1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89 /*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144 /*
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
148 * return.
149 */
150 struct buffer_head *
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153 struct buffer_head *bh = sb_getblk(sb, block);
154
155 if (bh == NULL)
156 return ERR_PTR(-ENOMEM);
157 if (buffer_uptodate(bh))
158 return bh;
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 wait_on_buffer(bh);
161 if (buffer_uptodate(bh))
162 return bh;
163 put_bh(bh);
164 return ERR_PTR(-EIO);
165 }
166
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)167 static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
169 {
170 if (!ext4_has_feature_metadata_csum(sb))
171 return 1;
172
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
178 {
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
181 __u32 csum;
182
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185 return cpu_to_le32(csum);
186 }
187
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
190 {
191 if (!ext4_has_metadata_csum(sb))
192 return 1;
193
194 return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196
ext4_superblock_csum_set(struct super_block * sb)197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201 if (!ext4_has_metadata_csum(sb))
202 return;
203
204 es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206
ext4_kvmalloc(size_t size,gfp_t flags)207 void *ext4_kvmalloc(size_t size, gfp_t flags)
208 {
209 void *ret;
210
211 ret = kmalloc(size, flags | __GFP_NOWARN);
212 if (!ret)
213 ret = __vmalloc(size, flags, PAGE_KERNEL);
214 return ret;
215 }
216
ext4_kvzalloc(size_t size,gfp_t flags)217 void *ext4_kvzalloc(size_t size, gfp_t flags)
218 {
219 void *ret;
220
221 ret = kzalloc(size, flags | __GFP_NOWARN);
222 if (!ret)
223 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224 return ret;
225 }
226
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le32_to_cpu(bg->bg_block_bitmap_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
233 }
234
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236 struct ext4_group_desc *bg)
237 {
238 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
241 }
242
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244 struct ext4_group_desc *bg)
245 {
246 return le32_to_cpu(bg->bg_inode_table_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
249 }
250
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)251 __u32 ext4_free_group_clusters(struct super_block *sb,
252 struct ext4_group_desc *bg)
253 {
254 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
257 }
258
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)259 __u32 ext4_free_inodes_count(struct super_block *sb,
260 struct ext4_group_desc *bg)
261 {
262 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
265 }
266
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)267 __u32 ext4_used_dirs_count(struct super_block *sb,
268 struct ext4_group_desc *bg)
269 {
270 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
273 }
274
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)275 __u32 ext4_itable_unused_count(struct super_block *sb,
276 struct ext4_group_desc *bg)
277 {
278 return le16_to_cpu(bg->bg_itable_unused_lo) |
279 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
281 }
282
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)283 void ext4_block_bitmap_set(struct super_block *sb,
284 struct ext4_group_desc *bg, ext4_fsblk_t blk)
285 {
286 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
289 }
290
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)291 void ext4_inode_bitmap_set(struct super_block *sb,
292 struct ext4_group_desc *bg, ext4_fsblk_t blk)
293 {
294 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
297 }
298
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)299 void ext4_inode_table_set(struct super_block *sb,
300 struct ext4_group_desc *bg, ext4_fsblk_t blk)
301 {
302 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
305 }
306
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)307 void ext4_free_group_clusters_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309 {
310 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
313 }
314
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)315 void ext4_free_inodes_set(struct super_block *sb,
316 struct ext4_group_desc *bg, __u32 count)
317 {
318 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
321 }
322
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)323 void ext4_used_dirs_set(struct super_block *sb,
324 struct ext4_group_desc *bg, __u32 count)
325 {
326 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
329 }
330
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)331 void ext4_itable_unused_set(struct super_block *sb,
332 struct ext4_group_desc *bg, __u32 count)
333 {
334 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
337 }
338
__ext4_update_tstamp(__le32 * lo,__u8 * hi)339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
340 {
341 time64_t now = ktime_get_real_seconds();
342
343 now = clamp_val(now, 0, (1ull << 40) - 1);
344
345 *lo = cpu_to_le32(lower_32_bits(now));
346 *hi = upper_32_bits(now);
347 }
348
__ext4_get_tstamp(__le32 * lo,__u8 * hi)349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
350 {
351 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
352 }
353 #define ext4_update_tstamp(es, tstamp) \
354 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
357
__save_error_info(struct super_block * sb,const char * func,unsigned int line)358 static void __save_error_info(struct super_block *sb, const char *func,
359 unsigned int line)
360 {
361 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
362
363 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364 if (bdev_read_only(sb->s_bdev))
365 return;
366 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367 ext4_update_tstamp(es, s_last_error_time);
368 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369 es->s_last_error_line = cpu_to_le32(line);
370 if (!es->s_first_error_time) {
371 es->s_first_error_time = es->s_last_error_time;
372 es->s_first_error_time_hi = es->s_last_error_time_hi;
373 strncpy(es->s_first_error_func, func,
374 sizeof(es->s_first_error_func));
375 es->s_first_error_line = cpu_to_le32(line);
376 es->s_first_error_ino = es->s_last_error_ino;
377 es->s_first_error_block = es->s_last_error_block;
378 }
379 /*
380 * Start the daily error reporting function if it hasn't been
381 * started already
382 */
383 if (!es->s_error_count)
384 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385 le32_add_cpu(&es->s_error_count, 1);
386 }
387
save_error_info(struct super_block * sb,const char * func,unsigned int line)388 static void save_error_info(struct super_block *sb, const char *func,
389 unsigned int line)
390 {
391 __save_error_info(sb, func, line);
392 ext4_commit_super(sb, 1);
393 }
394
395 /*
396 * The del_gendisk() function uninitializes the disk-specific data
397 * structures, including the bdi structure, without telling anyone
398 * else. Once this happens, any attempt to call mark_buffer_dirty()
399 * (for example, by ext4_commit_super), will cause a kernel OOPS.
400 * This is a kludge to prevent these oops until we can put in a proper
401 * hook in del_gendisk() to inform the VFS and file system layers.
402 */
block_device_ejected(struct super_block * sb)403 static int block_device_ejected(struct super_block *sb)
404 {
405 struct inode *bd_inode = sb->s_bdev->bd_inode;
406 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407
408 return bdi->dev == NULL;
409 }
410
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413 struct super_block *sb = journal->j_private;
414 struct ext4_sb_info *sbi = EXT4_SB(sb);
415 int error = is_journal_aborted(journal);
416 struct ext4_journal_cb_entry *jce;
417
418 BUG_ON(txn->t_state == T_FINISHED);
419
420 ext4_process_freed_data(sb, txn->t_tid);
421
422 spin_lock(&sbi->s_md_lock);
423 while (!list_empty(&txn->t_private_list)) {
424 jce = list_entry(txn->t_private_list.next,
425 struct ext4_journal_cb_entry, jce_list);
426 list_del_init(&jce->jce_list);
427 spin_unlock(&sbi->s_md_lock);
428 jce->jce_func(sb, jce, error);
429 spin_lock(&sbi->s_md_lock);
430 }
431 spin_unlock(&sbi->s_md_lock);
432 }
433
system_going_down(void)434 static bool system_going_down(void)
435 {
436 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 || system_state == SYSTEM_RESTART;
438 }
439
440 /* Deal with the reporting of failure conditions on a filesystem such as
441 * inconsistencies detected or read IO failures.
442 *
443 * On ext2, we can store the error state of the filesystem in the
444 * superblock. That is not possible on ext4, because we may have other
445 * write ordering constraints on the superblock which prevent us from
446 * writing it out straight away; and given that the journal is about to
447 * be aborted, we can't rely on the current, or future, transactions to
448 * write out the superblock safely.
449 *
450 * We'll just use the jbd2_journal_abort() error code to record an error in
451 * the journal instead. On recovery, the journal will complain about
452 * that error until we've noted it down and cleared it.
453 */
454
ext4_handle_error(struct super_block * sb)455 static void ext4_handle_error(struct super_block *sb)
456 {
457 if (test_opt(sb, WARN_ON_ERROR))
458 WARN_ON_ONCE(1);
459
460 if (sb_rdonly(sb))
461 return;
462
463 if (!test_opt(sb, ERRORS_CONT)) {
464 journal_t *journal = EXT4_SB(sb)->s_journal;
465
466 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467 if (journal)
468 jbd2_journal_abort(journal, -EIO);
469 }
470 /*
471 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 * could panic during 'reboot -f' as the underlying device got already
473 * disabled.
474 */
475 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477 /*
478 * Make sure updated value of ->s_mount_flags will be visible
479 * before ->s_flags update
480 */
481 smp_wmb();
482 sb->s_flags |= SB_RDONLY;
483 } else if (test_opt(sb, ERRORS_PANIC)) {
484 if (EXT4_SB(sb)->s_journal &&
485 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486 return;
487 panic("EXT4-fs (device %s): panic forced after error\n",
488 sb->s_id);
489 }
490 }
491
492 #define ext4_error_ratelimit(sb) \
493 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
494 "EXT4-fs error")
495
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)496 void __ext4_error(struct super_block *sb, const char *function,
497 unsigned int line, const char *fmt, ...)
498 {
499 struct va_format vaf;
500 va_list args;
501
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503 return;
504
505 trace_ext4_error(sb, function, line);
506 if (ext4_error_ratelimit(sb)) {
507 va_start(args, fmt);
508 vaf.fmt = fmt;
509 vaf.va = &args;
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 sb->s_id, function, line, current->comm, &vaf);
513 va_end(args);
514 }
515 save_error_info(sb, function, line);
516 ext4_handle_error(sb);
517 }
518
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)519 void __ext4_error_inode(struct inode *inode, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
522 {
523 va_list args;
524 struct va_format vaf;
525 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526
527 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528 return;
529
530 trace_ext4_error(inode->i_sb, function, line);
531 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 es->s_last_error_block = cpu_to_le64(block);
533 if (ext4_error_ratelimit(inode->i_sb)) {
534 va_start(args, fmt);
535 vaf.fmt = fmt;
536 vaf.va = &args;
537 if (block)
538 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 "inode #%lu: block %llu: comm %s: %pV\n",
540 inode->i_sb->s_id, function, line, inode->i_ino,
541 block, current->comm, &vaf);
542 else
543 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 "inode #%lu: comm %s: %pV\n",
545 inode->i_sb->s_id, function, line, inode->i_ino,
546 current->comm, &vaf);
547 va_end(args);
548 }
549 save_error_info(inode->i_sb, function, line);
550 ext4_handle_error(inode->i_sb);
551 }
552
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)553 void __ext4_error_file(struct file *file, const char *function,
554 unsigned int line, ext4_fsblk_t block,
555 const char *fmt, ...)
556 {
557 va_list args;
558 struct va_format vaf;
559 struct ext4_super_block *es;
560 struct inode *inode = file_inode(file);
561 char pathname[80], *path;
562
563 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564 return;
565
566 trace_ext4_error(inode->i_sb, function, line);
567 es = EXT4_SB(inode->i_sb)->s_es;
568 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 if (ext4_error_ratelimit(inode->i_sb)) {
570 path = file_path(file, pathname, sizeof(pathname));
571 if (IS_ERR(path))
572 path = "(unknown)";
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 if (block)
577 printk(KERN_CRIT
578 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 "block %llu: comm %s: path %s: %pV\n",
580 inode->i_sb->s_id, function, line, inode->i_ino,
581 block, current->comm, path, &vaf);
582 else
583 printk(KERN_CRIT
584 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 "comm %s: path %s: %pV\n",
586 inode->i_sb->s_id, function, line, inode->i_ino,
587 current->comm, path, &vaf);
588 va_end(args);
589 }
590 save_error_info(inode->i_sb, function, line);
591 ext4_handle_error(inode->i_sb);
592 }
593
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])594 const char *ext4_decode_error(struct super_block *sb, int errno,
595 char nbuf[16])
596 {
597 char *errstr = NULL;
598
599 switch (errno) {
600 case -EFSCORRUPTED:
601 errstr = "Corrupt filesystem";
602 break;
603 case -EFSBADCRC:
604 errstr = "Filesystem failed CRC";
605 break;
606 case -EIO:
607 errstr = "IO failure";
608 break;
609 case -ENOMEM:
610 errstr = "Out of memory";
611 break;
612 case -EROFS:
613 if (!sb || (EXT4_SB(sb)->s_journal &&
614 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 errstr = "Journal has aborted";
616 else
617 errstr = "Readonly filesystem";
618 break;
619 default:
620 /* If the caller passed in an extra buffer for unknown
621 * errors, textualise them now. Else we just return
622 * NULL. */
623 if (nbuf) {
624 /* Check for truncated error codes... */
625 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626 errstr = nbuf;
627 }
628 break;
629 }
630
631 return errstr;
632 }
633
634 /* __ext4_std_error decodes expected errors from journaling functions
635 * automatically and invokes the appropriate error response. */
636
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)637 void __ext4_std_error(struct super_block *sb, const char *function,
638 unsigned int line, int errno)
639 {
640 char nbuf[16];
641 const char *errstr;
642
643 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644 return;
645
646 /* Special case: if the error is EROFS, and we're not already
647 * inside a transaction, then there's really no point in logging
648 * an error. */
649 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650 return;
651
652 if (ext4_error_ratelimit(sb)) {
653 errstr = ext4_decode_error(sb, errno, nbuf);
654 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 sb->s_id, function, line, errstr);
656 }
657
658 save_error_info(sb, function, line);
659 ext4_handle_error(sb);
660 }
661
662 /*
663 * ext4_abort is a much stronger failure handler than ext4_error. The
664 * abort function may be used to deal with unrecoverable failures such
665 * as journal IO errors or ENOMEM at a critical moment in log management.
666 *
667 * We unconditionally force the filesystem into an ABORT|READONLY state,
668 * unless the error response on the fs has been set to panic in which
669 * case we take the easy way out and panic immediately.
670 */
671
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)672 void __ext4_abort(struct super_block *sb, const char *function,
673 unsigned int line, const char *fmt, ...)
674 {
675 struct va_format vaf;
676 va_list args;
677
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679 return;
680
681 save_error_info(sb, function, line);
682 va_start(args, fmt);
683 vaf.fmt = fmt;
684 vaf.va = &args;
685 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 sb->s_id, function, line, &vaf);
687 va_end(args);
688
689 if (sb_rdonly(sb) == 0) {
690 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692 /*
693 * Make sure updated value of ->s_mount_flags will be visible
694 * before ->s_flags update
695 */
696 smp_wmb();
697 sb->s_flags |= SB_RDONLY;
698 if (EXT4_SB(sb)->s_journal)
699 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 save_error_info(sb, function, line);
701 }
702 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 if (EXT4_SB(sb)->s_journal &&
704 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705 return;
706 panic("EXT4-fs panic from previous error\n");
707 }
708 }
709
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)710 void __ext4_msg(struct super_block *sb,
711 const char *prefix, const char *fmt, ...)
712 {
713 struct va_format vaf;
714 va_list args;
715
716 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717 return;
718
719 va_start(args, fmt);
720 vaf.fmt = fmt;
721 vaf.va = &args;
722 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723 va_end(args);
724 }
725
726 #define ext4_warning_ratelimit(sb) \
727 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
728 "EXT4-fs warning")
729
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)730 void __ext4_warning(struct super_block *sb, const char *function,
731 unsigned int line, const char *fmt, ...)
732 {
733 struct va_format vaf;
734 va_list args;
735
736 if (!ext4_warning_ratelimit(sb))
737 return;
738
739 va_start(args, fmt);
740 vaf.fmt = fmt;
741 vaf.va = &args;
742 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 sb->s_id, function, line, &vaf);
744 va_end(args);
745 }
746
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748 unsigned int line, const char *fmt, ...)
749 {
750 struct va_format vaf;
751 va_list args;
752
753 if (!ext4_warning_ratelimit(inode->i_sb))
754 return;
755
756 va_start(args, fmt);
757 vaf.fmt = fmt;
758 vaf.va = &args;
759 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 function, line, inode->i_ino, current->comm, &vaf);
762 va_end(args);
763 }
764
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766 struct super_block *sb, ext4_group_t grp,
767 unsigned long ino, ext4_fsblk_t block,
768 const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772 struct va_format vaf;
773 va_list args;
774 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775
776 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777 return;
778
779 trace_ext4_error(sb, function, line);
780 es->s_last_error_ino = cpu_to_le32(ino);
781 es->s_last_error_block = cpu_to_le64(block);
782 __save_error_info(sb, function, line);
783
784 if (ext4_error_ratelimit(sb)) {
785 va_start(args, fmt);
786 vaf.fmt = fmt;
787 vaf.va = &args;
788 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 sb->s_id, function, line, grp);
790 if (ino)
791 printk(KERN_CONT "inode %lu: ", ino);
792 if (block)
793 printk(KERN_CONT "block %llu:",
794 (unsigned long long) block);
795 printk(KERN_CONT "%pV\n", &vaf);
796 va_end(args);
797 }
798
799 if (test_opt(sb, WARN_ON_ERROR))
800 WARN_ON_ONCE(1);
801
802 if (test_opt(sb, ERRORS_CONT)) {
803 ext4_commit_super(sb, 0);
804 return;
805 }
806
807 ext4_unlock_group(sb, grp);
808 ext4_commit_super(sb, 1);
809 ext4_handle_error(sb);
810 /*
811 * We only get here in the ERRORS_RO case; relocking the group
812 * may be dangerous, but nothing bad will happen since the
813 * filesystem will have already been marked read/only and the
814 * journal has been aborted. We return 1 as a hint to callers
815 * who might what to use the return value from
816 * ext4_grp_locked_error() to distinguish between the
817 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 * aggressively from the ext4 function in question, with a
819 * more appropriate error code.
820 */
821 ext4_lock_group(sb, grp);
822 return;
823 }
824
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826 ext4_group_t group,
827 unsigned int flags)
828 {
829 struct ext4_sb_info *sbi = EXT4_SB(sb);
830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832 int ret;
833
834 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836 &grp->bb_state);
837 if (!ret)
838 percpu_counter_sub(&sbi->s_freeclusters_counter,
839 grp->bb_free);
840 }
841
842 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844 &grp->bb_state);
845 if (!ret && gdp) {
846 int count;
847
848 count = ext4_free_inodes_count(sb, gdp);
849 percpu_counter_sub(&sbi->s_freeinodes_counter,
850 count);
851 }
852 }
853 }
854
ext4_update_dynamic_rev(struct super_block * sb)855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858
859 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860 return;
861
862 ext4_warning(sb,
863 "updating to rev %d because of new feature flag, "
864 "running e2fsck is recommended",
865 EXT4_DYNAMIC_REV);
866
867 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 /* leave es->s_feature_*compat flags alone */
871 /* es->s_uuid will be set by e2fsck if empty */
872
873 /*
874 * The rest of the superblock fields should be zero, and if not it
875 * means they are likely already in use, so leave them alone. We
876 * can leave it up to e2fsck to clean up any inconsistencies there.
877 */
878 }
879
880 /*
881 * Open the external journal device
882 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885 struct block_device *bdev;
886 char b[BDEVNAME_SIZE];
887
888 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889 if (IS_ERR(bdev))
890 goto fail;
891 return bdev;
892
893 fail:
894 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 __bdevname(dev, b), PTR_ERR(bdev));
896 return NULL;
897 }
898
899 /*
900 * Release the journal device
901 */
ext4_blkdev_put(struct block_device * bdev)902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906
ext4_blkdev_remove(struct ext4_sb_info * sbi)907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909 struct block_device *bdev;
910 bdev = sbi->journal_bdev;
911 if (bdev) {
912 ext4_blkdev_put(bdev);
913 sbi->journal_bdev = NULL;
914 }
915 }
916
orphan_list_entry(struct list_head * l)917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924 struct list_head *l;
925
926 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 le32_to_cpu(sbi->s_es->s_last_orphan));
928
929 printk(KERN_ERR "sb_info orphan list:\n");
930 list_for_each(l, &sbi->s_orphan) {
931 struct inode *inode = orphan_list_entry(l);
932 printk(KERN_ERR " "
933 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 inode->i_sb->s_id, inode->i_ino, inode,
935 inode->i_mode, inode->i_nlink,
936 NEXT_ORPHAN(inode));
937 }
938 }
939
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942
ext4_quota_off_umount(struct super_block * sb)943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945 int type;
946
947 /* Use our quota_off function to clear inode flags etc. */
948 for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 ext4_quota_off(sb, type);
950 }
951
952 /*
953 * This is a helper function which is used in the mount/remount
954 * codepaths (which holds s_umount) to fetch the quota file name.
955 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)956 static inline char *get_qf_name(struct super_block *sb,
957 struct ext4_sb_info *sbi,
958 int type)
959 {
960 return rcu_dereference_protected(sbi->s_qf_names[type],
961 lockdep_is_held(&sb->s_umount));
962 }
963 #else
ext4_quota_off_umount(struct super_block * sb)964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968
ext4_put_super(struct super_block * sb)969 static void ext4_put_super(struct super_block *sb)
970 {
971 struct ext4_sb_info *sbi = EXT4_SB(sb);
972 struct ext4_super_block *es = sbi->s_es;
973 int aborted = 0;
974 int i, err;
975
976 ext4_unregister_li_request(sb);
977 ext4_quota_off_umount(sb);
978
979 destroy_workqueue(sbi->rsv_conversion_wq);
980
981 if (sbi->s_journal) {
982 aborted = is_journal_aborted(sbi->s_journal);
983 err = jbd2_journal_destroy(sbi->s_journal);
984 sbi->s_journal = NULL;
985 if ((err < 0) && !aborted)
986 ext4_abort(sb, "Couldn't clean up the journal");
987 }
988
989 ext4_unregister_sysfs(sb);
990 ext4_es_unregister_shrinker(sbi);
991 del_timer_sync(&sbi->s_err_report);
992 ext4_release_system_zone(sb);
993 ext4_mb_release(sb);
994 ext4_ext_release(sb);
995
996 if (!sb_rdonly(sb) && !aborted) {
997 ext4_clear_feature_journal_needs_recovery(sb);
998 es->s_state = cpu_to_le16(sbi->s_mount_state);
999 }
1000 if (!sb_rdonly(sb))
1001 ext4_commit_super(sb, 1);
1002
1003 for (i = 0; i < sbi->s_gdb_count; i++)
1004 brelse(sbi->s_group_desc[i]);
1005 kvfree(sbi->s_group_desc);
1006 kvfree(sbi->s_flex_groups);
1007 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009 percpu_counter_destroy(&sbi->s_dirs_counter);
1010 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012 #ifdef CONFIG_QUOTA
1013 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014 kfree(get_qf_name(sb, sbi, i));
1015 #endif
1016
1017 /* Debugging code just in case the in-memory inode orphan list
1018 * isn't empty. The on-disk one can be non-empty if we've
1019 * detected an error and taken the fs readonly, but the
1020 * in-memory list had better be clean by this point. */
1021 if (!list_empty(&sbi->s_orphan))
1022 dump_orphan_list(sb, sbi);
1023 J_ASSERT(list_empty(&sbi->s_orphan));
1024
1025 sync_blockdev(sb->s_bdev);
1026 invalidate_bdev(sb->s_bdev);
1027 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1028 /*
1029 * Invalidate the journal device's buffers. We don't want them
1030 * floating about in memory - the physical journal device may
1031 * hotswapped, and it breaks the `ro-after' testing code.
1032 */
1033 sync_blockdev(sbi->journal_bdev);
1034 invalidate_bdev(sbi->journal_bdev);
1035 ext4_blkdev_remove(sbi);
1036 }
1037
1038 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039 sbi->s_ea_inode_cache = NULL;
1040
1041 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042 sbi->s_ea_block_cache = NULL;
1043
1044 if (sbi->s_mmp_tsk)
1045 kthread_stop(sbi->s_mmp_tsk);
1046 brelse(sbi->s_sbh);
1047 sb->s_fs_info = NULL;
1048 /*
1049 * Now that we are completely done shutting down the
1050 * superblock, we need to actually destroy the kobject.
1051 */
1052 kobject_put(&sbi->s_kobj);
1053 wait_for_completion(&sbi->s_kobj_unregister);
1054 if (sbi->s_chksum_driver)
1055 crypto_free_shash(sbi->s_chksum_driver);
1056 kfree(sbi->s_blockgroup_lock);
1057 fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059 utf8_unload(sbi->s_encoding);
1060 #endif
1061 kfree(sbi);
1062 }
1063
1064 static struct kmem_cache *ext4_inode_cachep;
1065
1066 /*
1067 * Called inside transaction, so use GFP_NOFS
1068 */
ext4_alloc_inode(struct super_block * sb)1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1070 {
1071 struct ext4_inode_info *ei;
1072
1073 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074 if (!ei)
1075 return NULL;
1076
1077 inode_set_iversion(&ei->vfs_inode, 1);
1078 spin_lock_init(&ei->i_raw_lock);
1079 INIT_LIST_HEAD(&ei->i_prealloc_list);
1080 spin_lock_init(&ei->i_prealloc_lock);
1081 ext4_es_init_tree(&ei->i_es_tree);
1082 rwlock_init(&ei->i_es_lock);
1083 INIT_LIST_HEAD(&ei->i_es_list);
1084 ei->i_es_all_nr = 0;
1085 ei->i_es_shk_nr = 0;
1086 ei->i_es_shrink_lblk = 0;
1087 ei->i_reserved_data_blocks = 0;
1088 ei->i_da_metadata_calc_len = 0;
1089 ei->i_da_metadata_calc_last_lblock = 0;
1090 spin_lock_init(&(ei->i_block_reservation_lock));
1091 ext4_init_pending_tree(&ei->i_pending_tree);
1092 #ifdef CONFIG_QUOTA
1093 ei->i_reserved_quota = 0;
1094 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095 #endif
1096 ei->jinode = NULL;
1097 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098 spin_lock_init(&ei->i_completed_io_lock);
1099 ei->i_sync_tid = 0;
1100 ei->i_datasync_tid = 0;
1101 atomic_set(&ei->i_unwritten, 0);
1102 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103 return &ei->vfs_inode;
1104 }
1105
ext4_drop_inode(struct inode * inode)1106 static int ext4_drop_inode(struct inode *inode)
1107 {
1108 int drop = generic_drop_inode(inode);
1109
1110 if (!drop)
1111 drop = fscrypt_drop_inode(inode);
1112
1113 trace_ext4_drop_inode(inode, drop);
1114 return drop;
1115 }
1116
ext4_free_in_core_inode(struct inode * inode)1117 static void ext4_free_in_core_inode(struct inode *inode)
1118 {
1119 fscrypt_free_inode(inode);
1120 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1121 }
1122
ext4_destroy_inode(struct inode * inode)1123 static void ext4_destroy_inode(struct inode *inode)
1124 {
1125 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1126 ext4_msg(inode->i_sb, KERN_ERR,
1127 "Inode %lu (%p): orphan list check failed!",
1128 inode->i_ino, EXT4_I(inode));
1129 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1130 EXT4_I(inode), sizeof(struct ext4_inode_info),
1131 true);
1132 dump_stack();
1133 }
1134 }
1135
init_once(void * foo)1136 static void init_once(void *foo)
1137 {
1138 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1139
1140 INIT_LIST_HEAD(&ei->i_orphan);
1141 init_rwsem(&ei->xattr_sem);
1142 init_rwsem(&ei->i_data_sem);
1143 init_rwsem(&ei->i_mmap_sem);
1144 inode_init_once(&ei->vfs_inode);
1145 }
1146
init_inodecache(void)1147 static int __init init_inodecache(void)
1148 {
1149 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1150 sizeof(struct ext4_inode_info), 0,
1151 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1152 SLAB_ACCOUNT),
1153 offsetof(struct ext4_inode_info, i_data),
1154 sizeof_field(struct ext4_inode_info, i_data),
1155 init_once);
1156 if (ext4_inode_cachep == NULL)
1157 return -ENOMEM;
1158 return 0;
1159 }
1160
destroy_inodecache(void)1161 static void destroy_inodecache(void)
1162 {
1163 /*
1164 * Make sure all delayed rcu free inodes are flushed before we
1165 * destroy cache.
1166 */
1167 rcu_barrier();
1168 kmem_cache_destroy(ext4_inode_cachep);
1169 }
1170
ext4_clear_inode(struct inode * inode)1171 void ext4_clear_inode(struct inode *inode)
1172 {
1173 invalidate_inode_buffers(inode);
1174 clear_inode(inode);
1175 ext4_discard_preallocations(inode);
1176 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1177 dquot_drop(inode);
1178 if (EXT4_I(inode)->jinode) {
1179 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1180 EXT4_I(inode)->jinode);
1181 jbd2_free_inode(EXT4_I(inode)->jinode);
1182 EXT4_I(inode)->jinode = NULL;
1183 }
1184 fscrypt_put_encryption_info(inode);
1185 fsverity_cleanup_inode(inode);
1186 }
1187
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1188 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1189 u64 ino, u32 generation)
1190 {
1191 struct inode *inode;
1192
1193 /*
1194 * Currently we don't know the generation for parent directory, so
1195 * a generation of 0 means "accept any"
1196 */
1197 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1198 if (IS_ERR(inode))
1199 return ERR_CAST(inode);
1200 if (generation && inode->i_generation != generation) {
1201 iput(inode);
1202 return ERR_PTR(-ESTALE);
1203 }
1204
1205 return inode;
1206 }
1207
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1208 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1209 int fh_len, int fh_type)
1210 {
1211 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1212 ext4_nfs_get_inode);
1213 }
1214
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1215 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1216 int fh_len, int fh_type)
1217 {
1218 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1219 ext4_nfs_get_inode);
1220 }
1221
ext4_nfs_commit_metadata(struct inode * inode)1222 static int ext4_nfs_commit_metadata(struct inode *inode)
1223 {
1224 struct writeback_control wbc = {
1225 .sync_mode = WB_SYNC_ALL
1226 };
1227
1228 trace_ext4_nfs_commit_metadata(inode);
1229 return ext4_write_inode(inode, &wbc);
1230 }
1231
1232 /*
1233 * Try to release metadata pages (indirect blocks, directories) which are
1234 * mapped via the block device. Since these pages could have journal heads
1235 * which would prevent try_to_free_buffers() from freeing them, we must use
1236 * jbd2 layer's try_to_free_buffers() function to release them.
1237 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1238 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1239 gfp_t wait)
1240 {
1241 journal_t *journal = EXT4_SB(sb)->s_journal;
1242
1243 WARN_ON(PageChecked(page));
1244 if (!page_has_buffers(page))
1245 return 0;
1246 if (journal)
1247 return jbd2_journal_try_to_free_buffers(journal, page,
1248 wait & ~__GFP_DIRECT_RECLAIM);
1249 return try_to_free_buffers(page);
1250 }
1251
1252 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1253 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1254 {
1255 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1256 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1257 }
1258
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1259 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1260 void *fs_data)
1261 {
1262 handle_t *handle = fs_data;
1263 int res, res2, credits, retries = 0;
1264
1265 /*
1266 * Encrypting the root directory is not allowed because e2fsck expects
1267 * lost+found to exist and be unencrypted, and encrypting the root
1268 * directory would imply encrypting the lost+found directory as well as
1269 * the filename "lost+found" itself.
1270 */
1271 if (inode->i_ino == EXT4_ROOT_INO)
1272 return -EPERM;
1273
1274 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1275 return -EINVAL;
1276
1277 res = ext4_convert_inline_data(inode);
1278 if (res)
1279 return res;
1280
1281 /*
1282 * If a journal handle was specified, then the encryption context is
1283 * being set on a new inode via inheritance and is part of a larger
1284 * transaction to create the inode. Otherwise the encryption context is
1285 * being set on an existing inode in its own transaction. Only in the
1286 * latter case should the "retry on ENOSPC" logic be used.
1287 */
1288
1289 if (handle) {
1290 res = ext4_xattr_set_handle(handle, inode,
1291 EXT4_XATTR_INDEX_ENCRYPTION,
1292 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1293 ctx, len, 0);
1294 if (!res) {
1295 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1296 ext4_clear_inode_state(inode,
1297 EXT4_STATE_MAY_INLINE_DATA);
1298 /*
1299 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1300 * S_DAX may be disabled
1301 */
1302 ext4_set_inode_flags(inode);
1303 }
1304 return res;
1305 }
1306
1307 res = dquot_initialize(inode);
1308 if (res)
1309 return res;
1310 retry:
1311 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1312 &credits);
1313 if (res)
1314 return res;
1315
1316 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1317 if (IS_ERR(handle))
1318 return PTR_ERR(handle);
1319
1320 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1321 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1322 ctx, len, 0);
1323 if (!res) {
1324 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1325 /*
1326 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1327 * S_DAX may be disabled
1328 */
1329 ext4_set_inode_flags(inode);
1330 res = ext4_mark_inode_dirty(handle, inode);
1331 if (res)
1332 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1333 }
1334 res2 = ext4_journal_stop(handle);
1335
1336 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1337 goto retry;
1338 if (!res)
1339 res = res2;
1340 return res;
1341 }
1342
ext4_dummy_context(struct inode * inode)1343 static bool ext4_dummy_context(struct inode *inode)
1344 {
1345 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1346 }
1347
ext4_has_stable_inodes(struct super_block * sb)1348 static bool ext4_has_stable_inodes(struct super_block *sb)
1349 {
1350 return ext4_has_feature_stable_inodes(sb);
1351 }
1352
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1353 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1354 int *ino_bits_ret, int *lblk_bits_ret)
1355 {
1356 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1357 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1358 }
1359
ext4_inline_crypt_enabled(struct super_block * sb)1360 static bool ext4_inline_crypt_enabled(struct super_block *sb)
1361 {
1362 return test_opt(sb, INLINECRYPT);
1363 }
1364
1365 static const struct fscrypt_operations ext4_cryptops = {
1366 .key_prefix = "ext4:",
1367 .get_context = ext4_get_context,
1368 .set_context = ext4_set_context,
1369 .dummy_context = ext4_dummy_context,
1370 .empty_dir = ext4_empty_dir,
1371 .max_namelen = EXT4_NAME_LEN,
1372 .has_stable_inodes = ext4_has_stable_inodes,
1373 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1374 .inline_crypt_enabled = ext4_inline_crypt_enabled,
1375 };
1376 #endif
1377
1378 #ifdef CONFIG_QUOTA
1379 static const char * const quotatypes[] = INITQFNAMES;
1380 #define QTYPE2NAME(t) (quotatypes[t])
1381
1382 static int ext4_write_dquot(struct dquot *dquot);
1383 static int ext4_acquire_dquot(struct dquot *dquot);
1384 static int ext4_release_dquot(struct dquot *dquot);
1385 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1386 static int ext4_write_info(struct super_block *sb, int type);
1387 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1388 const struct path *path);
1389 static int ext4_quota_on_mount(struct super_block *sb, int type);
1390 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1391 size_t len, loff_t off);
1392 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1393 const char *data, size_t len, loff_t off);
1394 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1395 unsigned int flags);
1396 static int ext4_enable_quotas(struct super_block *sb);
1397 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1398
ext4_get_dquots(struct inode * inode)1399 static struct dquot **ext4_get_dquots(struct inode *inode)
1400 {
1401 return EXT4_I(inode)->i_dquot;
1402 }
1403
1404 static const struct dquot_operations ext4_quota_operations = {
1405 .get_reserved_space = ext4_get_reserved_space,
1406 .write_dquot = ext4_write_dquot,
1407 .acquire_dquot = ext4_acquire_dquot,
1408 .release_dquot = ext4_release_dquot,
1409 .mark_dirty = ext4_mark_dquot_dirty,
1410 .write_info = ext4_write_info,
1411 .alloc_dquot = dquot_alloc,
1412 .destroy_dquot = dquot_destroy,
1413 .get_projid = ext4_get_projid,
1414 .get_inode_usage = ext4_get_inode_usage,
1415 .get_next_id = ext4_get_next_id,
1416 };
1417
1418 static const struct quotactl_ops ext4_qctl_operations = {
1419 .quota_on = ext4_quota_on,
1420 .quota_off = ext4_quota_off,
1421 .quota_sync = dquot_quota_sync,
1422 .get_state = dquot_get_state,
1423 .set_info = dquot_set_dqinfo,
1424 .get_dqblk = dquot_get_dqblk,
1425 .set_dqblk = dquot_set_dqblk,
1426 .get_nextdqblk = dquot_get_next_dqblk,
1427 };
1428 #endif
1429
1430 static const struct super_operations ext4_sops = {
1431 .alloc_inode = ext4_alloc_inode,
1432 .free_inode = ext4_free_in_core_inode,
1433 .destroy_inode = ext4_destroy_inode,
1434 .write_inode = ext4_write_inode,
1435 .dirty_inode = ext4_dirty_inode,
1436 .drop_inode = ext4_drop_inode,
1437 .evict_inode = ext4_evict_inode,
1438 .put_super = ext4_put_super,
1439 .sync_fs = ext4_sync_fs,
1440 .freeze_fs = ext4_freeze,
1441 .unfreeze_fs = ext4_unfreeze,
1442 .statfs = ext4_statfs,
1443 .remount_fs = ext4_remount,
1444 .show_options = ext4_show_options,
1445 #ifdef CONFIG_QUOTA
1446 .quota_read = ext4_quota_read,
1447 .quota_write = ext4_quota_write,
1448 .get_dquots = ext4_get_dquots,
1449 #endif
1450 .bdev_try_to_free_page = bdev_try_to_free_page,
1451 };
1452
1453 static const struct export_operations ext4_export_ops = {
1454 .fh_to_dentry = ext4_fh_to_dentry,
1455 .fh_to_parent = ext4_fh_to_parent,
1456 .get_parent = ext4_get_parent,
1457 .commit_metadata = ext4_nfs_commit_metadata,
1458 };
1459
1460 enum {
1461 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1462 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1463 Opt_nouid32, Opt_debug, Opt_removed,
1464 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1465 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1466 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1467 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1468 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1469 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1470 Opt_inlinecrypt,
1471 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1472 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1473 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1474 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1475 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1476 Opt_nowarn_on_error, Opt_mblk_io_submit,
1477 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1478 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1479 Opt_inode_readahead_blks, Opt_journal_ioprio,
1480 Opt_dioread_nolock, Opt_dioread_lock,
1481 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1482 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1483 };
1484
1485 static const match_table_t tokens = {
1486 {Opt_bsd_df, "bsddf"},
1487 {Opt_minix_df, "minixdf"},
1488 {Opt_grpid, "grpid"},
1489 {Opt_grpid, "bsdgroups"},
1490 {Opt_nogrpid, "nogrpid"},
1491 {Opt_nogrpid, "sysvgroups"},
1492 {Opt_resgid, "resgid=%u"},
1493 {Opt_resuid, "resuid=%u"},
1494 {Opt_sb, "sb=%u"},
1495 {Opt_err_cont, "errors=continue"},
1496 {Opt_err_panic, "errors=panic"},
1497 {Opt_err_ro, "errors=remount-ro"},
1498 {Opt_nouid32, "nouid32"},
1499 {Opt_debug, "debug"},
1500 {Opt_removed, "oldalloc"},
1501 {Opt_removed, "orlov"},
1502 {Opt_user_xattr, "user_xattr"},
1503 {Opt_nouser_xattr, "nouser_xattr"},
1504 {Opt_acl, "acl"},
1505 {Opt_noacl, "noacl"},
1506 {Opt_noload, "norecovery"},
1507 {Opt_noload, "noload"},
1508 {Opt_removed, "nobh"},
1509 {Opt_removed, "bh"},
1510 {Opt_commit, "commit=%u"},
1511 {Opt_min_batch_time, "min_batch_time=%u"},
1512 {Opt_max_batch_time, "max_batch_time=%u"},
1513 {Opt_journal_dev, "journal_dev=%u"},
1514 {Opt_journal_path, "journal_path=%s"},
1515 {Opt_journal_checksum, "journal_checksum"},
1516 {Opt_nojournal_checksum, "nojournal_checksum"},
1517 {Opt_journal_async_commit, "journal_async_commit"},
1518 {Opt_abort, "abort"},
1519 {Opt_data_journal, "data=journal"},
1520 {Opt_data_ordered, "data=ordered"},
1521 {Opt_data_writeback, "data=writeback"},
1522 {Opt_data_err_abort, "data_err=abort"},
1523 {Opt_data_err_ignore, "data_err=ignore"},
1524 {Opt_offusrjquota, "usrjquota="},
1525 {Opt_usrjquota, "usrjquota=%s"},
1526 {Opt_offgrpjquota, "grpjquota="},
1527 {Opt_grpjquota, "grpjquota=%s"},
1528 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1529 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1530 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1531 {Opt_grpquota, "grpquota"},
1532 {Opt_noquota, "noquota"},
1533 {Opt_quota, "quota"},
1534 {Opt_usrquota, "usrquota"},
1535 {Opt_prjquota, "prjquota"},
1536 {Opt_barrier, "barrier=%u"},
1537 {Opt_barrier, "barrier"},
1538 {Opt_nobarrier, "nobarrier"},
1539 {Opt_i_version, "i_version"},
1540 {Opt_dax, "dax"},
1541 {Opt_stripe, "stripe=%u"},
1542 {Opt_delalloc, "delalloc"},
1543 {Opt_warn_on_error, "warn_on_error"},
1544 {Opt_nowarn_on_error, "nowarn_on_error"},
1545 {Opt_lazytime, "lazytime"},
1546 {Opt_nolazytime, "nolazytime"},
1547 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1548 {Opt_nodelalloc, "nodelalloc"},
1549 {Opt_removed, "mblk_io_submit"},
1550 {Opt_removed, "nomblk_io_submit"},
1551 {Opt_block_validity, "block_validity"},
1552 {Opt_noblock_validity, "noblock_validity"},
1553 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1554 {Opt_journal_ioprio, "journal_ioprio=%u"},
1555 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1556 {Opt_auto_da_alloc, "auto_da_alloc"},
1557 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1558 {Opt_dioread_nolock, "dioread_nolock"},
1559 {Opt_dioread_lock, "dioread_lock"},
1560 {Opt_discard, "discard"},
1561 {Opt_nodiscard, "nodiscard"},
1562 {Opt_init_itable, "init_itable=%u"},
1563 {Opt_init_itable, "init_itable"},
1564 {Opt_noinit_itable, "noinit_itable"},
1565 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1566 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1567 {Opt_inlinecrypt, "inlinecrypt"},
1568 {Opt_nombcache, "nombcache"},
1569 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1570 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1571 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1572 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1573 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1574 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1575 {Opt_err, NULL},
1576 };
1577
get_sb_block(void ** data)1578 static ext4_fsblk_t get_sb_block(void **data)
1579 {
1580 ext4_fsblk_t sb_block;
1581 char *options = (char *) *data;
1582
1583 if (!options || strncmp(options, "sb=", 3) != 0)
1584 return 1; /* Default location */
1585
1586 options += 3;
1587 /* TODO: use simple_strtoll with >32bit ext4 */
1588 sb_block = simple_strtoul(options, &options, 0);
1589 if (*options && *options != ',') {
1590 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1591 (char *) *data);
1592 return 1;
1593 }
1594 if (*options == ',')
1595 options++;
1596 *data = (void *) options;
1597
1598 return sb_block;
1599 }
1600
1601 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1602 static const char deprecated_msg[] =
1603 "Mount option \"%s\" will be removed by %s\n"
1604 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1605
1606 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1607 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1608 {
1609 struct ext4_sb_info *sbi = EXT4_SB(sb);
1610 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1611 int ret = -1;
1612
1613 if (sb_any_quota_loaded(sb) && !old_qname) {
1614 ext4_msg(sb, KERN_ERR,
1615 "Cannot change journaled "
1616 "quota options when quota turned on");
1617 return -1;
1618 }
1619 if (ext4_has_feature_quota(sb)) {
1620 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1621 "ignored when QUOTA feature is enabled");
1622 return 1;
1623 }
1624 qname = match_strdup(args);
1625 if (!qname) {
1626 ext4_msg(sb, KERN_ERR,
1627 "Not enough memory for storing quotafile name");
1628 return -1;
1629 }
1630 if (old_qname) {
1631 if (strcmp(old_qname, qname) == 0)
1632 ret = 1;
1633 else
1634 ext4_msg(sb, KERN_ERR,
1635 "%s quota file already specified",
1636 QTYPE2NAME(qtype));
1637 goto errout;
1638 }
1639 if (strchr(qname, '/')) {
1640 ext4_msg(sb, KERN_ERR,
1641 "quotafile must be on filesystem root");
1642 goto errout;
1643 }
1644 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1645 set_opt(sb, QUOTA);
1646 return 1;
1647 errout:
1648 kfree(qname);
1649 return ret;
1650 }
1651
clear_qf_name(struct super_block * sb,int qtype)1652 static int clear_qf_name(struct super_block *sb, int qtype)
1653 {
1654
1655 struct ext4_sb_info *sbi = EXT4_SB(sb);
1656 char *old_qname = get_qf_name(sb, sbi, qtype);
1657
1658 if (sb_any_quota_loaded(sb) && old_qname) {
1659 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1660 " when quota turned on");
1661 return -1;
1662 }
1663 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1664 synchronize_rcu();
1665 kfree(old_qname);
1666 return 1;
1667 }
1668 #endif
1669
1670 #define MOPT_SET 0x0001
1671 #define MOPT_CLEAR 0x0002
1672 #define MOPT_NOSUPPORT 0x0004
1673 #define MOPT_EXPLICIT 0x0008
1674 #define MOPT_CLEAR_ERR 0x0010
1675 #define MOPT_GTE0 0x0020
1676 #ifdef CONFIG_QUOTA
1677 #define MOPT_Q 0
1678 #define MOPT_QFMT 0x0040
1679 #else
1680 #define MOPT_Q MOPT_NOSUPPORT
1681 #define MOPT_QFMT MOPT_NOSUPPORT
1682 #endif
1683 #define MOPT_DATAJ 0x0080
1684 #define MOPT_NO_EXT2 0x0100
1685 #define MOPT_NO_EXT3 0x0200
1686 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1687 #define MOPT_STRING 0x0400
1688
1689 static const struct mount_opts {
1690 int token;
1691 int mount_opt;
1692 int flags;
1693 } ext4_mount_opts[] = {
1694 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1695 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1696 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1697 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1698 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1699 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1700 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1701 MOPT_EXT4_ONLY | MOPT_SET},
1702 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1703 MOPT_EXT4_ONLY | MOPT_CLEAR},
1704 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1705 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1706 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1707 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1708 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1709 MOPT_EXT4_ONLY | MOPT_CLEAR},
1710 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1711 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1712 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1713 MOPT_EXT4_ONLY | MOPT_CLEAR},
1714 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1715 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1716 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1717 EXT4_MOUNT_JOURNAL_CHECKSUM),
1718 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1719 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1720 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1721 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1722 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1723 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1724 MOPT_NO_EXT2},
1725 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1726 MOPT_NO_EXT2},
1727 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1728 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1729 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1730 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1731 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1732 {Opt_commit, 0, MOPT_GTE0},
1733 {Opt_max_batch_time, 0, MOPT_GTE0},
1734 {Opt_min_batch_time, 0, MOPT_GTE0},
1735 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1736 {Opt_init_itable, 0, MOPT_GTE0},
1737 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1738 {Opt_stripe, 0, MOPT_GTE0},
1739 {Opt_resuid, 0, MOPT_GTE0},
1740 {Opt_resgid, 0, MOPT_GTE0},
1741 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1742 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1743 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1744 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1745 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1746 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1747 MOPT_NO_EXT2 | MOPT_DATAJ},
1748 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1749 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1750 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1751 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1752 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1753 #else
1754 {Opt_acl, 0, MOPT_NOSUPPORT},
1755 {Opt_noacl, 0, MOPT_NOSUPPORT},
1756 #endif
1757 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1758 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1759 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1760 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1761 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1762 MOPT_SET | MOPT_Q},
1763 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1764 MOPT_SET | MOPT_Q},
1765 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1766 MOPT_SET | MOPT_Q},
1767 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1768 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1769 MOPT_CLEAR | MOPT_Q},
1770 {Opt_usrjquota, 0, MOPT_Q},
1771 {Opt_grpjquota, 0, MOPT_Q},
1772 {Opt_offusrjquota, 0, MOPT_Q},
1773 {Opt_offgrpjquota, 0, MOPT_Q},
1774 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1775 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1776 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1777 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1778 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1779 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1780 {Opt_inlinecrypt, EXT4_MOUNT_INLINECRYPT, MOPT_SET},
1781 #else
1782 {Opt_inlinecrypt, EXT4_MOUNT_INLINECRYPT, MOPT_NOSUPPORT},
1783 #endif
1784 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1785 {Opt_err, 0, 0}
1786 };
1787
1788 #ifdef CONFIG_UNICODE
1789 static const struct ext4_sb_encodings {
1790 __u16 magic;
1791 char *name;
1792 char *version;
1793 } ext4_sb_encoding_map[] = {
1794 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1795 };
1796
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)1797 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1798 const struct ext4_sb_encodings **encoding,
1799 __u16 *flags)
1800 {
1801 __u16 magic = le16_to_cpu(es->s_encoding);
1802 int i;
1803
1804 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1805 if (magic == ext4_sb_encoding_map[i].magic)
1806 break;
1807
1808 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1809 return -EINVAL;
1810
1811 *encoding = &ext4_sb_encoding_map[i];
1812 *flags = le16_to_cpu(es->s_encoding_flags);
1813
1814 return 0;
1815 }
1816 #endif
1817
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1818 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1819 substring_t *args, unsigned long *journal_devnum,
1820 unsigned int *journal_ioprio, int is_remount)
1821 {
1822 struct ext4_sb_info *sbi = EXT4_SB(sb);
1823 const struct mount_opts *m;
1824 kuid_t uid;
1825 kgid_t gid;
1826 int arg = 0;
1827
1828 #ifdef CONFIG_QUOTA
1829 if (token == Opt_usrjquota)
1830 return set_qf_name(sb, USRQUOTA, &args[0]);
1831 else if (token == Opt_grpjquota)
1832 return set_qf_name(sb, GRPQUOTA, &args[0]);
1833 else if (token == Opt_offusrjquota)
1834 return clear_qf_name(sb, USRQUOTA);
1835 else if (token == Opt_offgrpjquota)
1836 return clear_qf_name(sb, GRPQUOTA);
1837 #endif
1838 switch (token) {
1839 case Opt_noacl:
1840 case Opt_nouser_xattr:
1841 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1842 break;
1843 case Opt_sb:
1844 return 1; /* handled by get_sb_block() */
1845 case Opt_removed:
1846 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1847 return 1;
1848 case Opt_abort:
1849 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1850 return 1;
1851 case Opt_i_version:
1852 sb->s_flags |= SB_I_VERSION;
1853 return 1;
1854 case Opt_lazytime:
1855 sb->s_flags |= SB_LAZYTIME;
1856 return 1;
1857 case Opt_nolazytime:
1858 sb->s_flags &= ~SB_LAZYTIME;
1859 return 1;
1860 }
1861
1862 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1863 if (token == m->token)
1864 break;
1865
1866 if (m->token == Opt_err) {
1867 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1868 "or missing value", opt);
1869 return -1;
1870 }
1871
1872 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1873 ext4_msg(sb, KERN_ERR,
1874 "Mount option \"%s\" incompatible with ext2", opt);
1875 return -1;
1876 }
1877 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1878 ext4_msg(sb, KERN_ERR,
1879 "Mount option \"%s\" incompatible with ext3", opt);
1880 return -1;
1881 }
1882
1883 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1884 return -1;
1885 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1886 return -1;
1887 if (m->flags & MOPT_EXPLICIT) {
1888 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1889 set_opt2(sb, EXPLICIT_DELALLOC);
1890 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1891 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1892 } else
1893 return -1;
1894 }
1895 if (m->flags & MOPT_CLEAR_ERR)
1896 clear_opt(sb, ERRORS_MASK);
1897 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1898 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1899 "options when quota turned on");
1900 return -1;
1901 }
1902
1903 if (m->flags & MOPT_NOSUPPORT) {
1904 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1905 } else if (token == Opt_commit) {
1906 if (arg == 0)
1907 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1908 else if (arg > INT_MAX / HZ) {
1909 ext4_msg(sb, KERN_ERR,
1910 "Invalid commit interval %d, "
1911 "must be smaller than %d",
1912 arg, INT_MAX / HZ);
1913 return -1;
1914 }
1915 sbi->s_commit_interval = HZ * arg;
1916 } else if (token == Opt_debug_want_extra_isize) {
1917 if ((arg & 1) ||
1918 (arg < 4) ||
1919 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1920 ext4_msg(sb, KERN_ERR,
1921 "Invalid want_extra_isize %d", arg);
1922 return -1;
1923 }
1924 sbi->s_want_extra_isize = arg;
1925 } else if (token == Opt_max_batch_time) {
1926 sbi->s_max_batch_time = arg;
1927 } else if (token == Opt_min_batch_time) {
1928 sbi->s_min_batch_time = arg;
1929 } else if (token == Opt_inode_readahead_blks) {
1930 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1931 ext4_msg(sb, KERN_ERR,
1932 "EXT4-fs: inode_readahead_blks must be "
1933 "0 or a power of 2 smaller than 2^31");
1934 return -1;
1935 }
1936 sbi->s_inode_readahead_blks = arg;
1937 } else if (token == Opt_init_itable) {
1938 set_opt(sb, INIT_INODE_TABLE);
1939 if (!args->from)
1940 arg = EXT4_DEF_LI_WAIT_MULT;
1941 sbi->s_li_wait_mult = arg;
1942 } else if (token == Opt_max_dir_size_kb) {
1943 sbi->s_max_dir_size_kb = arg;
1944 } else if (token == Opt_stripe) {
1945 sbi->s_stripe = arg;
1946 } else if (token == Opt_resuid) {
1947 uid = make_kuid(current_user_ns(), arg);
1948 if (!uid_valid(uid)) {
1949 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1950 return -1;
1951 }
1952 sbi->s_resuid = uid;
1953 } else if (token == Opt_resgid) {
1954 gid = make_kgid(current_user_ns(), arg);
1955 if (!gid_valid(gid)) {
1956 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1957 return -1;
1958 }
1959 sbi->s_resgid = gid;
1960 } else if (token == Opt_journal_dev) {
1961 if (is_remount) {
1962 ext4_msg(sb, KERN_ERR,
1963 "Cannot specify journal on remount");
1964 return -1;
1965 }
1966 *journal_devnum = arg;
1967 } else if (token == Opt_journal_path) {
1968 char *journal_path;
1969 struct inode *journal_inode;
1970 struct path path;
1971 int error;
1972
1973 if (is_remount) {
1974 ext4_msg(sb, KERN_ERR,
1975 "Cannot specify journal on remount");
1976 return -1;
1977 }
1978 journal_path = match_strdup(&args[0]);
1979 if (!journal_path) {
1980 ext4_msg(sb, KERN_ERR, "error: could not dup "
1981 "journal device string");
1982 return -1;
1983 }
1984
1985 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1986 if (error) {
1987 ext4_msg(sb, KERN_ERR, "error: could not find "
1988 "journal device path: error %d", error);
1989 kfree(journal_path);
1990 return -1;
1991 }
1992
1993 journal_inode = d_inode(path.dentry);
1994 if (!S_ISBLK(journal_inode->i_mode)) {
1995 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1996 "is not a block device", journal_path);
1997 path_put(&path);
1998 kfree(journal_path);
1999 return -1;
2000 }
2001
2002 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2003 path_put(&path);
2004 kfree(journal_path);
2005 } else if (token == Opt_journal_ioprio) {
2006 if (arg > 7) {
2007 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2008 " (must be 0-7)");
2009 return -1;
2010 }
2011 *journal_ioprio =
2012 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2013 } else if (token == Opt_test_dummy_encryption) {
2014 #ifdef CONFIG_FS_ENCRYPTION
2015 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
2016 ext4_msg(sb, KERN_WARNING,
2017 "Test dummy encryption mode enabled");
2018 #else
2019 ext4_msg(sb, KERN_WARNING,
2020 "Test dummy encryption mount option ignored");
2021 #endif
2022 } else if (m->flags & MOPT_DATAJ) {
2023 if (is_remount) {
2024 if (!sbi->s_journal)
2025 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2026 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2027 ext4_msg(sb, KERN_ERR,
2028 "Cannot change data mode on remount");
2029 return -1;
2030 }
2031 } else {
2032 clear_opt(sb, DATA_FLAGS);
2033 sbi->s_mount_opt |= m->mount_opt;
2034 }
2035 #ifdef CONFIG_QUOTA
2036 } else if (m->flags & MOPT_QFMT) {
2037 if (sb_any_quota_loaded(sb) &&
2038 sbi->s_jquota_fmt != m->mount_opt) {
2039 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2040 "quota options when quota turned on");
2041 return -1;
2042 }
2043 if (ext4_has_feature_quota(sb)) {
2044 ext4_msg(sb, KERN_INFO,
2045 "Quota format mount options ignored "
2046 "when QUOTA feature is enabled");
2047 return 1;
2048 }
2049 sbi->s_jquota_fmt = m->mount_opt;
2050 #endif
2051 } else if (token == Opt_dax) {
2052 #ifdef CONFIG_FS_DAX
2053 ext4_msg(sb, KERN_WARNING,
2054 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2055 sbi->s_mount_opt |= m->mount_opt;
2056 #else
2057 ext4_msg(sb, KERN_INFO, "dax option not supported");
2058 return -1;
2059 #endif
2060 } else if (token == Opt_data_err_abort) {
2061 sbi->s_mount_opt |= m->mount_opt;
2062 } else if (token == Opt_data_err_ignore) {
2063 sbi->s_mount_opt &= ~m->mount_opt;
2064 } else {
2065 if (!args->from)
2066 arg = 1;
2067 if (m->flags & MOPT_CLEAR)
2068 arg = !arg;
2069 else if (unlikely(!(m->flags & MOPT_SET))) {
2070 ext4_msg(sb, KERN_WARNING,
2071 "buggy handling of option %s", opt);
2072 WARN_ON(1);
2073 return -1;
2074 }
2075 if (arg != 0)
2076 sbi->s_mount_opt |= m->mount_opt;
2077 else
2078 sbi->s_mount_opt &= ~m->mount_opt;
2079 }
2080 return 1;
2081 }
2082
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2083 static int parse_options(char *options, struct super_block *sb,
2084 unsigned long *journal_devnum,
2085 unsigned int *journal_ioprio,
2086 int is_remount)
2087 {
2088 struct ext4_sb_info *sbi = EXT4_SB(sb);
2089 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2090 substring_t args[MAX_OPT_ARGS];
2091 int token;
2092
2093 if (!options)
2094 return 1;
2095
2096 while ((p = strsep(&options, ",")) != NULL) {
2097 if (!*p)
2098 continue;
2099 /*
2100 * Initialize args struct so we know whether arg was
2101 * found; some options take optional arguments.
2102 */
2103 args[0].to = args[0].from = NULL;
2104 token = match_token(p, tokens, args);
2105 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2106 journal_ioprio, is_remount) < 0)
2107 return 0;
2108 }
2109 #ifdef CONFIG_QUOTA
2110 /*
2111 * We do the test below only for project quotas. 'usrquota' and
2112 * 'grpquota' mount options are allowed even without quota feature
2113 * to support legacy quotas in quota files.
2114 */
2115 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2116 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2117 "Cannot enable project quota enforcement.");
2118 return 0;
2119 }
2120 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2121 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2122 if (usr_qf_name || grp_qf_name) {
2123 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2124 clear_opt(sb, USRQUOTA);
2125
2126 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2127 clear_opt(sb, GRPQUOTA);
2128
2129 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2130 ext4_msg(sb, KERN_ERR, "old and new quota "
2131 "format mixing");
2132 return 0;
2133 }
2134
2135 if (!sbi->s_jquota_fmt) {
2136 ext4_msg(sb, KERN_ERR, "journaled quota format "
2137 "not specified");
2138 return 0;
2139 }
2140 }
2141 #endif
2142 if (test_opt(sb, DIOREAD_NOLOCK)) {
2143 int blocksize =
2144 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2145
2146 if (blocksize < PAGE_SIZE) {
2147 ext4_msg(sb, KERN_ERR, "can't mount with "
2148 "dioread_nolock if block size != PAGE_SIZE");
2149 return 0;
2150 }
2151 }
2152 return 1;
2153 }
2154
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2155 static inline void ext4_show_quota_options(struct seq_file *seq,
2156 struct super_block *sb)
2157 {
2158 #if defined(CONFIG_QUOTA)
2159 struct ext4_sb_info *sbi = EXT4_SB(sb);
2160 char *usr_qf_name, *grp_qf_name;
2161
2162 if (sbi->s_jquota_fmt) {
2163 char *fmtname = "";
2164
2165 switch (sbi->s_jquota_fmt) {
2166 case QFMT_VFS_OLD:
2167 fmtname = "vfsold";
2168 break;
2169 case QFMT_VFS_V0:
2170 fmtname = "vfsv0";
2171 break;
2172 case QFMT_VFS_V1:
2173 fmtname = "vfsv1";
2174 break;
2175 }
2176 seq_printf(seq, ",jqfmt=%s", fmtname);
2177 }
2178
2179 rcu_read_lock();
2180 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2181 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2182 if (usr_qf_name)
2183 seq_show_option(seq, "usrjquota", usr_qf_name);
2184 if (grp_qf_name)
2185 seq_show_option(seq, "grpjquota", grp_qf_name);
2186 rcu_read_unlock();
2187 #endif
2188 }
2189
token2str(int token)2190 static const char *token2str(int token)
2191 {
2192 const struct match_token *t;
2193
2194 for (t = tokens; t->token != Opt_err; t++)
2195 if (t->token == token && !strchr(t->pattern, '='))
2196 break;
2197 return t->pattern;
2198 }
2199
2200 /*
2201 * Show an option if
2202 * - it's set to a non-default value OR
2203 * - if the per-sb default is different from the global default
2204 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2205 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2206 int nodefs)
2207 {
2208 struct ext4_sb_info *sbi = EXT4_SB(sb);
2209 struct ext4_super_block *es = sbi->s_es;
2210 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2211 const struct mount_opts *m;
2212 char sep = nodefs ? '\n' : ',';
2213
2214 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2215 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2216
2217 if (sbi->s_sb_block != 1)
2218 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2219
2220 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2221 int want_set = m->flags & MOPT_SET;
2222 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2223 (m->flags & MOPT_CLEAR_ERR))
2224 continue;
2225 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2226 continue; /* skip if same as the default */
2227 if ((want_set &&
2228 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2229 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2230 continue; /* select Opt_noFoo vs Opt_Foo */
2231 SEQ_OPTS_PRINT("%s", token2str(m->token));
2232 }
2233
2234 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2235 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2236 SEQ_OPTS_PRINT("resuid=%u",
2237 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2238 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2239 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2240 SEQ_OPTS_PRINT("resgid=%u",
2241 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2242 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2243 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2244 SEQ_OPTS_PUTS("errors=remount-ro");
2245 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2246 SEQ_OPTS_PUTS("errors=continue");
2247 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2248 SEQ_OPTS_PUTS("errors=panic");
2249 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2250 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2251 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2252 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2253 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2254 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2255 if (sb->s_flags & SB_I_VERSION)
2256 SEQ_OPTS_PUTS("i_version");
2257 if (nodefs || sbi->s_stripe)
2258 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2259 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2260 (sbi->s_mount_opt ^ def_mount_opt)) {
2261 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2262 SEQ_OPTS_PUTS("data=journal");
2263 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2264 SEQ_OPTS_PUTS("data=ordered");
2265 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2266 SEQ_OPTS_PUTS("data=writeback");
2267 }
2268 if (nodefs ||
2269 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2270 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2271 sbi->s_inode_readahead_blks);
2272
2273 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2274 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2275 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2276 if (nodefs || sbi->s_max_dir_size_kb)
2277 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2278 if (test_opt(sb, DATA_ERR_ABORT))
2279 SEQ_OPTS_PUTS("data_err=abort");
2280 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2281 SEQ_OPTS_PUTS("test_dummy_encryption");
2282
2283 ext4_show_quota_options(seq, sb);
2284 return 0;
2285 }
2286
ext4_show_options(struct seq_file * seq,struct dentry * root)2287 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2288 {
2289 return _ext4_show_options(seq, root->d_sb, 0);
2290 }
2291
ext4_seq_options_show(struct seq_file * seq,void * offset)2292 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2293 {
2294 struct super_block *sb = seq->private;
2295 int rc;
2296
2297 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2298 rc = _ext4_show_options(seq, sb, 1);
2299 seq_puts(seq, "\n");
2300 return rc;
2301 }
2302
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2303 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2304 int read_only)
2305 {
2306 struct ext4_sb_info *sbi = EXT4_SB(sb);
2307 int err = 0;
2308
2309 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2310 ext4_msg(sb, KERN_ERR, "revision level too high, "
2311 "forcing read-only mode");
2312 err = -EROFS;
2313 }
2314 if (read_only)
2315 goto done;
2316 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2317 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2318 "running e2fsck is recommended");
2319 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2320 ext4_msg(sb, KERN_WARNING,
2321 "warning: mounting fs with errors, "
2322 "running e2fsck is recommended");
2323 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2324 le16_to_cpu(es->s_mnt_count) >=
2325 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2326 ext4_msg(sb, KERN_WARNING,
2327 "warning: maximal mount count reached, "
2328 "running e2fsck is recommended");
2329 else if (le32_to_cpu(es->s_checkinterval) &&
2330 (ext4_get_tstamp(es, s_lastcheck) +
2331 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2332 ext4_msg(sb, KERN_WARNING,
2333 "warning: checktime reached, "
2334 "running e2fsck is recommended");
2335 if (!sbi->s_journal)
2336 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2337 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2338 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2339 le16_add_cpu(&es->s_mnt_count, 1);
2340 ext4_update_tstamp(es, s_mtime);
2341 if (sbi->s_journal)
2342 ext4_set_feature_journal_needs_recovery(sb);
2343
2344 err = ext4_commit_super(sb, 1);
2345 done:
2346 if (test_opt(sb, DEBUG))
2347 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2348 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2349 sb->s_blocksize,
2350 sbi->s_groups_count,
2351 EXT4_BLOCKS_PER_GROUP(sb),
2352 EXT4_INODES_PER_GROUP(sb),
2353 sbi->s_mount_opt, sbi->s_mount_opt2);
2354
2355 cleancache_init_fs(sb);
2356 return err;
2357 }
2358
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2359 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2360 {
2361 struct ext4_sb_info *sbi = EXT4_SB(sb);
2362 struct flex_groups *new_groups;
2363 int size;
2364
2365 if (!sbi->s_log_groups_per_flex)
2366 return 0;
2367
2368 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2369 if (size <= sbi->s_flex_groups_allocated)
2370 return 0;
2371
2372 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2373 new_groups = kvzalloc(size, GFP_KERNEL);
2374 if (!new_groups) {
2375 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2376 size / (int) sizeof(struct flex_groups));
2377 return -ENOMEM;
2378 }
2379
2380 if (sbi->s_flex_groups) {
2381 memcpy(new_groups, sbi->s_flex_groups,
2382 (sbi->s_flex_groups_allocated *
2383 sizeof(struct flex_groups)));
2384 kvfree(sbi->s_flex_groups);
2385 }
2386 sbi->s_flex_groups = new_groups;
2387 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2388 return 0;
2389 }
2390
ext4_fill_flex_info(struct super_block * sb)2391 static int ext4_fill_flex_info(struct super_block *sb)
2392 {
2393 struct ext4_sb_info *sbi = EXT4_SB(sb);
2394 struct ext4_group_desc *gdp = NULL;
2395 ext4_group_t flex_group;
2396 int i, err;
2397
2398 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2399 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2400 sbi->s_log_groups_per_flex = 0;
2401 return 1;
2402 }
2403
2404 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2405 if (err)
2406 goto failed;
2407
2408 for (i = 0; i < sbi->s_groups_count; i++) {
2409 gdp = ext4_get_group_desc(sb, i, NULL);
2410
2411 flex_group = ext4_flex_group(sbi, i);
2412 atomic_add(ext4_free_inodes_count(sb, gdp),
2413 &sbi->s_flex_groups[flex_group].free_inodes);
2414 atomic64_add(ext4_free_group_clusters(sb, gdp),
2415 &sbi->s_flex_groups[flex_group].free_clusters);
2416 atomic_add(ext4_used_dirs_count(sb, gdp),
2417 &sbi->s_flex_groups[flex_group].used_dirs);
2418 }
2419
2420 return 1;
2421 failed:
2422 return 0;
2423 }
2424
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2425 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2426 struct ext4_group_desc *gdp)
2427 {
2428 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2429 __u16 crc = 0;
2430 __le32 le_group = cpu_to_le32(block_group);
2431 struct ext4_sb_info *sbi = EXT4_SB(sb);
2432
2433 if (ext4_has_metadata_csum(sbi->s_sb)) {
2434 /* Use new metadata_csum algorithm */
2435 __u32 csum32;
2436 __u16 dummy_csum = 0;
2437
2438 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2439 sizeof(le_group));
2440 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2441 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2442 sizeof(dummy_csum));
2443 offset += sizeof(dummy_csum);
2444 if (offset < sbi->s_desc_size)
2445 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2446 sbi->s_desc_size - offset);
2447
2448 crc = csum32 & 0xFFFF;
2449 goto out;
2450 }
2451
2452 /* old crc16 code */
2453 if (!ext4_has_feature_gdt_csum(sb))
2454 return 0;
2455
2456 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2457 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2458 crc = crc16(crc, (__u8 *)gdp, offset);
2459 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2460 /* for checksum of struct ext4_group_desc do the rest...*/
2461 if (ext4_has_feature_64bit(sb) &&
2462 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2463 crc = crc16(crc, (__u8 *)gdp + offset,
2464 le16_to_cpu(sbi->s_es->s_desc_size) -
2465 offset);
2466
2467 out:
2468 return cpu_to_le16(crc);
2469 }
2470
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2471 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2472 struct ext4_group_desc *gdp)
2473 {
2474 if (ext4_has_group_desc_csum(sb) &&
2475 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2476 return 0;
2477
2478 return 1;
2479 }
2480
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2481 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2482 struct ext4_group_desc *gdp)
2483 {
2484 if (!ext4_has_group_desc_csum(sb))
2485 return;
2486 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2487 }
2488
2489 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2490 static int ext4_check_descriptors(struct super_block *sb,
2491 ext4_fsblk_t sb_block,
2492 ext4_group_t *first_not_zeroed)
2493 {
2494 struct ext4_sb_info *sbi = EXT4_SB(sb);
2495 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2496 ext4_fsblk_t last_block;
2497 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2498 ext4_fsblk_t block_bitmap;
2499 ext4_fsblk_t inode_bitmap;
2500 ext4_fsblk_t inode_table;
2501 int flexbg_flag = 0;
2502 ext4_group_t i, grp = sbi->s_groups_count;
2503
2504 if (ext4_has_feature_flex_bg(sb))
2505 flexbg_flag = 1;
2506
2507 ext4_debug("Checking group descriptors");
2508
2509 for (i = 0; i < sbi->s_groups_count; i++) {
2510 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2511
2512 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2513 last_block = ext4_blocks_count(sbi->s_es) - 1;
2514 else
2515 last_block = first_block +
2516 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2517
2518 if ((grp == sbi->s_groups_count) &&
2519 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2520 grp = i;
2521
2522 block_bitmap = ext4_block_bitmap(sb, gdp);
2523 if (block_bitmap == sb_block) {
2524 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2525 "Block bitmap for group %u overlaps "
2526 "superblock", i);
2527 if (!sb_rdonly(sb))
2528 return 0;
2529 }
2530 if (block_bitmap >= sb_block + 1 &&
2531 block_bitmap <= last_bg_block) {
2532 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2533 "Block bitmap for group %u overlaps "
2534 "block group descriptors", i);
2535 if (!sb_rdonly(sb))
2536 return 0;
2537 }
2538 if (block_bitmap < first_block || block_bitmap > last_block) {
2539 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2540 "Block bitmap for group %u not in group "
2541 "(block %llu)!", i, block_bitmap);
2542 return 0;
2543 }
2544 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2545 if (inode_bitmap == sb_block) {
2546 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2547 "Inode bitmap for group %u overlaps "
2548 "superblock", i);
2549 if (!sb_rdonly(sb))
2550 return 0;
2551 }
2552 if (inode_bitmap >= sb_block + 1 &&
2553 inode_bitmap <= last_bg_block) {
2554 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2555 "Inode bitmap for group %u overlaps "
2556 "block group descriptors", i);
2557 if (!sb_rdonly(sb))
2558 return 0;
2559 }
2560 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2561 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2562 "Inode bitmap for group %u not in group "
2563 "(block %llu)!", i, inode_bitmap);
2564 return 0;
2565 }
2566 inode_table = ext4_inode_table(sb, gdp);
2567 if (inode_table == sb_block) {
2568 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2569 "Inode table for group %u overlaps "
2570 "superblock", i);
2571 if (!sb_rdonly(sb))
2572 return 0;
2573 }
2574 if (inode_table >= sb_block + 1 &&
2575 inode_table <= last_bg_block) {
2576 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2577 "Inode table for group %u overlaps "
2578 "block group descriptors", i);
2579 if (!sb_rdonly(sb))
2580 return 0;
2581 }
2582 if (inode_table < first_block ||
2583 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2584 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2585 "Inode table for group %u not in group "
2586 "(block %llu)!", i, inode_table);
2587 return 0;
2588 }
2589 ext4_lock_group(sb, i);
2590 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2591 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2592 "Checksum for group %u failed (%u!=%u)",
2593 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2594 gdp)), le16_to_cpu(gdp->bg_checksum));
2595 if (!sb_rdonly(sb)) {
2596 ext4_unlock_group(sb, i);
2597 return 0;
2598 }
2599 }
2600 ext4_unlock_group(sb, i);
2601 if (!flexbg_flag)
2602 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2603 }
2604 if (NULL != first_not_zeroed)
2605 *first_not_zeroed = grp;
2606 return 1;
2607 }
2608
2609 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2610 * the superblock) which were deleted from all directories, but held open by
2611 * a process at the time of a crash. We walk the list and try to delete these
2612 * inodes at recovery time (only with a read-write filesystem).
2613 *
2614 * In order to keep the orphan inode chain consistent during traversal (in
2615 * case of crash during recovery), we link each inode into the superblock
2616 * orphan list_head and handle it the same way as an inode deletion during
2617 * normal operation (which journals the operations for us).
2618 *
2619 * We only do an iget() and an iput() on each inode, which is very safe if we
2620 * accidentally point at an in-use or already deleted inode. The worst that
2621 * can happen in this case is that we get a "bit already cleared" message from
2622 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2623 * e2fsck was run on this filesystem, and it must have already done the orphan
2624 * inode cleanup for us, so we can safely abort without any further action.
2625 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2626 static void ext4_orphan_cleanup(struct super_block *sb,
2627 struct ext4_super_block *es)
2628 {
2629 unsigned int s_flags = sb->s_flags;
2630 int ret, nr_orphans = 0, nr_truncates = 0;
2631 #ifdef CONFIG_QUOTA
2632 int quota_update = 0;
2633 int i;
2634 #endif
2635 if (!es->s_last_orphan) {
2636 jbd_debug(4, "no orphan inodes to clean up\n");
2637 return;
2638 }
2639
2640 if (bdev_read_only(sb->s_bdev)) {
2641 ext4_msg(sb, KERN_ERR, "write access "
2642 "unavailable, skipping orphan cleanup");
2643 return;
2644 }
2645
2646 /* Check if feature set would not allow a r/w mount */
2647 if (!ext4_feature_set_ok(sb, 0)) {
2648 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2649 "unknown ROCOMPAT features");
2650 return;
2651 }
2652
2653 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2654 /* don't clear list on RO mount w/ errors */
2655 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2656 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2657 "clearing orphan list.\n");
2658 es->s_last_orphan = 0;
2659 }
2660 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2661 return;
2662 }
2663
2664 if (s_flags & SB_RDONLY) {
2665 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2666 sb->s_flags &= ~SB_RDONLY;
2667 }
2668 #ifdef CONFIG_QUOTA
2669 /* Needed for iput() to work correctly and not trash data */
2670 sb->s_flags |= SB_ACTIVE;
2671
2672 /*
2673 * Turn on quotas which were not enabled for read-only mounts if
2674 * filesystem has quota feature, so that they are updated correctly.
2675 */
2676 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2677 int ret = ext4_enable_quotas(sb);
2678
2679 if (!ret)
2680 quota_update = 1;
2681 else
2682 ext4_msg(sb, KERN_ERR,
2683 "Cannot turn on quotas: error %d", ret);
2684 }
2685
2686 /* Turn on journaled quotas used for old sytle */
2687 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2688 if (EXT4_SB(sb)->s_qf_names[i]) {
2689 int ret = ext4_quota_on_mount(sb, i);
2690
2691 if (!ret)
2692 quota_update = 1;
2693 else
2694 ext4_msg(sb, KERN_ERR,
2695 "Cannot turn on journaled "
2696 "quota: type %d: error %d", i, ret);
2697 }
2698 }
2699 #endif
2700
2701 while (es->s_last_orphan) {
2702 struct inode *inode;
2703
2704 /*
2705 * We may have encountered an error during cleanup; if
2706 * so, skip the rest.
2707 */
2708 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2709 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2710 es->s_last_orphan = 0;
2711 break;
2712 }
2713
2714 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2715 if (IS_ERR(inode)) {
2716 es->s_last_orphan = 0;
2717 break;
2718 }
2719
2720 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2721 dquot_initialize(inode);
2722 if (inode->i_nlink) {
2723 if (test_opt(sb, DEBUG))
2724 ext4_msg(sb, KERN_DEBUG,
2725 "%s: truncating inode %lu to %lld bytes",
2726 __func__, inode->i_ino, inode->i_size);
2727 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2728 inode->i_ino, inode->i_size);
2729 inode_lock(inode);
2730 truncate_inode_pages(inode->i_mapping, inode->i_size);
2731 ret = ext4_truncate(inode);
2732 if (ret)
2733 ext4_std_error(inode->i_sb, ret);
2734 inode_unlock(inode);
2735 nr_truncates++;
2736 } else {
2737 if (test_opt(sb, DEBUG))
2738 ext4_msg(sb, KERN_DEBUG,
2739 "%s: deleting unreferenced inode %lu",
2740 __func__, inode->i_ino);
2741 jbd_debug(2, "deleting unreferenced inode %lu\n",
2742 inode->i_ino);
2743 nr_orphans++;
2744 }
2745 iput(inode); /* The delete magic happens here! */
2746 }
2747
2748 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2749
2750 if (nr_orphans)
2751 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2752 PLURAL(nr_orphans));
2753 if (nr_truncates)
2754 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2755 PLURAL(nr_truncates));
2756 #ifdef CONFIG_QUOTA
2757 /* Turn off quotas if they were enabled for orphan cleanup */
2758 if (quota_update) {
2759 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2760 if (sb_dqopt(sb)->files[i])
2761 dquot_quota_off(sb, i);
2762 }
2763 }
2764 #endif
2765 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2766 }
2767
2768 /*
2769 * Maximal extent format file size.
2770 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2771 * extent format containers, within a sector_t, and within i_blocks
2772 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2773 * so that won't be a limiting factor.
2774 *
2775 * However there is other limiting factor. We do store extents in the form
2776 * of starting block and length, hence the resulting length of the extent
2777 * covering maximum file size must fit into on-disk format containers as
2778 * well. Given that length is always by 1 unit bigger than max unit (because
2779 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2780 *
2781 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2782 */
ext4_max_size(int blkbits,int has_huge_files)2783 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2784 {
2785 loff_t res;
2786 loff_t upper_limit = MAX_LFS_FILESIZE;
2787
2788 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2789
2790 if (!has_huge_files) {
2791 upper_limit = (1LL << 32) - 1;
2792
2793 /* total blocks in file system block size */
2794 upper_limit >>= (blkbits - 9);
2795 upper_limit <<= blkbits;
2796 }
2797
2798 /*
2799 * 32-bit extent-start container, ee_block. We lower the maxbytes
2800 * by one fs block, so ee_len can cover the extent of maximum file
2801 * size
2802 */
2803 res = (1LL << 32) - 1;
2804 res <<= blkbits;
2805
2806 /* Sanity check against vm- & vfs- imposed limits */
2807 if (res > upper_limit)
2808 res = upper_limit;
2809
2810 return res;
2811 }
2812
2813 /*
2814 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2815 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2816 * We need to be 1 filesystem block less than the 2^48 sector limit.
2817 */
ext4_max_bitmap_size(int bits,int has_huge_files)2818 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2819 {
2820 loff_t res = EXT4_NDIR_BLOCKS;
2821 int meta_blocks;
2822 loff_t upper_limit;
2823 /* This is calculated to be the largest file size for a dense, block
2824 * mapped file such that the file's total number of 512-byte sectors,
2825 * including data and all indirect blocks, does not exceed (2^48 - 1).
2826 *
2827 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2828 * number of 512-byte sectors of the file.
2829 */
2830
2831 if (!has_huge_files) {
2832 /*
2833 * !has_huge_files or implies that the inode i_block field
2834 * represents total file blocks in 2^32 512-byte sectors ==
2835 * size of vfs inode i_blocks * 8
2836 */
2837 upper_limit = (1LL << 32) - 1;
2838
2839 /* total blocks in file system block size */
2840 upper_limit >>= (bits - 9);
2841
2842 } else {
2843 /*
2844 * We use 48 bit ext4_inode i_blocks
2845 * With EXT4_HUGE_FILE_FL set the i_blocks
2846 * represent total number of blocks in
2847 * file system block size
2848 */
2849 upper_limit = (1LL << 48) - 1;
2850
2851 }
2852
2853 /* indirect blocks */
2854 meta_blocks = 1;
2855 /* double indirect blocks */
2856 meta_blocks += 1 + (1LL << (bits-2));
2857 /* tripple indirect blocks */
2858 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2859
2860 upper_limit -= meta_blocks;
2861 upper_limit <<= bits;
2862
2863 res += 1LL << (bits-2);
2864 res += 1LL << (2*(bits-2));
2865 res += 1LL << (3*(bits-2));
2866 res <<= bits;
2867 if (res > upper_limit)
2868 res = upper_limit;
2869
2870 if (res > MAX_LFS_FILESIZE)
2871 res = MAX_LFS_FILESIZE;
2872
2873 return res;
2874 }
2875
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2876 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2877 ext4_fsblk_t logical_sb_block, int nr)
2878 {
2879 struct ext4_sb_info *sbi = EXT4_SB(sb);
2880 ext4_group_t bg, first_meta_bg;
2881 int has_super = 0;
2882
2883 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2884
2885 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2886 return logical_sb_block + nr + 1;
2887 bg = sbi->s_desc_per_block * nr;
2888 if (ext4_bg_has_super(sb, bg))
2889 has_super = 1;
2890
2891 /*
2892 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2893 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2894 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2895 * compensate.
2896 */
2897 if (sb->s_blocksize == 1024 && nr == 0 &&
2898 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2899 has_super++;
2900
2901 return (has_super + ext4_group_first_block_no(sb, bg));
2902 }
2903
2904 /**
2905 * ext4_get_stripe_size: Get the stripe size.
2906 * @sbi: In memory super block info
2907 *
2908 * If we have specified it via mount option, then
2909 * use the mount option value. If the value specified at mount time is
2910 * greater than the blocks per group use the super block value.
2911 * If the super block value is greater than blocks per group return 0.
2912 * Allocator needs it be less than blocks per group.
2913 *
2914 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2915 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2916 {
2917 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2918 unsigned long stripe_width =
2919 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2920 int ret;
2921
2922 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2923 ret = sbi->s_stripe;
2924 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2925 ret = stripe_width;
2926 else if (stride && stride <= sbi->s_blocks_per_group)
2927 ret = stride;
2928 else
2929 ret = 0;
2930
2931 /*
2932 * If the stripe width is 1, this makes no sense and
2933 * we set it to 0 to turn off stripe handling code.
2934 */
2935 if (ret <= 1)
2936 ret = 0;
2937
2938 return ret;
2939 }
2940
2941 /*
2942 * Check whether this filesystem can be mounted based on
2943 * the features present and the RDONLY/RDWR mount requested.
2944 * Returns 1 if this filesystem can be mounted as requested,
2945 * 0 if it cannot be.
2946 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2947 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2948 {
2949 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2950 ext4_msg(sb, KERN_ERR,
2951 "Couldn't mount because of "
2952 "unsupported optional features (%x)",
2953 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2954 ~EXT4_FEATURE_INCOMPAT_SUPP));
2955 return 0;
2956 }
2957
2958 #ifndef CONFIG_UNICODE
2959 if (ext4_has_feature_casefold(sb)) {
2960 ext4_msg(sb, KERN_ERR,
2961 "Filesystem with casefold feature cannot be "
2962 "mounted without CONFIG_UNICODE");
2963 return 0;
2964 }
2965 #endif
2966
2967 if (readonly)
2968 return 1;
2969
2970 if (ext4_has_feature_readonly(sb)) {
2971 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2972 sb->s_flags |= SB_RDONLY;
2973 return 1;
2974 }
2975
2976 /* Check that feature set is OK for a read-write mount */
2977 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2978 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2979 "unsupported optional features (%x)",
2980 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2981 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2982 return 0;
2983 }
2984 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2985 ext4_msg(sb, KERN_ERR,
2986 "Can't support bigalloc feature without "
2987 "extents feature\n");
2988 return 0;
2989 }
2990
2991 #ifndef CONFIG_QUOTA
2992 if (ext4_has_feature_quota(sb) && !readonly) {
2993 ext4_msg(sb, KERN_ERR,
2994 "Filesystem with quota feature cannot be mounted RDWR "
2995 "without CONFIG_QUOTA");
2996 return 0;
2997 }
2998 if (ext4_has_feature_project(sb) && !readonly) {
2999 ext4_msg(sb, KERN_ERR,
3000 "Filesystem with project quota feature cannot be mounted RDWR "
3001 "without CONFIG_QUOTA");
3002 return 0;
3003 }
3004 #endif /* CONFIG_QUOTA */
3005 return 1;
3006 }
3007
3008 /*
3009 * This function is called once a day if we have errors logged
3010 * on the file system
3011 */
print_daily_error_info(struct timer_list * t)3012 static void print_daily_error_info(struct timer_list *t)
3013 {
3014 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3015 struct super_block *sb = sbi->s_sb;
3016 struct ext4_super_block *es = sbi->s_es;
3017
3018 if (es->s_error_count)
3019 /* fsck newer than v1.41.13 is needed to clean this condition. */
3020 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3021 le32_to_cpu(es->s_error_count));
3022 if (es->s_first_error_time) {
3023 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3024 sb->s_id,
3025 ext4_get_tstamp(es, s_first_error_time),
3026 (int) sizeof(es->s_first_error_func),
3027 es->s_first_error_func,
3028 le32_to_cpu(es->s_first_error_line));
3029 if (es->s_first_error_ino)
3030 printk(KERN_CONT ": inode %u",
3031 le32_to_cpu(es->s_first_error_ino));
3032 if (es->s_first_error_block)
3033 printk(KERN_CONT ": block %llu", (unsigned long long)
3034 le64_to_cpu(es->s_first_error_block));
3035 printk(KERN_CONT "\n");
3036 }
3037 if (es->s_last_error_time) {
3038 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3039 sb->s_id,
3040 ext4_get_tstamp(es, s_last_error_time),
3041 (int) sizeof(es->s_last_error_func),
3042 es->s_last_error_func,
3043 le32_to_cpu(es->s_last_error_line));
3044 if (es->s_last_error_ino)
3045 printk(KERN_CONT ": inode %u",
3046 le32_to_cpu(es->s_last_error_ino));
3047 if (es->s_last_error_block)
3048 printk(KERN_CONT ": block %llu", (unsigned long long)
3049 le64_to_cpu(es->s_last_error_block));
3050 printk(KERN_CONT "\n");
3051 }
3052 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3053 }
3054
3055 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3056 static int ext4_run_li_request(struct ext4_li_request *elr)
3057 {
3058 struct ext4_group_desc *gdp = NULL;
3059 ext4_group_t group, ngroups;
3060 struct super_block *sb;
3061 unsigned long timeout = 0;
3062 int ret = 0;
3063
3064 sb = elr->lr_super;
3065 ngroups = EXT4_SB(sb)->s_groups_count;
3066
3067 for (group = elr->lr_next_group; group < ngroups; group++) {
3068 gdp = ext4_get_group_desc(sb, group, NULL);
3069 if (!gdp) {
3070 ret = 1;
3071 break;
3072 }
3073
3074 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3075 break;
3076 }
3077
3078 if (group >= ngroups)
3079 ret = 1;
3080
3081 if (!ret) {
3082 timeout = jiffies;
3083 ret = ext4_init_inode_table(sb, group,
3084 elr->lr_timeout ? 0 : 1);
3085 if (elr->lr_timeout == 0) {
3086 timeout = (jiffies - timeout) *
3087 elr->lr_sbi->s_li_wait_mult;
3088 elr->lr_timeout = timeout;
3089 }
3090 elr->lr_next_sched = jiffies + elr->lr_timeout;
3091 elr->lr_next_group = group + 1;
3092 }
3093 return ret;
3094 }
3095
3096 /*
3097 * Remove lr_request from the list_request and free the
3098 * request structure. Should be called with li_list_mtx held
3099 */
ext4_remove_li_request(struct ext4_li_request * elr)3100 static void ext4_remove_li_request(struct ext4_li_request *elr)
3101 {
3102 struct ext4_sb_info *sbi;
3103
3104 if (!elr)
3105 return;
3106
3107 sbi = elr->lr_sbi;
3108
3109 list_del(&elr->lr_request);
3110 sbi->s_li_request = NULL;
3111 kfree(elr);
3112 }
3113
ext4_unregister_li_request(struct super_block * sb)3114 static void ext4_unregister_li_request(struct super_block *sb)
3115 {
3116 mutex_lock(&ext4_li_mtx);
3117 if (!ext4_li_info) {
3118 mutex_unlock(&ext4_li_mtx);
3119 return;
3120 }
3121
3122 mutex_lock(&ext4_li_info->li_list_mtx);
3123 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3124 mutex_unlock(&ext4_li_info->li_list_mtx);
3125 mutex_unlock(&ext4_li_mtx);
3126 }
3127
3128 static struct task_struct *ext4_lazyinit_task;
3129
3130 /*
3131 * This is the function where ext4lazyinit thread lives. It walks
3132 * through the request list searching for next scheduled filesystem.
3133 * When such a fs is found, run the lazy initialization request
3134 * (ext4_rn_li_request) and keep track of the time spend in this
3135 * function. Based on that time we compute next schedule time of
3136 * the request. When walking through the list is complete, compute
3137 * next waking time and put itself into sleep.
3138 */
ext4_lazyinit_thread(void * arg)3139 static int ext4_lazyinit_thread(void *arg)
3140 {
3141 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3142 struct list_head *pos, *n;
3143 struct ext4_li_request *elr;
3144 unsigned long next_wakeup, cur;
3145
3146 BUG_ON(NULL == eli);
3147
3148 cont_thread:
3149 while (true) {
3150 next_wakeup = MAX_JIFFY_OFFSET;
3151
3152 mutex_lock(&eli->li_list_mtx);
3153 if (list_empty(&eli->li_request_list)) {
3154 mutex_unlock(&eli->li_list_mtx);
3155 goto exit_thread;
3156 }
3157 list_for_each_safe(pos, n, &eli->li_request_list) {
3158 int err = 0;
3159 int progress = 0;
3160 elr = list_entry(pos, struct ext4_li_request,
3161 lr_request);
3162
3163 if (time_before(jiffies, elr->lr_next_sched)) {
3164 if (time_before(elr->lr_next_sched, next_wakeup))
3165 next_wakeup = elr->lr_next_sched;
3166 continue;
3167 }
3168 if (down_read_trylock(&elr->lr_super->s_umount)) {
3169 if (sb_start_write_trylock(elr->lr_super)) {
3170 progress = 1;
3171 /*
3172 * We hold sb->s_umount, sb can not
3173 * be removed from the list, it is
3174 * now safe to drop li_list_mtx
3175 */
3176 mutex_unlock(&eli->li_list_mtx);
3177 err = ext4_run_li_request(elr);
3178 sb_end_write(elr->lr_super);
3179 mutex_lock(&eli->li_list_mtx);
3180 n = pos->next;
3181 }
3182 up_read((&elr->lr_super->s_umount));
3183 }
3184 /* error, remove the lazy_init job */
3185 if (err) {
3186 ext4_remove_li_request(elr);
3187 continue;
3188 }
3189 if (!progress) {
3190 elr->lr_next_sched = jiffies +
3191 (prandom_u32()
3192 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3193 }
3194 if (time_before(elr->lr_next_sched, next_wakeup))
3195 next_wakeup = elr->lr_next_sched;
3196 }
3197 mutex_unlock(&eli->li_list_mtx);
3198
3199 try_to_freeze();
3200
3201 cur = jiffies;
3202 if ((time_after_eq(cur, next_wakeup)) ||
3203 (MAX_JIFFY_OFFSET == next_wakeup)) {
3204 cond_resched();
3205 continue;
3206 }
3207
3208 schedule_timeout_interruptible(next_wakeup - cur);
3209
3210 if (kthread_should_stop()) {
3211 ext4_clear_request_list();
3212 goto exit_thread;
3213 }
3214 }
3215
3216 exit_thread:
3217 /*
3218 * It looks like the request list is empty, but we need
3219 * to check it under the li_list_mtx lock, to prevent any
3220 * additions into it, and of course we should lock ext4_li_mtx
3221 * to atomically free the list and ext4_li_info, because at
3222 * this point another ext4 filesystem could be registering
3223 * new one.
3224 */
3225 mutex_lock(&ext4_li_mtx);
3226 mutex_lock(&eli->li_list_mtx);
3227 if (!list_empty(&eli->li_request_list)) {
3228 mutex_unlock(&eli->li_list_mtx);
3229 mutex_unlock(&ext4_li_mtx);
3230 goto cont_thread;
3231 }
3232 mutex_unlock(&eli->li_list_mtx);
3233 kfree(ext4_li_info);
3234 ext4_li_info = NULL;
3235 mutex_unlock(&ext4_li_mtx);
3236
3237 return 0;
3238 }
3239
ext4_clear_request_list(void)3240 static void ext4_clear_request_list(void)
3241 {
3242 struct list_head *pos, *n;
3243 struct ext4_li_request *elr;
3244
3245 mutex_lock(&ext4_li_info->li_list_mtx);
3246 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3247 elr = list_entry(pos, struct ext4_li_request,
3248 lr_request);
3249 ext4_remove_li_request(elr);
3250 }
3251 mutex_unlock(&ext4_li_info->li_list_mtx);
3252 }
3253
ext4_run_lazyinit_thread(void)3254 static int ext4_run_lazyinit_thread(void)
3255 {
3256 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3257 ext4_li_info, "ext4lazyinit");
3258 if (IS_ERR(ext4_lazyinit_task)) {
3259 int err = PTR_ERR(ext4_lazyinit_task);
3260 ext4_clear_request_list();
3261 kfree(ext4_li_info);
3262 ext4_li_info = NULL;
3263 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3264 "initialization thread\n",
3265 err);
3266 return err;
3267 }
3268 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3269 return 0;
3270 }
3271
3272 /*
3273 * Check whether it make sense to run itable init. thread or not.
3274 * If there is at least one uninitialized inode table, return
3275 * corresponding group number, else the loop goes through all
3276 * groups and return total number of groups.
3277 */
ext4_has_uninit_itable(struct super_block * sb)3278 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3279 {
3280 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3281 struct ext4_group_desc *gdp = NULL;
3282
3283 if (!ext4_has_group_desc_csum(sb))
3284 return ngroups;
3285
3286 for (group = 0; group < ngroups; group++) {
3287 gdp = ext4_get_group_desc(sb, group, NULL);
3288 if (!gdp)
3289 continue;
3290
3291 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3292 break;
3293 }
3294
3295 return group;
3296 }
3297
ext4_li_info_new(void)3298 static int ext4_li_info_new(void)
3299 {
3300 struct ext4_lazy_init *eli = NULL;
3301
3302 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3303 if (!eli)
3304 return -ENOMEM;
3305
3306 INIT_LIST_HEAD(&eli->li_request_list);
3307 mutex_init(&eli->li_list_mtx);
3308
3309 eli->li_state |= EXT4_LAZYINIT_QUIT;
3310
3311 ext4_li_info = eli;
3312
3313 return 0;
3314 }
3315
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3316 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3317 ext4_group_t start)
3318 {
3319 struct ext4_sb_info *sbi = EXT4_SB(sb);
3320 struct ext4_li_request *elr;
3321
3322 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3323 if (!elr)
3324 return NULL;
3325
3326 elr->lr_super = sb;
3327 elr->lr_sbi = sbi;
3328 elr->lr_next_group = start;
3329
3330 /*
3331 * Randomize first schedule time of the request to
3332 * spread the inode table initialization requests
3333 * better.
3334 */
3335 elr->lr_next_sched = jiffies + (prandom_u32() %
3336 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3337 return elr;
3338 }
3339
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3340 int ext4_register_li_request(struct super_block *sb,
3341 ext4_group_t first_not_zeroed)
3342 {
3343 struct ext4_sb_info *sbi = EXT4_SB(sb);
3344 struct ext4_li_request *elr = NULL;
3345 ext4_group_t ngroups = sbi->s_groups_count;
3346 int ret = 0;
3347
3348 mutex_lock(&ext4_li_mtx);
3349 if (sbi->s_li_request != NULL) {
3350 /*
3351 * Reset timeout so it can be computed again, because
3352 * s_li_wait_mult might have changed.
3353 */
3354 sbi->s_li_request->lr_timeout = 0;
3355 goto out;
3356 }
3357
3358 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3359 !test_opt(sb, INIT_INODE_TABLE))
3360 goto out;
3361
3362 elr = ext4_li_request_new(sb, first_not_zeroed);
3363 if (!elr) {
3364 ret = -ENOMEM;
3365 goto out;
3366 }
3367
3368 if (NULL == ext4_li_info) {
3369 ret = ext4_li_info_new();
3370 if (ret)
3371 goto out;
3372 }
3373
3374 mutex_lock(&ext4_li_info->li_list_mtx);
3375 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3376 mutex_unlock(&ext4_li_info->li_list_mtx);
3377
3378 sbi->s_li_request = elr;
3379 /*
3380 * set elr to NULL here since it has been inserted to
3381 * the request_list and the removal and free of it is
3382 * handled by ext4_clear_request_list from now on.
3383 */
3384 elr = NULL;
3385
3386 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3387 ret = ext4_run_lazyinit_thread();
3388 if (ret)
3389 goto out;
3390 }
3391 out:
3392 mutex_unlock(&ext4_li_mtx);
3393 if (ret)
3394 kfree(elr);
3395 return ret;
3396 }
3397
3398 /*
3399 * We do not need to lock anything since this is called on
3400 * module unload.
3401 */
ext4_destroy_lazyinit_thread(void)3402 static void ext4_destroy_lazyinit_thread(void)
3403 {
3404 /*
3405 * If thread exited earlier
3406 * there's nothing to be done.
3407 */
3408 if (!ext4_li_info || !ext4_lazyinit_task)
3409 return;
3410
3411 kthread_stop(ext4_lazyinit_task);
3412 }
3413
set_journal_csum_feature_set(struct super_block * sb)3414 static int set_journal_csum_feature_set(struct super_block *sb)
3415 {
3416 int ret = 1;
3417 int compat, incompat;
3418 struct ext4_sb_info *sbi = EXT4_SB(sb);
3419
3420 if (ext4_has_metadata_csum(sb)) {
3421 /* journal checksum v3 */
3422 compat = 0;
3423 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3424 } else {
3425 /* journal checksum v1 */
3426 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3427 incompat = 0;
3428 }
3429
3430 jbd2_journal_clear_features(sbi->s_journal,
3431 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3432 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3433 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3434 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3435 ret = jbd2_journal_set_features(sbi->s_journal,
3436 compat, 0,
3437 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3438 incompat);
3439 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3440 ret = jbd2_journal_set_features(sbi->s_journal,
3441 compat, 0,
3442 incompat);
3443 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3444 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3445 } else {
3446 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3447 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3448 }
3449
3450 return ret;
3451 }
3452
3453 /*
3454 * Note: calculating the overhead so we can be compatible with
3455 * historical BSD practice is quite difficult in the face of
3456 * clusters/bigalloc. This is because multiple metadata blocks from
3457 * different block group can end up in the same allocation cluster.
3458 * Calculating the exact overhead in the face of clustered allocation
3459 * requires either O(all block bitmaps) in memory or O(number of block
3460 * groups**2) in time. We will still calculate the superblock for
3461 * older file systems --- and if we come across with a bigalloc file
3462 * system with zero in s_overhead_clusters the estimate will be close to
3463 * correct especially for very large cluster sizes --- but for newer
3464 * file systems, it's better to calculate this figure once at mkfs
3465 * time, and store it in the superblock. If the superblock value is
3466 * present (even for non-bigalloc file systems), we will use it.
3467 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3468 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3469 char *buf)
3470 {
3471 struct ext4_sb_info *sbi = EXT4_SB(sb);
3472 struct ext4_group_desc *gdp;
3473 ext4_fsblk_t first_block, last_block, b;
3474 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3475 int s, j, count = 0;
3476
3477 if (!ext4_has_feature_bigalloc(sb))
3478 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3479 sbi->s_itb_per_group + 2);
3480
3481 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3482 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3483 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3484 for (i = 0; i < ngroups; i++) {
3485 gdp = ext4_get_group_desc(sb, i, NULL);
3486 b = ext4_block_bitmap(sb, gdp);
3487 if (b >= first_block && b <= last_block) {
3488 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3489 count++;
3490 }
3491 b = ext4_inode_bitmap(sb, gdp);
3492 if (b >= first_block && b <= last_block) {
3493 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3494 count++;
3495 }
3496 b = ext4_inode_table(sb, gdp);
3497 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3498 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3499 int c = EXT4_B2C(sbi, b - first_block);
3500 ext4_set_bit(c, buf);
3501 count++;
3502 }
3503 if (i != grp)
3504 continue;
3505 s = 0;
3506 if (ext4_bg_has_super(sb, grp)) {
3507 ext4_set_bit(s++, buf);
3508 count++;
3509 }
3510 j = ext4_bg_num_gdb(sb, grp);
3511 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3512 ext4_error(sb, "Invalid number of block group "
3513 "descriptor blocks: %d", j);
3514 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3515 }
3516 count += j;
3517 for (; j > 0; j--)
3518 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3519 }
3520 if (!count)
3521 return 0;
3522 return EXT4_CLUSTERS_PER_GROUP(sb) -
3523 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3524 }
3525
3526 /*
3527 * Compute the overhead and stash it in sbi->s_overhead
3528 */
ext4_calculate_overhead(struct super_block * sb)3529 int ext4_calculate_overhead(struct super_block *sb)
3530 {
3531 struct ext4_sb_info *sbi = EXT4_SB(sb);
3532 struct ext4_super_block *es = sbi->s_es;
3533 struct inode *j_inode;
3534 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3535 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3536 ext4_fsblk_t overhead = 0;
3537 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3538
3539 if (!buf)
3540 return -ENOMEM;
3541
3542 /*
3543 * Compute the overhead (FS structures). This is constant
3544 * for a given filesystem unless the number of block groups
3545 * changes so we cache the previous value until it does.
3546 */
3547
3548 /*
3549 * All of the blocks before first_data_block are overhead
3550 */
3551 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3552
3553 /*
3554 * Add the overhead found in each block group
3555 */
3556 for (i = 0; i < ngroups; i++) {
3557 int blks;
3558
3559 blks = count_overhead(sb, i, buf);
3560 overhead += blks;
3561 if (blks)
3562 memset(buf, 0, PAGE_SIZE);
3563 cond_resched();
3564 }
3565
3566 /*
3567 * Add the internal journal blocks whether the journal has been
3568 * loaded or not
3569 */
3570 if (sbi->s_journal && !sbi->journal_bdev)
3571 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3572 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3573 j_inode = ext4_get_journal_inode(sb, j_inum);
3574 if (j_inode) {
3575 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3576 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3577 iput(j_inode);
3578 } else {
3579 ext4_msg(sb, KERN_ERR, "can't get journal size");
3580 }
3581 }
3582 sbi->s_overhead = overhead;
3583 smp_wmb();
3584 free_page((unsigned long) buf);
3585 return 0;
3586 }
3587
ext4_set_resv_clusters(struct super_block * sb)3588 static void ext4_set_resv_clusters(struct super_block *sb)
3589 {
3590 ext4_fsblk_t resv_clusters;
3591 struct ext4_sb_info *sbi = EXT4_SB(sb);
3592
3593 /*
3594 * There's no need to reserve anything when we aren't using extents.
3595 * The space estimates are exact, there are no unwritten extents,
3596 * hole punching doesn't need new metadata... This is needed especially
3597 * to keep ext2/3 backward compatibility.
3598 */
3599 if (!ext4_has_feature_extents(sb))
3600 return;
3601 /*
3602 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3603 * This should cover the situations where we can not afford to run
3604 * out of space like for example punch hole, or converting
3605 * unwritten extents in delalloc path. In most cases such
3606 * allocation would require 1, or 2 blocks, higher numbers are
3607 * very rare.
3608 */
3609 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3610 sbi->s_cluster_bits);
3611
3612 do_div(resv_clusters, 50);
3613 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3614
3615 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3616 }
3617
ext4_fill_super(struct super_block * sb,void * data,int silent)3618 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3619 {
3620 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3621 char *orig_data = kstrdup(data, GFP_KERNEL);
3622 struct buffer_head *bh;
3623 struct ext4_super_block *es = NULL;
3624 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3625 ext4_fsblk_t block;
3626 ext4_fsblk_t sb_block = get_sb_block(&data);
3627 ext4_fsblk_t logical_sb_block;
3628 unsigned long offset = 0;
3629 unsigned long journal_devnum = 0;
3630 unsigned long def_mount_opts;
3631 struct inode *root;
3632 const char *descr;
3633 int ret = -ENOMEM;
3634 int blocksize, clustersize;
3635 unsigned int db_count;
3636 unsigned int i;
3637 int needs_recovery, has_huge_files, has_bigalloc;
3638 __u64 blocks_count;
3639 int err = 0;
3640 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3641 ext4_group_t first_not_zeroed;
3642
3643 if ((data && !orig_data) || !sbi)
3644 goto out_free_base;
3645
3646 sbi->s_daxdev = dax_dev;
3647 sbi->s_blockgroup_lock =
3648 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3649 if (!sbi->s_blockgroup_lock)
3650 goto out_free_base;
3651
3652 sb->s_fs_info = sbi;
3653 sbi->s_sb = sb;
3654 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3655 sbi->s_sb_block = sb_block;
3656 if (sb->s_bdev->bd_part)
3657 sbi->s_sectors_written_start =
3658 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3659
3660 /* Cleanup superblock name */
3661 strreplace(sb->s_id, '/', '!');
3662
3663 /* -EINVAL is default */
3664 ret = -EINVAL;
3665 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3666 if (!blocksize) {
3667 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3668 goto out_fail;
3669 }
3670
3671 /*
3672 * The ext4 superblock will not be buffer aligned for other than 1kB
3673 * block sizes. We need to calculate the offset from buffer start.
3674 */
3675 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3676 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3677 offset = do_div(logical_sb_block, blocksize);
3678 } else {
3679 logical_sb_block = sb_block;
3680 }
3681
3682 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3683 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3684 goto out_fail;
3685 }
3686 /*
3687 * Note: s_es must be initialized as soon as possible because
3688 * some ext4 macro-instructions depend on its value
3689 */
3690 es = (struct ext4_super_block *) (bh->b_data + offset);
3691 sbi->s_es = es;
3692 sb->s_magic = le16_to_cpu(es->s_magic);
3693 if (sb->s_magic != EXT4_SUPER_MAGIC)
3694 goto cantfind_ext4;
3695 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3696
3697 /* Warn if metadata_csum and gdt_csum are both set. */
3698 if (ext4_has_feature_metadata_csum(sb) &&
3699 ext4_has_feature_gdt_csum(sb))
3700 ext4_warning(sb, "metadata_csum and uninit_bg are "
3701 "redundant flags; please run fsck.");
3702
3703 /* Check for a known checksum algorithm */
3704 if (!ext4_verify_csum_type(sb, es)) {
3705 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3706 "unknown checksum algorithm.");
3707 silent = 1;
3708 goto cantfind_ext4;
3709 }
3710
3711 /* Load the checksum driver */
3712 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3713 if (IS_ERR(sbi->s_chksum_driver)) {
3714 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3715 ret = PTR_ERR(sbi->s_chksum_driver);
3716 sbi->s_chksum_driver = NULL;
3717 goto failed_mount;
3718 }
3719
3720 /* Check superblock checksum */
3721 if (!ext4_superblock_csum_verify(sb, es)) {
3722 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3723 "invalid superblock checksum. Run e2fsck?");
3724 silent = 1;
3725 ret = -EFSBADCRC;
3726 goto cantfind_ext4;
3727 }
3728
3729 /* Precompute checksum seed for all metadata */
3730 if (ext4_has_feature_csum_seed(sb))
3731 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3732 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3733 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3734 sizeof(es->s_uuid));
3735
3736 /* Set defaults before we parse the mount options */
3737 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3738 set_opt(sb, INIT_INODE_TABLE);
3739 if (def_mount_opts & EXT4_DEFM_DEBUG)
3740 set_opt(sb, DEBUG);
3741 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3742 set_opt(sb, GRPID);
3743 if (def_mount_opts & EXT4_DEFM_UID16)
3744 set_opt(sb, NO_UID32);
3745 /* xattr user namespace & acls are now defaulted on */
3746 set_opt(sb, XATTR_USER);
3747 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3748 set_opt(sb, POSIX_ACL);
3749 #endif
3750 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3751 if (ext4_has_metadata_csum(sb))
3752 set_opt(sb, JOURNAL_CHECKSUM);
3753
3754 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3755 set_opt(sb, JOURNAL_DATA);
3756 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3757 set_opt(sb, ORDERED_DATA);
3758 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3759 set_opt(sb, WRITEBACK_DATA);
3760
3761 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3762 set_opt(sb, ERRORS_PANIC);
3763 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3764 set_opt(sb, ERRORS_CONT);
3765 else
3766 set_opt(sb, ERRORS_RO);
3767 /* block_validity enabled by default; disable with noblock_validity */
3768 set_opt(sb, BLOCK_VALIDITY);
3769 if (def_mount_opts & EXT4_DEFM_DISCARD)
3770 set_opt(sb, DISCARD);
3771
3772 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3773 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3774 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3775 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3776 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3777
3778 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3779 set_opt(sb, BARRIER);
3780
3781 /*
3782 * enable delayed allocation by default
3783 * Use -o nodelalloc to turn it off
3784 */
3785 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3786 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3787 set_opt(sb, DELALLOC);
3788
3789 /*
3790 * set default s_li_wait_mult for lazyinit, for the case there is
3791 * no mount option specified.
3792 */
3793 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3794
3795 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3796 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3797 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3798 } else {
3799 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3800 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3801 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3802 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3803 sbi->s_first_ino);
3804 goto failed_mount;
3805 }
3806 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3807 (!is_power_of_2(sbi->s_inode_size)) ||
3808 (sbi->s_inode_size > blocksize)) {
3809 ext4_msg(sb, KERN_ERR,
3810 "unsupported inode size: %d",
3811 sbi->s_inode_size);
3812 goto failed_mount;
3813 }
3814 /*
3815 * i_atime_extra is the last extra field available for
3816 * [acm]times in struct ext4_inode. Checking for that
3817 * field should suffice to ensure we have extra space
3818 * for all three.
3819 */
3820 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3821 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3822 sb->s_time_gran = 1;
3823 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3824 } else {
3825 sb->s_time_gran = NSEC_PER_SEC;
3826 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3827 }
3828 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3829 }
3830 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3831 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3832 EXT4_GOOD_OLD_INODE_SIZE;
3833 if (ext4_has_feature_extra_isize(sb)) {
3834 unsigned v, max = (sbi->s_inode_size -
3835 EXT4_GOOD_OLD_INODE_SIZE);
3836
3837 v = le16_to_cpu(es->s_want_extra_isize);
3838 if (v > max) {
3839 ext4_msg(sb, KERN_ERR,
3840 "bad s_want_extra_isize: %d", v);
3841 goto failed_mount;
3842 }
3843 if (sbi->s_want_extra_isize < v)
3844 sbi->s_want_extra_isize = v;
3845
3846 v = le16_to_cpu(es->s_min_extra_isize);
3847 if (v > max) {
3848 ext4_msg(sb, KERN_ERR,
3849 "bad s_min_extra_isize: %d", v);
3850 goto failed_mount;
3851 }
3852 if (sbi->s_want_extra_isize < v)
3853 sbi->s_want_extra_isize = v;
3854 }
3855 }
3856
3857 if (sbi->s_es->s_mount_opts[0]) {
3858 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3859 sizeof(sbi->s_es->s_mount_opts),
3860 GFP_KERNEL);
3861 if (!s_mount_opts)
3862 goto failed_mount;
3863 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3864 &journal_ioprio, 0)) {
3865 ext4_msg(sb, KERN_WARNING,
3866 "failed to parse options in superblock: %s",
3867 s_mount_opts);
3868 }
3869 kfree(s_mount_opts);
3870 }
3871 sbi->s_def_mount_opt = sbi->s_mount_opt;
3872 if (!parse_options((char *) data, sb, &journal_devnum,
3873 &journal_ioprio, 0))
3874 goto failed_mount;
3875
3876 #ifdef CONFIG_UNICODE
3877 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3878 const struct ext4_sb_encodings *encoding_info;
3879 struct unicode_map *encoding;
3880 __u16 encoding_flags;
3881
3882 if (ext4_has_feature_encrypt(sb)) {
3883 ext4_msg(sb, KERN_ERR,
3884 "Can't mount with encoding and encryption");
3885 goto failed_mount;
3886 }
3887
3888 if (ext4_sb_read_encoding(es, &encoding_info,
3889 &encoding_flags)) {
3890 ext4_msg(sb, KERN_ERR,
3891 "Encoding requested by superblock is unknown");
3892 goto failed_mount;
3893 }
3894
3895 encoding = utf8_load(encoding_info->version);
3896 if (IS_ERR(encoding)) {
3897 ext4_msg(sb, KERN_ERR,
3898 "can't mount with superblock charset: %s-%s "
3899 "not supported by the kernel. flags: 0x%x.",
3900 encoding_info->name, encoding_info->version,
3901 encoding_flags);
3902 goto failed_mount;
3903 }
3904 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3905 "%s-%s with flags 0x%hx", encoding_info->name,
3906 encoding_info->version?:"\b", encoding_flags);
3907
3908 sbi->s_encoding = encoding;
3909 sbi->s_encoding_flags = encoding_flags;
3910 }
3911 #endif
3912
3913 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3914 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3915 "with data=journal disables delayed "
3916 "allocation and O_DIRECT support!\n");
3917 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3918 ext4_msg(sb, KERN_ERR, "can't mount with "
3919 "both data=journal and delalloc");
3920 goto failed_mount;
3921 }
3922 if (test_opt(sb, DIOREAD_NOLOCK)) {
3923 ext4_msg(sb, KERN_ERR, "can't mount with "
3924 "both data=journal and dioread_nolock");
3925 goto failed_mount;
3926 }
3927 if (test_opt(sb, DAX)) {
3928 ext4_msg(sb, KERN_ERR, "can't mount with "
3929 "both data=journal and dax");
3930 goto failed_mount;
3931 }
3932 if (ext4_has_feature_encrypt(sb)) {
3933 ext4_msg(sb, KERN_WARNING,
3934 "encrypted files will use data=ordered "
3935 "instead of data journaling mode");
3936 }
3937 if (test_opt(sb, DELALLOC))
3938 clear_opt(sb, DELALLOC);
3939 } else {
3940 sb->s_iflags |= SB_I_CGROUPWB;
3941 }
3942
3943 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3944 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3945
3946 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3947 (ext4_has_compat_features(sb) ||
3948 ext4_has_ro_compat_features(sb) ||
3949 ext4_has_incompat_features(sb)))
3950 ext4_msg(sb, KERN_WARNING,
3951 "feature flags set on rev 0 fs, "
3952 "running e2fsck is recommended");
3953
3954 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3955 set_opt2(sb, HURD_COMPAT);
3956 if (ext4_has_feature_64bit(sb)) {
3957 ext4_msg(sb, KERN_ERR,
3958 "The Hurd can't support 64-bit file systems");
3959 goto failed_mount;
3960 }
3961
3962 /*
3963 * ea_inode feature uses l_i_version field which is not
3964 * available in HURD_COMPAT mode.
3965 */
3966 if (ext4_has_feature_ea_inode(sb)) {
3967 ext4_msg(sb, KERN_ERR,
3968 "ea_inode feature is not supported for Hurd");
3969 goto failed_mount;
3970 }
3971 }
3972
3973 if (IS_EXT2_SB(sb)) {
3974 if (ext2_feature_set_ok(sb))
3975 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3976 "using the ext4 subsystem");
3977 else {
3978 /*
3979 * If we're probing be silent, if this looks like
3980 * it's actually an ext[34] filesystem.
3981 */
3982 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3983 goto failed_mount;
3984 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3985 "to feature incompatibilities");
3986 goto failed_mount;
3987 }
3988 }
3989
3990 if (IS_EXT3_SB(sb)) {
3991 if (ext3_feature_set_ok(sb))
3992 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3993 "using the ext4 subsystem");
3994 else {
3995 /*
3996 * If we're probing be silent, if this looks like
3997 * it's actually an ext4 filesystem.
3998 */
3999 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4000 goto failed_mount;
4001 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4002 "to feature incompatibilities");
4003 goto failed_mount;
4004 }
4005 }
4006
4007 /*
4008 * Check feature flags regardless of the revision level, since we
4009 * previously didn't change the revision level when setting the flags,
4010 * so there is a chance incompat flags are set on a rev 0 filesystem.
4011 */
4012 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4013 goto failed_mount;
4014
4015 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4016 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
4017 blocksize > EXT4_MAX_BLOCK_SIZE) {
4018 ext4_msg(sb, KERN_ERR,
4019 "Unsupported filesystem blocksize %d (%d log_block_size)",
4020 blocksize, le32_to_cpu(es->s_log_block_size));
4021 goto failed_mount;
4022 }
4023 if (le32_to_cpu(es->s_log_block_size) >
4024 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4025 ext4_msg(sb, KERN_ERR,
4026 "Invalid log block size: %u",
4027 le32_to_cpu(es->s_log_block_size));
4028 goto failed_mount;
4029 }
4030 if (le32_to_cpu(es->s_log_cluster_size) >
4031 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4032 ext4_msg(sb, KERN_ERR,
4033 "Invalid log cluster size: %u",
4034 le32_to_cpu(es->s_log_cluster_size));
4035 goto failed_mount;
4036 }
4037
4038 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4039 ext4_msg(sb, KERN_ERR,
4040 "Number of reserved GDT blocks insanely large: %d",
4041 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4042 goto failed_mount;
4043 }
4044
4045 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4046 if (ext4_has_feature_inline_data(sb)) {
4047 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4048 " that may contain inline data");
4049 goto failed_mount;
4050 }
4051 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4052 ext4_msg(sb, KERN_ERR,
4053 "DAX unsupported by block device.");
4054 goto failed_mount;
4055 }
4056 }
4057
4058 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4059 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4060 es->s_encryption_level);
4061 goto failed_mount;
4062 }
4063
4064 if (sb->s_blocksize != blocksize) {
4065 /* Validate the filesystem blocksize */
4066 if (!sb_set_blocksize(sb, blocksize)) {
4067 ext4_msg(sb, KERN_ERR, "bad block size %d",
4068 blocksize);
4069 goto failed_mount;
4070 }
4071
4072 brelse(bh);
4073 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4074 offset = do_div(logical_sb_block, blocksize);
4075 bh = sb_bread_unmovable(sb, logical_sb_block);
4076 if (!bh) {
4077 ext4_msg(sb, KERN_ERR,
4078 "Can't read superblock on 2nd try");
4079 goto failed_mount;
4080 }
4081 es = (struct ext4_super_block *)(bh->b_data + offset);
4082 sbi->s_es = es;
4083 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4084 ext4_msg(sb, KERN_ERR,
4085 "Magic mismatch, very weird!");
4086 goto failed_mount;
4087 }
4088 }
4089
4090 has_huge_files = ext4_has_feature_huge_file(sb);
4091 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4092 has_huge_files);
4093 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4094
4095 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4096 if (ext4_has_feature_64bit(sb)) {
4097 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4098 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4099 !is_power_of_2(sbi->s_desc_size)) {
4100 ext4_msg(sb, KERN_ERR,
4101 "unsupported descriptor size %lu",
4102 sbi->s_desc_size);
4103 goto failed_mount;
4104 }
4105 } else
4106 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4107
4108 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4109 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4110
4111 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4112 if (sbi->s_inodes_per_block == 0)
4113 goto cantfind_ext4;
4114 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4115 sbi->s_inodes_per_group > blocksize * 8) {
4116 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4117 sbi->s_blocks_per_group);
4118 goto failed_mount;
4119 }
4120 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4121 sbi->s_inodes_per_block;
4122 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4123 sbi->s_sbh = bh;
4124 sbi->s_mount_state = le16_to_cpu(es->s_state);
4125 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4126 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4127
4128 for (i = 0; i < 4; i++)
4129 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4130 sbi->s_def_hash_version = es->s_def_hash_version;
4131 if (ext4_has_feature_dir_index(sb)) {
4132 i = le32_to_cpu(es->s_flags);
4133 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4134 sbi->s_hash_unsigned = 3;
4135 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4136 #ifdef __CHAR_UNSIGNED__
4137 if (!sb_rdonly(sb))
4138 es->s_flags |=
4139 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4140 sbi->s_hash_unsigned = 3;
4141 #else
4142 if (!sb_rdonly(sb))
4143 es->s_flags |=
4144 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4145 #endif
4146 }
4147 }
4148
4149 /* Handle clustersize */
4150 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4151 has_bigalloc = ext4_has_feature_bigalloc(sb);
4152 if (has_bigalloc) {
4153 if (clustersize < blocksize) {
4154 ext4_msg(sb, KERN_ERR,
4155 "cluster size (%d) smaller than "
4156 "block size (%d)", clustersize, blocksize);
4157 goto failed_mount;
4158 }
4159 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4160 le32_to_cpu(es->s_log_block_size);
4161 sbi->s_clusters_per_group =
4162 le32_to_cpu(es->s_clusters_per_group);
4163 if (sbi->s_clusters_per_group > blocksize * 8) {
4164 ext4_msg(sb, KERN_ERR,
4165 "#clusters per group too big: %lu",
4166 sbi->s_clusters_per_group);
4167 goto failed_mount;
4168 }
4169 if (sbi->s_blocks_per_group !=
4170 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4171 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4172 "clusters per group (%lu) inconsistent",
4173 sbi->s_blocks_per_group,
4174 sbi->s_clusters_per_group);
4175 goto failed_mount;
4176 }
4177 } else {
4178 if (clustersize != blocksize) {
4179 ext4_msg(sb, KERN_ERR,
4180 "fragment/cluster size (%d) != "
4181 "block size (%d)", clustersize, blocksize);
4182 goto failed_mount;
4183 }
4184 if (sbi->s_blocks_per_group > blocksize * 8) {
4185 ext4_msg(sb, KERN_ERR,
4186 "#blocks per group too big: %lu",
4187 sbi->s_blocks_per_group);
4188 goto failed_mount;
4189 }
4190 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4191 sbi->s_cluster_bits = 0;
4192 }
4193 sbi->s_cluster_ratio = clustersize / blocksize;
4194
4195 /* Do we have standard group size of clustersize * 8 blocks ? */
4196 if (sbi->s_blocks_per_group == clustersize << 3)
4197 set_opt2(sb, STD_GROUP_SIZE);
4198
4199 /*
4200 * Test whether we have more sectors than will fit in sector_t,
4201 * and whether the max offset is addressable by the page cache.
4202 */
4203 err = generic_check_addressable(sb->s_blocksize_bits,
4204 ext4_blocks_count(es));
4205 if (err) {
4206 ext4_msg(sb, KERN_ERR, "filesystem"
4207 " too large to mount safely on this system");
4208 goto failed_mount;
4209 }
4210
4211 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4212 goto cantfind_ext4;
4213
4214 /* check blocks count against device size */
4215 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4216 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4217 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4218 "exceeds size of device (%llu blocks)",
4219 ext4_blocks_count(es), blocks_count);
4220 goto failed_mount;
4221 }
4222
4223 /*
4224 * It makes no sense for the first data block to be beyond the end
4225 * of the filesystem.
4226 */
4227 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4228 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4229 "block %u is beyond end of filesystem (%llu)",
4230 le32_to_cpu(es->s_first_data_block),
4231 ext4_blocks_count(es));
4232 goto failed_mount;
4233 }
4234 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4235 (sbi->s_cluster_ratio == 1)) {
4236 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4237 "block is 0 with a 1k block and cluster size");
4238 goto failed_mount;
4239 }
4240
4241 blocks_count = (ext4_blocks_count(es) -
4242 le32_to_cpu(es->s_first_data_block) +
4243 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4244 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4245 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4246 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4247 "(block count %llu, first data block %u, "
4248 "blocks per group %lu)", sbi->s_groups_count,
4249 ext4_blocks_count(es),
4250 le32_to_cpu(es->s_first_data_block),
4251 EXT4_BLOCKS_PER_GROUP(sb));
4252 goto failed_mount;
4253 }
4254 sbi->s_groups_count = blocks_count;
4255 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4256 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4257 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4258 le32_to_cpu(es->s_inodes_count)) {
4259 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4260 le32_to_cpu(es->s_inodes_count),
4261 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4262 ret = -EINVAL;
4263 goto failed_mount;
4264 }
4265 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4266 EXT4_DESC_PER_BLOCK(sb);
4267 if (ext4_has_feature_meta_bg(sb)) {
4268 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4269 ext4_msg(sb, KERN_WARNING,
4270 "first meta block group too large: %u "
4271 "(group descriptor block count %u)",
4272 le32_to_cpu(es->s_first_meta_bg), db_count);
4273 goto failed_mount;
4274 }
4275 }
4276 sbi->s_group_desc = kvmalloc_array(db_count,
4277 sizeof(struct buffer_head *),
4278 GFP_KERNEL);
4279 if (sbi->s_group_desc == NULL) {
4280 ext4_msg(sb, KERN_ERR, "not enough memory");
4281 ret = -ENOMEM;
4282 goto failed_mount;
4283 }
4284
4285 bgl_lock_init(sbi->s_blockgroup_lock);
4286
4287 /* Pre-read the descriptors into the buffer cache */
4288 for (i = 0; i < db_count; i++) {
4289 block = descriptor_loc(sb, logical_sb_block, i);
4290 sb_breadahead(sb, block);
4291 }
4292
4293 for (i = 0; i < db_count; i++) {
4294 block = descriptor_loc(sb, logical_sb_block, i);
4295 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4296 if (!sbi->s_group_desc[i]) {
4297 ext4_msg(sb, KERN_ERR,
4298 "can't read group descriptor %d", i);
4299 db_count = i;
4300 goto failed_mount2;
4301 }
4302 }
4303 sbi->s_gdb_count = db_count;
4304 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4305 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4306 ret = -EFSCORRUPTED;
4307 goto failed_mount2;
4308 }
4309
4310 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4311
4312 /* Register extent status tree shrinker */
4313 if (ext4_es_register_shrinker(sbi))
4314 goto failed_mount3;
4315
4316 sbi->s_stripe = ext4_get_stripe_size(sbi);
4317 sbi->s_extent_max_zeroout_kb = 32;
4318
4319 /*
4320 * set up enough so that it can read an inode
4321 */
4322 sb->s_op = &ext4_sops;
4323 sb->s_export_op = &ext4_export_ops;
4324 sb->s_xattr = ext4_xattr_handlers;
4325 #ifdef CONFIG_FS_ENCRYPTION
4326 sb->s_cop = &ext4_cryptops;
4327 #endif
4328 #ifdef CONFIG_FS_VERITY
4329 sb->s_vop = &ext4_verityops;
4330 #endif
4331 #ifdef CONFIG_QUOTA
4332 sb->dq_op = &ext4_quota_operations;
4333 if (ext4_has_feature_quota(sb))
4334 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4335 else
4336 sb->s_qcop = &ext4_qctl_operations;
4337 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4338 #endif
4339 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4340
4341 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4342 mutex_init(&sbi->s_orphan_lock);
4343
4344 sb->s_root = NULL;
4345
4346 needs_recovery = (es->s_last_orphan != 0 ||
4347 ext4_has_feature_journal_needs_recovery(sb));
4348
4349 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4350 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4351 goto failed_mount3a;
4352
4353 /*
4354 * The first inode we look at is the journal inode. Don't try
4355 * root first: it may be modified in the journal!
4356 */
4357 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4358 err = ext4_load_journal(sb, es, journal_devnum);
4359 if (err)
4360 goto failed_mount3a;
4361 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4362 ext4_has_feature_journal_needs_recovery(sb)) {
4363 ext4_msg(sb, KERN_ERR, "required journal recovery "
4364 "suppressed and not mounted read-only");
4365 goto failed_mount_wq;
4366 } else {
4367 /* Nojournal mode, all journal mount options are illegal */
4368 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4369 ext4_msg(sb, KERN_ERR, "can't mount with "
4370 "journal_checksum, fs mounted w/o journal");
4371 goto failed_mount_wq;
4372 }
4373 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4374 ext4_msg(sb, KERN_ERR, "can't mount with "
4375 "journal_async_commit, fs mounted w/o journal");
4376 goto failed_mount_wq;
4377 }
4378 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4379 ext4_msg(sb, KERN_ERR, "can't mount with "
4380 "commit=%lu, fs mounted w/o journal",
4381 sbi->s_commit_interval / HZ);
4382 goto failed_mount_wq;
4383 }
4384 if (EXT4_MOUNT_DATA_FLAGS &
4385 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4386 ext4_msg(sb, KERN_ERR, "can't mount with "
4387 "data=, fs mounted w/o journal");
4388 goto failed_mount_wq;
4389 }
4390 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4391 clear_opt(sb, JOURNAL_CHECKSUM);
4392 clear_opt(sb, DATA_FLAGS);
4393 sbi->s_journal = NULL;
4394 needs_recovery = 0;
4395 goto no_journal;
4396 }
4397
4398 if (ext4_has_feature_64bit(sb) &&
4399 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4400 JBD2_FEATURE_INCOMPAT_64BIT)) {
4401 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4402 goto failed_mount_wq;
4403 }
4404
4405 if (!set_journal_csum_feature_set(sb)) {
4406 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4407 "feature set");
4408 goto failed_mount_wq;
4409 }
4410
4411 /* We have now updated the journal if required, so we can
4412 * validate the data journaling mode. */
4413 switch (test_opt(sb, DATA_FLAGS)) {
4414 case 0:
4415 /* No mode set, assume a default based on the journal
4416 * capabilities: ORDERED_DATA if the journal can
4417 * cope, else JOURNAL_DATA
4418 */
4419 if (jbd2_journal_check_available_features
4420 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4421 set_opt(sb, ORDERED_DATA);
4422 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4423 } else {
4424 set_opt(sb, JOURNAL_DATA);
4425 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4426 }
4427 break;
4428
4429 case EXT4_MOUNT_ORDERED_DATA:
4430 case EXT4_MOUNT_WRITEBACK_DATA:
4431 if (!jbd2_journal_check_available_features
4432 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4433 ext4_msg(sb, KERN_ERR, "Journal does not support "
4434 "requested data journaling mode");
4435 goto failed_mount_wq;
4436 }
4437 default:
4438 break;
4439 }
4440
4441 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4442 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4443 ext4_msg(sb, KERN_ERR, "can't mount with "
4444 "journal_async_commit in data=ordered mode");
4445 goto failed_mount_wq;
4446 }
4447
4448 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4449
4450 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4451
4452 no_journal:
4453 if (!test_opt(sb, NO_MBCACHE)) {
4454 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4455 if (!sbi->s_ea_block_cache) {
4456 ext4_msg(sb, KERN_ERR,
4457 "Failed to create ea_block_cache");
4458 goto failed_mount_wq;
4459 }
4460
4461 if (ext4_has_feature_ea_inode(sb)) {
4462 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4463 if (!sbi->s_ea_inode_cache) {
4464 ext4_msg(sb, KERN_ERR,
4465 "Failed to create ea_inode_cache");
4466 goto failed_mount_wq;
4467 }
4468 }
4469 }
4470
4471 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4472 (blocksize != PAGE_SIZE)) {
4473 ext4_msg(sb, KERN_ERR,
4474 "Unsupported blocksize for fs encryption");
4475 goto failed_mount_wq;
4476 }
4477
4478 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4479 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4480 goto failed_mount_wq;
4481 }
4482
4483 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4484 !ext4_has_feature_encrypt(sb)) {
4485 ext4_set_feature_encrypt(sb);
4486 ext4_commit_super(sb, 1);
4487 }
4488
4489 /*
4490 * Get the # of file system overhead blocks from the
4491 * superblock if present.
4492 */
4493 if (es->s_overhead_clusters)
4494 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4495 else {
4496 err = ext4_calculate_overhead(sb);
4497 if (err)
4498 goto failed_mount_wq;
4499 }
4500
4501 /*
4502 * The maximum number of concurrent works can be high and
4503 * concurrency isn't really necessary. Limit it to 1.
4504 */
4505 EXT4_SB(sb)->rsv_conversion_wq =
4506 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4507 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4508 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4509 ret = -ENOMEM;
4510 goto failed_mount4;
4511 }
4512
4513 /*
4514 * The jbd2_journal_load will have done any necessary log recovery,
4515 * so we can safely mount the rest of the filesystem now.
4516 */
4517
4518 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4519 if (IS_ERR(root)) {
4520 ext4_msg(sb, KERN_ERR, "get root inode failed");
4521 ret = PTR_ERR(root);
4522 root = NULL;
4523 goto failed_mount4;
4524 }
4525 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4526 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4527 iput(root);
4528 goto failed_mount4;
4529 }
4530
4531 #ifdef CONFIG_UNICODE
4532 if (sbi->s_encoding)
4533 sb->s_d_op = &ext4_dentry_ops;
4534 #endif
4535
4536 sb->s_root = d_make_root(root);
4537 if (!sb->s_root) {
4538 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4539 ret = -ENOMEM;
4540 goto failed_mount4;
4541 }
4542
4543 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4544 if (ret == -EROFS) {
4545 sb->s_flags |= SB_RDONLY;
4546 ret = 0;
4547 } else if (ret)
4548 goto failed_mount4a;
4549
4550 ext4_set_resv_clusters(sb);
4551
4552 err = ext4_setup_system_zone(sb);
4553 if (err) {
4554 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4555 "zone (%d)", err);
4556 goto failed_mount4a;
4557 }
4558
4559 ext4_ext_init(sb);
4560 err = ext4_mb_init(sb);
4561 if (err) {
4562 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4563 err);
4564 goto failed_mount5;
4565 }
4566
4567 block = ext4_count_free_clusters(sb);
4568 ext4_free_blocks_count_set(sbi->s_es,
4569 EXT4_C2B(sbi, block));
4570 ext4_superblock_csum_set(sb);
4571 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4572 GFP_KERNEL);
4573 if (!err) {
4574 unsigned long freei = ext4_count_free_inodes(sb);
4575 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4576 ext4_superblock_csum_set(sb);
4577 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4578 GFP_KERNEL);
4579 }
4580 if (!err)
4581 err = percpu_counter_init(&sbi->s_dirs_counter,
4582 ext4_count_dirs(sb), GFP_KERNEL);
4583 if (!err)
4584 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4585 GFP_KERNEL);
4586 if (!err)
4587 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4588
4589 if (err) {
4590 ext4_msg(sb, KERN_ERR, "insufficient memory");
4591 goto failed_mount6;
4592 }
4593
4594 if (ext4_has_feature_flex_bg(sb))
4595 if (!ext4_fill_flex_info(sb)) {
4596 ext4_msg(sb, KERN_ERR,
4597 "unable to initialize "
4598 "flex_bg meta info!");
4599 goto failed_mount6;
4600 }
4601
4602 err = ext4_register_li_request(sb, first_not_zeroed);
4603 if (err)
4604 goto failed_mount6;
4605
4606 err = ext4_register_sysfs(sb);
4607 if (err)
4608 goto failed_mount7;
4609
4610 #ifdef CONFIG_QUOTA
4611 /* Enable quota usage during mount. */
4612 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4613 err = ext4_enable_quotas(sb);
4614 if (err)
4615 goto failed_mount8;
4616 }
4617 #endif /* CONFIG_QUOTA */
4618
4619 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4620 ext4_orphan_cleanup(sb, es);
4621 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4622 if (needs_recovery) {
4623 ext4_msg(sb, KERN_INFO, "recovery complete");
4624 ext4_mark_recovery_complete(sb, es);
4625 }
4626 if (EXT4_SB(sb)->s_journal) {
4627 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4628 descr = " journalled data mode";
4629 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4630 descr = " ordered data mode";
4631 else
4632 descr = " writeback data mode";
4633 } else
4634 descr = "out journal";
4635
4636 if (test_opt(sb, DISCARD)) {
4637 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4638 if (!blk_queue_discard(q))
4639 ext4_msg(sb, KERN_WARNING,
4640 "mounting with \"discard\" option, but "
4641 "the device does not support discard");
4642 }
4643
4644 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4645 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4646 "Opts: %.*s%s%s", descr,
4647 (int) sizeof(sbi->s_es->s_mount_opts),
4648 sbi->s_es->s_mount_opts,
4649 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4650
4651 if (es->s_error_count)
4652 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4653
4654 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4655 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4656 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4657 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4658
4659 kfree(orig_data);
4660 return 0;
4661
4662 cantfind_ext4:
4663 if (!silent)
4664 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4665 goto failed_mount;
4666
4667 #ifdef CONFIG_QUOTA
4668 failed_mount8:
4669 ext4_unregister_sysfs(sb);
4670 #endif
4671 failed_mount7:
4672 ext4_unregister_li_request(sb);
4673 failed_mount6:
4674 ext4_mb_release(sb);
4675 if (sbi->s_flex_groups)
4676 kvfree(sbi->s_flex_groups);
4677 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4678 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4679 percpu_counter_destroy(&sbi->s_dirs_counter);
4680 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4681 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4682 failed_mount5:
4683 ext4_ext_release(sb);
4684 ext4_release_system_zone(sb);
4685 failed_mount4a:
4686 dput(sb->s_root);
4687 sb->s_root = NULL;
4688 failed_mount4:
4689 ext4_msg(sb, KERN_ERR, "mount failed");
4690 if (EXT4_SB(sb)->rsv_conversion_wq)
4691 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4692 failed_mount_wq:
4693 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4694 sbi->s_ea_inode_cache = NULL;
4695
4696 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4697 sbi->s_ea_block_cache = NULL;
4698
4699 if (sbi->s_journal) {
4700 jbd2_journal_destroy(sbi->s_journal);
4701 sbi->s_journal = NULL;
4702 }
4703 failed_mount3a:
4704 ext4_es_unregister_shrinker(sbi);
4705 failed_mount3:
4706 del_timer_sync(&sbi->s_err_report);
4707 if (sbi->s_mmp_tsk)
4708 kthread_stop(sbi->s_mmp_tsk);
4709 failed_mount2:
4710 for (i = 0; i < db_count; i++)
4711 brelse(sbi->s_group_desc[i]);
4712 kvfree(sbi->s_group_desc);
4713 failed_mount:
4714 if (sbi->s_chksum_driver)
4715 crypto_free_shash(sbi->s_chksum_driver);
4716
4717 #ifdef CONFIG_UNICODE
4718 utf8_unload(sbi->s_encoding);
4719 #endif
4720
4721 #ifdef CONFIG_QUOTA
4722 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4723 kfree(get_qf_name(sb, sbi, i));
4724 #endif
4725 ext4_blkdev_remove(sbi);
4726 brelse(bh);
4727 out_fail:
4728 sb->s_fs_info = NULL;
4729 kfree(sbi->s_blockgroup_lock);
4730 out_free_base:
4731 kfree(sbi);
4732 kfree(orig_data);
4733 fs_put_dax(dax_dev);
4734 return err ? err : ret;
4735 }
4736
4737 /*
4738 * Setup any per-fs journal parameters now. We'll do this both on
4739 * initial mount, once the journal has been initialised but before we've
4740 * done any recovery; and again on any subsequent remount.
4741 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4742 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4743 {
4744 struct ext4_sb_info *sbi = EXT4_SB(sb);
4745
4746 journal->j_commit_interval = sbi->s_commit_interval;
4747 journal->j_min_batch_time = sbi->s_min_batch_time;
4748 journal->j_max_batch_time = sbi->s_max_batch_time;
4749
4750 write_lock(&journal->j_state_lock);
4751 if (test_opt(sb, BARRIER))
4752 journal->j_flags |= JBD2_BARRIER;
4753 else
4754 journal->j_flags &= ~JBD2_BARRIER;
4755 if (test_opt(sb, DATA_ERR_ABORT))
4756 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4757 else
4758 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4759 write_unlock(&journal->j_state_lock);
4760 }
4761
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)4762 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4763 unsigned int journal_inum)
4764 {
4765 struct inode *journal_inode;
4766
4767 /*
4768 * Test for the existence of a valid inode on disk. Bad things
4769 * happen if we iget() an unused inode, as the subsequent iput()
4770 * will try to delete it.
4771 */
4772 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4773 if (IS_ERR(journal_inode)) {
4774 ext4_msg(sb, KERN_ERR, "no journal found");
4775 return NULL;
4776 }
4777 if (!journal_inode->i_nlink) {
4778 make_bad_inode(journal_inode);
4779 iput(journal_inode);
4780 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4781 return NULL;
4782 }
4783
4784 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4785 journal_inode, journal_inode->i_size);
4786 if (!S_ISREG(journal_inode->i_mode)) {
4787 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4788 iput(journal_inode);
4789 return NULL;
4790 }
4791 return journal_inode;
4792 }
4793
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4794 static journal_t *ext4_get_journal(struct super_block *sb,
4795 unsigned int journal_inum)
4796 {
4797 struct inode *journal_inode;
4798 journal_t *journal;
4799
4800 BUG_ON(!ext4_has_feature_journal(sb));
4801
4802 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4803 if (!journal_inode)
4804 return NULL;
4805
4806 journal = jbd2_journal_init_inode(journal_inode);
4807 if (!journal) {
4808 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4809 iput(journal_inode);
4810 return NULL;
4811 }
4812 journal->j_private = sb;
4813 ext4_init_journal_params(sb, journal);
4814 return journal;
4815 }
4816
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4817 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4818 dev_t j_dev)
4819 {
4820 struct buffer_head *bh;
4821 journal_t *journal;
4822 ext4_fsblk_t start;
4823 ext4_fsblk_t len;
4824 int hblock, blocksize;
4825 ext4_fsblk_t sb_block;
4826 unsigned long offset;
4827 struct ext4_super_block *es;
4828 struct block_device *bdev;
4829
4830 BUG_ON(!ext4_has_feature_journal(sb));
4831
4832 bdev = ext4_blkdev_get(j_dev, sb);
4833 if (bdev == NULL)
4834 return NULL;
4835
4836 blocksize = sb->s_blocksize;
4837 hblock = bdev_logical_block_size(bdev);
4838 if (blocksize < hblock) {
4839 ext4_msg(sb, KERN_ERR,
4840 "blocksize too small for journal device");
4841 goto out_bdev;
4842 }
4843
4844 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4845 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4846 set_blocksize(bdev, blocksize);
4847 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4848 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4849 "external journal");
4850 goto out_bdev;
4851 }
4852
4853 es = (struct ext4_super_block *) (bh->b_data + offset);
4854 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4855 !(le32_to_cpu(es->s_feature_incompat) &
4856 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4857 ext4_msg(sb, KERN_ERR, "external journal has "
4858 "bad superblock");
4859 brelse(bh);
4860 goto out_bdev;
4861 }
4862
4863 if ((le32_to_cpu(es->s_feature_ro_compat) &
4864 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4865 es->s_checksum != ext4_superblock_csum(sb, es)) {
4866 ext4_msg(sb, KERN_ERR, "external journal has "
4867 "corrupt superblock");
4868 brelse(bh);
4869 goto out_bdev;
4870 }
4871
4872 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4873 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4874 brelse(bh);
4875 goto out_bdev;
4876 }
4877
4878 len = ext4_blocks_count(es);
4879 start = sb_block + 1;
4880 brelse(bh); /* we're done with the superblock */
4881
4882 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4883 start, len, blocksize);
4884 if (!journal) {
4885 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4886 goto out_bdev;
4887 }
4888 journal->j_private = sb;
4889 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4890 wait_on_buffer(journal->j_sb_buffer);
4891 if (!buffer_uptodate(journal->j_sb_buffer)) {
4892 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4893 goto out_journal;
4894 }
4895 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4896 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4897 "user (unsupported) - %d",
4898 be32_to_cpu(journal->j_superblock->s_nr_users));
4899 goto out_journal;
4900 }
4901 EXT4_SB(sb)->journal_bdev = bdev;
4902 ext4_init_journal_params(sb, journal);
4903 return journal;
4904
4905 out_journal:
4906 jbd2_journal_destroy(journal);
4907 out_bdev:
4908 ext4_blkdev_put(bdev);
4909 return NULL;
4910 }
4911
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4912 static int ext4_load_journal(struct super_block *sb,
4913 struct ext4_super_block *es,
4914 unsigned long journal_devnum)
4915 {
4916 journal_t *journal;
4917 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4918 dev_t journal_dev;
4919 int err = 0;
4920 int really_read_only;
4921
4922 BUG_ON(!ext4_has_feature_journal(sb));
4923
4924 if (journal_devnum &&
4925 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4926 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4927 "numbers have changed");
4928 journal_dev = new_decode_dev(journal_devnum);
4929 } else
4930 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4931
4932 really_read_only = bdev_read_only(sb->s_bdev);
4933
4934 /*
4935 * Are we loading a blank journal or performing recovery after a
4936 * crash? For recovery, we need to check in advance whether we
4937 * can get read-write access to the device.
4938 */
4939 if (ext4_has_feature_journal_needs_recovery(sb)) {
4940 if (sb_rdonly(sb)) {
4941 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4942 "required on readonly filesystem");
4943 if (really_read_only) {
4944 ext4_msg(sb, KERN_ERR, "write access "
4945 "unavailable, cannot proceed "
4946 "(try mounting with noload)");
4947 return -EROFS;
4948 }
4949 ext4_msg(sb, KERN_INFO, "write access will "
4950 "be enabled during recovery");
4951 }
4952 }
4953
4954 if (journal_inum && journal_dev) {
4955 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4956 "and inode journals!");
4957 return -EINVAL;
4958 }
4959
4960 if (journal_inum) {
4961 if (!(journal = ext4_get_journal(sb, journal_inum)))
4962 return -EINVAL;
4963 } else {
4964 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4965 return -EINVAL;
4966 }
4967
4968 if (!(journal->j_flags & JBD2_BARRIER))
4969 ext4_msg(sb, KERN_INFO, "barriers disabled");
4970
4971 if (!ext4_has_feature_journal_needs_recovery(sb))
4972 err = jbd2_journal_wipe(journal, !really_read_only);
4973 if (!err) {
4974 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4975 if (save)
4976 memcpy(save, ((char *) es) +
4977 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4978 err = jbd2_journal_load(journal);
4979 if (save)
4980 memcpy(((char *) es) + EXT4_S_ERR_START,
4981 save, EXT4_S_ERR_LEN);
4982 kfree(save);
4983 }
4984
4985 if (err) {
4986 ext4_msg(sb, KERN_ERR, "error loading journal");
4987 jbd2_journal_destroy(journal);
4988 return err;
4989 }
4990
4991 EXT4_SB(sb)->s_journal = journal;
4992 ext4_clear_journal_err(sb, es);
4993
4994 if (!really_read_only && journal_devnum &&
4995 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4996 es->s_journal_dev = cpu_to_le32(journal_devnum);
4997
4998 /* Make sure we flush the recovery flag to disk. */
4999 ext4_commit_super(sb, 1);
5000 }
5001
5002 return 0;
5003 }
5004
ext4_commit_super(struct super_block * sb,int sync)5005 static int ext4_commit_super(struct super_block *sb, int sync)
5006 {
5007 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5008 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5009 int error = 0;
5010
5011 if (!sbh || block_device_ejected(sb))
5012 return error;
5013
5014 /*
5015 * The superblock bh should be mapped, but it might not be if the
5016 * device was hot-removed. Not much we can do but fail the I/O.
5017 */
5018 if (!buffer_mapped(sbh))
5019 return error;
5020
5021 /*
5022 * If the file system is mounted read-only, don't update the
5023 * superblock write time. This avoids updating the superblock
5024 * write time when we are mounting the root file system
5025 * read/only but we need to replay the journal; at that point,
5026 * for people who are east of GMT and who make their clock
5027 * tick in localtime for Windows bug-for-bug compatibility,
5028 * the clock is set in the future, and this will cause e2fsck
5029 * to complain and force a full file system check.
5030 */
5031 if (!(sb->s_flags & SB_RDONLY))
5032 ext4_update_tstamp(es, s_wtime);
5033 if (sb->s_bdev->bd_part)
5034 es->s_kbytes_written =
5035 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5036 ((part_stat_read(sb->s_bdev->bd_part,
5037 sectors[STAT_WRITE]) -
5038 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5039 else
5040 es->s_kbytes_written =
5041 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5042 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5043 ext4_free_blocks_count_set(es,
5044 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5045 &EXT4_SB(sb)->s_freeclusters_counter)));
5046 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5047 es->s_free_inodes_count =
5048 cpu_to_le32(percpu_counter_sum_positive(
5049 &EXT4_SB(sb)->s_freeinodes_counter));
5050 BUFFER_TRACE(sbh, "marking dirty");
5051 ext4_superblock_csum_set(sb);
5052 if (sync)
5053 lock_buffer(sbh);
5054 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5055 /*
5056 * Oh, dear. A previous attempt to write the
5057 * superblock failed. This could happen because the
5058 * USB device was yanked out. Or it could happen to
5059 * be a transient write error and maybe the block will
5060 * be remapped. Nothing we can do but to retry the
5061 * write and hope for the best.
5062 */
5063 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5064 "superblock detected");
5065 clear_buffer_write_io_error(sbh);
5066 set_buffer_uptodate(sbh);
5067 }
5068 mark_buffer_dirty(sbh);
5069 if (sync) {
5070 unlock_buffer(sbh);
5071 error = __sync_dirty_buffer(sbh,
5072 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5073 if (buffer_write_io_error(sbh)) {
5074 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5075 "superblock");
5076 clear_buffer_write_io_error(sbh);
5077 set_buffer_uptodate(sbh);
5078 }
5079 }
5080 return error;
5081 }
5082
5083 /*
5084 * Have we just finished recovery? If so, and if we are mounting (or
5085 * remounting) the filesystem readonly, then we will end up with a
5086 * consistent fs on disk. Record that fact.
5087 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5088 static void ext4_mark_recovery_complete(struct super_block *sb,
5089 struct ext4_super_block *es)
5090 {
5091 journal_t *journal = EXT4_SB(sb)->s_journal;
5092
5093 if (!ext4_has_feature_journal(sb)) {
5094 BUG_ON(journal != NULL);
5095 return;
5096 }
5097 jbd2_journal_lock_updates(journal);
5098 if (jbd2_journal_flush(journal) < 0)
5099 goto out;
5100
5101 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5102 ext4_clear_feature_journal_needs_recovery(sb);
5103 ext4_commit_super(sb, 1);
5104 }
5105
5106 out:
5107 jbd2_journal_unlock_updates(journal);
5108 }
5109
5110 /*
5111 * If we are mounting (or read-write remounting) a filesystem whose journal
5112 * has recorded an error from a previous lifetime, move that error to the
5113 * main filesystem now.
5114 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5115 static void ext4_clear_journal_err(struct super_block *sb,
5116 struct ext4_super_block *es)
5117 {
5118 journal_t *journal;
5119 int j_errno;
5120 const char *errstr;
5121
5122 BUG_ON(!ext4_has_feature_journal(sb));
5123
5124 journal = EXT4_SB(sb)->s_journal;
5125
5126 /*
5127 * Now check for any error status which may have been recorded in the
5128 * journal by a prior ext4_error() or ext4_abort()
5129 */
5130
5131 j_errno = jbd2_journal_errno(journal);
5132 if (j_errno) {
5133 char nbuf[16];
5134
5135 errstr = ext4_decode_error(sb, j_errno, nbuf);
5136 ext4_warning(sb, "Filesystem error recorded "
5137 "from previous mount: %s", errstr);
5138 ext4_warning(sb, "Marking fs in need of filesystem check.");
5139
5140 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5141 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5142 ext4_commit_super(sb, 1);
5143
5144 jbd2_journal_clear_err(journal);
5145 jbd2_journal_update_sb_errno(journal);
5146 }
5147 }
5148
5149 /*
5150 * Force the running and committing transactions to commit,
5151 * and wait on the commit.
5152 */
ext4_force_commit(struct super_block * sb)5153 int ext4_force_commit(struct super_block *sb)
5154 {
5155 journal_t *journal;
5156
5157 if (sb_rdonly(sb))
5158 return 0;
5159
5160 journal = EXT4_SB(sb)->s_journal;
5161 return ext4_journal_force_commit(journal);
5162 }
5163
ext4_sync_fs(struct super_block * sb,int wait)5164 static int ext4_sync_fs(struct super_block *sb, int wait)
5165 {
5166 int ret = 0;
5167 tid_t target;
5168 bool needs_barrier = false;
5169 struct ext4_sb_info *sbi = EXT4_SB(sb);
5170
5171 if (unlikely(ext4_forced_shutdown(sbi)))
5172 return 0;
5173
5174 trace_ext4_sync_fs(sb, wait);
5175 flush_workqueue(sbi->rsv_conversion_wq);
5176 /*
5177 * Writeback quota in non-journalled quota case - journalled quota has
5178 * no dirty dquots
5179 */
5180 dquot_writeback_dquots(sb, -1);
5181 /*
5182 * Data writeback is possible w/o journal transaction, so barrier must
5183 * being sent at the end of the function. But we can skip it if
5184 * transaction_commit will do it for us.
5185 */
5186 if (sbi->s_journal) {
5187 target = jbd2_get_latest_transaction(sbi->s_journal);
5188 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5189 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5190 needs_barrier = true;
5191
5192 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5193 if (wait)
5194 ret = jbd2_log_wait_commit(sbi->s_journal,
5195 target);
5196 }
5197 } else if (wait && test_opt(sb, BARRIER))
5198 needs_barrier = true;
5199 if (needs_barrier) {
5200 int err;
5201 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5202 if (!ret)
5203 ret = err;
5204 }
5205
5206 return ret;
5207 }
5208
5209 /*
5210 * LVM calls this function before a (read-only) snapshot is created. This
5211 * gives us a chance to flush the journal completely and mark the fs clean.
5212 *
5213 * Note that only this function cannot bring a filesystem to be in a clean
5214 * state independently. It relies on upper layer to stop all data & metadata
5215 * modifications.
5216 */
ext4_freeze(struct super_block * sb)5217 static int ext4_freeze(struct super_block *sb)
5218 {
5219 int error = 0;
5220 journal_t *journal;
5221
5222 if (sb_rdonly(sb))
5223 return 0;
5224
5225 journal = EXT4_SB(sb)->s_journal;
5226
5227 if (journal) {
5228 /* Now we set up the journal barrier. */
5229 jbd2_journal_lock_updates(journal);
5230
5231 /*
5232 * Don't clear the needs_recovery flag if we failed to
5233 * flush the journal.
5234 */
5235 error = jbd2_journal_flush(journal);
5236 if (error < 0)
5237 goto out;
5238
5239 /* Journal blocked and flushed, clear needs_recovery flag. */
5240 ext4_clear_feature_journal_needs_recovery(sb);
5241 }
5242
5243 error = ext4_commit_super(sb, 1);
5244 out:
5245 if (journal)
5246 /* we rely on upper layer to stop further updates */
5247 jbd2_journal_unlock_updates(journal);
5248 return error;
5249 }
5250
5251 /*
5252 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5253 * flag here, even though the filesystem is not technically dirty yet.
5254 */
ext4_unfreeze(struct super_block * sb)5255 static int ext4_unfreeze(struct super_block *sb)
5256 {
5257 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5258 return 0;
5259
5260 if (EXT4_SB(sb)->s_journal) {
5261 /* Reset the needs_recovery flag before the fs is unlocked. */
5262 ext4_set_feature_journal_needs_recovery(sb);
5263 }
5264
5265 ext4_commit_super(sb, 1);
5266 return 0;
5267 }
5268
5269 /*
5270 * Structure to save mount options for ext4_remount's benefit
5271 */
5272 struct ext4_mount_options {
5273 unsigned long s_mount_opt;
5274 unsigned long s_mount_opt2;
5275 kuid_t s_resuid;
5276 kgid_t s_resgid;
5277 unsigned long s_commit_interval;
5278 u32 s_min_batch_time, s_max_batch_time;
5279 #ifdef CONFIG_QUOTA
5280 int s_jquota_fmt;
5281 char *s_qf_names[EXT4_MAXQUOTAS];
5282 #endif
5283 };
5284
ext4_remount(struct super_block * sb,int * flags,char * data)5285 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5286 {
5287 struct ext4_super_block *es;
5288 struct ext4_sb_info *sbi = EXT4_SB(sb);
5289 unsigned long old_sb_flags;
5290 struct ext4_mount_options old_opts;
5291 int enable_quota = 0;
5292 ext4_group_t g;
5293 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5294 int err = 0;
5295 #ifdef CONFIG_QUOTA
5296 int i, j;
5297 char *to_free[EXT4_MAXQUOTAS];
5298 #endif
5299 char *orig_data = kstrdup(data, GFP_KERNEL);
5300
5301 if (data && !orig_data)
5302 return -ENOMEM;
5303
5304 /* Store the original options */
5305 old_sb_flags = sb->s_flags;
5306 old_opts.s_mount_opt = sbi->s_mount_opt;
5307 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5308 old_opts.s_resuid = sbi->s_resuid;
5309 old_opts.s_resgid = sbi->s_resgid;
5310 old_opts.s_commit_interval = sbi->s_commit_interval;
5311 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5312 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5313 #ifdef CONFIG_QUOTA
5314 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5315 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5316 if (sbi->s_qf_names[i]) {
5317 char *qf_name = get_qf_name(sb, sbi, i);
5318
5319 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5320 if (!old_opts.s_qf_names[i]) {
5321 for (j = 0; j < i; j++)
5322 kfree(old_opts.s_qf_names[j]);
5323 kfree(orig_data);
5324 return -ENOMEM;
5325 }
5326 } else
5327 old_opts.s_qf_names[i] = NULL;
5328 #endif
5329 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5330 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5331
5332 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5333 err = -EINVAL;
5334 goto restore_opts;
5335 }
5336
5337 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5338 test_opt(sb, JOURNAL_CHECKSUM)) {
5339 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5340 "during remount not supported; ignoring");
5341 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5342 }
5343
5344 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5345 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5346 ext4_msg(sb, KERN_ERR, "can't mount with "
5347 "both data=journal and delalloc");
5348 err = -EINVAL;
5349 goto restore_opts;
5350 }
5351 if (test_opt(sb, DIOREAD_NOLOCK)) {
5352 ext4_msg(sb, KERN_ERR, "can't mount with "
5353 "both data=journal and dioread_nolock");
5354 err = -EINVAL;
5355 goto restore_opts;
5356 }
5357 if (test_opt(sb, DAX)) {
5358 ext4_msg(sb, KERN_ERR, "can't mount with "
5359 "both data=journal and dax");
5360 err = -EINVAL;
5361 goto restore_opts;
5362 }
5363 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5364 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5365 ext4_msg(sb, KERN_ERR, "can't mount with "
5366 "journal_async_commit in data=ordered mode");
5367 err = -EINVAL;
5368 goto restore_opts;
5369 }
5370 }
5371
5372 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5373 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5374 err = -EINVAL;
5375 goto restore_opts;
5376 }
5377
5378 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5379 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5380 "dax flag with busy inodes while remounting");
5381 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5382 }
5383
5384 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5385 ext4_abort(sb, "Abort forced by user");
5386
5387 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5388 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5389
5390 es = sbi->s_es;
5391
5392 if (sbi->s_journal) {
5393 ext4_init_journal_params(sb, sbi->s_journal);
5394 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5395 }
5396
5397 if (*flags & SB_LAZYTIME)
5398 sb->s_flags |= SB_LAZYTIME;
5399
5400 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5401 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5402 err = -EROFS;
5403 goto restore_opts;
5404 }
5405
5406 if (*flags & SB_RDONLY) {
5407 err = sync_filesystem(sb);
5408 if (err < 0)
5409 goto restore_opts;
5410 err = dquot_suspend(sb, -1);
5411 if (err < 0)
5412 goto restore_opts;
5413
5414 /*
5415 * First of all, the unconditional stuff we have to do
5416 * to disable replay of the journal when we next remount
5417 */
5418 sb->s_flags |= SB_RDONLY;
5419
5420 /*
5421 * OK, test if we are remounting a valid rw partition
5422 * readonly, and if so set the rdonly flag and then
5423 * mark the partition as valid again.
5424 */
5425 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5426 (sbi->s_mount_state & EXT4_VALID_FS))
5427 es->s_state = cpu_to_le16(sbi->s_mount_state);
5428
5429 if (sbi->s_journal)
5430 ext4_mark_recovery_complete(sb, es);
5431 if (sbi->s_mmp_tsk)
5432 kthread_stop(sbi->s_mmp_tsk);
5433 } else {
5434 /* Make sure we can mount this feature set readwrite */
5435 if (ext4_has_feature_readonly(sb) ||
5436 !ext4_feature_set_ok(sb, 0)) {
5437 err = -EROFS;
5438 goto restore_opts;
5439 }
5440 /*
5441 * Make sure the group descriptor checksums
5442 * are sane. If they aren't, refuse to remount r/w.
5443 */
5444 for (g = 0; g < sbi->s_groups_count; g++) {
5445 struct ext4_group_desc *gdp =
5446 ext4_get_group_desc(sb, g, NULL);
5447
5448 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5449 ext4_msg(sb, KERN_ERR,
5450 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5451 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5452 le16_to_cpu(gdp->bg_checksum));
5453 err = -EFSBADCRC;
5454 goto restore_opts;
5455 }
5456 }
5457
5458 /*
5459 * If we have an unprocessed orphan list hanging
5460 * around from a previously readonly bdev mount,
5461 * require a full umount/remount for now.
5462 */
5463 if (es->s_last_orphan) {
5464 ext4_msg(sb, KERN_WARNING, "Couldn't "
5465 "remount RDWR because of unprocessed "
5466 "orphan inode list. Please "
5467 "umount/remount instead");
5468 err = -EINVAL;
5469 goto restore_opts;
5470 }
5471
5472 /*
5473 * Mounting a RDONLY partition read-write, so reread
5474 * and store the current valid flag. (It may have
5475 * been changed by e2fsck since we originally mounted
5476 * the partition.)
5477 */
5478 if (sbi->s_journal)
5479 ext4_clear_journal_err(sb, es);
5480 sbi->s_mount_state = le16_to_cpu(es->s_state);
5481
5482 err = ext4_setup_super(sb, es, 0);
5483 if (err)
5484 goto restore_opts;
5485
5486 sb->s_flags &= ~SB_RDONLY;
5487 if (ext4_has_feature_mmp(sb))
5488 if (ext4_multi_mount_protect(sb,
5489 le64_to_cpu(es->s_mmp_block))) {
5490 err = -EROFS;
5491 goto restore_opts;
5492 }
5493 enable_quota = 1;
5494 }
5495 }
5496
5497 /*
5498 * Reinitialize lazy itable initialization thread based on
5499 * current settings
5500 */
5501 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5502 ext4_unregister_li_request(sb);
5503 else {
5504 ext4_group_t first_not_zeroed;
5505 first_not_zeroed = ext4_has_uninit_itable(sb);
5506 ext4_register_li_request(sb, first_not_zeroed);
5507 }
5508
5509 ext4_setup_system_zone(sb);
5510 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5511 err = ext4_commit_super(sb, 1);
5512 if (err)
5513 goto restore_opts;
5514 }
5515
5516 #ifdef CONFIG_QUOTA
5517 /* Release old quota file names */
5518 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5519 kfree(old_opts.s_qf_names[i]);
5520 if (enable_quota) {
5521 if (sb_any_quota_suspended(sb))
5522 dquot_resume(sb, -1);
5523 else if (ext4_has_feature_quota(sb)) {
5524 err = ext4_enable_quotas(sb);
5525 if (err)
5526 goto restore_opts;
5527 }
5528 }
5529 #endif
5530
5531 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5532 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5533 kfree(orig_data);
5534 return 0;
5535
5536 restore_opts:
5537 sb->s_flags = old_sb_flags;
5538 sbi->s_mount_opt = old_opts.s_mount_opt;
5539 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5540 sbi->s_resuid = old_opts.s_resuid;
5541 sbi->s_resgid = old_opts.s_resgid;
5542 sbi->s_commit_interval = old_opts.s_commit_interval;
5543 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5544 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5545 #ifdef CONFIG_QUOTA
5546 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5548 to_free[i] = get_qf_name(sb, sbi, i);
5549 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5550 }
5551 synchronize_rcu();
5552 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5553 kfree(to_free[i]);
5554 #endif
5555 kfree(orig_data);
5556 return err;
5557 }
5558
5559 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)5560 static int ext4_statfs_project(struct super_block *sb,
5561 kprojid_t projid, struct kstatfs *buf)
5562 {
5563 struct kqid qid;
5564 struct dquot *dquot;
5565 u64 limit;
5566 u64 curblock;
5567
5568 qid = make_kqid_projid(projid);
5569 dquot = dqget(sb, qid);
5570 if (IS_ERR(dquot))
5571 return PTR_ERR(dquot);
5572 spin_lock(&dquot->dq_dqb_lock);
5573
5574 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5575 dquot->dq_dqb.dqb_bsoftlimit :
5576 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5577 if (limit && buf->f_blocks > limit) {
5578 curblock = (dquot->dq_dqb.dqb_curspace +
5579 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5580 buf->f_blocks = limit;
5581 buf->f_bfree = buf->f_bavail =
5582 (buf->f_blocks > curblock) ?
5583 (buf->f_blocks - curblock) : 0;
5584 }
5585
5586 limit = dquot->dq_dqb.dqb_isoftlimit ?
5587 dquot->dq_dqb.dqb_isoftlimit :
5588 dquot->dq_dqb.dqb_ihardlimit;
5589 if (limit && buf->f_files > limit) {
5590 buf->f_files = limit;
5591 buf->f_ffree =
5592 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5593 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5594 }
5595
5596 spin_unlock(&dquot->dq_dqb_lock);
5597 dqput(dquot);
5598 return 0;
5599 }
5600 #endif
5601
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5602 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5603 {
5604 struct super_block *sb = dentry->d_sb;
5605 struct ext4_sb_info *sbi = EXT4_SB(sb);
5606 struct ext4_super_block *es = sbi->s_es;
5607 ext4_fsblk_t overhead = 0, resv_blocks;
5608 u64 fsid;
5609 s64 bfree;
5610 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5611
5612 if (!test_opt(sb, MINIX_DF))
5613 overhead = sbi->s_overhead;
5614
5615 buf->f_type = EXT4_SUPER_MAGIC;
5616 buf->f_bsize = sb->s_blocksize;
5617 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5618 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5619 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5620 /* prevent underflow in case that few free space is available */
5621 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5622 buf->f_bavail = buf->f_bfree -
5623 (ext4_r_blocks_count(es) + resv_blocks);
5624 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5625 buf->f_bavail = 0;
5626 buf->f_files = le32_to_cpu(es->s_inodes_count);
5627 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5628 buf->f_namelen = EXT4_NAME_LEN;
5629 fsid = le64_to_cpup((void *)es->s_uuid) ^
5630 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5631 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5632 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5633
5634 #ifdef CONFIG_QUOTA
5635 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5636 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5637 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5638 #endif
5639 return 0;
5640 }
5641
5642
5643 #ifdef CONFIG_QUOTA
5644
5645 /*
5646 * Helper functions so that transaction is started before we acquire dqio_sem
5647 * to keep correct lock ordering of transaction > dqio_sem
5648 */
dquot_to_inode(struct dquot * dquot)5649 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5650 {
5651 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5652 }
5653
ext4_write_dquot(struct dquot * dquot)5654 static int ext4_write_dquot(struct dquot *dquot)
5655 {
5656 int ret, err;
5657 handle_t *handle;
5658 struct inode *inode;
5659
5660 inode = dquot_to_inode(dquot);
5661 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5662 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5663 if (IS_ERR(handle))
5664 return PTR_ERR(handle);
5665 ret = dquot_commit(dquot);
5666 err = ext4_journal_stop(handle);
5667 if (!ret)
5668 ret = err;
5669 return ret;
5670 }
5671
ext4_acquire_dquot(struct dquot * dquot)5672 static int ext4_acquire_dquot(struct dquot *dquot)
5673 {
5674 int ret, err;
5675 handle_t *handle;
5676
5677 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5678 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5679 if (IS_ERR(handle))
5680 return PTR_ERR(handle);
5681 ret = dquot_acquire(dquot);
5682 err = ext4_journal_stop(handle);
5683 if (!ret)
5684 ret = err;
5685 return ret;
5686 }
5687
ext4_release_dquot(struct dquot * dquot)5688 static int ext4_release_dquot(struct dquot *dquot)
5689 {
5690 int ret, err;
5691 handle_t *handle;
5692
5693 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5694 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5695 if (IS_ERR(handle)) {
5696 /* Release dquot anyway to avoid endless cycle in dqput() */
5697 dquot_release(dquot);
5698 return PTR_ERR(handle);
5699 }
5700 ret = dquot_release(dquot);
5701 err = ext4_journal_stop(handle);
5702 if (!ret)
5703 ret = err;
5704 return ret;
5705 }
5706
ext4_mark_dquot_dirty(struct dquot * dquot)5707 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5708 {
5709 struct super_block *sb = dquot->dq_sb;
5710 struct ext4_sb_info *sbi = EXT4_SB(sb);
5711
5712 /* Are we journaling quotas? */
5713 if (ext4_has_feature_quota(sb) ||
5714 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5715 dquot_mark_dquot_dirty(dquot);
5716 return ext4_write_dquot(dquot);
5717 } else {
5718 return dquot_mark_dquot_dirty(dquot);
5719 }
5720 }
5721
ext4_write_info(struct super_block * sb,int type)5722 static int ext4_write_info(struct super_block *sb, int type)
5723 {
5724 int ret, err;
5725 handle_t *handle;
5726
5727 /* Data block + inode block */
5728 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5729 if (IS_ERR(handle))
5730 return PTR_ERR(handle);
5731 ret = dquot_commit_info(sb, type);
5732 err = ext4_journal_stop(handle);
5733 if (!ret)
5734 ret = err;
5735 return ret;
5736 }
5737
5738 /*
5739 * Turn on quotas during mount time - we need to find
5740 * the quota file and such...
5741 */
ext4_quota_on_mount(struct super_block * sb,int type)5742 static int ext4_quota_on_mount(struct super_block *sb, int type)
5743 {
5744 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5745 EXT4_SB(sb)->s_jquota_fmt, type);
5746 }
5747
lockdep_set_quota_inode(struct inode * inode,int subclass)5748 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5749 {
5750 struct ext4_inode_info *ei = EXT4_I(inode);
5751
5752 /* The first argument of lockdep_set_subclass has to be
5753 * *exactly* the same as the argument to init_rwsem() --- in
5754 * this case, in init_once() --- or lockdep gets unhappy
5755 * because the name of the lock is set using the
5756 * stringification of the argument to init_rwsem().
5757 */
5758 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5759 lockdep_set_subclass(&ei->i_data_sem, subclass);
5760 }
5761
5762 /*
5763 * Standard function to be called on quota_on
5764 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)5765 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5766 const struct path *path)
5767 {
5768 int err;
5769
5770 if (!test_opt(sb, QUOTA))
5771 return -EINVAL;
5772
5773 /* Quotafile not on the same filesystem? */
5774 if (path->dentry->d_sb != sb)
5775 return -EXDEV;
5776 /* Journaling quota? */
5777 if (EXT4_SB(sb)->s_qf_names[type]) {
5778 /* Quotafile not in fs root? */
5779 if (path->dentry->d_parent != sb->s_root)
5780 ext4_msg(sb, KERN_WARNING,
5781 "Quota file not on filesystem root. "
5782 "Journaled quota will not work");
5783 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5784 } else {
5785 /*
5786 * Clear the flag just in case mount options changed since
5787 * last time.
5788 */
5789 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5790 }
5791
5792 /*
5793 * When we journal data on quota file, we have to flush journal to see
5794 * all updates to the file when we bypass pagecache...
5795 */
5796 if (EXT4_SB(sb)->s_journal &&
5797 ext4_should_journal_data(d_inode(path->dentry))) {
5798 /*
5799 * We don't need to lock updates but journal_flush() could
5800 * otherwise be livelocked...
5801 */
5802 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5803 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5804 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5805 if (err)
5806 return err;
5807 }
5808
5809 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5810 err = dquot_quota_on(sb, type, format_id, path);
5811 if (err) {
5812 lockdep_set_quota_inode(path->dentry->d_inode,
5813 I_DATA_SEM_NORMAL);
5814 } else {
5815 struct inode *inode = d_inode(path->dentry);
5816 handle_t *handle;
5817
5818 /*
5819 * Set inode flags to prevent userspace from messing with quota
5820 * files. If this fails, we return success anyway since quotas
5821 * are already enabled and this is not a hard failure.
5822 */
5823 inode_lock(inode);
5824 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5825 if (IS_ERR(handle))
5826 goto unlock_inode;
5827 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5828 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5829 S_NOATIME | S_IMMUTABLE);
5830 ext4_mark_inode_dirty(handle, inode);
5831 ext4_journal_stop(handle);
5832 unlock_inode:
5833 inode_unlock(inode);
5834 }
5835 return err;
5836 }
5837
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5838 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5839 unsigned int flags)
5840 {
5841 int err;
5842 struct inode *qf_inode;
5843 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5844 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5845 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5846 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5847 };
5848
5849 BUG_ON(!ext4_has_feature_quota(sb));
5850
5851 if (!qf_inums[type])
5852 return -EPERM;
5853
5854 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5855 if (IS_ERR(qf_inode)) {
5856 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5857 return PTR_ERR(qf_inode);
5858 }
5859
5860 /* Don't account quota for quota files to avoid recursion */
5861 qf_inode->i_flags |= S_NOQUOTA;
5862 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5863 err = dquot_enable(qf_inode, type, format_id, flags);
5864 if (err)
5865 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5866 iput(qf_inode);
5867
5868 return err;
5869 }
5870
5871 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5872 static int ext4_enable_quotas(struct super_block *sb)
5873 {
5874 int type, err = 0;
5875 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5876 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5877 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5878 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5879 };
5880 bool quota_mopt[EXT4_MAXQUOTAS] = {
5881 test_opt(sb, USRQUOTA),
5882 test_opt(sb, GRPQUOTA),
5883 test_opt(sb, PRJQUOTA),
5884 };
5885
5886 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5887 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5888 if (qf_inums[type]) {
5889 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5890 DQUOT_USAGE_ENABLED |
5891 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5892 if (err) {
5893 ext4_warning(sb,
5894 "Failed to enable quota tracking "
5895 "(type=%d, err=%d). Please run "
5896 "e2fsck to fix.", type, err);
5897 for (type--; type >= 0; type--)
5898 dquot_quota_off(sb, type);
5899
5900 return err;
5901 }
5902 }
5903 }
5904 return 0;
5905 }
5906
ext4_quota_off(struct super_block * sb,int type)5907 static int ext4_quota_off(struct super_block *sb, int type)
5908 {
5909 struct inode *inode = sb_dqopt(sb)->files[type];
5910 handle_t *handle;
5911 int err;
5912
5913 /* Force all delayed allocation blocks to be allocated.
5914 * Caller already holds s_umount sem */
5915 if (test_opt(sb, DELALLOC))
5916 sync_filesystem(sb);
5917
5918 if (!inode || !igrab(inode))
5919 goto out;
5920
5921 err = dquot_quota_off(sb, type);
5922 if (err || ext4_has_feature_quota(sb))
5923 goto out_put;
5924
5925 inode_lock(inode);
5926 /*
5927 * Update modification times of quota files when userspace can
5928 * start looking at them. If we fail, we return success anyway since
5929 * this is not a hard failure and quotas are already disabled.
5930 */
5931 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5932 if (IS_ERR(handle))
5933 goto out_unlock;
5934 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5935 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5936 inode->i_mtime = inode->i_ctime = current_time(inode);
5937 ext4_mark_inode_dirty(handle, inode);
5938 ext4_journal_stop(handle);
5939 out_unlock:
5940 inode_unlock(inode);
5941 out_put:
5942 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5943 iput(inode);
5944 return err;
5945 out:
5946 return dquot_quota_off(sb, type);
5947 }
5948
5949 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5950 * acquiring the locks... As quota files are never truncated and quota code
5951 * itself serializes the operations (and no one else should touch the files)
5952 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5953 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5954 size_t len, loff_t off)
5955 {
5956 struct inode *inode = sb_dqopt(sb)->files[type];
5957 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5958 int offset = off & (sb->s_blocksize - 1);
5959 int tocopy;
5960 size_t toread;
5961 struct buffer_head *bh;
5962 loff_t i_size = i_size_read(inode);
5963
5964 if (off > i_size)
5965 return 0;
5966 if (off+len > i_size)
5967 len = i_size-off;
5968 toread = len;
5969 while (toread > 0) {
5970 tocopy = sb->s_blocksize - offset < toread ?
5971 sb->s_blocksize - offset : toread;
5972 bh = ext4_bread(NULL, inode, blk, 0);
5973 if (IS_ERR(bh))
5974 return PTR_ERR(bh);
5975 if (!bh) /* A hole? */
5976 memset(data, 0, tocopy);
5977 else
5978 memcpy(data, bh->b_data+offset, tocopy);
5979 brelse(bh);
5980 offset = 0;
5981 toread -= tocopy;
5982 data += tocopy;
5983 blk++;
5984 }
5985 return len;
5986 }
5987
5988 /* Write to quotafile (we know the transaction is already started and has
5989 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5990 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5991 const char *data, size_t len, loff_t off)
5992 {
5993 struct inode *inode = sb_dqopt(sb)->files[type];
5994 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5995 int err, offset = off & (sb->s_blocksize - 1);
5996 int retries = 0;
5997 struct buffer_head *bh;
5998 handle_t *handle = journal_current_handle();
5999
6000 if (EXT4_SB(sb)->s_journal && !handle) {
6001 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6002 " cancelled because transaction is not started",
6003 (unsigned long long)off, (unsigned long long)len);
6004 return -EIO;
6005 }
6006 /*
6007 * Since we account only one data block in transaction credits,
6008 * then it is impossible to cross a block boundary.
6009 */
6010 if (sb->s_blocksize - offset < len) {
6011 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6012 " cancelled because not block aligned",
6013 (unsigned long long)off, (unsigned long long)len);
6014 return -EIO;
6015 }
6016
6017 do {
6018 bh = ext4_bread(handle, inode, blk,
6019 EXT4_GET_BLOCKS_CREATE |
6020 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6021 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
6022 ext4_should_retry_alloc(inode->i_sb, &retries));
6023 if (IS_ERR(bh))
6024 return PTR_ERR(bh);
6025 if (!bh)
6026 goto out;
6027 BUFFER_TRACE(bh, "get write access");
6028 err = ext4_journal_get_write_access(handle, bh);
6029 if (err) {
6030 brelse(bh);
6031 return err;
6032 }
6033 lock_buffer(bh);
6034 memcpy(bh->b_data+offset, data, len);
6035 flush_dcache_page(bh->b_page);
6036 unlock_buffer(bh);
6037 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6038 brelse(bh);
6039 out:
6040 if (inode->i_size < off + len) {
6041 i_size_write(inode, off + len);
6042 EXT4_I(inode)->i_disksize = inode->i_size;
6043 ext4_mark_inode_dirty(handle, inode);
6044 }
6045 return len;
6046 }
6047
ext4_get_next_id(struct super_block * sb,struct kqid * qid)6048 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
6049 {
6050 const struct quota_format_ops *ops;
6051
6052 if (!sb_has_quota_loaded(sb, qid->type))
6053 return -ESRCH;
6054 ops = sb_dqopt(sb)->ops[qid->type];
6055 if (!ops || !ops->get_next_id)
6056 return -ENOSYS;
6057 return dquot_get_next_id(sb, qid);
6058 }
6059 #endif
6060
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6061 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6062 const char *dev_name, void *data)
6063 {
6064 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6065 }
6066
6067 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6068 static inline void register_as_ext2(void)
6069 {
6070 int err = register_filesystem(&ext2_fs_type);
6071 if (err)
6072 printk(KERN_WARNING
6073 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6074 }
6075
unregister_as_ext2(void)6076 static inline void unregister_as_ext2(void)
6077 {
6078 unregister_filesystem(&ext2_fs_type);
6079 }
6080
ext2_feature_set_ok(struct super_block * sb)6081 static inline int ext2_feature_set_ok(struct super_block *sb)
6082 {
6083 if (ext4_has_unknown_ext2_incompat_features(sb))
6084 return 0;
6085 if (sb_rdonly(sb))
6086 return 1;
6087 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6088 return 0;
6089 return 1;
6090 }
6091 #else
register_as_ext2(void)6092 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6093 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6094 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6095 #endif
6096
register_as_ext3(void)6097 static inline void register_as_ext3(void)
6098 {
6099 int err = register_filesystem(&ext3_fs_type);
6100 if (err)
6101 printk(KERN_WARNING
6102 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6103 }
6104
unregister_as_ext3(void)6105 static inline void unregister_as_ext3(void)
6106 {
6107 unregister_filesystem(&ext3_fs_type);
6108 }
6109
ext3_feature_set_ok(struct super_block * sb)6110 static inline int ext3_feature_set_ok(struct super_block *sb)
6111 {
6112 if (ext4_has_unknown_ext3_incompat_features(sb))
6113 return 0;
6114 if (!ext4_has_feature_journal(sb))
6115 return 0;
6116 if (sb_rdonly(sb))
6117 return 1;
6118 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6119 return 0;
6120 return 1;
6121 }
6122
6123 static struct file_system_type ext4_fs_type = {
6124 .owner = THIS_MODULE,
6125 .name = "ext4",
6126 .mount = ext4_mount,
6127 .kill_sb = kill_block_super,
6128 .fs_flags = FS_REQUIRES_DEV,
6129 };
6130 MODULE_ALIAS_FS("ext4");
6131
6132 /* Shared across all ext4 file systems */
6133 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6134
ext4_init_fs(void)6135 static int __init ext4_init_fs(void)
6136 {
6137 int i, err;
6138
6139 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6140 ext4_li_info = NULL;
6141 mutex_init(&ext4_li_mtx);
6142
6143 /* Build-time check for flags consistency */
6144 ext4_check_flag_values();
6145
6146 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6147 init_waitqueue_head(&ext4__ioend_wq[i]);
6148
6149 err = ext4_init_es();
6150 if (err)
6151 return err;
6152
6153 err = ext4_init_pending();
6154 if (err)
6155 goto out7;
6156
6157 err = ext4_init_post_read_processing();
6158 if (err)
6159 goto out6;
6160
6161 err = ext4_init_pageio();
6162 if (err)
6163 goto out5;
6164
6165 err = ext4_init_system_zone();
6166 if (err)
6167 goto out4;
6168
6169 err = ext4_init_sysfs();
6170 if (err)
6171 goto out3;
6172
6173 err = ext4_init_mballoc();
6174 if (err)
6175 goto out2;
6176 err = init_inodecache();
6177 if (err)
6178 goto out1;
6179 register_as_ext3();
6180 register_as_ext2();
6181 err = register_filesystem(&ext4_fs_type);
6182 if (err)
6183 goto out;
6184
6185 return 0;
6186 out:
6187 unregister_as_ext2();
6188 unregister_as_ext3();
6189 destroy_inodecache();
6190 out1:
6191 ext4_exit_mballoc();
6192 out2:
6193 ext4_exit_sysfs();
6194 out3:
6195 ext4_exit_system_zone();
6196 out4:
6197 ext4_exit_pageio();
6198 out5:
6199 ext4_exit_post_read_processing();
6200 out6:
6201 ext4_exit_pending();
6202 out7:
6203 ext4_exit_es();
6204
6205 return err;
6206 }
6207
ext4_exit_fs(void)6208 static void __exit ext4_exit_fs(void)
6209 {
6210 ext4_destroy_lazyinit_thread();
6211 unregister_as_ext2();
6212 unregister_as_ext3();
6213 unregister_filesystem(&ext4_fs_type);
6214 destroy_inodecache();
6215 ext4_exit_mballoc();
6216 ext4_exit_sysfs();
6217 ext4_exit_system_zone();
6218 ext4_exit_pageio();
6219 ext4_exit_post_read_processing();
6220 ext4_exit_es();
6221 ext4_exit_pending();
6222 }
6223
6224 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6225 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6226 MODULE_LICENSE("GPL");
6227 MODULE_SOFTDEP("pre: crc32c");
6228 module_init(ext4_init_fs)
6229 module_exit(ext4_exit_fs)
6230