1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 #include <linux/blk-crypto.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/block.h>
45
46 #include "blk.h"
47 #include "blk-mq.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-rq-qos.h"
51
52 #ifdef CONFIG_DEBUG_FS
53 struct dentry *blk_debugfs_root;
54 #endif
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61
62 DEFINE_IDA(blk_queue_ida);
63
64 /*
65 * For queue allocation
66 */
67 struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84
85 /**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95
96 /**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
blk_rq_init(struct request_queue * q,struct request * rq)110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 memset(rq, 0, sizeof(*rq));
113
114 INIT_LIST_HEAD(&rq->queuelist);
115 rq->q = q;
116 rq->__sector = (sector_t) -1;
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
119 rq->tag = -1;
120 rq->internal_tag = -1;
121 rq->start_time_ns = ktime_get_ns();
122 rq->part = NULL;
123 refcount_set(&rq->ref, 1);
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126
127 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
128 static const char *const blk_op_name[] = {
129 REQ_OP_NAME(READ),
130 REQ_OP_NAME(WRITE),
131 REQ_OP_NAME(FLUSH),
132 REQ_OP_NAME(DISCARD),
133 REQ_OP_NAME(SECURE_ERASE),
134 REQ_OP_NAME(ZONE_RESET),
135 REQ_OP_NAME(ZONE_RESET_ALL),
136 REQ_OP_NAME(ZONE_OPEN),
137 REQ_OP_NAME(ZONE_CLOSE),
138 REQ_OP_NAME(ZONE_FINISH),
139 REQ_OP_NAME(WRITE_SAME),
140 REQ_OP_NAME(WRITE_ZEROES),
141 REQ_OP_NAME(SCSI_IN),
142 REQ_OP_NAME(SCSI_OUT),
143 REQ_OP_NAME(DRV_IN),
144 REQ_OP_NAME(DRV_OUT),
145 };
146 #undef REQ_OP_NAME
147
148 /**
149 * blk_op_str - Return string XXX in the REQ_OP_XXX.
150 * @op: REQ_OP_XXX.
151 *
152 * Description: Centralize block layer function to convert REQ_OP_XXX into
153 * string format. Useful in the debugging and tracing bio or request. For
154 * invalid REQ_OP_XXX it returns string "UNKNOWN".
155 */
blk_op_str(unsigned int op)156 inline const char *blk_op_str(unsigned int op)
157 {
158 const char *op_str = "UNKNOWN";
159
160 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
161 op_str = blk_op_name[op];
162
163 return op_str;
164 }
165 EXPORT_SYMBOL_GPL(blk_op_str);
166
167 static const struct {
168 int errno;
169 const char *name;
170 } blk_errors[] = {
171 [BLK_STS_OK] = { 0, "" },
172 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
173 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
174 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
175 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
176 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
177 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
178 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
179 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
180 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
181 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
182 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
183
184 /* device mapper special case, should not leak out: */
185 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
186
187 /* everything else not covered above: */
188 [BLK_STS_IOERR] = { -EIO, "I/O" },
189 };
190
errno_to_blk_status(int errno)191 blk_status_t errno_to_blk_status(int errno)
192 {
193 int i;
194
195 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
196 if (blk_errors[i].errno == errno)
197 return (__force blk_status_t)i;
198 }
199
200 return BLK_STS_IOERR;
201 }
202 EXPORT_SYMBOL_GPL(errno_to_blk_status);
203
blk_status_to_errno(blk_status_t status)204 int blk_status_to_errno(blk_status_t status)
205 {
206 int idx = (__force int)status;
207
208 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
209 return -EIO;
210 return blk_errors[idx].errno;
211 }
212 EXPORT_SYMBOL_GPL(blk_status_to_errno);
213
print_req_error(struct request * req,blk_status_t status,const char * caller)214 static void print_req_error(struct request *req, blk_status_t status,
215 const char *caller)
216 {
217 int idx = (__force int)status;
218
219 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
220 return;
221
222 printk_ratelimited(KERN_ERR
223 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
224 "phys_seg %u prio class %u\n",
225 caller, blk_errors[idx].name,
226 req->rq_disk ? req->rq_disk->disk_name : "?",
227 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
228 req->cmd_flags & ~REQ_OP_MASK,
229 req->nr_phys_segments,
230 IOPRIO_PRIO_CLASS(req->ioprio));
231 }
232
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)233 static void req_bio_endio(struct request *rq, struct bio *bio,
234 unsigned int nbytes, blk_status_t error)
235 {
236 if (error)
237 bio->bi_status = error;
238
239 if (unlikely(rq->rq_flags & RQF_QUIET))
240 bio_set_flag(bio, BIO_QUIET);
241
242 bio_advance(bio, nbytes);
243
244 /* don't actually finish bio if it's part of flush sequence */
245 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
246 bio_endio(bio);
247 }
248
blk_dump_rq_flags(struct request * rq,char * msg)249 void blk_dump_rq_flags(struct request *rq, char *msg)
250 {
251 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
252 rq->rq_disk ? rq->rq_disk->disk_name : "?",
253 (unsigned long long) rq->cmd_flags);
254
255 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
256 (unsigned long long)blk_rq_pos(rq),
257 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
258 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
259 rq->bio, rq->biotail, blk_rq_bytes(rq));
260 }
261 EXPORT_SYMBOL(blk_dump_rq_flags);
262
263 /**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
272 * that the callbacks might use. The caller must already have made sure
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevator_exit()
278 * and blkcg_exit_queue() to be called with queue lock initialized.
279 *
280 */
blk_sync_queue(struct request_queue * q)281 void blk_sync_queue(struct request_queue *q)
282 {
283 del_timer_sync(&q->timeout);
284 cancel_work_sync(&q->timeout_work);
285 }
286 EXPORT_SYMBOL(blk_sync_queue);
287
288 /**
289 * blk_set_pm_only - increment pm_only counter
290 * @q: request queue pointer
291 */
blk_set_pm_only(struct request_queue * q)292 void blk_set_pm_only(struct request_queue *q)
293 {
294 atomic_inc(&q->pm_only);
295 }
296 EXPORT_SYMBOL_GPL(blk_set_pm_only);
297
blk_clear_pm_only(struct request_queue * q)298 void blk_clear_pm_only(struct request_queue *q)
299 {
300 int pm_only;
301
302 pm_only = atomic_dec_return(&q->pm_only);
303 WARN_ON_ONCE(pm_only < 0);
304 if (pm_only == 0)
305 wake_up_all(&q->mq_freeze_wq);
306 }
307 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
308
blk_put_queue(struct request_queue * q)309 void blk_put_queue(struct request_queue *q)
310 {
311 kobject_put(&q->kobj);
312 }
313 EXPORT_SYMBOL(blk_put_queue);
314
blk_set_queue_dying(struct request_queue * q)315 void blk_set_queue_dying(struct request_queue *q)
316 {
317 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
318
319 /*
320 * When queue DYING flag is set, we need to block new req
321 * entering queue, so we call blk_freeze_queue_start() to
322 * prevent I/O from crossing blk_queue_enter().
323 */
324 blk_freeze_queue_start(q);
325
326 if (queue_is_mq(q))
327 blk_mq_wake_waiters(q);
328
329 /* Make blk_queue_enter() reexamine the DYING flag. */
330 wake_up_all(&q->mq_freeze_wq);
331 }
332 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
333
334 /**
335 * blk_cleanup_queue - shutdown a request queue
336 * @q: request queue to shutdown
337 *
338 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
339 * put it. All future requests will be failed immediately with -ENODEV.
340 */
blk_cleanup_queue(struct request_queue * q)341 void blk_cleanup_queue(struct request_queue *q)
342 {
343 /* mark @q DYING, no new request or merges will be allowed afterwards */
344 mutex_lock(&q->sysfs_lock);
345 blk_set_queue_dying(q);
346
347 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
350 mutex_unlock(&q->sysfs_lock);
351
352 /*
353 * Drain all requests queued before DYING marking. Set DEAD flag to
354 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
355 * after draining finished.
356 */
357 blk_freeze_queue(q);
358
359 rq_qos_exit(q);
360
361 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
362
363 /* for synchronous bio-based driver finish in-flight integrity i/o */
364 blk_flush_integrity();
365
366 /* @q won't process any more request, flush async actions */
367 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
368 blk_sync_queue(q);
369
370 if (queue_is_mq(q))
371 blk_mq_exit_queue(q);
372
373 /*
374 * In theory, request pool of sched_tags belongs to request queue.
375 * However, the current implementation requires tag_set for freeing
376 * requests, so free the pool now.
377 *
378 * Queue has become frozen, there can't be any in-queue requests, so
379 * it is safe to free requests now.
380 */
381 mutex_lock(&q->sysfs_lock);
382 if (q->elevator)
383 blk_mq_sched_free_requests(q);
384 mutex_unlock(&q->sysfs_lock);
385
386 percpu_ref_exit(&q->q_usage_counter);
387
388 /* @q is and will stay empty, shutdown and put */
389 blk_put_queue(q);
390 }
391 EXPORT_SYMBOL(blk_cleanup_queue);
392
blk_alloc_queue(gfp_t gfp_mask)393 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
394 {
395 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
396 }
397 EXPORT_SYMBOL(blk_alloc_queue);
398
399 /**
400 * blk_queue_enter() - try to increase q->q_usage_counter
401 * @q: request queue pointer
402 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
403 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)404 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
405 {
406 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
407
408 while (true) {
409 bool success = false;
410
411 rcu_read_lock();
412 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
413 /*
414 * The code that increments the pm_only counter is
415 * responsible for ensuring that that counter is
416 * globally visible before the queue is unfrozen.
417 */
418 if (pm || !blk_queue_pm_only(q)) {
419 success = true;
420 } else {
421 percpu_ref_put(&q->q_usage_counter);
422 }
423 }
424 rcu_read_unlock();
425
426 if (success)
427 return 0;
428
429 if (flags & BLK_MQ_REQ_NOWAIT)
430 return -EBUSY;
431
432 /*
433 * read pair of barrier in blk_freeze_queue_start(),
434 * we need to order reading __PERCPU_REF_DEAD flag of
435 * .q_usage_counter and reading .mq_freeze_depth or
436 * queue dying flag, otherwise the following wait may
437 * never return if the two reads are reordered.
438 */
439 smp_rmb();
440
441 wait_event(q->mq_freeze_wq,
442 (!q->mq_freeze_depth &&
443 (pm || (blk_pm_request_resume(q),
444 !blk_queue_pm_only(q)))) ||
445 blk_queue_dying(q));
446 if (blk_queue_dying(q))
447 return -ENODEV;
448 }
449 }
450
blk_queue_exit(struct request_queue * q)451 void blk_queue_exit(struct request_queue *q)
452 {
453 percpu_ref_put(&q->q_usage_counter);
454 }
455
blk_queue_usage_counter_release(struct percpu_ref * ref)456 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
457 {
458 struct request_queue *q =
459 container_of(ref, struct request_queue, q_usage_counter);
460
461 wake_up_all(&q->mq_freeze_wq);
462 }
463
blk_rq_timed_out_timer(struct timer_list * t)464 static void blk_rq_timed_out_timer(struct timer_list *t)
465 {
466 struct request_queue *q = from_timer(q, t, timeout);
467
468 kblockd_schedule_work(&q->timeout_work);
469 }
470
blk_timeout_work(struct work_struct * work)471 static void blk_timeout_work(struct work_struct *work)
472 {
473 }
474
475 /**
476 * blk_alloc_queue_node - allocate a request queue
477 * @gfp_mask: memory allocation flags
478 * @node_id: NUMA node to allocate memory from
479 */
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
481 {
482 struct request_queue *q;
483 int ret;
484
485 q = kmem_cache_alloc_node(blk_requestq_cachep,
486 gfp_mask | __GFP_ZERO, node_id);
487 if (!q)
488 return NULL;
489
490 q->last_merge = NULL;
491
492 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
493 if (q->id < 0)
494 goto fail_q;
495
496 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
497 if (ret)
498 goto fail_id;
499
500 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
501 if (!q->backing_dev_info)
502 goto fail_split;
503
504 q->stats = blk_alloc_queue_stats();
505 if (!q->stats)
506 goto fail_stats;
507
508 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
509 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
510 q->backing_dev_info->name = "block";
511 q->node = node_id;
512
513 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
514 laptop_mode_timer_fn, 0);
515 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
516 INIT_WORK(&q->timeout_work, blk_timeout_work);
517 INIT_LIST_HEAD(&q->icq_list);
518 #ifdef CONFIG_BLK_CGROUP
519 INIT_LIST_HEAD(&q->blkg_list);
520 #endif
521
522 kobject_init(&q->kobj, &blk_queue_ktype);
523
524 #ifdef CONFIG_BLK_DEV_IO_TRACE
525 mutex_init(&q->blk_trace_mutex);
526 #endif
527 mutex_init(&q->sysfs_lock);
528 mutex_init(&q->sysfs_dir_lock);
529 spin_lock_init(&q->queue_lock);
530
531 init_waitqueue_head(&q->mq_freeze_wq);
532 mutex_init(&q->mq_freeze_lock);
533
534 /*
535 * Init percpu_ref in atomic mode so that it's faster to shutdown.
536 * See blk_register_queue() for details.
537 */
538 if (percpu_ref_init(&q->q_usage_counter,
539 blk_queue_usage_counter_release,
540 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
541 goto fail_bdi;
542
543 if (blkcg_init_queue(q))
544 goto fail_ref;
545
546 return q;
547
548 fail_ref:
549 percpu_ref_exit(&q->q_usage_counter);
550 fail_bdi:
551 blk_free_queue_stats(q->stats);
552 fail_stats:
553 bdi_put(q->backing_dev_info);
554 fail_split:
555 bioset_exit(&q->bio_split);
556 fail_id:
557 ida_simple_remove(&blk_queue_ida, q->id);
558 fail_q:
559 kmem_cache_free(blk_requestq_cachep, q);
560 return NULL;
561 }
562 EXPORT_SYMBOL(blk_alloc_queue_node);
563
blk_get_queue(struct request_queue * q)564 bool blk_get_queue(struct request_queue *q)
565 {
566 if (likely(!blk_queue_dying(q))) {
567 __blk_get_queue(q);
568 return true;
569 }
570
571 return false;
572 }
573 EXPORT_SYMBOL(blk_get_queue);
574
575 /**
576 * blk_get_request - allocate a request
577 * @q: request queue to allocate a request for
578 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
579 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
580 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)581 struct request *blk_get_request(struct request_queue *q, unsigned int op,
582 blk_mq_req_flags_t flags)
583 {
584 struct request *req;
585
586 WARN_ON_ONCE(op & REQ_NOWAIT);
587 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
588
589 req = blk_mq_alloc_request(q, op, flags);
590 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
591 q->mq_ops->initialize_rq_fn(req);
592
593 return req;
594 }
595 EXPORT_SYMBOL(blk_get_request);
596
blk_put_request(struct request * req)597 void blk_put_request(struct request *req)
598 {
599 blk_mq_free_request(req);
600 }
601 EXPORT_SYMBOL(blk_put_request);
602
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)603 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
604 unsigned int nr_segs)
605 {
606 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
607
608 if (!ll_back_merge_fn(req, bio, nr_segs))
609 return false;
610
611 trace_block_bio_backmerge(req->q, req, bio);
612 rq_qos_merge(req->q, req, bio);
613
614 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
615 blk_rq_set_mixed_merge(req);
616
617 req->biotail->bi_next = bio;
618 req->biotail = bio;
619 req->__data_len += bio->bi_iter.bi_size;
620
621 blk_account_io_start(req, false);
622 return true;
623 }
624
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)625 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
626 unsigned int nr_segs)
627 {
628 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
629
630 if (!ll_front_merge_fn(req, bio, nr_segs))
631 return false;
632
633 trace_block_bio_frontmerge(req->q, req, bio);
634 rq_qos_merge(req->q, req, bio);
635
636 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
637 blk_rq_set_mixed_merge(req);
638
639 bio->bi_next = req->bio;
640 req->bio = bio;
641
642 req->__sector = bio->bi_iter.bi_sector;
643 req->__data_len += bio->bi_iter.bi_size;
644
645 blk_account_io_start(req, false);
646 return true;
647 }
648
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)649 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
650 struct bio *bio)
651 {
652 unsigned short segments = blk_rq_nr_discard_segments(req);
653
654 if (segments >= queue_max_discard_segments(q))
655 goto no_merge;
656 if (blk_rq_sectors(req) + bio_sectors(bio) >
657 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
658 goto no_merge;
659
660 rq_qos_merge(q, req, bio);
661
662 req->biotail->bi_next = bio;
663 req->biotail = bio;
664 req->__data_len += bio->bi_iter.bi_size;
665 req->nr_phys_segments = segments + 1;
666
667 blk_account_io_start(req, false);
668 return true;
669 no_merge:
670 req_set_nomerge(q, req);
671 return false;
672 }
673
674 /**
675 * blk_attempt_plug_merge - try to merge with %current's plugged list
676 * @q: request_queue new bio is being queued at
677 * @bio: new bio being queued
678 * @nr_segs: number of segments in @bio
679 * @same_queue_rq: pointer to &struct request that gets filled in when
680 * another request associated with @q is found on the plug list
681 * (optional, may be %NULL)
682 *
683 * Determine whether @bio being queued on @q can be merged with a request
684 * on %current's plugged list. Returns %true if merge was successful,
685 * otherwise %false.
686 *
687 * Plugging coalesces IOs from the same issuer for the same purpose without
688 * going through @q->queue_lock. As such it's more of an issuing mechanism
689 * than scheduling, and the request, while may have elvpriv data, is not
690 * added on the elevator at this point. In addition, we don't have
691 * reliable access to the elevator outside queue lock. Only check basic
692 * merging parameters without querying the elevator.
693 *
694 * Caller must ensure !blk_queue_nomerges(q) beforehand.
695 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)696 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
697 unsigned int nr_segs, struct request **same_queue_rq)
698 {
699 struct blk_plug *plug;
700 struct request *rq;
701 struct list_head *plug_list;
702
703 plug = blk_mq_plug(q, bio);
704 if (!plug)
705 return false;
706
707 plug_list = &plug->mq_list;
708
709 list_for_each_entry_reverse(rq, plug_list, queuelist) {
710 bool merged = false;
711
712 if (rq->q == q && same_queue_rq) {
713 /*
714 * Only blk-mq multiple hardware queues case checks the
715 * rq in the same queue, there should be only one such
716 * rq in a queue
717 **/
718 *same_queue_rq = rq;
719 }
720
721 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
722 continue;
723
724 switch (blk_try_merge(rq, bio)) {
725 case ELEVATOR_BACK_MERGE:
726 merged = bio_attempt_back_merge(rq, bio, nr_segs);
727 break;
728 case ELEVATOR_FRONT_MERGE:
729 merged = bio_attempt_front_merge(rq, bio, nr_segs);
730 break;
731 case ELEVATOR_DISCARD_MERGE:
732 merged = bio_attempt_discard_merge(q, rq, bio);
733 break;
734 default:
735 break;
736 }
737
738 if (merged)
739 return true;
740 }
741
742 return false;
743 }
744
handle_bad_sector(struct bio * bio,sector_t maxsector)745 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
746 {
747 char b[BDEVNAME_SIZE];
748
749 printk(KERN_INFO "attempt to access beyond end of device\n");
750 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
751 bio_devname(bio, b), bio->bi_opf,
752 (unsigned long long)bio_end_sector(bio),
753 (long long)maxsector);
754 }
755
756 #ifdef CONFIG_FAIL_MAKE_REQUEST
757
758 static DECLARE_FAULT_ATTR(fail_make_request);
759
setup_fail_make_request(char * str)760 static int __init setup_fail_make_request(char *str)
761 {
762 return setup_fault_attr(&fail_make_request, str);
763 }
764 __setup("fail_make_request=", setup_fail_make_request);
765
should_fail_request(struct hd_struct * part,unsigned int bytes)766 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
767 {
768 return part->make_it_fail && should_fail(&fail_make_request, bytes);
769 }
770
fail_make_request_debugfs(void)771 static int __init fail_make_request_debugfs(void)
772 {
773 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
774 NULL, &fail_make_request);
775
776 return PTR_ERR_OR_ZERO(dir);
777 }
778
779 late_initcall(fail_make_request_debugfs);
780
781 #else /* CONFIG_FAIL_MAKE_REQUEST */
782
should_fail_request(struct hd_struct * part,unsigned int bytes)783 static inline bool should_fail_request(struct hd_struct *part,
784 unsigned int bytes)
785 {
786 return false;
787 }
788
789 #endif /* CONFIG_FAIL_MAKE_REQUEST */
790
bio_check_ro(struct bio * bio,struct hd_struct * part)791 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
792 {
793 const int op = bio_op(bio);
794
795 if (part->policy && op_is_write(op)) {
796 char b[BDEVNAME_SIZE];
797
798 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
799 return false;
800
801 WARN_ONCE(1,
802 "generic_make_request: Trying to write "
803 "to read-only block-device %s (partno %d)\n",
804 bio_devname(bio, b), part->partno);
805 /* Older lvm-tools actually trigger this */
806 return false;
807 }
808
809 return false;
810 }
811
should_fail_bio(struct bio * bio)812 static noinline int should_fail_bio(struct bio *bio)
813 {
814 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
815 return -EIO;
816 return 0;
817 }
818 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
819
820 /*
821 * Check whether this bio extends beyond the end of the device or partition.
822 * This may well happen - the kernel calls bread() without checking the size of
823 * the device, e.g., when mounting a file system.
824 */
bio_check_eod(struct bio * bio,sector_t maxsector)825 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
826 {
827 unsigned int nr_sectors = bio_sectors(bio);
828
829 if (nr_sectors && maxsector &&
830 (nr_sectors > maxsector ||
831 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
832 handle_bad_sector(bio, maxsector);
833 return -EIO;
834 }
835 return 0;
836 }
837
838 /*
839 * Remap block n of partition p to block n+start(p) of the disk.
840 */
blk_partition_remap(struct bio * bio)841 static inline int blk_partition_remap(struct bio *bio)
842 {
843 struct hd_struct *p;
844 int ret = -EIO;
845
846 rcu_read_lock();
847 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
848 if (unlikely(!p))
849 goto out;
850 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
851 goto out;
852 if (unlikely(bio_check_ro(bio, p)))
853 goto out;
854
855 if (bio_sectors(bio)) {
856 if (bio_check_eod(bio, part_nr_sects_read(p)))
857 goto out;
858 bio->bi_iter.bi_sector += p->start_sect;
859 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
860 bio->bi_iter.bi_sector - p->start_sect);
861 }
862 bio->bi_partno = 0;
863 ret = 0;
864 out:
865 rcu_read_unlock();
866 return ret;
867 }
868
869 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)870 generic_make_request_checks(struct bio *bio)
871 {
872 struct request_queue *q;
873 int nr_sectors = bio_sectors(bio);
874 blk_status_t status = BLK_STS_IOERR;
875 char b[BDEVNAME_SIZE];
876
877 might_sleep();
878
879 q = bio->bi_disk->queue;
880 if (unlikely(!q)) {
881 printk(KERN_ERR
882 "generic_make_request: Trying to access "
883 "nonexistent block-device %s (%Lu)\n",
884 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
885 goto end_io;
886 }
887
888 /*
889 * Non-mq queues do not honor REQ_NOWAIT, so complete a bio
890 * with BLK_STS_AGAIN status in order to catch -EAGAIN and
891 * to give a chance to the caller to repeat request gracefully.
892 */
893 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) {
894 status = BLK_STS_AGAIN;
895 goto end_io;
896 }
897
898 if (should_fail_bio(bio))
899 goto end_io;
900
901 if (bio->bi_partno) {
902 if (unlikely(blk_partition_remap(bio)))
903 goto end_io;
904 } else {
905 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
906 goto end_io;
907 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
908 goto end_io;
909 }
910
911 /*
912 * Filter flush bio's early so that make_request based
913 * drivers without flush support don't have to worry
914 * about them.
915 */
916 if (op_is_flush(bio->bi_opf) &&
917 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
918 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
919 if (!nr_sectors) {
920 status = BLK_STS_OK;
921 goto end_io;
922 }
923 }
924
925 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
926 bio->bi_opf &= ~REQ_HIPRI;
927
928 switch (bio_op(bio)) {
929 case REQ_OP_DISCARD:
930 if (!blk_queue_discard(q))
931 goto not_supported;
932 break;
933 case REQ_OP_SECURE_ERASE:
934 if (!blk_queue_secure_erase(q))
935 goto not_supported;
936 break;
937 case REQ_OP_WRITE_SAME:
938 if (!q->limits.max_write_same_sectors)
939 goto not_supported;
940 break;
941 case REQ_OP_ZONE_RESET:
942 case REQ_OP_ZONE_OPEN:
943 case REQ_OP_ZONE_CLOSE:
944 case REQ_OP_ZONE_FINISH:
945 if (!blk_queue_is_zoned(q))
946 goto not_supported;
947 break;
948 case REQ_OP_ZONE_RESET_ALL:
949 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
950 goto not_supported;
951 break;
952 case REQ_OP_WRITE_ZEROES:
953 if (!q->limits.max_write_zeroes_sectors)
954 goto not_supported;
955 break;
956 default:
957 break;
958 }
959
960 /*
961 * Various block parts want %current->io_context and lazy ioc
962 * allocation ends up trading a lot of pain for a small amount of
963 * memory. Just allocate it upfront. This may fail and block
964 * layer knows how to live with it.
965 */
966 create_io_context(GFP_ATOMIC, q->node);
967
968 if (!blkcg_bio_issue_check(q, bio))
969 return false;
970
971 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
972 trace_block_bio_queue(q, bio);
973 /* Now that enqueuing has been traced, we need to trace
974 * completion as well.
975 */
976 bio_set_flag(bio, BIO_TRACE_COMPLETION);
977 }
978 return true;
979
980 not_supported:
981 status = BLK_STS_NOTSUPP;
982 end_io:
983 bio->bi_status = status;
984 bio_endio(bio);
985 return false;
986 }
987
988 /**
989 * generic_make_request - hand a buffer to its device driver for I/O
990 * @bio: The bio describing the location in memory and on the device.
991 *
992 * generic_make_request() is used to make I/O requests of block
993 * devices. It is passed a &struct bio, which describes the I/O that needs
994 * to be done.
995 *
996 * generic_make_request() does not return any status. The
997 * success/failure status of the request, along with notification of
998 * completion, is delivered asynchronously through the bio->bi_end_io
999 * function described (one day) else where.
1000 *
1001 * The caller of generic_make_request must make sure that bi_io_vec
1002 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1003 * set to describe the device address, and the
1004 * bi_end_io and optionally bi_private are set to describe how
1005 * completion notification should be signaled.
1006 *
1007 * generic_make_request and the drivers it calls may use bi_next if this
1008 * bio happens to be merged with someone else, and may resubmit the bio to
1009 * a lower device by calling into generic_make_request recursively, which
1010 * means the bio should NOT be touched after the call to ->make_request_fn.
1011 */
generic_make_request(struct bio * bio)1012 blk_qc_t generic_make_request(struct bio *bio)
1013 {
1014 /*
1015 * bio_list_on_stack[0] contains bios submitted by the current
1016 * make_request_fn.
1017 * bio_list_on_stack[1] contains bios that were submitted before
1018 * the current make_request_fn, but that haven't been processed
1019 * yet.
1020 */
1021 struct bio_list bio_list_on_stack[2];
1022 blk_qc_t ret = BLK_QC_T_NONE;
1023
1024 if (!generic_make_request_checks(bio))
1025 goto out;
1026
1027 /*
1028 * We only want one ->make_request_fn to be active at a time, else
1029 * stack usage with stacked devices could be a problem. So use
1030 * current->bio_list to keep a list of requests submited by a
1031 * make_request_fn function. current->bio_list is also used as a
1032 * flag to say if generic_make_request is currently active in this
1033 * task or not. If it is NULL, then no make_request is active. If
1034 * it is non-NULL, then a make_request is active, and new requests
1035 * should be added at the tail
1036 */
1037 if (current->bio_list) {
1038 bio_list_add(¤t->bio_list[0], bio);
1039 goto out;
1040 }
1041
1042 /* following loop may be a bit non-obvious, and so deserves some
1043 * explanation.
1044 * Before entering the loop, bio->bi_next is NULL (as all callers
1045 * ensure that) so we have a list with a single bio.
1046 * We pretend that we have just taken it off a longer list, so
1047 * we assign bio_list to a pointer to the bio_list_on_stack,
1048 * thus initialising the bio_list of new bios to be
1049 * added. ->make_request() may indeed add some more bios
1050 * through a recursive call to generic_make_request. If it
1051 * did, we find a non-NULL value in bio_list and re-enter the loop
1052 * from the top. In this case we really did just take the bio
1053 * of the top of the list (no pretending) and so remove it from
1054 * bio_list, and call into ->make_request() again.
1055 */
1056 BUG_ON(bio->bi_next);
1057 bio_list_init(&bio_list_on_stack[0]);
1058 current->bio_list = bio_list_on_stack;
1059 do {
1060 struct request_queue *q = bio->bi_disk->queue;
1061 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1062 BLK_MQ_REQ_NOWAIT : 0;
1063
1064 if (likely(blk_queue_enter(q, flags) == 0)) {
1065 struct bio_list lower, same;
1066
1067 /* Create a fresh bio_list for all subordinate requests */
1068 bio_list_on_stack[1] = bio_list_on_stack[0];
1069 bio_list_init(&bio_list_on_stack[0]);
1070
1071 if (!blk_crypto_submit_bio(&bio))
1072 ret = q->make_request_fn(q, bio);
1073
1074 blk_queue_exit(q);
1075
1076 /* sort new bios into those for a lower level
1077 * and those for the same level
1078 */
1079 bio_list_init(&lower);
1080 bio_list_init(&same);
1081 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1082 if (q == bio->bi_disk->queue)
1083 bio_list_add(&same, bio);
1084 else
1085 bio_list_add(&lower, bio);
1086 /* now assemble so we handle the lowest level first */
1087 bio_list_merge(&bio_list_on_stack[0], &lower);
1088 bio_list_merge(&bio_list_on_stack[0], &same);
1089 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1090 } else {
1091 if (unlikely(!blk_queue_dying(q) &&
1092 (bio->bi_opf & REQ_NOWAIT)))
1093 bio_wouldblock_error(bio);
1094 else
1095 bio_io_error(bio);
1096 }
1097 bio = bio_list_pop(&bio_list_on_stack[0]);
1098 } while (bio);
1099 current->bio_list = NULL; /* deactivate */
1100
1101 out:
1102 return ret;
1103 }
1104 EXPORT_SYMBOL(generic_make_request);
1105
1106 /**
1107 * direct_make_request - hand a buffer directly to its device driver for I/O
1108 * @bio: The bio describing the location in memory and on the device.
1109 *
1110 * This function behaves like generic_make_request(), but does not protect
1111 * against recursion. Must only be used if the called driver is known
1112 * to not call generic_make_request (or direct_make_request) again from
1113 * its make_request function. (Calling direct_make_request again from
1114 * a workqueue is perfectly fine as that doesn't recurse).
1115 */
direct_make_request(struct bio * bio)1116 blk_qc_t direct_make_request(struct bio *bio)
1117 {
1118 struct request_queue *q = bio->bi_disk->queue;
1119 bool nowait = bio->bi_opf & REQ_NOWAIT;
1120 blk_qc_t ret = BLK_QC_T_NONE;
1121
1122 if (!generic_make_request_checks(bio))
1123 return BLK_QC_T_NONE;
1124
1125 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1126 if (nowait && !blk_queue_dying(q))
1127 bio->bi_status = BLK_STS_AGAIN;
1128 else
1129 bio->bi_status = BLK_STS_IOERR;
1130 bio_endio(bio);
1131 return BLK_QC_T_NONE;
1132 }
1133
1134 if (!blk_crypto_submit_bio(&bio))
1135 ret = q->make_request_fn(q, bio);
1136 blk_queue_exit(q);
1137 return ret;
1138 }
1139 EXPORT_SYMBOL_GPL(direct_make_request);
1140
1141 /**
1142 * submit_bio - submit a bio to the block device layer for I/O
1143 * @bio: The &struct bio which describes the I/O
1144 *
1145 * submit_bio() is very similar in purpose to generic_make_request(), and
1146 * uses that function to do most of the work. Both are fairly rough
1147 * interfaces; @bio must be presetup and ready for I/O.
1148 *
1149 */
submit_bio(struct bio * bio)1150 blk_qc_t submit_bio(struct bio *bio)
1151 {
1152 bool workingset_read = false;
1153 unsigned long pflags;
1154 blk_qc_t ret;
1155
1156 if (blkcg_punt_bio_submit(bio))
1157 return BLK_QC_T_NONE;
1158
1159 /*
1160 * If it's a regular read/write or a barrier with data attached,
1161 * go through the normal accounting stuff before submission.
1162 */
1163 if (bio_has_data(bio)) {
1164 unsigned int count;
1165
1166 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1167 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1168 else
1169 count = bio_sectors(bio);
1170
1171 if (op_is_write(bio_op(bio))) {
1172 count_vm_events(PGPGOUT, count);
1173 } else {
1174 if (bio_flagged(bio, BIO_WORKINGSET))
1175 workingset_read = true;
1176 task_io_account_read(bio->bi_iter.bi_size);
1177 count_vm_events(PGPGIN, count);
1178 }
1179
1180 if (unlikely(block_dump)) {
1181 char b[BDEVNAME_SIZE];
1182 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1183 current->comm, task_pid_nr(current),
1184 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1185 (unsigned long long)bio->bi_iter.bi_sector,
1186 bio_devname(bio, b), count);
1187 }
1188 }
1189
1190 /*
1191 * If we're reading data that is part of the userspace
1192 * workingset, count submission time as memory stall. When the
1193 * device is congested, or the submitting cgroup IO-throttled,
1194 * submission can be a significant part of overall IO time.
1195 */
1196 if (workingset_read)
1197 psi_memstall_enter(&pflags);
1198
1199 ret = generic_make_request(bio);
1200
1201 if (workingset_read)
1202 psi_memstall_leave(&pflags);
1203
1204 return ret;
1205 }
1206 EXPORT_SYMBOL(submit_bio);
1207
1208 /**
1209 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1210 * for new the queue limits
1211 * @q: the queue
1212 * @rq: the request being checked
1213 *
1214 * Description:
1215 * @rq may have been made based on weaker limitations of upper-level queues
1216 * in request stacking drivers, and it may violate the limitation of @q.
1217 * Since the block layer and the underlying device driver trust @rq
1218 * after it is inserted to @q, it should be checked against @q before
1219 * the insertion using this generic function.
1220 *
1221 * Request stacking drivers like request-based dm may change the queue
1222 * limits when retrying requests on other queues. Those requests need
1223 * to be checked against the new queue limits again during dispatch.
1224 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1225 static int blk_cloned_rq_check_limits(struct request_queue *q,
1226 struct request *rq)
1227 {
1228 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1229 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1230 __func__, blk_rq_sectors(rq),
1231 blk_queue_get_max_sectors(q, req_op(rq)));
1232 return -EIO;
1233 }
1234
1235 /*
1236 * queue's settings related to segment counting like q->bounce_pfn
1237 * may differ from that of other stacking queues.
1238 * Recalculate it to check the request correctly on this queue's
1239 * limitation.
1240 */
1241 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1242 if (rq->nr_phys_segments > queue_max_segments(q)) {
1243 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1244 __func__, rq->nr_phys_segments, queue_max_segments(q));
1245 return -EIO;
1246 }
1247
1248 return 0;
1249 }
1250
1251 /**
1252 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1253 * @q: the queue to submit the request
1254 * @rq: the request being queued
1255 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1256 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1257 {
1258 if (blk_cloned_rq_check_limits(q, rq))
1259 return BLK_STS_IOERR;
1260
1261 if (rq->rq_disk &&
1262 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1263 return BLK_STS_IOERR;
1264
1265 if (blk_queue_io_stat(q))
1266 blk_account_io_start(rq, true);
1267
1268 /*
1269 * Since we have a scheduler attached on the top device,
1270 * bypass a potential scheduler on the bottom device for
1271 * insert.
1272 */
1273 return blk_mq_request_issue_directly(rq, true);
1274 }
1275 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1276
1277 /**
1278 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1279 * @rq: request to examine
1280 *
1281 * Description:
1282 * A request could be merge of IOs which require different failure
1283 * handling. This function determines the number of bytes which
1284 * can be failed from the beginning of the request without
1285 * crossing into area which need to be retried further.
1286 *
1287 * Return:
1288 * The number of bytes to fail.
1289 */
blk_rq_err_bytes(const struct request * rq)1290 unsigned int blk_rq_err_bytes(const struct request *rq)
1291 {
1292 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1293 unsigned int bytes = 0;
1294 struct bio *bio;
1295
1296 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1297 return blk_rq_bytes(rq);
1298
1299 /*
1300 * Currently the only 'mixing' which can happen is between
1301 * different fastfail types. We can safely fail portions
1302 * which have all the failfast bits that the first one has -
1303 * the ones which are at least as eager to fail as the first
1304 * one.
1305 */
1306 for (bio = rq->bio; bio; bio = bio->bi_next) {
1307 if ((bio->bi_opf & ff) != ff)
1308 break;
1309 bytes += bio->bi_iter.bi_size;
1310 }
1311
1312 /* this could lead to infinite loop */
1313 BUG_ON(blk_rq_bytes(rq) && !bytes);
1314 return bytes;
1315 }
1316 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1317
blk_account_io_completion(struct request * req,unsigned int bytes)1318 void blk_account_io_completion(struct request *req, unsigned int bytes)
1319 {
1320 if (blk_do_io_stat(req)) {
1321 const int sgrp = op_stat_group(req_op(req));
1322 struct hd_struct *part;
1323
1324 part_stat_lock();
1325 part = req->part;
1326 part_stat_add(part, sectors[sgrp], bytes >> 9);
1327 part_stat_unlock();
1328 }
1329 }
1330
blk_account_io_done(struct request * req,u64 now)1331 void blk_account_io_done(struct request *req, u64 now)
1332 {
1333 /*
1334 * Account IO completion. flush_rq isn't accounted as a
1335 * normal IO on queueing nor completion. Accounting the
1336 * containing request is enough.
1337 */
1338 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1339 const int sgrp = op_stat_group(req_op(req));
1340 struct hd_struct *part;
1341
1342 part_stat_lock();
1343 part = req->part;
1344
1345 update_io_ticks(part, jiffies);
1346 part_stat_inc(part, ios[sgrp]);
1347 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1348 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1349 part_dec_in_flight(req->q, part, rq_data_dir(req));
1350
1351 hd_struct_put(part);
1352 part_stat_unlock();
1353 }
1354 }
1355
blk_account_io_start(struct request * rq,bool new_io)1356 void blk_account_io_start(struct request *rq, bool new_io)
1357 {
1358 struct hd_struct *part;
1359 int rw = rq_data_dir(rq);
1360
1361 if (!blk_do_io_stat(rq))
1362 return;
1363
1364 part_stat_lock();
1365
1366 if (!new_io) {
1367 part = rq->part;
1368 part_stat_inc(part, merges[rw]);
1369 } else {
1370 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1371 if (!hd_struct_try_get(part)) {
1372 /*
1373 * The partition is already being removed,
1374 * the request will be accounted on the disk only
1375 *
1376 * We take a reference on disk->part0 although that
1377 * partition will never be deleted, so we can treat
1378 * it as any other partition.
1379 */
1380 part = &rq->rq_disk->part0;
1381 hd_struct_get(part);
1382 }
1383 part_inc_in_flight(rq->q, part, rw);
1384 rq->part = part;
1385 }
1386
1387 update_io_ticks(part, jiffies);
1388
1389 part_stat_unlock();
1390 }
1391
1392 /*
1393 * Steal bios from a request and add them to a bio list.
1394 * The request must not have been partially completed before.
1395 */
blk_steal_bios(struct bio_list * list,struct request * rq)1396 void blk_steal_bios(struct bio_list *list, struct request *rq)
1397 {
1398 if (rq->bio) {
1399 if (list->tail)
1400 list->tail->bi_next = rq->bio;
1401 else
1402 list->head = rq->bio;
1403 list->tail = rq->biotail;
1404
1405 rq->bio = NULL;
1406 rq->biotail = NULL;
1407 }
1408
1409 rq->__data_len = 0;
1410 }
1411 EXPORT_SYMBOL_GPL(blk_steal_bios);
1412
1413 /**
1414 * blk_update_request - Special helper function for request stacking drivers
1415 * @req: the request being processed
1416 * @error: block status code
1417 * @nr_bytes: number of bytes to complete @req
1418 *
1419 * Description:
1420 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1421 * the request structure even if @req doesn't have leftover.
1422 * If @req has leftover, sets it up for the next range of segments.
1423 *
1424 * This special helper function is only for request stacking drivers
1425 * (e.g. request-based dm) so that they can handle partial completion.
1426 * Actual device drivers should use blk_mq_end_request instead.
1427 *
1428 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1429 * %false return from this function.
1430 *
1431 * Note:
1432 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1433 * blk_rq_bytes() and in blk_update_request().
1434 *
1435 * Return:
1436 * %false - this request doesn't have any more data
1437 * %true - this request has more data
1438 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1439 bool blk_update_request(struct request *req, blk_status_t error,
1440 unsigned int nr_bytes)
1441 {
1442 int total_bytes;
1443
1444 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1445
1446 if (!req->bio)
1447 return false;
1448
1449 #ifdef CONFIG_BLK_DEV_INTEGRITY
1450 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1451 error == BLK_STS_OK)
1452 req->q->integrity.profile->complete_fn(req, nr_bytes);
1453 #endif
1454
1455 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1456 !(req->rq_flags & RQF_QUIET)))
1457 print_req_error(req, error, __func__);
1458
1459 blk_account_io_completion(req, nr_bytes);
1460
1461 total_bytes = 0;
1462 while (req->bio) {
1463 struct bio *bio = req->bio;
1464 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1465
1466 if (bio_bytes == bio->bi_iter.bi_size)
1467 req->bio = bio->bi_next;
1468
1469 /* Completion has already been traced */
1470 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1471 req_bio_endio(req, bio, bio_bytes, error);
1472
1473 total_bytes += bio_bytes;
1474 nr_bytes -= bio_bytes;
1475
1476 if (!nr_bytes)
1477 break;
1478 }
1479
1480 /*
1481 * completely done
1482 */
1483 if (!req->bio) {
1484 /*
1485 * Reset counters so that the request stacking driver
1486 * can find how many bytes remain in the request
1487 * later.
1488 */
1489 req->__data_len = 0;
1490 return false;
1491 }
1492
1493 req->__data_len -= total_bytes;
1494
1495 /* update sector only for requests with clear definition of sector */
1496 if (!blk_rq_is_passthrough(req))
1497 req->__sector += total_bytes >> 9;
1498
1499 /* mixed attributes always follow the first bio */
1500 if (req->rq_flags & RQF_MIXED_MERGE) {
1501 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1502 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1503 }
1504
1505 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1506 /*
1507 * If total number of sectors is less than the first segment
1508 * size, something has gone terribly wrong.
1509 */
1510 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1511 blk_dump_rq_flags(req, "request botched");
1512 req->__data_len = blk_rq_cur_bytes(req);
1513 }
1514
1515 /* recalculate the number of segments */
1516 req->nr_phys_segments = blk_recalc_rq_segments(req);
1517 }
1518
1519 return true;
1520 }
1521 EXPORT_SYMBOL_GPL(blk_update_request);
1522
1523 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1524 /**
1525 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1526 * @rq: the request to be flushed
1527 *
1528 * Description:
1529 * Flush all pages in @rq.
1530 */
rq_flush_dcache_pages(struct request * rq)1531 void rq_flush_dcache_pages(struct request *rq)
1532 {
1533 struct req_iterator iter;
1534 struct bio_vec bvec;
1535
1536 rq_for_each_segment(bvec, rq, iter)
1537 flush_dcache_page(bvec.bv_page);
1538 }
1539 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1540 #endif
1541
1542 /**
1543 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1544 * @q : the queue of the device being checked
1545 *
1546 * Description:
1547 * Check if underlying low-level drivers of a device are busy.
1548 * If the drivers want to export their busy state, they must set own
1549 * exporting function using blk_queue_lld_busy() first.
1550 *
1551 * Basically, this function is used only by request stacking drivers
1552 * to stop dispatching requests to underlying devices when underlying
1553 * devices are busy. This behavior helps more I/O merging on the queue
1554 * of the request stacking driver and prevents I/O throughput regression
1555 * on burst I/O load.
1556 *
1557 * Return:
1558 * 0 - Not busy (The request stacking driver should dispatch request)
1559 * 1 - Busy (The request stacking driver should stop dispatching request)
1560 */
blk_lld_busy(struct request_queue * q)1561 int blk_lld_busy(struct request_queue *q)
1562 {
1563 if (queue_is_mq(q) && q->mq_ops->busy)
1564 return q->mq_ops->busy(q);
1565
1566 return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(blk_lld_busy);
1569
1570 /**
1571 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1572 * @rq: the clone request to be cleaned up
1573 *
1574 * Description:
1575 * Free all bios in @rq for a cloned request.
1576 */
blk_rq_unprep_clone(struct request * rq)1577 void blk_rq_unprep_clone(struct request *rq)
1578 {
1579 struct bio *bio;
1580
1581 while ((bio = rq->bio) != NULL) {
1582 rq->bio = bio->bi_next;
1583
1584 bio_put(bio);
1585 }
1586 }
1587 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1588
1589 /*
1590 * Copy attributes of the original request to the clone request.
1591 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1592 */
__blk_rq_prep_clone(struct request * dst,struct request * src)1593 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1594 {
1595 dst->__sector = blk_rq_pos(src);
1596 dst->__data_len = blk_rq_bytes(src);
1597 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1598 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1599 dst->special_vec = src->special_vec;
1600 }
1601 dst->nr_phys_segments = src->nr_phys_segments;
1602 dst->ioprio = src->ioprio;
1603 dst->extra_len = src->extra_len;
1604 }
1605
1606 /**
1607 * blk_rq_prep_clone - Helper function to setup clone request
1608 * @rq: the request to be setup
1609 * @rq_src: original request to be cloned
1610 * @bs: bio_set that bios for clone are allocated from
1611 * @gfp_mask: memory allocation mask for bio
1612 * @bio_ctr: setup function to be called for each clone bio.
1613 * Returns %0 for success, non %0 for failure.
1614 * @data: private data to be passed to @bio_ctr
1615 *
1616 * Description:
1617 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1618 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1619 * are not copied, and copying such parts is the caller's responsibility.
1620 * Also, pages which the original bios are pointing to are not copied
1621 * and the cloned bios just point same pages.
1622 * So cloned bios must be completed before original bios, which means
1623 * the caller must complete @rq before @rq_src.
1624 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1625 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1626 struct bio_set *bs, gfp_t gfp_mask,
1627 int (*bio_ctr)(struct bio *, struct bio *, void *),
1628 void *data)
1629 {
1630 struct bio *bio, *bio_src;
1631
1632 if (!bs)
1633 bs = &fs_bio_set;
1634
1635 __rq_for_each_bio(bio_src, rq_src) {
1636 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1637 if (!bio)
1638 goto free_and_out;
1639
1640 if (bio_ctr && bio_ctr(bio, bio_src, data))
1641 goto free_and_out;
1642
1643 if (rq->bio) {
1644 rq->biotail->bi_next = bio;
1645 rq->biotail = bio;
1646 } else
1647 rq->bio = rq->biotail = bio;
1648 }
1649
1650 __blk_rq_prep_clone(rq, rq_src);
1651
1652 return 0;
1653
1654 free_and_out:
1655 if (bio)
1656 bio_put(bio);
1657 blk_rq_unprep_clone(rq);
1658
1659 return -ENOMEM;
1660 }
1661 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1662
kblockd_schedule_work(struct work_struct * work)1663 int kblockd_schedule_work(struct work_struct *work)
1664 {
1665 return queue_work(kblockd_workqueue, work);
1666 }
1667 EXPORT_SYMBOL(kblockd_schedule_work);
1668
kblockd_schedule_work_on(int cpu,struct work_struct * work)1669 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1670 {
1671 return queue_work_on(cpu, kblockd_workqueue, work);
1672 }
1673 EXPORT_SYMBOL(kblockd_schedule_work_on);
1674
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1675 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1676 unsigned long delay)
1677 {
1678 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1679 }
1680 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1681
1682 /**
1683 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1684 * @plug: The &struct blk_plug that needs to be initialized
1685 *
1686 * Description:
1687 * blk_start_plug() indicates to the block layer an intent by the caller
1688 * to submit multiple I/O requests in a batch. The block layer may use
1689 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1690 * is called. However, the block layer may choose to submit requests
1691 * before a call to blk_finish_plug() if the number of queued I/Os
1692 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1693 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1694 * the task schedules (see below).
1695 *
1696 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1697 * pending I/O should the task end up blocking between blk_start_plug() and
1698 * blk_finish_plug(). This is important from a performance perspective, but
1699 * also ensures that we don't deadlock. For instance, if the task is blocking
1700 * for a memory allocation, memory reclaim could end up wanting to free a
1701 * page belonging to that request that is currently residing in our private
1702 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1703 * this kind of deadlock.
1704 */
blk_start_plug(struct blk_plug * plug)1705 void blk_start_plug(struct blk_plug *plug)
1706 {
1707 struct task_struct *tsk = current;
1708
1709 /*
1710 * If this is a nested plug, don't actually assign it.
1711 */
1712 if (tsk->plug)
1713 return;
1714
1715 INIT_LIST_HEAD(&plug->mq_list);
1716 INIT_LIST_HEAD(&plug->cb_list);
1717 plug->rq_count = 0;
1718 plug->multiple_queues = false;
1719
1720 /*
1721 * Store ordering should not be needed here, since a potential
1722 * preempt will imply a full memory barrier
1723 */
1724 tsk->plug = plug;
1725 }
1726 EXPORT_SYMBOL(blk_start_plug);
1727
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1728 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1729 {
1730 LIST_HEAD(callbacks);
1731
1732 while (!list_empty(&plug->cb_list)) {
1733 list_splice_init(&plug->cb_list, &callbacks);
1734
1735 while (!list_empty(&callbacks)) {
1736 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1737 struct blk_plug_cb,
1738 list);
1739 list_del(&cb->list);
1740 cb->callback(cb, from_schedule);
1741 }
1742 }
1743 }
1744
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1745 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1746 int size)
1747 {
1748 struct blk_plug *plug = current->plug;
1749 struct blk_plug_cb *cb;
1750
1751 if (!plug)
1752 return NULL;
1753
1754 list_for_each_entry(cb, &plug->cb_list, list)
1755 if (cb->callback == unplug && cb->data == data)
1756 return cb;
1757
1758 /* Not currently on the callback list */
1759 BUG_ON(size < sizeof(*cb));
1760 cb = kzalloc(size, GFP_ATOMIC);
1761 if (cb) {
1762 cb->data = data;
1763 cb->callback = unplug;
1764 list_add(&cb->list, &plug->cb_list);
1765 }
1766 return cb;
1767 }
1768 EXPORT_SYMBOL(blk_check_plugged);
1769
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1770 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1771 {
1772 flush_plug_callbacks(plug, from_schedule);
1773
1774 if (!list_empty(&plug->mq_list))
1775 blk_mq_flush_plug_list(plug, from_schedule);
1776 }
1777
1778 /**
1779 * blk_finish_plug - mark the end of a batch of submitted I/O
1780 * @plug: The &struct blk_plug passed to blk_start_plug()
1781 *
1782 * Description:
1783 * Indicate that a batch of I/O submissions is complete. This function
1784 * must be paired with an initial call to blk_start_plug(). The intent
1785 * is to allow the block layer to optimize I/O submission. See the
1786 * documentation for blk_start_plug() for more information.
1787 */
blk_finish_plug(struct blk_plug * plug)1788 void blk_finish_plug(struct blk_plug *plug)
1789 {
1790 if (plug != current->plug)
1791 return;
1792 blk_flush_plug_list(plug, false);
1793
1794 current->plug = NULL;
1795 }
1796 EXPORT_SYMBOL(blk_finish_plug);
1797
blk_dev_init(void)1798 int __init blk_dev_init(void)
1799 {
1800 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1801 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1802 FIELD_SIZEOF(struct request, cmd_flags));
1803 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1804 FIELD_SIZEOF(struct bio, bi_opf));
1805
1806 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1807 kblockd_workqueue = alloc_workqueue("kblockd",
1808 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1809 if (!kblockd_workqueue)
1810 panic("Failed to create kblockd\n");
1811
1812 blk_requestq_cachep = kmem_cache_create("request_queue",
1813 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1814
1815 #ifdef CONFIG_DEBUG_FS
1816 blk_debugfs_root = debugfs_create_dir("block", NULL);
1817 #endif
1818
1819 if (bio_crypt_ctx_init() < 0)
1820 panic("Failed to allocate mem for bio crypt ctxs\n");
1821
1822 if (blk_crypto_fallback_init() < 0)
1823 panic("Failed to init blk-crypto-fallback\n");
1824
1825 return 0;
1826 }
1827