch_time) {
1928 		sbi->s_min_batch_time = arg;
1929 	} else if (token == Opt_inode_readahead_blks) {
1930 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1931 			ext4_msg(sb, KERN_ERR,
1932 				 "EXT4-fs: inode_readahead_blks must be "
1933 				 "0 or a power of 2 smaller than 2^31");
1934 			return -1;
1935 		}
1936 		sbi->s_inode_readahead_blks = arg;
1937 	} else if (token == Opt_init_itable) {
1938 		set_opt(sb, INIT_INODE_TABLE);
1939 		if (!args->from)
1940 			arg = EXT4_DEF_LI_WAIT_MULT;
1941 		sbi->s_li_wait_mult = arg;
1942 	} else if (token == Opt_max_dir_size_kb) {
1943 		sbi->s_max_dir_size_kb = arg;
1944 	} else if (token == Opt_stripe) {
1945 		sbi->s_stripe = arg;
1946 	} else if (token == Opt_resuid) {
1947 		uid = make_kuid(current_user_ns(), arg);
1948 		if (!uid_valid(uid)) {
1949 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1950 			return -1;
1951 		}
1952 		sbi->s_resuid = uid;
1953 	} else if (token == Opt_resgid) {
1954 		gid = make_kgid(current_user_ns(), arg);
1955 		if (!gid_valid(gid)) {
1956 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1957 			return -1;
1958 		}
1959 		sbi->s_resgid = gid;
1960 	} else if (token == Opt_journal_dev) {
1961 		if (is_remount) {
1962 			ext4_msg(sb, KERN_ERR,
1963 				 "Cannot specify journal on remount");
1964 			return -1;
1965 		}
1966 		*journal_devnum = arg;
1967 	} else if (token == Opt_journal_path) {
1968 		char *journal_path;
1969 		struct inode *journal_inode;
1970 		struct path path;
1971 		int error;
1972 
1973 		if (is_remount) {
1974 			ext4_msg(sb, KERN_ERR,
1975 				 "Cannot specify journal on remount");
1976 			return -1;
1977 		}
1978 		journal_path = match_strdup(&args[0]);
1979 		if (!journal_path) {
1980 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1981 				"journal device string");
1982 			return -1;
1983 		}
1984 
1985 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1986 		if (error) {
1987 			ext4_msg(sb, KERN_ERR, "error: could not find "
1988 				"journal device path: error %d", error);
1989 			kfree(journal_path);
1990 			return -1;
1991 		}
1992 
1993 		journal_inode = d_inode(path.dentry);
1994 		if (!S_ISBLK(journal_inode->i_mode)) {
1995 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1996 				"is not a block device", journal_path);
1997 			path_put(&path);
1998 			kfree(journal_path);
1999 			return -1;
2000 		}
2001 
2002 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2003 		path_put(&path);
2004 		kfree(journal_path);
2005 	} else if (token == Opt_journal_ioprio) {
2006 		if (arg > 7) {
2007 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2008 				 " (must be 0-7)");
2009 			return -1;
2010 		}
2011 		*journal_ioprio =
2012 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2013 	} else if (token == Opt_test_dummy_encryption) {
2014 #ifdef CONFIG_FS_ENCRYPTION
2015 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
2016 		ext4_msg(sb, KERN_WARNING,
2017 			 "Test dummy encryption mode enabled");
2018 #else
2019 		ext4_msg(sb, KERN_WARNING,
2020 			 "Test dummy encryption mount option ignored");
2021 #endif
2022 	} else if (m->flags & MOPT_DATAJ) {
2023 		if (is_remount) {
2024 			if (!sbi->s_journal)
2025 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2026 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2027 				ext4_msg(sb, KERN_ERR,
2028 					 "Cannot change data mode on remount");
2029 				return -1;
2030 			}
2031 		} else {
2032 			clear_opt(sb, DATA_FLAGS);
2033 			sbi->s_mount_opt |= m->mount_opt;
2034 		}
2035 #ifdef CONFIG_QUOTA
2036 	} else if (m->flags & MOPT_QFMT) {
2037 		if (sb_any_quota_loaded(sb) &&
2038 		    sbi->s_jquota_fmt != m->mount_opt) {
2039 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2040 				 "quota options when quota turned on");
2041 			return -1;
2042 		}
2043 		if (ext4_has_feature_quota(sb)) {
2044 			ext4_msg(sb, KERN_INFO,
2045 				 "Quota format mount options ignored "
2046 				 "when QUOTA feature is enabled");
2047 			return 1;
2048 		}
2049 		sbi->s_jquota_fmt = m->mount_opt;
2050 #endif
2051 	} else if (token == Opt_dax) {
2052 #ifdef CONFIG_FS_DAX
2053 		ext4_msg(sb, KERN_WARNING,
2054 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2055 		sbi->s_mount_opt |= m->mount_opt;
2056 #else
2057 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2058 		return -1;
2059 #endif
2060 	} else if (token == Opt_data_err_abort) {
2061 		sbi->s_mount_opt |= m->mount_opt;
2062 	} else if (token == Opt_data_err_ignore) {
2063 		sbi->s_mount_opt &= ~m->mount_opt;
2064 	} else {
2065 		if (!args->from)
2066 			arg = 1;
2067 		if (m->flags & MOPT_CLEAR)
2068 			arg = !arg;
2069 		else if (unlikely(!(m->flags & MOPT_SET))) {
2070 			ext4_msg(sb, KERN_WARNING,
2071 				 "buggy handling of option %s", opt);
2072 			WARN_ON(1);
2073 			return -1;
2074 		}
2075 		if (arg != 0)
2076 			sbi->s_mount_opt |= m->mount_opt;
2077 		else
2078 			sbi->s_mount_opt &= ~m->mount_opt;
2079 	}
2080 	return 1;
2081 }
2082 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2083 static int parse_options(char *options, struct super_block *sb,
2084 			 unsigned long *journal_devnum,
2085 			 unsigned int *journal_ioprio,
2086 			 int is_remount)
2087 {
2088 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2089 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2090 	substring_t args[MAX_OPT_ARGS];
2091 	int token;
2092 
2093 	if (!options)
2094 		return 1;
2095 
2096 	while ((p = strsep(&options, ",")) != NULL) {
2097 		if (!*p)
2098 			continue;
2099 		/*
2100 		 * Initialize args struct so we know whether arg was
2101 		 * found; some options take optional arguments.
2102 		 */
2103 		args[0].to = args[0].from = NULL;
2104 		token = match_token(p, tokens, args);
2105 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2106 				     journal_ioprio, is_remount) < 0)
2107 			return 0;
2108 	}
2109 #ifdef CONFIG_QUOTA
2110 	/*
2111 	 * We do the test below only for project quotas. 'usrquota' and
2112 	 * 'grpquota' mount options are allowed even without quota feature
2113 	 * to support legacy quotas in quota files.
2114 	 */
2115 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2116 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2117 			 "Cannot enable project quota enforcement.");
2118 		return 0;
2119 	}
2120 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2121 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2122 	if (usr_qf_name || grp_qf_name) {
2123 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2124 			clear_opt(sb, USRQUOTA);
2125 
2126 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2127 			clear_opt(sb, GRPQUOTA);
2128 
2129 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2130 			ext4_msg(sb, KERN_ERR, "old and new quota "
2131 					"format mixing");
2132 			return 0;
2133 		}
2134 
2135 		if (!sbi->s_jquota_fmt) {
2136 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2137 					"not specified");
2138 			return 0;
2139 		}
2140 	}
2141 #endif
2142 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2143 		int blocksize =
2144 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2145 
2146 		if (blocksize < PAGE_SIZE) {
2147 			ext4_msg(sb, KERN_ERR, "can't mount with "
2148 				 "dioread_nolock if block size != PAGE_SIZE");
2149 			return 0;
2150 		}
2151 	}
2152 	return 1;
2153 }
2154 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2155 static inline void ext4_show_quota_options(struct seq_file *seq,
2156 					   struct super_block *sb)
2157 {
2158 #if defined(CONFIG_QUOTA)
2159 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2160 	char *usr_qf_name, *grp_qf_name;
2161 
2162 	if (sbi->s_jquota_fmt) {
2163 		char *fmtname = "";
2164 
2165 		switch (sbi->s_jquota_fmt) {
2166 		case QFMT_VFS_OLD:
2167 			fmtname = "vfsold";
2168 			break;
2169 		case QFMT_VFS_V0:
2170 			fmtname = "vfsv0";
2171 			break;
2172 		case QFMT_VFS_V1:
2173 			fmtname = "vfsv1";
2174 			break;
2175 		}
2176 		seq_printf(seq, ",jqfmt=%s", fmtname);
2177 	}
2178 
2179 	rcu_read_lock();
2180 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2181 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2182 	if (usr_qf_name)
2183 		seq_show_option(seq, "usrjquota", usr_qf_name);
2184 	if (grp_qf_name)
2185 		seq_show_option(seq, "grpjquota", grp_qf_name);
2186 	rcu_read_unlock();
2187 #endif
2188 }
2189 
token2str(int token)2190 static const char *token2str(int token)
2191 {
2192 	const struct match_token *t;
2193 
2194 	for (t = tokens; t->token != Opt_err; t++)
2195 		if (t->token == token && !strchr(t->pattern, '='))
2196 			break;
2197 	return t->pattern;
2198 }
2199 
2200 /*
2201  * Show an option if
2202  *  - it's set to a non-default value OR
2203  *  - if the per-sb default is different from the global default
2204  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2205 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2206 			      int nodefs)
2207 {
2208 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2209 	struct ext4_super_block *es = sbi->s_es;
2210 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2211 	const struct mount_opts *m;
2212 	char sep = nodefs ? '\n' : ',';
2213 
2214 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2215 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2216 
2217 	if (sbi->s_sb_block != 1)
2218 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2219 
2220 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2221 		int want_set = m->flags & MOPT_SET;
2222 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2223 		    (m->flags & MOPT_CLEAR_ERR))
2224 			continue;
2225 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2226 			continue; /* skip if same as the default */
2227 		if ((want_set &&
2228 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2229 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2230 			continue; /* select Opt_noFoo vs Opt_Foo */
2231 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2232 	}
2233 
2234 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2235 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2236 		SEQ_OPTS_PRINT("resuid=%u",
2237 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2238 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2239 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2240 		SEQ_OPTS_PRINT("resgid=%u",
2241 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2242 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2243 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2244 		SEQ_OPTS_PUTS("errors=remount-ro");
2245 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2246 		SEQ_OPTS_PUTS("errors=continue");
2247 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2248 		SEQ_OPTS_PUTS("errors=panic");
2249 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2250 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2251 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2252 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2253 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2254 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2255 	if (sb->s_flags & SB_I_VERSION)
2256 		SEQ_OPTS_PUTS("i_version");
2257 	if (nodefs || sbi->s_stripe)
2258 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2259 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2260 			(sbi->s_mount_opt ^ def_mount_opt)) {
2261 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2262 			SEQ_OPTS_PUTS("data=journal");
2263 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2264 			SEQ_OPTS_PUTS("data=ordered");
2265 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2266 			SEQ_OPTS_PUTS("data=writeback");
2267 	}
2268 	if (nodefs ||
2269 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2270 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2271 			       sbi->s_inode_readahead_blks);
2272 
2273 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2274 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2275 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2276 	if (nodefs || sbi->s_max_dir_size_kb)
2277 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2278 	if (test_opt(sb, DATA_ERR_ABORT))
2279 		SEQ_OPTS_PUTS("data_err=abort");
2280 	if (DUMMY_ENCRYPTION_ENABLED(sbi))
2281 		SEQ_OPTS_PUTS("test_dummy_encryption");
2282 
2283 	ext4_show_quota_options(seq, sb);
2284 	return 0;
2285 }
2286 
ext4_show_options(struct seq_file * seq,struct dentry * root)2287 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2288 {
2289 	return _ext4_show_options(seq, root->d_sb, 0);
2290 }
2291 
ext4_seq_options_show(struct seq_file * seq,void * offset)2292 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2293 {
2294 	struct super_block *sb = seq->private;
2295 	int rc;
2296 
2297 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2298 	rc = _ext4_show_options(seq, sb, 1);
2299 	seq_puts(seq, "\n");
2300 	return rc;
2301 }
2302 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2303 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2304 			    int read_only)
2305 {
2306 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2307 	int err = 0;
2308 
2309 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2310 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2311 			 "forcing read-only mode");
2312 		err = -EROFS;
2313 	}
2314 	if (read_only)
2315 		goto done;
2316 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2317 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2318 			 "running e2fsck is recommended");
2319 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2320 		ext4_msg(sb, KERN_WARNING,
2321 			 "warning: mounting fs with errors, "
2322 			 "running e2fsck is recommended");
2323 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2324 		 le16_to_cpu(es->s_mnt_count) >=
2325 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2326 		ext4_msg(sb, KERN_WARNING,
2327 			 "warning: maximal mount count reached, "
2328 			 "running e2fsck is recommended");
2329 	else if (le32_to_cpu(es->s_checkinterval) &&
2330 		 (ext4_get_tstamp(es, s_lastcheck) +
2331 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2332 		ext4_msg(sb, KERN_WARNING,
2333 			 "warning: checktime reached, "
2334 			 "running e2fsck is recommended");
2335 	if (!sbi->s_journal)
2336 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2337 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2338 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2339 	le16_add_cpu(&es->s_mnt_count, 1);
2340 	ext4_update_tstamp(es, s_mtime);
2341 	if (sbi->s_journal)
2342 		ext4_set_feature_journal_needs_recovery(sb);
2343 
2344 	err = ext4_commit_super(sb, 1);
2345 done:
2346 	if (test_opt(sb, DEBUG))
2347 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2348 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2349 			sb->s_blocksize,
2350 			sbi->s_groups_count,
2351 			EXT4_BLOCKS_PER_GROUP(sb),
2352 			EXT4_INODES_PER_GROUP(sb),
2353 			sbi->s_mount_opt, sbi->s_mount_opt2);
2354 
2355 	cleancache_init_fs(sb);
2356 	return err;
2357 }
2358 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2359 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2360 {
2361 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2362 	struct flex_groups *new_groups;
2363 	int size;
2364 
2365 	if (!sbi->s_log_groups_per_flex)
2366 		return 0;
2367 
2368 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2369 	if (size <= sbi->s_flex_groups_allocated)
2370 		return 0;
2371 
2372 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2373 	new_groups = kvzalloc(size, GFP_KERNEL);
2374 	if (!new_groups) {
2375 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2376 			 size / (int) sizeof(struct flex_groups));
2377 		return -ENOMEM;
2378 	}
2379 
2380 	if (sbi->s_flex_groups) {
2381 		memcpy(new_groups, sbi->s_flex_groups,
2382 		       (sbi->s_flex_groups_allocated *
2383 			sizeof(struct flex_groups)));
2384 		kvfree(sbi->s_flex_groups);
2385 	}
2386 	sbi->s_flex_groups = new_groups;
2387 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2388 	return 0;
2389 }
2390 
ext4_fill_flex_info(struct super_block * sb)2391 static int ext4_fill_flex_info(struct super_block *sb)
2392 {
2393 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2394 	struct ext4_group_desc *gdp = NULL;
2395 	ext4_group_t flex_group;
2396 	int i, err;
2397 
2398 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2399 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2400 		sbi->s_log_groups_per_flex = 0;
2401 		return 1;
2402 	}
2403 
2404 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2405 	if (err)
2406 		goto failed;
2407 
2408 	for (i = 0; i < sbi->s_groups_count; i++) {
2409 		gdp = ext4_get_group_desc(sb, i, NULL);
2410 
2411 		flex_group = ext4_flex_group(sbi, i);
2412 		atomic_add(ext4_free_inodes_count(sb, gdp),
2413 			   &sbi->s_flex_groups[flex_group].free_inodes);
2414 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2415 			     &sbi->s_flex_groups[flex_group].free_clusters);
2416 		atomic_add(ext4_used_dirs_count(sb, gdp),
2417 			   &sbi->s_flex_groups[flex_group].used_dirs);
2418 	}
2419 
2420 	return 1;
2421 failed:
2422 	return 0;
2423 }
2424 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2425 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2426 				   struct ext4_group_desc *gdp)
2427 {
2428 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2429 	__u16 crc = 0;
2430 	__le32 le_group = cpu_to_le32(block_group);
2431 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2432 
2433 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2434 		/* Use new metadata_csum algorithm */
2435 		__u32 csum32;
2436 		__u16 dummy_csum = 0;
2437 
2438 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2439 				     sizeof(le_group));
2440 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2441 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2442 				     sizeof(dummy_csum));
2443 		offset += sizeof(dummy_csum);
2444 		if (offset < sbi->s_desc_size)
2445 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2446 					     sbi->s_desc_size - offset);
2447 
2448 		crc = csum32 & 0xFFFF;
2449 		goto out;
2450 	}
2451 
2452 	/* old crc16 code */
2453 	if (!ext4_has_feature_gdt_csum(sb))
2454 		return 0;
2455 
2456 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2457 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2458 	crc = crc16(crc, (__u8 *)gdp, offset);
2459 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2460 	/* for checksum of struct ext4_group_desc do the rest...*/
2461 	if (ext4_has_feature_64bit(sb) &&
2462 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2463 		crc = crc16(crc, (__u8 *)gdp + offset,
2464 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2465 				offset);
2466 
2467 out:
2468 	return cpu_to_le16(crc);
2469 }
2470 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2471 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2472 				struct ext4_group_desc *gdp)
2473 {
2474 	if (ext4_has_group_desc_csum(sb) &&
2475 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2476 		return 0;
2477 
2478 	return 1;
2479 }
2480 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2481 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2482 			      struct ext4_group_desc *gdp)
2483 {
2484 	if (!ext4_has_group_desc_csum(sb))
2485 		return;
2486 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2487 }
2488 
2489 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2490 static int ext4_check_descriptors(struct super_block *sb,
2491 				  ext4_fsblk_t sb_block,
2492 				  ext4_group_t *first_not_zeroed)
2493 {
2494 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2495 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2496 	ext4_fsblk_t last_block;
2497 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2498 	ext4_fsblk_t block_bitmap;
2499 	ext4_fsblk_t inode_bitmap;
2500 	ext4_fsblk_t inode_table;
2501 	int flexbg_flag = 0;
2502 	ext4_group_t i, grp = sbi->s_groups_count;
2503 
2504 	if (ext4_has_feature_flex_bg(sb))
2505 		flexbg_flag = 1;
2506 
2507 	ext4_debug("Checking group descriptors");
2508 
2509 	for (i = 0; i < sbi->s_groups_count; i++) {
2510 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2511 
2512 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2513 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2514 		else
2515 			last_block = first_block +
2516 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2517 
2518 		if ((grp == sbi->s_groups_count) &&
2519 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2520 			grp = i;
2521 
2522 		block_bitmap = ext4_block_bitmap(sb, gdp);
2523 		if (block_bitmap == sb_block) {
2524 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2525 				 "Block bitmap for group %u overlaps "
2526 				 "superblock", i);
2527 			if (!sb_rdonly(sb))
2528 				return 0;
2529 		}
2530 		if (block_bitmap >= sb_block + 1 &&
2531 		    block_bitmap <= last_bg_block) {
2532 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2533 				 "Block bitmap for group %u overlaps "
2534 				 "block group descriptors", i);
2535 			if (!sb_rdonly(sb))
2536 				return 0;
2537 		}
2538 		if (block_bitmap < first_block || block_bitmap > last_block) {
2539 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2540 			       "Block bitmap for group %u not in group "
2541 			       "(block %llu)!", i, block_bitmap);
2542 			return 0;
2543 		}
2544 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2545 		if (inode_bitmap == sb_block) {
2546 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2547 				 "Inode bitmap for group %u overlaps "
2548 				 "superblock", i);
2549 			if (!sb_rdonly(sb))
2550 				return 0;
2551 		}
2552 		if (inode_bitmap >= sb_block + 1 &&
2553 		    inode_bitmap <= last_bg_block) {
2554 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2555 				 "Inode bitmap for group %u overlaps "
2556 				 "block group descriptors", i);
2557 			if (!sb_rdonly(sb))
2558 				return 0;
2559 		}
2560 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2561 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2562 			       "Inode bitmap for group %u not in group "
2563 			       "(block %llu)!", i, inode_bitmap);
2564 			return 0;
2565 		}
2566 		inode_table = ext4_inode_table(sb, gdp);
2567 		if (inode_table == sb_block) {
2568 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2569 				 "Inode table for group %u overlaps "
2570 				 "superblock", i);
2571 			if (!sb_rdonly(sb))
2572 				return 0;
2573 		}
2574 		if (inode_table >= sb_block + 1 &&
2575 		    inode_table <= last_bg_block) {
2576 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2577 				 "Inode table for group %u overlaps "
2578 				 "block group descriptors", i);
2579 			if (!sb_rdonly(sb))
2580 				return 0;
2581 		}
2582 		if (inode_table < first_block ||
2583 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2584 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2585 			       "Inode table for group %u not in group "
2586 			       "(block %llu)!", i, inode_table);
2587 			return 0;
2588 		}
2589 		ext4_lock_group(sb, i);
2590 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2591 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2592 				 "Checksum for group %u failed (%u!=%u)",
2593 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2594 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2595 			if (!sb_rdonly(sb)) {
2596 				ext4_unlock_group(sb, i);
2597 				return 0;
2598 			}
2599 		}
2600 		ext4_unlock_group(sb, i);
2601 		if (!flexbg_flag)
2602 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2603 	}
2604 	if (NULL != first_not_zeroed)
2605 		*first_not_zeroed = grp;
2606 	return 1;
2607 }
2608 
2609 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2610  * the superblock) which were deleted from all directories, but held open by
2611  * a process at the time of a crash.  We walk the list and try to delete these
2612  * inodes at recovery time (only with a read-write filesystem).
2613  *
2614  * In order to keep the orphan inode chain consistent during traversal (in
2615  * case of crash during recovery), we link each inode into the superblock
2616  * orphan list_head and handle it the same way as an inode deletion during
2617  * normal operation (which journals the operations for us).
2618  *
2619  * We only do an iget() and an iput() on each inode, which is very safe if we
2620  * accidentally point at an in-use or already deleted inode.  The worst that
2621  * can happen in this case is that we get a "bit already cleared" message from
2622  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2623  * e2fsck was run on this filesystem, and it must have already done the orphan
2624  * inode cleanup for us, so we can safely abort without any further action.
2625  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2626 static void ext4_orphan_cleanup(struct super_block *sb,
2627 				struct ext4_super_block *es)
2628 {
2629 	unsigned int s_flags = sb->s_flags;
2630 	int ret, nr_orphans = 0, nr_truncates = 0;
2631 #ifdef CONFIG_QUOTA
2632 	int quota_update = 0;
2633 	int i;
2634 #endif
2635 	if (!es->s_last_orphan) {
2636 		jbd_debug(4, "no orphan inodes to clean up\n");
2637 		return;
2638 	}
2639 
2640 	if (bdev_read_only(sb->s_bdev)) {
2641 		ext4_msg(sb, KERN_ERR, "write access "
2642 			"unavailable, skipping orphan cleanup");
2643 		return;
2644 	}
2645 
2646 	/* Check if feature set would not allow a r/w mount */
2647 	if (!ext4_feature_set_ok(sb, 0)) {
2648 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2649 			 "unknown ROCOMPAT features");
2650 		return;
2651 	}
2652 
2653 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2654 		/* don't clear list on RO mount w/ errors */
2655 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2656 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2657 				  "clearing orphan list.\n");
2658 			es->s_last_orphan = 0;
2659 		}
2660 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2661 		return;
2662 	}
2663 
2664 	if (s_flags & SB_RDONLY) {
2665 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2666 		sb->s_flags &= ~SB_RDONLY;
2667 	}
2668 #ifdef CONFIG_QUOTA
2669 	/* Needed for iput() to work correctly and not trash data */
2670 	sb->s_flags |= SB_ACTIVE;
2671 
2672 	/*
2673 	 * Turn on quotas which were not enabled for read-only mounts if
2674 	 * filesystem has quota feature, so that they are updated correctly.
2675 	 */
2676 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2677 		int ret = ext4_enable_quotas(sb);
2678 
2679 		if (!ret)
2680 			quota_update = 1;
2681 		else
2682 			ext4_msg(sb, KERN_ERR,
2683 				"Cannot turn on quotas: error %d", ret);
2684 	}
2685 
2686 	/* Turn on journaled quotas used for old sytle */
2687 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2688 		if (EXT4_SB(sb)->s_qf_names[i]) {
2689 			int ret = ext4_quota_on_mount(sb, i);
2690 
2691 			if (!ret)
2692 				quota_update = 1;
2693 			else
2694 				ext4_msg(sb, KERN_ERR,
2695 					"Cannot turn on journaled "
2696 					"quota: type %d: error %d", i, ret);
2697 		}
2698 	}
2699 #endif
2700 
2701 	while (es->s_last_orphan) {
2702 		struct inode *inode;
2703 
2704 		/*
2705 		 * We may have encountered an error during cleanup; if
2706 		 * so, skip the rest.
2707 		 */
2708 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2709 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2710 			es->s_last_orphan = 0;
2711 			break;
2712 		}
2713 
2714 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2715 		if (IS_ERR(inode)) {
2716 			es->s_last_orphan = 0;
2717 			break;
2718 		}
2719 
2720 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2721 		dquot_initialize(inode);
2722 		if (inode->i_nlink) {
2723 			if (test_opt(sb, DEBUG))
2724 				ext4_msg(sb, KERN_DEBUG,
2725 					"%s: truncating inode %lu to %lld bytes",
2726 					__func__, inode->i_ino, inode->i_size);
2727 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2728 				  inode->i_ino, inode->i_size);
2729 			inode_lock(inode);
2730 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2731 			ret = ext4_truncate(inode);
2732 			if (ret)
2733 				ext4_std_error(inode->i_sb, ret);
2734 			inode_unlock(inode);
2735 			nr_truncates++;
2736 		} else {
2737 			if (test_opt(sb, DEBUG))
2738 				ext4_msg(sb, KERN_DEBUG,
2739 					"%s: deleting unreferenced inode %lu",
2740 					__func__, inode->i_ino);
2741 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2742 				  inode->i_ino);
2743 			nr_orphans++;
2744 		}
2745 		iput(inode);  /* The delete magic happens here! */
2746 	}
2747 
2748 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2749 
2750 	if (nr_orphans)
2751 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2752 		       PLURAL(nr_orphans));
2753 	if (nr_truncates)
2754 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2755 		       PLURAL(nr_truncates));
2756 #ifdef CONFIG_QUOTA
2757 	/* Turn off quotas if they were enabled for orphan cleanup */
2758 	if (quota_update) {
2759 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2760 			if (sb_dqopt(sb)->files[i])
2761 				dquot_quota_off(sb, i);
2762 		}
2763 	}
2764 #endif
2765 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2766 }
2767 
2768 /*
2769  * Maximal extent format file size.
2770  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2771  * extent format containers, within a sector_t, and within i_blocks
2772  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2773  * so that won't be a limiting factor.
2774  *
2775  * However there is other limiting factor. We do store extents in the form
2776  * of starting block and length, hence the resulting length of the extent
2777  * covering maximum file size must fit into on-disk format containers as
2778  * well. Given that length is always by 1 unit bigger than max unit (because
2779  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2780  *
2781  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2782  */
ext4_max_size(int blkbits,int has_huge_files)2783 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2784 {
2785 	loff_t res;
2786 	loff_t upper_limit = MAX_LFS_FILESIZE;
2787 
2788 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2789 
2790 	if (!has_huge_files) {
2791 		upper_limit = (1LL << 32) - 1;
2792 
2793 		/* total blocks in file system block size */
2794 		upper_limit >>= (blkbits - 9);
2795 		upper_limit <<= blkbits;
2796 	}
2797 
2798 	/*
2799 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2800 	 * by one fs block, so ee_len can cover the extent of maximum file
2801 	 * size
2802 	 */
2803 	res = (1LL << 32) - 1;
2804 	res <<= blkbits;
2805 
2806 	/* Sanity check against vm- & vfs- imposed limits */
2807 	if (res > upper_limit)
2808 		res = upper_limit;
2809 
2810 	return res;
2811 }
2812 
2813 /*
2814  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2815  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2816  * We need to be 1 filesystem block less than the 2^48 sector limit.
2817  */
ext4_max_bitmap_size(int bits,int has_huge_files)2818 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2819 {
2820 	loff_t res = EXT4_NDIR_BLOCKS;
2821 	int meta_blocks;
2822 	loff_t upper_limit;
2823 	/* This is calculated to be the largest file size for a dense, block
2824 	 * mapped file such that the file's total number of 512-byte sectors,
2825 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2826 	 *
2827 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2828 	 * number of 512-byte sectors of the file.
2829 	 */
2830 
2831 	if (!has_huge_files) {
2832 		/*
2833 		 * !has_huge_files or implies that the inode i_block field
2834 		 * represents total file blocks in 2^32 512-byte sectors ==
2835 		 * size of vfs inode i_blocks * 8
2836 		 */
2837 		upper_limit = (1LL << 32) - 1;
2838 
2839 		/* total blocks in file system block size */
2840 		upper_limit >>= (bits - 9);
2841 
2842 	} else {
2843 		/*
2844 		 * We use 48 bit ext4_inode i_blocks
2845 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2846 		 * represent total number of blocks in
2847 		 * file system block size
2848 		 */
2849 		upper_limit = (1LL << 48) - 1;
2850 
2851 	}
2852 
2853 	/* indirect blocks */
2854 	meta_blocks = 1;
2855 	/* double indirect blocks */
2856 	meta_blocks += 1 + (1LL << (bits-2));
2857 	/* tripple indirect blocks */
2858 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2859 
2860 	upper_limit -= meta_blocks;
2861 	upper_limit <<= bits;
2862 
2863 	res += 1LL << (bits-2);
2864 	res += 1LL << (2*(bits-2));
2865 	res += 1LL << (3*(bits-2));
2866 	res <<= bits;
2867 	if (res > upper_limit)
2868 		res = upper_limit;
2869 
2870 	if (res > MAX_LFS_FILESIZE)
2871 		res = MAX_LFS_FILESIZE;
2872 
2873 	return res;
2874 }
2875 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2876 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2877 				   ext4_fsblk_t logical_sb_block, int nr)
2878 {
2879 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2880 	ext4_group_t bg, first_meta_bg;
2881 	int has_super = 0;
2882 
2883 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2884 
2885 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2886 		return logical_sb_block + nr + 1;
2887 	bg = sbi->s_desc_per_block * nr;
2888 	if (ext4_bg_has_super(sb, bg))
2889 		has_super = 1;
2890 
2891 	/*
2892 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2893 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2894 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2895 	 * compensate.
2896 	 */
2897 	if (sb->s_blocksize == 1024 && nr == 0 &&
2898 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2899 		has_super++;
2900 
2901 	return (has_super + ext4_group_first_block_no(sb, bg));
2902 }
2903 
2904 /**
2905  * ext4_get_stripe_size: Get the stripe size.
2906  * @sbi: In memory super block info
2907  *
2908  * If we have specified it via mount option, then
2909  * use the mount option value. If the value specified at mount time is
2910  * greater than the blocks per group use the super block value.
2911  * If the super block value is greater than blocks per group return 0.
2912  * Allocator needs it be less than blocks per group.
2913  *
2914  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2915 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2916 {
2917 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2918 	unsigned long stripe_width =
2919 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2920 	int ret;
2921 
2922 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2923 		ret = sbi->s_stripe;
2924 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2925 		ret = stripe_width;
2926 	else if (stride && stride <= sbi->s_blocks_per_group)
2927 		ret = stride;
2928 	else
2929 		ret = 0;
2930 
2931 	/*
2932 	 * If the stripe width is 1, this makes no sense and
2933 	 * we set it to 0 to turn off stripe handling code.
2934 	 */
2935 	if (ret <= 1)
2936 		ret = 0;
2937 
2938 	return ret;
2939 }
2940 
2941 /*
2942  * Check whether this filesystem can be mounted based on
2943  * the features present and the RDONLY/RDWR mount requested.
2944  * Returns 1 if this filesystem can be mounted as requested,
2945  * 0 if it cannot be.
2946  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2947 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2948 {
2949 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2950 		ext4_msg(sb, KERN_ERR,
2951 			"Couldn't mount because of "
2952 			"unsupported optional features (%x)",
2953 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2954 			~EXT4_FEATURE_INCOMPAT_SUPP));
2955 		return 0;
2956 	}
2957 
2958 #ifndef CONFIG_UNICODE
2959 	if (ext4_has_feature_casefold(sb)) {
2960 		ext4_msg(sb, KERN_ERR,
2961 			 "Filesystem with casefold feature cannot be "
2962 			 "mounted without CONFIG_UNICODE");
2963 		return 0;
2964 	}
2965 #endif
2966 
2967 	if (readonly)
2968 		return 1;
2969 
2970 	if (ext4_has_feature_readonly(sb)) {
2971 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2972 		sb->s_flags |= SB_RDONLY;
2973 		return 1;
2974 	}
2975 
2976 	/* Check that feature set is OK for a read-write mount */
2977 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2978 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2979 			 "unsupported optional features (%x)",
2980 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2981 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2982 		return 0;
2983 	}
2984 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2985 		ext4_msg(sb, KERN_ERR,
2986 			 "Can't support bigalloc feature without "
2987 			 "extents feature\n");
2988 		return 0;
2989 	}
2990 
2991 #ifndef CONFIG_QUOTA
2992 	if (ext4_has_feature_quota(sb) && !readonly) {
2993 		ext4_msg(sb, KERN_ERR,
2994 			 "Filesystem with quota feature cannot be mounted RDWR "
2995 			 "without CONFIG_QUOTA");
2996 		return 0;
2997 	}
2998 	if (ext4_has_feature_project(sb) && !readonly) {
2999 		ext4_msg(sb, KERN_ERR,
3000 			 "Filesystem with project quota feature cannot be mounted RDWR "
3001 			 "without CONFIG_QUOTA");
3002 		return 0;
3003 	}
3004 #endif  /* CONFIG_QUOTA */
3005 	return 1;
3006 }
3007 
3008 /*
3009  * This function is called once a day if we have errors logged
3010  * on the file system
3011  */
print_daily_error_info(struct timer_list * t)3012 static void print_daily_error_info(struct timer_list *t)
3013 {
3014 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3015 	struct super_block *sb = sbi->s_sb;
3016 	struct ext4_super_block *es = sbi->s_es;
3017 
3018 	if (es->s_error_count)
3019 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3020 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3021 			 le32_to_cpu(es->s_error_count));
3022 	if (es->s_first_error_time) {
3023 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3024 		       sb->s_id,
3025 		       ext4_get_tstamp(es, s_first_error_time),
3026 		       (int) sizeof(es->s_first_error_func),
3027 		       es->s_first_error_func,
3028 		       le32_to_cpu(es->s_first_error_line));
3029 		if (es->s_first_error_ino)
3030 			printk(KERN_CONT ": inode %u",
3031 			       le32_to_cpu(es->s_first_error_ino));
3032 		if (es->s_first_error_block)
3033 			printk(KERN_CONT ": block %llu", (unsigned long long)
3034 			       le64_to_cpu(es->s_first_error_block));
3035 		printk(KERN_CONT "\n");
3036 	}
3037 	if (es->s_last_error_time) {
3038 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3039 		       sb->s_id,
3040 		       ext4_get_tstamp(es, s_last_error_time),
3041 		       (int) sizeof(es->s_last_error_func),
3042 		       es->s_last_error_func,
3043 		       le32_to_cpu(es->s_last_error_line));
3044 		if (es->s_last_error_ino)
3045 			printk(KERN_CONT ": inode %u",
3046 			       le32_to_cpu(es->s_last_error_ino));
3047 		if (es->s_last_error_block)
3048 			printk(KERN_CONT ": block %llu", (unsigned long long)
3049 			       le64_to_cpu(es->s_last_error_block));
3050 		printk(KERN_CONT "\n");
3051 	}
3052 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3053 }
3054 
3055 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3056 static int ext4_run_li_request(struct ext4_li_request *elr)
3057 {
3058 	struct ext4_group_desc *gdp = NULL;
3059 	ext4_group_t group, ngroups;
3060 	struct super_block *sb;
3061 	unsigned long timeout = 0;
3062 	int ret = 0;
3063 
3064 	sb = elr->lr_super;
3065 	ngroups = EXT4_SB(sb)->s_groups_count;
3066 
3067 	for (group = elr->lr_next_group; group < ngroups; group++) {
3068 		gdp = ext4_get_group_desc(sb, group, NULL);
3069 		if (!gdp) {
3070 			ret = 1;
3071 			break;
3072 		}
3073 
3074 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3075 			break;
3076 	}
3077 
3078 	if (group >= ngroups)
3079 		ret = 1;
3080 
3081 	if (!ret) {
3082 		timeout = jiffies;
3083 		ret = ext4_init_inode_table(sb, group,
3084 					    elr->lr_timeout ? 0 : 1);
3085 		if (elr->lr_timeout == 0) {
3086 			timeout = (jiffies - timeout) *
3087 				  elr->lr_sbi->s_li_wait_mult;
3088 			elr->lr_timeout = timeout;
3089 		}
3090 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3091 		elr->lr_next_group = group + 1;
3092 	}
3093 	return ret;
3094 }
3095 
3096 /*
3097  * Remove lr_request from the list_request and free the
3098  * request structure. Should be called with li_list_mtx held
3099  */
ext4_remove_li_request(struct ext4_li_request * elr)3100 static void ext4_remove_li_request(struct ext4_li_request *elr)
3101 {
3102 	struct ext4_sb_info *sbi;
3103 
3104 	if (!elr)
3105 		return;
3106 
3107 	sbi = elr->lr_sbi;
3108 
3109 	list_del(&elr->lr_request);
3110 	sbi->s_li_request = NULL;
3111 	kfree(elr);
3112 }
3113 
ext4_unregister_li_request(struct super_block * sb)3114 static void ext4_unregister_li_request(struct super_block *sb)
3115 {
3116 	mutex_lock(&ext4_li_mtx);
3117 	if (!ext4_li_info) {
3118 		mutex_unlock(&ext4_li_mtx);
3119 		return;
3120 	}
3121 
3122 	mutex_lock(&ext4_li_info->li_list_mtx);
3123 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3124 	mutex_unlock(&ext4_li_info->li_list_mtx);
3125 	mutex_unlock(&ext4_li_mtx);
3126 }
3127 
3128 static struct task_struct *ext4_lazyinit_task;
3129 
3130 /*
3131  * This is the function where ext4lazyinit thread lives. It walks
3132  * through the request list searching for next scheduled filesystem.
3133  * When such a fs is found, run the lazy initialization request
3134  * (ext4_rn_li_request) and keep track of the time spend in this
3135  * function. Based on that time we compute next schedule time of
3136  * the request. When walking through the list is complete, compute
3137  * next waking time and put itself into sleep.
3138  */
ext4_lazyinit_thread(void * arg)3139 static int ext4_lazyinit_thread(void *arg)
3140 {
3141 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3142 	struct list_head *pos, *n;
3143 	struct ext4_li_request *elr;
3144 	unsigned long next_wakeup, cur;
3145 
3146 	BUG_ON(NULL == eli);
3147 
3148 cont_thread:
3149 	while (true) {
3150 		next_wakeup = MAX_JIFFY_OFFSET;
3151 
3152 		mutex_lock(&eli->li_list_mtx);
3153 		if (list_empty(&eli->li_request_list)) {
3154 			mutex_unlock(&eli->li_list_mtx);
3155 			goto exit_thread;
3156 		}
3157 		list_for_each_safe(pos, n, &eli->li_request_list) {
3158 			int err = 0;
3159 			int progress = 0;
3160 			elr = list_entry(pos, struct ext4_li_request,
3161 					 lr_request);
3162 
3163 			if (time_before(jiffies, elr->lr_next_sched)) {
3164 				if (time_before(elr->lr_next_sched, next_wakeup))
3165 					next_wakeup = elr->lr_next_sched;
3166 				continue;
3167 			}
3168 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3169 				if (sb_start_write_trylock(elr->lr_super)) {
3170 					progress = 1;
3171 					/*
3172 					 * We hold sb->s_umount, sb can not
3173 					 * be removed from the list, it is
3174 					 * now safe to drop li_list_mtx
3175 					 */
3176 					mutex_unlock(&eli->li_list_mtx);
3177 					err = ext4_run_li_request(elr);
3178 					sb_end_write(elr->lr_super);
3179 					mutex_lock(&eli->li_list_mtx);
3180 					n = pos->next;
3181 				}
3182 				up_read((&elr->lr_super->s_umount));
3183 			}
3184 			/* error, remove the lazy_init job */
3185 			if (err) {
3186 				ext4_remove_li_request(elr);
3187 				continue;
3188 			}
3189 			if (!progress) {
3190 				elr->lr_next_sched = jiffies +
3191 					(prandom_u32()
3192 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3193 			}
3194 			if (time_before(elr->lr_next_sched, next_wakeup))
3195 				next_wakeup = elr->lr_next_sched;
3196 		}
3197 		mutex_unlock(&eli->li_list_mtx);
3198 
3199 		try_to_freeze();
3200 
3201 		cur = jiffies;
3202 		if ((time_after_eq(cur, next_wakeup)) ||
3203 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3204 			cond_resched();
3205 			continue;
3206 		}
3207 
3208 		schedule_timeout_interruptible(next_wakeup - cur);
3209 
3210 		if (kthread_should_stop()) {
3211 			ext4_clear_request_list();
3212 			goto exit_thread;
3213 		}
3214 	}
3215 
3216 exit_thread:
3217 	/*
3218 	 * It looks like the request list is empty, but we need
3219 	 * to check it under the li_list_mtx lock, to prevent any
3220 	 * additions into it, and of course we should lock ext4_li_mtx
3221 	 * to atomically free the list and ext4_li_info, because at
3222 	 * this point another ext4 filesystem could be registering
3223 	 * new one.
3224 	 */
3225 	mutex_lock(&ext4_li_mtx);
3226 	mutex_lock(&eli->li_list_mtx);
3227 	if (!list_empty(&eli->li_request_list)) {
3228 		mutex_unlock(&eli->li_list_mtx);
3229 		mutex_unlock(&ext4_li_mtx);
3230 		goto cont_thread;
3231 	}
3232 	mutex_unlock(&eli->li_list_mtx);
3233 	kfree(ext4_li_info);
3234 	ext4_li_info = NULL;
3235 	mutex_unlock(&ext4_li_mtx);
3236 
3237 	return 0;
3238 }
3239 
ext4_clear_request_list(void)3240 static void ext4_clear_request_list(void)
3241 {
3242 	struct list_head *pos, *n;
3243 	struct ext4_li_request *elr;
3244 
3245 	mutex_lock(&ext4_li_info->li_list_mtx);
3246 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3247 		elr = list_entry(pos, struct ext4_li_request,
3248 				 lr_request);
3249 		ext4_remove_li_request(elr);
3250 	}
3251 	mutex_unlock(&ext4_li_info->li_list_mtx);
3252 }
3253 
ext4_run_lazyinit_thread(void)3254 static int ext4_run_lazyinit_thread(void)
3255 {
3256 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3257 					 ext4_li_info, "ext4lazyinit");
3258 	if (IS_ERR(ext4_lazyinit_task)) {
3259 		int err = PTR_ERR(ext4_lazyinit_task);
3260 		ext4_clear_request_list();
3261 		kfree(ext4_li_info);
3262 		ext4_li_info = NULL;
3263 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3264 				 "initialization thread\n",
3265 				 err);
3266 		return err;
3267 	}
3268 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Check whether it make sense to run itable init. thread or not.
3274  * If there is at least one uninitialized inode table, return
3275  * corresponding group number, else the loop goes through all
3276  * groups and return total number of groups.
3277  */
ext4_has_uninit_itable(struct super_block * sb)3278 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3279 {
3280 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3281 	struct ext4_group_desc *gdp = NULL;
3282 
3283 	if (!ext4_has_group_desc_csum(sb))
3284 		return ngroups;
3285 
3286 	for (group = 0; group < ngroups; group++) {
3287 		gdp = ext4_get_group_desc(sb, group, NULL);
3288 		if (!gdp)
3289 			continue;
3290 
3291 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3292 			break;
3293 	}
3294 
3295 	return group;
3296 }
3297 
ext4_li_info_new(void)3298 static int ext4_li_info_new(void)
3299 {
3300 	struct ext4_lazy_init *eli = NULL;
3301 
3302 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3303 	if (!eli)
3304 		return -ENOMEM;
3305 
3306 	INIT_LIST_HEAD(&eli->li_request_list);
3307 	mutex_init(&eli->li_list_mtx);
3308 
3309 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3310 
3311 	ext4_li_info = eli;
3312 
3313 	return 0;
3314 }
3315 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3316 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3317 					    ext4_group_t start)
3318 {
3319 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3320 	struct ext4_li_request *elr;
3321 
3322 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3323 	if (!elr)
3324 		return NULL;
3325 
3326 	elr->lr_super = sb;
3327 	elr->lr_sbi = sbi;
3328 	elr->lr_next_group = start;
3329 
3330 	/*
3331 	 * Randomize first schedule time of the request to
3332 	 * spread the inode table initialization requests
3333 	 * better.
3334 	 */
3335 	elr->lr_next_sched = jiffies + (prandom_u32() %
3336 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3337 	return elr;
3338 }
3339 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3340 int ext4_register_li_request(struct super_block *sb,
3341 			     ext4_group_t first_not_zeroed)
3342 {
3343 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3344 	struct ext4_li_request *elr = NULL;
3345 	ext4_group_t ngroups = sbi->s_groups_count;
3346 	int ret = 0;
3347 
3348 	mutex_lock(&ext4_li_mtx);
3349 	if (sbi->s_li_request != NULL) {
3350 		/*
3351 		 * Reset timeout so it can be computed again, because
3352 		 * s_li_wait_mult might have changed.
3353 		 */
3354 		sbi->s_li_request->lr_timeout = 0;
3355 		goto out;
3356 	}
3357 
3358 	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3359 	    !test_opt(sb, INIT_INODE_TABLE))
3360 		goto out;
3361 
3362 	elr = ext4_li_request_new(sb, first_not_zeroed);
3363 	if (!elr) {
3364 		ret = -ENOMEM;
3365 		goto out;
3366 	}
3367 
3368 	if (NULL == ext4_li_info) {
3369 		ret = ext4_li_info_new();
3370 		if (ret)
3371 			goto out;
3372 	}
3373 
3374 	mutex_lock(&ext4_li_info->li_list_mtx);
3375 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3376 	mutex_unlock(&ext4_li_info->li_list_mtx);
3377 
3378 	sbi->s_li_request = elr;
3379 	/*
3380 	 * set elr to NULL here since it has been inserted to
3381 	 * the request_list and the removal and free of it is
3382 	 * handled by ext4_clear_request_list from now on.
3383 	 */
3384 	elr = NULL;
3385 
3386 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3387 		ret = ext4_run_lazyinit_thread();
3388 		if (ret)
3389 			goto out;
3390 	}
3391 out:
3392 	mutex_unlock(&ext4_li_mtx);
3393 	if (ret)
3394 		kfree(elr);
3395 	return ret;
3396 }
3397 
3398 /*
3399  * We do not need to lock anything since this is called on
3400  * module unload.
3401  */
ext4_destroy_lazyinit_thread(void)3402 static void ext4_destroy_lazyinit_thread(void)
3403 {
3404 	/*
3405 	 * If thread exited earlier
3406 	 * there's nothing to be done.
3407 	 */
3408 	if (!ext4_li_info || !ext4_lazyinit_task)
3409 		return;
3410 
3411 	kthread_stop(ext4_lazyinit_task);
3412 }
3413 
set_journal_csum_feature_set(struct super_block * sb)3414 static int set_journal_csum_feature_set(struct super_block *sb)
3415 {
3416 	int ret = 1;
3417 	int compat, incompat;
3418 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3419 
3420 	if (ext4_has_metadata_csum(sb)) {
3421 		/* journal checksum v3 */
3422 		compat = 0;
3423 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3424 	} else {
3425 		/* journal checksum v1 */
3426 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3427 		incompat = 0;
3428 	}
3429 
3430 	jbd2_journal_clear_features(sbi->s_journal,
3431 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3432 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3433 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3434 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3435 		ret = jbd2_journal_set_features(sbi->s_journal,
3436 				compat, 0,
3437 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3438 				incompat);
3439 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3440 		ret = jbd2_journal_set_features(sbi->s_journal,
3441 				compat, 0,
3442 				incompat);
3443 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3444 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3445 	} else {
3446 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3447 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3448 	}
3449 
3450 	return ret;
3451 }
3452 
3453 /*
3454  * Note: calculating the overhead so we can be compatible with
3455  * historical BSD practice is quite difficult in the face of
3456  * clusters/bigalloc.  This is because multiple metadata blocks from
3457  * different block group can end up in the same allocation cluster.
3458  * Calculating the exact overhead in the face of clustered allocation
3459  * requires either O(all block bitmaps) in memory or O(number of block
3460  * groups**2) in time.  We will still calculate the superblock for
3461  * older file systems --- and if we come across with a bigalloc file
3462  * system with zero in s_overhead_clusters the estimate will be close to
3463  * correct especially for very large cluster sizes --- but for newer
3464  * file systems, it's better to calculate this figure once at mkfs
3465  * time, and store it in the superblock.  If the superblock value is
3466  * present (even for non-bigalloc file systems), we will use it.
3467  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3468 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3469 			  char *buf)
3470 {
3471 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3472 	struct ext4_group_desc	*gdp;
3473 	ext4_fsblk_t		first_block, last_block, b;
3474 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3475 	int			s, j, count = 0;
3476 
3477 	if (!ext4_has_feature_bigalloc(sb))
3478 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3479 			sbi->s_itb_per_group + 2);
3480 
3481 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3482 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3483 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3484 	for (i = 0; i < ngroups; i++) {
3485 		gdp = ext4_get_group_desc(sb, i, NULL);
3486 		b = ext4_block_bitmap(sb, gdp);
3487 		if (b >= first_block && b <= last_block) {
3488 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3489 			count++;
3490 		}
3491 		b = ext4_inode_bitmap(sb, gdp);
3492 		if (b >= first_block && b <= last_block) {
3493 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3494 			count++;
3495 		}
3496 		b = ext4_inode_table(sb, gdp);
3497 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3498 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3499 				int c = EXT4_B2C(sbi, b - first_block);
3500 				ext4_set_bit(c, buf);
3501 				count++;
3502 			}
3503 		if (i != grp)
3504 			continue;
3505 		s = 0;
3506 		if (ext4_bg_has_super(sb, grp)) {
3507 			ext4_set_bit(s++, buf);
3508 			count++;
3509 		}
3510 		j = ext4_bg_num_gdb(sb, grp);
3511 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3512 			ext4_error(sb, "Invalid number of block group "
3513 				   "descriptor blocks: %d", j);
3514 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3515 		}
3516 		count += j;
3517 		for (; j > 0; j--)
3518 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3519 	}
3520 	if (!count)
3521 		return 0;
3522 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3523 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3524 }
3525 
3526 /*
3527  * Compute the overhead and stash it in sbi->s_overhead
3528  */
ext4_calculate_overhead(struct super_block * sb)3529 int ext4_calculate_overhead(struct super_block *sb)
3530 {
3531 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3532 	struct ext4_super_block *es = sbi->s_es;
3533 	struct inode *j_inode;
3534 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3535 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3536 	ext4_fsblk_t overhead = 0;
3537 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3538 
3539 	if (!buf)
3540 		return -ENOMEM;
3541 
3542 	/*
3543 	 * Compute the overhead (FS structures).  This is constant
3544 	 * for a given filesystem unless the number of block groups
3545 	 * changes so we cache the previous value until it does.
3546 	 */
3547 
3548 	/*
3549 	 * All of the blocks before first_data_block are overhead
3550 	 */
3551 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3552 
3553 	/*
3554 	 * Add the overhead found in each block group
3555 	 */
3556 	for (i = 0; i < ngroups; i++) {
3557 		int blks;
3558 
3559 		blks = count_overhead(sb, i, buf);
3560 		overhead += blks;
3561 		if (blks)
3562 			memset(buf, 0, PAGE_SIZE);
3563 		cond_resched();
3564 	}
3565 
3566 	/*
3567 	 * Add the internal journal blocks whether the journal has been
3568 	 * loaded or not
3569 	 */
3570 	if (sbi->s_journal && !sbi->journal_bdev)
3571 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3572 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3573 		j_inode = ext4_get_journal_inode(sb, j_inum);
3574 		if (j_inode) {
3575 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3576 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3577 			iput(j_inode);
3578 		} else {
3579 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3580 		}
3581 	}
3582 	sbi->s_overhead = overhead;
3583 	smp_wmb();
3584 	free_page((unsigned long) buf);
3585 	return 0;
3586 }
3587 
ext4_set_resv_clusters(struct super_block * sb)3588 static void ext4_set_resv_clusters(struct super_block *sb)
3589 {
3590 	ext4_fsblk_t resv_clusters;
3591 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3592 
3593 	/*
3594 	 * There's no need to reserve anything when we aren't using extents.
3595 	 * The space estimates are exact, there are no unwritten extents,
3596 	 * hole punching doesn't need new metadata... This is needed especially
3597 	 * to keep ext2/3 backward compatibility.
3598 	 */
3599 	if (!ext4_has_feature_extents(sb))
3600 		return;
3601 	/*
3602 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3603 	 * This should cover the situations where we can not afford to run
3604 	 * out of space like for example punch hole, or converting
3605 	 * unwritten extents in delalloc path. In most cases such
3606 	 * allocation would require 1, or 2 blocks, higher numbers are
3607 	 * very rare.
3608 	 */
3609 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3610 			 sbi->s_cluster_bits);
3611 
3612 	do_div(resv_clusters, 50);
3613 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3614 
3615 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3616 }
3617 
ext4_fill_super(struct super_block * sb,void * data,int silent)3618 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3619 {
3620 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3621 	char *orig_data = kstrdup(data, GFP_KERNEL);
3622 	struct buffer_head *bh;
3623 	struct ext4_super_block *es = NULL;
3624 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3625 	ext4_fsblk_t block;
3626 	ext4_fsblk_t sb_block = get_sb_block(&data);
3627 	ext4_fsblk_t logical_sb_block;
3628 	unsigned long offset = 0;
3629 	unsigned long journal_devnum = 0;
3630 	unsigned long def_mount_opts;
3631 	struct inode *root;
3632 	const char *descr;
3633 	int ret = -ENOMEM;
3634 	int blocksize, clustersize;
3635 	unsigned int db_count;
3636 	unsigned int i;
3637 	int needs_recovery, has_huge_files, has_bigalloc;
3638 	__u64 blocks_count;
3639 	int err = 0;
3640 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3641 	ext4_group_t first_not_zeroed;
3642 
3643 	if ((data && !orig_data) || !sbi)
3644 		goto out_free_base;
3645 
3646 	sbi->s_daxdev = dax_dev;
3647 	sbi->s_blockgroup_lock =
3648 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3649 	if (!sbi->s_blockgroup_lock)
3650 		goto out_free_base;
3651 
3652 	sb->s_fs_info = sbi;
3653 	sbi->s_sb = sb;
3654 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3655 	sbi->s_sb_block = sb_block;
3656 	if (sb->s_bdev->bd_part)
3657 		sbi->s_sectors_written_start =
3658 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3659 
3660 	/* Cleanup superblock name */
3661 	strreplace(sb->s_id, '/', '!');
3662 
3663 	/* -EINVAL is default */
3664 	ret = -EINVAL;
3665 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3666 	if (!blocksize) {
3667 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3668 		goto out_fail;
3669 	}
3670 
3671 	/*
3672 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3673 	 * block sizes.  We need to calculate the offset from buffer start.
3674 	 */
3675 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3676 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3677 		offset = do_div(logical_sb_block, blocksize);
3678 	} else {
3679 		logical_sb_block = sb_block;
3680 	}
3681 
3682 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3683 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3684 		goto out_fail;
3685 	}
3686 	/*
3687 	 * Note: s_es must be initialized as soon as possible because
3688 	 *       some ext4 macro-instructions depend on its value
3689 	 */
3690 	es = (struct ext4_super_block *) (bh->b_data + offset);
3691 	sbi->s_es = es;
3692 	sb->s_magic = le16_to_cpu(es->s_magic);
3693 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3694 		goto cantfind_ext4;
3695 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3696 
3697 	/* Warn if metadata_csum and gdt_csum are both set. */
3698 	if (ext4_has_feature_metadata_csum(sb) &&
3699 	    ext4_has_feature_gdt_csum(sb))
3700 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3701 			     "redundant flags; please run fsck.");
3702 
3703 	/* Check for a known checksum algorithm */
3704 	if (!ext4_verify_csum_type(sb, es)) {
3705 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3706 			 "unknown checksum algorithm.");
3707 		silent = 1;
3708 		goto cantfind_ext4;
3709 	}
3710 
3711 	/* Load the checksum driver */
3712 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3713 	if (IS_ERR(sbi->s_chksum_driver)) {
3714 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3715 		ret = PTR_ERR(sbi->s_chksum_driver);
3716 		sbi->s_chksum_driver = NULL;
3717 		goto failed_mount;
3718 	}
3719 
3720 	/* Check superblock checksum */
3721 	if (!ext4_superblock_csum_verify(sb, es)) {
3722 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3723 			 "invalid superblock checksum.  Run e2fsck?");
3724 		silent = 1;
3725 		ret = -EFSBADCRC;
3726 		goto cantfind_ext4;
3727 	}
3728 
3729 	/* Precompute checksum seed for all metadata */
3730 	if (ext4_has_feature_csum_seed(sb))
3731 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3732 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3733 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3734 					       sizeof(es->s_uuid));
3735 
3736 	/* Set defaults before we parse the mount options */
3737 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3738 	set_opt(sb, INIT_INODE_TABLE);
3739 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3740 		set_opt(sb, DEBUG);
3741 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3742 		set_opt(sb, GRPID);
3743 	if (def_mount_opts & EXT4_DEFM_UID16)
3744 		set_opt(sb, NO_UID32);
3745 	/* xattr user namespace & acls are now defaulted on */
3746 	set_opt(sb, XATTR_USER);
3747 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3748 	set_opt(sb, POSIX_ACL);
3749 #endif
3750 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3751 	if (ext4_has_metadata_csum(sb))
3752 		set_opt(sb, JOURNAL_CHECKSUM);
3753 
3754 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3755 		set_opt(sb, JOURNAL_DATA);
3756 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3757 		set_opt(sb, ORDERED_DATA);
3758 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3759 		set_opt(sb, WRITEBACK_DATA);
3760 
3761 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3762 		set_opt(sb, ERRORS_PANIC);
3763 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3764 		set_opt(sb, ERRORS_CONT);
3765 	else
3766 		set_opt(sb, ERRORS_RO);
3767 	/* block_validity enabled by default; disable with noblock_validity */
3768 	set_opt(sb, BLOCK_VALIDITY);
3769 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3770 		set_opt(sb, DISCARD);
3771 
3772 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3773 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3774 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3775 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3776 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3777 
3778 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3779 		set_opt(sb, BARRIER);
3780 
3781 	/*
3782 	 * enable delayed allocation by default
3783 	 * Use -o nodelalloc to turn it off
3784 	 */
3785 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3786 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3787 		set_opt(sb, DELALLOC);
3788 
3789 	/*
3790 	 * set default s_li_wait_mult for lazyinit, for the case there is
3791 	 * no mount option specified.
3792 	 */
3793 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3794 
3795 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3796 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3797 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3798 	} else {
3799 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3800 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3801 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3802 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3803 				 sbi->s_first_ino);
3804 			goto failed_mount;
3805 		}
3806 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3807 		    (!is_power_of_2(sbi->s_inode_size)) ||
3808 		    (sbi->s_inode_size > blocksize)) {
3809 			ext4_msg(sb, KERN_ERR,
3810 			       "unsupported inode size: %d",
3811 			       sbi->s_inode_size);
3812 			goto failed_mount;
3813 		}
3814 		/*
3815 		 * i_atime_extra is the last extra field available for
3816 		 * [acm]times in struct ext4_inode. Checking for that
3817 		 * field should suffice to ensure we have extra space
3818 		 * for all three.
3819 		 */
3820 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3821 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3822 			sb->s_time_gran = 1;
3823 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3824 		} else {
3825 			sb->s_time_gran = NSEC_PER_SEC;
3826 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3827 		}
3828 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
3829 	}
3830 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3831 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3832 			EXT4_GOOD_OLD_INODE_SIZE;
3833 		if (ext4_has_feature_extra_isize(sb)) {
3834 			unsigned v, max = (sbi->s_inode_size -
3835 					   EXT4_GOOD_OLD_INODE_SIZE);
3836 
3837 			v = le16_to_cpu(es->s_want_extra_isize);
3838 			if (v > max) {
3839 				ext4_msg(sb, KERN_ERR,
3840 					 "bad s_want_extra_isize: %d", v);
3841 				goto failed_mount;
3842 			}
3843 			if (sbi->s_want_extra_isize < v)
3844 				sbi->s_want_extra_isize = v;
3845 
3846 			v = le16_to_cpu(es->s_min_extra_isize);
3847 			if (v > max) {
3848 				ext4_msg(sb, KERN_ERR,
3849 					 "bad s_min_extra_isize: %d", v);
3850 				goto failed_mount;
3851 			}
3852 			if (sbi->s_want_extra_isize < v)
3853 				sbi->s_want_extra_isize = v;
3854 		}
3855 	}
3856 
3857 	if (sbi->s_es->s_mount_opts[0]) {
3858 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3859 					      sizeof(sbi->s_es->s_mount_opts),
3860 					      GFP_KERNEL);
3861 		if (!s_mount_opts)
3862 			goto failed_mount;
3863 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3864 				   &journal_ioprio, 0)) {
3865 			ext4_msg(sb, KERN_WARNING,
3866 				 "failed to parse options in superblock: %s",
3867 				 s_mount_opts);
3868 		}
3869 		kfree(s_mount_opts);
3870 	}
3871 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3872 	if (!parse_options((char *) data, sb, &journal_devnum,
3873 			   &journal_ioprio, 0))
3874 		goto failed_mount;
3875 
3876 #ifdef CONFIG_UNICODE
3877 	if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3878 		const struct ext4_sb_encodings *encoding_info;
3879 		struct unicode_map *encoding;
3880 		__u16 encoding_flags;
3881 
3882 		if (ext4_has_feature_encrypt(sb)) {
3883 			ext4_msg(sb, KERN_ERR,
3884 				 "Can't mount with encoding and encryption");
3885 			goto failed_mount;
3886 		}
3887 
3888 		if (ext4_sb_read_encoding(es, &encoding_info,
3889 					  &encoding_flags)) {
3890 			ext4_msg(sb, KERN_ERR,
3891 				 "Encoding requested by superblock is unknown");
3892 			goto failed_mount;
3893 		}
3894 
3895 		encoding = utf8_load(encoding_info->version);
3896 		if (IS_ERR(encoding)) {
3897 			ext4_msg(sb, KERN_ERR,
3898 				 "can't mount with superblock charset: %s-%s "
3899 				 "not supported by the kernel. flags: 0x%x.",
3900 				 encoding_info->name, encoding_info->version,
3901 				 encoding_flags);
3902 			goto failed_mount;
3903 		}
3904 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3905 			 "%s-%s with flags 0x%hx", encoding_info->name,
3906 			 encoding_info->version?:"\b", encoding_flags);
3907 
3908 		sbi->s_encoding = encoding;
3909 		sbi->s_encoding_flags = encoding_flags;
3910 	}
3911 #endif
3912 
3913 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3914 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3915 			    "with data=journal disables delayed "
3916 			    "allocation and O_DIRECT support!\n");
3917 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3918 			ext4_msg(sb, KERN_ERR, "can't mount with "
3919 				 "both data=journal and delalloc");
3920 			goto failed_mount;
3921 		}
3922 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3923 			ext4_msg(sb, KERN_ERR, "can't mount with "
3924 				 "both data=journal and dioread_nolock");
3925 			goto failed_mount;
3926 		}
3927 		if (test_opt(sb, DAX)) {
3928 			ext4_msg(sb, KERN_ERR, "can't mount with "
3929 				 "both data=journal and dax");
3930 			goto failed_mount;
3931 		}
3932 		if (ext4_has_feature_encrypt(sb)) {
3933 			ext4_msg(sb, KERN_WARNING,
3934 				 "encrypted files will use data=ordered "
3935 				 "instead of data journaling mode");
3936 		}
3937 		if (test_opt(sb, DELALLOC))
3938 			clear_opt(sb, DELALLOC);
3939 	} else {
3940 		sb->s_iflags |= SB_I_CGROUPWB;
3941 	}
3942 
3943 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3944 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3945 
3946 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3947 	    (ext4_has_compat_features(sb) ||
3948 	     ext4_has_ro_compat_features(sb) ||
3949 	     ext4_has_incompat_features(sb)))
3950 		ext4_msg(sb, KERN_WARNING,
3951 		       "feature flags set on rev 0 fs, "
3952 		       "running e2fsck is recommended");
3953 
3954 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3955 		set_opt2(sb, HURD_COMPAT);
3956 		if (ext4_has_feature_64bit(sb)) {
3957 			ext4_msg(sb, KERN_ERR,
3958 				 "The Hurd can't support 64-bit file systems");
3959 			goto failed_mount;
3960 		}
3961 
3962 		/*
3963 		 * ea_inode feature uses l_i_version field which is not
3964 		 * available in HURD_COMPAT mode.
3965 		 */
3966 		if (ext4_has_feature_ea_inode(sb)) {
3967 			ext4_msg(sb, KERN_ERR,
3968 				 "ea_inode feature is not supported for Hurd");
3969 			goto failed_mount;
3970 		}
3971 	}
3972 
3973 	if (IS_EXT2_SB(sb)) {
3974 		if (ext2_feature_set_ok(sb))
3975 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3976 				 "using the ext4 subsystem");
3977 		else {
3978 			/*
3979 			 * If we're probing be silent, if this looks like
3980 			 * it's actually an ext[34] filesystem.
3981 			 */
3982 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3983 				goto failed_mount;
3984 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3985 				 "to feature incompatibilities");
3986 			goto failed_mount;
3987 		}
3988 	}
3989 
3990 	if (IS_EXT3_SB(sb)) {
3991 		if (ext3_feature_set_ok(sb))
3992 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3993 				 "using the ext4 subsystem");
3994 		else {
3995 			/*
3996 			 * If we're probing be silent, if this looks like
3997 			 * it's actually an ext4 filesystem.
3998 			 */
3999 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4000 				goto failed_mount;
4001 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4002 				 "to feature incompatibilities");
4003 			goto failed_mount;
4004 		}
4005 	}
4006 
4007 	/*
4008 	 * Check feature flags regardless of the revision level, since we
4009 	 * previously didn't change the revision level when setting the flags,
4010 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4011 	 */
4012 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4013 		goto failed_mount;
4014 
4015 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4016 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
4017 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
4018 		ext4_msg(sb, KERN_ERR,
4019 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
4020 			 blocksize, le32_to_cpu(es->s_log_block_size));
4021 		goto failed_mount;
4022 	}
4023 	if (le32_to_cpu(es->s_log_block_size) >
4024 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4025 		ext4_msg(sb, KERN_ERR,
4026 			 "Invalid log block size: %u",
4027 			 le32_to_cpu(es->s_log_block_size));
4028 		goto failed_mount;
4029 	}
4030 	if (le32_to_cpu(es->s_log_cluster_size) >
4031 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4032 		ext4_msg(sb, KERN_ERR,
4033 			 "Invalid log cluster size: %u",
4034 			 le32_to_cpu(es->s_log_cluster_size));
4035 		goto failed_mount;
4036 	}
4037 
4038 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4039 		ext4_msg(sb, KERN_ERR,
4040 			 "Number of reserved GDT blocks insanely large: %d",
4041 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4042 		goto failed_mount;
4043 	}
4044 
4045 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4046 		if (ext4_has_feature_inline_data(sb)) {
4047 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4048 					" that may contain inline data");
4049 			goto failed_mount;
4050 		}
4051 		if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4052 			ext4_msg(sb, KERN_ERR,
4053 				"DAX unsupported by block device.");
4054 			goto failed_mount;
4055 		}
4056 	}
4057 
4058 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4059 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4060 			 es->s_encryption_level);
4061 		goto failed_mount;
4062 	}
4063 
4064 	if (sb->s_blocksize != blocksize) {
4065 		/* Validate the filesystem blocksize */
4066 		if (!sb_set_blocksize(sb, blocksize)) {
4067 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4068 					blocksize);
4069 			goto failed_mount;
4070 		}
4071 
4072 		brelse(bh);
4073 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4074 		offset = do_div(logical_sb_block, blocksize);
4075 		bh = sb_bread_unmovable(sb, logical_sb_block);
4076 		if (!bh) {
4077 			ext4_msg(sb, KERN_ERR,
4078 			       "Can't read superblock on 2nd try");
4079 			goto failed_mount;
4080 		}
4081 		es = (struct ext4_super_block *)(bh->b_data + offset);
4082 		sbi->s_es = es;
4083 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4084 			ext4_msg(sb, KERN_ERR,
4085 			       "Magic mismatch, very weird!");
4086 			goto failed_mount;
4087 		}
4088 	}
4089 
4090 	has_huge_files = ext4_has_feature_huge_file(sb);
4091 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4092 						      has_huge_files);
4093 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4094 
4095 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4096 	if (ext4_has_feature_64bit(sb)) {
4097 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4098 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4099 		    !is_power_of_2(sbi->s_desc_size)) {
4100 			ext4_msg(sb, KERN_ERR,
4101 			       "unsupported descriptor size %lu",
4102 			       sbi->s_desc_size);
4103 			goto failed_mount;
4104 		}
4105 	} else
4106 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4107 
4108 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4109 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4110 
4111 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4112 	if (sbi->s_inodes_per_block == 0)
4113 		goto cantfind_ext4;
4114 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4115 	    sbi->s_inodes_per_group > blocksize * 8) {
4116 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4117 			 sbi->s_blocks_per_group);
4118 		goto failed_mount;
4119 	}
4120 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4121 					sbi->s_inodes_per_block;
4122 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4123 	sbi->s_sbh = bh;
4124 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4125 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4126 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4127 
4128 	for (i = 0; i < 4; i++)
4129 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4130 	sbi->s_def_hash_version = es->s_def_hash_version;
4131 	if (ext4_has_feature_dir_index(sb)) {
4132 		i = le32_to_cpu(es->s_flags);
4133 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4134 			sbi->s_hash_unsigned = 3;
4135 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4136 #ifdef __CHAR_UNSIGNED__
4137 			if (!sb_rdonly(sb))
4138 				es->s_flags |=
4139 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4140 			sbi->s_hash_unsigned = 3;
4141 #else
4142 			if (!sb_rdonly(sb))
4143 				es->s_flags |=
4144 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4145 #endif
4146 		}
4147 	}
4148 
4149 	/* Handle clustersize */
4150 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4151 	has_bigalloc = ext4_has_feature_bigalloc(sb);
4152 	if (has_bigalloc) {
4153 		if (clustersize < blocksize) {
4154 			ext4_msg(sb, KERN_ERR,
4155 				 "cluster size (%d) smaller than "
4156 				 "block size (%d)", clustersize, blocksize);
4157 			goto failed_mount;
4158 		}
4159 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4160 			le32_to_cpu(es->s_log_block_size);
4161 		sbi->s_clusters_per_group =
4162 			le32_to_cpu(es->s_clusters_per_group);
4163 		if (sbi->s_clusters_per_group > blocksize * 8) {
4164 			ext4_msg(sb, KERN_ERR,
4165 				 "#clusters per group too big: %lu",
4166 				 sbi->s_clusters_per_group);
4167 			goto failed_mount;
4168 		}
4169 		if (sbi->s_blocks_per_group !=
4170 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4171 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4172 				 "clusters per group (%lu) inconsistent",
4173 				 sbi->s_blocks_per_group,
4174 				 sbi->s_clusters_per_group);
4175 			goto failed_mount;
4176 		}
4177 	} else {
4178 		if (clustersize != blocksize) {
4179 			ext4_msg(sb, KERN_ERR,
4180 				 "fragment/cluster size (%d) != "
4181 				 "block size (%d)", clustersize, blocksize);
4182 			goto failed_mount;
4183 		}
4184 		if (sbi->s_blocks_per_group > blocksize * 8) {
4185 			ext4_msg(sb, KERN_ERR,
4186 				 "#blocks per group too big: %lu",
4187 				 sbi->s_blocks_per_group);
4188 			goto failed_mount;
4189 		}
4190 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4191 		sbi->s_cluster_bits = 0;
4192 	}
4193 	sbi->s_cluster_ratio = clustersize / blocksize;
4194 
4195 	/* Do we have standard group size of clustersize * 8 blocks ? */
4196 	if (sbi->s_blocks_per_group == clustersize << 3)
4197 		set_opt2(sb, STD_GROUP_SIZE);
4198 
4199 	/*
4200 	 * Test whether we have more sectors than will fit in sector_t,
4201 	 * and whether the max offset is addressable by the page cache.
4202 	 */
4203 	err = generic_check_addressable(sb->s_blocksize_bits,
4204 					ext4_blocks_count(es));
4205 	if (err) {
4206 		ext4_msg(sb, KERN_ERR, "filesystem"
4207 			 " too large to mount safely on this system");
4208 		goto failed_mount;
4209 	}
4210 
4211 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4212 		goto cantfind_ext4;
4213 
4214 	/* check blocks count against device size */
4215 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4216 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4217 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4218 		       "exceeds size of device (%llu blocks)",
4219 		       ext4_blocks_count(es), blocks_count);
4220 		goto failed_mount;
4221 	}
4222 
4223 	/*
4224 	 * It makes no sense for the first data block to be beyond the end
4225 	 * of the filesystem.
4226 	 */
4227 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4228 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4229 			 "block %u is beyond end of filesystem (%llu)",
4230 			 le32_to_cpu(es->s_first_data_block),
4231 			 ext4_blocks_count(es));
4232 		goto failed_mount;
4233 	}
4234 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4235 	    (sbi->s_cluster_ratio == 1)) {
4236 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4237 			 "block is 0 with a 1k block and cluster size");
4238 		goto failed_mount;
4239 	}
4240 
4241 	blocks_count = (ext4_blocks_count(es) -
4242 			le32_to_cpu(es->s_first_data_block) +
4243 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4244 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4245 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4246 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4247 		       "(block count %llu, first data block %u, "
4248 		       "blocks per group %lu)", sbi->s_groups_count,
4249 		       ext4_blocks_count(es),
4250 		       le32_to_cpu(es->s_first_data_block),
4251 		       EXT4_BLOCKS_PER_GROUP(sb));
4252 		goto failed_mount;
4253 	}
4254 	sbi->s_groups_count = blocks_count;
4255 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4256 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4257 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4258 	    le32_to_cpu(es->s_inodes_count)) {
4259 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4260 			 le32_to_cpu(es->s_inodes_count),
4261 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4262 		ret = -EINVAL;
4263 		goto failed_mount;
4264 	}
4265 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4266 		   EXT4_DESC_PER_BLOCK(sb);
4267 	if (ext4_has_feature_meta_bg(sb)) {
4268 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4269 			ext4_msg(sb, KERN_WARNING,
4270 				 "first meta block group too large: %u "
4271 				 "(group descriptor block count %u)",
4272 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4273 			goto failed_mount;
4274 		}
4275 	}
4276 	sbi->s_group_desc = kvmalloc_array(db_count,
4277 					   sizeof(struct buffer_head *),
4278 					   GFP_KERNEL);
4279 	if (sbi->s_group_desc == NULL) {
4280 		ext4_msg(sb, KERN_ERR, "not enough memory");
4281 		ret = -ENOMEM;
4282 		goto failed_mount;
4283 	}
4284 
4285 	bgl_lock_init(sbi->s_blockgroup_lock);
4286 
4287 	/* Pre-read the descriptors into the buffer cache */
4288 	for (i = 0; i < db_count; i++) {
4289 		block = descriptor_loc(sb, logical_sb_block, i);
4290 		sb_breadahead(sb, block);
4291 	}
4292 
4293 	for (i = 0; i < db_count; i++) {
4294 		block = descriptor_loc(sb, logical_sb_block, i);
4295 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4296 		if (!sbi->s_group_desc[i]) {
4297 			ext4_msg(sb, KERN_ERR,
4298 			       "can't read group descriptor %d", i);
4299 			db_count = i;
4300 			goto failed_mount2;
4301 		}
4302 	}
4303 	sbi->s_gdb_count = db_count;
4304 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4305 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4306 		ret = -EFSCORRUPTED;
4307 		goto failed_mount2;
4308 	}
4309 
4310 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4311 
4312 	/* Register extent status tree shrinker */
4313 	if (ext4_es_register_shrinker(sbi))
4314 		goto failed_mount3;
4315 
4316 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4317 	sbi->s_extent_max_zeroout_kb = 32;
4318 
4319 	/*
4320 	 * set up enough so that it can read an inode
4321 	 */
4322 	sb->s_op = &ext4_sops;
4323 	sb->s_export_op = &ext4_export_ops;
4324 	sb->s_xattr = ext4_xattr_handlers;
4325 #ifdef CONFIG_FS_ENCRYPTION
4326 	sb->s_cop = &ext4_cryptops;
4327 #endif
4328 #ifdef CONFIG_FS_VERITY
4329 	sb->s_vop = &ext4_verityops;
4330 #endif
4331 #ifdef CONFIG_QUOTA
4332 	sb->dq_op = &ext4_quota_operations;
4333 	if (ext4_has_feature_quota(sb))
4334 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4335 	else
4336 		sb->s_qcop = &ext4_qctl_operations;
4337 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4338 #endif
4339 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4340 
4341 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4342 	mutex_init(&sbi->s_orphan_lock);
4343 
4344 	sb->s_root = NULL;
4345 
4346 	needs_recovery = (es->s_last_orphan != 0 ||
4347 			  ext4_has_feature_journal_needs_recovery(sb));
4348 
4349 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4350 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4351 			goto failed_mount3a;
4352 
4353 	/*
4354 	 * The first inode we look at is the journal inode.  Don't try
4355 	 * root first: it may be modified in the journal!
4356 	 */
4357 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4358 		err = ext4_load_journal(sb, es, journal_devnum);
4359 		if (err)
4360 			goto failed_mount3a;
4361 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4362 		   ext4_has_feature_journal_needs_recovery(sb)) {
4363 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4364 		       "suppressed and not mounted read-only");
4365 		goto failed_mount_wq;
4366 	} else {
4367 		/* Nojournal mode, all journal mount options are illegal */
4368 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4369 			ext4_msg(sb, KERN_ERR, "can't mount with "
4370 				 "journal_checksum, fs mounted w/o journal");
4371 			goto failed_mount_wq;
4372 		}
4373 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4374 			ext4_msg(sb, KERN_ERR, "can't mount with "
4375 				 "journal_async_commit, fs mounted w/o journal");
4376 			goto failed_mount_wq;
4377 		}
4378 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4379 			ext4_msg(sb, KERN_ERR, "can't mount with "
4380 				 "commit=%lu, fs mounted w/o journal",
4381 				 sbi->s_commit_interval / HZ);
4382 			goto failed_mount_wq;
4383 		}
4384 		if (EXT4_MOUNT_DATA_FLAGS &
4385 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4386 			ext4_msg(sb, KERN_ERR, "can't mount with "
4387 				 "data=, fs mounted w/o journal");
4388 			goto failed_mount_wq;
4389 		}
4390 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4391 		clear_opt(sb, JOURNAL_CHECKSUM);
4392 		clear_opt(sb, DATA_FLAGS);
4393 		sbi->s_journal = NULL;
4394 		needs_recovery = 0;
4395 		goto no_journal;
4396 	}
4397 
4398 	if (ext4_has_feature_64bit(sb) &&
4399 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4400 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4401 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4402 		goto failed_mount_wq;
4403 	}
4404 
4405 	if (!set_journal_csum_feature_set(sb)) {
4406 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4407 			 "feature set");
4408 		goto failed_mount_wq;
4409 	}
4410 
4411 	/* We have now updated the journal if required, so we can
4412 	 * validate the data journaling mode. */
4413 	switch (test_opt(sb, DATA_FLAGS)) {
4414 	case 0:
4415 		/* No mode set, assume a default based on the journal
4416 		 * capabilities: ORDERED_DATA if the journal can
4417 		 * cope, else JOURNAL_DATA
4418 		 */
4419 		if (jbd2_journal_check_available_features
4420 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4421 			set_opt(sb, ORDERED_DATA);
4422 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4423 		} else {
4424 			set_opt(sb, JOURNAL_DATA);
4425 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4426 		}
4427 		break;
4428 
4429 	case EXT4_MOUNT_ORDERED_DATA:
4430 	case EXT4_MOUNT_WRITEBACK_DATA:
4431 		if (!jbd2_journal_check_available_features
4432 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4433 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4434 			       "requested data journaling mode");
4435 			goto failed_mount_wq;
4436 		}
4437 	default:
4438 		break;
4439 	}
4440 
4441 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4442 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4443 		ext4_msg(sb, KERN_ERR, "can't mount with "
4444 			"journal_async_commit in data=ordered mode");
4445 		goto failed_mount_wq;
4446 	}
4447 
4448 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4449 
4450 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4451 
4452 no_journal:
4453 	if (!test_opt(sb, NO_MBCACHE)) {
4454 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4455 		if (!sbi->s_ea_block_cache) {
4456 			ext4_msg(sb, KERN_ERR,
4457 				 "Failed to create ea_block_cache");
4458 			goto failed_mount_wq;
4459 		}
4460 
4461 		if (ext4_has_feature_ea_inode(sb)) {
4462 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4463 			if (!sbi->s_ea_inode_cache) {
4464 				ext4_msg(sb, KERN_ERR,
4465 					 "Failed to create ea_inode_cache");
4466 				goto failed_mount_wq;
4467 			}
4468 		}
4469 	}
4470 
4471 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4472 	    (blocksize != PAGE_SIZE)) {
4473 		ext4_msg(sb, KERN_ERR,
4474 			 "Unsupported blocksize for fs encryption");
4475 		goto failed_mount_wq;
4476 	}
4477 
4478 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4479 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4480 		goto failed_mount_wq;
4481 	}
4482 
4483 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4484 	    !ext4_has_feature_encrypt(sb)) {
4485 		ext4_set_feature_encrypt(sb);
4486 		ext4_commit_super(sb, 1);
4487 	}
4488 
4489 	/*
4490 	 * Get the # of file system overhead blocks from the
4491 	 * superblock if present.
4492 	 */
4493 	if (es->s_overhead_clusters)
4494 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4495 	else {
4496 		err = ext4_calculate_overhead(sb);
4497 		if (err)
4498 			goto failed_mount_wq;
4499 	}
4500 
4501 	/*
4502 	 * The maximum number of concurrent works can be high and
4503 	 * concurrency isn't really necessary.  Limit it to 1.
4504 	 */
4505 	EXT4_SB(sb)->rsv_conversion_wq =
4506 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4507 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4508 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4509 		ret = -ENOMEM;
4510 		goto failed_mount4;
4511 	}
4512 
4513 	/*
4514 	 * The jbd2_journal_load will have done any necessary log recovery,
4515 	 * so we can safely mount the rest of the filesystem now.
4516 	 */
4517 
4518 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4519 	if (IS_ERR(root)) {
4520 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4521 		ret = PTR_ERR(root);
4522 		root = NULL;
4523 		goto failed_mount4;
4524 	}
4525 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4526 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4527 		iput(root);
4528 		goto failed_mount4;
4529 	}
4530 
4531 #ifdef CONFIG_UNICODE
4532 	if (sbi->s_encoding)
4533 		sb->s_d_op = &ext4_dentry_ops;
4534 #endif
4535 
4536 	sb->s_root = d_make_root(root);
4537 	if (!sb->s_root) {
4538 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4539 		ret = -ENOMEM;
4540 		goto failed_mount4;
4541 	}
4542 
4543 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4544 	if (ret == -EROFS) {
4545 		sb->s_flags |= SB_RDONLY;
4546 		ret = 0;
4547 	} else if (ret)
4548 		goto failed_mount4a;
4549 
4550 	ext4_set_resv_clusters(sb);
4551 
4552 	err = ext4_setup_system_zone(sb);
4553 	if (err) {
4554 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4555 			 "zone (%d)", err);
4556 		goto failed_mount4a;
4557 	}
4558 
4559 	ext4_ext_init(sb);
4560 	err = ext4_mb_init(sb);
4561 	if (err) {
4562 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4563 			 err);
4564 		goto failed_mount5;
4565 	}
4566 
4567 	block = ext4_count_free_clusters(sb);
4568 	ext4_free_blocks_count_set(sbi->s_es,
4569 				   EXT4_C2B(sbi, block));
4570 	ext4_superblock_csum_set(sb);
4571 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4572 				  GFP_KERNEL);
4573 	if (!err) {
4574 		unsigned long freei = ext4_count_free_inodes(sb);
4575 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4576 		ext4_superblock_csum_set(sb);
4577 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4578 					  GFP_KERNEL);
4579 	}
4580 	if (!err)
4581 		err = percpu_counter_init(&sbi->s_dirs_counter,
4582 					  ext4_count_dirs(sb), GFP_KERNEL);
4583 	if (!err)
4584 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4585 					  GFP_KERNEL);
4586 	if (!err)
4587 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4588 
4589 	if (err) {
4590 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4591 		goto failed_mount6;
4592 	}
4593 
4594 	if (ext4_has_feature_flex_bg(sb))
4595 		if (!ext4_fill_flex_info(sb)) {
4596 			ext4_msg(sb, KERN_ERR,
4597 			       "unable to initialize "
4598 			       "flex_bg meta info!");
4599 			goto failed_mount6;
4600 		}
4601 
4602 	err = ext4_register_li_request(sb, first_not_zeroed);
4603 	if (err)
4604 		goto failed_mount6;
4605 
4606 	err = ext4_register_sysfs(sb);
4607 	if (err)
4608 		goto failed_mount7;
4609 
4610 #ifdef CONFIG_QUOTA
4611 	/* Enable quota usage during mount. */
4612 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4613 		err = ext4_enable_quotas(sb);
4614 		if (err)
4615 			goto failed_mount8;
4616 	}
4617 #endif  /* CONFIG_QUOTA */
4618 
4619 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4620 	ext4_orphan_cleanup(sb, es);
4621 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4622 	if (needs_recovery) {
4623 		ext4_msg(sb, KERN_INFO, "recovery complete");
4624 		ext4_mark_recovery_complete(sb, es);
4625 	}
4626 	if (EXT4_SB(sb)->s_journal) {
4627 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4628 			descr = " journalled data mode";
4629 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4630 			descr = " ordered data mode";
4631 		else
4632 			descr = " writeback data mode";
4633 	} else
4634 		descr = "out journal";
4635 
4636 	if (test_opt(sb, DISCARD)) {
4637 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4638 		if (!blk_queue_discard(q))
4639 			ext4_msg(sb, KERN_WARNING,
4640 				 "mounting with \"discard\" option, but "
4641 				 "the device does not support discard");
4642 	}
4643 
4644 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4645 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4646 			 "Opts: %.*s%s%s", descr,
4647 			 (int) sizeof(sbi->s_es->s_mount_opts),
4648 			 sbi->s_es->s_mount_opts,
4649 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4650 
4651 	if (es->s_error_count)
4652 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4653 
4654 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4655 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4656 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4657 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4658 
4659 	kfree(orig_data);
4660 	return 0;
4661 
4662 cantfind_ext4:
4663 	if (!silent)
4664 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4665 	goto failed_mount;
4666 
4667 #ifdef CONFIG_QUOTA
4668 failed_mount8:
4669 	ext4_unregister_sysfs(sb);
4670 #endif
4671 failed_mount7:
4672 	ext4_unregister_li_request(sb);
4673 failed_mount6:
4674 	ext4_mb_release(sb);
4675 	if (sbi->s_flex_groups)
4676 		kvfree(sbi->s_flex_groups);
4677 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4678 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4679 	percpu_counter_destroy(&sbi->s_dirs_counter);
4680 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4681 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4682 failed_mount5:
4683 	ext4_ext_release(sb);
4684 	ext4_release_system_zone(sb);
4685 failed_mount4a:
4686 	dput(sb->s_root);
4687 	sb->s_root = NULL;
4688 failed_mount4:
4689 	ext4_msg(sb, KERN_ERR, "mount failed");
4690 	if (EXT4_SB(sb)->rsv_conversion_wq)
4691 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4692 failed_mount_wq:
4693 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4694 	sbi->s_ea_inode_cache = NULL;
4695 
4696 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4697 	sbi->s_ea_block_cache = NULL;
4698 
4699 	if (sbi->s_journal) {
4700 		jbd2_journal_destroy(sbi->s_journal);
4701 		sbi->s_journal = NULL;
4702 	}
4703 failed_mount3a:
4704 	ext4_es_unregister_shrinker(sbi);
4705 failed_mount3:
4706 	del_timer_sync(&sbi->s_err_report);
4707 	if (sbi->s_mmp_tsk)
4708 		kthread_stop(sbi->s_mmp_tsk);
4709 failed_mount2:
4710 	for (i = 0; i < db_count; i++)
4711 		brelse(sbi->s_group_desc[i]);
4712 	kvfree(sbi->s_group_desc);
4713 failed_mount:
4714 	if (sbi->s_chksum_driver)
4715 		crypto_free_shash(sbi->s_chksum_driver);
4716 
4717 #ifdef CONFIG_UNICODE
4718 	utf8_unload(sbi->s_encoding);
4719 #endif
4720 
4721 #ifdef CONFIG_QUOTA
4722 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4723 		kfree(get_qf_name(sb, sbi, i));
4724 #endif
4725 	ext4_blkdev_remove(sbi);
4726 	brelse(bh);
4727 out_fail:
4728 	sb->s_fs_info = NULL;
4729 	kfree(sbi->s_blockgroup_lock);
4730 out_free_base:
4731 	kfree(sbi);
4732 	kfree(orig_data);
4733 	fs_put_dax(dax_dev);
4734 	return err ? err : ret;
4735 }
4736 
4737 /*
4738  * Setup any per-fs journal parameters now.  We'll do this both on
4739  * initial mount, once the journal has been initialised but before we've
4740  * done any recovery; and again on any subsequent remount.
4741  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4742 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4743 {
4744 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4745 
4746 	journal->j_commit_interval = sbi->s_commit_interval;
4747 	journal->j_min_batch_time = sbi->s_min_batch_time;
4748 	journal->j_max_batch_time = sbi->s_max_batch_time;
4749 
4750 	write_lock(&journal->j_state_lock);
4751 	if (test_opt(sb, BARRIER))
4752 		journal->j_flags |= JBD2_BARRIER;
4753 	else
4754 		journal->j_flags &= ~JBD2_BARRIER;
4755 	if (test_opt(sb, DATA_ERR_ABORT))
4756 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4757 	else
4758 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4759 	write_unlock(&journal->j_state_lock);
4760 }
4761 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)4762 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4763 					     unsigned int journal_inum)
4764 {
4765 	struct inode *journal_inode;
4766 
4767 	/*
4768 	 * Test for the existence of a valid inode on disk.  Bad things
4769 	 * happen if we iget() an unused inode, as the subsequent iput()
4770 	 * will try to delete it.
4771 	 */
4772 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4773 	if (IS_ERR(journal_inode)) {
4774 		ext4_msg(sb, KERN_ERR, "no journal found");
4775 		return NULL;
4776 	}
4777 	if (!journal_inode->i_nlink) {
4778 		make_bad_inode(journal_inode);
4779 		iput(journal_inode);
4780 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4781 		return NULL;
4782 	}
4783 
4784 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4785 		  journal_inode, journal_inode->i_size);
4786 	if (!S_ISREG(journal_inode->i_mode)) {
4787 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4788 		iput(journal_inode);
4789 		return NULL;
4790 	}
4791 	return journal_inode;
4792 }
4793 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4794 static journal_t *ext4_get_journal(struct super_block *sb,
4795 				   unsigned int journal_inum)
4796 {
4797 	struct inode *journal_inode;
4798 	journal_t *journal;
4799 
4800 	BUG_ON(!ext4_has_feature_journal(sb));
4801 
4802 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4803 	if (!journal_inode)
4804 		return NULL;
4805 
4806 	journal = jbd2_journal_init_inode(journal_inode);
4807 	if (!journal) {
4808 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4809 		iput(journal_inode);
4810 		return NULL;
4811 	}
4812 	journal->j_private = sb;
4813 	ext4_init_journal_params(sb, journal);
4814 	return journal;
4815 }
4816 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4817 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4818 				       dev_t j_dev)
4819 {
4820 	struct buffer_head *bh;
4821 	journal_t *journal;
4822 	ext4_fsblk_t start;
4823 	ext4_fsblk_t len;
4824 	int hblock, blocksize;
4825 	ext4_fsblk_t sb_block;
4826 	unsigned long offset;
4827 	struct ext4_super_block *es;
4828 	struct block_device *bdev;
4829 
4830 	BUG_ON(!ext4_has_feature_journal(sb));
4831 
4832 	bdev = ext4_blkdev_get(j_dev, sb);
4833 	if (bdev == NULL)
4834 		return NULL;
4835 
4836 	blocksize = sb->s_blocksize;
4837 	hblock = bdev_logical_block_size(bdev);
4838 	if (blocksize < hblock) {
4839 		ext4_msg(sb, KERN_ERR,
4840 			"blocksize too small for journal device");
4841 		goto out_bdev;
4842 	}
4843 
4844 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4845 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4846 	set_blocksize(bdev, blocksize);
4847 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4848 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4849 		       "external journal");
4850 		goto out_bdev;
4851 	}
4852 
4853 	es = (struct ext4_super_block *) (bh->b_data + offset);
4854 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4855 	    !(le32_to_cpu(es->s_feature_incompat) &
4856 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4857 		ext4_msg(sb, KERN_ERR, "external journal has "
4858 					"bad superblock");
4859 		brelse(bh);
4860 		goto out_bdev;
4861 	}
4862 
4863 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4864 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4865 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4866 		ext4_msg(sb, KERN_ERR, "external journal has "
4867 				       "corrupt superblock");
4868 		brelse(bh);
4869 		goto out_bdev;
4870 	}
4871 
4872 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4873 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4874 		brelse(bh);
4875 		goto out_bdev;
4876 	}
4877 
4878 	len = ext4_blocks_count(es);
4879 	start = sb_block + 1;
4880 	brelse(bh);	/* we're done with the superblock */
4881 
4882 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4883 					start, len, blocksize);
4884 	if (!journal) {
4885 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4886 		goto out_bdev;
4887 	}
4888 	journal->j_private = sb;
4889 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4890 	wait_on_buffer(journal->j_sb_buffer);
4891 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4892 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4893 		goto out_journal;
4894 	}
4895 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4896 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4897 					"user (unsupported) - %d",
4898 			be32_to_cpu(journal->j_superblock->s_nr_users));
4899 		goto out_journal;
4900 	}
4901 	EXT4_SB(sb)->journal_bdev = bdev;
4902 	ext4_init_journal_params(sb, journal);
4903 	return journal;
4904 
4905 out_journal:
4906 	jbd2_journal_destroy(journal);
4907 out_bdev:
4908 	ext4_blkdev_put(bdev);
4909 	return NULL;
4910 }
4911 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4912 static int ext4_load_journal(struct super_block *sb,
4913 			     struct ext4_super_block *es,
4914 			     unsigned long journal_devnum)
4915 {
4916 	journal_t *journal;
4917 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4918 	dev_t journal_dev;
4919 	int err = 0;
4920 	int really_read_only;
4921 
4922 	BUG_ON(!ext4_has_feature_journal(sb));
4923 
4924 	if (journal_devnum &&
4925 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4926 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4927 			"numbers have changed");
4928 		journal_dev = new_decode_dev(journal_devnum);
4929 	} else
4930 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4931 
4932 	really_read_only = bdev_read_only(sb->s_bdev);
4933 
4934 	/*
4935 	 * Are we loading a blank journal or performing recovery after a
4936 	 * crash?  For recovery, we need to check in advance whether we
4937 	 * can get read-write access to the device.
4938 	 */
4939 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4940 		if (sb_rdonly(sb)) {
4941 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4942 					"required on readonly filesystem");
4943 			if (really_read_only) {
4944 				ext4_msg(sb, KERN_ERR, "write access "
4945 					"unavailable, cannot proceed "
4946 					"(try mounting with noload)");
4947 				return -EROFS;
4948 			}
4949 			ext4_msg(sb, KERN_INFO, "write access will "
4950 			       "be enabled during recovery");
4951 		}
4952 	}
4953 
4954 	if (journal_inum && journal_dev) {
4955 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4956 		       "and inode journals!");
4957 		return -EINVAL;
4958 	}
4959 
4960 	if (journal_inum) {
4961 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4962 			return -EINVAL;
4963 	} else {
4964 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4965 			return -EINVAL;
4966 	}
4967 
4968 	if (!(journal->j_flags & JBD2_BARRIER))
4969 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4970 
4971 	if (!ext4_has_feature_journal_needs_recovery(sb))
4972 		err = jbd2_journal_wipe(journal, !really_read_only);
4973 	if (!err) {
4974 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4975 		if (save)
4976 			memcpy(save, ((char *) es) +
4977 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4978 		err = jbd2_journal_load(journal);
4979 		if (save)
4980 			memcpy(((char *) es) + EXT4_S_ERR_START,
4981 			       save, EXT4_S_ERR_LEN);
4982 		kfree(save);
4983 	}
4984 
4985 	if (err) {
4986 		ext4_msg(sb, KERN_ERR, "error loading journal");
4987 		jbd2_journal_destroy(journal);
4988 		return err;
4989 	}
4990 
4991 	EXT4_SB(sb)->s_journal = journal;
4992 	ext4_clear_journal_err(sb, es);
4993 
4994 	if (!really_read_only && journal_devnum &&
4995 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4996 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4997 
4998 		/* Make sure we flush the recovery flag to disk. */
4999 		ext4_commit_super(sb, 1);
5000 	}
5001 
5002 	return 0;
5003 }
5004 
ext4_commit_super(struct super_block * sb,int sync)5005 static int ext4_commit_super(struct super_block *sb, int sync)
5006 {
5007 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5008 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5009 	int error = 0;
5010 
5011 	if (!sbh || block_device_ejected(sb))
5012 		return error;
5013 
5014 	/*
5015 	 * The superblock bh should be mapped, but it might not be if the
5016 	 * device was hot-removed. Not much we can do but fail the I/O.
5017 	 */
5018 	if (!buffer_mapped(sbh))
5019 		return error;
5020 
5021 	/*
5022 	 * If the file system is mounted read-only, don't update the
5023 	 * superblock write time.  This avoids updating the superblock
5024 	 * write time when we are mounting the root file system
5025 	 * read/only but we need to replay the journal; at that point,
5026 	 * for people who are east of GMT and who make their clock
5027 	 * tick in localtime for Windows bug-for-bug compatibility,
5028 	 * the clock is set in the future, and this will cause e2fsck
5029 	 * to complain and force a full file system check.
5030 	 */
5031 	if (!(sb->s_flags & SB_RDONLY))
5032 		ext4_update_tstamp(es, s_wtime);
5033 	if (sb->s_bdev->bd_part)
5034 		es->s_kbytes_written =
5035 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5036 			    ((part_stat_read(sb->s_bdev->bd_part,
5037 					     sectors[STAT_WRITE]) -
5038 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
5039 	else
5040 		es->s_kbytes_written =
5041 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5042 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5043 		ext4_free_blocks_count_set(es,
5044 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5045 				&EXT4_SB(sb)->s_freeclusters_counter)));
5046 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5047 		es->s_free_inodes_count =
5048 			cpu_to_le32(percpu_counter_sum_positive(
5049 				&EXT4_SB(sb)->s_freeinodes_counter));
5050 	BUFFER_TRACE(sbh, "marking dirty");
5051 	ext4_superblock_csum_set(sb);
5052 	if (sync)
5053 		lock_buffer(sbh);
5054 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5055 		/*
5056 		 * Oh, dear.  A previous attempt to write the
5057 		 * superblock failed.  This could happen because the
5058 		 * USB device was yanked out.  Or it could happen to
5059 		 * be a transient write error and maybe the block will
5060 		 * be remapped.  Nothing we can do but to retry the
5061 		 * write and hope for the best.
5062 		 */
5063 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5064 		       "superblock detected");
5065 		clear_buffer_write_io_error(sbh);
5066 		set_buffer_uptodate(sbh);
5067 	}
5068 	mark_buffer_dirty(sbh);
5069 	if (sync) {
5070 		unlock_buffer(sbh);
5071 		error = __sync_dirty_buffer(sbh,
5072 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5073 		if (buffer_write_io_error(sbh)) {
5074 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
5075 			       "superblock");
5076 			clear_buffer_write_io_error(sbh);
5077 			set_buffer_uptodate(sbh);
5078 		}
5079 	}
5080 	return error;
5081 }
5082 
5083 /*
5084  * Have we just finished recovery?  If so, and if we are mounting (or
5085  * remounting) the filesystem readonly, then we will end up with a
5086  * consistent fs on disk.  Record that fact.
5087  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5088 static void ext4_mark_recovery_complete(struct super_block *sb,
5089 					struct ext4_super_block *es)
5090 {
5091 	journal_t *journal = EXT4_SB(sb)->s_journal;
5092 
5093 	if (!ext4_has_feature_journal(sb)) {
5094 		BUG_ON(journal != NULL);
5095 		return;
5096 	}
5097 	jbd2_journal_lock_updates(journal);
5098 	if (jbd2_journal_flush(journal) < 0)
5099 		goto out;
5100 
5101 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5102 		ext4_clear_feature_journal_needs_recovery(sb);
5103 		ext4_commit_super(sb, 1);
5104 	}
5105 
5106 out:
5107 	jbd2_journal_unlock_updates(journal);
5108 }
5109 
5110 /*
5111  * If we are mounting (or read-write remounting) a filesystem whose journal
5112  * has recorded an error from a previous lifetime, move that error to the
5113  * main filesystem now.
5114  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5115 static void ext4_clear_journal_err(struct super_block *sb,
5116 				   struct ext4_super_block *es)
5117 {
5118 	journal_t *journal;
5119 	int j_errno;
5120 	const char *errstr;
5121 
5122 	BUG_ON(!ext4_has_feature_journal(sb));
5123 
5124 	journal = EXT4_SB(sb)->s_journal;
5125 
5126 	/*
5127 	 * Now check for any error status which may have been recorded in the
5128 	 * journal by a prior ext4_error() or ext4_abort()
5129 	 */
5130 
5131 	j_errno = jbd2_journal_errno(journal);
5132 	if (j_errno) {
5133 		char nbuf[16];
5134 
5135 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5136 		ext4_warning(sb, "Filesystem error recorded "
5137 			     "from previous mount: %s", errstr);
5138 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5139 
5140 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5141 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5142 		ext4_commit_super(sb, 1);
5143 
5144 		jbd2_journal_clear_err(journal);
5145 		jbd2_journal_update_sb_errno(journal);
5146 	}
5147 }
5148 
5149 /*
5150  * Force the running and committing transactions to commit,
5151  * and wait on the commit.
5152  */
ext4_force_commit(struct super_block * sb)5153 int ext4_force_commit(struct super_block *sb)
5154 {
5155 	journal_t *journal;
5156 
5157 	if (sb_rdonly(sb))
5158 		return 0;
5159 
5160 	journal = EXT4_SB(sb)->s_journal;
5161 	return ext4_journal_force_commit(journal);
5162 }
5163 
ext4_sync_fs(struct super_block * sb,int wait)5164 static int ext4_sync_fs(struct super_block *sb, int wait)
5165 {
5166 	int ret = 0;
5167 	tid_t target;
5168 	bool needs_barrier = false;
5169 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5170 
5171 	if (unlikely(ext4_forced_shutdown(sbi)))
5172 		return 0;
5173 
5174 	trace_ext4_sync_fs(sb, wait);
5175 	flush_workqueue(sbi->rsv_conversion_wq);
5176 	/*
5177 	 * Writeback quota in non-journalled quota case - journalled quota has
5178 	 * no dirty dquots
5179 	 */
5180 	dquot_writeback_dquots(sb, -1);
5181 	/*
5182 	 * Data writeback is possible w/o journal transaction, so barrier must
5183 	 * being sent at the end of the function. But we can skip it if
5184 	 * transaction_commit will do it for us.
5185 	 */
5186 	if (sbi->s_journal) {
5187 		target = jbd2_get_latest_transaction(sbi->s_journal);
5188 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5189 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5190 			needs_barrier = true;
5191 
5192 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5193 			if (wait)
5194 				ret = jbd2_log_wait_commit(sbi->s_journal,
5195 							   target);
5196 		}
5197 	} else if (wait && test_opt(sb, BARRIER))
5198 		needs_barrier = true;
5199 	if (needs_barrier) {
5200 		int err;
5201 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5202 		if (!ret)
5203 			ret = err;
5204 	}
5205 
5206 	return ret;
5207 }
5208 
5209 /*
5210  * LVM calls this function before a (read-only) snapshot is created.  This
5211  * gives us a chance to flush the journal completely and mark the fs clean.
5212  *
5213  * Note that only this function cannot bring a filesystem to be in a clean
5214  * state independently. It relies on upper layer to stop all data & metadata
5215  * modifications.
5216  */
ext4_freeze(struct super_block * sb)5217 static int ext4_freeze(struct super_block *sb)
5218 {
5219 	int error = 0;
5220 	journal_t *journal;
5221 
5222 	if (sb_rdonly(sb))
5223 		return 0;
5224 
5225 	journal = EXT4_SB(sb)->s_journal;
5226 
5227 	if (journal) {
5228 		/* Now we set up the journal barrier. */
5229 		jbd2_journal_lock_updates(journal);
5230 
5231 		/*
5232 		 * Don't clear the needs_recovery flag if we failed to
5233 		 * flush the journal.
5234 		 */
5235 		error = jbd2_journal_flush(journal);
5236 		if (error < 0)
5237 			goto out;
5238 
5239 		/* Journal blocked and flushed, clear needs_recovery flag. */
5240 		ext4_clear_feature_journal_needs_recovery(sb);
5241 	}
5242 
5243 	error = ext4_commit_super(sb, 1);
5244 out:
5245 	if (journal)
5246 		/* we rely on upper layer to stop further updates */
5247 		jbd2_journal_unlock_updates(journal);
5248 	return error;
5249 }
5250 
5251 /*
5252  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5253  * flag here, even though the filesystem is not technically dirty yet.
5254  */
ext4_unfreeze(struct super_block * sb)5255 static int ext4_unfreeze(struct super_block *sb)
5256 {
5257 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5258 		return 0;
5259 
5260 	if (EXT4_SB(sb)->s_journal) {
5261 		/* Reset the needs_recovery flag before the fs is unlocked. */
5262 		ext4_set_feature_journal_needs_recovery(sb);
5263 	}
5264 
5265 	ext4_commit_super(sb, 1);
5266 	return 0;
5267 }
5268 
5269 /*
5270  * Structure to save mount options for ext4_remount's benefit
5271  */
5272 struct ext4_mount_options {
5273 	unsigned long s_mount_opt;
5274 	unsigned long s_mount_opt2;
5275 	kuid_t s_resuid;
5276 	kgid_t s_resgid;
5277 	unsigned long s_commit_interval;
5278 	u32 s_min_batch_time, s_max_batch_time;
5279 #ifdef CONFIG_QUOTA
5280 	int s_jquota_fmt;
5281 	char *s_qf_names[EXT4_MAXQUOTAS];
5282 #endif
5283 };
5284 
ext4_remount(struct super_block * sb,int * flags,char * data)5285 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5286 {
5287 	struct ext4_super_block *es;
5288 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5289 	unsigned long old_sb_flags;
5290 	struct ext4_mount_options old_opts;
5291 	int enable_quota = 0;
5292 	ext4_group_t g;
5293 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5294 	int err = 0;
5295 #ifdef CONFIG_QUOTA
5296 	int i, j;
5297 	char *to_free[EXT4_MAXQUOTAS];
5298 #endif
5299 	char *orig_data = kstrdup(data, GFP_KERNEL);
5300 
5301 	if (data && !orig_data)
5302 		return -ENOMEM;
5303 
5304 	/* Store the original options */
5305 	old_sb_flags = sb->s_flags;
5306 	old_opts.s_mount_opt = sbi->s_mount_opt;
5307 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5308 	old_opts.s_resuid = sbi->s_resuid;
5309 	old_opts.s_resgid = sbi->s_resgid;
5310 	old_opts.s_commit_interval = sbi->s_commit_interval;
5311 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5312 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5313 #ifdef CONFIG_QUOTA
5314 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5315 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5316 		if (sbi->s_qf_names[i]) {
5317 			char *qf_name = get_qf_name(sb, sbi, i);
5318 
5319 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5320 			if (!old_opts.s_qf_names[i]) {
5321 				for (j = 0; j < i; j++)
5322 					kfree(old_opts.s_qf_names[j]);
5323 				kfree(orig_data);
5324 				return -ENOMEM;
5325 			}
5326 		} else
5327 			old_opts.s_qf_names[i] = NULL;
5328 #endif
5329 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5330 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5331 
5332 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5333 		err = -EINVAL;
5334 		goto restore_opts;
5335 	}
5336 
5337 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5338 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5339 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5340 			 "during remount not supported; ignoring");
5341 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5342 	}
5343 
5344 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5345 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5346 			ext4_msg(sb, KERN_ERR, "can't mount with "
5347 				 "both data=journal and delalloc");
5348 			err = -EINVAL;
5349 			goto restore_opts;
5350 		}
5351 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5352 			ext4_msg(sb, KERN_ERR, "can't mount with "
5353 				 "both data=journal and dioread_nolock");
5354 			err = -EINVAL;
5355 			goto restore_opts;
5356 		}
5357 		if (test_opt(sb, DAX)) {
5358 			ext4_msg(sb, KERN_ERR, "can't mount with "
5359 				 "both data=journal and dax");
5360 			err = -EINVAL;
5361 			goto restore_opts;
5362 		}
5363 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5364 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5365 			ext4_msg(sb, KERN_ERR, "can't mount with "
5366 				"journal_async_commit in data=ordered mode");
5367 			err = -EINVAL;
5368 			goto restore_opts;
5369 		}
5370 	}
5371 
5372 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5373 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5374 		err = -EINVAL;
5375 		goto restore_opts;
5376 	}
5377 
5378 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5379 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5380 			"dax flag with busy inodes while remounting");
5381 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5382 	}
5383 
5384 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5385 		ext4_abort(sb, "Abort forced by user");
5386 
5387 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5388 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5389 
5390 	es = sbi->s_es;
5391 
5392 	if (sbi->s_journal) {
5393 		ext4_init_journal_params(sb, sbi->s_journal);
5394 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5395 	}
5396 
5397 	if (*flags & SB_LAZYTIME)
5398 		sb->s_flags |= SB_LAZYTIME;
5399 
5400 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5401 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5402 			err = -EROFS;
5403 			goto restore_opts;
5404 		}
5405 
5406 		if (*flags & SB_RDONLY) {
5407 			err = sync_filesystem(sb);
5408 			if (err < 0)
5409 				goto restore_opts;
5410 			err = dquot_suspend(sb, -1);
5411 			if (err < 0)
5412 				goto restore_opts;
5413 
5414 			/*
5415 			 * First of all, the unconditional stuff we have to do
5416 			 * to disable replay of the journal when we next remount
5417 			 */
5418 			sb->s_flags |= SB_RDONLY;
5419 
5420 			/*
5421 			 * OK, test if we are remounting a valid rw partition
5422 			 * readonly, and if so set the rdonly flag and then
5423 			 * mark the partition as valid again.
5424 			 */
5425 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5426 			    (sbi->s_mount_state & EXT4_VALID_FS))
5427 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5428 
5429 			if (sbi->s_journal)
5430 				ext4_mark_recovery_complete(sb, es);
5431 			if (sbi->s_mmp_tsk)
5432 				kthread_stop(sbi->s_mmp_tsk);
5433 		} else {
5434 			/* Make sure we can mount this feature set readwrite */
5435 			if (ext4_has_feature_readonly(sb) ||
5436 			    !ext4_feature_set_ok(sb, 0)) {
5437 				err = -EROFS;
5438 				goto restore_opts;
5439 			}
5440 			/*
5441 			 * Make sure the group descriptor checksums
5442 			 * are sane.  If they aren't, refuse to remount r/w.
5443 			 */
5444 			for (g = 0; g < sbi->s_groups_count; g++) {
5445 				struct ext4_group_desc *gdp =
5446 					ext4_get_group_desc(sb, g, NULL);
5447 
5448 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5449 					ext4_msg(sb, KERN_ERR,
5450 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5451 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5452 					       le16_to_cpu(gdp->bg_checksum));
5453 					err = -EFSBADCRC;
5454 					goto restore_opts;
5455 				}
5456 			}
5457 
5458 			/*
5459 			 * If we have an unprocessed orphan list hanging
5460 			 * around from a previously readonly bdev mount,
5461 			 * require a full umount/remount for now.
5462 			 */
5463 			if (es->s_last_orphan) {
5464 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5465 				       "remount RDWR because of unprocessed "
5466 				       "orphan inode list.  Please "
5467 				       "umount/remount instead");
5468 				err = -EINVAL;
5469 				goto restore_opts;
5470 			}
5471 
5472 			/*
5473 			 * Mounting a RDONLY partition read-write, so reread
5474 			 * and store the current valid flag.  (It may have
5475 			 * been changed by e2fsck since we originally mounted
5476 			 * the partition.)
5477 			 */
5478 			if (sbi->s_journal)
5479 				ext4_clear_journal_err(sb, es);
5480 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5481 
5482 			err = ext4_setup_super(sb, es, 0);
5483 			if (err)
5484 				goto restore_opts;
5485 
5486 			sb->s_flags &= ~SB_RDONLY;
5487 			if (ext4_has_feature_mmp(sb))
5488 				if (ext4_multi_mount_protect(sb,
5489 						le64_to_cpu(es->s_mmp_block))) {
5490 					err = -EROFS;
5491 					goto restore_opts;
5492 				}
5493 			enable_quota = 1;
5494 		}
5495 	}
5496 
5497 	/*
5498 	 * Reinitialize lazy itable initialization thread based on
5499 	 * current settings
5500 	 */
5501 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5502 		ext4_unregister_li_request(sb);
5503 	else {
5504 		ext4_group_t first_not_zeroed;
5505 		first_not_zeroed = ext4_has_uninit_itable(sb);
5506 		ext4_register_li_request(sb, first_not_zeroed);
5507 	}
5508 
5509 	ext4_setup_system_zone(sb);
5510 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5511 		err = ext4_commit_super(sb, 1);
5512 		if (err)
5513 			goto restore_opts;
5514 	}
5515 
5516 #ifdef CONFIG_QUOTA
5517 	/* Release old quota file names */
5518 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5519 		kfree(old_opts.s_qf_names[i]);
5520 	if (enable_quota) {
5521 		if (sb_any_quota_suspended(sb))
5522 			dquot_resume(sb, -1);
5523 		else if (ext4_has_feature_quota(sb)) {
5524 			err = ext4_enable_quotas(sb);
5525 			if (err)
5526 				goto restore_opts;
5527 		}
5528 	}
5529 #endif
5530 
5531 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5532 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5533 	kfree(orig_data);
5534 	return 0;
5535 
5536 restore_opts:
5537 	sb->s_flags = old_sb_flags;
5538 	sbi->s_mount_opt = old_opts.s_mount_opt;
5539 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5540 	sbi->s_resuid = old_opts.s_resuid;
5541 	sbi->s_resgid = old_opts.s_resgid;
5542 	sbi->s_commit_interval = old_opts.s_commit_interval;
5543 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5544 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5545 #ifdef CONFIG_QUOTA
5546 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5547 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5548 		to_free[i] = get_qf_name(sb, sbi, i);
5549 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5550 	}
5551 	synchronize_rcu();
5552 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5553 		kfree(to_free[i]);
5554 #endif
5555 	kfree(orig_data);
5556 	return err;
5557 }
5558 
5559 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)5560 static int ext4_statfs_project(struct super_block *sb,
5561 			       kprojid_t projid, struct kstatfs *buf)
5562 {
5563 	struct kqid qid;
5564 	struct dquot *dquot;
5565 	u64 limit;
5566 	u64 curblock;
5567 
5568 	qid = make_kqid_projid(projid);
5569 	dquot = dqget(sb, qid);
5570 	if (IS_ERR(dquot))
5571 		return PTR_ERR(dquot);
5572 	spin_lock(&dquot->dq_dqb_lock);
5573 
5574 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5575 		 dquot->dq_dqb.dqb_bsoftlimit :
5576 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5577 	if (limit && buf->f_blocks > limit) {
5578 		curblock = (dquot->dq_dqb.dqb_curspace +
5579 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5580 		buf->f_blocks = limit;
5581 		buf->f_bfree = buf->f_bavail =
5582 			(buf->f_blocks > curblock) ?
5583 			 (buf->f_blocks - curblock) : 0;
5584 	}
5585 
5586 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5587 		dquot->dq_dqb.dqb_isoftlimit :
5588 		dquot->dq_dqb.dqb_ihardlimit;
5589 	if (limit && buf->f_files > limit) {
5590 		buf->f_files = limit;
5591 		buf->f_ffree =
5592 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5593 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5594 	}
5595 
5596 	spin_unlock(&dquot->dq_dqb_lock);
5597 	dqput(dquot);
5598 	return 0;
5599 }
5600 #endif
5601 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5602 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5603 {
5604 	struct super_block *sb = dentry->d_sb;
5605 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5606 	struct ext4_super_block *es = sbi->s_es;
5607 	ext4_fsblk_t overhead = 0, resv_blocks;
5608 	u64 fsid;
5609 	s64 bfree;
5610 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5611 
5612 	if (!test_opt(sb, MINIX_DF))
5613 		overhead = sbi->s_overhead;
5614 
5615 	buf->f_type = EXT4_SUPER_MAGIC;
5616 	buf->f_bsize = sb->s_blocksize;
5617 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5618 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5619 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5620 	/* prevent underflow in case that few free space is available */
5621 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5622 	buf->f_bavail = buf->f_bfree -
5623 			(ext4_r_blocks_count(es) + resv_blocks);
5624 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5625 		buf->f_bavail = 0;
5626 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5627 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5628 	buf->f_namelen = EXT4_NAME_LEN;
5629 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5630 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5631 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5632 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5633 
5634 #ifdef CONFIG_QUOTA
5635 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5636 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5637 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5638 #endif
5639 	return 0;
5640 }
5641 
5642 
5643 #ifdef CONFIG_QUOTA
5644 
5645 /*
5646  * Helper functions so that transaction is started before we acquire dqio_sem
5647  * to keep correct lock ordering of transaction > dqio_sem
5648  */
dquot_to_inode(struct dquot * dquot)5649 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5650 {
5651 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5652 }
5653 
ext4_write_dquot(struct dquot * dquot)5654 static int ext4_write_dquot(struct dquot *dquot)
5655 {
5656 	int ret, err;
5657 	handle_t *handle;
5658 	struct inode *inode;
5659 
5660 	inode = dquot_to_inode(dquot);
5661 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5662 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5663 	if (IS_ERR(handle))
5664 		return PTR_ERR(handle);
5665 	ret = dquot_commit(dquot);
5666 	err = ext4_journal_stop(handle);
5667 	if (!ret)
5668 		ret = err;
5669 	return ret;
5670 }
5671 
ext4_acquire_dquot(struct dquot * dquot)5672 static int ext4_acquire_dquot(struct dquot *dquot)
5673 {
5674 	int ret, err;
5675 	handle_t *handle;
5676 
5677 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5678 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5679 	if (IS_ERR(handle))
5680 		return PTR_ERR(handle);
5681 	ret = dquot_acquire(dquot);
5682 	err = ext4_journal_stop(handle);
5683 	if (!ret)
5684 		ret = err;
5685 	return ret;
5686 }
5687 
ext4_release_dquot(struct dquot * dquot)5688 static int ext4_release_dquot(struct dquot *dquot)
5689 {
5690 	int ret, err;
5691 	handle_t *handle;
5692 
5693 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5694 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5695 	if (IS_ERR(handle)) {
5696 		/* Release dquot anyway to avoid endless cycle in dqput() */
5697 		dquot_release(dquot);
5698 		return PTR_ERR(handle);
5699 	}
5700 	ret = dquot_release(dquot);
5701 	err = ext4_journal_stop(handle);
5702 	if (!ret)
5703 		ret = err;
5704 	return ret;
5705 }
5706 
ext4_mark_dquot_dirty(struct dquot * dquot)5707 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5708 {
5709 	struct super_block *sb = dquot->dq_sb;
5710 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5711 
5712 	/* Are we journaling quotas? */
5713 	if (ext4_has_feature_quota(sb) ||
5714 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5715 		dquot_mark_dquot_dirty(dquot);
5716 		return ext4_write_dquot(dquot);
5717 	} else {
5718 		return dquot_mark_dquot_dirty(dquot);
5719 	}
5720 }
5721 
ext4_write_info(struct super_block * sb,int type)5722 static int ext4_write_info(struct super_block *sb, int type)
5723 {
5724 	int ret, err;
5725 	handle_t *handle;
5726 
5727 	/* Data block + inode block */
5728 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5729 	if (IS_ERR(handle))
5730 		return PTR_ERR(handle);
5731 	ret = dquot_commit_info(sb, type);
5732 	err = ext4_journal_stop(handle);
5733 	if (!ret)
5734 		ret = err;
5735 	return ret;
5736 }
5737 
5738 /*
5739  * Turn on quotas during mount time - we need to find
5740  * the quota file and such...
5741  */
ext4_quota_on_mount(struct super_block * sb,int type)5742 static int ext4_quota_on_mount(struct super_block *sb, int type)
5743 {
5744 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5745 					EXT4_SB(sb)->s_jquota_fmt, type);
5746 }
5747 
lockdep_set_quota_inode(struct inode * inode,int subclass)5748 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5749 {
5750 	struct ext4_inode_info *ei = EXT4_I(inode);
5751 
5752 	/* The first argument of lockdep_set_subclass has to be
5753 	 * *exactly* the same as the argument to init_rwsem() --- in
5754 	 * this case, in init_once() --- or lockdep gets unhappy
5755 	 * because the name of the lock is set using the
5756 	 * stringification of the argument to init_rwsem().
5757 	 */
5758 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5759 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5760 }
5761 
5762 /*
5763  * Standard function to be called on quota_on
5764  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)5765 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5766 			 const struct path *path)
5767 {
5768 	int err;
5769 
5770 	if (!test_opt(sb, QUOTA))
5771 		return -EINVAL;
5772 
5773 	/* Quotafile not on the same filesystem? */
5774 	if (path->dentry->d_sb != sb)
5775 		return -EXDEV;
5776 	/* Journaling quota? */
5777 	if (EXT4_SB(sb)->s_qf_names[type]) {
5778 		/* Quotafile not in fs root? */
5779 		if (path->dentry->d_parent != sb->s_root)
5780 			ext4_msg(sb, KERN_WARNING,
5781 				"Quota file not on filesystem root. "
5782 				"Journaled quota will not work");
5783 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5784 	} else {
5785 		/*
5786 		 * Clear the flag just in case mount options changed since
5787 		 * last time.
5788 		 */
5789 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5790 	}
5791 
5792 	/*
5793 	 * When we journal data on quota file, we have to flush journal to see
5794 	 * all updates to the file when we bypass pagecache...
5795 	 */
5796 	if (EXT4_SB(sb)->s_journal &&
5797 	    ext4_should_journal_data(d_inode(path->dentry))) {
5798 		/*
5799 		 * We don't need to lock updates but journal_flush() could
5800 		 * otherwise be livelocked...
5801 		 */
5802 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5803 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5804 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5805 		if (err)
5806 			return err;
5807 	}
5808 
5809 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5810 	err = dquot_quota_on(sb, type, format_id, path);
5811 	if (err) {
5812 		lockdep_set_quota_inode(path->dentry->d_inode,
5813 					     I_DATA_SEM_NORMAL);
5814 	} else {
5815 		struct inode *inode = d_inode(path->dentry);
5816 		handle_t *handle;
5817 
5818 		/*
5819 		 * Set inode flags to prevent userspace from messing with quota
5820 		 * files. If this fails, we return success anyway since quotas
5821 		 * are already enabled and this is not a hard failure.
5822 		 */
5823 		inode_lock(inode);
5824 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5825 		if (IS_ERR(handle))
5826 			goto unlock_inode;
5827 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5828 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5829 				S_NOATIME | S_IMMUTABLE);
5830 		ext4_mark_inode_dirty(handle, inode);
5831 		ext4_journal_stop(handle);
5832 	unlock_inode:
5833 		inode_unlock(inode);
5834 	}
5835 	return err;
5836 }
5837 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5838 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5839 			     unsigned int flags)
5840 {
5841 	int err;
5842 	struct inode *qf_inode;
5843 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5844 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5845 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5846 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5847 	};
5848 
5849 	BUG_ON(!ext4_has_feature_quota(sb));
5850 
5851 	if (!qf_inums[type])
5852 		return -EPERM;
5853 
5854 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5855 	if (IS_ERR(qf_inode)) {
5856 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5857 		return PTR_ERR(qf_inode);
5858 	}
5859 
5860 	/* Don't account quota for quota files to avoid recursion */
5861 	qf_inode->i_flags |= S_NOQUOTA;
5862 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5863 	err = dquot_enable(qf_inode, type, format_id, flags);
5864 	if (err)
5865 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5866 	iput(qf_inode);
5867 
5868 	return err;
5869 }
5870 
5871 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5872 static int ext4_enable_quotas(struct super_block *sb)
5873 {
5874 	int type, err = 0;
5875 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5876 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5877 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5878 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5879 	};
5880 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5881 		test_opt(sb, USRQUOTA),
5882 		test_opt(sb, GRPQUOTA),
5883 		test_opt(sb, PRJQUOTA),
5884 	};
5885 
5886 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5887 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5888 		if (qf_inums[type]) {
5889 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5890 				DQUOT_USAGE_ENABLED |
5891 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5892 			if (err) {
5893 				ext4_warning(sb,
5894 					"Failed to enable quota tracking "
5895 					"(type=%d, err=%d). Please run "
5896 					"e2fsck to fix.", type, err);
5897 				for (type--; type >= 0; type--)
5898 					dquot_quota_off(sb, type);
5899 
5900 				return err;
5901 			}
5902 		}
5903 	}
5904 	return 0;
5905 }
5906 
ext4_quota_off(struct super_block * sb,int type)5907 static int ext4_quota_off(struct super_block *sb, int type)
5908 {
5909 	struct inode *inode = sb_dqopt(sb)->files[type];
5910 	handle_t *handle;
5911 	int err;
5912 
5913 	/* Force all delayed allocation blocks to be allocated.
5914 	 * Caller already holds s_umount sem */
5915 	if (test_opt(sb, DELALLOC))
5916 		sync_filesystem(sb);
5917 
5918 	if (!inode || !igrab(inode))
5919 		goto out;
5920 
5921 	err = dquot_quota_off(sb, type);
5922 	if (err || ext4_has_feature_quota(sb))
5923 		goto out_put;
5924 
5925 	inode_lock(inode);
5926 	/*
5927 	 * Update modification times of quota files when userspace can
5928 	 * start looking at them. If we fail, we return success anyway since
5929 	 * this is not a hard failure and quotas are already disabled.
5930 	 */
5931 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5932 	if (IS_ERR(handle))
5933 		goto out_unlock;
5934 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5935 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5936 	inode->i_mtime = inode->i_ctime = current_time(inode);
5937 	ext4_mark_inode_dirty(handle, inode);
5938 	ext4_journal_stop(handle);
5939 out_unlock:
5940 	inode_unlock(inode);
5941 out_put:
5942 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5943 	iput(inode);
5944 	return err;
5945 out:
5946 	return dquot_quota_off(sb, type);
5947 }
5948 
5949 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5950  * acquiring the locks... As quota files are never truncated and quota code
5951  * itself serializes the operations (and no one else should touch the files)
5952  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5953 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5954 			       size_t len, loff_t off)
5955 {
5956 	struct inode *inode = sb_dqopt(sb)->files[type];
5957 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5958 	int offset = off & (sb->s_blocksize - 1);
5959 	int tocopy;
5960 	size_t toread;
5961 	struct buffer_head *bh;
5962 	loff_t i_size = i_size_read(inode);
5963 
5964 	if (off > i_size)
5965 		return 0;
5966 	if (off+len > i_size)
5967 		len = i_size-off;
5968 	toread = len;
5969 	while (toread > 0) {
5970 		tocopy = sb->s_blocksize - offset < toread ?
5971 				sb->s_blocksize - offset : toread;
5972 		bh = ext4_bread(NULL, inode, blk, 0);
5973 		if (IS_ERR(bh))
5974 			return PTR_ERR(bh);
5975 		if (!bh)	/* A hole? */
5976 			memset(data, 0, tocopy);
5977 		else
5978 			memcpy(data, bh->b_data+offset, tocopy);
5979 		brelse(bh);
5980 		offset = 0;
5981 		toread -= tocopy;
5982 		data += tocopy;
5983 		blk++;
5984 	}
5985 	return len;
5986 }
5987 
5988 /* Write to quotafile (we know the transaction is already started and has
5989  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5990 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5991 				const char *data, size_t len, loff_t off)
5992 {
5993 	struct inode *inode = sb_dqopt(sb)->files[type];
5994 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5995 	int err, offset = off & (sb->s_blocksize - 1);
5996 	int retries = 0;
5997 	struct buffer_head *bh;
5998 	handle_t *handle = journal_current_handle();
5999 
6000 	if (EXT4_SB(sb)->s_journal && !handle) {
6001 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6002 			" cancelled because transaction is not started",
6003 			(unsigned long long)off, (unsigned long long)len);
6004 		return -EIO;
6005 	}
6006 	/*
6007 	 * Since we account only one data block in transaction credits,
6008 	 * then it is impossible to cross a block boundary.
6009 	 */
6010 	if (sb->s_blocksize - offset < len) {
6011 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6012 			" cancelled because not block aligned",
6013 			(unsigned long long)off, (unsigned long long)len);
6014 		return -EIO;
6015 	}
6016 
6017 	do {
6018 		bh = ext4_bread(handle, inode, blk,
6019 				EXT4_GET_BLOCKS_CREATE |
6020 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6021 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
6022 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6023 	if (IS_ERR(bh))
6024 		return PTR_ERR(bh);
6025 	if (!bh)
6026 		goto out;
6027 	BUFFER_TRACE(bh, "get write access");
6028 	err = ext4_journal_get_write_access(handle, bh);
6029 	if (err) {
6030 		brelse(bh);
6031 		return err;
6032 	}
6033 	lock_buffer(bh);
6034 	memcpy(bh->b_data+offset, data, len);
6035 	flush_dcache_page(bh->b_page);
6036 	unlock_buffer(bh);
6037 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6038 	brelse(bh);
6039 out:
6040 	if (inode->i_size < off + len) {
6041 		i_size_write(inode, off + len);
6042 		EXT4_I(inode)->i_disksize = inode->i_size;
6043 		ext4_mark_inode_dirty(handle, inode);
6044 	}
6045 	return len;
6046 }
6047 
ext4_get_next_id(struct super_block * sb,struct kqid * qid)6048 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6049 {
6050 	const struct quota_format_ops	*ops;
6051 
6052 	if (!sb_has_quota_loaded(sb, qid->type))
6053 		return -ESRCH;
6054 	ops = sb_dqopt(sb)->ops[qid->type];
6055 	if (!ops || !ops->get_next_id)
6056 		return -ENOSYS;
6057 	return dquot_get_next_id(sb, qid);
6058 }
6059 #endif
6060 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6061 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6062 		       const char *dev_name, void *data)
6063 {
6064 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6065 }
6066 
6067 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6068 static inline void register_as_ext2(void)
6069 {
6070 	int err = register_filesystem(&ext2_fs_type);
6071 	if (err)
6072 		printk(KERN_WARNING
6073 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6074 }
6075 
unregister_as_ext2(void)6076 static inline void unregister_as_ext2(void)
6077 {
6078 	unregister_filesystem(&ext2_fs_type);
6079 }
6080 
ext2_feature_set_ok(struct super_block * sb)6081 static inline int ext2_feature_set_ok(struct super_block *sb)
6082 {
6083 	if (ext4_has_unknown_ext2_incompat_features(sb))
6084 		return 0;
6085 	if (sb_rdonly(sb))
6086 		return 1;
6087 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6088 		return 0;
6089 	return 1;
6090 }
6091 #else
register_as_ext2(void)6092 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6093 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6094 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6095 #endif
6096 
register_as_ext3(void)6097 static inline void register_as_ext3(void)
6098 {
6099 	int err = register_filesystem(&ext3_fs_type);
6100 	if (err)
6101 		printk(KERN_WARNING
6102 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6103 }
6104 
unregister_as_ext3(void)6105 static inline void unregister_as_ext3(void)
6106 {
6107 	unregister_filesystem(&ext3_fs_type);
6108 }
6109 
ext3_feature_set_ok(struct super_block * sb)6110 static inline int ext3_feature_set_ok(struct super_block *sb)
6111 {
6112 	if (ext4_has_unknown_ext3_incompat_features(sb))
6113 		return 0;
6114 	if (!ext4_has_feature_journal(sb))
6115 		return 0;
6116 	if (sb_rdonly(sb))
6117 		return 1;
6118 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6119 		return 0;
6120 	return 1;
6121 }
6122 
6123 static struct file_system_type ext4_fs_type = {
6124 	.owner		= THIS_MODULE,
6125 	.name		= "ext4",
6126 	.mount		= ext4_mount,
6127 	.kill_sb	= kill_block_super,
6128 	.fs_flags	= FS_REQUIRES_DEV,
6129 };
6130 MODULE_ALIAS_FS("ext4");
6131 
6132 /* Shared across all ext4 file systems */
6133 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6134 
ext4_init_fs(void)6135 static int __init ext4_init_fs(void)
6136 {
6137 	int i, err;
6138 
6139 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6140 	ext4_li_info = NULL;
6141 	mutex_init(&ext4_li_mtx);
6142 
6143 	/* Build-time check for flags consistency */
6144 	ext4_check_flag_values();
6145 
6146 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6147 		init_waitqueue_head(&ext4__ioend_wq[i]);
6148 
6149 	err = ext4_init_es();
6150 	if (err)
6151 		return err;
6152 
6153 	err = ext4_init_pending();
6154 	if (err)
6155 		goto out7;
6156 
6157 	err = ext4_init_post_read_processing();
6158 	if (err)
6159 		goto out6;
6160 
6161 	err = ext4_init_pageio();
6162 	if (err)
6163 		goto out5;
6164 
6165 	err = ext4_init_system_zone();
6166 	if (err)
6167 		goto out4;
6168 
6169 	err = ext4_init_sysfs();
6170 	if (err)
6171 		goto out3;
6172 
6173 	err = ext4_init_mballoc();
6174 	if (err)
6175 		goto out2;
6176 	err = init_inodecache();
6177 	if (err)
6178 		goto out1;
6179 	register_as_ext3();
6180 	register_as_ext2();
6181 	err = register_filesystem(&ext4_fs_type);
6182 	if (err)
6183 		goto out;
6184 
6185 	return 0;
6186 out:
6187 	unregister_as_ext2();
6188 	unregister_as_ext3();
6189 	destroy_inodecache();
6190 out1:
6191 	ext4_exit_mballoc();
6192 out2:
6193 	ext4_exit_sysfs();
6194 out3:
6195 	ext4_exit_system_zone();
6196 out4:
6197 	ext4_exit_pageio();
6198 out5:
6199 	ext4_exit_post_read_processing();
6200 out6:
6201 	ext4_exit_pending();
6202 out7:
6203 	ext4_exit_es();
6204 
6205 	return err;
6206 }
6207 
ext4_exit_fs(void)6208 static void __exit ext4_exit_fs(void)
6209 {
6210 	ext4_destroy_lazyinit_thread();
6211 	unregister_as_ext2();
6212 	unregister_as_ext3();
6213 	unregister_filesystem(&ext4_fs_type);
6214 	destroy_inodecache();
6215 	ext4_exit_mballoc();
6216 	ext4_exit_sysfs();
6217 	ext4_exit_system_zone();
6218 	ext4_exit_pageio();
6219 	ext4_exit_post_read_processing();
6220 	ext4_exit_es();
6221 	ext4_exit_pending();
6222 }
6223 
6224 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6225 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6226 MODULE_LICENSE("GPL");
6227 MODULE_SOFTDEP("pre: crc32c");
6228 module_init(ext4_init_fs)
6229 module_exit(ext4_exit_fs)
6230