• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 #include <linux/blk-crypto.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/block.h>
45 
46 #include "blk.h"
47 #include "blk-mq.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-rq-qos.h"
51 
52 #ifdef CONFIG_DEBUG_FS
53 struct dentry *blk_debugfs_root;
54 #endif
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 
62 DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
blk_rq_init(struct request_queue * q,struct request * rq)110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 	memset(rq, 0, sizeof(*rq));
113 
114 	INIT_LIST_HEAD(&rq->queuelist);
115 	rq->q = q;
116 	rq->__sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->tag = -1;
120 	rq->internal_tag = -1;
121 	rq->start_time_ns = ktime_get_ns();
122 	rq->part = NULL;
123 	refcount_set(&rq->ref, 1);
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126 
127 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
128 static const char *const blk_op_name[] = {
129 	REQ_OP_NAME(READ),
130 	REQ_OP_NAME(WRITE),
131 	REQ_OP_NAME(FLUSH),
132 	REQ_OP_NAME(DISCARD),
133 	REQ_OP_NAME(SECURE_ERASE),
134 	REQ_OP_NAME(ZONE_RESET),
135 	REQ_OP_NAME(ZONE_RESET_ALL),
136 	REQ_OP_NAME(ZONE_OPEN),
137 	REQ_OP_NAME(ZONE_CLOSE),
138 	REQ_OP_NAME(ZONE_FINISH),
139 	REQ_OP_NAME(WRITE_SAME),
140 	REQ_OP_NAME(WRITE_ZEROES),
141 	REQ_OP_NAME(SCSI_IN),
142 	REQ_OP_NAME(SCSI_OUT),
143 	REQ_OP_NAME(DRV_IN),
144 	REQ_OP_NAME(DRV_OUT),
145 };
146 #undef REQ_OP_NAME
147 
148 /**
149  * blk_op_str - Return string XXX in the REQ_OP_XXX.
150  * @op: REQ_OP_XXX.
151  *
152  * Description: Centralize block layer function to convert REQ_OP_XXX into
153  * string format. Useful in the debugging and tracing bio or request. For
154  * invalid REQ_OP_XXX it returns string "UNKNOWN".
155  */
blk_op_str(unsigned int op)156 inline const char *blk_op_str(unsigned int op)
157 {
158 	const char *op_str = "UNKNOWN";
159 
160 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
161 		op_str = blk_op_name[op];
162 
163 	return op_str;
164 }
165 EXPORT_SYMBOL_GPL(blk_op_str);
166 
167 static const struct {
168 	int		errno;
169 	const char	*name;
170 } blk_errors[] = {
171 	[BLK_STS_OK]		= { 0,		"" },
172 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
173 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
174 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
175 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
176 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
177 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
178 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
179 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
180 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
181 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
182 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
183 
184 	/* device mapper special case, should not leak out: */
185 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
186 
187 	/* everything else not covered above: */
188 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
189 };
190 
errno_to_blk_status(int errno)191 blk_status_t errno_to_blk_status(int errno)
192 {
193 	int i;
194 
195 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
196 		if (blk_errors[i].errno == errno)
197 			return (__force blk_status_t)i;
198 	}
199 
200 	return BLK_STS_IOERR;
201 }
202 EXPORT_SYMBOL_GPL(errno_to_blk_status);
203 
blk_status_to_errno(blk_status_t status)204 int blk_status_to_errno(blk_status_t status)
205 {
206 	int idx = (__force int)status;
207 
208 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
209 		return -EIO;
210 	return blk_errors[idx].errno;
211 }
212 EXPORT_SYMBOL_GPL(blk_status_to_errno);
213 
print_req_error(struct request * req,blk_status_t status,const char * caller)214 static void print_req_error(struct request *req, blk_status_t status,
215 		const char *caller)
216 {
217 	int idx = (__force int)status;
218 
219 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
220 		return;
221 
222 	printk_ratelimited(KERN_ERR
223 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
224 		"phys_seg %u prio class %u\n",
225 		caller, blk_errors[idx].name,
226 		req->rq_disk ? req->rq_disk->disk_name : "?",
227 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
228 		req->cmd_flags & ~REQ_OP_MASK,
229 		req->nr_phys_segments,
230 		IOPRIO_PRIO_CLASS(req->ioprio));
231 }
232 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)233 static void req_bio_endio(struct request *rq, struct bio *bio,
234 			  unsigned int nbytes, blk_status_t error)
235 {
236 	if (error)
237 		bio->bi_status = error;
238 
239 	if (unlikely(rq->rq_flags & RQF_QUIET))
240 		bio_set_flag(bio, BIO_QUIET);
241 
242 	bio_advance(bio, nbytes);
243 
244 	/* don't actually finish bio if it's part of flush sequence */
245 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
246 		bio_endio(bio);
247 }
248 
blk_dump_rq_flags(struct request * rq,char * msg)249 void blk_dump_rq_flags(struct request *rq, char *msg)
250 {
251 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
252 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
253 		(unsigned long long) rq->cmd_flags);
254 
255 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
256 	       (unsigned long long)blk_rq_pos(rq),
257 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
258 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
259 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
260 }
261 EXPORT_SYMBOL(blk_dump_rq_flags);
262 
263 /**
264  * blk_sync_queue - cancel any pending callbacks on a queue
265  * @q: the queue
266  *
267  * Description:
268  *     The block layer may perform asynchronous callback activity
269  *     on a queue, such as calling the unplug function after a timeout.
270  *     A block device may call blk_sync_queue to ensure that any
271  *     such activity is cancelled, thus allowing it to release resources
272  *     that the callbacks might use. The caller must already have made sure
273  *     that its ->make_request_fn will not re-add plugging prior to calling
274  *     this function.
275  *
276  *     This function does not cancel any asynchronous activity arising
277  *     out of elevator or throttling code. That would require elevator_exit()
278  *     and blkcg_exit_queue() to be called with queue lock initialized.
279  *
280  */
blk_sync_queue(struct request_queue * q)281 void blk_sync_queue(struct request_queue *q)
282 {
283 	del_timer_sync(&q->timeout);
284 	cancel_work_sync(&q->timeout_work);
285 }
286 EXPORT_SYMBOL(blk_sync_queue);
287 
288 /**
289  * blk_set_pm_only - increment pm_only counter
290  * @q: request queue pointer
291  */
blk_set_pm_only(struct request_queue * q)292 void blk_set_pm_only(struct request_queue *q)
293 {
294 	atomic_inc(&q->pm_only);
295 }
296 EXPORT_SYMBOL_GPL(blk_set_pm_only);
297 
blk_clear_pm_only(struct request_queue * q)298 void blk_clear_pm_only(struct request_queue *q)
299 {
300 	int pm_only;
301 
302 	pm_only = atomic_dec_return(&q->pm_only);
303 	WARN_ON_ONCE(pm_only < 0);
304 	if (pm_only == 0)
305 		wake_up_all(&q->mq_freeze_wq);
306 }
307 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
308 
blk_put_queue(struct request_queue * q)309 void blk_put_queue(struct request_queue *q)
310 {
311 	kobject_put(&q->kobj);
312 }
313 EXPORT_SYMBOL(blk_put_queue);
314 
blk_set_queue_dying(struct request_queue * q)315 void blk_set_queue_dying(struct request_queue *q)
316 {
317 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
318 
319 	/*
320 	 * When queue DYING flag is set, we need to block new req
321 	 * entering queue, so we call blk_freeze_queue_start() to
322 	 * prevent I/O from crossing blk_queue_enter().
323 	 */
324 	blk_freeze_queue_start(q);
325 
326 	if (queue_is_mq(q))
327 		blk_mq_wake_waiters(q);
328 
329 	/* Make blk_queue_enter() reexamine the DYING flag. */
330 	wake_up_all(&q->mq_freeze_wq);
331 }
332 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
333 
334 /**
335  * blk_cleanup_queue - shutdown a request queue
336  * @q: request queue to shutdown
337  *
338  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
339  * put it.  All future requests will be failed immediately with -ENODEV.
340  */
blk_cleanup_queue(struct request_queue * q)341 void blk_cleanup_queue(struct request_queue *q)
342 {
343 	/* mark @q DYING, no new request or merges will be allowed afterwards */
344 	mutex_lock(&q->sysfs_lock);
345 	blk_set_queue_dying(q);
346 
347 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
350 	mutex_unlock(&q->sysfs_lock);
351 
352 	/*
353 	 * Drain all requests queued before DYING marking. Set DEAD flag to
354 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
355 	 * after draining finished.
356 	 */
357 	blk_freeze_queue(q);
358 
359 	rq_qos_exit(q);
360 
361 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
362 
363 	/* for synchronous bio-based driver finish in-flight integrity i/o */
364 	blk_flush_integrity();
365 
366 	/* @q won't process any more request, flush async actions */
367 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
368 	blk_sync_queue(q);
369 
370 	if (queue_is_mq(q))
371 		blk_mq_exit_queue(q);
372 
373 	/*
374 	 * In theory, request pool of sched_tags belongs to request queue.
375 	 * However, the current implementation requires tag_set for freeing
376 	 * requests, so free the pool now.
377 	 *
378 	 * Queue has become frozen, there can't be any in-queue requests, so
379 	 * it is safe to free requests now.
380 	 */
381 	mutex_lock(&q->sysfs_lock);
382 	if (q->elevator)
383 		blk_mq_sched_free_requests(q);
384 	mutex_unlock(&q->sysfs_lock);
385 
386 	percpu_ref_exit(&q->q_usage_counter);
387 
388 	/* @q is and will stay empty, shutdown and put */
389 	blk_put_queue(q);
390 }
391 EXPORT_SYMBOL(blk_cleanup_queue);
392 
blk_alloc_queue(gfp_t gfp_mask)393 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
394 {
395 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
396 }
397 EXPORT_SYMBOL(blk_alloc_queue);
398 
399 /**
400  * blk_queue_enter() - try to increase q->q_usage_counter
401  * @q: request queue pointer
402  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
403  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)404 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
405 {
406 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
407 
408 	while (true) {
409 		bool success = false;
410 
411 		rcu_read_lock();
412 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
413 			/*
414 			 * The code that increments the pm_only counter is
415 			 * responsible for ensuring that that counter is
416 			 * globally visible before the queue is unfrozen.
417 			 */
418 			if (pm || !blk_queue_pm_only(q)) {
419 				success = true;
420 			} else {
421 				percpu_ref_put(&q->q_usage_counter);
422 			}
423 		}
424 		rcu_read_unlock();
425 
426 		if (success)
427 			return 0;
428 
429 		if (flags & BLK_MQ_REQ_NOWAIT)
430 			return -EBUSY;
431 
432 		/*
433 		 * read pair of barrier in blk_freeze_queue_start(),
434 		 * we need to order reading __PERCPU_REF_DEAD flag of
435 		 * .q_usage_counter and reading .mq_freeze_depth or
436 		 * queue dying flag, otherwise the following wait may
437 		 * never return if the two reads are reordered.
438 		 */
439 		smp_rmb();
440 
441 		wait_event(q->mq_freeze_wq,
442 			   (!q->mq_freeze_depth &&
443 			    (pm || (blk_pm_request_resume(q),
444 				    !blk_queue_pm_only(q)))) ||
445 			   blk_queue_dying(q));
446 		if (blk_queue_dying(q))
447 			return -ENODEV;
448 	}
449 }
450 
blk_queue_exit(struct request_queue * q)451 void blk_queue_exit(struct request_queue *q)
452 {
453 	percpu_ref_put(&q->q_usage_counter);
454 }
455 
blk_queue_usage_counter_release(struct percpu_ref * ref)456 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
457 {
458 	struct request_queue *q =
459 		container_of(ref, struct request_queue, q_usage_counter);
460 
461 	wake_up_all(&q->mq_freeze_wq);
462 }
463 
blk_rq_timed_out_timer(struct timer_list * t)464 static void blk_rq_timed_out_timer(struct timer_list *t)
465 {
466 	struct request_queue *q = from_timer(q, t, timeout);
467 
468 	kblockd_schedule_work(&q->timeout_work);
469 }
470 
blk_timeout_work(struct work_struct * work)471 static void blk_timeout_work(struct work_struct *work)
472 {
473 }
474 
475 /**
476  * blk_alloc_queue_node - allocate a request queue
477  * @gfp_mask: memory allocation flags
478  * @node_id: NUMA node to allocate memory from
479  */
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
481 {
482 	struct request_queue *q;
483 	int ret;
484 
485 	q = kmem_cache_alloc_node(blk_requestq_cachep,
486 				gfp_mask | __GFP_ZERO, node_id);
487 	if (!q)
488 		return NULL;
489 
490 	q->last_merge = NULL;
491 
492 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
493 	if (q->id < 0)
494 		goto fail_q;
495 
496 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
497 	if (ret)
498 		goto fail_id;
499 
500 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
501 	if (!q->backing_dev_info)
502 		goto fail_split;
503 
504 	q->stats = blk_alloc_queue_stats();
505 	if (!q->stats)
506 		goto fail_stats;
507 
508 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
509 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
510 	q->backing_dev_info->name = "block";
511 	q->node = node_id;
512 
513 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
514 		    laptop_mode_timer_fn, 0);
515 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
516 	INIT_WORK(&q->timeout_work, blk_timeout_work);
517 	INIT_LIST_HEAD(&q->icq_list);
518 #ifdef CONFIG_BLK_CGROUP
519 	INIT_LIST_HEAD(&q->blkg_list);
520 #endif
521 
522 	kobject_init(&q->kobj, &blk_queue_ktype);
523 
524 #ifdef CONFIG_BLK_DEV_IO_TRACE
525 	mutex_init(&q->blk_trace_mutex);
526 #endif
527 	mutex_init(&q->sysfs_lock);
528 	mutex_init(&q->sysfs_dir_lock);
529 	spin_lock_init(&q->queue_lock);
530 
531 	init_waitqueue_head(&q->mq_freeze_wq);
532 	mutex_init(&q->mq_freeze_lock);
533 
534 	/*
535 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
536 	 * See blk_register_queue() for details.
537 	 */
538 	if (percpu_ref_init(&q->q_usage_counter,
539 				blk_queue_usage_counter_release,
540 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
541 		goto fail_bdi;
542 
543 	if (blkcg_init_queue(q))
544 		goto fail_ref;
545 
546 	return q;
547 
548 fail_ref:
549 	percpu_ref_exit(&q->q_usage_counter);
550 fail_bdi:
551 	blk_free_queue_stats(q->stats);
552 fail_stats:
553 	bdi_put(q->backing_dev_info);
554 fail_split:
555 	bioset_exit(&q->bio_split);
556 fail_id:
557 	ida_simple_remove(&blk_queue_ida, q->id);
558 fail_q:
559 	kmem_cache_free(blk_requestq_cachep, q);
560 	return NULL;
561 }
562 EXPORT_SYMBOL(blk_alloc_queue_node);
563 
blk_get_queue(struct request_queue * q)564 bool blk_get_queue(struct request_queue *q)
565 {
566 	if (likely(!blk_queue_dying(q))) {
567 		__blk_get_queue(q);
568 		return true;
569 	}
570 
571 	return false;
572 }
573 EXPORT_SYMBOL(blk_get_queue);
574 
575 /**
576  * blk_get_request - allocate a request
577  * @q: request queue to allocate a request for
578  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
579  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
580  */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)581 struct request *blk_get_request(struct request_queue *q, unsigned int op,
582 				blk_mq_req_flags_t flags)
583 {
584 	struct request *req;
585 
586 	WARN_ON_ONCE(op & REQ_NOWAIT);
587 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
588 
589 	req = blk_mq_alloc_request(q, op, flags);
590 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
591 		q->mq_ops->initialize_rq_fn(req);
592 
593 	return req;
594 }
595 EXPORT_SYMBOL(blk_get_request);
596 
blk_put_request(struct request * req)597 void blk_put_request(struct request *req)
598 {
599 	blk_mq_free_request(req);
600 }
601 EXPORT_SYMBOL(blk_put_request);
602 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)603 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
604 		unsigned int nr_segs)
605 {
606 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
607 
608 	if (!ll_back_merge_fn(req, bio, nr_segs))
609 		return false;
610 
611 	trace_block_bio_backmerge(req->q, req, bio);
612 	rq_qos_merge(req->q, req, bio);
613 
614 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
615 		blk_rq_set_mixed_merge(req);
616 
617 	req->biotail->bi_next = bio;
618 	req->biotail = bio;
619 	req->__data_len += bio->bi_iter.bi_size;
620 
621 	blk_account_io_start(req, false);
622 	return true;
623 }
624 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)625 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
626 		unsigned int nr_segs)
627 {
628 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
629 
630 	if (!ll_front_merge_fn(req, bio, nr_segs))
631 		return false;
632 
633 	trace_block_bio_frontmerge(req->q, req, bio);
634 	rq_qos_merge(req->q, req, bio);
635 
636 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
637 		blk_rq_set_mixed_merge(req);
638 
639 	bio->bi_next = req->bio;
640 	req->bio = bio;
641 
642 	req->__sector = bio->bi_iter.bi_sector;
643 	req->__data_len += bio->bi_iter.bi_size;
644 
645 	blk_account_io_start(req, false);
646 	return true;
647 }
648 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)649 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
650 		struct bio *bio)
651 {
652 	unsigned short segments = blk_rq_nr_discard_segments(req);
653 
654 	if (segments >= queue_max_discard_segments(q))
655 		goto no_merge;
656 	if (blk_rq_sectors(req) + bio_sectors(bio) >
657 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
658 		goto no_merge;
659 
660 	rq_qos_merge(q, req, bio);
661 
662 	req->biotail->bi_next = bio;
663 	req->biotail = bio;
664 	req->__data_len += bio->bi_iter.bi_size;
665 	req->nr_phys_segments = segments + 1;
666 
667 	blk_account_io_start(req, false);
668 	return true;
669 no_merge:
670 	req_set_nomerge(q, req);
671 	return false;
672 }
673 
674 /**
675  * blk_attempt_plug_merge - try to merge with %current's plugged list
676  * @q: request_queue new bio is being queued at
677  * @bio: new bio being queued
678  * @nr_segs: number of segments in @bio
679  * @same_queue_rq: pointer to &struct request that gets filled in when
680  * another request associated with @q is found on the plug list
681  * (optional, may be %NULL)
682  *
683  * Determine whether @bio being queued on @q can be merged with a request
684  * on %current's plugged list.  Returns %true if merge was successful,
685  * otherwise %false.
686  *
687  * Plugging coalesces IOs from the same issuer for the same purpose without
688  * going through @q->queue_lock.  As such it's more of an issuing mechanism
689  * than scheduling, and the request, while may have elvpriv data, is not
690  * added on the elevator at this point.  In addition, we don't have
691  * reliable access to the elevator outside queue lock.  Only check basic
692  * merging parameters without querying the elevator.
693  *
694  * Caller must ensure !blk_queue_nomerges(q) beforehand.
695  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)696 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
697 		unsigned int nr_segs, struct request **same_queue_rq)
698 {
699 	struct blk_plug *plug;
700 	struct request *rq;
701 	struct list_head *plug_list;
702 
703 	plug = blk_mq_plug(q, bio);
704 	if (!plug)
705 		return false;
706 
707 	plug_list = &plug->mq_list;
708 
709 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
710 		bool merged = false;
711 
712 		if (rq->q == q && same_queue_rq) {
713 			/*
714 			 * Only blk-mq multiple hardware queues case checks the
715 			 * rq in the same queue, there should be only one such
716 			 * rq in a queue
717 			 **/
718 			*same_queue_rq = rq;
719 		}
720 
721 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
722 			continue;
723 
724 		switch (blk_try_merge(rq, bio)) {
725 		case ELEVATOR_BACK_MERGE:
726 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
727 			break;
728 		case ELEVATOR_FRONT_MERGE:
729 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
730 			break;
731 		case ELEVATOR_DISCARD_MERGE:
732 			merged = bio_attempt_discard_merge(q, rq, bio);
733 			break;
734 		default:
735 			break;
736 		}
737 
738 		if (merged)
739 			return true;
740 	}
741 
742 	return false;
743 }
744 
handle_bad_sector(struct bio * bio,sector_t maxsector)745 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
746 {
747 	char b[BDEVNAME_SIZE];
748 
749 	printk(KERN_INFO "attempt to access beyond end of device\n");
750 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
751 			bio_devname(bio, b), bio->bi_opf,
752 			(unsigned long long)bio_end_sector(bio),
753 			(long long)maxsector);
754 }
755 
756 #ifdef CONFIG_FAIL_MAKE_REQUEST
757 
758 static DECLARE_FAULT_ATTR(fail_make_request);
759 
setup_fail_make_request(char * str)760 static int __init setup_fail_make_request(char *str)
761 {
762 	return setup_fault_attr(&fail_make_request, str);
763 }
764 __setup("fail_make_request=", setup_fail_make_request);
765 
should_fail_request(struct hd_struct * part,unsigned int bytes)766 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
767 {
768 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
769 }
770 
fail_make_request_debugfs(void)771 static int __init fail_make_request_debugfs(void)
772 {
773 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
774 						NULL, &fail_make_request);
775 
776 	return PTR_ERR_OR_ZERO(dir);
777 }
778 
779 late_initcall(fail_make_request_debugfs);
780 
781 #else /* CONFIG_FAIL_MAKE_REQUEST */
782 
should_fail_request(struct hd_struct * part,unsigned int bytes)783 static inline bool should_fail_request(struct hd_struct *part,
784 					unsigned int bytes)
785 {
786 	return false;
787 }
788 
789 #endif /* CONFIG_FAIL_MAKE_REQUEST */
790 
bio_check_ro(struct bio * bio,struct hd_struct * part)791 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
792 {
793 	const int op = bio_op(bio);
794 
795 	if (part->policy && op_is_write(op)) {
796 		char b[BDEVNAME_SIZE];
797 
798 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
799 			return false;
800 
801 		WARN_ONCE(1,
802 		       "generic_make_request: Trying to write "
803 			"to read-only block-device %s (partno %d)\n",
804 			bio_devname(bio, b), part->partno);
805 		/* Older lvm-tools actually trigger this */
806 		return false;
807 	}
808 
809 	return false;
810 }
811 
should_fail_bio(struct bio * bio)812 static noinline int should_fail_bio(struct bio *bio)
813 {
814 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
815 		return -EIO;
816 	return 0;
817 }
818 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
819 
820 /*
821  * Check whether this bio extends beyond the end of the device or partition.
822  * This may well happen - the kernel calls bread() without checking the size of
823  * the device, e.g., when mounting a file system.
824  */
bio_check_eod(struct bio * bio,sector_t maxsector)825 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
826 {
827 	unsigned int nr_sectors = bio_sectors(bio);
828 
829 	if (nr_sectors && maxsector &&
830 	    (nr_sectors > maxsector ||
831 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
832 		handle_bad_sector(bio, maxsector);
833 		return -EIO;
834 	}
835 	return 0;
836 }
837 
838 /*
839  * Remap block n of partition p to block n+start(p) of the disk.
840  */
blk_partition_remap(struct bio * bio)841 static inline int blk_partition_remap(struct bio *bio)
842 {
843 	struct hd_struct *p;
844 	int ret = -EIO;
845 
846 	rcu_read_lock();
847 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
848 	if (unlikely(!p))
849 		goto out;
850 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
851 		goto out;
852 	if (unlikely(bio_check_ro(bio, p)))
853 		goto out;
854 
855 	if (bio_sectors(bio)) {
856 		if (bio_check_eod(bio, part_nr_sects_read(p)))
857 			goto out;
858 		bio->bi_iter.bi_sector += p->start_sect;
859 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
860 				      bio->bi_iter.bi_sector - p->start_sect);
861 	}
862 	bio->bi_partno = 0;
863 	ret = 0;
864 out:
865 	rcu_read_unlock();
866 	return ret;
867 }
868 
869 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)870 generic_make_request_checks(struct bio *bio)
871 {
872 	struct request_queue *q;
873 	int nr_sectors = bio_sectors(bio);
874 	blk_status_t status = BLK_STS_IOERR;
875 	char b[BDEVNAME_SIZE];
876 
877 	might_sleep();
878 
879 	q = bio->bi_disk->queue;
880 	if (unlikely(!q)) {
881 		printk(KERN_ERR
882 		       "generic_make_request: Trying to access "
883 			"nonexistent block-device %s (%Lu)\n",
884 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
885 		goto end_io;
886 	}
887 
888 	/*
889 	 * Non-mq queues do not honor REQ_NOWAIT, so complete a bio
890 	 * with BLK_STS_AGAIN status in order to catch -EAGAIN and
891 	 * to give a chance to the caller to repeat request gracefully.
892 	 */
893 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) {
894 		status = BLK_STS_AGAIN;
895 		goto end_io;
896 	}
897 
898 	if (should_fail_bio(bio))
899 		goto end_io;
900 
901 	if (bio->bi_partno) {
902 		if (unlikely(blk_partition_remap(bio)))
903 			goto end_io;
904 	} else {
905 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
906 			goto end_io;
907 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
908 			goto end_io;
909 	}
910 
911 	/*
912 	 * Filter flush bio's early so that make_request based
913 	 * drivers without flush support don't have to worry
914 	 * about them.
915 	 */
916 	if (op_is_flush(bio->bi_opf) &&
917 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
918 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
919 		if (!nr_sectors) {
920 			status = BLK_STS_OK;
921 			goto end_io;
922 		}
923 	}
924 
925 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
926 		bio->bi_opf &= ~REQ_HIPRI;
927 
928 	switch (bio_op(bio)) {
929 	case REQ_OP_DISCARD:
930 		if (!blk_queue_discard(q))
931 			goto not_supported;
932 		break;
933 	case REQ_OP_SECURE_ERASE:
934 		if (!blk_queue_secure_erase(q))
935 			goto not_supported;
936 		break;
937 	case REQ_OP_WRITE_SAME:
938 		if (!q->limits.max_write_same_sectors)
939 			goto not_supported;
940 		break;
941 	case REQ_OP_ZONE_RESET:
942 	case REQ_OP_ZONE_OPEN:
943 	case REQ_OP_ZONE_CLOSE:
944 	case REQ_OP_ZONE_FINISH:
945 		if (!blk_queue_is_zoned(q))
946 			goto not_supported;
947 		break;
948 	case REQ_OP_ZONE_RESET_ALL:
949 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
950 			goto not_supported;
951 		break;
952 	case REQ_OP_WRITE_ZEROES:
953 		if (!q->limits.max_write_zeroes_sectors)
954 			goto not_supported;
955 		break;
956 	default:
957 		break;
958 	}
959 
960 	/*
961 	 * Various block parts want %current->io_context and lazy ioc
962 	 * allocation ends up trading a lot of pain for a small amount of
963 	 * memory.  Just allocate it upfront.  This may fail and block
964 	 * layer knows how to live with it.
965 	 */
966 	create_io_context(GFP_ATOMIC, q->node);
967 
968 	if (!blkcg_bio_issue_check(q, bio))
969 		return false;
970 
971 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
972 		trace_block_bio_queue(q, bio);
973 		/* Now that enqueuing has been traced, we need to trace
974 		 * completion as well.
975 		 */
976 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
977 	}
978 	return true;
979 
980 not_supported:
981 	status = BLK_STS_NOTSUPP;
982 end_io:
983 	bio->bi_status = status;
984 	bio_endio(bio);
985 	return false;
986 }
987 
988 /**
989  * generic_make_request - hand a buffer to its device driver for I/O
990  * @bio:  The bio describing the location in memory and on the device.
991  *
992  * generic_make_request() is used to make I/O requests of block
993  * devices. It is passed a &struct bio, which describes the I/O that needs
994  * to be done.
995  *
996  * generic_make_request() does not return any status.  The
997  * success/failure status of the request, along with notification of
998  * completion, is delivered asynchronously through the bio->bi_end_io
999  * function described (one day) else where.
1000  *
1001  * The caller of generic_make_request must make sure that bi_io_vec
1002  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1003  * set to describe the device address, and the
1004  * bi_end_io and optionally bi_private are set to describe how
1005  * completion notification should be signaled.
1006  *
1007  * generic_make_request and the drivers it calls may use bi_next if this
1008  * bio happens to be merged with someone else, and may resubmit the bio to
1009  * a lower device by calling into generic_make_request recursively, which
1010  * means the bio should NOT be touched after the call to ->make_request_fn.
1011  */
generic_make_request(struct bio * bio)1012 blk_qc_t generic_make_request(struct bio *bio)
1013 {
1014 	/*
1015 	 * bio_list_on_stack[0] contains bios submitted by the current
1016 	 * make_request_fn.
1017 	 * bio_list_on_stack[1] contains bios that were submitted before
1018 	 * the current make_request_fn, but that haven't been processed
1019 	 * yet.
1020 	 */
1021 	struct bio_list bio_list_on_stack[2];
1022 	blk_qc_t ret = BLK_QC_T_NONE;
1023 
1024 	if (!generic_make_request_checks(bio))
1025 		goto out;
1026 
1027 	/*
1028 	 * We only want one ->make_request_fn to be active at a time, else
1029 	 * stack usage with stacked devices could be a problem.  So use
1030 	 * current->bio_list to keep a list of requests submited by a
1031 	 * make_request_fn function.  current->bio_list is also used as a
1032 	 * flag to say if generic_make_request is currently active in this
1033 	 * task or not.  If it is NULL, then no make_request is active.  If
1034 	 * it is non-NULL, then a make_request is active, and new requests
1035 	 * should be added at the tail
1036 	 */
1037 	if (current->bio_list) {
1038 		bio_list_add(&current->bio_list[0], bio);
1039 		goto out;
1040 	}
1041 
1042 	/* following loop may be a bit non-obvious, and so deserves some
1043 	 * explanation.
1044 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1045 	 * ensure that) so we have a list with a single bio.
1046 	 * We pretend that we have just taken it off a longer list, so
1047 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1048 	 * thus initialising the bio_list of new bios to be
1049 	 * added.  ->make_request() may indeed add some more bios
1050 	 * through a recursive call to generic_make_request.  If it
1051 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1052 	 * from the top.  In this case we really did just take the bio
1053 	 * of the top of the list (no pretending) and so remove it from
1054 	 * bio_list, and call into ->make_request() again.
1055 	 */
1056 	BUG_ON(bio->bi_next);
1057 	bio_list_init(&bio_list_on_stack[0]);
1058 	current->bio_list = bio_list_on_stack;
1059 	do {
1060 		struct request_queue *q = bio->bi_disk->queue;
1061 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1062 			BLK_MQ_REQ_NOWAIT : 0;
1063 
1064 		if (likely(blk_queue_enter(q, flags) == 0)) {
1065 			struct bio_list lower, same;
1066 
1067 			/* Create a fresh bio_list for all subordinate requests */
1068 			bio_list_on_stack[1] = bio_list_on_stack[0];
1069 			bio_list_init(&bio_list_on_stack[0]);
1070 
1071 			if (!blk_crypto_submit_bio(&bio))
1072 				ret = q->make_request_fn(q, bio);
1073 
1074 			blk_queue_exit(q);
1075 
1076 			/* sort new bios into those for a lower level
1077 			 * and those for the same level
1078 			 */
1079 			bio_list_init(&lower);
1080 			bio_list_init(&same);
1081 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1082 				if (q == bio->bi_disk->queue)
1083 					bio_list_add(&same, bio);
1084 				else
1085 					bio_list_add(&lower, bio);
1086 			/* now assemble so we handle the lowest level first */
1087 			bio_list_merge(&bio_list_on_stack[0], &lower);
1088 			bio_list_merge(&bio_list_on_stack[0], &same);
1089 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1090 		} else {
1091 			if (unlikely(!blk_queue_dying(q) &&
1092 					(bio->bi_opf & REQ_NOWAIT)))
1093 				bio_wouldblock_error(bio);
1094 			else
1095 				bio_io_error(bio);
1096 		}
1097 		bio = bio_list_pop(&bio_list_on_stack[0]);
1098 	} while (bio);
1099 	current->bio_list = NULL; /* deactivate */
1100 
1101 out:
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL(generic_make_request);
1105 
1106 /**
1107  * direct_make_request - hand a buffer directly to its device driver for I/O
1108  * @bio:  The bio describing the location in memory and on the device.
1109  *
1110  * This function behaves like generic_make_request(), but does not protect
1111  * against recursion.  Must only be used if the called driver is known
1112  * to not call generic_make_request (or direct_make_request) again from
1113  * its make_request function.  (Calling direct_make_request again from
1114  * a workqueue is perfectly fine as that doesn't recurse).
1115  */
direct_make_request(struct bio * bio)1116 blk_qc_t direct_make_request(struct bio *bio)
1117 {
1118 	struct request_queue *q = bio->bi_disk->queue;
1119 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1120 	blk_qc_t ret = BLK_QC_T_NONE;
1121 
1122 	if (!generic_make_request_checks(bio))
1123 		return BLK_QC_T_NONE;
1124 
1125 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1126 		if (nowait && !blk_queue_dying(q))
1127 			bio->bi_status = BLK_STS_AGAIN;
1128 		else
1129 			bio->bi_status = BLK_STS_IOERR;
1130 		bio_endio(bio);
1131 		return BLK_QC_T_NONE;
1132 	}
1133 
1134 	if (!blk_crypto_submit_bio(&bio))
1135 		ret = q->make_request_fn(q, bio);
1136 	blk_queue_exit(q);
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL_GPL(direct_make_request);
1140 
1141 /**
1142  * submit_bio - submit a bio to the block device layer for I/O
1143  * @bio: The &struct bio which describes the I/O
1144  *
1145  * submit_bio() is very similar in purpose to generic_make_request(), and
1146  * uses that function to do most of the work. Both are fairly rough
1147  * interfaces; @bio must be presetup and ready for I/O.
1148  *
1149  */
submit_bio(struct bio * bio)1150 blk_qc_t submit_bio(struct bio *bio)
1151 {
1152 	bool workingset_read = false;
1153 	unsigned long pflags;
1154 	blk_qc_t ret;
1155 
1156 	if (blkcg_punt_bio_submit(bio))
1157 		return BLK_QC_T_NONE;
1158 
1159 	/*
1160 	 * If it's a regular read/write or a barrier with data attached,
1161 	 * go through the normal accounting stuff before submission.
1162 	 */
1163 	if (bio_has_data(bio)) {
1164 		unsigned int count;
1165 
1166 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1167 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1168 		else
1169 			count = bio_sectors(bio);
1170 
1171 		if (op_is_write(bio_op(bio))) {
1172 			count_vm_events(PGPGOUT, count);
1173 		} else {
1174 			if (bio_flagged(bio, BIO_WORKINGSET))
1175 				workingset_read = true;
1176 			task_io_account_read(bio->bi_iter.bi_size);
1177 			count_vm_events(PGPGIN, count);
1178 		}
1179 
1180 		if (unlikely(block_dump)) {
1181 			char b[BDEVNAME_SIZE];
1182 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1183 			current->comm, task_pid_nr(current),
1184 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1185 				(unsigned long long)bio->bi_iter.bi_sector,
1186 				bio_devname(bio, b), count);
1187 		}
1188 	}
1189 
1190 	/*
1191 	 * If we're reading data that is part of the userspace
1192 	 * workingset, count submission time as memory stall. When the
1193 	 * device is congested, or the submitting cgroup IO-throttled,
1194 	 * submission can be a significant part of overall IO time.
1195 	 */
1196 	if (workingset_read)
1197 		psi_memstall_enter(&pflags);
1198 
1199 	ret = generic_make_request(bio);
1200 
1201 	if (workingset_read)
1202 		psi_memstall_leave(&pflags);
1203 
1204 	return ret;
1205 }
1206 EXPORT_SYMBOL(submit_bio);
1207 
1208 /**
1209  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1210  *                              for new the queue limits
1211  * @q:  the queue
1212  * @rq: the request being checked
1213  *
1214  * Description:
1215  *    @rq may have been made based on weaker limitations of upper-level queues
1216  *    in request stacking drivers, and it may violate the limitation of @q.
1217  *    Since the block layer and the underlying device driver trust @rq
1218  *    after it is inserted to @q, it should be checked against @q before
1219  *    the insertion using this generic function.
1220  *
1221  *    Request stacking drivers like request-based dm may change the queue
1222  *    limits when retrying requests on other queues. Those requests need
1223  *    to be checked against the new queue limits again during dispatch.
1224  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1225 static int blk_cloned_rq_check_limits(struct request_queue *q,
1226 				      struct request *rq)
1227 {
1228 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1229 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1230 			__func__, blk_rq_sectors(rq),
1231 			blk_queue_get_max_sectors(q, req_op(rq)));
1232 		return -EIO;
1233 	}
1234 
1235 	/*
1236 	 * queue's settings related to segment counting like q->bounce_pfn
1237 	 * may differ from that of other stacking queues.
1238 	 * Recalculate it to check the request correctly on this queue's
1239 	 * limitation.
1240 	 */
1241 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1242 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1243 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1244 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1245 		return -EIO;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 /**
1252  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1253  * @q:  the queue to submit the request
1254  * @rq: the request being queued
1255  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1256 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1257 {
1258 	if (blk_cloned_rq_check_limits(q, rq))
1259 		return BLK_STS_IOERR;
1260 
1261 	if (rq->rq_disk &&
1262 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1263 		return BLK_STS_IOERR;
1264 
1265 	if (blk_queue_io_stat(q))
1266 		blk_account_io_start(rq, true);
1267 
1268 	/*
1269 	 * Since we have a scheduler attached on the top device,
1270 	 * bypass a potential scheduler on the bottom device for
1271 	 * insert.
1272 	 */
1273 	return blk_mq_request_issue_directly(rq, true);
1274 }
1275 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1276 
1277 /**
1278  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1279  * @rq: request to examine
1280  *
1281  * Description:
1282  *     A request could be merge of IOs which require different failure
1283  *     handling.  This function determines the number of bytes which
1284  *     can be failed from the beginning of the request without
1285  *     crossing into area which need to be retried further.
1286  *
1287  * Return:
1288  *     The number of bytes to fail.
1289  */
blk_rq_err_bytes(const struct request * rq)1290 unsigned int blk_rq_err_bytes(const struct request *rq)
1291 {
1292 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1293 	unsigned int bytes = 0;
1294 	struct bio *bio;
1295 
1296 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1297 		return blk_rq_bytes(rq);
1298 
1299 	/*
1300 	 * Currently the only 'mixing' which can happen is between
1301 	 * different fastfail types.  We can safely fail portions
1302 	 * which have all the failfast bits that the first one has -
1303 	 * the ones which are at least as eager to fail as the first
1304 	 * one.
1305 	 */
1306 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1307 		if ((bio->bi_opf & ff) != ff)
1308 			break;
1309 		bytes += bio->bi_iter.bi_size;
1310 	}
1311 
1312 	/* this could lead to infinite loop */
1313 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1314 	return bytes;
1315 }
1316 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1317 
blk_account_io_completion(struct request * req,unsigned int bytes)1318 void blk_account_io_completion(struct request *req, unsigned int bytes)
1319 {
1320 	if (blk_do_io_stat(req)) {
1321 		const int sgrp = op_stat_group(req_op(req));
1322 		struct hd_struct *part;
1323 
1324 		part_stat_lock();
1325 		part = req->part;
1326 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1327 		part_stat_unlock();
1328 	}
1329 }
1330 
blk_account_io_done(struct request * req,u64 now)1331 void blk_account_io_done(struct request *req, u64 now)
1332 {
1333 	/*
1334 	 * Account IO completion.  flush_rq isn't accounted as a
1335 	 * normal IO on queueing nor completion.  Accounting the
1336 	 * containing request is enough.
1337 	 */
1338 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1339 		const int sgrp = op_stat_group(req_op(req));
1340 		struct hd_struct *part;
1341 
1342 		part_stat_lock();
1343 		part = req->part;
1344 
1345 		update_io_ticks(part, jiffies);
1346 		part_stat_inc(part, ios[sgrp]);
1347 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1348 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1349 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1350 
1351 		hd_struct_put(part);
1352 		part_stat_unlock();
1353 	}
1354 }
1355 
blk_account_io_start(struct request * rq,bool new_io)1356 void blk_account_io_start(struct request *rq, bool new_io)
1357 {
1358 	struct hd_struct *part;
1359 	int rw = rq_data_dir(rq);
1360 
1361 	if (!blk_do_io_stat(rq))
1362 		return;
1363 
1364 	part_stat_lock();
1365 
1366 	if (!new_io) {
1367 		part = rq->part;
1368 		part_stat_inc(part, merges[rw]);
1369 	} else {
1370 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1371 		if (!hd_struct_try_get(part)) {
1372 			/*
1373 			 * The partition is already being removed,
1374 			 * the request will be accounted on the disk only
1375 			 *
1376 			 * We take a reference on disk->part0 although that
1377 			 * partition will never be deleted, so we can treat
1378 			 * it as any other partition.
1379 			 */
1380 			part = &rq->rq_disk->part0;
1381 			hd_struct_get(part);
1382 		}
1383 		part_inc_in_flight(rq->q, part, rw);
1384 		rq->part = part;
1385 	}
1386 
1387 	update_io_ticks(part, jiffies);
1388 
1389 	part_stat_unlock();
1390 }
1391 
1392 /*
1393  * Steal bios from a request and add them to a bio list.
1394  * The request must not have been partially completed before.
1395  */
blk_steal_bios(struct bio_list * list,struct request * rq)1396 void blk_steal_bios(struct bio_list *list, struct request *rq)
1397 {
1398 	if (rq->bio) {
1399 		if (list->tail)
1400 			list->tail->bi_next = rq->bio;
1401 		else
1402 			list->head = rq->bio;
1403 		list->tail = rq->biotail;
1404 
1405 		rq->bio = NULL;
1406 		rq->biotail = NULL;
1407 	}
1408 
1409 	rq->__data_len = 0;
1410 }
1411 EXPORT_SYMBOL_GPL(blk_steal_bios);
1412 
1413 /**
1414  * blk_update_request - Special helper function for request stacking drivers
1415  * @req:      the request being processed
1416  * @error:    block status code
1417  * @nr_bytes: number of bytes to complete @req
1418  *
1419  * Description:
1420  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1421  *     the request structure even if @req doesn't have leftover.
1422  *     If @req has leftover, sets it up for the next range of segments.
1423  *
1424  *     This special helper function is only for request stacking drivers
1425  *     (e.g. request-based dm) so that they can handle partial completion.
1426  *     Actual device drivers should use blk_mq_end_request instead.
1427  *
1428  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1429  *     %false return from this function.
1430  *
1431  * Note:
1432  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1433  *	blk_rq_bytes() and in blk_update_request().
1434  *
1435  * Return:
1436  *     %false - this request doesn't have any more data
1437  *     %true  - this request has more data
1438  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1439 bool blk_update_request(struct request *req, blk_status_t error,
1440 		unsigned int nr_bytes)
1441 {
1442 	int total_bytes;
1443 
1444 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1445 
1446 	if (!req->bio)
1447 		return false;
1448 
1449 #ifdef CONFIG_BLK_DEV_INTEGRITY
1450 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1451 	    error == BLK_STS_OK)
1452 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1453 #endif
1454 
1455 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1456 		     !(req->rq_flags & RQF_QUIET)))
1457 		print_req_error(req, error, __func__);
1458 
1459 	blk_account_io_completion(req, nr_bytes);
1460 
1461 	total_bytes = 0;
1462 	while (req->bio) {
1463 		struct bio *bio = req->bio;
1464 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1465 
1466 		if (bio_bytes == bio->bi_iter.bi_size)
1467 			req->bio = bio->bi_next;
1468 
1469 		/* Completion has already been traced */
1470 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1471 		req_bio_endio(req, bio, bio_bytes, error);
1472 
1473 		total_bytes += bio_bytes;
1474 		nr_bytes -= bio_bytes;
1475 
1476 		if (!nr_bytes)
1477 			break;
1478 	}
1479 
1480 	/*
1481 	 * completely done
1482 	 */
1483 	if (!req->bio) {
1484 		/*
1485 		 * Reset counters so that the request stacking driver
1486 		 * can find how many bytes remain in the request
1487 		 * later.
1488 		 */
1489 		req->__data_len = 0;
1490 		return false;
1491 	}
1492 
1493 	req->__data_len -= total_bytes;
1494 
1495 	/* update sector only for requests with clear definition of sector */
1496 	if (!blk_rq_is_passthrough(req))
1497 		req->__sector += total_bytes >> 9;
1498 
1499 	/* mixed attributes always follow the first bio */
1500 	if (req->rq_flags & RQF_MIXED_MERGE) {
1501 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1502 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1503 	}
1504 
1505 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1506 		/*
1507 		 * If total number of sectors is less than the first segment
1508 		 * size, something has gone terribly wrong.
1509 		 */
1510 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1511 			blk_dump_rq_flags(req, "request botched");
1512 			req->__data_len = blk_rq_cur_bytes(req);
1513 		}
1514 
1515 		/* recalculate the number of segments */
1516 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1517 	}
1518 
1519 	return true;
1520 }
1521 EXPORT_SYMBOL_GPL(blk_update_request);
1522 
1523 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1524 /**
1525  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1526  * @rq: the request to be flushed
1527  *
1528  * Description:
1529  *     Flush all pages in @rq.
1530  */
rq_flush_dcache_pages(struct request * rq)1531 void rq_flush_dcache_pages(struct request *rq)
1532 {
1533 	struct req_iterator iter;
1534 	struct bio_vec bvec;
1535 
1536 	rq_for_each_segment(bvec, rq, iter)
1537 		flush_dcache_page(bvec.bv_page);
1538 }
1539 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1540 #endif
1541 
1542 /**
1543  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1544  * @q : the queue of the device being checked
1545  *
1546  * Description:
1547  *    Check if underlying low-level drivers of a device are busy.
1548  *    If the drivers want to export their busy state, they must set own
1549  *    exporting function using blk_queue_lld_busy() first.
1550  *
1551  *    Basically, this function is used only by request stacking drivers
1552  *    to stop dispatching requests to underlying devices when underlying
1553  *    devices are busy.  This behavior helps more I/O merging on the queue
1554  *    of the request stacking driver and prevents I/O throughput regression
1555  *    on burst I/O load.
1556  *
1557  * Return:
1558  *    0 - Not busy (The request stacking driver should dispatch request)
1559  *    1 - Busy (The request stacking driver should stop dispatching request)
1560  */
blk_lld_busy(struct request_queue * q)1561 int blk_lld_busy(struct request_queue *q)
1562 {
1563 	if (queue_is_mq(q) && q->mq_ops->busy)
1564 		return q->mq_ops->busy(q);
1565 
1566 	return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(blk_lld_busy);
1569 
1570 /**
1571  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1572  * @rq: the clone request to be cleaned up
1573  *
1574  * Description:
1575  *     Free all bios in @rq for a cloned request.
1576  */
blk_rq_unprep_clone(struct request * rq)1577 void blk_rq_unprep_clone(struct request *rq)
1578 {
1579 	struct bio *bio;
1580 
1581 	while ((bio = rq->bio) != NULL) {
1582 		rq->bio = bio->bi_next;
1583 
1584 		bio_put(bio);
1585 	}
1586 }
1587 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1588 
1589 /*
1590  * Copy attributes of the original request to the clone request.
1591  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1592  */
__blk_rq_prep_clone(struct request * dst,struct request * src)1593 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1594 {
1595 	dst->__sector = blk_rq_pos(src);
1596 	dst->__data_len = blk_rq_bytes(src);
1597 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1598 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1599 		dst->special_vec = src->special_vec;
1600 	}
1601 	dst->nr_phys_segments = src->nr_phys_segments;
1602 	dst->ioprio = src->ioprio;
1603 	dst->extra_len = src->extra_len;
1604 }
1605 
1606 /**
1607  * blk_rq_prep_clone - Helper function to setup clone request
1608  * @rq: the request to be setup
1609  * @rq_src: original request to be cloned
1610  * @bs: bio_set that bios for clone are allocated from
1611  * @gfp_mask: memory allocation mask for bio
1612  * @bio_ctr: setup function to be called for each clone bio.
1613  *           Returns %0 for success, non %0 for failure.
1614  * @data: private data to be passed to @bio_ctr
1615  *
1616  * Description:
1617  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1618  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1619  *     are not copied, and copying such parts is the caller's responsibility.
1620  *     Also, pages which the original bios are pointing to are not copied
1621  *     and the cloned bios just point same pages.
1622  *     So cloned bios must be completed before original bios, which means
1623  *     the caller must complete @rq before @rq_src.
1624  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1625 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1626 		      struct bio_set *bs, gfp_t gfp_mask,
1627 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1628 		      void *data)
1629 {
1630 	struct bio *bio, *bio_src;
1631 
1632 	if (!bs)
1633 		bs = &fs_bio_set;
1634 
1635 	__rq_for_each_bio(bio_src, rq_src) {
1636 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1637 		if (!bio)
1638 			goto free_and_out;
1639 
1640 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1641 			goto free_and_out;
1642 
1643 		if (rq->bio) {
1644 			rq->biotail->bi_next = bio;
1645 			rq->biotail = bio;
1646 		} else
1647 			rq->bio = rq->biotail = bio;
1648 	}
1649 
1650 	__blk_rq_prep_clone(rq, rq_src);
1651 
1652 	return 0;
1653 
1654 free_and_out:
1655 	if (bio)
1656 		bio_put(bio);
1657 	blk_rq_unprep_clone(rq);
1658 
1659 	return -ENOMEM;
1660 }
1661 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1662 
kblockd_schedule_work(struct work_struct * work)1663 int kblockd_schedule_work(struct work_struct *work)
1664 {
1665 	return queue_work(kblockd_workqueue, work);
1666 }
1667 EXPORT_SYMBOL(kblockd_schedule_work);
1668 
kblockd_schedule_work_on(int cpu,struct work_struct * work)1669 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1670 {
1671 	return queue_work_on(cpu, kblockd_workqueue, work);
1672 }
1673 EXPORT_SYMBOL(kblockd_schedule_work_on);
1674 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1675 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1676 				unsigned long delay)
1677 {
1678 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1679 }
1680 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1681 
1682 /**
1683  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1684  * @plug:	The &struct blk_plug that needs to be initialized
1685  *
1686  * Description:
1687  *   blk_start_plug() indicates to the block layer an intent by the caller
1688  *   to submit multiple I/O requests in a batch.  The block layer may use
1689  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1690  *   is called.  However, the block layer may choose to submit requests
1691  *   before a call to blk_finish_plug() if the number of queued I/Os
1692  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1693  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1694  *   the task schedules (see below).
1695  *
1696  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1697  *   pending I/O should the task end up blocking between blk_start_plug() and
1698  *   blk_finish_plug(). This is important from a performance perspective, but
1699  *   also ensures that we don't deadlock. For instance, if the task is blocking
1700  *   for a memory allocation, memory reclaim could end up wanting to free a
1701  *   page belonging to that request that is currently residing in our private
1702  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1703  *   this kind of deadlock.
1704  */
blk_start_plug(struct blk_plug * plug)1705 void blk_start_plug(struct blk_plug *plug)
1706 {
1707 	struct task_struct *tsk = current;
1708 
1709 	/*
1710 	 * If this is a nested plug, don't actually assign it.
1711 	 */
1712 	if (tsk->plug)
1713 		return;
1714 
1715 	INIT_LIST_HEAD(&plug->mq_list);
1716 	INIT_LIST_HEAD(&plug->cb_list);
1717 	plug->rq_count = 0;
1718 	plug->multiple_queues = false;
1719 
1720 	/*
1721 	 * Store ordering should not be needed here, since a potential
1722 	 * preempt will imply a full memory barrier
1723 	 */
1724 	tsk->plug = plug;
1725 }
1726 EXPORT_SYMBOL(blk_start_plug);
1727 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1728 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1729 {
1730 	LIST_HEAD(callbacks);
1731 
1732 	while (!list_empty(&plug->cb_list)) {
1733 		list_splice_init(&plug->cb_list, &callbacks);
1734 
1735 		while (!list_empty(&callbacks)) {
1736 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1737 							  struct blk_plug_cb,
1738 							  list);
1739 			list_del(&cb->list);
1740 			cb->callback(cb, from_schedule);
1741 		}
1742 	}
1743 }
1744 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1745 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1746 				      int size)
1747 {
1748 	struct blk_plug *plug = current->plug;
1749 	struct blk_plug_cb *cb;
1750 
1751 	if (!plug)
1752 		return NULL;
1753 
1754 	list_for_each_entry(cb, &plug->cb_list, list)
1755 		if (cb->callback == unplug && cb->data == data)
1756 			return cb;
1757 
1758 	/* Not currently on the callback list */
1759 	BUG_ON(size < sizeof(*cb));
1760 	cb = kzalloc(size, GFP_ATOMIC);
1761 	if (cb) {
1762 		cb->data = data;
1763 		cb->callback = unplug;
1764 		list_add(&cb->list, &plug->cb_list);
1765 	}
1766 	return cb;
1767 }
1768 EXPORT_SYMBOL(blk_check_plugged);
1769 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1770 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1771 {
1772 	flush_plug_callbacks(plug, from_schedule);
1773 
1774 	if (!list_empty(&plug->mq_list))
1775 		blk_mq_flush_plug_list(plug, from_schedule);
1776 }
1777 
1778 /**
1779  * blk_finish_plug - mark the end of a batch of submitted I/O
1780  * @plug:	The &struct blk_plug passed to blk_start_plug()
1781  *
1782  * Description:
1783  * Indicate that a batch of I/O submissions is complete.  This function
1784  * must be paired with an initial call to blk_start_plug().  The intent
1785  * is to allow the block layer to optimize I/O submission.  See the
1786  * documentation for blk_start_plug() for more information.
1787  */
blk_finish_plug(struct blk_plug * plug)1788 void blk_finish_plug(struct blk_plug *plug)
1789 {
1790 	if (plug != current->plug)
1791 		return;
1792 	blk_flush_plug_list(plug, false);
1793 
1794 	current->plug = NULL;
1795 }
1796 EXPORT_SYMBOL(blk_finish_plug);
1797 
blk_dev_init(void)1798 int __init blk_dev_init(void)
1799 {
1800 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1801 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1802 			FIELD_SIZEOF(struct request, cmd_flags));
1803 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1804 			FIELD_SIZEOF(struct bio, bi_opf));
1805 
1806 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1807 	kblockd_workqueue = alloc_workqueue("kblockd",
1808 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1809 	if (!kblockd_workqueue)
1810 		panic("Failed to create kblockd\n");
1811 
1812 	blk_requestq_cachep = kmem_cache_create("request_queue",
1813 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1814 
1815 #ifdef CONFIG_DEBUG_FS
1816 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1817 #endif
1818 
1819 	if (bio_crypt_ctx_init() < 0)
1820 		panic("Failed to allocate mem for bio crypt ctxs\n");
1821 
1822 	if (blk_crypto_fallback_init() < 0)
1823 		panic("Failed to init blk-crypto-fallback\n");
1824 
1825 	return 0;
1826 }
1827