1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108
show_raw_backtrace(unsigned long reg29)109 static void show_raw_backtrace(unsigned long reg29)
110 {
111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 unsigned long addr;
113
114 printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 printk("\n");
117 #endif
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
123 break;
124 }
125 if (__kernel_text_address(addr))
126 print_ip_sym(addr);
127 }
128 printk("\n");
129 }
130
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
set_raw_show_trace(char * str)133 static int __init set_raw_show_trace(char *str)
134 {
135 raw_show_trace = 1;
136 return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140
show_backtrace(struct task_struct * task,const struct pt_regs * regs)141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
145 unsigned long pc = regs->cp0_epc;
146
147 if (!task)
148 task = current;
149
150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 show_raw_backtrace(sp);
152 return;
153 }
154 printk("Call Trace:\n");
155 do {
156 print_ip_sym(pc);
157 pc = unwind_stack(task, &sp, pc, &ra);
158 } while (pc);
159 pr_cont("\n");
160 }
161
162 /*
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
165 */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)166 static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
168 {
169 const int field = 2 * sizeof(unsigned long);
170 long stackdata;
171 int i;
172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173
174 printk("Stack :");
175 i = 0;
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 if (i && ((i % (64 / field)) == 0)) {
178 pr_cont("\n");
179 printk(" ");
180 }
181 if (i > 39) {
182 pr_cont(" ...");
183 break;
184 }
185
186 if (__get_user(stackdata, sp++)) {
187 pr_cont(" (Bad stack address)");
188 break;
189 }
190
191 pr_cont(" %0*lx", field, stackdata);
192 i++;
193 }
194 pr_cont("\n");
195 show_backtrace(task, regs);
196 }
197
show_stack(struct task_struct * task,unsigned long * sp)198 void show_stack(struct task_struct *task, unsigned long *sp)
199 {
200 struct pt_regs regs;
201 mm_segment_t old_fs = get_fs();
202
203 regs.cp0_status = KSU_KERNEL;
204 if (sp) {
205 regs.regs[29] = (unsigned long)sp;
206 regs.regs[31] = 0;
207 regs.cp0_epc = 0;
208 } else {
209 if (task && task != current) {
210 regs.regs[29] = task->thread.reg29;
211 regs.regs[31] = 0;
212 regs.cp0_epc = task->thread.reg31;
213 #ifdef CONFIG_KGDB_KDB
214 } else if (atomic_read(&kgdb_active) != -1 &&
215 kdb_current_regs) {
216 memcpy(®s, kdb_current_regs, sizeof(regs));
217 #endif /* CONFIG_KGDB_KDB */
218 } else {
219 prepare_frametrace(®s);
220 }
221 }
222 /*
223 * show_stack() deals exclusively with kernel mode, so be sure to access
224 * the stack in the kernel (not user) address space.
225 */
226 set_fs(KERNEL_DS);
227 show_stacktrace(task, ®s);
228 set_fs(old_fs);
229 }
230
show_code(unsigned int __user * pc)231 static void show_code(unsigned int __user *pc)
232 {
233 long i;
234 unsigned short __user *pc16 = NULL;
235
236 printk("Code:");
237
238 if ((unsigned long)pc & 1)
239 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
240 for(i = -3 ; i < 6 ; i++) {
241 unsigned int insn;
242 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
243 pr_cont(" (Bad address in epc)\n");
244 break;
245 }
246 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
247 }
248 pr_cont("\n");
249 }
250
__show_regs(const struct pt_regs * regs)251 static void __show_regs(const struct pt_regs *regs)
252 {
253 const int field = 2 * sizeof(unsigned long);
254 unsigned int cause = regs->cp0_cause;
255 unsigned int exccode;
256 int i;
257
258 show_regs_print_info(KERN_DEFAULT);
259
260 /*
261 * Saved main processor registers
262 */
263 for (i = 0; i < 32; ) {
264 if ((i % 4) == 0)
265 printk("$%2d :", i);
266 if (i == 0)
267 pr_cont(" %0*lx", field, 0UL);
268 else if (i == 26 || i == 27)
269 pr_cont(" %*s", field, "");
270 else
271 pr_cont(" %0*lx", field, regs->regs[i]);
272
273 i++;
274 if ((i % 4) == 0)
275 pr_cont("\n");
276 }
277
278 #ifdef CONFIG_CPU_HAS_SMARTMIPS
279 printk("Acx : %0*lx\n", field, regs->acx);
280 #endif
281 if (MIPS_ISA_REV < 6) {
282 printk("Hi : %0*lx\n", field, regs->hi);
283 printk("Lo : %0*lx\n", field, regs->lo);
284 }
285
286 /*
287 * Saved cp0 registers
288 */
289 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
290 (void *) regs->cp0_epc);
291 printk("ra : %0*lx %pS\n", field, regs->regs[31],
292 (void *) regs->regs[31]);
293
294 printk("Status: %08x ", (uint32_t) regs->cp0_status);
295
296 if (cpu_has_3kex) {
297 if (regs->cp0_status & ST0_KUO)
298 pr_cont("KUo ");
299 if (regs->cp0_status & ST0_IEO)
300 pr_cont("IEo ");
301 if (regs->cp0_status & ST0_KUP)
302 pr_cont("KUp ");
303 if (regs->cp0_status & ST0_IEP)
304 pr_cont("IEp ");
305 if (regs->cp0_status & ST0_KUC)
306 pr_cont("KUc ");
307 if (regs->cp0_status & ST0_IEC)
308 pr_cont("IEc ");
309 } else if (cpu_has_4kex) {
310 if (regs->cp0_status & ST0_KX)
311 pr_cont("KX ");
312 if (regs->cp0_status & ST0_SX)
313 pr_cont("SX ");
314 if (regs->cp0_status & ST0_UX)
315 pr_cont("UX ");
316 switch (regs->cp0_status & ST0_KSU) {
317 case KSU_USER:
318 pr_cont("USER ");
319 break;
320 case KSU_SUPERVISOR:
321 pr_cont("SUPERVISOR ");
322 break;
323 case KSU_KERNEL:
324 pr_cont("KERNEL ");
325 break;
326 default:
327 pr_cont("BAD_MODE ");
328 break;
329 }
330 if (regs->cp0_status & ST0_ERL)
331 pr_cont("ERL ");
332 if (regs->cp0_status & ST0_EXL)
333 pr_cont("EXL ");
334 if (regs->cp0_status & ST0_IE)
335 pr_cont("IE ");
336 }
337 pr_cont("\n");
338
339 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
340 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
341
342 if (1 <= exccode && exccode <= 5)
343 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
344
345 printk("PrId : %08x (%s)\n", read_c0_prid(),
346 cpu_name_string());
347 }
348
349 /*
350 * FIXME: really the generic show_regs should take a const pointer argument.
351 */
show_regs(struct pt_regs * regs)352 void show_regs(struct pt_regs *regs)
353 {
354 __show_regs(regs);
355 dump_stack();
356 }
357
show_registers(struct pt_regs * regs)358 void show_registers(struct pt_regs *regs)
359 {
360 const int field = 2 * sizeof(unsigned long);
361 mm_segment_t old_fs = get_fs();
362
363 __show_regs(regs);
364 print_modules();
365 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
366 current->comm, current->pid, current_thread_info(), current,
367 field, current_thread_info()->tp_value);
368 if (cpu_has_userlocal) {
369 unsigned long tls;
370
371 tls = read_c0_userlocal();
372 if (tls != current_thread_info()->tp_value)
373 printk("*HwTLS: %0*lx\n", field, tls);
374 }
375
376 if (!user_mode(regs))
377 /* Necessary for getting the correct stack content */
378 set_fs(KERNEL_DS);
379 show_stacktrace(current, regs);
380 show_code((unsigned int __user *) regs->cp0_epc);
381 printk("\n");
382 set_fs(old_fs);
383 }
384
385 static DEFINE_RAW_SPINLOCK(die_lock);
386
die(const char * str,struct pt_regs * regs)387 void __noreturn die(const char *str, struct pt_regs *regs)
388 {
389 static int die_counter;
390 int sig = SIGSEGV;
391
392 oops_enter();
393
394 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
395 SIGSEGV) == NOTIFY_STOP)
396 sig = 0;
397
398 console_verbose();
399 raw_spin_lock_irq(&die_lock);
400 bust_spinlocks(1);
401
402 printk("%s[#%d]:\n", str, ++die_counter);
403 show_registers(regs);
404 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
405 raw_spin_unlock_irq(&die_lock);
406
407 oops_exit();
408
409 if (in_interrupt())
410 panic("Fatal exception in interrupt");
411
412 if (panic_on_oops)
413 panic("Fatal exception");
414
415 if (regs && kexec_should_crash(current))
416 crash_kexec(regs);
417
418 do_exit(sig);
419 }
420
421 extern struct exception_table_entry __start___dbe_table[];
422 extern struct exception_table_entry __stop___dbe_table[];
423
424 __asm__(
425 " .section __dbe_table, \"a\"\n"
426 " .previous \n");
427
428 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)429 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
430 {
431 const struct exception_table_entry *e;
432
433 e = search_extable(__start___dbe_table,
434 __stop___dbe_table - __start___dbe_table, addr);
435 if (!e)
436 e = search_module_dbetables(addr);
437 return e;
438 }
439
do_be(struct pt_regs * regs)440 asmlinkage void do_be(struct pt_regs *regs)
441 {
442 const int field = 2 * sizeof(unsigned long);
443 const struct exception_table_entry *fixup = NULL;
444 int data = regs->cp0_cause & 4;
445 int action = MIPS_BE_FATAL;
446 enum ctx_state prev_state;
447
448 prev_state = exception_enter();
449 /* XXX For now. Fixme, this searches the wrong table ... */
450 if (data && !user_mode(regs))
451 fixup = search_dbe_tables(exception_epc(regs));
452
453 if (fixup)
454 action = MIPS_BE_FIXUP;
455
456 if (board_be_handler)
457 action = board_be_handler(regs, fixup != NULL);
458 else
459 mips_cm_error_report();
460
461 switch (action) {
462 case MIPS_BE_DISCARD:
463 goto out;
464 case MIPS_BE_FIXUP:
465 if (fixup) {
466 regs->cp0_epc = fixup->nextinsn;
467 goto out;
468 }
469 break;
470 default:
471 break;
472 }
473
474 /*
475 * Assume it would be too dangerous to continue ...
476 */
477 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
478 data ? "Data" : "Instruction",
479 field, regs->cp0_epc, field, regs->regs[31]);
480 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
481 SIGBUS) == NOTIFY_STOP)
482 goto out;
483
484 die_if_kernel("Oops", regs);
485 force_sig(SIGBUS);
486
487 out:
488 exception_exit(prev_state);
489 }
490
491 /*
492 * ll/sc, rdhwr, sync emulation
493 */
494
495 #define OPCODE 0xfc000000
496 #define BASE 0x03e00000
497 #define RT 0x001f0000
498 #define OFFSET 0x0000ffff
499 #define LL 0xc0000000
500 #define SC 0xe0000000
501 #define SPEC0 0x00000000
502 #define SPEC3 0x7c000000
503 #define RD 0x0000f800
504 #define FUNC 0x0000003f
505 #define SYNC 0x0000000f
506 #define RDHWR 0x0000003b
507
508 /* microMIPS definitions */
509 #define MM_POOL32A_FUNC 0xfc00ffff
510 #define MM_RDHWR 0x00006b3c
511 #define MM_RS 0x001f0000
512 #define MM_RT 0x03e00000
513
514 /*
515 * The ll_bit is cleared by r*_switch.S
516 */
517
518 unsigned int ll_bit;
519 struct task_struct *ll_task;
520
simulate_ll(struct pt_regs * regs,unsigned int opcode)521 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
522 {
523 unsigned long value, __user *vaddr;
524 long offset;
525
526 /*
527 * analyse the ll instruction that just caused a ri exception
528 * and put the referenced address to addr.
529 */
530
531 /* sign extend offset */
532 offset = opcode & OFFSET;
533 offset <<= 16;
534 offset >>= 16;
535
536 vaddr = (unsigned long __user *)
537 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
538
539 if ((unsigned long)vaddr & 3)
540 return SIGBUS;
541 if (get_user(value, vaddr))
542 return SIGSEGV;
543
544 preempt_disable();
545
546 if (ll_task == NULL || ll_task == current) {
547 ll_bit = 1;
548 } else {
549 ll_bit = 0;
550 }
551 ll_task = current;
552
553 preempt_enable();
554
555 regs->regs[(opcode & RT) >> 16] = value;
556
557 return 0;
558 }
559
simulate_sc(struct pt_regs * regs,unsigned int opcode)560 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
561 {
562 unsigned long __user *vaddr;
563 unsigned long reg;
564 long offset;
565
566 /*
567 * analyse the sc instruction that just caused a ri exception
568 * and put the referenced address to addr.
569 */
570
571 /* sign extend offset */
572 offset = opcode & OFFSET;
573 offset <<= 16;
574 offset >>= 16;
575
576 vaddr = (unsigned long __user *)
577 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
578 reg = (opcode & RT) >> 16;
579
580 if ((unsigned long)vaddr & 3)
581 return SIGBUS;
582
583 preempt_disable();
584
585 if (ll_bit == 0 || ll_task != current) {
586 regs->regs[reg] = 0;
587 preempt_enable();
588 return 0;
589 }
590
591 preempt_enable();
592
593 if (put_user(regs->regs[reg], vaddr))
594 return SIGSEGV;
595
596 regs->regs[reg] = 1;
597
598 return 0;
599 }
600
601 /*
602 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
603 * opcodes are supposed to result in coprocessor unusable exceptions if
604 * executed on ll/sc-less processors. That's the theory. In practice a
605 * few processors such as NEC's VR4100 throw reserved instruction exceptions
606 * instead, so we're doing the emulation thing in both exception handlers.
607 */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)608 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
609 {
610 if ((opcode & OPCODE) == LL) {
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 1, regs, 0);
613 return simulate_ll(regs, opcode);
614 }
615 if ((opcode & OPCODE) == SC) {
616 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
617 1, regs, 0);
618 return simulate_sc(regs, opcode);
619 }
620
621 return -1; /* Must be something else ... */
622 }
623
624 /*
625 * Simulate trapping 'rdhwr' instructions to provide user accessible
626 * registers not implemented in hardware.
627 */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)628 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
629 {
630 struct thread_info *ti = task_thread_info(current);
631
632 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
633 1, regs, 0);
634 switch (rd) {
635 case MIPS_HWR_CPUNUM: /* CPU number */
636 regs->regs[rt] = smp_processor_id();
637 return 0;
638 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
639 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
640 current_cpu_data.icache.linesz);
641 return 0;
642 case MIPS_HWR_CC: /* Read count register */
643 regs->regs[rt] = read_c0_count();
644 return 0;
645 case MIPS_HWR_CCRES: /* Count register resolution */
646 switch (current_cpu_type()) {
647 case CPU_20KC:
648 case CPU_25KF:
649 regs->regs[rt] = 1;
650 break;
651 default:
652 regs->regs[rt] = 2;
653 }
654 return 0;
655 case MIPS_HWR_ULR: /* Read UserLocal register */
656 regs->regs[rt] = ti->tp_value;
657 return 0;
658 default:
659 return -1;
660 }
661 }
662
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)663 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
664 {
665 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
666 int rd = (opcode & RD) >> 11;
667 int rt = (opcode & RT) >> 16;
668
669 simulate_rdhwr(regs, rd, rt);
670 return 0;
671 }
672
673 /* Not ours. */
674 return -1;
675 }
676
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)677 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
678 {
679 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
680 int rd = (opcode & MM_RS) >> 16;
681 int rt = (opcode & MM_RT) >> 21;
682 simulate_rdhwr(regs, rd, rt);
683 return 0;
684 }
685
686 /* Not ours. */
687 return -1;
688 }
689
simulate_sync(struct pt_regs * regs,unsigned int opcode)690 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
691 {
692 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
693 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
694 1, regs, 0);
695 return 0;
696 }
697
698 return -1; /* Must be something else ... */
699 }
700
do_ov(struct pt_regs * regs)701 asmlinkage void do_ov(struct pt_regs *regs)
702 {
703 enum ctx_state prev_state;
704
705 prev_state = exception_enter();
706 die_if_kernel("Integer overflow", regs);
707
708 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
709 exception_exit(prev_state);
710 }
711
712 #ifdef CONFIG_MIPS_FP_SUPPORT
713
714 /*
715 * Send SIGFPE according to FCSR Cause bits, which must have already
716 * been masked against Enable bits. This is impotant as Inexact can
717 * happen together with Overflow or Underflow, and `ptrace' can set
718 * any bits.
719 */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)720 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
721 struct task_struct *tsk)
722 {
723 int si_code = FPE_FLTUNK;
724
725 if (fcr31 & FPU_CSR_INV_X)
726 si_code = FPE_FLTINV;
727 else if (fcr31 & FPU_CSR_DIV_X)
728 si_code = FPE_FLTDIV;
729 else if (fcr31 & FPU_CSR_OVF_X)
730 si_code = FPE_FLTOVF;
731 else if (fcr31 & FPU_CSR_UDF_X)
732 si_code = FPE_FLTUND;
733 else if (fcr31 & FPU_CSR_INE_X)
734 si_code = FPE_FLTRES;
735
736 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
737 }
738
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
740 {
741 int si_code;
742 struct vm_area_struct *vma;
743
744 switch (sig) {
745 case 0:
746 return 0;
747
748 case SIGFPE:
749 force_fcr31_sig(fcr31, fault_addr, current);
750 return 1;
751
752 case SIGBUS:
753 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
754 return 1;
755
756 case SIGSEGV:
757 down_read(¤t->mm->mmap_sem);
758 vma = find_vma(current->mm, (unsigned long)fault_addr);
759 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
760 si_code = SEGV_ACCERR;
761 else
762 si_code = SEGV_MAPERR;
763 up_read(¤t->mm->mmap_sem);
764 force_sig_fault(SIGSEGV, si_code, fault_addr);
765 return 1;
766
767 default:
768 force_sig(sig);
769 return 1;
770 }
771 }
772
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)773 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
774 unsigned long old_epc, unsigned long old_ra)
775 {
776 union mips_instruction inst = { .word = opcode };
777 void __user *fault_addr;
778 unsigned long fcr31;
779 int sig;
780
781 /* If it's obviously not an FP instruction, skip it */
782 switch (inst.i_format.opcode) {
783 case cop1_op:
784 case cop1x_op:
785 case lwc1_op:
786 case ldc1_op:
787 case swc1_op:
788 case sdc1_op:
789 break;
790
791 default:
792 return -1;
793 }
794
795 /*
796 * do_ri skipped over the instruction via compute_return_epc, undo
797 * that for the FPU emulator.
798 */
799 regs->cp0_epc = old_epc;
800 regs->regs[31] = old_ra;
801
802 /* Run the emulator */
803 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
804 &fault_addr);
805
806 /*
807 * We can't allow the emulated instruction to leave any
808 * enabled Cause bits set in $fcr31.
809 */
810 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
811 current->thread.fpu.fcr31 &= ~fcr31;
812
813 /* Restore the hardware register state */
814 own_fpu(1);
815
816 /* Send a signal if required. */
817 process_fpemu_return(sig, fault_addr, fcr31);
818
819 return 0;
820 }
821
822 /*
823 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
824 */
do_fpe(struct pt_regs * regs,unsigned long fcr31)825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
826 {
827 enum ctx_state prev_state;
828 void __user *fault_addr;
829 int sig;
830
831 prev_state = exception_enter();
832 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
833 SIGFPE) == NOTIFY_STOP)
834 goto out;
835
836 /* Clear FCSR.Cause before enabling interrupts */
837 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
838 local_irq_enable();
839
840 die_if_kernel("FP exception in kernel code", regs);
841
842 if (fcr31 & FPU_CSR_UNI_X) {
843 /*
844 * Unimplemented operation exception. If we've got the full
845 * software emulator on-board, let's use it...
846 *
847 * Force FPU to dump state into task/thread context. We're
848 * moving a lot of data here for what is probably a single
849 * instruction, but the alternative is to pre-decode the FP
850 * register operands before invoking the emulator, which seems
851 * a bit extreme for what should be an infrequent event.
852 */
853
854 /* Run the emulator */
855 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
856 &fault_addr);
857
858 /*
859 * We can't allow the emulated instruction to leave any
860 * enabled Cause bits set in $fcr31.
861 */
862 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
863 current->thread.fpu.fcr31 &= ~fcr31;
864
865 /* Restore the hardware register state */
866 own_fpu(1); /* Using the FPU again. */
867 } else {
868 sig = SIGFPE;
869 fault_addr = (void __user *) regs->cp0_epc;
870 }
871
872 /* Send a signal if required. */
873 process_fpemu_return(sig, fault_addr, fcr31);
874
875 out:
876 exception_exit(prev_state);
877 }
878
879 /*
880 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
881 * emulated more than some threshold number of instructions, force migration to
882 * a "CPU" that has FP support.
883 */
mt_ase_fp_affinity(void)884 static void mt_ase_fp_affinity(void)
885 {
886 #ifdef CONFIG_MIPS_MT_FPAFF
887 if (mt_fpemul_threshold > 0 &&
888 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
889 /*
890 * If there's no FPU present, or if the application has already
891 * restricted the allowed set to exclude any CPUs with FPUs,
892 * we'll skip the procedure.
893 */
894 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
895 cpumask_t tmask;
896
897 current->thread.user_cpus_allowed
898 = current->cpus_mask;
899 cpumask_and(&tmask, ¤t->cpus_mask,
900 &mt_fpu_cpumask);
901 set_cpus_allowed_ptr(current, &tmask);
902 set_thread_flag(TIF_FPUBOUND);
903 }
904 }
905 #endif /* CONFIG_MIPS_MT_FPAFF */
906 }
907
908 #else /* !CONFIG_MIPS_FP_SUPPORT */
909
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)910 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
911 unsigned long old_epc, unsigned long old_ra)
912 {
913 return -1;
914 }
915
916 #endif /* !CONFIG_MIPS_FP_SUPPORT */
917
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)918 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
919 const char *str)
920 {
921 char b[40];
922
923 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
924 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925 SIGTRAP) == NOTIFY_STOP)
926 return;
927 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
928
929 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
930 SIGTRAP) == NOTIFY_STOP)
931 return;
932
933 /*
934 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
935 * insns, even for trap and break codes that indicate arithmetic
936 * failures. Weird ...
937 * But should we continue the brokenness??? --macro
938 */
939 switch (code) {
940 case BRK_OVERFLOW:
941 case BRK_DIVZERO:
942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 die_if_kernel(b, regs);
944 force_sig_fault(SIGFPE,
945 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
946 (void __user *) regs->cp0_epc);
947 break;
948 case BRK_BUG:
949 die_if_kernel("Kernel bug detected", regs);
950 force_sig(SIGTRAP);
951 break;
952 case BRK_MEMU:
953 /*
954 * This breakpoint code is used by the FPU emulator to retake
955 * control of the CPU after executing the instruction from the
956 * delay slot of an emulated branch.
957 *
958 * Terminate if exception was recognized as a delay slot return
959 * otherwise handle as normal.
960 */
961 if (do_dsemulret(regs))
962 return;
963
964 die_if_kernel("Math emu break/trap", regs);
965 force_sig(SIGTRAP);
966 break;
967 default:
968 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
969 die_if_kernel(b, regs);
970 if (si_code) {
971 force_sig_fault(SIGTRAP, si_code, NULL);
972 } else {
973 force_sig(SIGTRAP);
974 }
975 }
976 }
977
do_bp(struct pt_regs * regs)978 asmlinkage void do_bp(struct pt_regs *regs)
979 {
980 unsigned long epc = msk_isa16_mode(exception_epc(regs));
981 unsigned int opcode, bcode;
982 enum ctx_state prev_state;
983 mm_segment_t seg;
984
985 seg = get_fs();
986 if (!user_mode(regs))
987 set_fs(KERNEL_DS);
988
989 prev_state = exception_enter();
990 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
991 if (get_isa16_mode(regs->cp0_epc)) {
992 u16 instr[2];
993
994 if (__get_user(instr[0], (u16 __user *)epc))
995 goto out_sigsegv;
996
997 if (!cpu_has_mmips) {
998 /* MIPS16e mode */
999 bcode = (instr[0] >> 5) & 0x3f;
1000 } else if (mm_insn_16bit(instr[0])) {
1001 /* 16-bit microMIPS BREAK */
1002 bcode = instr[0] & 0xf;
1003 } else {
1004 /* 32-bit microMIPS BREAK */
1005 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1006 goto out_sigsegv;
1007 opcode = (instr[0] << 16) | instr[1];
1008 bcode = (opcode >> 6) & ((1 << 20) - 1);
1009 }
1010 } else {
1011 if (__get_user(opcode, (unsigned int __user *)epc))
1012 goto out_sigsegv;
1013 bcode = (opcode >> 6) & ((1 << 20) - 1);
1014 }
1015
1016 /*
1017 * There is the ancient bug in the MIPS assemblers that the break
1018 * code starts left to bit 16 instead to bit 6 in the opcode.
1019 * Gas is bug-compatible, but not always, grrr...
1020 * We handle both cases with a simple heuristics. --macro
1021 */
1022 if (bcode >= (1 << 10))
1023 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1024
1025 /*
1026 * notify the kprobe handlers, if instruction is likely to
1027 * pertain to them.
1028 */
1029 switch (bcode) {
1030 case BRK_UPROBE:
1031 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1032 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1033 goto out;
1034 else
1035 break;
1036 case BRK_UPROBE_XOL:
1037 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1038 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1039 goto out;
1040 else
1041 break;
1042 case BRK_KPROBE_BP:
1043 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1044 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1045 goto out;
1046 else
1047 break;
1048 case BRK_KPROBE_SSTEPBP:
1049 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1050 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1051 goto out;
1052 else
1053 break;
1054 default:
1055 break;
1056 }
1057
1058 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1059
1060 out:
1061 set_fs(seg);
1062 exception_exit(prev_state);
1063 return;
1064
1065 out_sigsegv:
1066 force_sig(SIGSEGV);
1067 goto out;
1068 }
1069
do_tr(struct pt_regs * regs)1070 asmlinkage void do_tr(struct pt_regs *regs)
1071 {
1072 u32 opcode, tcode = 0;
1073 enum ctx_state prev_state;
1074 u16 instr[2];
1075 mm_segment_t seg;
1076 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1077
1078 seg = get_fs();
1079 if (!user_mode(regs))
1080 set_fs(KERNEL_DS);
1081
1082 prev_state = exception_enter();
1083 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1084 if (get_isa16_mode(regs->cp0_epc)) {
1085 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1086 __get_user(instr[1], (u16 __user *)(epc + 2)))
1087 goto out_sigsegv;
1088 opcode = (instr[0] << 16) | instr[1];
1089 /* Immediate versions don't provide a code. */
1090 if (!(opcode & OPCODE))
1091 tcode = (opcode >> 12) & ((1 << 4) - 1);
1092 } else {
1093 if (__get_user(opcode, (u32 __user *)epc))
1094 goto out_sigsegv;
1095 /* Immediate versions don't provide a code. */
1096 if (!(opcode & OPCODE))
1097 tcode = (opcode >> 6) & ((1 << 10) - 1);
1098 }
1099
1100 do_trap_or_bp(regs, tcode, 0, "Trap");
1101
1102 out:
1103 set_fs(seg);
1104 exception_exit(prev_state);
1105 return;
1106
1107 out_sigsegv:
1108 force_sig(SIGSEGV);
1109 goto out;
1110 }
1111
do_ri(struct pt_regs * regs)1112 asmlinkage void do_ri(struct pt_regs *regs)
1113 {
1114 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1115 unsigned long old_epc = regs->cp0_epc;
1116 unsigned long old31 = regs->regs[31];
1117 enum ctx_state prev_state;
1118 unsigned int opcode = 0;
1119 int status = -1;
1120
1121 /*
1122 * Avoid any kernel code. Just emulate the R2 instruction
1123 * as quickly as possible.
1124 */
1125 if (mipsr2_emulation && cpu_has_mips_r6 &&
1126 likely(user_mode(regs)) &&
1127 likely(get_user(opcode, epc) >= 0)) {
1128 unsigned long fcr31 = 0;
1129
1130 status = mipsr2_decoder(regs, opcode, &fcr31);
1131 switch (status) {
1132 case 0:
1133 case SIGEMT:
1134 return;
1135 case SIGILL:
1136 goto no_r2_instr;
1137 default:
1138 process_fpemu_return(status,
1139 ¤t->thread.cp0_baduaddr,
1140 fcr31);
1141 return;
1142 }
1143 }
1144
1145 no_r2_instr:
1146
1147 prev_state = exception_enter();
1148 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1149
1150 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1151 SIGILL) == NOTIFY_STOP)
1152 goto out;
1153
1154 die_if_kernel("Reserved instruction in kernel code", regs);
1155
1156 if (unlikely(compute_return_epc(regs) < 0))
1157 goto out;
1158
1159 if (!get_isa16_mode(regs->cp0_epc)) {
1160 if (unlikely(get_user(opcode, epc) < 0))
1161 status = SIGSEGV;
1162
1163 if (!cpu_has_llsc && status < 0)
1164 status = simulate_llsc(regs, opcode);
1165
1166 if (status < 0)
1167 status = simulate_rdhwr_normal(regs, opcode);
1168
1169 if (status < 0)
1170 status = simulate_sync(regs, opcode);
1171
1172 if (status < 0)
1173 status = simulate_fp(regs, opcode, old_epc, old31);
1174 } else if (cpu_has_mmips) {
1175 unsigned short mmop[2] = { 0 };
1176
1177 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1178 status = SIGSEGV;
1179 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1180 status = SIGSEGV;
1181 opcode = mmop[0];
1182 opcode = (opcode << 16) | mmop[1];
1183
1184 if (status < 0)
1185 status = simulate_rdhwr_mm(regs, opcode);
1186 }
1187
1188 if (status < 0)
1189 status = SIGILL;
1190
1191 if (unlikely(status > 0)) {
1192 regs->cp0_epc = old_epc; /* Undo skip-over. */
1193 regs->regs[31] = old31;
1194 force_sig(status);
1195 }
1196
1197 out:
1198 exception_exit(prev_state);
1199 }
1200
1201 /*
1202 * No lock; only written during early bootup by CPU 0.
1203 */
1204 static RAW_NOTIFIER_HEAD(cu2_chain);
1205
register_cu2_notifier(struct notifier_block * nb)1206 int __ref register_cu2_notifier(struct notifier_block *nb)
1207 {
1208 return raw_notifier_chain_register(&cu2_chain, nb);
1209 }
1210
cu2_notifier_call_chain(unsigned long val,void * v)1211 int cu2_notifier_call_chain(unsigned long val, void *v)
1212 {
1213 return raw_notifier_call_chain(&cu2_chain, val, v);
1214 }
1215
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1216 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1217 void *data)
1218 {
1219 struct pt_regs *regs = data;
1220
1221 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1222 "instruction", regs);
1223 force_sig(SIGILL);
1224
1225 return NOTIFY_OK;
1226 }
1227
1228 #ifdef CONFIG_MIPS_FP_SUPPORT
1229
enable_restore_fp_context(int msa)1230 static int enable_restore_fp_context(int msa)
1231 {
1232 int err, was_fpu_owner, prior_msa;
1233 bool first_fp;
1234
1235 /* Initialize context if it hasn't been used already */
1236 first_fp = init_fp_ctx(current);
1237
1238 if (first_fp) {
1239 preempt_disable();
1240 err = own_fpu_inatomic(1);
1241 if (msa && !err) {
1242 enable_msa();
1243 set_thread_flag(TIF_USEDMSA);
1244 set_thread_flag(TIF_MSA_CTX_LIVE);
1245 }
1246 preempt_enable();
1247 return err;
1248 }
1249
1250 /*
1251 * This task has formerly used the FP context.
1252 *
1253 * If this thread has no live MSA vector context then we can simply
1254 * restore the scalar FP context. If it has live MSA vector context
1255 * (that is, it has or may have used MSA since last performing a
1256 * function call) then we'll need to restore the vector context. This
1257 * applies even if we're currently only executing a scalar FP
1258 * instruction. This is because if we were to later execute an MSA
1259 * instruction then we'd either have to:
1260 *
1261 * - Restore the vector context & clobber any registers modified by
1262 * scalar FP instructions between now & then.
1263 *
1264 * or
1265 *
1266 * - Not restore the vector context & lose the most significant bits
1267 * of all vector registers.
1268 *
1269 * Neither of those options is acceptable. We cannot restore the least
1270 * significant bits of the registers now & only restore the most
1271 * significant bits later because the most significant bits of any
1272 * vector registers whose aliased FP register is modified now will have
1273 * been zeroed. We'd have no way to know that when restoring the vector
1274 * context & thus may load an outdated value for the most significant
1275 * bits of a vector register.
1276 */
1277 if (!msa && !thread_msa_context_live())
1278 return own_fpu(1);
1279
1280 /*
1281 * This task is using or has previously used MSA. Thus we require
1282 * that Status.FR == 1.
1283 */
1284 preempt_disable();
1285 was_fpu_owner = is_fpu_owner();
1286 err = own_fpu_inatomic(0);
1287 if (err)
1288 goto out;
1289
1290 enable_msa();
1291 write_msa_csr(current->thread.fpu.msacsr);
1292 set_thread_flag(TIF_USEDMSA);
1293
1294 /*
1295 * If this is the first time that the task is using MSA and it has
1296 * previously used scalar FP in this time slice then we already nave
1297 * FP context which we shouldn't clobber. We do however need to clear
1298 * the upper 64b of each vector register so that this task has no
1299 * opportunity to see data left behind by another.
1300 */
1301 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1302 if (!prior_msa && was_fpu_owner) {
1303 init_msa_upper();
1304
1305 goto out;
1306 }
1307
1308 if (!prior_msa) {
1309 /*
1310 * Restore the least significant 64b of each vector register
1311 * from the existing scalar FP context.
1312 */
1313 _restore_fp(current);
1314
1315 /*
1316 * The task has not formerly used MSA, so clear the upper 64b
1317 * of each vector register such that it cannot see data left
1318 * behind by another task.
1319 */
1320 init_msa_upper();
1321 } else {
1322 /* We need to restore the vector context. */
1323 restore_msa(current);
1324
1325 /* Restore the scalar FP control & status register */
1326 if (!was_fpu_owner)
1327 write_32bit_cp1_register(CP1_STATUS,
1328 current->thread.fpu.fcr31);
1329 }
1330
1331 out:
1332 preempt_enable();
1333
1334 return 0;
1335 }
1336
1337 #else /* !CONFIG_MIPS_FP_SUPPORT */
1338
enable_restore_fp_context(int msa)1339 static int enable_restore_fp_context(int msa)
1340 {
1341 return SIGILL;
1342 }
1343
1344 #endif /* CONFIG_MIPS_FP_SUPPORT */
1345
do_cpu(struct pt_regs * regs)1346 asmlinkage void do_cpu(struct pt_regs *regs)
1347 {
1348 enum ctx_state prev_state;
1349 unsigned int __user *epc;
1350 unsigned long old_epc, old31;
1351 unsigned int opcode;
1352 unsigned int cpid;
1353 int status;
1354
1355 prev_state = exception_enter();
1356 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1357
1358 if (cpid != 2)
1359 die_if_kernel("do_cpu invoked from kernel context!", regs);
1360
1361 switch (cpid) {
1362 case 0:
1363 epc = (unsigned int __user *)exception_epc(regs);
1364 old_epc = regs->cp0_epc;
1365 old31 = regs->regs[31];
1366 opcode = 0;
1367 status = -1;
1368
1369 if (unlikely(compute_return_epc(regs) < 0))
1370 break;
1371
1372 if (!get_isa16_mode(regs->cp0_epc)) {
1373 if (unlikely(get_user(opcode, epc) < 0))
1374 status = SIGSEGV;
1375
1376 if (!cpu_has_llsc && status < 0)
1377 status = simulate_llsc(regs, opcode);
1378 }
1379
1380 if (status < 0)
1381 status = SIGILL;
1382
1383 if (unlikely(status > 0)) {
1384 regs->cp0_epc = old_epc; /* Undo skip-over. */
1385 regs->regs[31] = old31;
1386 force_sig(status);
1387 }
1388
1389 break;
1390
1391 #ifdef CONFIG_MIPS_FP_SUPPORT
1392 case 3:
1393 /*
1394 * The COP3 opcode space and consequently the CP0.Status.CU3
1395 * bit and the CP0.Cause.CE=3 encoding have been removed as
1396 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1397 * up the space has been reused for COP1X instructions, that
1398 * are enabled by the CP0.Status.CU1 bit and consequently
1399 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1400 * exceptions. Some FPU-less processors that implement one
1401 * of these ISAs however use this code erroneously for COP1X
1402 * instructions. Therefore we redirect this trap to the FP
1403 * emulator too.
1404 */
1405 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1406 force_sig(SIGILL);
1407 break;
1408 }
1409 /* Fall through. */
1410
1411 case 1: {
1412 void __user *fault_addr;
1413 unsigned long fcr31;
1414 int err, sig;
1415
1416 err = enable_restore_fp_context(0);
1417
1418 if (raw_cpu_has_fpu && !err)
1419 break;
1420
1421 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1422 &fault_addr);
1423
1424 /*
1425 * We can't allow the emulated instruction to leave
1426 * any enabled Cause bits set in $fcr31.
1427 */
1428 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1429 current->thread.fpu.fcr31 &= ~fcr31;
1430
1431 /* Send a signal if required. */
1432 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1433 mt_ase_fp_affinity();
1434
1435 break;
1436 }
1437 #else /* CONFIG_MIPS_FP_SUPPORT */
1438 case 1:
1439 case 3:
1440 force_sig(SIGILL);
1441 break;
1442 #endif /* CONFIG_MIPS_FP_SUPPORT */
1443
1444 case 2:
1445 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1446 break;
1447 }
1448
1449 exception_exit(prev_state);
1450 }
1451
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1452 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1453 {
1454 enum ctx_state prev_state;
1455
1456 prev_state = exception_enter();
1457 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1458 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1459 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1460 goto out;
1461
1462 /* Clear MSACSR.Cause before enabling interrupts */
1463 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1464 local_irq_enable();
1465
1466 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1467 force_sig(SIGFPE);
1468 out:
1469 exception_exit(prev_state);
1470 }
1471
do_msa(struct pt_regs * regs)1472 asmlinkage void do_msa(struct pt_regs *regs)
1473 {
1474 enum ctx_state prev_state;
1475 int err;
1476
1477 prev_state = exception_enter();
1478
1479 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1480 force_sig(SIGILL);
1481 goto out;
1482 }
1483
1484 die_if_kernel("do_msa invoked from kernel context!", regs);
1485
1486 err = enable_restore_fp_context(1);
1487 if (err)
1488 force_sig(SIGILL);
1489 out:
1490 exception_exit(prev_state);
1491 }
1492
do_mdmx(struct pt_regs * regs)1493 asmlinkage void do_mdmx(struct pt_regs *regs)
1494 {
1495 enum ctx_state prev_state;
1496
1497 prev_state = exception_enter();
1498 force_sig(SIGILL);
1499 exception_exit(prev_state);
1500 }
1501
1502 /*
1503 * Called with interrupts disabled.
1504 */
do_watch(struct pt_regs * regs)1505 asmlinkage void do_watch(struct pt_regs *regs)
1506 {
1507 enum ctx_state prev_state;
1508
1509 prev_state = exception_enter();
1510 /*
1511 * Clear WP (bit 22) bit of cause register so we don't loop
1512 * forever.
1513 */
1514 clear_c0_cause(CAUSEF_WP);
1515
1516 /*
1517 * If the current thread has the watch registers loaded, save
1518 * their values and send SIGTRAP. Otherwise another thread
1519 * left the registers set, clear them and continue.
1520 */
1521 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1522 mips_read_watch_registers();
1523 local_irq_enable();
1524 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1525 } else {
1526 mips_clear_watch_registers();
1527 local_irq_enable();
1528 }
1529 exception_exit(prev_state);
1530 }
1531
do_mcheck(struct pt_regs * regs)1532 asmlinkage void do_mcheck(struct pt_regs *regs)
1533 {
1534 int multi_match = regs->cp0_status & ST0_TS;
1535 enum ctx_state prev_state;
1536 mm_segment_t old_fs = get_fs();
1537
1538 prev_state = exception_enter();
1539 show_regs(regs);
1540
1541 if (multi_match) {
1542 dump_tlb_regs();
1543 pr_info("\n");
1544 dump_tlb_all();
1545 }
1546
1547 if (!user_mode(regs))
1548 set_fs(KERNEL_DS);
1549
1550 show_code((unsigned int __user *) regs->cp0_epc);
1551
1552 set_fs(old_fs);
1553
1554 /*
1555 * Some chips may have other causes of machine check (e.g. SB1
1556 * graduation timer)
1557 */
1558 panic("Caught Machine Check exception - %scaused by multiple "
1559 "matching entries in the TLB.",
1560 (multi_match) ? "" : "not ");
1561 }
1562
do_mt(struct pt_regs * regs)1563 asmlinkage void do_mt(struct pt_regs *regs)
1564 {
1565 int subcode;
1566
1567 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1568 >> VPECONTROL_EXCPT_SHIFT;
1569 switch (subcode) {
1570 case 0:
1571 printk(KERN_DEBUG "Thread Underflow\n");
1572 break;
1573 case 1:
1574 printk(KERN_DEBUG "Thread Overflow\n");
1575 break;
1576 case 2:
1577 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1578 break;
1579 case 3:
1580 printk(KERN_DEBUG "Gating Storage Exception\n");
1581 break;
1582 case 4:
1583 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1584 break;
1585 case 5:
1586 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1587 break;
1588 default:
1589 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1590 subcode);
1591 break;
1592 }
1593 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1594
1595 force_sig(SIGILL);
1596 }
1597
1598
do_dsp(struct pt_regs * regs)1599 asmlinkage void do_dsp(struct pt_regs *regs)
1600 {
1601 if (cpu_has_dsp)
1602 panic("Unexpected DSP exception");
1603
1604 force_sig(SIGILL);
1605 }
1606
do_reserved(struct pt_regs * regs)1607 asmlinkage void do_reserved(struct pt_regs *regs)
1608 {
1609 /*
1610 * Game over - no way to handle this if it ever occurs. Most probably
1611 * caused by a new unknown cpu type or after another deadly
1612 * hard/software error.
1613 */
1614 show_regs(regs);
1615 panic("Caught reserved exception %ld - should not happen.",
1616 (regs->cp0_cause & 0x7f) >> 2);
1617 }
1618
1619 static int __initdata l1parity = 1;
nol1parity(char * s)1620 static int __init nol1parity(char *s)
1621 {
1622 l1parity = 0;
1623 return 1;
1624 }
1625 __setup("nol1par", nol1parity);
1626 static int __initdata l2parity = 1;
nol2parity(char * s)1627 static int __init nol2parity(char *s)
1628 {
1629 l2parity = 0;
1630 return 1;
1631 }
1632 __setup("nol2par", nol2parity);
1633
1634 /*
1635 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1636 * it different ways.
1637 */
parity_protection_init(void)1638 static inline void parity_protection_init(void)
1639 {
1640 #define ERRCTL_PE 0x80000000
1641 #define ERRCTL_L2P 0x00800000
1642
1643 if (mips_cm_revision() >= CM_REV_CM3) {
1644 ulong gcr_ectl, cp0_ectl;
1645
1646 /*
1647 * With CM3 systems we need to ensure that the L1 & L2
1648 * parity enables are set to the same value, since this
1649 * is presumed by the hardware engineers.
1650 *
1651 * If the user disabled either of L1 or L2 ECC checking,
1652 * disable both.
1653 */
1654 l1parity &= l2parity;
1655 l2parity &= l1parity;
1656
1657 /* Probe L1 ECC support */
1658 cp0_ectl = read_c0_ecc();
1659 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1660 back_to_back_c0_hazard();
1661 cp0_ectl = read_c0_ecc();
1662
1663 /* Probe L2 ECC support */
1664 gcr_ectl = read_gcr_err_control();
1665
1666 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1667 !(cp0_ectl & ERRCTL_PE)) {
1668 /*
1669 * One of L1 or L2 ECC checking isn't supported,
1670 * so we cannot enable either.
1671 */
1672 l1parity = l2parity = 0;
1673 }
1674
1675 /* Configure L1 ECC checking */
1676 if (l1parity)
1677 cp0_ectl |= ERRCTL_PE;
1678 else
1679 cp0_ectl &= ~ERRCTL_PE;
1680 write_c0_ecc(cp0_ectl);
1681 back_to_back_c0_hazard();
1682 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1683
1684 /* Configure L2 ECC checking */
1685 if (l2parity)
1686 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1687 else
1688 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1689 write_gcr_err_control(gcr_ectl);
1690 gcr_ectl = read_gcr_err_control();
1691 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1692 WARN_ON(!!gcr_ectl != l2parity);
1693
1694 pr_info("Cache parity protection %sabled\n",
1695 l1parity ? "en" : "dis");
1696 return;
1697 }
1698
1699 switch (current_cpu_type()) {
1700 case CPU_24K:
1701 case CPU_34K:
1702 case CPU_74K:
1703 case CPU_1004K:
1704 case CPU_1074K:
1705 case CPU_INTERAPTIV:
1706 case CPU_PROAPTIV:
1707 case CPU_P5600:
1708 case CPU_QEMU_GENERIC:
1709 case CPU_P6600:
1710 {
1711 unsigned long errctl;
1712 unsigned int l1parity_present, l2parity_present;
1713
1714 errctl = read_c0_ecc();
1715 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1716
1717 /* probe L1 parity support */
1718 write_c0_ecc(errctl | ERRCTL_PE);
1719 back_to_back_c0_hazard();
1720 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1721
1722 /* probe L2 parity support */
1723 write_c0_ecc(errctl|ERRCTL_L2P);
1724 back_to_back_c0_hazard();
1725 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1726
1727 if (l1parity_present && l2parity_present) {
1728 if (l1parity)
1729 errctl |= ERRCTL_PE;
1730 if (l1parity ^ l2parity)
1731 errctl |= ERRCTL_L2P;
1732 } else if (l1parity_present) {
1733 if (l1parity)
1734 errctl |= ERRCTL_PE;
1735 } else if (l2parity_present) {
1736 if (l2parity)
1737 errctl |= ERRCTL_L2P;
1738 } else {
1739 /* No parity available */
1740 }
1741
1742 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1743
1744 write_c0_ecc(errctl);
1745 back_to_back_c0_hazard();
1746 errctl = read_c0_ecc();
1747 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1748
1749 if (l1parity_present)
1750 printk(KERN_INFO "Cache parity protection %sabled\n",
1751 (errctl & ERRCTL_PE) ? "en" : "dis");
1752
1753 if (l2parity_present) {
1754 if (l1parity_present && l1parity)
1755 errctl ^= ERRCTL_L2P;
1756 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1757 (errctl & ERRCTL_L2P) ? "en" : "dis");
1758 }
1759 }
1760 break;
1761
1762 case CPU_5KC:
1763 case CPU_5KE:
1764 case CPU_LOONGSON1:
1765 write_c0_ecc(0x80000000);
1766 back_to_back_c0_hazard();
1767 /* Set the PE bit (bit 31) in the c0_errctl register. */
1768 printk(KERN_INFO "Cache parity protection %sabled\n",
1769 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1770 break;
1771 case CPU_20KC:
1772 case CPU_25KF:
1773 /* Clear the DE bit (bit 16) in the c0_status register. */
1774 printk(KERN_INFO "Enable cache parity protection for "
1775 "MIPS 20KC/25KF CPUs.\n");
1776 clear_c0_status(ST0_DE);
1777 break;
1778 default:
1779 break;
1780 }
1781 }
1782
cache_parity_error(void)1783 asmlinkage void cache_parity_error(void)
1784 {
1785 const int field = 2 * sizeof(unsigned long);
1786 unsigned int reg_val;
1787
1788 /* For the moment, report the problem and hang. */
1789 printk("Cache error exception:\n");
1790 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1791 reg_val = read_c0_cacheerr();
1792 printk("c0_cacheerr == %08x\n", reg_val);
1793
1794 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795 reg_val & (1<<30) ? "secondary" : "primary",
1796 reg_val & (1<<31) ? "data" : "insn");
1797 if ((cpu_has_mips_r2_r6) &&
1798 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1799 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1800 reg_val & (1<<29) ? "ED " : "",
1801 reg_val & (1<<28) ? "ET " : "",
1802 reg_val & (1<<27) ? "ES " : "",
1803 reg_val & (1<<26) ? "EE " : "",
1804 reg_val & (1<<25) ? "EB " : "",
1805 reg_val & (1<<24) ? "EI " : "",
1806 reg_val & (1<<23) ? "E1 " : "",
1807 reg_val & (1<<22) ? "E0 " : "");
1808 } else {
1809 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1810 reg_val & (1<<29) ? "ED " : "",
1811 reg_val & (1<<28) ? "ET " : "",
1812 reg_val & (1<<26) ? "EE " : "",
1813 reg_val & (1<<25) ? "EB " : "",
1814 reg_val & (1<<24) ? "EI " : "",
1815 reg_val & (1<<23) ? "E1 " : "",
1816 reg_val & (1<<22) ? "E0 " : "");
1817 }
1818 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1819
1820 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1821 if (reg_val & (1<<22))
1822 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1823
1824 if (reg_val & (1<<23))
1825 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1826 #endif
1827
1828 panic("Can't handle the cache error!");
1829 }
1830
do_ftlb(void)1831 asmlinkage void do_ftlb(void)
1832 {
1833 const int field = 2 * sizeof(unsigned long);
1834 unsigned int reg_val;
1835
1836 /* For the moment, report the problem and hang. */
1837 if ((cpu_has_mips_r2_r6) &&
1838 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1839 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1840 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1841 read_c0_ecc());
1842 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1843 reg_val = read_c0_cacheerr();
1844 pr_err("c0_cacheerr == %08x\n", reg_val);
1845
1846 if ((reg_val & 0xc0000000) == 0xc0000000) {
1847 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1848 } else {
1849 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1850 reg_val & (1<<30) ? "secondary" : "primary",
1851 reg_val & (1<<31) ? "data" : "insn");
1852 }
1853 } else {
1854 pr_err("FTLB error exception\n");
1855 }
1856 /* Just print the cacheerr bits for now */
1857 cache_parity_error();
1858 }
1859
1860 /*
1861 * SDBBP EJTAG debug exception handler.
1862 * We skip the instruction and return to the next instruction.
1863 */
ejtag_exception_handler(struct pt_regs * regs)1864 void ejtag_exception_handler(struct pt_regs *regs)
1865 {
1866 const int field = 2 * sizeof(unsigned long);
1867 unsigned long depc, old_epc, old_ra;
1868 unsigned int debug;
1869
1870 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1871 depc = read_c0_depc();
1872 debug = read_c0_debug();
1873 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1874 if (debug & 0x80000000) {
1875 /*
1876 * In branch delay slot.
1877 * We cheat a little bit here and use EPC to calculate the
1878 * debug return address (DEPC). EPC is restored after the
1879 * calculation.
1880 */
1881 old_epc = regs->cp0_epc;
1882 old_ra = regs->regs[31];
1883 regs->cp0_epc = depc;
1884 compute_return_epc(regs);
1885 depc = regs->cp0_epc;
1886 regs->cp0_epc = old_epc;
1887 regs->regs[31] = old_ra;
1888 } else
1889 depc += 4;
1890 write_c0_depc(depc);
1891
1892 #if 0
1893 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1894 write_c0_debug(debug | 0x100);
1895 #endif
1896 }
1897
1898 /*
1899 * NMI exception handler.
1900 * No lock; only written during early bootup by CPU 0.
1901 */
1902 static RAW_NOTIFIER_HEAD(nmi_chain);
1903
register_nmi_notifier(struct notifier_block * nb)1904 int register_nmi_notifier(struct notifier_block *nb)
1905 {
1906 return raw_notifier_chain_register(&nmi_chain, nb);
1907 }
1908
nmi_exception_handler(struct pt_regs * regs)1909 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1910 {
1911 char str[100];
1912
1913 nmi_enter();
1914 raw_notifier_call_chain(&nmi_chain, 0, regs);
1915 bust_spinlocks(1);
1916 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1917 smp_processor_id(), regs->cp0_epc);
1918 regs->cp0_epc = read_c0_errorepc();
1919 die(str, regs);
1920 nmi_exit();
1921 }
1922
1923 #define VECTORSPACING 0x100 /* for EI/VI mode */
1924
1925 unsigned long ebase;
1926 EXPORT_SYMBOL_GPL(ebase);
1927 unsigned long exception_handlers[32];
1928 unsigned long vi_handlers[64];
1929
set_except_vector(int n,void * addr)1930 void __init *set_except_vector(int n, void *addr)
1931 {
1932 unsigned long handler = (unsigned long) addr;
1933 unsigned long old_handler;
1934
1935 #ifdef CONFIG_CPU_MICROMIPS
1936 /*
1937 * Only the TLB handlers are cache aligned with an even
1938 * address. All other handlers are on an odd address and
1939 * require no modification. Otherwise, MIPS32 mode will
1940 * be entered when handling any TLB exceptions. That
1941 * would be bad...since we must stay in microMIPS mode.
1942 */
1943 if (!(handler & 0x1))
1944 handler |= 1;
1945 #endif
1946 old_handler = xchg(&exception_handlers[n], handler);
1947
1948 if (n == 0 && cpu_has_divec) {
1949 #ifdef CONFIG_CPU_MICROMIPS
1950 unsigned long jump_mask = ~((1 << 27) - 1);
1951 #else
1952 unsigned long jump_mask = ~((1 << 28) - 1);
1953 #endif
1954 u32 *buf = (u32 *)(ebase + 0x200);
1955 unsigned int k0 = 26;
1956 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1957 uasm_i_j(&buf, handler & ~jump_mask);
1958 uasm_i_nop(&buf);
1959 } else {
1960 UASM_i_LA(&buf, k0, handler);
1961 uasm_i_jr(&buf, k0);
1962 uasm_i_nop(&buf);
1963 }
1964 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1965 }
1966 return (void *)old_handler;
1967 }
1968
do_default_vi(void)1969 static void do_default_vi(void)
1970 {
1971 show_regs(get_irq_regs());
1972 panic("Caught unexpected vectored interrupt.");
1973 }
1974
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1975 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1976 {
1977 unsigned long handler;
1978 unsigned long old_handler = vi_handlers[n];
1979 int srssets = current_cpu_data.srsets;
1980 u16 *h;
1981 unsigned char *b;
1982
1983 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1984
1985 if (addr == NULL) {
1986 handler = (unsigned long) do_default_vi;
1987 srs = 0;
1988 } else
1989 handler = (unsigned long) addr;
1990 vi_handlers[n] = handler;
1991
1992 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1993
1994 if (srs >= srssets)
1995 panic("Shadow register set %d not supported", srs);
1996
1997 if (cpu_has_veic) {
1998 if (board_bind_eic_interrupt)
1999 board_bind_eic_interrupt(n, srs);
2000 } else if (cpu_has_vint) {
2001 /* SRSMap is only defined if shadow sets are implemented */
2002 if (srssets > 1)
2003 change_c0_srsmap(0xf << n*4, srs << n*4);
2004 }
2005
2006 if (srs == 0) {
2007 /*
2008 * If no shadow set is selected then use the default handler
2009 * that does normal register saving and standard interrupt exit
2010 */
2011 extern char except_vec_vi, except_vec_vi_lui;
2012 extern char except_vec_vi_ori, except_vec_vi_end;
2013 extern char rollback_except_vec_vi;
2014 char *vec_start = using_rollback_handler() ?
2015 &rollback_except_vec_vi : &except_vec_vi;
2016 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2017 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2018 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2019 #else
2020 const int lui_offset = &except_vec_vi_lui - vec_start;
2021 const int ori_offset = &except_vec_vi_ori - vec_start;
2022 #endif
2023 const int handler_len = &except_vec_vi_end - vec_start;
2024
2025 if (handler_len > VECTORSPACING) {
2026 /*
2027 * Sigh... panicing won't help as the console
2028 * is probably not configured :(
2029 */
2030 panic("VECTORSPACING too small");
2031 }
2032
2033 set_handler(((unsigned long)b - ebase), vec_start,
2034 #ifdef CONFIG_CPU_MICROMIPS
2035 (handler_len - 1));
2036 #else
2037 handler_len);
2038 #endif
2039 h = (u16 *)(b + lui_offset);
2040 *h = (handler >> 16) & 0xffff;
2041 h = (u16 *)(b + ori_offset);
2042 *h = (handler & 0xffff);
2043 local_flush_icache_range((unsigned long)b,
2044 (unsigned long)(b+handler_len));
2045 }
2046 else {
2047 /*
2048 * In other cases jump directly to the interrupt handler. It
2049 * is the handler's responsibility to save registers if required
2050 * (eg hi/lo) and return from the exception using "eret".
2051 */
2052 u32 insn;
2053
2054 h = (u16 *)b;
2055 /* j handler */
2056 #ifdef CONFIG_CPU_MICROMIPS
2057 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2058 #else
2059 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2060 #endif
2061 h[0] = (insn >> 16) & 0xffff;
2062 h[1] = insn & 0xffff;
2063 h[2] = 0;
2064 h[3] = 0;
2065 local_flush_icache_range((unsigned long)b,
2066 (unsigned long)(b+8));
2067 }
2068
2069 return (void *)old_handler;
2070 }
2071
set_vi_handler(int n,vi_handler_t addr)2072 void *set_vi_handler(int n, vi_handler_t addr)
2073 {
2074 return set_vi_srs_handler(n, addr, 0);
2075 }
2076
2077 extern void tlb_init(void);
2078
2079 /*
2080 * Timer interrupt
2081 */
2082 int cp0_compare_irq;
2083 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2084 int cp0_compare_irq_shift;
2085
2086 /*
2087 * Performance counter IRQ or -1 if shared with timer
2088 */
2089 int cp0_perfcount_irq;
2090 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2091
2092 /*
2093 * Fast debug channel IRQ or -1 if not present
2094 */
2095 int cp0_fdc_irq;
2096 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2097
2098 static int noulri;
2099
ulri_disable(char * s)2100 static int __init ulri_disable(char *s)
2101 {
2102 pr_info("Disabling ulri\n");
2103 noulri = 1;
2104
2105 return 1;
2106 }
2107 __setup("noulri", ulri_disable);
2108
2109 /* configure STATUS register */
configure_status(void)2110 static void configure_status(void)
2111 {
2112 /*
2113 * Disable coprocessors and select 32-bit or 64-bit addressing
2114 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2115 * flag that some firmware may have left set and the TS bit (for
2116 * IP27). Set XX for ISA IV code to work.
2117 */
2118 unsigned int status_set = ST0_CU0;
2119 #ifdef CONFIG_64BIT
2120 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2121 #endif
2122 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2123 status_set |= ST0_XX;
2124 if (cpu_has_dsp)
2125 status_set |= ST0_MX;
2126
2127 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2128 status_set);
2129 }
2130
2131 unsigned int hwrena;
2132 EXPORT_SYMBOL_GPL(hwrena);
2133
2134 /* configure HWRENA register */
configure_hwrena(void)2135 static void configure_hwrena(void)
2136 {
2137 hwrena = cpu_hwrena_impl_bits;
2138
2139 if (cpu_has_mips_r2_r6)
2140 hwrena |= MIPS_HWRENA_CPUNUM |
2141 MIPS_HWRENA_SYNCISTEP |
2142 MIPS_HWRENA_CC |
2143 MIPS_HWRENA_CCRES;
2144
2145 if (!noulri && cpu_has_userlocal)
2146 hwrena |= MIPS_HWRENA_ULR;
2147
2148 if (hwrena)
2149 write_c0_hwrena(hwrena);
2150 }
2151
configure_exception_vector(void)2152 static void configure_exception_vector(void)
2153 {
2154 if (cpu_has_mips_r2_r6) {
2155 unsigned long sr = set_c0_status(ST0_BEV);
2156 /* If available, use WG to set top bits of EBASE */
2157 if (cpu_has_ebase_wg) {
2158 #ifdef CONFIG_64BIT
2159 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2160 #else
2161 write_c0_ebase(ebase | MIPS_EBASE_WG);
2162 #endif
2163 }
2164 write_c0_ebase(ebase);
2165 write_c0_status(sr);
2166 }
2167 if (cpu_has_veic || cpu_has_vint) {
2168 /* Setting vector spacing enables EI/VI mode */
2169 change_c0_intctl(0x3e0, VECTORSPACING);
2170 }
2171 if (cpu_has_divec) {
2172 if (cpu_has_mipsmt) {
2173 unsigned int vpflags = dvpe();
2174 set_c0_cause(CAUSEF_IV);
2175 evpe(vpflags);
2176 } else
2177 set_c0_cause(CAUSEF_IV);
2178 }
2179 }
2180
per_cpu_trap_init(bool is_boot_cpu)2181 void per_cpu_trap_init(bool is_boot_cpu)
2182 {
2183 unsigned int cpu = smp_processor_id();
2184
2185 configure_status();
2186 configure_hwrena();
2187
2188 configure_exception_vector();
2189
2190 /*
2191 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2192 *
2193 * o read IntCtl.IPTI to determine the timer interrupt
2194 * o read IntCtl.IPPCI to determine the performance counter interrupt
2195 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2196 */
2197 if (cpu_has_mips_r2_r6) {
2198 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2199 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2200 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2201 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2202 if (!cp0_fdc_irq)
2203 cp0_fdc_irq = -1;
2204
2205 } else {
2206 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2207 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2208 cp0_perfcount_irq = -1;
2209 cp0_fdc_irq = -1;
2210 }
2211
2212 if (cpu_has_mmid)
2213 cpu_data[cpu].asid_cache = 0;
2214 else if (!cpu_data[cpu].asid_cache)
2215 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2216
2217 mmgrab(&init_mm);
2218 current->active_mm = &init_mm;
2219 BUG_ON(current->mm);
2220 enter_lazy_tlb(&init_mm, current);
2221
2222 /* Boot CPU's cache setup in setup_arch(). */
2223 if (!is_boot_cpu)
2224 cpu_cache_init();
2225 tlb_init();
2226 TLBMISS_HANDLER_SETUP();
2227 }
2228
2229 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)2230 void set_handler(unsigned long offset, void *addr, unsigned long size)
2231 {
2232 #ifdef CONFIG_CPU_MICROMIPS
2233 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2234 #else
2235 memcpy((void *)(ebase + offset), addr, size);
2236 #endif
2237 local_flush_icache_range(ebase + offset, ebase + offset + size);
2238 }
2239
2240 static const char panic_null_cerr[] =
2241 "Trying to set NULL cache error exception handler\n";
2242
2243 /*
2244 * Install uncached CPU exception handler.
2245 * This is suitable only for the cache error exception which is the only
2246 * exception handler that is being run uncached.
2247 */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2248 void set_uncached_handler(unsigned long offset, void *addr,
2249 unsigned long size)
2250 {
2251 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2252
2253 if (!addr)
2254 panic(panic_null_cerr);
2255
2256 memcpy((void *)(uncached_ebase + offset), addr, size);
2257 }
2258
2259 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2260 static int __init set_rdhwr_noopt(char *str)
2261 {
2262 rdhwr_noopt = 1;
2263 return 1;
2264 }
2265
2266 __setup("rdhwr_noopt", set_rdhwr_noopt);
2267
trap_init(void)2268 void __init trap_init(void)
2269 {
2270 extern char except_vec3_generic;
2271 extern char except_vec4;
2272 extern char except_vec3_r4000;
2273 unsigned long i, vec_size;
2274 phys_addr_t ebase_pa;
2275
2276 check_wait();
2277
2278 if (!cpu_has_mips_r2_r6) {
2279 ebase = CAC_BASE;
2280 ebase_pa = virt_to_phys((void *)ebase);
2281 vec_size = 0x400;
2282
2283 memblock_reserve(ebase_pa, vec_size);
2284 } else {
2285 if (cpu_has_veic || cpu_has_vint)
2286 vec_size = 0x200 + VECTORSPACING*64;
2287 else
2288 vec_size = PAGE_SIZE;
2289
2290 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2291 if (!ebase_pa)
2292 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2293 __func__, vec_size, 1 << fls(vec_size));
2294
2295 /*
2296 * Try to ensure ebase resides in KSeg0 if possible.
2297 *
2298 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2299 * hitting a poorly defined exception base for Cache Errors.
2300 * The allocation is likely to be in the low 512MB of physical,
2301 * in which case we should be able to convert to KSeg0.
2302 *
2303 * EVA is special though as it allows segments to be rearranged
2304 * and to become uncached during cache error handling.
2305 */
2306 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2307 ebase = CKSEG0ADDR(ebase_pa);
2308 else
2309 ebase = (unsigned long)phys_to_virt(ebase_pa);
2310 }
2311
2312 if (cpu_has_mmips) {
2313 unsigned int config3 = read_c0_config3();
2314
2315 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2316 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2317 else
2318 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2319 }
2320
2321 if (board_ebase_setup)
2322 board_ebase_setup();
2323 per_cpu_trap_init(true);
2324 memblock_set_bottom_up(false);
2325
2326 /*
2327 * Copy the generic exception handlers to their final destination.
2328 * This will be overridden later as suitable for a particular
2329 * configuration.
2330 */
2331 set_handler(0x180, &except_vec3_generic, 0x80);
2332
2333 /*
2334 * Setup default vectors
2335 */
2336 for (i = 0; i <= 31; i++)
2337 set_except_vector(i, handle_reserved);
2338
2339 /*
2340 * Copy the EJTAG debug exception vector handler code to it's final
2341 * destination.
2342 */
2343 if (cpu_has_ejtag && board_ejtag_handler_setup)
2344 board_ejtag_handler_setup();
2345
2346 /*
2347 * Only some CPUs have the watch exceptions.
2348 */
2349 if (cpu_has_watch)
2350 set_except_vector(EXCCODE_WATCH, handle_watch);
2351
2352 /*
2353 * Initialise interrupt handlers
2354 */
2355 if (cpu_has_veic || cpu_has_vint) {
2356 int nvec = cpu_has_veic ? 64 : 8;
2357 for (i = 0; i < nvec; i++)
2358 set_vi_handler(i, NULL);
2359 }
2360 else if (cpu_has_divec)
2361 set_handler(0x200, &except_vec4, 0x8);
2362
2363 /*
2364 * Some CPUs can enable/disable for cache parity detection, but does
2365 * it different ways.
2366 */
2367 parity_protection_init();
2368
2369 /*
2370 * The Data Bus Errors / Instruction Bus Errors are signaled
2371 * by external hardware. Therefore these two exceptions
2372 * may have board specific handlers.
2373 */
2374 if (board_be_init)
2375 board_be_init();
2376
2377 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2378 rollback_handle_int : handle_int);
2379 set_except_vector(EXCCODE_MOD, handle_tlbm);
2380 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2381 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2382
2383 set_except_vector(EXCCODE_ADEL, handle_adel);
2384 set_except_vector(EXCCODE_ADES, handle_ades);
2385
2386 set_except_vector(EXCCODE_IBE, handle_ibe);
2387 set_except_vector(EXCCODE_DBE, handle_dbe);
2388
2389 set_except_vector(EXCCODE_SYS, handle_sys);
2390 set_except_vector(EXCCODE_BP, handle_bp);
2391
2392 if (rdhwr_noopt)
2393 set_except_vector(EXCCODE_RI, handle_ri);
2394 else {
2395 if (cpu_has_vtag_icache)
2396 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2397 else if (current_cpu_type() == CPU_LOONGSON3)
2398 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2399 else
2400 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2401 }
2402
2403 set_except_vector(EXCCODE_CPU, handle_cpu);
2404 set_except_vector(EXCCODE_OV, handle_ov);
2405 set_except_vector(EXCCODE_TR, handle_tr);
2406 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2407
2408 if (board_nmi_handler_setup)
2409 board_nmi_handler_setup();
2410
2411 if (cpu_has_fpu && !cpu_has_nofpuex)
2412 set_except_vector(EXCCODE_FPE, handle_fpe);
2413
2414 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2415
2416 if (cpu_has_rixiex) {
2417 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2418 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2419 }
2420
2421 set_except_vector(EXCCODE_MSADIS, handle_msa);
2422 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2423
2424 if (cpu_has_mcheck)
2425 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2426
2427 if (cpu_has_mipsmt)
2428 set_except_vector(EXCCODE_THREAD, handle_mt);
2429
2430 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2431
2432 if (board_cache_error_setup)
2433 board_cache_error_setup();
2434
2435 if (cpu_has_vce)
2436 /* Special exception: R4[04]00 uses also the divec space. */
2437 set_handler(0x180, &except_vec3_r4000, 0x100);
2438 else if (cpu_has_4kex)
2439 set_handler(0x180, &except_vec3_generic, 0x80);
2440 else
2441 set_handler(0x080, &except_vec3_generic, 0x80);
2442
2443 local_flush_icache_range(ebase, ebase + vec_size);
2444
2445 sort_extable(__start___dbe_table, __stop___dbe_table);
2446
2447 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2448 }
2449
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2450 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2451 void *v)
2452 {
2453 switch (cmd) {
2454 case CPU_PM_ENTER_FAILED:
2455 case CPU_PM_EXIT:
2456 configure_status();
2457 configure_hwrena();
2458 configure_exception_vector();
2459
2460 /* Restore register with CPU number for TLB handlers */
2461 TLBMISS_HANDLER_RESTORE();
2462
2463 break;
2464 }
2465
2466 return NOTIFY_OK;
2467 }
2468
2469 static struct notifier_block trap_pm_notifier_block = {
2470 .notifier_call = trap_pm_notifier,
2471 };
2472
trap_pm_init(void)2473 static int __init trap_pm_init(void)
2474 {
2475 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2476 }
2477 arch_initcall(trap_pm_init);
2478