• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NUMA emulation
4  */
5 #include <linux/kernel.h>
6 #include <linux/errno.h>
7 #include <linux/topology.h>
8 #include <linux/memblock.h>
9 #include <asm/dma.h>
10 
11 #include "numa_internal.h"
12 
13 static int emu_nid_to_phys[MAX_NUMNODES];
14 static char *emu_cmdline __initdata;
15 
numa_emu_cmdline(char * str)16 void __init numa_emu_cmdline(char *str)
17 {
18 	emu_cmdline = str;
19 }
20 
emu_find_memblk_by_nid(int nid,const struct numa_meminfo * mi)21 static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
22 {
23 	int i;
24 
25 	for (i = 0; i < mi->nr_blks; i++)
26 		if (mi->blk[i].nid == nid)
27 			return i;
28 	return -ENOENT;
29 }
30 
mem_hole_size(u64 start,u64 end)31 static u64 __init mem_hole_size(u64 start, u64 end)
32 {
33 	unsigned long start_pfn = PFN_UP(start);
34 	unsigned long end_pfn = PFN_DOWN(end);
35 
36 	if (start_pfn < end_pfn)
37 		return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
38 	return 0;
39 }
40 
41 /*
42  * Sets up nid to range from @start to @end.  The return value is -errno if
43  * something went wrong, 0 otherwise.
44  */
emu_setup_memblk(struct numa_meminfo * ei,struct numa_meminfo * pi,int nid,int phys_blk,u64 size)45 static int __init emu_setup_memblk(struct numa_meminfo *ei,
46 				   struct numa_meminfo *pi,
47 				   int nid, int phys_blk, u64 size)
48 {
49 	struct numa_memblk *eb = &ei->blk[ei->nr_blks];
50 	struct numa_memblk *pb = &pi->blk[phys_blk];
51 
52 	if (ei->nr_blks >= NR_NODE_MEMBLKS) {
53 		pr_err("NUMA: Too many emulated memblks, failing emulation\n");
54 		return -EINVAL;
55 	}
56 
57 	ei->nr_blks++;
58 	eb->start = pb->start;
59 	eb->end = pb->start + size;
60 	eb->nid = nid;
61 
62 	if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
63 		emu_nid_to_phys[nid] = pb->nid;
64 
65 	pb->start += size;
66 	if (pb->start >= pb->end) {
67 		WARN_ON_ONCE(pb->start > pb->end);
68 		numa_remove_memblk_from(phys_blk, pi);
69 	}
70 
71 	printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
72 	       nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
73 	return 0;
74 }
75 
76 /*
77  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
78  * to max_addr.
79  *
80  * Returns zero on success or negative on error.
81  */
split_nodes_interleave(struct numa_meminfo * ei,struct numa_meminfo * pi,u64 addr,u64 max_addr,int nr_nodes)82 static int __init split_nodes_interleave(struct numa_meminfo *ei,
83 					 struct numa_meminfo *pi,
84 					 u64 addr, u64 max_addr, int nr_nodes)
85 {
86 	nodemask_t physnode_mask = numa_nodes_parsed;
87 	u64 size;
88 	int big;
89 	int nid = 0;
90 	int i, ret;
91 
92 	if (nr_nodes <= 0)
93 		return -1;
94 	if (nr_nodes > MAX_NUMNODES) {
95 		pr_info("numa=fake=%d too large, reducing to %d\n",
96 			nr_nodes, MAX_NUMNODES);
97 		nr_nodes = MAX_NUMNODES;
98 	}
99 
100 	/*
101 	 * Calculate target node size.  x86_32 freaks on __udivdi3() so do
102 	 * the division in ulong number of pages and convert back.
103 	 */
104 	size = max_addr - addr - mem_hole_size(addr, max_addr);
105 	size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
106 
107 	/*
108 	 * Calculate the number of big nodes that can be allocated as a result
109 	 * of consolidating the remainder.
110 	 */
111 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
112 		FAKE_NODE_MIN_SIZE;
113 
114 	size &= FAKE_NODE_MIN_HASH_MASK;
115 	if (!size) {
116 		pr_err("Not enough memory for each node.  "
117 			"NUMA emulation disabled.\n");
118 		return -1;
119 	}
120 
121 	/*
122 	 * Continue to fill physical nodes with fake nodes until there is no
123 	 * memory left on any of them.
124 	 */
125 	while (nodes_weight(physnode_mask)) {
126 		for_each_node_mask(i, physnode_mask) {
127 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
128 			u64 start, limit, end;
129 			int phys_blk;
130 
131 			phys_blk = emu_find_memblk_by_nid(i, pi);
132 			if (phys_blk < 0) {
133 				node_clear(i, physnode_mask);
134 				continue;
135 			}
136 			start = pi->blk[phys_blk].start;
137 			limit = pi->blk[phys_blk].end;
138 			end = start + size;
139 
140 			if (nid < big)
141 				end += FAKE_NODE_MIN_SIZE;
142 
143 			/*
144 			 * Continue to add memory to this fake node if its
145 			 * non-reserved memory is less than the per-node size.
146 			 */
147 			while (end - start - mem_hole_size(start, end) < size) {
148 				end += FAKE_NODE_MIN_SIZE;
149 				if (end > limit) {
150 					end = limit;
151 					break;
152 				}
153 			}
154 
155 			/*
156 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
157 			 * non-reserved memory in ZONE_DMA32 for the next node,
158 			 * this one must extend to the boundary.
159 			 */
160 			if (end < dma32_end && dma32_end - end -
161 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
162 				end = dma32_end;
163 
164 			/*
165 			 * If there won't be enough non-reserved memory for the
166 			 * next node, this one must extend to the end of the
167 			 * physical node.
168 			 */
169 			if (limit - end - mem_hole_size(end, limit) < size)
170 				end = limit;
171 
172 			ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
173 					       phys_blk,
174 					       min(end, limit) - start);
175 			if (ret < 0)
176 				return ret;
177 		}
178 	}
179 	return 0;
180 }
181 
182 /*
183  * Returns the end address of a node so that there is at least `size' amount of
184  * non-reserved memory or `max_addr' is reached.
185  */
find_end_of_node(u64 start,u64 max_addr,u64 size)186 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
187 {
188 	u64 end = start + size;
189 
190 	while (end - start - mem_hole_size(start, end) < size) {
191 		end += FAKE_NODE_MIN_SIZE;
192 		if (end > max_addr) {
193 			end = max_addr;
194 			break;
195 		}
196 	}
197 	return end;
198 }
199 
uniform_size(u64 max_addr,u64 base,u64 hole,int nr_nodes)200 static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
201 {
202 	unsigned long max_pfn = PHYS_PFN(max_addr);
203 	unsigned long base_pfn = PHYS_PFN(base);
204 	unsigned long hole_pfns = PHYS_PFN(hole);
205 
206 	return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
207 }
208 
209 /*
210  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
211  * `addr' to `max_addr'.
212  *
213  * Returns zero on success or negative on error.
214  */
split_nodes_size_interleave_uniform(struct numa_meminfo * ei,struct numa_meminfo * pi,u64 addr,u64 max_addr,u64 size,int nr_nodes,struct numa_memblk * pblk,int nid)215 static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
216 					      struct numa_meminfo *pi,
217 					      u64 addr, u64 max_addr, u64 size,
218 					      int nr_nodes, struct numa_memblk *pblk,
219 					      int nid)
220 {
221 	nodemask_t physnode_mask = numa_nodes_parsed;
222 	int i, ret, uniform = 0;
223 	u64 min_size;
224 
225 	if ((!size && !nr_nodes) || (nr_nodes && !pblk))
226 		return -1;
227 
228 	/*
229 	 * In the 'uniform' case split the passed in physical node by
230 	 * nr_nodes, in the non-uniform case, ignore the passed in
231 	 * physical block and try to create nodes of at least size
232 	 * @size.
233 	 *
234 	 * In the uniform case, split the nodes strictly by physical
235 	 * capacity, i.e. ignore holes. In the non-uniform case account
236 	 * for holes and treat @size as a minimum floor.
237 	 */
238 	if (!nr_nodes)
239 		nr_nodes = MAX_NUMNODES;
240 	else {
241 		nodes_clear(physnode_mask);
242 		node_set(pblk->nid, physnode_mask);
243 		uniform = 1;
244 	}
245 
246 	if (uniform) {
247 		min_size = uniform_size(max_addr, addr, 0, nr_nodes);
248 		size = min_size;
249 	} else {
250 		/*
251 		 * The limit on emulated nodes is MAX_NUMNODES, so the
252 		 * size per node is increased accordingly if the
253 		 * requested size is too small.  This creates a uniform
254 		 * distribution of node sizes across the entire machine
255 		 * (but not necessarily over physical nodes).
256 		 */
257 		min_size = uniform_size(max_addr, addr,
258 				mem_hole_size(addr, max_addr), nr_nodes);
259 	}
260 	min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
261 	if (size < min_size) {
262 		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
263 			size >> 20, min_size >> 20);
264 		size = min_size;
265 	}
266 	size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
267 
268 	/*
269 	 * Fill physical nodes with fake nodes of size until there is no memory
270 	 * left on any of them.
271 	 */
272 	while (nodes_weight(physnode_mask)) {
273 		for_each_node_mask(i, physnode_mask) {
274 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
275 			u64 start, limit, end;
276 			int phys_blk;
277 
278 			phys_blk = emu_find_memblk_by_nid(i, pi);
279 			if (phys_blk < 0) {
280 				node_clear(i, physnode_mask);
281 				continue;
282 			}
283 
284 			start = pi->blk[phys_blk].start;
285 			limit = pi->blk[phys_blk].end;
286 
287 			if (uniform)
288 				end = start + size;
289 			else
290 				end = find_end_of_node(start, limit, size);
291 			/*
292 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
293 			 * non-reserved memory in ZONE_DMA32 for the next node,
294 			 * this one must extend to the boundary.
295 			 */
296 			if (end < dma32_end && dma32_end - end -
297 			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
298 				end = dma32_end;
299 
300 			/*
301 			 * If there won't be enough non-reserved memory for the
302 			 * next node, this one must extend to the end of the
303 			 * physical node.
304 			 */
305 			if ((limit - end - mem_hole_size(end, limit) < size)
306 					&& !uniform)
307 				end = limit;
308 
309 			ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
310 					       phys_blk,
311 					       min(end, limit) - start);
312 			if (ret < 0)
313 				return ret;
314 		}
315 	}
316 	return nid;
317 }
318 
split_nodes_size_interleave(struct numa_meminfo * ei,struct numa_meminfo * pi,u64 addr,u64 max_addr,u64 size)319 static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
320 					      struct numa_meminfo *pi,
321 					      u64 addr, u64 max_addr, u64 size)
322 {
323 	return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
324 			0, NULL, NUMA_NO_NODE);
325 }
326 
setup_emu2phys_nid(int * dfl_phys_nid)327 int __init setup_emu2phys_nid(int *dfl_phys_nid)
328 {
329 	int i, max_emu_nid = 0;
330 
331 	*dfl_phys_nid = NUMA_NO_NODE;
332 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
333 		if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
334 			max_emu_nid = i;
335 			if (*dfl_phys_nid == NUMA_NO_NODE)
336 				*dfl_phys_nid = emu_nid_to_phys[i];
337 		}
338 	}
339 
340 	return max_emu_nid;
341 }
342 
343 /**
344  * numa_emulation - Emulate NUMA nodes
345  * @numa_meminfo: NUMA configuration to massage
346  * @numa_dist_cnt: The size of the physical NUMA distance table
347  *
348  * Emulate NUMA nodes according to the numa=fake kernel parameter.
349  * @numa_meminfo contains the physical memory configuration and is modified
350  * to reflect the emulated configuration on success.  @numa_dist_cnt is
351  * used to determine the size of the physical distance table.
352  *
353  * On success, the following modifications are made.
354  *
355  * - @numa_meminfo is updated to reflect the emulated nodes.
356  *
357  * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
358  *   emulated nodes.
359  *
360  * - NUMA distance table is rebuilt to represent distances between emulated
361  *   nodes.  The distances are determined considering how emulated nodes
362  *   are mapped to physical nodes and match the actual distances.
363  *
364  * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
365  *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
366  *
367  * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
368  * identity mapping and no other modification is made.
369  */
numa_emulation(struct numa_meminfo * numa_meminfo,int numa_dist_cnt)370 void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
371 {
372 	static struct numa_meminfo ei __initdata;
373 	static struct numa_meminfo pi __initdata;
374 	const u64 max_addr = PFN_PHYS(max_pfn);
375 	u8 *phys_dist = NULL;
376 	size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
377 	int max_emu_nid, dfl_phys_nid;
378 	int i, j, ret;
379 
380 	if (!emu_cmdline)
381 		goto no_emu;
382 
383 	memset(&ei, 0, sizeof(ei));
384 	pi = *numa_meminfo;
385 
386 	for (i = 0; i < MAX_NUMNODES; i++)
387 		emu_nid_to_phys[i] = NUMA_NO_NODE;
388 
389 	/*
390 	 * If the numa=fake command-line contains a 'M' or 'G', it represents
391 	 * the fixed node size.  Otherwise, if it is just a single number N,
392 	 * split the system RAM into N fake nodes.
393 	 */
394 	if (strchr(emu_cmdline, 'U')) {
395 		nodemask_t physnode_mask = numa_nodes_parsed;
396 		unsigned long n;
397 		int nid = 0;
398 
399 		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
400 		ret = -1;
401 		for_each_node_mask(i, physnode_mask) {
402 			/*
403 			 * The reason we pass in blk[0] is due to
404 			 * numa_remove_memblk_from() called by
405 			 * emu_setup_memblk() will delete entry 0
406 			 * and then move everything else up in the pi.blk
407 			 * array. Therefore we should always be looking
408 			 * at blk[0].
409 			 */
410 			ret = split_nodes_size_interleave_uniform(&ei, &pi,
411 					pi.blk[0].start, pi.blk[0].end, 0,
412 					n, &pi.blk[0], nid);
413 			if (ret < 0)
414 				break;
415 			if (ret < n) {
416 				pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
417 						__func__, i, ret, n);
418 				ret = -1;
419 				break;
420 			}
421 			nid = ret;
422 		}
423 	} else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
424 		u64 size;
425 
426 		size = memparse(emu_cmdline, &emu_cmdline);
427 		ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
428 	} else {
429 		unsigned long n;
430 
431 		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
432 		ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
433 	}
434 	if (*emu_cmdline == ':')
435 		emu_cmdline++;
436 
437 	if (ret < 0)
438 		goto no_emu;
439 
440 	if (numa_cleanup_meminfo(&ei) < 0) {
441 		pr_warning("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
442 		goto no_emu;
443 	}
444 
445 	/* copy the physical distance table */
446 	if (numa_dist_cnt) {
447 		u64 phys;
448 
449 		phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
450 					      phys_size, PAGE_SIZE);
451 		if (!phys) {
452 			pr_warning("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
453 			goto no_emu;
454 		}
455 		memblock_reserve(phys, phys_size);
456 		phys_dist = __va(phys);
457 
458 		for (i = 0; i < numa_dist_cnt; i++)
459 			for (j = 0; j < numa_dist_cnt; j++)
460 				phys_dist[i * numa_dist_cnt + j] =
461 					node_distance(i, j);
462 	}
463 
464 	/*
465 	 * Determine the max emulated nid and the default phys nid to use
466 	 * for unmapped nodes.
467 	 */
468 	max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
469 
470 	/* commit */
471 	*numa_meminfo = ei;
472 
473 	/* Make sure numa_nodes_parsed only contains emulated nodes */
474 	nodes_clear(numa_nodes_parsed);
475 	for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
476 		if (ei.blk[i].start != ei.blk[i].end &&
477 		    ei.blk[i].nid != NUMA_NO_NODE)
478 			node_set(ei.blk[i].nid, numa_nodes_parsed);
479 
480 	/*
481 	 * Transform __apicid_to_node table to use emulated nids by
482 	 * reverse-mapping phys_nid.  The maps should always exist but fall
483 	 * back to zero just in case.
484 	 */
485 	for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
486 		if (__apicid_to_node[i] == NUMA_NO_NODE)
487 			continue;
488 		for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
489 			if (__apicid_to_node[i] == emu_nid_to_phys[j])
490 				break;
491 		__apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
492 	}
493 
494 	/* make sure all emulated nodes are mapped to a physical node */
495 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
496 		if (emu_nid_to_phys[i] == NUMA_NO_NODE)
497 			emu_nid_to_phys[i] = dfl_phys_nid;
498 
499 	/* transform distance table */
500 	numa_reset_distance();
501 	for (i = 0; i < max_emu_nid + 1; i++) {
502 		for (j = 0; j < max_emu_nid + 1; j++) {
503 			int physi = emu_nid_to_phys[i];
504 			int physj = emu_nid_to_phys[j];
505 			int dist;
506 
507 			if (get_option(&emu_cmdline, &dist) == 2)
508 				;
509 			else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
510 				dist = physi == physj ?
511 					LOCAL_DISTANCE : REMOTE_DISTANCE;
512 			else
513 				dist = phys_dist[physi * numa_dist_cnt + physj];
514 
515 			numa_set_distance(i, j, dist);
516 		}
517 	}
518 
519 	/* free the copied physical distance table */
520 	if (phys_dist)
521 		memblock_free(__pa(phys_dist), phys_size);
522 	return;
523 
524 no_emu:
525 	/* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
526 	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
527 		emu_nid_to_phys[i] = i;
528 }
529 
530 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
numa_add_cpu(int cpu)531 void numa_add_cpu(int cpu)
532 {
533 	int physnid, nid;
534 
535 	nid = early_cpu_to_node(cpu);
536 	BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
537 
538 	physnid = emu_nid_to_phys[nid];
539 
540 	/*
541 	 * Map the cpu to each emulated node that is allocated on the physical
542 	 * node of the cpu's apic id.
543 	 */
544 	for_each_online_node(nid)
545 		if (emu_nid_to_phys[nid] == physnid)
546 			cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
547 }
548 
numa_remove_cpu(int cpu)549 void numa_remove_cpu(int cpu)
550 {
551 	int i;
552 
553 	for_each_online_node(i)
554 		cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
555 }
556 #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
numa_set_cpumask(int cpu,bool enable)557 static void numa_set_cpumask(int cpu, bool enable)
558 {
559 	int nid, physnid;
560 
561 	nid = early_cpu_to_node(cpu);
562 	if (nid == NUMA_NO_NODE) {
563 		/* early_cpu_to_node() already emits a warning and trace */
564 		return;
565 	}
566 
567 	physnid = emu_nid_to_phys[nid];
568 
569 	for_each_online_node(nid) {
570 		if (emu_nid_to_phys[nid] != physnid)
571 			continue;
572 
573 		debug_cpumask_set_cpu(cpu, nid, enable);
574 	}
575 }
576 
numa_add_cpu(int cpu)577 void numa_add_cpu(int cpu)
578 {
579 	numa_set_cpumask(cpu, true);
580 }
581 
numa_remove_cpu(int cpu)582 void numa_remove_cpu(int cpu)
583 {
584 	numa_set_cpumask(cpu, false);
585 }
586 #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
587