1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
103
104 /*
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
108 *
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
113 */
114
115 /**
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
121 */
122 #define btree(fn, key, b, op, ...) \
123 ({ \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
127 _w, b); \
128 if (!IS_ERR(_child)) { \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
131 } else \
132 _r = PTR_ERR(_child); \
133 _r; \
134 })
135
136 /**
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
139 * @c: cache set
140 * @op: pointer to struct btree_op
141 */
142 #define btree_root(fn, c, op, ...) \
143 ({ \
144 int _r = -EINTR; \
145 do { \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
152 } \
153 rw_unlock(_w, _b); \
154 bch_cannibalize_unlock(c); \
155 if (_r == -EINTR) \
156 schedule(); \
157 } while (_r == -EINTR); \
158 \
159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
160 _r; \
161 })
162
write_block(struct btree * b)163 static inline struct bset *write_block(struct btree *b)
164 {
165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167
bch_btree_init_next(struct btree * b)168 static void bch_btree_init_next(struct btree *b)
169 {
170 /* If not a leaf node, always sort */
171 if (b->level && b->keys.nsets)
172 bch_btree_sort(&b->keys, &b->c->sort);
173 else
174 bch_btree_sort_lazy(&b->keys, &b->c->sort);
175
176 if (b->written < btree_blocks(b))
177 bch_bset_init_next(&b->keys, write_block(b),
178 bset_magic(&b->c->sb));
179
180 }
181
182 /* Btree key manipulation */
183
bkey_put(struct cache_set * c,struct bkey * k)184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 unsigned int i;
187
188 for (i = 0; i < KEY_PTRS(k); i++)
189 if (ptr_available(c, k, i))
190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192
193 /* Btree IO */
194
btree_csum_set(struct btree * b,struct bset * i)195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 uint64_t crc = b->key.ptr[0];
198 void *data = (void *) i + 8, *end = bset_bkey_last(i);
199
200 crc = bch_crc64_update(crc, data, end - data);
201 return crc ^ 0xffffffffffffffffULL;
202 }
203
bch_btree_node_read_done(struct btree * b)204 void bch_btree_node_read_done(struct btree *b)
205 {
206 const char *err = "bad btree header";
207 struct bset *i = btree_bset_first(b);
208 struct btree_iter *iter;
209
210 /*
211 * c->fill_iter can allocate an iterator with more memory space
212 * than static MAX_BSETS.
213 * See the comment arount cache_set->fill_iter.
214 */
215 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
216 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
217 iter->used = 0;
218
219 #ifdef CONFIG_BCACHE_DEBUG
220 iter->b = &b->keys;
221 #endif
222
223 if (!i->seq)
224 goto err;
225
226 for (;
227 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
228 i = write_block(b)) {
229 err = "unsupported bset version";
230 if (i->version > BCACHE_BSET_VERSION)
231 goto err;
232
233 err = "bad btree header";
234 if (b->written + set_blocks(i, block_bytes(b->c)) >
235 btree_blocks(b))
236 goto err;
237
238 err = "bad magic";
239 if (i->magic != bset_magic(&b->c->sb))
240 goto err;
241
242 err = "bad checksum";
243 switch (i->version) {
244 case 0:
245 if (i->csum != csum_set(i))
246 goto err;
247 break;
248 case BCACHE_BSET_VERSION:
249 if (i->csum != btree_csum_set(b, i))
250 goto err;
251 break;
252 }
253
254 err = "empty set";
255 if (i != b->keys.set[0].data && !i->keys)
256 goto err;
257
258 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
259
260 b->written += set_blocks(i, block_bytes(b->c));
261 }
262
263 err = "corrupted btree";
264 for (i = write_block(b);
265 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
266 i = ((void *) i) + block_bytes(b->c))
267 if (i->seq == b->keys.set[0].data->seq)
268 goto err;
269
270 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
271
272 i = b->keys.set[0].data;
273 err = "short btree key";
274 if (b->keys.set[0].size &&
275 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
276 goto err;
277
278 if (b->written < btree_blocks(b))
279 bch_bset_init_next(&b->keys, write_block(b),
280 bset_magic(&b->c->sb));
281 out:
282 mempool_free(iter, &b->c->fill_iter);
283 return;
284 err:
285 set_btree_node_io_error(b);
286 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
287 err, PTR_BUCKET_NR(b->c, &b->key, 0),
288 bset_block_offset(b, i), i->keys);
289 goto out;
290 }
291
btree_node_read_endio(struct bio * bio)292 static void btree_node_read_endio(struct bio *bio)
293 {
294 struct closure *cl = bio->bi_private;
295
296 closure_put(cl);
297 }
298
bch_btree_node_read(struct btree * b)299 static void bch_btree_node_read(struct btree *b)
300 {
301 uint64_t start_time = local_clock();
302 struct closure cl;
303 struct bio *bio;
304
305 trace_bcache_btree_read(b);
306
307 closure_init_stack(&cl);
308
309 bio = bch_bbio_alloc(b->c);
310 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
311 bio->bi_end_io = btree_node_read_endio;
312 bio->bi_private = &cl;
313 bio->bi_opf = REQ_OP_READ | REQ_META;
314
315 bch_bio_map(bio, b->keys.set[0].data);
316
317 bch_submit_bbio(bio, b->c, &b->key, 0);
318 closure_sync(&cl);
319
320 if (bio->bi_status)
321 set_btree_node_io_error(b);
322
323 bch_bbio_free(bio, b->c);
324
325 if (btree_node_io_error(b))
326 goto err;
327
328 bch_btree_node_read_done(b);
329 bch_time_stats_update(&b->c->btree_read_time, start_time);
330
331 return;
332 err:
333 bch_cache_set_error(b->c, "io error reading bucket %zu",
334 PTR_BUCKET_NR(b->c, &b->key, 0));
335 }
336
btree_complete_write(struct btree * b,struct btree_write * w)337 static void btree_complete_write(struct btree *b, struct btree_write *w)
338 {
339 if (w->prio_blocked &&
340 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
341 wake_up_allocators(b->c);
342
343 if (w->journal) {
344 atomic_dec_bug(w->journal);
345 __closure_wake_up(&b->c->journal.wait);
346 }
347
348 w->prio_blocked = 0;
349 w->journal = NULL;
350 }
351
btree_node_write_unlock(struct closure * cl)352 static void btree_node_write_unlock(struct closure *cl)
353 {
354 struct btree *b = container_of(cl, struct btree, io);
355
356 up(&b->io_mutex);
357 }
358
__btree_node_write_done(struct closure * cl)359 static void __btree_node_write_done(struct closure *cl)
360 {
361 struct btree *b = container_of(cl, struct btree, io);
362 struct btree_write *w = btree_prev_write(b);
363
364 bch_bbio_free(b->bio, b->c);
365 b->bio = NULL;
366 btree_complete_write(b, w);
367
368 if (btree_node_dirty(b))
369 schedule_delayed_work(&b->work, 30 * HZ);
370
371 closure_return_with_destructor(cl, btree_node_write_unlock);
372 }
373
btree_node_write_done(struct closure * cl)374 static void btree_node_write_done(struct closure *cl)
375 {
376 struct btree *b = container_of(cl, struct btree, io);
377
378 bio_free_pages(b->bio);
379 __btree_node_write_done(cl);
380 }
381
btree_node_write_endio(struct bio * bio)382 static void btree_node_write_endio(struct bio *bio)
383 {
384 struct closure *cl = bio->bi_private;
385 struct btree *b = container_of(cl, struct btree, io);
386
387 if (bio->bi_status)
388 set_btree_node_io_error(b);
389
390 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
391 closure_put(cl);
392 }
393
do_btree_node_write(struct btree * b)394 static void do_btree_node_write(struct btree *b)
395 {
396 struct closure *cl = &b->io;
397 struct bset *i = btree_bset_last(b);
398 BKEY_PADDED(key) k;
399
400 i->version = BCACHE_BSET_VERSION;
401 i->csum = btree_csum_set(b, i);
402
403 BUG_ON(b->bio);
404 b->bio = bch_bbio_alloc(b->c);
405
406 b->bio->bi_end_io = btree_node_write_endio;
407 b->bio->bi_private = cl;
408 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
409 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
410 bch_bio_map(b->bio, i);
411
412 /*
413 * If we're appending to a leaf node, we don't technically need FUA -
414 * this write just needs to be persisted before the next journal write,
415 * which will be marked FLUSH|FUA.
416 *
417 * Similarly if we're writing a new btree root - the pointer is going to
418 * be in the next journal entry.
419 *
420 * But if we're writing a new btree node (that isn't a root) or
421 * appending to a non leaf btree node, we need either FUA or a flush
422 * when we write the parent with the new pointer. FUA is cheaper than a
423 * flush, and writes appending to leaf nodes aren't blocking anything so
424 * just make all btree node writes FUA to keep things sane.
425 */
426
427 bkey_copy(&k.key, &b->key);
428 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
429 bset_sector_offset(&b->keys, i));
430
431 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
432 struct bio_vec *bv;
433 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
434 struct bvec_iter_all iter_all;
435
436 bio_for_each_segment_all(bv, b->bio, iter_all) {
437 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
438 addr += PAGE_SIZE;
439 }
440
441 bch_submit_bbio(b->bio, b->c, &k.key, 0);
442
443 continue_at(cl, btree_node_write_done, NULL);
444 } else {
445 /*
446 * No problem for multipage bvec since the bio is
447 * just allocated
448 */
449 b->bio->bi_vcnt = 0;
450 bch_bio_map(b->bio, i);
451
452 bch_submit_bbio(b->bio, b->c, &k.key, 0);
453
454 closure_sync(cl);
455 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
456 }
457 }
458
__bch_btree_node_write(struct btree * b,struct closure * parent)459 void __bch_btree_node_write(struct btree *b, struct closure *parent)
460 {
461 struct bset *i = btree_bset_last(b);
462
463 lockdep_assert_held(&b->write_lock);
464
465 trace_bcache_btree_write(b);
466
467 BUG_ON(current->bio_list);
468 BUG_ON(b->written >= btree_blocks(b));
469 BUG_ON(b->written && !i->keys);
470 BUG_ON(btree_bset_first(b)->seq != i->seq);
471 bch_check_keys(&b->keys, "writing");
472
473 cancel_delayed_work(&b->work);
474
475 /* If caller isn't waiting for write, parent refcount is cache set */
476 down(&b->io_mutex);
477 closure_init(&b->io, parent ?: &b->c->cl);
478
479 clear_bit(BTREE_NODE_dirty, &b->flags);
480 change_bit(BTREE_NODE_write_idx, &b->flags);
481
482 do_btree_node_write(b);
483
484 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
485 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
486
487 b->written += set_blocks(i, block_bytes(b->c));
488 }
489
bch_btree_node_write(struct btree * b,struct closure * parent)490 void bch_btree_node_write(struct btree *b, struct closure *parent)
491 {
492 unsigned int nsets = b->keys.nsets;
493
494 lockdep_assert_held(&b->lock);
495
496 __bch_btree_node_write(b, parent);
497
498 /*
499 * do verify if there was more than one set initially (i.e. we did a
500 * sort) and we sorted down to a single set:
501 */
502 if (nsets && !b->keys.nsets)
503 bch_btree_verify(b);
504
505 bch_btree_init_next(b);
506 }
507
bch_btree_node_write_sync(struct btree * b)508 static void bch_btree_node_write_sync(struct btree *b)
509 {
510 struct closure cl;
511
512 closure_init_stack(&cl);
513
514 mutex_lock(&b->write_lock);
515 bch_btree_node_write(b, &cl);
516 mutex_unlock(&b->write_lock);
517
518 closure_sync(&cl);
519 }
520
btree_node_write_work(struct work_struct * w)521 static void btree_node_write_work(struct work_struct *w)
522 {
523 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
524
525 mutex_lock(&b->write_lock);
526 if (btree_node_dirty(b))
527 __bch_btree_node_write(b, NULL);
528 mutex_unlock(&b->write_lock);
529 }
530
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
532 {
533 struct bset *i = btree_bset_last(b);
534 struct btree_write *w = btree_current_write(b);
535
536 lockdep_assert_held(&b->write_lock);
537
538 BUG_ON(!b->written);
539 BUG_ON(!i->keys);
540
541 if (!btree_node_dirty(b))
542 schedule_delayed_work(&b->work, 30 * HZ);
543
544 set_btree_node_dirty(b);
545
546 if (journal_ref) {
547 if (w->journal &&
548 journal_pin_cmp(b->c, w->journal, journal_ref)) {
549 atomic_dec_bug(w->journal);
550 w->journal = NULL;
551 }
552
553 if (!w->journal) {
554 w->journal = journal_ref;
555 atomic_inc(w->journal);
556 }
557 }
558
559 /* Force write if set is too big */
560 if (set_bytes(i) > PAGE_SIZE - 48 &&
561 !current->bio_list)
562 bch_btree_node_write(b, NULL);
563 }
564
565 /*
566 * Btree in memory cache - allocation/freeing
567 * mca -> memory cache
568 */
569
570 #define mca_reserve(c) (((c->root && c->root->level) \
571 ? c->root->level : 1) * 8 + 16)
572 #define mca_can_free(c) \
573 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
574
mca_data_free(struct btree * b)575 static void mca_data_free(struct btree *b)
576 {
577 BUG_ON(b->io_mutex.count != 1);
578
579 bch_btree_keys_free(&b->keys);
580
581 b->c->btree_cache_used--;
582 list_move(&b->list, &b->c->btree_cache_freed);
583 }
584
mca_bucket_free(struct btree * b)585 static void mca_bucket_free(struct btree *b)
586 {
587 BUG_ON(btree_node_dirty(b));
588
589 b->key.ptr[0] = 0;
590 hlist_del_init_rcu(&b->hash);
591 list_move(&b->list, &b->c->btree_cache_freeable);
592 }
593
btree_order(struct bkey * k)594 static unsigned int btree_order(struct bkey *k)
595 {
596 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
597 }
598
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)599 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
600 {
601 if (!bch_btree_keys_alloc(&b->keys,
602 max_t(unsigned int,
603 ilog2(b->c->btree_pages),
604 btree_order(k)),
605 gfp)) {
606 b->c->btree_cache_used++;
607 list_move(&b->list, &b->c->btree_cache);
608 } else {
609 list_move(&b->list, &b->c->btree_cache_freed);
610 }
611 }
612
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)613 static struct btree *mca_bucket_alloc(struct cache_set *c,
614 struct bkey *k, gfp_t gfp)
615 {
616 /*
617 * kzalloc() is necessary here for initialization,
618 * see code comments in bch_btree_keys_init().
619 */
620 struct btree *b = kzalloc(sizeof(struct btree), gfp);
621
622 if (!b)
623 return NULL;
624
625 init_rwsem(&b->lock);
626 lockdep_set_novalidate_class(&b->lock);
627 mutex_init(&b->write_lock);
628 lockdep_set_novalidate_class(&b->write_lock);
629 INIT_LIST_HEAD(&b->list);
630 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
631 b->c = c;
632 sema_init(&b->io_mutex, 1);
633
634 mca_data_alloc(b, k, gfp);
635 return b;
636 }
637
mca_reap(struct btree * b,unsigned int min_order,bool flush)638 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
639 {
640 struct closure cl;
641
642 closure_init_stack(&cl);
643 lockdep_assert_held(&b->c->bucket_lock);
644
645 if (!down_write_trylock(&b->lock))
646 return -ENOMEM;
647
648 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
649
650 if (b->keys.page_order < min_order)
651 goto out_unlock;
652
653 if (!flush) {
654 if (btree_node_dirty(b))
655 goto out_unlock;
656
657 if (down_trylock(&b->io_mutex))
658 goto out_unlock;
659 up(&b->io_mutex);
660 }
661
662 retry:
663 /*
664 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
665 * __bch_btree_node_write(). To avoid an extra flush, acquire
666 * b->write_lock before checking BTREE_NODE_dirty bit.
667 */
668 mutex_lock(&b->write_lock);
669 /*
670 * If this btree node is selected in btree_flush_write() by journal
671 * code, delay and retry until the node is flushed by journal code
672 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
673 */
674 if (btree_node_journal_flush(b)) {
675 pr_debug("bnode %p is flushing by journal, retry", b);
676 mutex_unlock(&b->write_lock);
677 udelay(1);
678 goto retry;
679 }
680
681 if (btree_node_dirty(b))
682 __bch_btree_node_write(b, &cl);
683 mutex_unlock(&b->write_lock);
684
685 closure_sync(&cl);
686
687 /* wait for any in flight btree write */
688 down(&b->io_mutex);
689 up(&b->io_mutex);
690
691 return 0;
692 out_unlock:
693 rw_unlock(true, b);
694 return -ENOMEM;
695 }
696
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)697 static unsigned long bch_mca_scan(struct shrinker *shrink,
698 struct shrink_control *sc)
699 {
700 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
701 struct btree *b, *t;
702 unsigned long i, nr = sc->nr_to_scan;
703 unsigned long freed = 0;
704 unsigned int btree_cache_used;
705
706 if (c->shrinker_disabled)
707 return SHRINK_STOP;
708
709 if (c->btree_cache_alloc_lock)
710 return SHRINK_STOP;
711
712 /* Return -1 if we can't do anything right now */
713 if (sc->gfp_mask & __GFP_IO)
714 mutex_lock(&c->bucket_lock);
715 else if (!mutex_trylock(&c->bucket_lock))
716 return -1;
717
718 /*
719 * It's _really_ critical that we don't free too many btree nodes - we
720 * have to always leave ourselves a reserve. The reserve is how we
721 * guarantee that allocating memory for a new btree node can always
722 * succeed, so that inserting keys into the btree can always succeed and
723 * IO can always make forward progress:
724 */
725 nr /= c->btree_pages;
726 if (nr == 0)
727 nr = 1;
728 nr = min_t(unsigned long, nr, mca_can_free(c));
729
730 i = 0;
731 btree_cache_used = c->btree_cache_used;
732 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
733 if (nr <= 0)
734 goto out;
735
736 if (++i > 3 &&
737 !mca_reap(b, 0, false)) {
738 mca_data_free(b);
739 rw_unlock(true, b);
740 freed++;
741 }
742 nr--;
743 }
744
745 for (; (nr--) && i < btree_cache_used; i++) {
746 if (list_empty(&c->btree_cache))
747 goto out;
748
749 b = list_first_entry(&c->btree_cache, struct btree, list);
750 list_rotate_left(&c->btree_cache);
751
752 if (!b->accessed &&
753 !mca_reap(b, 0, false)) {
754 mca_bucket_free(b);
755 mca_data_free(b);
756 rw_unlock(true, b);
757 freed++;
758 } else
759 b->accessed = 0;
760 }
761 out:
762 mutex_unlock(&c->bucket_lock);
763 return freed * c->btree_pages;
764 }
765
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)766 static unsigned long bch_mca_count(struct shrinker *shrink,
767 struct shrink_control *sc)
768 {
769 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
770
771 if (c->shrinker_disabled)
772 return 0;
773
774 if (c->btree_cache_alloc_lock)
775 return 0;
776
777 return mca_can_free(c) * c->btree_pages;
778 }
779
bch_btree_cache_free(struct cache_set * c)780 void bch_btree_cache_free(struct cache_set *c)
781 {
782 struct btree *b;
783 struct closure cl;
784
785 closure_init_stack(&cl);
786
787 if (c->shrink.list.next)
788 unregister_shrinker(&c->shrink);
789
790 mutex_lock(&c->bucket_lock);
791
792 #ifdef CONFIG_BCACHE_DEBUG
793 if (c->verify_data)
794 list_move(&c->verify_data->list, &c->btree_cache);
795
796 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
797 #endif
798
799 list_splice(&c->btree_cache_freeable,
800 &c->btree_cache);
801
802 while (!list_empty(&c->btree_cache)) {
803 b = list_first_entry(&c->btree_cache, struct btree, list);
804
805 /*
806 * This function is called by cache_set_free(), no I/O
807 * request on cache now, it is unnecessary to acquire
808 * b->write_lock before clearing BTREE_NODE_dirty anymore.
809 */
810 if (btree_node_dirty(b)) {
811 btree_complete_write(b, btree_current_write(b));
812 clear_bit(BTREE_NODE_dirty, &b->flags);
813 }
814 mca_data_free(b);
815 }
816
817 while (!list_empty(&c->btree_cache_freed)) {
818 b = list_first_entry(&c->btree_cache_freed,
819 struct btree, list);
820 list_del(&b->list);
821 cancel_delayed_work_sync(&b->work);
822 kfree(b);
823 }
824
825 mutex_unlock(&c->bucket_lock);
826 }
827
bch_btree_cache_alloc(struct cache_set * c)828 int bch_btree_cache_alloc(struct cache_set *c)
829 {
830 unsigned int i;
831
832 for (i = 0; i < mca_reserve(c); i++)
833 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
834 return -ENOMEM;
835
836 list_splice_init(&c->btree_cache,
837 &c->btree_cache_freeable);
838
839 #ifdef CONFIG_BCACHE_DEBUG
840 mutex_init(&c->verify_lock);
841
842 c->verify_ondisk = (void *)
843 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
844
845 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
846
847 if (c->verify_data &&
848 c->verify_data->keys.set->data)
849 list_del_init(&c->verify_data->list);
850 else
851 c->verify_data = NULL;
852 #endif
853
854 c->shrink.count_objects = bch_mca_count;
855 c->shrink.scan_objects = bch_mca_scan;
856 c->shrink.seeks = 4;
857 c->shrink.batch = c->btree_pages * 2;
858
859 if (register_shrinker(&c->shrink))
860 pr_warn("bcache: %s: could not register shrinker",
861 __func__);
862
863 return 0;
864 }
865
866 /* Btree in memory cache - hash table */
867
mca_hash(struct cache_set * c,struct bkey * k)868 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
869 {
870 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
871 }
872
mca_find(struct cache_set * c,struct bkey * k)873 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
874 {
875 struct btree *b;
876
877 rcu_read_lock();
878 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
879 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
880 goto out;
881 b = NULL;
882 out:
883 rcu_read_unlock();
884 return b;
885 }
886
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)887 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
888 {
889 struct task_struct *old;
890
891 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
892 if (old && old != current) {
893 if (op)
894 prepare_to_wait(&c->btree_cache_wait, &op->wait,
895 TASK_UNINTERRUPTIBLE);
896 return -EINTR;
897 }
898
899 return 0;
900 }
901
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)902 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
903 struct bkey *k)
904 {
905 struct btree *b;
906
907 trace_bcache_btree_cache_cannibalize(c);
908
909 if (mca_cannibalize_lock(c, op))
910 return ERR_PTR(-EINTR);
911
912 list_for_each_entry_reverse(b, &c->btree_cache, list)
913 if (!mca_reap(b, btree_order(k), false))
914 return b;
915
916 list_for_each_entry_reverse(b, &c->btree_cache, list)
917 if (!mca_reap(b, btree_order(k), true))
918 return b;
919
920 WARN(1, "btree cache cannibalize failed\n");
921 return ERR_PTR(-ENOMEM);
922 }
923
924 /*
925 * We can only have one thread cannibalizing other cached btree nodes at a time,
926 * or we'll deadlock. We use an open coded mutex to ensure that, which a
927 * cannibalize_bucket() will take. This means every time we unlock the root of
928 * the btree, we need to release this lock if we have it held.
929 */
bch_cannibalize_unlock(struct cache_set * c)930 static void bch_cannibalize_unlock(struct cache_set *c)
931 {
932 if (c->btree_cache_alloc_lock == current) {
933 c->btree_cache_alloc_lock = NULL;
934 wake_up(&c->btree_cache_wait);
935 }
936 }
937
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)938 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
939 struct bkey *k, int level)
940 {
941 struct btree *b;
942
943 BUG_ON(current->bio_list);
944
945 lockdep_assert_held(&c->bucket_lock);
946
947 if (mca_find(c, k))
948 return NULL;
949
950 /* btree_free() doesn't free memory; it sticks the node on the end of
951 * the list. Check if there's any freed nodes there:
952 */
953 list_for_each_entry(b, &c->btree_cache_freeable, list)
954 if (!mca_reap(b, btree_order(k), false))
955 goto out;
956
957 /* We never free struct btree itself, just the memory that holds the on
958 * disk node. Check the freed list before allocating a new one:
959 */
960 list_for_each_entry(b, &c->btree_cache_freed, list)
961 if (!mca_reap(b, 0, false)) {
962 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
963 if (!b->keys.set[0].data)
964 goto err;
965 else
966 goto out;
967 }
968
969 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
970 if (!b)
971 goto err;
972
973 BUG_ON(!down_write_trylock(&b->lock));
974 if (!b->keys.set->data)
975 goto err;
976 out:
977 BUG_ON(b->io_mutex.count != 1);
978
979 bkey_copy(&b->key, k);
980 list_move(&b->list, &c->btree_cache);
981 hlist_del_init_rcu(&b->hash);
982 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
983
984 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
985 b->parent = (void *) ~0UL;
986 b->flags = 0;
987 b->written = 0;
988 b->level = level;
989
990 if (!b->level)
991 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
992 &b->c->expensive_debug_checks);
993 else
994 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
995 &b->c->expensive_debug_checks);
996
997 return b;
998 err:
999 if (b)
1000 rw_unlock(true, b);
1001
1002 b = mca_cannibalize(c, op, k);
1003 if (!IS_ERR(b))
1004 goto out;
1005
1006 return b;
1007 }
1008
1009 /*
1010 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1011 * in from disk if necessary.
1012 *
1013 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1014 *
1015 * The btree node will have either a read or a write lock held, depending on
1016 * level and op->lock.
1017 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)1018 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1019 struct bkey *k, int level, bool write,
1020 struct btree *parent)
1021 {
1022 int i = 0;
1023 struct btree *b;
1024
1025 BUG_ON(level < 0);
1026 retry:
1027 b = mca_find(c, k);
1028
1029 if (!b) {
1030 if (current->bio_list)
1031 return ERR_PTR(-EAGAIN);
1032
1033 mutex_lock(&c->bucket_lock);
1034 b = mca_alloc(c, op, k, level);
1035 mutex_unlock(&c->bucket_lock);
1036
1037 if (!b)
1038 goto retry;
1039 if (IS_ERR(b))
1040 return b;
1041
1042 bch_btree_node_read(b);
1043
1044 if (!write)
1045 downgrade_write(&b->lock);
1046 } else {
1047 rw_lock(write, b, level);
1048 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1049 rw_unlock(write, b);
1050 goto retry;
1051 }
1052 BUG_ON(b->level != level);
1053 }
1054
1055 if (btree_node_io_error(b)) {
1056 rw_unlock(write, b);
1057 return ERR_PTR(-EIO);
1058 }
1059
1060 BUG_ON(!b->written);
1061
1062 b->parent = parent;
1063 b->accessed = 1;
1064
1065 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1066 prefetch(b->keys.set[i].tree);
1067 prefetch(b->keys.set[i].data);
1068 }
1069
1070 for (; i <= b->keys.nsets; i++)
1071 prefetch(b->keys.set[i].data);
1072
1073 return b;
1074 }
1075
btree_node_prefetch(struct btree * parent,struct bkey * k)1076 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1077 {
1078 struct btree *b;
1079
1080 mutex_lock(&parent->c->bucket_lock);
1081 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1082 mutex_unlock(&parent->c->bucket_lock);
1083
1084 if (!IS_ERR_OR_NULL(b)) {
1085 b->parent = parent;
1086 bch_btree_node_read(b);
1087 rw_unlock(true, b);
1088 }
1089 }
1090
1091 /* Btree alloc */
1092
btree_node_free(struct btree * b)1093 static void btree_node_free(struct btree *b)
1094 {
1095 trace_bcache_btree_node_free(b);
1096
1097 BUG_ON(b == b->c->root);
1098
1099 retry:
1100 mutex_lock(&b->write_lock);
1101 /*
1102 * If the btree node is selected and flushing in btree_flush_write(),
1103 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1104 * then it is safe to free the btree node here. Otherwise this btree
1105 * node will be in race condition.
1106 */
1107 if (btree_node_journal_flush(b)) {
1108 mutex_unlock(&b->write_lock);
1109 pr_debug("bnode %p journal_flush set, retry", b);
1110 udelay(1);
1111 goto retry;
1112 }
1113
1114 if (btree_node_dirty(b)) {
1115 btree_complete_write(b, btree_current_write(b));
1116 clear_bit(BTREE_NODE_dirty, &b->flags);
1117 }
1118
1119 mutex_unlock(&b->write_lock);
1120
1121 cancel_delayed_work(&b->work);
1122
1123 mutex_lock(&b->c->bucket_lock);
1124 bch_bucket_free(b->c, &b->key);
1125 mca_bucket_free(b);
1126 mutex_unlock(&b->c->bucket_lock);
1127 }
1128
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1129 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1130 int level, bool wait,
1131 struct btree *parent)
1132 {
1133 BKEY_PADDED(key) k;
1134 struct btree *b = ERR_PTR(-EAGAIN);
1135
1136 mutex_lock(&c->bucket_lock);
1137 retry:
1138 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1139 goto err;
1140
1141 bkey_put(c, &k.key);
1142 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1143
1144 b = mca_alloc(c, op, &k.key, level);
1145 if (IS_ERR(b))
1146 goto err_free;
1147
1148 if (!b) {
1149 cache_bug(c,
1150 "Tried to allocate bucket that was in btree cache");
1151 goto retry;
1152 }
1153
1154 b->accessed = 1;
1155 b->parent = parent;
1156 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1157
1158 mutex_unlock(&c->bucket_lock);
1159
1160 trace_bcache_btree_node_alloc(b);
1161 return b;
1162 err_free:
1163 bch_bucket_free(c, &k.key);
1164 err:
1165 mutex_unlock(&c->bucket_lock);
1166
1167 trace_bcache_btree_node_alloc_fail(c);
1168 return b;
1169 }
1170
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1171 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1172 struct btree_op *op, int level,
1173 struct btree *parent)
1174 {
1175 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1176 }
1177
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1178 static struct btree *btree_node_alloc_replacement(struct btree *b,
1179 struct btree_op *op)
1180 {
1181 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1182
1183 if (!IS_ERR_OR_NULL(n)) {
1184 mutex_lock(&n->write_lock);
1185 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1186 bkey_copy_key(&n->key, &b->key);
1187 mutex_unlock(&n->write_lock);
1188 }
1189
1190 return n;
1191 }
1192
make_btree_freeing_key(struct btree * b,struct bkey * k)1193 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1194 {
1195 unsigned int i;
1196
1197 mutex_lock(&b->c->bucket_lock);
1198
1199 atomic_inc(&b->c->prio_blocked);
1200
1201 bkey_copy(k, &b->key);
1202 bkey_copy_key(k, &ZERO_KEY);
1203
1204 for (i = 0; i < KEY_PTRS(k); i++)
1205 SET_PTR_GEN(k, i,
1206 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1207 PTR_BUCKET(b->c, &b->key, i)));
1208
1209 mutex_unlock(&b->c->bucket_lock);
1210 }
1211
btree_check_reserve(struct btree * b,struct btree_op * op)1212 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1213 {
1214 struct cache_set *c = b->c;
1215 struct cache *ca;
1216 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1217
1218 mutex_lock(&c->bucket_lock);
1219
1220 for_each_cache(ca, c, i)
1221 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1222 if (op)
1223 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1224 TASK_UNINTERRUPTIBLE);
1225 mutex_unlock(&c->bucket_lock);
1226 return -EINTR;
1227 }
1228
1229 mutex_unlock(&c->bucket_lock);
1230
1231 return mca_cannibalize_lock(b->c, op);
1232 }
1233
1234 /* Garbage collection */
1235
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1236 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1237 struct bkey *k)
1238 {
1239 uint8_t stale = 0;
1240 unsigned int i;
1241 struct bucket *g;
1242
1243 /*
1244 * ptr_invalid() can't return true for the keys that mark btree nodes as
1245 * freed, but since ptr_bad() returns true we'll never actually use them
1246 * for anything and thus we don't want mark their pointers here
1247 */
1248 if (!bkey_cmp(k, &ZERO_KEY))
1249 return stale;
1250
1251 for (i = 0; i < KEY_PTRS(k); i++) {
1252 if (!ptr_available(c, k, i))
1253 continue;
1254
1255 g = PTR_BUCKET(c, k, i);
1256
1257 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1258 g->last_gc = PTR_GEN(k, i);
1259
1260 if (ptr_stale(c, k, i)) {
1261 stale = max(stale, ptr_stale(c, k, i));
1262 continue;
1263 }
1264
1265 cache_bug_on(GC_MARK(g) &&
1266 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1267 c, "inconsistent ptrs: mark = %llu, level = %i",
1268 GC_MARK(g), level);
1269
1270 if (level)
1271 SET_GC_MARK(g, GC_MARK_METADATA);
1272 else if (KEY_DIRTY(k))
1273 SET_GC_MARK(g, GC_MARK_DIRTY);
1274 else if (!GC_MARK(g))
1275 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1276
1277 /* guard against overflow */
1278 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1279 GC_SECTORS_USED(g) + KEY_SIZE(k),
1280 MAX_GC_SECTORS_USED));
1281
1282 BUG_ON(!GC_SECTORS_USED(g));
1283 }
1284
1285 return stale;
1286 }
1287
1288 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1289
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1290 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1291 {
1292 unsigned int i;
1293
1294 for (i = 0; i < KEY_PTRS(k); i++)
1295 if (ptr_available(c, k, i) &&
1296 !ptr_stale(c, k, i)) {
1297 struct bucket *b = PTR_BUCKET(c, k, i);
1298
1299 b->gen = PTR_GEN(k, i);
1300
1301 if (level && bkey_cmp(k, &ZERO_KEY))
1302 b->prio = BTREE_PRIO;
1303 else if (!level && b->prio == BTREE_PRIO)
1304 b->prio = INITIAL_PRIO;
1305 }
1306
1307 __bch_btree_mark_key(c, level, k);
1308 }
1309
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1310 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1311 {
1312 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1313 }
1314
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1315 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1316 {
1317 uint8_t stale = 0;
1318 unsigned int keys = 0, good_keys = 0;
1319 struct bkey *k;
1320 struct btree_iter iter;
1321 struct bset_tree *t;
1322
1323 gc->nodes++;
1324
1325 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1326 stale = max(stale, btree_mark_key(b, k));
1327 keys++;
1328
1329 if (bch_ptr_bad(&b->keys, k))
1330 continue;
1331
1332 gc->key_bytes += bkey_u64s(k);
1333 gc->nkeys++;
1334 good_keys++;
1335
1336 gc->data += KEY_SIZE(k);
1337 }
1338
1339 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1340 btree_bug_on(t->size &&
1341 bset_written(&b->keys, t) &&
1342 bkey_cmp(&b->key, &t->end) < 0,
1343 b, "found short btree key in gc");
1344
1345 if (b->c->gc_always_rewrite)
1346 return true;
1347
1348 if (stale > 10)
1349 return true;
1350
1351 if ((keys - good_keys) * 2 > keys)
1352 return true;
1353
1354 return false;
1355 }
1356
1357 #define GC_MERGE_NODES 4U
1358
1359 struct gc_merge_info {
1360 struct btree *b;
1361 unsigned int keys;
1362 };
1363
1364 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1365 struct keylist *insert_keys,
1366 atomic_t *journal_ref,
1367 struct bkey *replace_key);
1368
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1369 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1370 struct gc_stat *gc, struct gc_merge_info *r)
1371 {
1372 unsigned int i, nodes = 0, keys = 0, blocks;
1373 struct btree *new_nodes[GC_MERGE_NODES];
1374 struct keylist keylist;
1375 struct closure cl;
1376 struct bkey *k;
1377
1378 bch_keylist_init(&keylist);
1379
1380 if (btree_check_reserve(b, NULL))
1381 return 0;
1382
1383 memset(new_nodes, 0, sizeof(new_nodes));
1384 closure_init_stack(&cl);
1385
1386 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1387 keys += r[nodes++].keys;
1388
1389 blocks = btree_default_blocks(b->c) * 2 / 3;
1390
1391 if (nodes < 2 ||
1392 __set_blocks(b->keys.set[0].data, keys,
1393 block_bytes(b->c)) > blocks * (nodes - 1))
1394 return 0;
1395
1396 for (i = 0; i < nodes; i++) {
1397 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1398 if (IS_ERR_OR_NULL(new_nodes[i]))
1399 goto out_nocoalesce;
1400 }
1401
1402 /*
1403 * We have to check the reserve here, after we've allocated our new
1404 * nodes, to make sure the insert below will succeed - we also check
1405 * before as an optimization to potentially avoid a bunch of expensive
1406 * allocs/sorts
1407 */
1408 if (btree_check_reserve(b, NULL))
1409 goto out_nocoalesce;
1410
1411 for (i = 0; i < nodes; i++)
1412 mutex_lock(&new_nodes[i]->write_lock);
1413
1414 for (i = nodes - 1; i > 0; --i) {
1415 struct bset *n1 = btree_bset_first(new_nodes[i]);
1416 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1417 struct bkey *k, *last = NULL;
1418
1419 keys = 0;
1420
1421 if (i > 1) {
1422 for (k = n2->start;
1423 k < bset_bkey_last(n2);
1424 k = bkey_next(k)) {
1425 if (__set_blocks(n1, n1->keys + keys +
1426 bkey_u64s(k),
1427 block_bytes(b->c)) > blocks)
1428 break;
1429
1430 last = k;
1431 keys += bkey_u64s(k);
1432 }
1433 } else {
1434 /*
1435 * Last node we're not getting rid of - we're getting
1436 * rid of the node at r[0]. Have to try and fit all of
1437 * the remaining keys into this node; we can't ensure
1438 * they will always fit due to rounding and variable
1439 * length keys (shouldn't be possible in practice,
1440 * though)
1441 */
1442 if (__set_blocks(n1, n1->keys + n2->keys,
1443 block_bytes(b->c)) >
1444 btree_blocks(new_nodes[i]))
1445 goto out_nocoalesce;
1446
1447 keys = n2->keys;
1448 /* Take the key of the node we're getting rid of */
1449 last = &r->b->key;
1450 }
1451
1452 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1453 btree_blocks(new_nodes[i]));
1454
1455 if (last)
1456 bkey_copy_key(&new_nodes[i]->key, last);
1457
1458 memcpy(bset_bkey_last(n1),
1459 n2->start,
1460 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1461
1462 n1->keys += keys;
1463 r[i].keys = n1->keys;
1464
1465 memmove(n2->start,
1466 bset_bkey_idx(n2, keys),
1467 (void *) bset_bkey_last(n2) -
1468 (void *) bset_bkey_idx(n2, keys));
1469
1470 n2->keys -= keys;
1471
1472 if (__bch_keylist_realloc(&keylist,
1473 bkey_u64s(&new_nodes[i]->key)))
1474 goto out_nocoalesce;
1475
1476 bch_btree_node_write(new_nodes[i], &cl);
1477 bch_keylist_add(&keylist, &new_nodes[i]->key);
1478 }
1479
1480 for (i = 0; i < nodes; i++)
1481 mutex_unlock(&new_nodes[i]->write_lock);
1482
1483 closure_sync(&cl);
1484
1485 /* We emptied out this node */
1486 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1487 btree_node_free(new_nodes[0]);
1488 rw_unlock(true, new_nodes[0]);
1489 new_nodes[0] = NULL;
1490
1491 for (i = 0; i < nodes; i++) {
1492 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1493 goto out_nocoalesce;
1494
1495 make_btree_freeing_key(r[i].b, keylist.top);
1496 bch_keylist_push(&keylist);
1497 }
1498
1499 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1500 BUG_ON(!bch_keylist_empty(&keylist));
1501
1502 for (i = 0; i < nodes; i++) {
1503 btree_node_free(r[i].b);
1504 rw_unlock(true, r[i].b);
1505
1506 r[i].b = new_nodes[i];
1507 }
1508
1509 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1510 r[nodes - 1].b = ERR_PTR(-EINTR);
1511
1512 trace_bcache_btree_gc_coalesce(nodes);
1513 gc->nodes--;
1514
1515 bch_keylist_free(&keylist);
1516
1517 /* Invalidated our iterator */
1518 return -EINTR;
1519
1520 out_nocoalesce:
1521 closure_sync(&cl);
1522
1523 while ((k = bch_keylist_pop(&keylist)))
1524 if (!bkey_cmp(k, &ZERO_KEY))
1525 atomic_dec(&b->c->prio_blocked);
1526 bch_keylist_free(&keylist);
1527
1528 for (i = 0; i < nodes; i++)
1529 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1530 btree_node_free(new_nodes[i]);
1531 rw_unlock(true, new_nodes[i]);
1532 }
1533 return 0;
1534 }
1535
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1536 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1537 struct btree *replace)
1538 {
1539 struct keylist keys;
1540 struct btree *n;
1541
1542 if (btree_check_reserve(b, NULL))
1543 return 0;
1544
1545 n = btree_node_alloc_replacement(replace, NULL);
1546
1547 /* recheck reserve after allocating replacement node */
1548 if (btree_check_reserve(b, NULL)) {
1549 btree_node_free(n);
1550 rw_unlock(true, n);
1551 return 0;
1552 }
1553
1554 bch_btree_node_write_sync(n);
1555
1556 bch_keylist_init(&keys);
1557 bch_keylist_add(&keys, &n->key);
1558
1559 make_btree_freeing_key(replace, keys.top);
1560 bch_keylist_push(&keys);
1561
1562 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1563 BUG_ON(!bch_keylist_empty(&keys));
1564
1565 btree_node_free(replace);
1566 rw_unlock(true, n);
1567
1568 /* Invalidated our iterator */
1569 return -EINTR;
1570 }
1571
btree_gc_count_keys(struct btree * b)1572 static unsigned int btree_gc_count_keys(struct btree *b)
1573 {
1574 struct bkey *k;
1575 struct btree_iter iter;
1576 unsigned int ret = 0;
1577
1578 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1579 ret += bkey_u64s(k);
1580
1581 return ret;
1582 }
1583
btree_gc_min_nodes(struct cache_set * c)1584 static size_t btree_gc_min_nodes(struct cache_set *c)
1585 {
1586 size_t min_nodes;
1587
1588 /*
1589 * Since incremental GC would stop 100ms when front
1590 * side I/O comes, so when there are many btree nodes,
1591 * if GC only processes constant (100) nodes each time,
1592 * GC would last a long time, and the front side I/Os
1593 * would run out of the buckets (since no new bucket
1594 * can be allocated during GC), and be blocked again.
1595 * So GC should not process constant nodes, but varied
1596 * nodes according to the number of btree nodes, which
1597 * realized by dividing GC into constant(100) times,
1598 * so when there are many btree nodes, GC can process
1599 * more nodes each time, otherwise, GC will process less
1600 * nodes each time (but no less than MIN_GC_NODES)
1601 */
1602 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1603 if (min_nodes < MIN_GC_NODES)
1604 min_nodes = MIN_GC_NODES;
1605
1606 return min_nodes;
1607 }
1608
1609
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1610 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1611 struct closure *writes, struct gc_stat *gc)
1612 {
1613 int ret = 0;
1614 bool should_rewrite;
1615 struct bkey *k;
1616 struct btree_iter iter;
1617 struct gc_merge_info r[GC_MERGE_NODES];
1618 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1619
1620 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1621
1622 for (i = r; i < r + ARRAY_SIZE(r); i++)
1623 i->b = ERR_PTR(-EINTR);
1624
1625 while (1) {
1626 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1627 if (k) {
1628 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1629 true, b);
1630 if (IS_ERR(r->b)) {
1631 ret = PTR_ERR(r->b);
1632 break;
1633 }
1634
1635 r->keys = btree_gc_count_keys(r->b);
1636
1637 ret = btree_gc_coalesce(b, op, gc, r);
1638 if (ret)
1639 break;
1640 }
1641
1642 if (!last->b)
1643 break;
1644
1645 if (!IS_ERR(last->b)) {
1646 should_rewrite = btree_gc_mark_node(last->b, gc);
1647 if (should_rewrite) {
1648 ret = btree_gc_rewrite_node(b, op, last->b);
1649 if (ret)
1650 break;
1651 }
1652
1653 if (last->b->level) {
1654 ret = btree_gc_recurse(last->b, op, writes, gc);
1655 if (ret)
1656 break;
1657 }
1658
1659 bkey_copy_key(&b->c->gc_done, &last->b->key);
1660
1661 /*
1662 * Must flush leaf nodes before gc ends, since replace
1663 * operations aren't journalled
1664 */
1665 mutex_lock(&last->b->write_lock);
1666 if (btree_node_dirty(last->b))
1667 bch_btree_node_write(last->b, writes);
1668 mutex_unlock(&last->b->write_lock);
1669 rw_unlock(true, last->b);
1670 }
1671
1672 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1673 r->b = NULL;
1674
1675 if (atomic_read(&b->c->search_inflight) &&
1676 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1677 gc->nodes_pre = gc->nodes;
1678 ret = -EAGAIN;
1679 break;
1680 }
1681
1682 if (need_resched()) {
1683 ret = -EAGAIN;
1684 break;
1685 }
1686 }
1687
1688 for (i = r; i < r + ARRAY_SIZE(r); i++)
1689 if (!IS_ERR_OR_NULL(i->b)) {
1690 mutex_lock(&i->b->write_lock);
1691 if (btree_node_dirty(i->b))
1692 bch_btree_node_write(i->b, writes);
1693 mutex_unlock(&i->b->write_lock);
1694 rw_unlock(true, i->b);
1695 }
1696
1697 return ret;
1698 }
1699
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1700 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1701 struct closure *writes, struct gc_stat *gc)
1702 {
1703 struct btree *n = NULL;
1704 int ret = 0;
1705 bool should_rewrite;
1706
1707 should_rewrite = btree_gc_mark_node(b, gc);
1708 if (should_rewrite) {
1709 n = btree_node_alloc_replacement(b, NULL);
1710
1711 if (!IS_ERR_OR_NULL(n)) {
1712 bch_btree_node_write_sync(n);
1713
1714 bch_btree_set_root(n);
1715 btree_node_free(b);
1716 rw_unlock(true, n);
1717
1718 return -EINTR;
1719 }
1720 }
1721
1722 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1723
1724 if (b->level) {
1725 ret = btree_gc_recurse(b, op, writes, gc);
1726 if (ret)
1727 return ret;
1728 }
1729
1730 bkey_copy_key(&b->c->gc_done, &b->key);
1731
1732 return ret;
1733 }
1734
btree_gc_start(struct cache_set * c)1735 static void btree_gc_start(struct cache_set *c)
1736 {
1737 struct cache *ca;
1738 struct bucket *b;
1739 unsigned int i;
1740
1741 if (!c->gc_mark_valid)
1742 return;
1743
1744 mutex_lock(&c->bucket_lock);
1745
1746 c->gc_mark_valid = 0;
1747 c->gc_done = ZERO_KEY;
1748
1749 for_each_cache(ca, c, i)
1750 for_each_bucket(b, ca) {
1751 b->last_gc = b->gen;
1752 if (!atomic_read(&b->pin)) {
1753 SET_GC_MARK(b, 0);
1754 SET_GC_SECTORS_USED(b, 0);
1755 }
1756 }
1757
1758 mutex_unlock(&c->bucket_lock);
1759 }
1760
bch_btree_gc_finish(struct cache_set * c)1761 static void bch_btree_gc_finish(struct cache_set *c)
1762 {
1763 struct bucket *b;
1764 struct cache *ca;
1765 unsigned int i;
1766
1767 mutex_lock(&c->bucket_lock);
1768
1769 set_gc_sectors(c);
1770 c->gc_mark_valid = 1;
1771 c->need_gc = 0;
1772
1773 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1774 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1775 GC_MARK_METADATA);
1776
1777 /* don't reclaim buckets to which writeback keys point */
1778 rcu_read_lock();
1779 for (i = 0; i < c->devices_max_used; i++) {
1780 struct bcache_device *d = c->devices[i];
1781 struct cached_dev *dc;
1782 struct keybuf_key *w, *n;
1783 unsigned int j;
1784
1785 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1786 continue;
1787 dc = container_of(d, struct cached_dev, disk);
1788
1789 spin_lock(&dc->writeback_keys.lock);
1790 rbtree_postorder_for_each_entry_safe(w, n,
1791 &dc->writeback_keys.keys, node)
1792 for (j = 0; j < KEY_PTRS(&w->key); j++)
1793 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1794 GC_MARK_DIRTY);
1795 spin_unlock(&dc->writeback_keys.lock);
1796 }
1797 rcu_read_unlock();
1798
1799 c->avail_nbuckets = 0;
1800 for_each_cache(ca, c, i) {
1801 uint64_t *i;
1802
1803 ca->invalidate_needs_gc = 0;
1804
1805 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1806 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1807
1808 for (i = ca->prio_buckets;
1809 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1810 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1811
1812 for_each_bucket(b, ca) {
1813 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1814
1815 if (atomic_read(&b->pin))
1816 continue;
1817
1818 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1819
1820 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1821 c->avail_nbuckets++;
1822 }
1823 }
1824
1825 mutex_unlock(&c->bucket_lock);
1826 }
1827
bch_btree_gc(struct cache_set * c)1828 static void bch_btree_gc(struct cache_set *c)
1829 {
1830 int ret;
1831 struct gc_stat stats;
1832 struct closure writes;
1833 struct btree_op op;
1834 uint64_t start_time = local_clock();
1835
1836 trace_bcache_gc_start(c);
1837
1838 memset(&stats, 0, sizeof(struct gc_stat));
1839 closure_init_stack(&writes);
1840 bch_btree_op_init(&op, SHRT_MAX);
1841
1842 btree_gc_start(c);
1843
1844 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1845 do {
1846 ret = btree_root(gc_root, c, &op, &writes, &stats);
1847 closure_sync(&writes);
1848 cond_resched();
1849
1850 if (ret == -EAGAIN)
1851 schedule_timeout_interruptible(msecs_to_jiffies
1852 (GC_SLEEP_MS));
1853 else if (ret)
1854 pr_warn("gc failed!");
1855 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1856
1857 bch_btree_gc_finish(c);
1858 wake_up_allocators(c);
1859
1860 bch_time_stats_update(&c->btree_gc_time, start_time);
1861
1862 stats.key_bytes *= sizeof(uint64_t);
1863 stats.data <<= 9;
1864 bch_update_bucket_in_use(c, &stats);
1865 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1866
1867 trace_bcache_gc_end(c);
1868
1869 bch_moving_gc(c);
1870 }
1871
gc_should_run(struct cache_set * c)1872 static bool gc_should_run(struct cache_set *c)
1873 {
1874 struct cache *ca;
1875 unsigned int i;
1876
1877 for_each_cache(ca, c, i)
1878 if (ca->invalidate_needs_gc)
1879 return true;
1880
1881 if (atomic_read(&c->sectors_to_gc) < 0)
1882 return true;
1883
1884 return false;
1885 }
1886
bch_gc_thread(void * arg)1887 static int bch_gc_thread(void *arg)
1888 {
1889 struct cache_set *c = arg;
1890
1891 while (1) {
1892 wait_event_interruptible(c->gc_wait,
1893 kthread_should_stop() ||
1894 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1895 gc_should_run(c));
1896
1897 if (kthread_should_stop() ||
1898 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1899 break;
1900
1901 set_gc_sectors(c);
1902 bch_btree_gc(c);
1903 }
1904
1905 wait_for_kthread_stop();
1906 return 0;
1907 }
1908
bch_gc_thread_start(struct cache_set * c)1909 int bch_gc_thread_start(struct cache_set *c)
1910 {
1911 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1912 return PTR_ERR_OR_ZERO(c->gc_thread);
1913 }
1914
1915 /* Initial partial gc */
1916
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1917 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1918 {
1919 int ret = 0;
1920 struct bkey *k, *p = NULL;
1921 struct btree_iter iter;
1922
1923 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1924 bch_initial_mark_key(b->c, b->level, k);
1925
1926 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1927
1928 if (b->level) {
1929 bch_btree_iter_init(&b->keys, &iter, NULL);
1930
1931 do {
1932 k = bch_btree_iter_next_filter(&iter, &b->keys,
1933 bch_ptr_bad);
1934 if (k) {
1935 btree_node_prefetch(b, k);
1936 /*
1937 * initiallize c->gc_stats.nodes
1938 * for incremental GC
1939 */
1940 b->c->gc_stats.nodes++;
1941 }
1942
1943 if (p)
1944 ret = btree(check_recurse, p, b, op);
1945
1946 p = k;
1947 } while (p && !ret);
1948 }
1949
1950 return ret;
1951 }
1952
bch_btree_check(struct cache_set * c)1953 int bch_btree_check(struct cache_set *c)
1954 {
1955 struct btree_op op;
1956
1957 bch_btree_op_init(&op, SHRT_MAX);
1958
1959 return btree_root(check_recurse, c, &op);
1960 }
1961
bch_initial_gc_finish(struct cache_set * c)1962 void bch_initial_gc_finish(struct cache_set *c)
1963 {
1964 struct cache *ca;
1965 struct bucket *b;
1966 unsigned int i;
1967
1968 bch_btree_gc_finish(c);
1969
1970 mutex_lock(&c->bucket_lock);
1971
1972 /*
1973 * We need to put some unused buckets directly on the prio freelist in
1974 * order to get the allocator thread started - it needs freed buckets in
1975 * order to rewrite the prios and gens, and it needs to rewrite prios
1976 * and gens in order to free buckets.
1977 *
1978 * This is only safe for buckets that have no live data in them, which
1979 * there should always be some of.
1980 */
1981 for_each_cache(ca, c, i) {
1982 for_each_bucket(b, ca) {
1983 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1984 fifo_full(&ca->free[RESERVE_BTREE]))
1985 break;
1986
1987 if (bch_can_invalidate_bucket(ca, b) &&
1988 !GC_MARK(b)) {
1989 __bch_invalidate_one_bucket(ca, b);
1990 if (!fifo_push(&ca->free[RESERVE_PRIO],
1991 b - ca->buckets))
1992 fifo_push(&ca->free[RESERVE_BTREE],
1993 b - ca->buckets);
1994 }
1995 }
1996 }
1997
1998 mutex_unlock(&c->bucket_lock);
1999 }
2000
2001 /* Btree insertion */
2002
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2003 static bool btree_insert_key(struct btree *b, struct bkey *k,
2004 struct bkey *replace_key)
2005 {
2006 unsigned int status;
2007
2008 BUG_ON(bkey_cmp(k, &b->key) > 0);
2009
2010 status = bch_btree_insert_key(&b->keys, k, replace_key);
2011 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2012 bch_check_keys(&b->keys, "%u for %s", status,
2013 replace_key ? "replace" : "insert");
2014
2015 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2016 status);
2017 return true;
2018 } else
2019 return false;
2020 }
2021
insert_u64s_remaining(struct btree * b)2022 static size_t insert_u64s_remaining(struct btree *b)
2023 {
2024 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2025
2026 /*
2027 * Might land in the middle of an existing extent and have to split it
2028 */
2029 if (b->keys.ops->is_extents)
2030 ret -= KEY_MAX_U64S;
2031
2032 return max(ret, 0L);
2033 }
2034
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2035 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2036 struct keylist *insert_keys,
2037 struct bkey *replace_key)
2038 {
2039 bool ret = false;
2040 int oldsize = bch_count_data(&b->keys);
2041
2042 while (!bch_keylist_empty(insert_keys)) {
2043 struct bkey *k = insert_keys->keys;
2044
2045 if (bkey_u64s(k) > insert_u64s_remaining(b))
2046 break;
2047
2048 if (bkey_cmp(k, &b->key) <= 0) {
2049 if (!b->level)
2050 bkey_put(b->c, k);
2051
2052 ret |= btree_insert_key(b, k, replace_key);
2053 bch_keylist_pop_front(insert_keys);
2054 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2055 BKEY_PADDED(key) temp;
2056 bkey_copy(&temp.key, insert_keys->keys);
2057
2058 bch_cut_back(&b->key, &temp.key);
2059 bch_cut_front(&b->key, insert_keys->keys);
2060
2061 ret |= btree_insert_key(b, &temp.key, replace_key);
2062 break;
2063 } else {
2064 break;
2065 }
2066 }
2067
2068 if (!ret)
2069 op->insert_collision = true;
2070
2071 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2072
2073 BUG_ON(bch_count_data(&b->keys) < oldsize);
2074 return ret;
2075 }
2076
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2077 static int btree_split(struct btree *b, struct btree_op *op,
2078 struct keylist *insert_keys,
2079 struct bkey *replace_key)
2080 {
2081 bool split;
2082 struct btree *n1, *n2 = NULL, *n3 = NULL;
2083 uint64_t start_time = local_clock();
2084 struct closure cl;
2085 struct keylist parent_keys;
2086
2087 closure_init_stack(&cl);
2088 bch_keylist_init(&parent_keys);
2089
2090 if (btree_check_reserve(b, op)) {
2091 if (!b->level)
2092 return -EINTR;
2093 else
2094 WARN(1, "insufficient reserve for split\n");
2095 }
2096
2097 n1 = btree_node_alloc_replacement(b, op);
2098 if (IS_ERR(n1))
2099 goto err;
2100
2101 split = set_blocks(btree_bset_first(n1),
2102 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2103
2104 if (split) {
2105 unsigned int keys = 0;
2106
2107 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2108
2109 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2110 if (IS_ERR(n2))
2111 goto err_free1;
2112
2113 if (!b->parent) {
2114 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2115 if (IS_ERR(n3))
2116 goto err_free2;
2117 }
2118
2119 mutex_lock(&n1->write_lock);
2120 mutex_lock(&n2->write_lock);
2121
2122 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2123
2124 /*
2125 * Has to be a linear search because we don't have an auxiliary
2126 * search tree yet
2127 */
2128
2129 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2130 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2131 keys));
2132
2133 bkey_copy_key(&n1->key,
2134 bset_bkey_idx(btree_bset_first(n1), keys));
2135 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2136
2137 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2138 btree_bset_first(n1)->keys = keys;
2139
2140 memcpy(btree_bset_first(n2)->start,
2141 bset_bkey_last(btree_bset_first(n1)),
2142 btree_bset_first(n2)->keys * sizeof(uint64_t));
2143
2144 bkey_copy_key(&n2->key, &b->key);
2145
2146 bch_keylist_add(&parent_keys, &n2->key);
2147 bch_btree_node_write(n2, &cl);
2148 mutex_unlock(&n2->write_lock);
2149 rw_unlock(true, n2);
2150 } else {
2151 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2152
2153 mutex_lock(&n1->write_lock);
2154 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2155 }
2156
2157 bch_keylist_add(&parent_keys, &n1->key);
2158 bch_btree_node_write(n1, &cl);
2159 mutex_unlock(&n1->write_lock);
2160
2161 if (n3) {
2162 /* Depth increases, make a new root */
2163 mutex_lock(&n3->write_lock);
2164 bkey_copy_key(&n3->key, &MAX_KEY);
2165 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2166 bch_btree_node_write(n3, &cl);
2167 mutex_unlock(&n3->write_lock);
2168
2169 closure_sync(&cl);
2170 bch_btree_set_root(n3);
2171 rw_unlock(true, n3);
2172 } else if (!b->parent) {
2173 /* Root filled up but didn't need to be split */
2174 closure_sync(&cl);
2175 bch_btree_set_root(n1);
2176 } else {
2177 /* Split a non root node */
2178 closure_sync(&cl);
2179 make_btree_freeing_key(b, parent_keys.top);
2180 bch_keylist_push(&parent_keys);
2181
2182 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2183 BUG_ON(!bch_keylist_empty(&parent_keys));
2184 }
2185
2186 btree_node_free(b);
2187 rw_unlock(true, n1);
2188
2189 bch_time_stats_update(&b->c->btree_split_time, start_time);
2190
2191 return 0;
2192 err_free2:
2193 bkey_put(b->c, &n2->key);
2194 btree_node_free(n2);
2195 rw_unlock(true, n2);
2196 err_free1:
2197 bkey_put(b->c, &n1->key);
2198 btree_node_free(n1);
2199 rw_unlock(true, n1);
2200 err:
2201 WARN(1, "bcache: btree split failed (level %u)", b->level);
2202
2203 if (n3 == ERR_PTR(-EAGAIN) ||
2204 n2 == ERR_PTR(-EAGAIN) ||
2205 n1 == ERR_PTR(-EAGAIN))
2206 return -EAGAIN;
2207
2208 return -ENOMEM;
2209 }
2210
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2211 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2212 struct keylist *insert_keys,
2213 atomic_t *journal_ref,
2214 struct bkey *replace_key)
2215 {
2216 struct closure cl;
2217
2218 BUG_ON(b->level && replace_key);
2219
2220 closure_init_stack(&cl);
2221
2222 mutex_lock(&b->write_lock);
2223
2224 if (write_block(b) != btree_bset_last(b) &&
2225 b->keys.last_set_unwritten)
2226 bch_btree_init_next(b); /* just wrote a set */
2227
2228 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2229 mutex_unlock(&b->write_lock);
2230 goto split;
2231 }
2232
2233 BUG_ON(write_block(b) != btree_bset_last(b));
2234
2235 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2236 if (!b->level)
2237 bch_btree_leaf_dirty(b, journal_ref);
2238 else
2239 bch_btree_node_write(b, &cl);
2240 }
2241
2242 mutex_unlock(&b->write_lock);
2243
2244 /* wait for btree node write if necessary, after unlock */
2245 closure_sync(&cl);
2246
2247 return 0;
2248 split:
2249 if (current->bio_list) {
2250 op->lock = b->c->root->level + 1;
2251 return -EAGAIN;
2252 } else if (op->lock <= b->c->root->level) {
2253 op->lock = b->c->root->level + 1;
2254 return -EINTR;
2255 } else {
2256 /* Invalidated all iterators */
2257 int ret = btree_split(b, op, insert_keys, replace_key);
2258
2259 if (bch_keylist_empty(insert_keys))
2260 return 0;
2261 else if (!ret)
2262 return -EINTR;
2263 return ret;
2264 }
2265 }
2266
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2267 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2268 struct bkey *check_key)
2269 {
2270 int ret = -EINTR;
2271 uint64_t btree_ptr = b->key.ptr[0];
2272 unsigned long seq = b->seq;
2273 struct keylist insert;
2274 bool upgrade = op->lock == -1;
2275
2276 bch_keylist_init(&insert);
2277
2278 if (upgrade) {
2279 rw_unlock(false, b);
2280 rw_lock(true, b, b->level);
2281
2282 if (b->key.ptr[0] != btree_ptr ||
2283 b->seq != seq + 1) {
2284 op->lock = b->level;
2285 goto out;
2286 }
2287 }
2288
2289 SET_KEY_PTRS(check_key, 1);
2290 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2291
2292 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2293
2294 bch_keylist_add(&insert, check_key);
2295
2296 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2297
2298 BUG_ON(!ret && !bch_keylist_empty(&insert));
2299 out:
2300 if (upgrade)
2301 downgrade_write(&b->lock);
2302 return ret;
2303 }
2304
2305 struct btree_insert_op {
2306 struct btree_op op;
2307 struct keylist *keys;
2308 atomic_t *journal_ref;
2309 struct bkey *replace_key;
2310 };
2311
btree_insert_fn(struct btree_op * b_op,struct btree * b)2312 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2313 {
2314 struct btree_insert_op *op = container_of(b_op,
2315 struct btree_insert_op, op);
2316
2317 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2318 op->journal_ref, op->replace_key);
2319 if (ret && !bch_keylist_empty(op->keys))
2320 return ret;
2321 else
2322 return MAP_DONE;
2323 }
2324
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2325 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2326 atomic_t *journal_ref, struct bkey *replace_key)
2327 {
2328 struct btree_insert_op op;
2329 int ret = 0;
2330
2331 BUG_ON(current->bio_list);
2332 BUG_ON(bch_keylist_empty(keys));
2333
2334 bch_btree_op_init(&op.op, 0);
2335 op.keys = keys;
2336 op.journal_ref = journal_ref;
2337 op.replace_key = replace_key;
2338
2339 while (!ret && !bch_keylist_empty(keys)) {
2340 op.op.lock = 0;
2341 ret = bch_btree_map_leaf_nodes(&op.op, c,
2342 &START_KEY(keys->keys),
2343 btree_insert_fn);
2344 }
2345
2346 if (ret) {
2347 struct bkey *k;
2348
2349 pr_err("error %i", ret);
2350
2351 while ((k = bch_keylist_pop(keys)))
2352 bkey_put(c, k);
2353 } else if (op.op.insert_collision)
2354 ret = -ESRCH;
2355
2356 return ret;
2357 }
2358
bch_btree_set_root(struct btree * b)2359 void bch_btree_set_root(struct btree *b)
2360 {
2361 unsigned int i;
2362 struct closure cl;
2363
2364 closure_init_stack(&cl);
2365
2366 trace_bcache_btree_set_root(b);
2367
2368 BUG_ON(!b->written);
2369
2370 for (i = 0; i < KEY_PTRS(&b->key); i++)
2371 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2372
2373 mutex_lock(&b->c->bucket_lock);
2374 list_del_init(&b->list);
2375 mutex_unlock(&b->c->bucket_lock);
2376
2377 b->c->root = b;
2378
2379 bch_journal_meta(b->c, &cl);
2380 closure_sync(&cl);
2381 }
2382
2383 /* Map across nodes or keys */
2384
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2385 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2386 struct bkey *from,
2387 btree_map_nodes_fn *fn, int flags)
2388 {
2389 int ret = MAP_CONTINUE;
2390
2391 if (b->level) {
2392 struct bkey *k;
2393 struct btree_iter iter;
2394
2395 bch_btree_iter_init(&b->keys, &iter, from);
2396
2397 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2398 bch_ptr_bad))) {
2399 ret = btree(map_nodes_recurse, k, b,
2400 op, from, fn, flags);
2401 from = NULL;
2402
2403 if (ret != MAP_CONTINUE)
2404 return ret;
2405 }
2406 }
2407
2408 if (!b->level || flags == MAP_ALL_NODES)
2409 ret = fn(op, b);
2410
2411 return ret;
2412 }
2413
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2414 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2415 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2416 {
2417 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2418 }
2419
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2420 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2421 struct bkey *from, btree_map_keys_fn *fn,
2422 int flags)
2423 {
2424 int ret = MAP_CONTINUE;
2425 struct bkey *k;
2426 struct btree_iter iter;
2427
2428 bch_btree_iter_init(&b->keys, &iter, from);
2429
2430 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2431 ret = !b->level
2432 ? fn(op, b, k)
2433 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2434 from = NULL;
2435
2436 if (ret != MAP_CONTINUE)
2437 return ret;
2438 }
2439
2440 if (!b->level && (flags & MAP_END_KEY))
2441 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2442 KEY_OFFSET(&b->key), 0));
2443
2444 return ret;
2445 }
2446
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2447 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2448 struct bkey *from, btree_map_keys_fn *fn, int flags)
2449 {
2450 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2451 }
2452
2453 /* Keybuf code */
2454
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2455 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2456 {
2457 /* Overlapping keys compare equal */
2458 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2459 return -1;
2460 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2461 return 1;
2462 return 0;
2463 }
2464
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2465 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2466 struct keybuf_key *r)
2467 {
2468 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2469 }
2470
2471 struct refill {
2472 struct btree_op op;
2473 unsigned int nr_found;
2474 struct keybuf *buf;
2475 struct bkey *end;
2476 keybuf_pred_fn *pred;
2477 };
2478
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2479 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2480 struct bkey *k)
2481 {
2482 struct refill *refill = container_of(op, struct refill, op);
2483 struct keybuf *buf = refill->buf;
2484 int ret = MAP_CONTINUE;
2485
2486 if (bkey_cmp(k, refill->end) > 0) {
2487 ret = MAP_DONE;
2488 goto out;
2489 }
2490
2491 if (!KEY_SIZE(k)) /* end key */
2492 goto out;
2493
2494 if (refill->pred(buf, k)) {
2495 struct keybuf_key *w;
2496
2497 spin_lock(&buf->lock);
2498
2499 w = array_alloc(&buf->freelist);
2500 if (!w) {
2501 spin_unlock(&buf->lock);
2502 return MAP_DONE;
2503 }
2504
2505 w->private = NULL;
2506 bkey_copy(&w->key, k);
2507
2508 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2509 array_free(&buf->freelist, w);
2510 else
2511 refill->nr_found++;
2512
2513 if (array_freelist_empty(&buf->freelist))
2514 ret = MAP_DONE;
2515
2516 spin_unlock(&buf->lock);
2517 }
2518 out:
2519 buf->last_scanned = *k;
2520 return ret;
2521 }
2522
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2523 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2524 struct bkey *end, keybuf_pred_fn *pred)
2525 {
2526 struct bkey start = buf->last_scanned;
2527 struct refill refill;
2528
2529 cond_resched();
2530
2531 bch_btree_op_init(&refill.op, -1);
2532 refill.nr_found = 0;
2533 refill.buf = buf;
2534 refill.end = end;
2535 refill.pred = pred;
2536
2537 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2538 refill_keybuf_fn, MAP_END_KEY);
2539
2540 trace_bcache_keyscan(refill.nr_found,
2541 KEY_INODE(&start), KEY_OFFSET(&start),
2542 KEY_INODE(&buf->last_scanned),
2543 KEY_OFFSET(&buf->last_scanned));
2544
2545 spin_lock(&buf->lock);
2546
2547 if (!RB_EMPTY_ROOT(&buf->keys)) {
2548 struct keybuf_key *w;
2549
2550 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2551 buf->start = START_KEY(&w->key);
2552
2553 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2554 buf->end = w->key;
2555 } else {
2556 buf->start = MAX_KEY;
2557 buf->end = MAX_KEY;
2558 }
2559
2560 spin_unlock(&buf->lock);
2561 }
2562
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2563 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2564 {
2565 rb_erase(&w->node, &buf->keys);
2566 array_free(&buf->freelist, w);
2567 }
2568
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2569 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2570 {
2571 spin_lock(&buf->lock);
2572 __bch_keybuf_del(buf, w);
2573 spin_unlock(&buf->lock);
2574 }
2575
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2576 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2577 struct bkey *end)
2578 {
2579 bool ret = false;
2580 struct keybuf_key *p, *w, s;
2581
2582 s.key = *start;
2583
2584 if (bkey_cmp(end, &buf->start) <= 0 ||
2585 bkey_cmp(start, &buf->end) >= 0)
2586 return false;
2587
2588 spin_lock(&buf->lock);
2589 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2590
2591 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2592 p = w;
2593 w = RB_NEXT(w, node);
2594
2595 if (p->private)
2596 ret = true;
2597 else
2598 __bch_keybuf_del(buf, p);
2599 }
2600
2601 spin_unlock(&buf->lock);
2602 return ret;
2603 }
2604
bch_keybuf_next(struct keybuf * buf)2605 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2606 {
2607 struct keybuf_key *w;
2608
2609 spin_lock(&buf->lock);
2610
2611 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2612
2613 while (w && w->private)
2614 w = RB_NEXT(w, node);
2615
2616 if (w)
2617 w->private = ERR_PTR(-EINTR);
2618
2619 spin_unlock(&buf->lock);
2620 return w;
2621 }
2622
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2623 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2624 struct keybuf *buf,
2625 struct bkey *end,
2626 keybuf_pred_fn *pred)
2627 {
2628 struct keybuf_key *ret;
2629
2630 while (1) {
2631 ret = bch_keybuf_next(buf);
2632 if (ret)
2633 break;
2634
2635 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2636 pr_debug("scan finished");
2637 break;
2638 }
2639
2640 bch_refill_keybuf(c, buf, end, pred);
2641 }
2642
2643 return ret;
2644 }
2645
bch_keybuf_init(struct keybuf * buf)2646 void bch_keybuf_init(struct keybuf *buf)
2647 {
2648 buf->last_scanned = MAX_KEY;
2649 buf->keys = RB_ROOT;
2650
2651 spin_lock_init(&buf->lock);
2652 array_allocator_init(&buf->freelist);
2653 }
2654