1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
40 .tolerated_failures = 1,
41 .devs_increment = 2,
42 .ncopies = 2,
43 .nparity = 0,
44 .raid_name = "raid10",
45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47 },
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
53 .tolerated_failures = 1,
54 .devs_increment = 2,
55 .ncopies = 2,
56 .nparity = 0,
57 .raid_name = "raid1",
58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60 },
61 [BTRFS_RAID_DUP] = {
62 .sub_stripes = 1,
63 .dev_stripes = 2,
64 .devs_max = 1,
65 .devs_min = 1,
66 .tolerated_failures = 0,
67 .devs_increment = 1,
68 .ncopies = 2,
69 .nparity = 0,
70 .raid_name = "dup",
71 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
72 .mindev_error = 0,
73 },
74 [BTRFS_RAID_RAID0] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
77 .devs_max = 0,
78 .devs_min = 2,
79 .tolerated_failures = 0,
80 .devs_increment = 1,
81 .ncopies = 1,
82 .nparity = 0,
83 .raid_name = "raid0",
84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
85 .mindev_error = 0,
86 },
87 [BTRFS_RAID_SINGLE] = {
88 .sub_stripes = 1,
89 .dev_stripes = 1,
90 .devs_max = 1,
91 .devs_min = 1,
92 .tolerated_failures = 0,
93 .devs_increment = 1,
94 .ncopies = 1,
95 .nparity = 0,
96 .raid_name = "single",
97 .bg_flag = 0,
98 .mindev_error = 0,
99 },
100 [BTRFS_RAID_RAID5] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
105 .tolerated_failures = 1,
106 .devs_increment = 1,
107 .ncopies = 1,
108 .nparity = 1,
109 .raid_name = "raid5",
110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
112 },
113 [BTRFS_RAID_RAID6] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 0,
117 .devs_min = 3,
118 .tolerated_failures = 2,
119 .devs_increment = 1,
120 .ncopies = 1,
121 .nparity = 2,
122 .raid_name = "raid6",
123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
125 },
126 };
127
btrfs_bg_type_to_raid_name(u64 flags)128 const char *btrfs_bg_type_to_raid_name(u64 flags)
129 {
130 const int index = btrfs_bg_flags_to_raid_index(flags);
131
132 if (index >= BTRFS_NR_RAID_TYPES)
133 return NULL;
134
135 return btrfs_raid_array[index].raid_name;
136 }
137
138 /*
139 * Fill @buf with textual description of @bg_flags, no more than @size_buf
140 * bytes including terminating null byte.
141 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)142 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143 {
144 int i;
145 int ret;
146 char *bp = buf;
147 u64 flags = bg_flags;
148 u32 size_bp = size_buf;
149
150 if (!flags) {
151 strcpy(bp, "NONE");
152 return;
153 }
154
155 #define DESCRIBE_FLAG(flag, desc) \
156 do { \
157 if (flags & (flag)) { \
158 ret = snprintf(bp, size_bp, "%s|", (desc)); \
159 if (ret < 0 || ret >= size_bp) \
160 goto out_overflow; \
161 size_bp -= ret; \
162 bp += ret; \
163 flags &= ~(flag); \
164 } \
165 } while (0)
166
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
170
171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
174 btrfs_raid_array[i].raid_name);
175 #undef DESCRIBE_FLAG
176
177 if (flags) {
178 ret = snprintf(bp, size_bp, "0x%llx|", flags);
179 size_bp -= ret;
180 }
181
182 if (size_bp < size_buf)
183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184
185 /*
186 * The text is trimmed, it's up to the caller to provide sufficiently
187 * large buffer
188 */
189 out_overflow:;
190 }
191
192 static int init_first_rw_device(struct btrfs_trans_handle *trans);
193 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 enum btrfs_map_op op,
198 u64 logical, u64 *length,
199 struct btrfs_bio **bbio_ret,
200 int mirror_num, int need_raid_map);
201
202 /*
203 * Device locking
204 * ==============
205 *
206 * There are several mutexes that protect manipulation of devices and low-level
207 * structures like chunks but not block groups, extents or files
208 *
209 * uuid_mutex (global lock)
210 * ------------------------
211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213 * device) or requested by the device= mount option
214 *
215 * the mutex can be very coarse and can cover long-running operations
216 *
217 * protects: updates to fs_devices counters like missing devices, rw devices,
218 * seeding, structure cloning, opening/closing devices at mount/umount time
219 *
220 * global::fs_devs - add, remove, updates to the global list
221 *
222 * does not protect: manipulation of the fs_devices::devices list!
223 *
224 * btrfs_device::name - renames (write side), read is RCU
225 *
226 * fs_devices::device_list_mutex (per-fs, with RCU)
227 * ------------------------------------------------
228 * protects updates to fs_devices::devices, ie. adding and deleting
229 *
230 * simple list traversal with read-only actions can be done with RCU protection
231 *
232 * may be used to exclude some operations from running concurrently without any
233 * modifications to the list (see write_all_supers)
234 *
235 * balance_mutex
236 * -------------
237 * protects balance structures (status, state) and context accessed from
238 * several places (internally, ioctl)
239 *
240 * chunk_mutex
241 * -----------
242 * protects chunks, adding or removing during allocation, trim or when a new
243 * device is added/removed. Additionally it also protects post_commit_list of
244 * individual devices, since they can be added to the transaction's
245 * post_commit_list only with chunk_mutex held.
246 *
247 * cleaner_mutex
248 * -------------
249 * a big lock that is held by the cleaner thread and prevents running subvolume
250 * cleaning together with relocation or delayed iputs
251 *
252 *
253 * Lock nesting
254 * ============
255 *
256 * uuid_mutex
257 * volume_mutex
258 * device_list_mutex
259 * chunk_mutex
260 * balance_mutex
261 *
262 *
263 * Exclusive operations, BTRFS_FS_EXCL_OP
264 * ======================================
265 *
266 * Maintains the exclusivity of the following operations that apply to the
267 * whole filesystem and cannot run in parallel.
268 *
269 * - Balance (*)
270 * - Device add
271 * - Device remove
272 * - Device replace (*)
273 * - Resize
274 *
275 * The device operations (as above) can be in one of the following states:
276 *
277 * - Running state
278 * - Paused state
279 * - Completed state
280 *
281 * Only device operations marked with (*) can go into the Paused state for the
282 * following reasons:
283 *
284 * - ioctl (only Balance can be Paused through ioctl)
285 * - filesystem remounted as read-only
286 * - filesystem unmounted and mounted as read-only
287 * - system power-cycle and filesystem mounted as read-only
288 * - filesystem or device errors leading to forced read-only
289 *
290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292 * A device operation in Paused or Running state can be canceled or resumed
293 * either by ioctl (Balance only) or when remounted as read-write.
294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 * completed.
296 */
297
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302 return &fs_uuids;
303 }
304
305 /*
306 * alloc_fs_devices - allocate struct btrfs_fs_devices
307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
309 *
310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311 * The returned struct is not linked onto any lists and can be destroyed with
312 * kfree() right away.
313 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 const u8 *metadata_fsid)
316 {
317 struct btrfs_fs_devices *fs_devs;
318
319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320 if (!fs_devs)
321 return ERR_PTR(-ENOMEM);
322
323 mutex_init(&fs_devs->device_list_mutex);
324
325 INIT_LIST_HEAD(&fs_devs->devices);
326 INIT_LIST_HEAD(&fs_devs->alloc_list);
327 INIT_LIST_HEAD(&fs_devs->fs_list);
328 if (fsid)
329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330
331 if (metadata_fsid)
332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 else if (fsid)
334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
336 return fs_devs;
337 }
338
btrfs_free_device(struct btrfs_device * device)339 void btrfs_free_device(struct btrfs_device *device)
340 {
341 WARN_ON(!list_empty(&device->post_commit_list));
342 rcu_string_free(device->name);
343 extent_io_tree_release(&device->alloc_state);
344 bio_put(device->flush_bio);
345 kfree(device);
346 }
347
free_fs_devices(struct btrfs_fs_devices * fs_devices)348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350 struct btrfs_device *device;
351 WARN_ON(fs_devices->opened);
352 while (!list_empty(&fs_devices->devices)) {
353 device = list_entry(fs_devices->devices.next,
354 struct btrfs_device, dev_list);
355 list_del(&device->dev_list);
356 btrfs_free_device(device);
357 }
358 kfree(fs_devices);
359 }
360
btrfs_cleanup_fs_uuids(void)361 void __exit btrfs_cleanup_fs_uuids(void)
362 {
363 struct btrfs_fs_devices *fs_devices;
364
365 while (!list_empty(&fs_uuids)) {
366 fs_devices = list_entry(fs_uuids.next,
367 struct btrfs_fs_devices, fs_list);
368 list_del(&fs_devices->fs_list);
369 free_fs_devices(fs_devices);
370 }
371 }
372
373 /*
374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
375 * Returned struct is not linked onto any lists and must be destroyed using
376 * btrfs_free_device.
377 */
__alloc_device(void)378 static struct btrfs_device *__alloc_device(void)
379 {
380 struct btrfs_device *dev;
381
382 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
383 if (!dev)
384 return ERR_PTR(-ENOMEM);
385
386 /*
387 * Preallocate a bio that's always going to be used for flushing device
388 * barriers and matches the device lifespan
389 */
390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
391 if (!dev->flush_bio) {
392 kfree(dev);
393 return ERR_PTR(-ENOMEM);
394 }
395
396 INIT_LIST_HEAD(&dev->dev_list);
397 INIT_LIST_HEAD(&dev->dev_alloc_list);
398 INIT_LIST_HEAD(&dev->post_commit_list);
399
400 spin_lock_init(&dev->io_lock);
401
402 atomic_set(&dev->reada_in_flight, 0);
403 atomic_set(&dev->dev_stats_ccnt, 0);
404 btrfs_device_data_ordered_init(dev);
405 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
406 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
407 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
408
409 return dev;
410 }
411
find_fsid(const u8 * fsid,const u8 * metadata_fsid)412 static noinline struct btrfs_fs_devices *find_fsid(
413 const u8 *fsid, const u8 *metadata_fsid)
414 {
415 struct btrfs_fs_devices *fs_devices;
416
417 ASSERT(fsid);
418
419 if (metadata_fsid) {
420 /*
421 * Handle scanned device having completed its fsid change but
422 * belonging to a fs_devices that was created by first scanning
423 * a device which didn't have its fsid/metadata_uuid changed
424 * at all and the CHANGING_FSID_V2 flag set.
425 */
426 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
427 if (fs_devices->fsid_change &&
428 memcmp(metadata_fsid, fs_devices->fsid,
429 BTRFS_FSID_SIZE) == 0 &&
430 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
431 BTRFS_FSID_SIZE) == 0) {
432 return fs_devices;
433 }
434 }
435 /*
436 * Handle scanned device having completed its fsid change but
437 * belonging to a fs_devices that was created by a device that
438 * has an outdated pair of fsid/metadata_uuid and
439 * CHANGING_FSID_V2 flag set.
440 */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (fs_devices->fsid_change &&
443 memcmp(fs_devices->metadata_uuid,
444 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
445 memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0) {
447 return fs_devices;
448 }
449 }
450 }
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
463 }
464 return NULL;
465 }
466
467 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)468 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
469 int flush, struct block_device **bdev,
470 struct buffer_head **bh)
471 {
472 int ret;
473
474 *bdev = blkdev_get_by_path(device_path, flags, holder);
475
476 if (IS_ERR(*bdev)) {
477 ret = PTR_ERR(*bdev);
478 goto error;
479 }
480
481 if (flush)
482 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
483 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
484 if (ret) {
485 blkdev_put(*bdev, flags);
486 goto error;
487 }
488 invalidate_bdev(*bdev);
489 *bh = btrfs_read_dev_super(*bdev);
490 if (IS_ERR(*bh)) {
491 ret = PTR_ERR(*bh);
492 blkdev_put(*bdev, flags);
493 goto error;
494 }
495
496 return 0;
497
498 error:
499 *bdev = NULL;
500 *bh = NULL;
501 return ret;
502 }
503
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)504 static void requeue_list(struct btrfs_pending_bios *pending_bios,
505 struct bio *head, struct bio *tail)
506 {
507
508 struct bio *old_head;
509
510 old_head = pending_bios->head;
511 pending_bios->head = head;
512 if (pending_bios->tail)
513 tail->bi_next = old_head;
514 else
515 pending_bios->tail = tail;
516 }
517
518 /*
519 * we try to collect pending bios for a device so we don't get a large
520 * number of procs sending bios down to the same device. This greatly
521 * improves the schedulers ability to collect and merge the bios.
522 *
523 * But, it also turns into a long list of bios to process and that is sure
524 * to eventually make the worker thread block. The solution here is to
525 * make some progress and then put this work struct back at the end of
526 * the list if the block device is congested. This way, multiple devices
527 * can make progress from a single worker thread.
528 */
run_scheduled_bios(struct btrfs_device * device)529 static noinline void run_scheduled_bios(struct btrfs_device *device)
530 {
531 struct btrfs_fs_info *fs_info = device->fs_info;
532 struct bio *pending;
533 struct backing_dev_info *bdi;
534 struct btrfs_pending_bios *pending_bios;
535 struct bio *tail;
536 struct bio *cur;
537 int again = 0;
538 unsigned long num_run;
539 unsigned long batch_run = 0;
540 unsigned long last_waited = 0;
541 int force_reg = 0;
542 int sync_pending = 0;
543 struct blk_plug plug;
544
545 /*
546 * this function runs all the bios we've collected for
547 * a particular device. We don't want to wander off to
548 * another device without first sending all of these down.
549 * So, setup a plug here and finish it off before we return
550 */
551 blk_start_plug(&plug);
552
553 bdi = device->bdev->bd_bdi;
554
555 loop:
556 spin_lock(&device->io_lock);
557
558 loop_lock:
559 num_run = 0;
560
561 /* take all the bios off the list at once and process them
562 * later on (without the lock held). But, remember the
563 * tail and other pointers so the bios can be properly reinserted
564 * into the list if we hit congestion
565 */
566 if (!force_reg && device->pending_sync_bios.head) {
567 pending_bios = &device->pending_sync_bios;
568 force_reg = 1;
569 } else {
570 pending_bios = &device->pending_bios;
571 force_reg = 0;
572 }
573
574 pending = pending_bios->head;
575 tail = pending_bios->tail;
576 WARN_ON(pending && !tail);
577
578 /*
579 * if pending was null this time around, no bios need processing
580 * at all and we can stop. Otherwise it'll loop back up again
581 * and do an additional check so no bios are missed.
582 *
583 * device->running_pending is used to synchronize with the
584 * schedule_bio code.
585 */
586 if (device->pending_sync_bios.head == NULL &&
587 device->pending_bios.head == NULL) {
588 again = 0;
589 device->running_pending = 0;
590 } else {
591 again = 1;
592 device->running_pending = 1;
593 }
594
595 pending_bios->head = NULL;
596 pending_bios->tail = NULL;
597
598 spin_unlock(&device->io_lock);
599
600 while (pending) {
601
602 rmb();
603 /* we want to work on both lists, but do more bios on the
604 * sync list than the regular list
605 */
606 if ((num_run > 32 &&
607 pending_bios != &device->pending_sync_bios &&
608 device->pending_sync_bios.head) ||
609 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
610 device->pending_bios.head)) {
611 spin_lock(&device->io_lock);
612 requeue_list(pending_bios, pending, tail);
613 goto loop_lock;
614 }
615
616 cur = pending;
617 pending = pending->bi_next;
618 cur->bi_next = NULL;
619
620 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
621
622 /*
623 * if we're doing the sync list, record that our
624 * plug has some sync requests on it
625 *
626 * If we're doing the regular list and there are
627 * sync requests sitting around, unplug before
628 * we add more
629 */
630 if (pending_bios == &device->pending_sync_bios) {
631 sync_pending = 1;
632 } else if (sync_pending) {
633 blk_finish_plug(&plug);
634 blk_start_plug(&plug);
635 sync_pending = 0;
636 }
637
638 btrfsic_submit_bio(cur);
639 num_run++;
640 batch_run++;
641
642 cond_resched();
643
644 /*
645 * we made progress, there is more work to do and the bdi
646 * is now congested. Back off and let other work structs
647 * run instead
648 */
649 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
650 fs_info->fs_devices->open_devices > 1) {
651 struct io_context *ioc;
652
653 ioc = current->io_context;
654
655 /*
656 * the main goal here is that we don't want to
657 * block if we're going to be able to submit
658 * more requests without blocking.
659 *
660 * This code does two great things, it pokes into
661 * the elevator code from a filesystem _and_
662 * it makes assumptions about how batching works.
663 */
664 if (ioc && ioc->nr_batch_requests > 0 &&
665 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
666 (last_waited == 0 ||
667 ioc->last_waited == last_waited)) {
668 /*
669 * we want to go through our batch of
670 * requests and stop. So, we copy out
671 * the ioc->last_waited time and test
672 * against it before looping
673 */
674 last_waited = ioc->last_waited;
675 cond_resched();
676 continue;
677 }
678 spin_lock(&device->io_lock);
679 requeue_list(pending_bios, pending, tail);
680 device->running_pending = 1;
681
682 spin_unlock(&device->io_lock);
683 btrfs_queue_work(fs_info->submit_workers,
684 &device->work);
685 goto done;
686 }
687 }
688
689 cond_resched();
690 if (again)
691 goto loop;
692
693 spin_lock(&device->io_lock);
694 if (device->pending_bios.head || device->pending_sync_bios.head)
695 goto loop_lock;
696 spin_unlock(&device->io_lock);
697
698 done:
699 blk_finish_plug(&plug);
700 }
701
pending_bios_fn(struct btrfs_work * work)702 static void pending_bios_fn(struct btrfs_work *work)
703 {
704 struct btrfs_device *device;
705
706 device = container_of(work, struct btrfs_device, work);
707 run_scheduled_bios(device);
708 }
709
device_path_matched(const char * path,struct btrfs_device * device)710 static bool device_path_matched(const char *path, struct btrfs_device *device)
711 {
712 int found;
713
714 rcu_read_lock();
715 found = strcmp(rcu_str_deref(device->name), path);
716 rcu_read_unlock();
717
718 return found == 0;
719 }
720
721 /*
722 * Search and remove all stale (devices which are not mounted) devices.
723 * When both inputs are NULL, it will search and release all stale devices.
724 * path: Optional. When provided will it release all unmounted devices
725 * matching this path only.
726 * skip_dev: Optional. Will skip this device when searching for the stale
727 * devices.
728 * Return: 0 for success or if @path is NULL.
729 * -EBUSY if @path is a mounted device.
730 * -ENOENT if @path does not match any device in the list.
731 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)732 static int btrfs_free_stale_devices(const char *path,
733 struct btrfs_device *skip_device)
734 {
735 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
736 struct btrfs_device *device, *tmp_device;
737 int ret = 0;
738
739 if (path)
740 ret = -ENOENT;
741
742 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
743
744 mutex_lock(&fs_devices->device_list_mutex);
745 list_for_each_entry_safe(device, tmp_device,
746 &fs_devices->devices, dev_list) {
747 if (skip_device && skip_device == device)
748 continue;
749 if (path && !device->name)
750 continue;
751 if (path && !device_path_matched(path, device))
752 continue;
753 if (fs_devices->opened) {
754 /* for an already deleted device return 0 */
755 if (path && ret != 0)
756 ret = -EBUSY;
757 break;
758 }
759
760 /* delete the stale device */
761 fs_devices->num_devices--;
762 list_del(&device->dev_list);
763 btrfs_free_device(device);
764
765 ret = 0;
766 if (fs_devices->num_devices == 0)
767 break;
768 }
769 mutex_unlock(&fs_devices->device_list_mutex);
770
771 if (fs_devices->num_devices == 0) {
772 btrfs_sysfs_remove_fsid(fs_devices);
773 list_del(&fs_devices->fs_list);
774 free_fs_devices(fs_devices);
775 }
776 }
777
778 return ret;
779 }
780
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)781 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
782 struct btrfs_device *device, fmode_t flags,
783 void *holder)
784 {
785 struct request_queue *q;
786 struct block_device *bdev;
787 struct buffer_head *bh;
788 struct btrfs_super_block *disk_super;
789 u64 devid;
790 int ret;
791
792 if (device->bdev)
793 return -EINVAL;
794 if (!device->name)
795 return -EINVAL;
796
797 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798 &bdev, &bh);
799 if (ret)
800 return ret;
801
802 disk_super = (struct btrfs_super_block *)bh->b_data;
803 devid = btrfs_stack_device_id(&disk_super->dev_item);
804 if (devid != device->devid)
805 goto error_brelse;
806
807 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
808 goto error_brelse;
809
810 device->generation = btrfs_super_generation(disk_super);
811
812 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
813 if (btrfs_super_incompat_flags(disk_super) &
814 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
815 pr_err(
816 "BTRFS: Invalid seeding and uuid-changed device detected\n");
817 goto error_brelse;
818 }
819
820 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
821 fs_devices->seeding = 1;
822 } else {
823 if (bdev_read_only(bdev))
824 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
825 else
826 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
827 }
828
829 q = bdev_get_queue(bdev);
830 if (!blk_queue_nonrot(q))
831 fs_devices->rotating = 1;
832
833 device->bdev = bdev;
834 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
835 device->mode = flags;
836
837 fs_devices->open_devices++;
838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
839 device->devid != BTRFS_DEV_REPLACE_DEVID) {
840 fs_devices->rw_devices++;
841 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
842 }
843 brelse(bh);
844
845 return 0;
846
847 error_brelse:
848 brelse(bh);
849 blkdev_put(bdev, flags);
850
851 return -EINVAL;
852 }
853
854 /*
855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
856 * being created with a disk that has already completed its fsid change.
857 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)858 static struct btrfs_fs_devices *find_fsid_inprogress(
859 struct btrfs_super_block *disk_super)
860 {
861 struct btrfs_fs_devices *fs_devices;
862
863 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
864 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
865 BTRFS_FSID_SIZE) != 0 &&
866 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
867 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
868 return fs_devices;
869 }
870 }
871
872 return NULL;
873 }
874
875
find_fsid_changed(struct btrfs_super_block * disk_super)876 static struct btrfs_fs_devices *find_fsid_changed(
877 struct btrfs_super_block *disk_super)
878 {
879 struct btrfs_fs_devices *fs_devices;
880
881 /*
882 * Handles the case where scanned device is part of an fs that had
883 * multiple successful changes of FSID but curently device didn't
884 * observe it. Meaning our fsid will be different than theirs.
885 */
886 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
887 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
888 BTRFS_FSID_SIZE) != 0 &&
889 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
890 BTRFS_FSID_SIZE) == 0 &&
891 memcmp(fs_devices->fsid, disk_super->fsid,
892 BTRFS_FSID_SIZE) != 0) {
893 return fs_devices;
894 }
895 }
896
897 return NULL;
898 }
899 /*
900 * Add new device to list of registered devices
901 *
902 * Returns:
903 * device pointer which was just added or updated when successful
904 * error pointer when failed
905 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)906 static noinline struct btrfs_device *device_list_add(const char *path,
907 struct btrfs_super_block *disk_super,
908 bool *new_device_added)
909 {
910 struct btrfs_device *device;
911 struct btrfs_fs_devices *fs_devices = NULL;
912 struct rcu_string *name;
913 u64 found_transid = btrfs_super_generation(disk_super);
914 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
915 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
916 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
917 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
918 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
919
920 if (fsid_change_in_progress) {
921 if (!has_metadata_uuid) {
922 /*
923 * When we have an image which has CHANGING_FSID_V2 set
924 * it might belong to either a filesystem which has
925 * disks with completed fsid change or it might belong
926 * to fs with no UUID changes in effect, handle both.
927 */
928 fs_devices = find_fsid_inprogress(disk_super);
929 if (!fs_devices)
930 fs_devices = find_fsid(disk_super->fsid, NULL);
931 } else {
932 fs_devices = find_fsid_changed(disk_super);
933 }
934 } else if (has_metadata_uuid) {
935 fs_devices = find_fsid(disk_super->fsid,
936 disk_super->metadata_uuid);
937 } else {
938 fs_devices = find_fsid(disk_super->fsid, NULL);
939 }
940
941
942 if (!fs_devices) {
943 if (has_metadata_uuid)
944 fs_devices = alloc_fs_devices(disk_super->fsid,
945 disk_super->metadata_uuid);
946 else
947 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
948
949 if (IS_ERR(fs_devices))
950 return ERR_CAST(fs_devices);
951
952 fs_devices->fsid_change = fsid_change_in_progress;
953
954 mutex_lock(&fs_devices->device_list_mutex);
955 list_add(&fs_devices->fs_list, &fs_uuids);
956
957 device = NULL;
958 } else {
959 mutex_lock(&fs_devices->device_list_mutex);
960 device = btrfs_find_device(fs_devices, devid,
961 disk_super->dev_item.uuid, NULL, false);
962
963 /*
964 * If this disk has been pulled into an fs devices created by
965 * a device which had the CHANGING_FSID_V2 flag then replace the
966 * metadata_uuid/fsid values of the fs_devices.
967 */
968 if (has_metadata_uuid && fs_devices->fsid_change &&
969 found_transid > fs_devices->latest_generation) {
970 memcpy(fs_devices->fsid, disk_super->fsid,
971 BTRFS_FSID_SIZE);
972 memcpy(fs_devices->metadata_uuid,
973 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
974
975 fs_devices->fsid_change = false;
976 }
977 }
978
979 if (!device) {
980 if (fs_devices->opened) {
981 mutex_unlock(&fs_devices->device_list_mutex);
982 return ERR_PTR(-EBUSY);
983 }
984
985 device = btrfs_alloc_device(NULL, &devid,
986 disk_super->dev_item.uuid);
987 if (IS_ERR(device)) {
988 mutex_unlock(&fs_devices->device_list_mutex);
989 /* we can safely leave the fs_devices entry around */
990 return device;
991 }
992
993 name = rcu_string_strdup(path, GFP_NOFS);
994 if (!name) {
995 btrfs_free_device(device);
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return ERR_PTR(-ENOMEM);
998 }
999 rcu_assign_pointer(device->name, name);
1000
1001 list_add_rcu(&device->dev_list, &fs_devices->devices);
1002 fs_devices->num_devices++;
1003
1004 device->fs_devices = fs_devices;
1005 *new_device_added = true;
1006
1007 if (disk_super->label[0])
1008 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1009 disk_super->label, devid, found_transid, path);
1010 else
1011 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1012 disk_super->fsid, devid, found_transid, path);
1013
1014 } else if (!device->name || strcmp(device->name->str, path)) {
1015 /*
1016 * When FS is already mounted.
1017 * 1. If you are here and if the device->name is NULL that
1018 * means this device was missing at time of FS mount.
1019 * 2. If you are here and if the device->name is different
1020 * from 'path' that means either
1021 * a. The same device disappeared and reappeared with
1022 * different name. or
1023 * b. The missing-disk-which-was-replaced, has
1024 * reappeared now.
1025 *
1026 * We must allow 1 and 2a above. But 2b would be a spurious
1027 * and unintentional.
1028 *
1029 * Further in case of 1 and 2a above, the disk at 'path'
1030 * would have missed some transaction when it was away and
1031 * in case of 2a the stale bdev has to be updated as well.
1032 * 2b must not be allowed at all time.
1033 */
1034
1035 /*
1036 * For now, we do allow update to btrfs_fs_device through the
1037 * btrfs dev scan cli after FS has been mounted. We're still
1038 * tracking a problem where systems fail mount by subvolume id
1039 * when we reject replacement on a mounted FS.
1040 */
1041 if (!fs_devices->opened && found_transid < device->generation) {
1042 /*
1043 * That is if the FS is _not_ mounted and if you
1044 * are here, that means there is more than one
1045 * disk with same uuid and devid.We keep the one
1046 * with larger generation number or the last-in if
1047 * generation are equal.
1048 */
1049 mutex_unlock(&fs_devices->device_list_mutex);
1050 return ERR_PTR(-EEXIST);
1051 }
1052
1053 /*
1054 * We are going to replace the device path for a given devid,
1055 * make sure it's the same device if the device is mounted
1056 */
1057 if (device->bdev) {
1058 struct block_device *path_bdev;
1059
1060 path_bdev = lookup_bdev(path);
1061 if (IS_ERR(path_bdev)) {
1062 mutex_unlock(&fs_devices->device_list_mutex);
1063 return ERR_CAST(path_bdev);
1064 }
1065
1066 if (device->bdev != path_bdev) {
1067 bdput(path_bdev);
1068 mutex_unlock(&fs_devices->device_list_mutex);
1069 btrfs_warn_in_rcu(device->fs_info,
1070 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1071 disk_super->fsid, devid,
1072 rcu_str_deref(device->name), path);
1073 return ERR_PTR(-EEXIST);
1074 }
1075 bdput(path_bdev);
1076 btrfs_info_in_rcu(device->fs_info,
1077 "device fsid %pU devid %llu moved old:%s new:%s",
1078 disk_super->fsid, devid,
1079 rcu_str_deref(device->name), path);
1080 }
1081
1082 name = rcu_string_strdup(path, GFP_NOFS);
1083 if (!name) {
1084 mutex_unlock(&fs_devices->device_list_mutex);
1085 return ERR_PTR(-ENOMEM);
1086 }
1087 rcu_string_free(device->name);
1088 rcu_assign_pointer(device->name, name);
1089 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1090 fs_devices->missing_devices--;
1091 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1092 }
1093 }
1094
1095 /*
1096 * Unmount does not free the btrfs_device struct but would zero
1097 * generation along with most of the other members. So just update
1098 * it back. We need it to pick the disk with largest generation
1099 * (as above).
1100 */
1101 if (!fs_devices->opened) {
1102 device->generation = found_transid;
1103 fs_devices->latest_generation = max_t(u64, found_transid,
1104 fs_devices->latest_generation);
1105 }
1106
1107 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1108
1109 mutex_unlock(&fs_devices->device_list_mutex);
1110 return device;
1111 }
1112
clone_fs_devices(struct btrfs_fs_devices * orig)1113 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1114 {
1115 struct btrfs_fs_devices *fs_devices;
1116 struct btrfs_device *device;
1117 struct btrfs_device *orig_dev;
1118 int ret = 0;
1119
1120 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1121 if (IS_ERR(fs_devices))
1122 return fs_devices;
1123
1124 mutex_lock(&orig->device_list_mutex);
1125 fs_devices->total_devices = orig->total_devices;
1126
1127 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1128 struct rcu_string *name;
1129
1130 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1131 orig_dev->uuid);
1132 if (IS_ERR(device)) {
1133 ret = PTR_ERR(device);
1134 goto error;
1135 }
1136
1137 /*
1138 * This is ok to do without rcu read locked because we hold the
1139 * uuid mutex so nothing we touch in here is going to disappear.
1140 */
1141 if (orig_dev->name) {
1142 name = rcu_string_strdup(orig_dev->name->str,
1143 GFP_KERNEL);
1144 if (!name) {
1145 btrfs_free_device(device);
1146 ret = -ENOMEM;
1147 goto error;
1148 }
1149 rcu_assign_pointer(device->name, name);
1150 }
1151
1152 list_add(&device->dev_list, &fs_devices->devices);
1153 device->fs_devices = fs_devices;
1154 fs_devices->num_devices++;
1155 }
1156 mutex_unlock(&orig->device_list_mutex);
1157 return fs_devices;
1158 error:
1159 mutex_unlock(&orig->device_list_mutex);
1160 free_fs_devices(fs_devices);
1161 return ERR_PTR(ret);
1162 }
1163
1164 /*
1165 * After we have read the system tree and know devids belonging to
1166 * this filesystem, remove the device which does not belong there.
1167 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)1168 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1169 {
1170 struct btrfs_device *device, *next;
1171 struct btrfs_device *latest_dev = NULL;
1172
1173 mutex_lock(&uuid_mutex);
1174 again:
1175 /* This is the initialized path, it is safe to release the devices. */
1176 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1177 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1178 &device->dev_state)) {
1179 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1180 &device->dev_state) &&
1181 (!latest_dev ||
1182 device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 }
1185 continue;
1186 }
1187
1188 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1189 /*
1190 * In the first step, keep the device which has
1191 * the correct fsid and the devid that is used
1192 * for the dev_replace procedure.
1193 * In the second step, the dev_replace state is
1194 * read from the device tree and it is known
1195 * whether the procedure is really active or
1196 * not, which means whether this device is
1197 * used or whether it should be removed.
1198 */
1199 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1200 &device->dev_state)) {
1201 continue;
1202 }
1203 }
1204 if (device->bdev) {
1205 blkdev_put(device->bdev, device->mode);
1206 device->bdev = NULL;
1207 fs_devices->open_devices--;
1208 }
1209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1210 list_del_init(&device->dev_alloc_list);
1211 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1212 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1213 &device->dev_state))
1214 fs_devices->rw_devices--;
1215 }
1216 list_del_init(&device->dev_list);
1217 fs_devices->num_devices--;
1218 btrfs_free_device(device);
1219 }
1220
1221 if (fs_devices->seed) {
1222 fs_devices = fs_devices->seed;
1223 goto again;
1224 }
1225
1226 fs_devices->latest_bdev = latest_dev->bdev;
1227
1228 mutex_unlock(&uuid_mutex);
1229 }
1230
btrfs_close_bdev(struct btrfs_device * device)1231 static void btrfs_close_bdev(struct btrfs_device *device)
1232 {
1233 if (!device->bdev)
1234 return;
1235
1236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1237 sync_blockdev(device->bdev);
1238 invalidate_bdev(device->bdev);
1239 }
1240
1241 blkdev_put(device->bdev, device->mode);
1242 }
1243
btrfs_close_one_device(struct btrfs_device * device)1244 static void btrfs_close_one_device(struct btrfs_device *device)
1245 {
1246 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1247 struct btrfs_device *new_device;
1248 struct rcu_string *name;
1249
1250 if (device->bdev)
1251 fs_devices->open_devices--;
1252
1253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1254 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1255 list_del_init(&device->dev_alloc_list);
1256 fs_devices->rw_devices--;
1257 }
1258
1259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1260 fs_devices->missing_devices--;
1261
1262 btrfs_close_bdev(device);
1263
1264 new_device = btrfs_alloc_device(NULL, &device->devid,
1265 device->uuid);
1266 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1267
1268 /* Safe because we are under uuid_mutex */
1269 if (device->name) {
1270 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1271 BUG_ON(!name); /* -ENOMEM */
1272 rcu_assign_pointer(new_device->name, name);
1273 }
1274
1275 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1276 new_device->fs_devices = device->fs_devices;
1277
1278 synchronize_rcu();
1279 btrfs_free_device(device);
1280 }
1281
close_fs_devices(struct btrfs_fs_devices * fs_devices)1282 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1283 {
1284 struct btrfs_device *device, *tmp;
1285
1286 if (--fs_devices->opened > 0)
1287 return 0;
1288
1289 mutex_lock(&fs_devices->device_list_mutex);
1290 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1291 btrfs_close_one_device(device);
1292 }
1293 mutex_unlock(&fs_devices->device_list_mutex);
1294
1295 WARN_ON(fs_devices->open_devices);
1296 WARN_ON(fs_devices->rw_devices);
1297 fs_devices->opened = 0;
1298 fs_devices->seeding = 0;
1299
1300 return 0;
1301 }
1302
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1303 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1304 {
1305 struct btrfs_fs_devices *seed_devices = NULL;
1306 int ret;
1307
1308 mutex_lock(&uuid_mutex);
1309 ret = close_fs_devices(fs_devices);
1310 if (!fs_devices->opened) {
1311 seed_devices = fs_devices->seed;
1312 fs_devices->seed = NULL;
1313 }
1314 mutex_unlock(&uuid_mutex);
1315
1316 while (seed_devices) {
1317 fs_devices = seed_devices;
1318 seed_devices = fs_devices->seed;
1319 close_fs_devices(fs_devices);
1320 free_fs_devices(fs_devices);
1321 }
1322 return ret;
1323 }
1324
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1325 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1326 fmode_t flags, void *holder)
1327 {
1328 struct btrfs_device *device;
1329 struct btrfs_device *latest_dev = NULL;
1330 int ret = 0;
1331
1332 flags |= FMODE_EXCL;
1333
1334 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1335 /* Just open everything we can; ignore failures here */
1336 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1337 continue;
1338
1339 if (!latest_dev ||
1340 device->generation > latest_dev->generation)
1341 latest_dev = device;
1342 }
1343 if (fs_devices->open_devices == 0) {
1344 ret = -EINVAL;
1345 goto out;
1346 }
1347 fs_devices->opened = 1;
1348 fs_devices->latest_bdev = latest_dev->bdev;
1349 fs_devices->total_rw_bytes = 0;
1350 out:
1351 return ret;
1352 }
1353
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1354 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1355 {
1356 struct btrfs_device *dev1, *dev2;
1357
1358 dev1 = list_entry(a, struct btrfs_device, dev_list);
1359 dev2 = list_entry(b, struct btrfs_device, dev_list);
1360
1361 if (dev1->devid < dev2->devid)
1362 return -1;
1363 else if (dev1->devid > dev2->devid)
1364 return 1;
1365 return 0;
1366 }
1367
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1368 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1369 fmode_t flags, void *holder)
1370 {
1371 int ret;
1372
1373 lockdep_assert_held(&uuid_mutex);
1374
1375 mutex_lock(&fs_devices->device_list_mutex);
1376 if (fs_devices->opened) {
1377 fs_devices->opened++;
1378 ret = 0;
1379 } else {
1380 list_sort(NULL, &fs_devices->devices, devid_cmp);
1381 ret = open_fs_devices(fs_devices, flags, holder);
1382 }
1383 mutex_unlock(&fs_devices->device_list_mutex);
1384
1385 return ret;
1386 }
1387
btrfs_release_disk_super(struct page * page)1388 static void btrfs_release_disk_super(struct page *page)
1389 {
1390 kunmap(page);
1391 put_page(page);
1392 }
1393
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1394 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1395 struct page **page,
1396 struct btrfs_super_block **disk_super)
1397 {
1398 void *p;
1399 pgoff_t index;
1400
1401 /* make sure our super fits in the device */
1402 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1403 return 1;
1404
1405 /* make sure our super fits in the page */
1406 if (sizeof(**disk_super) > PAGE_SIZE)
1407 return 1;
1408
1409 /* make sure our super doesn't straddle pages on disk */
1410 index = bytenr >> PAGE_SHIFT;
1411 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1412 return 1;
1413
1414 /* pull in the page with our super */
1415 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1416 index, GFP_KERNEL);
1417
1418 if (IS_ERR_OR_NULL(*page))
1419 return 1;
1420
1421 p = kmap(*page);
1422
1423 /* align our pointer to the offset of the super block */
1424 *disk_super = p + offset_in_page(bytenr);
1425
1426 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1427 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1428 btrfs_release_disk_super(*page);
1429 return 1;
1430 }
1431
1432 if ((*disk_super)->label[0] &&
1433 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1434 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1435
1436 return 0;
1437 }
1438
btrfs_forget_devices(const char * path)1439 int btrfs_forget_devices(const char *path)
1440 {
1441 int ret;
1442
1443 mutex_lock(&uuid_mutex);
1444 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1445 mutex_unlock(&uuid_mutex);
1446
1447 return ret;
1448 }
1449
1450 /*
1451 * Look for a btrfs signature on a device. This may be called out of the mount path
1452 * and we are not allowed to call set_blocksize during the scan. The superblock
1453 * is read via pagecache
1454 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1455 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1456 void *holder)
1457 {
1458 struct btrfs_super_block *disk_super;
1459 bool new_device_added = false;
1460 struct btrfs_device *device = NULL;
1461 struct block_device *bdev;
1462 struct page *page;
1463 u64 bytenr;
1464
1465 lockdep_assert_held(&uuid_mutex);
1466
1467 /*
1468 * we would like to check all the supers, but that would make
1469 * a btrfs mount succeed after a mkfs from a different FS.
1470 * So, we need to add a special mount option to scan for
1471 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1472 */
1473 bytenr = btrfs_sb_offset(0);
1474 flags |= FMODE_EXCL;
1475
1476 bdev = blkdev_get_by_path(path, flags, holder);
1477 if (IS_ERR(bdev))
1478 return ERR_CAST(bdev);
1479
1480 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1481 device = ERR_PTR(-EINVAL);
1482 goto error_bdev_put;
1483 }
1484
1485 device = device_list_add(path, disk_super, &new_device_added);
1486 if (!IS_ERR(device)) {
1487 if (new_device_added)
1488 btrfs_free_stale_devices(path, device);
1489 }
1490
1491 btrfs_release_disk_super(page);
1492
1493 error_bdev_put:
1494 blkdev_put(bdev, flags);
1495
1496 return device;
1497 }
1498
1499 /*
1500 * Try to find a chunk that intersects [start, start + len] range and when one
1501 * such is found, record the end of it in *start
1502 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1503 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1504 u64 len)
1505 {
1506 u64 physical_start, physical_end;
1507
1508 lockdep_assert_held(&device->fs_info->chunk_mutex);
1509
1510 if (!find_first_extent_bit(&device->alloc_state, *start,
1511 &physical_start, &physical_end,
1512 CHUNK_ALLOCATED, NULL)) {
1513
1514 if (in_range(physical_start, *start, len) ||
1515 in_range(*start, physical_start,
1516 physical_end - physical_start)) {
1517 *start = physical_end + 1;
1518 return true;
1519 }
1520 }
1521 return false;
1522 }
1523
1524
1525 /*
1526 * find_free_dev_extent_start - find free space in the specified device
1527 * @device: the device which we search the free space in
1528 * @num_bytes: the size of the free space that we need
1529 * @search_start: the position from which to begin the search
1530 * @start: store the start of the free space.
1531 * @len: the size of the free space. that we find, or the size
1532 * of the max free space if we don't find suitable free space
1533 *
1534 * this uses a pretty simple search, the expectation is that it is
1535 * called very infrequently and that a given device has a small number
1536 * of extents
1537 *
1538 * @start is used to store the start of the free space if we find. But if we
1539 * don't find suitable free space, it will be used to store the start position
1540 * of the max free space.
1541 *
1542 * @len is used to store the size of the free space that we find.
1543 * But if we don't find suitable free space, it is used to store the size of
1544 * the max free space.
1545 *
1546 * NOTE: This function will search *commit* root of device tree, and does extra
1547 * check to ensure dev extents are not double allocated.
1548 * This makes the function safe to allocate dev extents but may not report
1549 * correct usable device space, as device extent freed in current transaction
1550 * is not reported as avaiable.
1551 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1552 static int find_free_dev_extent_start(struct btrfs_device *device,
1553 u64 num_bytes, u64 search_start, u64 *start,
1554 u64 *len)
1555 {
1556 struct btrfs_fs_info *fs_info = device->fs_info;
1557 struct btrfs_root *root = fs_info->dev_root;
1558 struct btrfs_key key;
1559 struct btrfs_dev_extent *dev_extent;
1560 struct btrfs_path *path;
1561 u64 hole_size;
1562 u64 max_hole_start;
1563 u64 max_hole_size;
1564 u64 extent_end;
1565 u64 search_end = device->total_bytes;
1566 int ret;
1567 int slot;
1568 struct extent_buffer *l;
1569
1570 /*
1571 * We don't want to overwrite the superblock on the drive nor any area
1572 * used by the boot loader (grub for example), so we make sure to start
1573 * at an offset of at least 1MB.
1574 */
1575 search_start = max_t(u64, search_start, SZ_1M);
1576
1577 path = btrfs_alloc_path();
1578 if (!path)
1579 return -ENOMEM;
1580
1581 max_hole_start = search_start;
1582 max_hole_size = 0;
1583
1584 again:
1585 if (search_start >= search_end ||
1586 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587 ret = -ENOSPC;
1588 goto out;
1589 }
1590
1591 path->reada = READA_FORWARD;
1592 path->search_commit_root = 1;
1593 path->skip_locking = 1;
1594
1595 key.objectid = device->devid;
1596 key.offset = search_start;
1597 key.type = BTRFS_DEV_EXTENT_KEY;
1598
1599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600 if (ret < 0)
1601 goto out;
1602 if (ret > 0) {
1603 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604 if (ret < 0)
1605 goto out;
1606 }
1607
1608 while (1) {
1609 l = path->nodes[0];
1610 slot = path->slots[0];
1611 if (slot >= btrfs_header_nritems(l)) {
1612 ret = btrfs_next_leaf(root, path);
1613 if (ret == 0)
1614 continue;
1615 if (ret < 0)
1616 goto out;
1617
1618 break;
1619 }
1620 btrfs_item_key_to_cpu(l, &key, slot);
1621
1622 if (key.objectid < device->devid)
1623 goto next;
1624
1625 if (key.objectid > device->devid)
1626 break;
1627
1628 if (key.type != BTRFS_DEV_EXTENT_KEY)
1629 goto next;
1630
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633
1634 /*
1635 * Have to check before we set max_hole_start, otherwise
1636 * we could end up sending back this offset anyway.
1637 */
1638 if (contains_pending_extent(device, &search_start,
1639 hole_size)) {
1640 if (key.offset >= search_start)
1641 hole_size = key.offset - search_start;
1642 else
1643 hole_size = 0;
1644 }
1645
1646 if (hole_size > max_hole_size) {
1647 max_hole_start = search_start;
1648 max_hole_size = hole_size;
1649 }
1650
1651 /*
1652 * If this free space is greater than which we need,
1653 * it must be the max free space that we have found
1654 * until now, so max_hole_start must point to the start
1655 * of this free space and the length of this free space
1656 * is stored in max_hole_size. Thus, we return
1657 * max_hole_start and max_hole_size and go back to the
1658 * caller.
1659 */
1660 if (hole_size >= num_bytes) {
1661 ret = 0;
1662 goto out;
1663 }
1664 }
1665
1666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1667 extent_end = key.offset + btrfs_dev_extent_length(l,
1668 dev_extent);
1669 if (extent_end > search_start)
1670 search_start = extent_end;
1671 next:
1672 path->slots[0]++;
1673 cond_resched();
1674 }
1675
1676 /*
1677 * At this point, search_start should be the end of
1678 * allocated dev extents, and when shrinking the device,
1679 * search_end may be smaller than search_start.
1680 */
1681 if (search_end > search_start) {
1682 hole_size = search_end - search_start;
1683
1684 if (contains_pending_extent(device, &search_start, hole_size)) {
1685 btrfs_release_path(path);
1686 goto again;
1687 }
1688
1689 if (hole_size > max_hole_size) {
1690 max_hole_start = search_start;
1691 max_hole_size = hole_size;
1692 }
1693 }
1694
1695 /* See above. */
1696 if (max_hole_size < num_bytes)
1697 ret = -ENOSPC;
1698 else
1699 ret = 0;
1700
1701 out:
1702 btrfs_free_path(path);
1703 *start = max_hole_start;
1704 if (len)
1705 *len = max_hole_size;
1706 return ret;
1707 }
1708
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1709 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1710 u64 *start, u64 *len)
1711 {
1712 /* FIXME use last free of some kind */
1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1714 }
1715
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1716 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1717 struct btrfs_device *device,
1718 u64 start, u64 *dev_extent_len)
1719 {
1720 struct btrfs_fs_info *fs_info = device->fs_info;
1721 struct btrfs_root *root = fs_info->dev_root;
1722 int ret;
1723 struct btrfs_path *path;
1724 struct btrfs_key key;
1725 struct btrfs_key found_key;
1726 struct extent_buffer *leaf = NULL;
1727 struct btrfs_dev_extent *extent = NULL;
1728
1729 path = btrfs_alloc_path();
1730 if (!path)
1731 return -ENOMEM;
1732
1733 key.objectid = device->devid;
1734 key.offset = start;
1735 key.type = BTRFS_DEV_EXTENT_KEY;
1736 again:
1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738 if (ret > 0) {
1739 ret = btrfs_previous_item(root, path, key.objectid,
1740 BTRFS_DEV_EXTENT_KEY);
1741 if (ret)
1742 goto out;
1743 leaf = path->nodes[0];
1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745 extent = btrfs_item_ptr(leaf, path->slots[0],
1746 struct btrfs_dev_extent);
1747 BUG_ON(found_key.offset > start || found_key.offset +
1748 btrfs_dev_extent_length(leaf, extent) < start);
1749 key = found_key;
1750 btrfs_release_path(path);
1751 goto again;
1752 } else if (ret == 0) {
1753 leaf = path->nodes[0];
1754 extent = btrfs_item_ptr(leaf, path->slots[0],
1755 struct btrfs_dev_extent);
1756 } else {
1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1758 goto out;
1759 }
1760
1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
1763 ret = btrfs_del_item(trans, root, path);
1764 if (ret) {
1765 btrfs_handle_fs_error(fs_info, ret,
1766 "Failed to remove dev extent item");
1767 } else {
1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1769 }
1770 out:
1771 btrfs_free_path(path);
1772 return ret;
1773 }
1774
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1775 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776 struct btrfs_device *device,
1777 u64 chunk_offset, u64 start, u64 num_bytes)
1778 {
1779 int ret;
1780 struct btrfs_path *path;
1781 struct btrfs_fs_info *fs_info = device->fs_info;
1782 struct btrfs_root *root = fs_info->dev_root;
1783 struct btrfs_dev_extent *extent;
1784 struct extent_buffer *leaf;
1785 struct btrfs_key key;
1786
1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
1793 key.objectid = device->devid;
1794 key.offset = start;
1795 key.type = BTRFS_DEV_EXTENT_KEY;
1796 ret = btrfs_insert_empty_item(trans, root, path, &key,
1797 sizeof(*extent));
1798 if (ret)
1799 goto out;
1800
1801 leaf = path->nodes[0];
1802 extent = btrfs_item_ptr(leaf, path->slots[0],
1803 struct btrfs_dev_extent);
1804 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805 BTRFS_CHUNK_TREE_OBJECTID);
1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811 btrfs_mark_buffer_dirty(leaf);
1812 out:
1813 btrfs_free_path(path);
1814 return ret;
1815 }
1816
find_next_chunk(struct btrfs_fs_info * fs_info)1817 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1818 {
1819 struct extent_map_tree *em_tree;
1820 struct extent_map *em;
1821 struct rb_node *n;
1822 u64 ret = 0;
1823
1824 em_tree = &fs_info->mapping_tree;
1825 read_lock(&em_tree->lock);
1826 n = rb_last(&em_tree->map.rb_root);
1827 if (n) {
1828 em = rb_entry(n, struct extent_map, rb_node);
1829 ret = em->start + em->len;
1830 }
1831 read_unlock(&em_tree->lock);
1832
1833 return ret;
1834 }
1835
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1836 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837 u64 *devid_ret)
1838 {
1839 int ret;
1840 struct btrfs_key key;
1841 struct btrfs_key found_key;
1842 struct btrfs_path *path;
1843
1844 path = btrfs_alloc_path();
1845 if (!path)
1846 return -ENOMEM;
1847
1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849 key.type = BTRFS_DEV_ITEM_KEY;
1850 key.offset = (u64)-1;
1851
1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1853 if (ret < 0)
1854 goto error;
1855
1856 if (ret == 0) {
1857 /* Corruption */
1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859 ret = -EUCLEAN;
1860 goto error;
1861 }
1862
1863 ret = btrfs_previous_item(fs_info->chunk_root, path,
1864 BTRFS_DEV_ITEMS_OBJECTID,
1865 BTRFS_DEV_ITEM_KEY);
1866 if (ret) {
1867 *devid_ret = 1;
1868 } else {
1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870 path->slots[0]);
1871 *devid_ret = found_key.offset + 1;
1872 }
1873 ret = 0;
1874 error:
1875 btrfs_free_path(path);
1876 return ret;
1877 }
1878
1879 /*
1880 * the device information is stored in the chunk root
1881 * the btrfs_device struct should be fully filled in
1882 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1883 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1884 struct btrfs_device *device)
1885 {
1886 int ret;
1887 struct btrfs_path *path;
1888 struct btrfs_dev_item *dev_item;
1889 struct extent_buffer *leaf;
1890 struct btrfs_key key;
1891 unsigned long ptr;
1892
1893 path = btrfs_alloc_path();
1894 if (!path)
1895 return -ENOMEM;
1896
1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898 key.type = BTRFS_DEV_ITEM_KEY;
1899 key.offset = device->devid;
1900
1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902 &key, sizeof(*dev_item));
1903 if (ret)
1904 goto out;
1905
1906 leaf = path->nodes[0];
1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909 btrfs_set_device_id(leaf, dev_item, device->devid);
1910 btrfs_set_device_generation(leaf, dev_item, 0);
1911 btrfs_set_device_type(leaf, dev_item, device->type);
1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1915 btrfs_set_device_total_bytes(leaf, dev_item,
1916 btrfs_device_get_disk_total_bytes(device));
1917 btrfs_set_device_bytes_used(leaf, dev_item,
1918 btrfs_device_get_bytes_used(device));
1919 btrfs_set_device_group(leaf, dev_item, 0);
1920 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1922 btrfs_set_device_start_offset(leaf, dev_item, 0);
1923
1924 ptr = btrfs_device_uuid(dev_item);
1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1926 ptr = btrfs_device_fsid(dev_item);
1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928 ptr, BTRFS_FSID_SIZE);
1929 btrfs_mark_buffer_dirty(leaf);
1930
1931 ret = 0;
1932 out:
1933 btrfs_free_path(path);
1934 return ret;
1935 }
1936
1937 /*
1938 * Function to update ctime/mtime for a given device path.
1939 * Mainly used for ctime/mtime based probe like libblkid.
1940 */
update_dev_time(const char * path_name)1941 static void update_dev_time(const char *path_name)
1942 {
1943 struct file *filp;
1944
1945 filp = filp_open(path_name, O_RDWR, 0);
1946 if (IS_ERR(filp))
1947 return;
1948 file_update_time(filp);
1949 filp_close(filp, NULL);
1950 }
1951
btrfs_rm_dev_item(struct btrfs_device * device)1952 static int btrfs_rm_dev_item(struct btrfs_device *device)
1953 {
1954 struct btrfs_root *root = device->fs_info->chunk_root;
1955 int ret;
1956 struct btrfs_path *path;
1957 struct btrfs_key key;
1958 struct btrfs_trans_handle *trans;
1959
1960 path = btrfs_alloc_path();
1961 if (!path)
1962 return -ENOMEM;
1963
1964 trans = btrfs_start_transaction(root, 0);
1965 if (IS_ERR(trans)) {
1966 btrfs_free_path(path);
1967 return PTR_ERR(trans);
1968 }
1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970 key.type = BTRFS_DEV_ITEM_KEY;
1971 key.offset = device->devid;
1972
1973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1974 if (ret) {
1975 if (ret > 0)
1976 ret = -ENOENT;
1977 btrfs_abort_transaction(trans, ret);
1978 btrfs_end_transaction(trans);
1979 goto out;
1980 }
1981
1982 ret = btrfs_del_item(trans, root, path);
1983 if (ret) {
1984 btrfs_abort_transaction(trans, ret);
1985 btrfs_end_transaction(trans);
1986 }
1987
1988 out:
1989 btrfs_free_path(path);
1990 if (!ret)
1991 ret = btrfs_commit_transaction(trans);
1992 return ret;
1993 }
1994
1995 /*
1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1997 * filesystem. It's up to the caller to adjust that number regarding eg. device
1998 * replace.
1999 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2000 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2001 u64 num_devices)
2002 {
2003 u64 all_avail;
2004 unsigned seq;
2005 int i;
2006
2007 do {
2008 seq = read_seqbegin(&fs_info->profiles_lock);
2009
2010 all_avail = fs_info->avail_data_alloc_bits |
2011 fs_info->avail_system_alloc_bits |
2012 fs_info->avail_metadata_alloc_bits;
2013 } while (read_seqretry(&fs_info->profiles_lock, seq));
2014
2015 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2016 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2017 continue;
2018
2019 if (num_devices < btrfs_raid_array[i].devs_min) {
2020 int ret = btrfs_raid_array[i].mindev_error;
2021
2022 if (ret)
2023 return ret;
2024 }
2025 }
2026
2027 return 0;
2028 }
2029
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2030 static struct btrfs_device * btrfs_find_next_active_device(
2031 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2032 {
2033 struct btrfs_device *next_device;
2034
2035 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2036 if (next_device != device &&
2037 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2038 && next_device->bdev)
2039 return next_device;
2040 }
2041
2042 return NULL;
2043 }
2044
2045 /*
2046 * Helper function to check if the given device is part of s_bdev / latest_bdev
2047 * and replace it with the provided or the next active device, in the context
2048 * where this function called, there should be always be another device (or
2049 * this_dev) which is active.
2050 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * this_dev)2051 void btrfs_assign_next_active_device(struct btrfs_device *device,
2052 struct btrfs_device *this_dev)
2053 {
2054 struct btrfs_fs_info *fs_info = device->fs_info;
2055 struct btrfs_device *next_device;
2056
2057 if (this_dev)
2058 next_device = this_dev;
2059 else
2060 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2061 device);
2062 ASSERT(next_device);
2063
2064 if (fs_info->sb->s_bdev &&
2065 (fs_info->sb->s_bdev == device->bdev))
2066 fs_info->sb->s_bdev = next_device->bdev;
2067
2068 if (fs_info->fs_devices->latest_bdev == device->bdev)
2069 fs_info->fs_devices->latest_bdev = next_device->bdev;
2070 }
2071
2072 /*
2073 * Return btrfs_fs_devices::num_devices excluding the device that's being
2074 * currently replaced.
2075 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2076 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2077 {
2078 u64 num_devices = fs_info->fs_devices->num_devices;
2079
2080 down_read(&fs_info->dev_replace.rwsem);
2081 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2082 ASSERT(num_devices > 1);
2083 num_devices--;
2084 }
2085 up_read(&fs_info->dev_replace.rwsem);
2086
2087 return num_devices;
2088 }
2089
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2091 u64 devid)
2092 {
2093 struct btrfs_device *device;
2094 struct btrfs_fs_devices *cur_devices;
2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 u64 num_devices;
2097 int ret = 0;
2098
2099 mutex_lock(&uuid_mutex);
2100
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 goto out;
2106
2107 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2108
2109 if (IS_ERR(device)) {
2110 if (PTR_ERR(device) == -ENOENT &&
2111 strcmp(device_path, "missing") == 0)
2112 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2113 else
2114 ret = PTR_ERR(device);
2115 goto out;
2116 }
2117
2118 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2119 btrfs_warn_in_rcu(fs_info,
2120 "cannot remove device %s (devid %llu) due to active swapfile",
2121 rcu_str_deref(device->name), device->devid);
2122 ret = -ETXTBSY;
2123 goto out;
2124 }
2125
2126 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2127 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2128 goto out;
2129 }
2130
2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2132 fs_info->fs_devices->rw_devices == 1) {
2133 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2134 goto out;
2135 }
2136
2137 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2138 mutex_lock(&fs_info->chunk_mutex);
2139 list_del_init(&device->dev_alloc_list);
2140 device->fs_devices->rw_devices--;
2141 mutex_unlock(&fs_info->chunk_mutex);
2142 }
2143
2144 mutex_unlock(&uuid_mutex);
2145 ret = btrfs_shrink_device(device, 0);
2146 mutex_lock(&uuid_mutex);
2147 if (ret)
2148 goto error_undo;
2149
2150 /*
2151 * TODO: the superblock still includes this device in its num_devices
2152 * counter although write_all_supers() is not locked out. This
2153 * could give a filesystem state which requires a degraded mount.
2154 */
2155 ret = btrfs_rm_dev_item(device);
2156 if (ret)
2157 goto error_undo;
2158
2159 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2160 btrfs_scrub_cancel_dev(device);
2161
2162 /*
2163 * the device list mutex makes sure that we don't change
2164 * the device list while someone else is writing out all
2165 * the device supers. Whoever is writing all supers, should
2166 * lock the device list mutex before getting the number of
2167 * devices in the super block (super_copy). Conversely,
2168 * whoever updates the number of devices in the super block
2169 * (super_copy) should hold the device list mutex.
2170 */
2171
2172 /*
2173 * In normal cases the cur_devices == fs_devices. But in case
2174 * of deleting a seed device, the cur_devices should point to
2175 * its own fs_devices listed under the fs_devices->seed.
2176 */
2177 cur_devices = device->fs_devices;
2178 mutex_lock(&fs_devices->device_list_mutex);
2179 list_del_rcu(&device->dev_list);
2180
2181 cur_devices->num_devices--;
2182 cur_devices->total_devices--;
2183 /* Update total_devices of the parent fs_devices if it's seed */
2184 if (cur_devices != fs_devices)
2185 fs_devices->total_devices--;
2186
2187 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2188 cur_devices->missing_devices--;
2189
2190 btrfs_assign_next_active_device(device, NULL);
2191
2192 if (device->bdev) {
2193 cur_devices->open_devices--;
2194 /* remove sysfs entry */
2195 btrfs_sysfs_rm_device_link(fs_devices, device);
2196 }
2197
2198 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2199 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2200 mutex_unlock(&fs_devices->device_list_mutex);
2201
2202 /*
2203 * at this point, the device is zero sized and detached from
2204 * the devices list. All that's left is to zero out the old
2205 * supers and free the device.
2206 */
2207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2208 btrfs_scratch_superblocks(device->bdev, device->name->str);
2209
2210 btrfs_close_bdev(device);
2211 synchronize_rcu();
2212 btrfs_free_device(device);
2213
2214 if (cur_devices->open_devices == 0) {
2215 while (fs_devices) {
2216 if (fs_devices->seed == cur_devices) {
2217 fs_devices->seed = cur_devices->seed;
2218 break;
2219 }
2220 fs_devices = fs_devices->seed;
2221 }
2222 cur_devices->seed = NULL;
2223 close_fs_devices(cur_devices);
2224 free_fs_devices(cur_devices);
2225 }
2226
2227 out:
2228 mutex_unlock(&uuid_mutex);
2229 return ret;
2230
2231 error_undo:
2232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2233 mutex_lock(&fs_info->chunk_mutex);
2234 list_add(&device->dev_alloc_list,
2235 &fs_devices->alloc_list);
2236 device->fs_devices->rw_devices++;
2237 mutex_unlock(&fs_info->chunk_mutex);
2238 }
2239 goto out;
2240 }
2241
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2242 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2243 {
2244 struct btrfs_fs_devices *fs_devices;
2245
2246 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2247
2248 /*
2249 * in case of fs with no seed, srcdev->fs_devices will point
2250 * to fs_devices of fs_info. However when the dev being replaced is
2251 * a seed dev it will point to the seed's local fs_devices. In short
2252 * srcdev will have its correct fs_devices in both the cases.
2253 */
2254 fs_devices = srcdev->fs_devices;
2255
2256 list_del_rcu(&srcdev->dev_list);
2257 list_del(&srcdev->dev_alloc_list);
2258 fs_devices->num_devices--;
2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2260 fs_devices->missing_devices--;
2261
2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2263 fs_devices->rw_devices--;
2264
2265 if (srcdev->bdev)
2266 fs_devices->open_devices--;
2267 }
2268
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2269 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2270 {
2271 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2272 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2275 /* zero out the old super if it is writable */
2276 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2277 }
2278
2279 btrfs_close_bdev(srcdev);
2280 synchronize_rcu();
2281 btrfs_free_device(srcdev);
2282
2283 /* if this is no devs we rather delete the fs_devices */
2284 if (!fs_devices->num_devices) {
2285 struct btrfs_fs_devices *tmp_fs_devices;
2286
2287 /*
2288 * On a mounted FS, num_devices can't be zero unless it's a
2289 * seed. In case of a seed device being replaced, the replace
2290 * target added to the sprout FS, so there will be no more
2291 * device left under the seed FS.
2292 */
2293 ASSERT(fs_devices->seeding);
2294
2295 tmp_fs_devices = fs_info->fs_devices;
2296 while (tmp_fs_devices) {
2297 if (tmp_fs_devices->seed == fs_devices) {
2298 tmp_fs_devices->seed = fs_devices->seed;
2299 break;
2300 }
2301 tmp_fs_devices = tmp_fs_devices->seed;
2302 }
2303 fs_devices->seed = NULL;
2304 close_fs_devices(fs_devices);
2305 free_fs_devices(fs_devices);
2306 }
2307 }
2308
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2309 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2310 {
2311 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2312
2313 WARN_ON(!tgtdev);
2314 mutex_lock(&fs_devices->device_list_mutex);
2315
2316 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2317
2318 if (tgtdev->bdev)
2319 fs_devices->open_devices--;
2320
2321 fs_devices->num_devices--;
2322
2323 btrfs_assign_next_active_device(tgtdev, NULL);
2324
2325 list_del_rcu(&tgtdev->dev_list);
2326
2327 mutex_unlock(&fs_devices->device_list_mutex);
2328
2329 /*
2330 * The update_dev_time() with in btrfs_scratch_superblocks()
2331 * may lead to a call to btrfs_show_devname() which will try
2332 * to hold device_list_mutex. And here this device
2333 * is already out of device list, so we don't have to hold
2334 * the device_list_mutex lock.
2335 */
2336 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2337
2338 btrfs_close_bdev(tgtdev);
2339 synchronize_rcu();
2340 btrfs_free_device(tgtdev);
2341 }
2342
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2343 static struct btrfs_device *btrfs_find_device_by_path(
2344 struct btrfs_fs_info *fs_info, const char *device_path)
2345 {
2346 int ret = 0;
2347 struct btrfs_super_block *disk_super;
2348 u64 devid;
2349 u8 *dev_uuid;
2350 struct block_device *bdev;
2351 struct buffer_head *bh;
2352 struct btrfs_device *device;
2353
2354 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2355 fs_info->bdev_holder, 0, &bdev, &bh);
2356 if (ret)
2357 return ERR_PTR(ret);
2358 disk_super = (struct btrfs_super_block *)bh->b_data;
2359 devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 dev_uuid = disk_super->dev_item.uuid;
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363 disk_super->metadata_uuid, true);
2364 else
2365 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2366 disk_super->fsid, true);
2367
2368 brelse(bh);
2369 if (!device)
2370 device = ERR_PTR(-ENOENT);
2371 blkdev_put(bdev, FMODE_READ);
2372 return device;
2373 }
2374
2375 /*
2376 * Lookup a device given by device id, or the path if the id is 0.
2377 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2378 struct btrfs_device *btrfs_find_device_by_devspec(
2379 struct btrfs_fs_info *fs_info, u64 devid,
2380 const char *device_path)
2381 {
2382 struct btrfs_device *device;
2383
2384 if (devid) {
2385 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2386 NULL, true);
2387 if (!device)
2388 return ERR_PTR(-ENOENT);
2389 return device;
2390 }
2391
2392 if (!device_path || !device_path[0])
2393 return ERR_PTR(-EINVAL);
2394
2395 if (strcmp(device_path, "missing") == 0) {
2396 /* Find first missing device */
2397 list_for_each_entry(device, &fs_info->fs_devices->devices,
2398 dev_list) {
2399 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2400 &device->dev_state) && !device->bdev)
2401 return device;
2402 }
2403 return ERR_PTR(-ENOENT);
2404 }
2405
2406 return btrfs_find_device_by_path(fs_info, device_path);
2407 }
2408
2409 /*
2410 * does all the dirty work required for changing file system's UUID.
2411 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2412 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2413 {
2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415 struct btrfs_fs_devices *old_devices;
2416 struct btrfs_fs_devices *seed_devices;
2417 struct btrfs_super_block *disk_super = fs_info->super_copy;
2418 struct btrfs_device *device;
2419 u64 super_flags;
2420
2421 lockdep_assert_held(&uuid_mutex);
2422 if (!fs_devices->seeding)
2423 return -EINVAL;
2424
2425 seed_devices = alloc_fs_devices(NULL, NULL);
2426 if (IS_ERR(seed_devices))
2427 return PTR_ERR(seed_devices);
2428
2429 old_devices = clone_fs_devices(fs_devices);
2430 if (IS_ERR(old_devices)) {
2431 kfree(seed_devices);
2432 return PTR_ERR(old_devices);
2433 }
2434
2435 list_add(&old_devices->fs_list, &fs_uuids);
2436
2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438 seed_devices->opened = 1;
2439 INIT_LIST_HEAD(&seed_devices->devices);
2440 INIT_LIST_HEAD(&seed_devices->alloc_list);
2441 mutex_init(&seed_devices->device_list_mutex);
2442
2443 mutex_lock(&fs_devices->device_list_mutex);
2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445 synchronize_rcu);
2446 list_for_each_entry(device, &seed_devices->devices, dev_list)
2447 device->fs_devices = seed_devices;
2448
2449 mutex_lock(&fs_info->chunk_mutex);
2450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2451 mutex_unlock(&fs_info->chunk_mutex);
2452
2453 fs_devices->seeding = 0;
2454 fs_devices->num_devices = 0;
2455 fs_devices->open_devices = 0;
2456 fs_devices->missing_devices = 0;
2457 fs_devices->rotating = 0;
2458 fs_devices->seed = seed_devices;
2459
2460 generate_random_uuid(fs_devices->fsid);
2461 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2463 mutex_unlock(&fs_devices->device_list_mutex);
2464
2465 super_flags = btrfs_super_flags(disk_super) &
2466 ~BTRFS_SUPER_FLAG_SEEDING;
2467 btrfs_set_super_flags(disk_super, super_flags);
2468
2469 return 0;
2470 }
2471
2472 /*
2473 * Store the expected generation for seed devices in device items.
2474 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2475 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2476 {
2477 struct btrfs_fs_info *fs_info = trans->fs_info;
2478 struct btrfs_root *root = fs_info->chunk_root;
2479 struct btrfs_path *path;
2480 struct extent_buffer *leaf;
2481 struct btrfs_dev_item *dev_item;
2482 struct btrfs_device *device;
2483 struct btrfs_key key;
2484 u8 fs_uuid[BTRFS_FSID_SIZE];
2485 u8 dev_uuid[BTRFS_UUID_SIZE];
2486 u64 devid;
2487 int ret;
2488
2489 path = btrfs_alloc_path();
2490 if (!path)
2491 return -ENOMEM;
2492
2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494 key.offset = 0;
2495 key.type = BTRFS_DEV_ITEM_KEY;
2496
2497 while (1) {
2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2499 if (ret < 0)
2500 goto error;
2501
2502 leaf = path->nodes[0];
2503 next_slot:
2504 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2505 ret = btrfs_next_leaf(root, path);
2506 if (ret > 0)
2507 break;
2508 if (ret < 0)
2509 goto error;
2510 leaf = path->nodes[0];
2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2512 btrfs_release_path(path);
2513 continue;
2514 }
2515
2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2518 key.type != BTRFS_DEV_ITEM_KEY)
2519 break;
2520
2521 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2522 struct btrfs_dev_item);
2523 devid = btrfs_device_id(leaf, dev_item);
2524 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2525 BTRFS_UUID_SIZE);
2526 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2527 BTRFS_FSID_SIZE);
2528 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2529 fs_uuid, true);
2530 BUG_ON(!device); /* Logic error */
2531
2532 if (device->fs_devices->seeding) {
2533 btrfs_set_device_generation(leaf, dev_item,
2534 device->generation);
2535 btrfs_mark_buffer_dirty(leaf);
2536 }
2537
2538 path->slots[0]++;
2539 goto next_slot;
2540 }
2541 ret = 0;
2542 error:
2543 btrfs_free_path(path);
2544 return ret;
2545 }
2546
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2547 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2548 {
2549 struct btrfs_root *root = fs_info->dev_root;
2550 struct request_queue *q;
2551 struct btrfs_trans_handle *trans;
2552 struct btrfs_device *device;
2553 struct block_device *bdev;
2554 struct super_block *sb = fs_info->sb;
2555 struct rcu_string *name;
2556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2557 u64 orig_super_total_bytes;
2558 u64 orig_super_num_devices;
2559 int seeding_dev = 0;
2560 int ret = 0;
2561 bool unlocked = false;
2562
2563 if (sb_rdonly(sb) && !fs_devices->seeding)
2564 return -EROFS;
2565
2566 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2567 fs_info->bdev_holder);
2568 if (IS_ERR(bdev))
2569 return PTR_ERR(bdev);
2570
2571 if (fs_devices->seeding) {
2572 seeding_dev = 1;
2573 down_write(&sb->s_umount);
2574 mutex_lock(&uuid_mutex);
2575 }
2576
2577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2578
2579 mutex_lock(&fs_devices->device_list_mutex);
2580 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2581 if (device->bdev == bdev) {
2582 ret = -EEXIST;
2583 mutex_unlock(
2584 &fs_devices->device_list_mutex);
2585 goto error;
2586 }
2587 }
2588 mutex_unlock(&fs_devices->device_list_mutex);
2589
2590 device = btrfs_alloc_device(fs_info, NULL, NULL);
2591 if (IS_ERR(device)) {
2592 /* we can safely leave the fs_devices entry around */
2593 ret = PTR_ERR(device);
2594 goto error;
2595 }
2596
2597 name = rcu_string_strdup(device_path, GFP_KERNEL);
2598 if (!name) {
2599 ret = -ENOMEM;
2600 goto error_free_device;
2601 }
2602 rcu_assign_pointer(device->name, name);
2603
2604 trans = btrfs_start_transaction(root, 0);
2605 if (IS_ERR(trans)) {
2606 ret = PTR_ERR(trans);
2607 goto error_free_device;
2608 }
2609
2610 q = bdev_get_queue(bdev);
2611 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2612 device->generation = trans->transid;
2613 device->io_width = fs_info->sectorsize;
2614 device->io_align = fs_info->sectorsize;
2615 device->sector_size = fs_info->sectorsize;
2616 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2617 fs_info->sectorsize);
2618 device->disk_total_bytes = device->total_bytes;
2619 device->commit_total_bytes = device->total_bytes;
2620 device->fs_info = fs_info;
2621 device->bdev = bdev;
2622 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2623 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2624 device->mode = FMODE_EXCL;
2625 device->dev_stats_valid = 1;
2626 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2627
2628 if (seeding_dev) {
2629 sb->s_flags &= ~SB_RDONLY;
2630 ret = btrfs_prepare_sprout(fs_info);
2631 if (ret) {
2632 btrfs_abort_transaction(trans, ret);
2633 goto error_trans;
2634 }
2635 }
2636
2637 device->fs_devices = fs_devices;
2638
2639 mutex_lock(&fs_devices->device_list_mutex);
2640 mutex_lock(&fs_info->chunk_mutex);
2641 list_add_rcu(&device->dev_list, &fs_devices->devices);
2642 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2643 fs_devices->num_devices++;
2644 fs_devices->open_devices++;
2645 fs_devices->rw_devices++;
2646 fs_devices->total_devices++;
2647 fs_devices->total_rw_bytes += device->total_bytes;
2648
2649 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2650
2651 if (!blk_queue_nonrot(q))
2652 fs_devices->rotating = 1;
2653
2654 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2655 btrfs_set_super_total_bytes(fs_info->super_copy,
2656 round_down(orig_super_total_bytes + device->total_bytes,
2657 fs_info->sectorsize));
2658
2659 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2660 btrfs_set_super_num_devices(fs_info->super_copy,
2661 orig_super_num_devices + 1);
2662
2663 /* add sysfs device entry */
2664 btrfs_sysfs_add_device_link(fs_devices, device);
2665
2666 /*
2667 * we've got more storage, clear any full flags on the space
2668 * infos
2669 */
2670 btrfs_clear_space_info_full(fs_info);
2671
2672 mutex_unlock(&fs_info->chunk_mutex);
2673 mutex_unlock(&fs_devices->device_list_mutex);
2674
2675 if (seeding_dev) {
2676 mutex_lock(&fs_info->chunk_mutex);
2677 ret = init_first_rw_device(trans);
2678 mutex_unlock(&fs_info->chunk_mutex);
2679 if (ret) {
2680 btrfs_abort_transaction(trans, ret);
2681 goto error_sysfs;
2682 }
2683 }
2684
2685 ret = btrfs_add_dev_item(trans, device);
2686 if (ret) {
2687 btrfs_abort_transaction(trans, ret);
2688 goto error_sysfs;
2689 }
2690
2691 if (seeding_dev) {
2692 ret = btrfs_finish_sprout(trans);
2693 if (ret) {
2694 btrfs_abort_transaction(trans, ret);
2695 goto error_sysfs;
2696 }
2697
2698 btrfs_sysfs_update_sprout_fsid(fs_devices,
2699 fs_info->fs_devices->fsid);
2700 }
2701
2702 ret = btrfs_commit_transaction(trans);
2703
2704 if (seeding_dev) {
2705 mutex_unlock(&uuid_mutex);
2706 up_write(&sb->s_umount);
2707 unlocked = true;
2708
2709 if (ret) /* transaction commit */
2710 return ret;
2711
2712 ret = btrfs_relocate_sys_chunks(fs_info);
2713 if (ret < 0)
2714 btrfs_handle_fs_error(fs_info, ret,
2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716 trans = btrfs_attach_transaction(root);
2717 if (IS_ERR(trans)) {
2718 if (PTR_ERR(trans) == -ENOENT)
2719 return 0;
2720 ret = PTR_ERR(trans);
2721 trans = NULL;
2722 goto error_sysfs;
2723 }
2724 ret = btrfs_commit_transaction(trans);
2725 }
2726
2727 /* Update ctime/mtime for libblkid */
2728 update_dev_time(device_path);
2729 return ret;
2730
2731 error_sysfs:
2732 btrfs_sysfs_rm_device_link(fs_devices, device);
2733 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734 mutex_lock(&fs_info->chunk_mutex);
2735 list_del_rcu(&device->dev_list);
2736 list_del(&device->dev_alloc_list);
2737 fs_info->fs_devices->num_devices--;
2738 fs_info->fs_devices->open_devices--;
2739 fs_info->fs_devices->rw_devices--;
2740 fs_info->fs_devices->total_devices--;
2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743 btrfs_set_super_total_bytes(fs_info->super_copy,
2744 orig_super_total_bytes);
2745 btrfs_set_super_num_devices(fs_info->super_copy,
2746 orig_super_num_devices);
2747 mutex_unlock(&fs_info->chunk_mutex);
2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2749 error_trans:
2750 if (seeding_dev)
2751 sb->s_flags |= SB_RDONLY;
2752 if (trans)
2753 btrfs_end_transaction(trans);
2754 error_free_device:
2755 btrfs_free_device(device);
2756 error:
2757 blkdev_put(bdev, FMODE_EXCL);
2758 if (seeding_dev && !unlocked) {
2759 mutex_unlock(&uuid_mutex);
2760 up_write(&sb->s_umount);
2761 }
2762 return ret;
2763 }
2764
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766 struct btrfs_device *device)
2767 {
2768 int ret;
2769 struct btrfs_path *path;
2770 struct btrfs_root *root = device->fs_info->chunk_root;
2771 struct btrfs_dev_item *dev_item;
2772 struct extent_buffer *leaf;
2773 struct btrfs_key key;
2774
2775 path = btrfs_alloc_path();
2776 if (!path)
2777 return -ENOMEM;
2778
2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780 key.type = BTRFS_DEV_ITEM_KEY;
2781 key.offset = device->devid;
2782
2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784 if (ret < 0)
2785 goto out;
2786
2787 if (ret > 0) {
2788 ret = -ENOENT;
2789 goto out;
2790 }
2791
2792 leaf = path->nodes[0];
2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794
2795 btrfs_set_device_id(leaf, dev_item, device->devid);
2796 btrfs_set_device_type(leaf, dev_item, device->type);
2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800 btrfs_set_device_total_bytes(leaf, dev_item,
2801 btrfs_device_get_disk_total_bytes(device));
2802 btrfs_set_device_bytes_used(leaf, dev_item,
2803 btrfs_device_get_bytes_used(device));
2804 btrfs_mark_buffer_dirty(leaf);
2805
2806 out:
2807 btrfs_free_path(path);
2808 return ret;
2809 }
2810
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2811 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812 struct btrfs_device *device, u64 new_size)
2813 {
2814 struct btrfs_fs_info *fs_info = device->fs_info;
2815 struct btrfs_super_block *super_copy = fs_info->super_copy;
2816 u64 old_total;
2817 u64 diff;
2818
2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820 return -EACCES;
2821
2822 new_size = round_down(new_size, fs_info->sectorsize);
2823
2824 mutex_lock(&fs_info->chunk_mutex);
2825 old_total = btrfs_super_total_bytes(super_copy);
2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2827
2828 if (new_size <= device->total_bytes ||
2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830 mutex_unlock(&fs_info->chunk_mutex);
2831 return -EINVAL;
2832 }
2833
2834 btrfs_set_super_total_bytes(super_copy,
2835 round_down(old_total + diff, fs_info->sectorsize));
2836 device->fs_devices->total_rw_bytes += diff;
2837
2838 btrfs_device_set_total_bytes(device, new_size);
2839 btrfs_device_set_disk_total_bytes(device, new_size);
2840 btrfs_clear_space_info_full(device->fs_info);
2841 if (list_empty(&device->post_commit_list))
2842 list_add_tail(&device->post_commit_list,
2843 &trans->transaction->dev_update_list);
2844 mutex_unlock(&fs_info->chunk_mutex);
2845
2846 return btrfs_update_device(trans, device);
2847 }
2848
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2850 {
2851 struct btrfs_fs_info *fs_info = trans->fs_info;
2852 struct btrfs_root *root = fs_info->chunk_root;
2853 int ret;
2854 struct btrfs_path *path;
2855 struct btrfs_key key;
2856
2857 path = btrfs_alloc_path();
2858 if (!path)
2859 return -ENOMEM;
2860
2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862 key.offset = chunk_offset;
2863 key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866 if (ret < 0)
2867 goto out;
2868 else if (ret > 0) { /* Logic error or corruption */
2869 btrfs_handle_fs_error(fs_info, -ENOENT,
2870 "Failed lookup while freeing chunk.");
2871 ret = -ENOENT;
2872 goto out;
2873 }
2874
2875 ret = btrfs_del_item(trans, root, path);
2876 if (ret < 0)
2877 btrfs_handle_fs_error(fs_info, ret,
2878 "Failed to delete chunk item.");
2879 out:
2880 btrfs_free_path(path);
2881 return ret;
2882 }
2883
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2885 {
2886 struct btrfs_super_block *super_copy = fs_info->super_copy;
2887 struct btrfs_disk_key *disk_key;
2888 struct btrfs_chunk *chunk;
2889 u8 *ptr;
2890 int ret = 0;
2891 u32 num_stripes;
2892 u32 array_size;
2893 u32 len = 0;
2894 u32 cur;
2895 struct btrfs_key key;
2896
2897 mutex_lock(&fs_info->chunk_mutex);
2898 array_size = btrfs_super_sys_array_size(super_copy);
2899
2900 ptr = super_copy->sys_chunk_array;
2901 cur = 0;
2902
2903 while (cur < array_size) {
2904 disk_key = (struct btrfs_disk_key *)ptr;
2905 btrfs_disk_key_to_cpu(&key, disk_key);
2906
2907 len = sizeof(*disk_key);
2908
2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910 chunk = (struct btrfs_chunk *)(ptr + len);
2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912 len += btrfs_chunk_item_size(num_stripes);
2913 } else {
2914 ret = -EIO;
2915 break;
2916 }
2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918 key.offset == chunk_offset) {
2919 memmove(ptr, ptr + len, array_size - (cur + len));
2920 array_size -= len;
2921 btrfs_set_super_sys_array_size(super_copy, array_size);
2922 } else {
2923 ptr += len;
2924 cur += len;
2925 }
2926 }
2927 mutex_unlock(&fs_info->chunk_mutex);
2928 return ret;
2929 }
2930
2931 /*
2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933 * @logical: Logical block offset in bytes.
2934 * @length: Length of extent in bytes.
2935 *
2936 * Return: Chunk mapping or ERR_PTR.
2937 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939 u64 logical, u64 length)
2940 {
2941 struct extent_map_tree *em_tree;
2942 struct extent_map *em;
2943
2944 em_tree = &fs_info->mapping_tree;
2945 read_lock(&em_tree->lock);
2946 em = lookup_extent_mapping(em_tree, logical, length);
2947 read_unlock(&em_tree->lock);
2948
2949 if (!em) {
2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951 logical, length);
2952 return ERR_PTR(-EINVAL);
2953 }
2954
2955 if (em->start > logical || em->start + em->len < logical) {
2956 btrfs_crit(fs_info,
2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958 logical, length, em->start, em->start + em->len);
2959 free_extent_map(em);
2960 return ERR_PTR(-EINVAL);
2961 }
2962
2963 /* callers are responsible for dropping em's ref. */
2964 return em;
2965 }
2966
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2968 {
2969 struct btrfs_fs_info *fs_info = trans->fs_info;
2970 struct extent_map *em;
2971 struct map_lookup *map;
2972 u64 dev_extent_len = 0;
2973 int i, ret = 0;
2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2975
2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2977 if (IS_ERR(em)) {
2978 /*
2979 * This is a logic error, but we don't want to just rely on the
2980 * user having built with ASSERT enabled, so if ASSERT doesn't
2981 * do anything we still error out.
2982 */
2983 ASSERT(0);
2984 return PTR_ERR(em);
2985 }
2986 map = em->map_lookup;
2987 mutex_lock(&fs_info->chunk_mutex);
2988 check_system_chunk(trans, map->type);
2989 mutex_unlock(&fs_info->chunk_mutex);
2990
2991 /*
2992 * Take the device list mutex to prevent races with the final phase of
2993 * a device replace operation that replaces the device object associated
2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995 */
2996 mutex_lock(&fs_devices->device_list_mutex);
2997 for (i = 0; i < map->num_stripes; i++) {
2998 struct btrfs_device *device = map->stripes[i].dev;
2999 ret = btrfs_free_dev_extent(trans, device,
3000 map->stripes[i].physical,
3001 &dev_extent_len);
3002 if (ret) {
3003 mutex_unlock(&fs_devices->device_list_mutex);
3004 btrfs_abort_transaction(trans, ret);
3005 goto out;
3006 }
3007
3008 if (device->bytes_used > 0) {
3009 mutex_lock(&fs_info->chunk_mutex);
3010 btrfs_device_set_bytes_used(device,
3011 device->bytes_used - dev_extent_len);
3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013 btrfs_clear_space_info_full(fs_info);
3014 mutex_unlock(&fs_info->chunk_mutex);
3015 }
3016
3017 ret = btrfs_update_device(trans, device);
3018 if (ret) {
3019 mutex_unlock(&fs_devices->device_list_mutex);
3020 btrfs_abort_transaction(trans, ret);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(&fs_devices->device_list_mutex);
3025
3026 ret = btrfs_free_chunk(trans, chunk_offset);
3027 if (ret) {
3028 btrfs_abort_transaction(trans, ret);
3029 goto out;
3030 }
3031
3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3033
3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3036 if (ret) {
3037 btrfs_abort_transaction(trans, ret);
3038 goto out;
3039 }
3040 }
3041
3042 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3043 if (ret) {
3044 btrfs_abort_transaction(trans, ret);
3045 goto out;
3046 }
3047
3048 out:
3049 /* once for us */
3050 free_extent_map(em);
3051 return ret;
3052 }
3053
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3055 {
3056 struct btrfs_root *root = fs_info->chunk_root;
3057 struct btrfs_trans_handle *trans;
3058 int ret;
3059
3060 /*
3061 * Prevent races with automatic removal of unused block groups.
3062 * After we relocate and before we remove the chunk with offset
3063 * chunk_offset, automatic removal of the block group can kick in,
3064 * resulting in a failure when calling btrfs_remove_chunk() below.
3065 *
3066 * Make sure to acquire this mutex before doing a tree search (dev
3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069 * we release the path used to search the chunk/dev tree and before
3070 * the current task acquires this mutex and calls us.
3071 */
3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3073
3074 /* step one, relocate all the extents inside this chunk */
3075 btrfs_scrub_pause(fs_info);
3076 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3077 btrfs_scrub_continue(fs_info);
3078 if (ret)
3079 return ret;
3080
3081 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3082 chunk_offset);
3083 if (IS_ERR(trans)) {
3084 ret = PTR_ERR(trans);
3085 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3086 return ret;
3087 }
3088
3089 /*
3090 * step two, delete the device extents and the
3091 * chunk tree entries
3092 */
3093 ret = btrfs_remove_chunk(trans, chunk_offset);
3094 btrfs_end_transaction(trans);
3095 return ret;
3096 }
3097
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3098 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3099 {
3100 struct btrfs_root *chunk_root = fs_info->chunk_root;
3101 struct btrfs_path *path;
3102 struct extent_buffer *leaf;
3103 struct btrfs_chunk *chunk;
3104 struct btrfs_key key;
3105 struct btrfs_key found_key;
3106 u64 chunk_type;
3107 bool retried = false;
3108 int failed = 0;
3109 int ret;
3110
3111 path = btrfs_alloc_path();
3112 if (!path)
3113 return -ENOMEM;
3114
3115 again:
3116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3117 key.offset = (u64)-1;
3118 key.type = BTRFS_CHUNK_ITEM_KEY;
3119
3120 while (1) {
3121 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3122 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3123 if (ret < 0) {
3124 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3125 goto error;
3126 }
3127 BUG_ON(ret == 0); /* Corruption */
3128
3129 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3130 key.type);
3131 if (ret)
3132 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3133 if (ret < 0)
3134 goto error;
3135 if (ret > 0)
3136 break;
3137
3138 leaf = path->nodes[0];
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3140
3141 chunk = btrfs_item_ptr(leaf, path->slots[0],
3142 struct btrfs_chunk);
3143 chunk_type = btrfs_chunk_type(leaf, chunk);
3144 btrfs_release_path(path);
3145
3146 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3147 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3148 if (ret == -ENOSPC)
3149 failed++;
3150 else
3151 BUG_ON(ret);
3152 }
3153 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3154
3155 if (found_key.offset == 0)
3156 break;
3157 key.offset = found_key.offset - 1;
3158 }
3159 ret = 0;
3160 if (failed && !retried) {
3161 failed = 0;
3162 retried = true;
3163 goto again;
3164 } else if (WARN_ON(failed && retried)) {
3165 ret = -ENOSPC;
3166 }
3167 error:
3168 btrfs_free_path(path);
3169 return ret;
3170 }
3171
3172 /*
3173 * return 1 : allocate a data chunk successfully,
3174 * return <0: errors during allocating a data chunk,
3175 * return 0 : no need to allocate a data chunk.
3176 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3177 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3178 u64 chunk_offset)
3179 {
3180 struct btrfs_block_group_cache *cache;
3181 u64 bytes_used;
3182 u64 chunk_type;
3183
3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185 ASSERT(cache);
3186 chunk_type = cache->flags;
3187 btrfs_put_block_group(cache);
3188
3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3190 spin_lock(&fs_info->data_sinfo->lock);
3191 bytes_used = fs_info->data_sinfo->bytes_used;
3192 spin_unlock(&fs_info->data_sinfo->lock);
3193
3194 if (!bytes_used) {
3195 struct btrfs_trans_handle *trans;
3196 int ret;
3197
3198 trans = btrfs_join_transaction(fs_info->tree_root);
3199 if (IS_ERR(trans))
3200 return PTR_ERR(trans);
3201
3202 ret = btrfs_force_chunk_alloc(trans,
3203 BTRFS_BLOCK_GROUP_DATA);
3204 btrfs_end_transaction(trans);
3205 if (ret < 0)
3206 return ret;
3207 return 1;
3208 }
3209 }
3210 return 0;
3211 }
3212
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3213 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3214 struct btrfs_balance_control *bctl)
3215 {
3216 struct btrfs_root *root = fs_info->tree_root;
3217 struct btrfs_trans_handle *trans;
3218 struct btrfs_balance_item *item;
3219 struct btrfs_disk_balance_args disk_bargs;
3220 struct btrfs_path *path;
3221 struct extent_buffer *leaf;
3222 struct btrfs_key key;
3223 int ret, err;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229 trans = btrfs_start_transaction(root, 0);
3230 if (IS_ERR(trans)) {
3231 btrfs_free_path(path);
3232 return PTR_ERR(trans);
3233 }
3234
3235 key.objectid = BTRFS_BALANCE_OBJECTID;
3236 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3237 key.offset = 0;
3238
3239 ret = btrfs_insert_empty_item(trans, root, path, &key,
3240 sizeof(*item));
3241 if (ret)
3242 goto out;
3243
3244 leaf = path->nodes[0];
3245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3246
3247 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3248
3249 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3250 btrfs_set_balance_data(leaf, item, &disk_bargs);
3251 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3252 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3253 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3254 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3255
3256 btrfs_set_balance_flags(leaf, item, bctl->flags);
3257
3258 btrfs_mark_buffer_dirty(leaf);
3259 out:
3260 btrfs_free_path(path);
3261 err = btrfs_commit_transaction(trans);
3262 if (err && !ret)
3263 ret = err;
3264 return ret;
3265 }
3266
del_balance_item(struct btrfs_fs_info * fs_info)3267 static int del_balance_item(struct btrfs_fs_info *fs_info)
3268 {
3269 struct btrfs_root *root = fs_info->tree_root;
3270 struct btrfs_trans_handle *trans;
3271 struct btrfs_path *path;
3272 struct btrfs_key key;
3273 int ret, err;
3274
3275 path = btrfs_alloc_path();
3276 if (!path)
3277 return -ENOMEM;
3278
3279 trans = btrfs_start_transaction(root, 0);
3280 if (IS_ERR(trans)) {
3281 btrfs_free_path(path);
3282 return PTR_ERR(trans);
3283 }
3284
3285 key.objectid = BTRFS_BALANCE_OBJECTID;
3286 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3287 key.offset = 0;
3288
3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3290 if (ret < 0)
3291 goto out;
3292 if (ret > 0) {
3293 ret = -ENOENT;
3294 goto out;
3295 }
3296
3297 ret = btrfs_del_item(trans, root, path);
3298 out:
3299 btrfs_free_path(path);
3300 err = btrfs_commit_transaction(trans);
3301 if (err && !ret)
3302 ret = err;
3303 return ret;
3304 }
3305
3306 /*
3307 * This is a heuristic used to reduce the number of chunks balanced on
3308 * resume after balance was interrupted.
3309 */
update_balance_args(struct btrfs_balance_control * bctl)3310 static void update_balance_args(struct btrfs_balance_control *bctl)
3311 {
3312 /*
3313 * Turn on soft mode for chunk types that were being converted.
3314 */
3315 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3316 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3317 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3318 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3319 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3320 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3321
3322 /*
3323 * Turn on usage filter if is not already used. The idea is
3324 * that chunks that we have already balanced should be
3325 * reasonably full. Don't do it for chunks that are being
3326 * converted - that will keep us from relocating unconverted
3327 * (albeit full) chunks.
3328 */
3329 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3330 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3331 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3332 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3333 bctl->data.usage = 90;
3334 }
3335 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3336 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3337 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3339 bctl->sys.usage = 90;
3340 }
3341 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3342 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3343 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3344 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3345 bctl->meta.usage = 90;
3346 }
3347 }
3348
3349 /*
3350 * Clear the balance status in fs_info and delete the balance item from disk.
3351 */
reset_balance_state(struct btrfs_fs_info * fs_info)3352 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3353 {
3354 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3355 int ret;
3356
3357 BUG_ON(!fs_info->balance_ctl);
3358
3359 spin_lock(&fs_info->balance_lock);
3360 fs_info->balance_ctl = NULL;
3361 spin_unlock(&fs_info->balance_lock);
3362
3363 kfree(bctl);
3364 ret = del_balance_item(fs_info);
3365 if (ret)
3366 btrfs_handle_fs_error(fs_info, ret, NULL);
3367 }
3368
3369 /*
3370 * Balance filters. Return 1 if chunk should be filtered out
3371 * (should not be balanced).
3372 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3373 static int chunk_profiles_filter(u64 chunk_type,
3374 struct btrfs_balance_args *bargs)
3375 {
3376 chunk_type = chunk_to_extended(chunk_type) &
3377 BTRFS_EXTENDED_PROFILE_MASK;
3378
3379 if (bargs->profiles & chunk_type)
3380 return 0;
3381
3382 return 1;
3383 }
3384
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3385 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3386 struct btrfs_balance_args *bargs)
3387 {
3388 struct btrfs_block_group_cache *cache;
3389 u64 chunk_used;
3390 u64 user_thresh_min;
3391 u64 user_thresh_max;
3392 int ret = 1;
3393
3394 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3395 chunk_used = btrfs_block_group_used(&cache->item);
3396
3397 if (bargs->usage_min == 0)
3398 user_thresh_min = 0;
3399 else
3400 user_thresh_min = div_factor_fine(cache->key.offset,
3401 bargs->usage_min);
3402
3403 if (bargs->usage_max == 0)
3404 user_thresh_max = 1;
3405 else if (bargs->usage_max > 100)
3406 user_thresh_max = cache->key.offset;
3407 else
3408 user_thresh_max = div_factor_fine(cache->key.offset,
3409 bargs->usage_max);
3410
3411 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3412 ret = 0;
3413
3414 btrfs_put_block_group(cache);
3415 return ret;
3416 }
3417
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3418 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3419 u64 chunk_offset, struct btrfs_balance_args *bargs)
3420 {
3421 struct btrfs_block_group_cache *cache;
3422 u64 chunk_used, user_thresh;
3423 int ret = 1;
3424
3425 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426 chunk_used = btrfs_block_group_used(&cache->item);
3427
3428 if (bargs->usage_min == 0)
3429 user_thresh = 1;
3430 else if (bargs->usage > 100)
3431 user_thresh = cache->key.offset;
3432 else
3433 user_thresh = div_factor_fine(cache->key.offset,
3434 bargs->usage);
3435
3436 if (chunk_used < user_thresh)
3437 ret = 0;
3438
3439 btrfs_put_block_group(cache);
3440 return ret;
3441 }
3442
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3443 static int chunk_devid_filter(struct extent_buffer *leaf,
3444 struct btrfs_chunk *chunk,
3445 struct btrfs_balance_args *bargs)
3446 {
3447 struct btrfs_stripe *stripe;
3448 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449 int i;
3450
3451 for (i = 0; i < num_stripes; i++) {
3452 stripe = btrfs_stripe_nr(chunk, i);
3453 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3454 return 0;
3455 }
3456
3457 return 1;
3458 }
3459
calc_data_stripes(u64 type,int num_stripes)3460 static u64 calc_data_stripes(u64 type, int num_stripes)
3461 {
3462 const int index = btrfs_bg_flags_to_raid_index(type);
3463 const int ncopies = btrfs_raid_array[index].ncopies;
3464 const int nparity = btrfs_raid_array[index].nparity;
3465
3466 if (nparity)
3467 return num_stripes - nparity;
3468 else
3469 return num_stripes / ncopies;
3470 }
3471
3472 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3473 static int chunk_drange_filter(struct extent_buffer *leaf,
3474 struct btrfs_chunk *chunk,
3475 struct btrfs_balance_args *bargs)
3476 {
3477 struct btrfs_stripe *stripe;
3478 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3479 u64 stripe_offset;
3480 u64 stripe_length;
3481 u64 type;
3482 int factor;
3483 int i;
3484
3485 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3486 return 0;
3487
3488 type = btrfs_chunk_type(leaf, chunk);
3489 factor = calc_data_stripes(type, num_stripes);
3490
3491 for (i = 0; i < num_stripes; i++) {
3492 stripe = btrfs_stripe_nr(chunk, i);
3493 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3494 continue;
3495
3496 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3497 stripe_length = btrfs_chunk_length(leaf, chunk);
3498 stripe_length = div_u64(stripe_length, factor);
3499
3500 if (stripe_offset < bargs->pend &&
3501 stripe_offset + stripe_length > bargs->pstart)
3502 return 0;
3503 }
3504
3505 return 1;
3506 }
3507
3508 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3509 static int chunk_vrange_filter(struct extent_buffer *leaf,
3510 struct btrfs_chunk *chunk,
3511 u64 chunk_offset,
3512 struct btrfs_balance_args *bargs)
3513 {
3514 if (chunk_offset < bargs->vend &&
3515 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3516 /* at least part of the chunk is inside this vrange */
3517 return 0;
3518
3519 return 1;
3520 }
3521
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3522 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3523 struct btrfs_chunk *chunk,
3524 struct btrfs_balance_args *bargs)
3525 {
3526 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3527
3528 if (bargs->stripes_min <= num_stripes
3529 && num_stripes <= bargs->stripes_max)
3530 return 0;
3531
3532 return 1;
3533 }
3534
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3535 static int chunk_soft_convert_filter(u64 chunk_type,
3536 struct btrfs_balance_args *bargs)
3537 {
3538 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3539 return 0;
3540
3541 chunk_type = chunk_to_extended(chunk_type) &
3542 BTRFS_EXTENDED_PROFILE_MASK;
3543
3544 if (bargs->target == chunk_type)
3545 return 1;
3546
3547 return 0;
3548 }
3549
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3550 static int should_balance_chunk(struct extent_buffer *leaf,
3551 struct btrfs_chunk *chunk, u64 chunk_offset)
3552 {
3553 struct btrfs_fs_info *fs_info = leaf->fs_info;
3554 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3555 struct btrfs_balance_args *bargs = NULL;
3556 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3557
3558 /* type filter */
3559 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3560 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3561 return 0;
3562 }
3563
3564 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3565 bargs = &bctl->data;
3566 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3567 bargs = &bctl->sys;
3568 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3569 bargs = &bctl->meta;
3570
3571 /* profiles filter */
3572 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3573 chunk_profiles_filter(chunk_type, bargs)) {
3574 return 0;
3575 }
3576
3577 /* usage filter */
3578 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3579 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3580 return 0;
3581 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3582 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3583 return 0;
3584 }
3585
3586 /* devid filter */
3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3588 chunk_devid_filter(leaf, chunk, bargs)) {
3589 return 0;
3590 }
3591
3592 /* drange filter, makes sense only with devid filter */
3593 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3594 chunk_drange_filter(leaf, chunk, bargs)) {
3595 return 0;
3596 }
3597
3598 /* vrange filter */
3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3600 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3601 return 0;
3602 }
3603
3604 /* stripes filter */
3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3606 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3607 return 0;
3608 }
3609
3610 /* soft profile changing mode */
3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3612 chunk_soft_convert_filter(chunk_type, bargs)) {
3613 return 0;
3614 }
3615
3616 /*
3617 * limited by count, must be the last filter
3618 */
3619 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3620 if (bargs->limit == 0)
3621 return 0;
3622 else
3623 bargs->limit--;
3624 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3625 /*
3626 * Same logic as the 'limit' filter; the minimum cannot be
3627 * determined here because we do not have the global information
3628 * about the count of all chunks that satisfy the filters.
3629 */
3630 if (bargs->limit_max == 0)
3631 return 0;
3632 else
3633 bargs->limit_max--;
3634 }
3635
3636 return 1;
3637 }
3638
__btrfs_balance(struct btrfs_fs_info * fs_info)3639 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3640 {
3641 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3642 struct btrfs_root *chunk_root = fs_info->chunk_root;
3643 u64 chunk_type;
3644 struct btrfs_chunk *chunk;
3645 struct btrfs_path *path = NULL;
3646 struct btrfs_key key;
3647 struct btrfs_key found_key;
3648 struct extent_buffer *leaf;
3649 int slot;
3650 int ret;
3651 int enospc_errors = 0;
3652 bool counting = true;
3653 /* The single value limit and min/max limits use the same bytes in the */
3654 u64 limit_data = bctl->data.limit;
3655 u64 limit_meta = bctl->meta.limit;
3656 u64 limit_sys = bctl->sys.limit;
3657 u32 count_data = 0;
3658 u32 count_meta = 0;
3659 u32 count_sys = 0;
3660 int chunk_reserved = 0;
3661
3662 path = btrfs_alloc_path();
3663 if (!path) {
3664 ret = -ENOMEM;
3665 goto error;
3666 }
3667
3668 /* zero out stat counters */
3669 spin_lock(&fs_info->balance_lock);
3670 memset(&bctl->stat, 0, sizeof(bctl->stat));
3671 spin_unlock(&fs_info->balance_lock);
3672 again:
3673 if (!counting) {
3674 /*
3675 * The single value limit and min/max limits use the same bytes
3676 * in the
3677 */
3678 bctl->data.limit = limit_data;
3679 bctl->meta.limit = limit_meta;
3680 bctl->sys.limit = limit_sys;
3681 }
3682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3683 key.offset = (u64)-1;
3684 key.type = BTRFS_CHUNK_ITEM_KEY;
3685
3686 while (1) {
3687 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3688 atomic_read(&fs_info->balance_cancel_req)) {
3689 ret = -ECANCELED;
3690 goto error;
3691 }
3692
3693 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3694 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3695 if (ret < 0) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 goto error;
3698 }
3699
3700 /*
3701 * this shouldn't happen, it means the last relocate
3702 * failed
3703 */
3704 if (ret == 0)
3705 BUG(); /* FIXME break ? */
3706
3707 ret = btrfs_previous_item(chunk_root, path, 0,
3708 BTRFS_CHUNK_ITEM_KEY);
3709 if (ret) {
3710 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3711 ret = 0;
3712 break;
3713 }
3714
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3718
3719 if (found_key.objectid != key.objectid) {
3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3721 break;
3722 }
3723
3724 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3725 chunk_type = btrfs_chunk_type(leaf, chunk);
3726
3727 if (!counting) {
3728 spin_lock(&fs_info->balance_lock);
3729 bctl->stat.considered++;
3730 spin_unlock(&fs_info->balance_lock);
3731 }
3732
3733 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3734
3735 btrfs_release_path(path);
3736 if (!ret) {
3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738 goto loop;
3739 }
3740
3741 if (counting) {
3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743 spin_lock(&fs_info->balance_lock);
3744 bctl->stat.expected++;
3745 spin_unlock(&fs_info->balance_lock);
3746
3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748 count_data++;
3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750 count_sys++;
3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752 count_meta++;
3753
3754 goto loop;
3755 }
3756
3757 /*
3758 * Apply limit_min filter, no need to check if the LIMITS
3759 * filter is used, limit_min is 0 by default
3760 */
3761 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3762 count_data < bctl->data.limit_min)
3763 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3764 count_meta < bctl->meta.limit_min)
3765 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3766 count_sys < bctl->sys.limit_min)) {
3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3768 goto loop;
3769 }
3770
3771 if (!chunk_reserved) {
3772 /*
3773 * We may be relocating the only data chunk we have,
3774 * which could potentially end up with losing data's
3775 * raid profile, so lets allocate an empty one in
3776 * advance.
3777 */
3778 ret = btrfs_may_alloc_data_chunk(fs_info,
3779 found_key.offset);
3780 if (ret < 0) {
3781 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782 goto error;
3783 } else if (ret == 1) {
3784 chunk_reserved = 1;
3785 }
3786 }
3787
3788 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790 if (ret == -ENOSPC) {
3791 enospc_errors++;
3792 } else if (ret == -ETXTBSY) {
3793 btrfs_info(fs_info,
3794 "skipping relocation of block group %llu due to active swapfile",
3795 found_key.offset);
3796 ret = 0;
3797 } else if (ret) {
3798 goto error;
3799 } else {
3800 spin_lock(&fs_info->balance_lock);
3801 bctl->stat.completed++;
3802 spin_unlock(&fs_info->balance_lock);
3803 }
3804 loop:
3805 if (found_key.offset == 0)
3806 break;
3807 key.offset = found_key.offset - 1;
3808 }
3809
3810 if (counting) {
3811 btrfs_release_path(path);
3812 counting = false;
3813 goto again;
3814 }
3815 error:
3816 btrfs_free_path(path);
3817 if (enospc_errors) {
3818 btrfs_info(fs_info, "%d enospc errors during balance",
3819 enospc_errors);
3820 if (!ret)
3821 ret = -ENOSPC;
3822 }
3823
3824 return ret;
3825 }
3826
3827 /**
3828 * alloc_profile_is_valid - see if a given profile is valid and reduced
3829 * @flags: profile to validate
3830 * @extended: if true @flags is treated as an extended profile
3831 */
alloc_profile_is_valid(u64 flags,int extended)3832 static int alloc_profile_is_valid(u64 flags, int extended)
3833 {
3834 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3835 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3836
3837 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3838
3839 /* 1) check that all other bits are zeroed */
3840 if (flags & ~mask)
3841 return 0;
3842
3843 /* 2) see if profile is reduced */
3844 if (flags == 0)
3845 return !extended; /* "0" is valid for usual profiles */
3846
3847 /* true if exactly one bit set */
3848 /*
3849 * Don't use is_power_of_2(unsigned long) because it won't work
3850 * for the single profile (1ULL << 48) on 32-bit CPUs.
3851 */
3852 return flags != 0 && (flags & (flags - 1)) == 0;
3853 }
3854
balance_need_close(struct btrfs_fs_info * fs_info)3855 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3856 {
3857 /* cancel requested || normal exit path */
3858 return atomic_read(&fs_info->balance_cancel_req) ||
3859 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3860 atomic_read(&fs_info->balance_cancel_req) == 0);
3861 }
3862
3863 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3864 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3865 u64 allowed)
3866 {
3867 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3869 (bctl_arg->target & ~allowed)));
3870 }
3871
3872 /*
3873 * Fill @buf with textual description of balance filter flags @bargs, up to
3874 * @size_buf including the terminating null. The output may be trimmed if it
3875 * does not fit into the provided buffer.
3876 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)3877 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3878 u32 size_buf)
3879 {
3880 int ret;
3881 u32 size_bp = size_buf;
3882 char *bp = buf;
3883 u64 flags = bargs->flags;
3884 char tmp_buf[128] = {'\0'};
3885
3886 if (!flags)
3887 return;
3888
3889 #define CHECK_APPEND_NOARG(a) \
3890 do { \
3891 ret = snprintf(bp, size_bp, (a)); \
3892 if (ret < 0 || ret >= size_bp) \
3893 goto out_overflow; \
3894 size_bp -= ret; \
3895 bp += ret; \
3896 } while (0)
3897
3898 #define CHECK_APPEND_1ARG(a, v1) \
3899 do { \
3900 ret = snprintf(bp, size_bp, (a), (v1)); \
3901 if (ret < 0 || ret >= size_bp) \
3902 goto out_overflow; \
3903 size_bp -= ret; \
3904 bp += ret; \
3905 } while (0)
3906
3907 #define CHECK_APPEND_2ARG(a, v1, v2) \
3908 do { \
3909 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3910 if (ret < 0 || ret >= size_bp) \
3911 goto out_overflow; \
3912 size_bp -= ret; \
3913 bp += ret; \
3914 } while (0)
3915
3916 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3917 CHECK_APPEND_1ARG("convert=%s,",
3918 btrfs_bg_type_to_raid_name(bargs->target));
3919
3920 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3921 CHECK_APPEND_NOARG("soft,");
3922
3923 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3924 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3925 sizeof(tmp_buf));
3926 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3927 }
3928
3929 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3930 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3931
3932 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3933 CHECK_APPEND_2ARG("usage=%u..%u,",
3934 bargs->usage_min, bargs->usage_max);
3935
3936 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3937 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3938
3939 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3940 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3941 bargs->pstart, bargs->pend);
3942
3943 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3944 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3945 bargs->vstart, bargs->vend);
3946
3947 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3948 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3951 CHECK_APPEND_2ARG("limit=%u..%u,",
3952 bargs->limit_min, bargs->limit_max);
3953
3954 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3955 CHECK_APPEND_2ARG("stripes=%u..%u,",
3956 bargs->stripes_min, bargs->stripes_max);
3957
3958 #undef CHECK_APPEND_2ARG
3959 #undef CHECK_APPEND_1ARG
3960 #undef CHECK_APPEND_NOARG
3961
3962 out_overflow:
3963
3964 if (size_bp < size_buf)
3965 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3966 else
3967 buf[0] = '\0';
3968 }
3969
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)3970 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3971 {
3972 u32 size_buf = 1024;
3973 char tmp_buf[192] = {'\0'};
3974 char *buf;
3975 char *bp;
3976 u32 size_bp = size_buf;
3977 int ret;
3978 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3979
3980 buf = kzalloc(size_buf, GFP_KERNEL);
3981 if (!buf)
3982 return;
3983
3984 bp = buf;
3985
3986 #define CHECK_APPEND_1ARG(a, v1) \
3987 do { \
3988 ret = snprintf(bp, size_bp, (a), (v1)); \
3989 if (ret < 0 || ret >= size_bp) \
3990 goto out_overflow; \
3991 size_bp -= ret; \
3992 bp += ret; \
3993 } while (0)
3994
3995 if (bctl->flags & BTRFS_BALANCE_FORCE)
3996 CHECK_APPEND_1ARG("%s", "-f ");
3997
3998 if (bctl->flags & BTRFS_BALANCE_DATA) {
3999 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4000 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4001 }
4002
4003 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4004 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4005 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4006 }
4007
4008 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4009 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4010 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4011 }
4012
4013 #undef CHECK_APPEND_1ARG
4014
4015 out_overflow:
4016
4017 if (size_bp < size_buf)
4018 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4019 btrfs_info(fs_info, "balance: %s %s",
4020 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4021 "resume" : "start", buf);
4022
4023 kfree(buf);
4024 }
4025
4026 /*
4027 * Should be called with balance mutexe held
4028 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4029 int btrfs_balance(struct btrfs_fs_info *fs_info,
4030 struct btrfs_balance_control *bctl,
4031 struct btrfs_ioctl_balance_args *bargs)
4032 {
4033 u64 meta_target, data_target;
4034 u64 allowed;
4035 int mixed = 0;
4036 int ret;
4037 u64 num_devices;
4038 unsigned seq;
4039 bool reducing_integrity;
4040 int i;
4041
4042 if (btrfs_fs_closing(fs_info) ||
4043 atomic_read(&fs_info->balance_pause_req) ||
4044 atomic_read(&fs_info->balance_cancel_req)) {
4045 ret = -EINVAL;
4046 goto out;
4047 }
4048
4049 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4050 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4051 mixed = 1;
4052
4053 /*
4054 * In case of mixed groups both data and meta should be picked,
4055 * and identical options should be given for both of them.
4056 */
4057 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4058 if (mixed && (bctl->flags & allowed)) {
4059 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4060 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4061 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4062 btrfs_err(fs_info,
4063 "balance: mixed groups data and metadata options must be the same");
4064 ret = -EINVAL;
4065 goto out;
4066 }
4067 }
4068
4069 /*
4070 * rw_devices will not change at the moment, device add/delete/replace
4071 * are excluded by EXCL_OP
4072 */
4073 num_devices = fs_info->fs_devices->rw_devices;
4074
4075 /*
4076 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4077 * special bit for it, to make it easier to distinguish. Thus we need
4078 * to set it manually, or balance would refuse the profile.
4079 */
4080 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4081 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4082 if (num_devices >= btrfs_raid_array[i].devs_min)
4083 allowed |= btrfs_raid_array[i].bg_flag;
4084
4085 if (validate_convert_profile(&bctl->data, allowed)) {
4086 btrfs_err(fs_info,
4087 "balance: invalid convert data profile %s",
4088 btrfs_bg_type_to_raid_name(bctl->data.target));
4089 ret = -EINVAL;
4090 goto out;
4091 }
4092 if (validate_convert_profile(&bctl->meta, allowed)) {
4093 btrfs_err(fs_info,
4094 "balance: invalid convert metadata profile %s",
4095 btrfs_bg_type_to_raid_name(bctl->meta.target));
4096 ret = -EINVAL;
4097 goto out;
4098 }
4099 if (validate_convert_profile(&bctl->sys, allowed)) {
4100 btrfs_err(fs_info,
4101 "balance: invalid convert system profile %s",
4102 btrfs_bg_type_to_raid_name(bctl->sys.target));
4103 ret = -EINVAL;
4104 goto out;
4105 }
4106
4107 /*
4108 * Allow to reduce metadata or system integrity only if force set for
4109 * profiles with redundancy (copies, parity)
4110 */
4111 allowed = 0;
4112 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4113 if (btrfs_raid_array[i].ncopies >= 2 ||
4114 btrfs_raid_array[i].tolerated_failures >= 1)
4115 allowed |= btrfs_raid_array[i].bg_flag;
4116 }
4117 do {
4118 seq = read_seqbegin(&fs_info->profiles_lock);
4119
4120 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4121 (fs_info->avail_system_alloc_bits & allowed) &&
4122 !(bctl->sys.target & allowed)) ||
4123 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4124 (fs_info->avail_metadata_alloc_bits & allowed) &&
4125 !(bctl->meta.target & allowed)))
4126 reducing_integrity = true;
4127 else
4128 reducing_integrity = false;
4129
4130 /* if we're not converting, the target field is uninitialized */
4131 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4132 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4133 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4134 bctl->data.target : fs_info->avail_data_alloc_bits;
4135 } while (read_seqretry(&fs_info->profiles_lock, seq));
4136
4137 if (reducing_integrity) {
4138 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4139 btrfs_info(fs_info,
4140 "balance: force reducing metadata integrity");
4141 } else {
4142 btrfs_err(fs_info,
4143 "balance: reduces metadata integrity, use --force if you want this");
4144 ret = -EINVAL;
4145 goto out;
4146 }
4147 }
4148
4149 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4150 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4151 btrfs_warn(fs_info,
4152 "balance: metadata profile %s has lower redundancy than data profile %s",
4153 btrfs_bg_type_to_raid_name(meta_target),
4154 btrfs_bg_type_to_raid_name(data_target));
4155 }
4156
4157 if (fs_info->send_in_progress) {
4158 btrfs_warn_rl(fs_info,
4159 "cannot run balance while send operations are in progress (%d in progress)",
4160 fs_info->send_in_progress);
4161 ret = -EAGAIN;
4162 goto out;
4163 }
4164
4165 ret = insert_balance_item(fs_info, bctl);
4166 if (ret && ret != -EEXIST)
4167 goto out;
4168
4169 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4170 BUG_ON(ret == -EEXIST);
4171 BUG_ON(fs_info->balance_ctl);
4172 spin_lock(&fs_info->balance_lock);
4173 fs_info->balance_ctl = bctl;
4174 spin_unlock(&fs_info->balance_lock);
4175 } else {
4176 BUG_ON(ret != -EEXIST);
4177 spin_lock(&fs_info->balance_lock);
4178 update_balance_args(bctl);
4179 spin_unlock(&fs_info->balance_lock);
4180 }
4181
4182 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4183 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4184 describe_balance_start_or_resume(fs_info);
4185 mutex_unlock(&fs_info->balance_mutex);
4186
4187 ret = __btrfs_balance(fs_info);
4188
4189 mutex_lock(&fs_info->balance_mutex);
4190 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4191 btrfs_info(fs_info, "balance: paused");
4192 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4193 btrfs_info(fs_info, "balance: canceled");
4194 else
4195 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4196
4197 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4198
4199 if (bargs) {
4200 memset(bargs, 0, sizeof(*bargs));
4201 btrfs_update_ioctl_balance_args(fs_info, bargs);
4202 }
4203
4204 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4205 balance_need_close(fs_info)) {
4206 reset_balance_state(fs_info);
4207 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4208 }
4209
4210 wake_up(&fs_info->balance_wait_q);
4211
4212 return ret;
4213 out:
4214 if (bctl->flags & BTRFS_BALANCE_RESUME)
4215 reset_balance_state(fs_info);
4216 else
4217 kfree(bctl);
4218 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4219
4220 return ret;
4221 }
4222
balance_kthread(void * data)4223 static int balance_kthread(void *data)
4224 {
4225 struct btrfs_fs_info *fs_info = data;
4226 int ret = 0;
4227
4228 mutex_lock(&fs_info->balance_mutex);
4229 if (fs_info->balance_ctl)
4230 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4231 mutex_unlock(&fs_info->balance_mutex);
4232
4233 return ret;
4234 }
4235
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4236 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4237 {
4238 struct task_struct *tsk;
4239
4240 mutex_lock(&fs_info->balance_mutex);
4241 if (!fs_info->balance_ctl) {
4242 mutex_unlock(&fs_info->balance_mutex);
4243 return 0;
4244 }
4245 mutex_unlock(&fs_info->balance_mutex);
4246
4247 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4248 btrfs_info(fs_info, "balance: resume skipped");
4249 return 0;
4250 }
4251
4252 /*
4253 * A ro->rw remount sequence should continue with the paused balance
4254 * regardless of who pauses it, system or the user as of now, so set
4255 * the resume flag.
4256 */
4257 spin_lock(&fs_info->balance_lock);
4258 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4259 spin_unlock(&fs_info->balance_lock);
4260
4261 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4262 return PTR_ERR_OR_ZERO(tsk);
4263 }
4264
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4265 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4266 {
4267 struct btrfs_balance_control *bctl;
4268 struct btrfs_balance_item *item;
4269 struct btrfs_disk_balance_args disk_bargs;
4270 struct btrfs_path *path;
4271 struct extent_buffer *leaf;
4272 struct btrfs_key key;
4273 int ret;
4274
4275 path = btrfs_alloc_path();
4276 if (!path)
4277 return -ENOMEM;
4278
4279 key.objectid = BTRFS_BALANCE_OBJECTID;
4280 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4281 key.offset = 0;
4282
4283 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4284 if (ret < 0)
4285 goto out;
4286 if (ret > 0) { /* ret = -ENOENT; */
4287 ret = 0;
4288 goto out;
4289 }
4290
4291 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4292 if (!bctl) {
4293 ret = -ENOMEM;
4294 goto out;
4295 }
4296
4297 leaf = path->nodes[0];
4298 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4299
4300 bctl->flags = btrfs_balance_flags(leaf, item);
4301 bctl->flags |= BTRFS_BALANCE_RESUME;
4302
4303 btrfs_balance_data(leaf, item, &disk_bargs);
4304 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4305 btrfs_balance_meta(leaf, item, &disk_bargs);
4306 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4307 btrfs_balance_sys(leaf, item, &disk_bargs);
4308 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4309
4310 /*
4311 * This should never happen, as the paused balance state is recovered
4312 * during mount without any chance of other exclusive ops to collide.
4313 *
4314 * This gives the exclusive op status to balance and keeps in paused
4315 * state until user intervention (cancel or umount). If the ownership
4316 * cannot be assigned, show a message but do not fail. The balance
4317 * is in a paused state and must have fs_info::balance_ctl properly
4318 * set up.
4319 */
4320 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4321 btrfs_warn(fs_info,
4322 "balance: cannot set exclusive op status, resume manually");
4323
4324 mutex_lock(&fs_info->balance_mutex);
4325 BUG_ON(fs_info->balance_ctl);
4326 spin_lock(&fs_info->balance_lock);
4327 fs_info->balance_ctl = bctl;
4328 spin_unlock(&fs_info->balance_lock);
4329 mutex_unlock(&fs_info->balance_mutex);
4330 out:
4331 btrfs_free_path(path);
4332 return ret;
4333 }
4334
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4335 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4336 {
4337 int ret = 0;
4338
4339 mutex_lock(&fs_info->balance_mutex);
4340 if (!fs_info->balance_ctl) {
4341 mutex_unlock(&fs_info->balance_mutex);
4342 return -ENOTCONN;
4343 }
4344
4345 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4346 atomic_inc(&fs_info->balance_pause_req);
4347 mutex_unlock(&fs_info->balance_mutex);
4348
4349 wait_event(fs_info->balance_wait_q,
4350 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351
4352 mutex_lock(&fs_info->balance_mutex);
4353 /* we are good with balance_ctl ripped off from under us */
4354 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4355 atomic_dec(&fs_info->balance_pause_req);
4356 } else {
4357 ret = -ENOTCONN;
4358 }
4359
4360 mutex_unlock(&fs_info->balance_mutex);
4361 return ret;
4362 }
4363
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4364 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4365 {
4366 mutex_lock(&fs_info->balance_mutex);
4367 if (!fs_info->balance_ctl) {
4368 mutex_unlock(&fs_info->balance_mutex);
4369 return -ENOTCONN;
4370 }
4371
4372 /*
4373 * A paused balance with the item stored on disk can be resumed at
4374 * mount time if the mount is read-write. Otherwise it's still paused
4375 * and we must not allow cancelling as it deletes the item.
4376 */
4377 if (sb_rdonly(fs_info->sb)) {
4378 mutex_unlock(&fs_info->balance_mutex);
4379 return -EROFS;
4380 }
4381
4382 atomic_inc(&fs_info->balance_cancel_req);
4383 /*
4384 * if we are running just wait and return, balance item is
4385 * deleted in btrfs_balance in this case
4386 */
4387 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4388 mutex_unlock(&fs_info->balance_mutex);
4389 wait_event(fs_info->balance_wait_q,
4390 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4391 mutex_lock(&fs_info->balance_mutex);
4392 } else {
4393 mutex_unlock(&fs_info->balance_mutex);
4394 /*
4395 * Lock released to allow other waiters to continue, we'll
4396 * reexamine the status again.
4397 */
4398 mutex_lock(&fs_info->balance_mutex);
4399
4400 if (fs_info->balance_ctl) {
4401 reset_balance_state(fs_info);
4402 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4403 btrfs_info(fs_info, "balance: canceled");
4404 }
4405 }
4406
4407 BUG_ON(fs_info->balance_ctl ||
4408 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4409 atomic_dec(&fs_info->balance_cancel_req);
4410 mutex_unlock(&fs_info->balance_mutex);
4411 return 0;
4412 }
4413
btrfs_uuid_scan_kthread(void * data)4414 static int btrfs_uuid_scan_kthread(void *data)
4415 {
4416 struct btrfs_fs_info *fs_info = data;
4417 struct btrfs_root *root = fs_info->tree_root;
4418 struct btrfs_key key;
4419 struct btrfs_path *path = NULL;
4420 int ret = 0;
4421 struct extent_buffer *eb;
4422 int slot;
4423 struct btrfs_root_item root_item;
4424 u32 item_size;
4425 struct btrfs_trans_handle *trans = NULL;
4426
4427 path = btrfs_alloc_path();
4428 if (!path) {
4429 ret = -ENOMEM;
4430 goto out;
4431 }
4432
4433 key.objectid = 0;
4434 key.type = BTRFS_ROOT_ITEM_KEY;
4435 key.offset = 0;
4436
4437 while (1) {
4438 ret = btrfs_search_forward(root, &key, path,
4439 BTRFS_OLDEST_GENERATION);
4440 if (ret) {
4441 if (ret > 0)
4442 ret = 0;
4443 break;
4444 }
4445
4446 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4447 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4448 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4449 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4450 goto skip;
4451
4452 eb = path->nodes[0];
4453 slot = path->slots[0];
4454 item_size = btrfs_item_size_nr(eb, slot);
4455 if (item_size < sizeof(root_item))
4456 goto skip;
4457
4458 read_extent_buffer(eb, &root_item,
4459 btrfs_item_ptr_offset(eb, slot),
4460 (int)sizeof(root_item));
4461 if (btrfs_root_refs(&root_item) == 0)
4462 goto skip;
4463
4464 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4465 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4466 if (trans)
4467 goto update_tree;
4468
4469 btrfs_release_path(path);
4470 /*
4471 * 1 - subvol uuid item
4472 * 1 - received_subvol uuid item
4473 */
4474 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4475 if (IS_ERR(trans)) {
4476 ret = PTR_ERR(trans);
4477 break;
4478 }
4479 continue;
4480 } else {
4481 goto skip;
4482 }
4483 update_tree:
4484 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4485 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4486 BTRFS_UUID_KEY_SUBVOL,
4487 key.objectid);
4488 if (ret < 0) {
4489 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4490 ret);
4491 break;
4492 }
4493 }
4494
4495 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4496 ret = btrfs_uuid_tree_add(trans,
4497 root_item.received_uuid,
4498 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4499 key.objectid);
4500 if (ret < 0) {
4501 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4502 ret);
4503 break;
4504 }
4505 }
4506
4507 skip:
4508 if (trans) {
4509 ret = btrfs_end_transaction(trans);
4510 trans = NULL;
4511 if (ret)
4512 break;
4513 }
4514
4515 btrfs_release_path(path);
4516 if (key.offset < (u64)-1) {
4517 key.offset++;
4518 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4519 key.offset = 0;
4520 key.type = BTRFS_ROOT_ITEM_KEY;
4521 } else if (key.objectid < (u64)-1) {
4522 key.offset = 0;
4523 key.type = BTRFS_ROOT_ITEM_KEY;
4524 key.objectid++;
4525 } else {
4526 break;
4527 }
4528 cond_resched();
4529 }
4530
4531 out:
4532 btrfs_free_path(path);
4533 if (trans && !IS_ERR(trans))
4534 btrfs_end_transaction(trans);
4535 if (ret)
4536 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4537 else
4538 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4539 up(&fs_info->uuid_tree_rescan_sem);
4540 return 0;
4541 }
4542
4543 /*
4544 * Callback for btrfs_uuid_tree_iterate().
4545 * returns:
4546 * 0 check succeeded, the entry is not outdated.
4547 * < 0 if an error occurred.
4548 * > 0 if the check failed, which means the caller shall remove the entry.
4549 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4550 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4551 u8 *uuid, u8 type, u64 subid)
4552 {
4553 struct btrfs_key key;
4554 int ret = 0;
4555 struct btrfs_root *subvol_root;
4556
4557 if (type != BTRFS_UUID_KEY_SUBVOL &&
4558 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4559 goto out;
4560
4561 key.objectid = subid;
4562 key.type = BTRFS_ROOT_ITEM_KEY;
4563 key.offset = (u64)-1;
4564 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4565 if (IS_ERR(subvol_root)) {
4566 ret = PTR_ERR(subvol_root);
4567 if (ret == -ENOENT)
4568 ret = 1;
4569 goto out;
4570 }
4571
4572 switch (type) {
4573 case BTRFS_UUID_KEY_SUBVOL:
4574 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4575 ret = 1;
4576 break;
4577 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4578 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4579 BTRFS_UUID_SIZE))
4580 ret = 1;
4581 break;
4582 }
4583
4584 out:
4585 return ret;
4586 }
4587
btrfs_uuid_rescan_kthread(void * data)4588 static int btrfs_uuid_rescan_kthread(void *data)
4589 {
4590 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4591 int ret;
4592
4593 /*
4594 * 1st step is to iterate through the existing UUID tree and
4595 * to delete all entries that contain outdated data.
4596 * 2nd step is to add all missing entries to the UUID tree.
4597 */
4598 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4599 if (ret < 0) {
4600 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4601 up(&fs_info->uuid_tree_rescan_sem);
4602 return ret;
4603 }
4604 return btrfs_uuid_scan_kthread(data);
4605 }
4606
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4607 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4608 {
4609 struct btrfs_trans_handle *trans;
4610 struct btrfs_root *tree_root = fs_info->tree_root;
4611 struct btrfs_root *uuid_root;
4612 struct task_struct *task;
4613 int ret;
4614
4615 /*
4616 * 1 - root node
4617 * 1 - root item
4618 */
4619 trans = btrfs_start_transaction(tree_root, 2);
4620 if (IS_ERR(trans))
4621 return PTR_ERR(trans);
4622
4623 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4624 if (IS_ERR(uuid_root)) {
4625 ret = PTR_ERR(uuid_root);
4626 btrfs_abort_transaction(trans, ret);
4627 btrfs_end_transaction(trans);
4628 return ret;
4629 }
4630
4631 fs_info->uuid_root = uuid_root;
4632
4633 ret = btrfs_commit_transaction(trans);
4634 if (ret)
4635 return ret;
4636
4637 down(&fs_info->uuid_tree_rescan_sem);
4638 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4639 if (IS_ERR(task)) {
4640 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4641 btrfs_warn(fs_info, "failed to start uuid_scan task");
4642 up(&fs_info->uuid_tree_rescan_sem);
4643 return PTR_ERR(task);
4644 }
4645
4646 return 0;
4647 }
4648
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4649 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4650 {
4651 struct task_struct *task;
4652
4653 down(&fs_info->uuid_tree_rescan_sem);
4654 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4655 if (IS_ERR(task)) {
4656 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4657 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4658 up(&fs_info->uuid_tree_rescan_sem);
4659 return PTR_ERR(task);
4660 }
4661
4662 return 0;
4663 }
4664
4665 /*
4666 * shrinking a device means finding all of the device extents past
4667 * the new size, and then following the back refs to the chunks.
4668 * The chunk relocation code actually frees the device extent
4669 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4670 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4671 {
4672 struct btrfs_fs_info *fs_info = device->fs_info;
4673 struct btrfs_root *root = fs_info->dev_root;
4674 struct btrfs_trans_handle *trans;
4675 struct btrfs_dev_extent *dev_extent = NULL;
4676 struct btrfs_path *path;
4677 u64 length;
4678 u64 chunk_offset;
4679 int ret;
4680 int slot;
4681 int failed = 0;
4682 bool retried = false;
4683 struct extent_buffer *l;
4684 struct btrfs_key key;
4685 struct btrfs_super_block *super_copy = fs_info->super_copy;
4686 u64 old_total = btrfs_super_total_bytes(super_copy);
4687 u64 old_size = btrfs_device_get_total_bytes(device);
4688 u64 diff;
4689 u64 start;
4690
4691 new_size = round_down(new_size, fs_info->sectorsize);
4692 start = new_size;
4693 diff = round_down(old_size - new_size, fs_info->sectorsize);
4694
4695 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4696 return -EINVAL;
4697
4698 path = btrfs_alloc_path();
4699 if (!path)
4700 return -ENOMEM;
4701
4702 path->reada = READA_BACK;
4703
4704 trans = btrfs_start_transaction(root, 0);
4705 if (IS_ERR(trans)) {
4706 btrfs_free_path(path);
4707 return PTR_ERR(trans);
4708 }
4709
4710 mutex_lock(&fs_info->chunk_mutex);
4711
4712 btrfs_device_set_total_bytes(device, new_size);
4713 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4714 device->fs_devices->total_rw_bytes -= diff;
4715 atomic64_sub(diff, &fs_info->free_chunk_space);
4716 }
4717
4718 /*
4719 * Once the device's size has been set to the new size, ensure all
4720 * in-memory chunks are synced to disk so that the loop below sees them
4721 * and relocates them accordingly.
4722 */
4723 if (contains_pending_extent(device, &start, diff)) {
4724 mutex_unlock(&fs_info->chunk_mutex);
4725 ret = btrfs_commit_transaction(trans);
4726 if (ret)
4727 goto done;
4728 } else {
4729 mutex_unlock(&fs_info->chunk_mutex);
4730 btrfs_end_transaction(trans);
4731 }
4732
4733 again:
4734 key.objectid = device->devid;
4735 key.offset = (u64)-1;
4736 key.type = BTRFS_DEV_EXTENT_KEY;
4737
4738 do {
4739 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4740 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4741 if (ret < 0) {
4742 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4743 goto done;
4744 }
4745
4746 ret = btrfs_previous_item(root, path, 0, key.type);
4747 if (ret)
4748 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4749 if (ret < 0)
4750 goto done;
4751 if (ret) {
4752 ret = 0;
4753 btrfs_release_path(path);
4754 break;
4755 }
4756
4757 l = path->nodes[0];
4758 slot = path->slots[0];
4759 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4760
4761 if (key.objectid != device->devid) {
4762 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4763 btrfs_release_path(path);
4764 break;
4765 }
4766
4767 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4768 length = btrfs_dev_extent_length(l, dev_extent);
4769
4770 if (key.offset + length <= new_size) {
4771 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4772 btrfs_release_path(path);
4773 break;
4774 }
4775
4776 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4777 btrfs_release_path(path);
4778
4779 /*
4780 * We may be relocating the only data chunk we have,
4781 * which could potentially end up with losing data's
4782 * raid profile, so lets allocate an empty one in
4783 * advance.
4784 */
4785 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4786 if (ret < 0) {
4787 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4788 goto done;
4789 }
4790
4791 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4792 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4793 if (ret == -ENOSPC) {
4794 failed++;
4795 } else if (ret) {
4796 if (ret == -ETXTBSY) {
4797 btrfs_warn(fs_info,
4798 "could not shrink block group %llu due to active swapfile",
4799 chunk_offset);
4800 }
4801 goto done;
4802 }
4803 } while (key.offset-- > 0);
4804
4805 if (failed && !retried) {
4806 failed = 0;
4807 retried = true;
4808 goto again;
4809 } else if (failed && retried) {
4810 ret = -ENOSPC;
4811 goto done;
4812 }
4813
4814 /* Shrinking succeeded, else we would be at "done". */
4815 trans = btrfs_start_transaction(root, 0);
4816 if (IS_ERR(trans)) {
4817 ret = PTR_ERR(trans);
4818 goto done;
4819 }
4820
4821 mutex_lock(&fs_info->chunk_mutex);
4822 btrfs_device_set_disk_total_bytes(device, new_size);
4823 if (list_empty(&device->post_commit_list))
4824 list_add_tail(&device->post_commit_list,
4825 &trans->transaction->dev_update_list);
4826
4827 WARN_ON(diff > old_total);
4828 btrfs_set_super_total_bytes(super_copy,
4829 round_down(old_total - diff, fs_info->sectorsize));
4830 mutex_unlock(&fs_info->chunk_mutex);
4831
4832 /* Now btrfs_update_device() will change the on-disk size. */
4833 ret = btrfs_update_device(trans, device);
4834 if (ret < 0) {
4835 btrfs_abort_transaction(trans, ret);
4836 btrfs_end_transaction(trans);
4837 } else {
4838 ret = btrfs_commit_transaction(trans);
4839 }
4840 done:
4841 btrfs_free_path(path);
4842 if (ret) {
4843 mutex_lock(&fs_info->chunk_mutex);
4844 btrfs_device_set_total_bytes(device, old_size);
4845 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4846 device->fs_devices->total_rw_bytes += diff;
4847 atomic64_add(diff, &fs_info->free_chunk_space);
4848 mutex_unlock(&fs_info->chunk_mutex);
4849 }
4850 return ret;
4851 }
4852
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4853 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4854 struct btrfs_key *key,
4855 struct btrfs_chunk *chunk, int item_size)
4856 {
4857 struct btrfs_super_block *super_copy = fs_info->super_copy;
4858 struct btrfs_disk_key disk_key;
4859 u32 array_size;
4860 u8 *ptr;
4861
4862 mutex_lock(&fs_info->chunk_mutex);
4863 array_size = btrfs_super_sys_array_size(super_copy);
4864 if (array_size + item_size + sizeof(disk_key)
4865 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4866 mutex_unlock(&fs_info->chunk_mutex);
4867 return -EFBIG;
4868 }
4869
4870 ptr = super_copy->sys_chunk_array + array_size;
4871 btrfs_cpu_key_to_disk(&disk_key, key);
4872 memcpy(ptr, &disk_key, sizeof(disk_key));
4873 ptr += sizeof(disk_key);
4874 memcpy(ptr, chunk, item_size);
4875 item_size += sizeof(disk_key);
4876 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4877 mutex_unlock(&fs_info->chunk_mutex);
4878
4879 return 0;
4880 }
4881
4882 /*
4883 * sort the devices in descending order by max_avail, total_avail
4884 */
btrfs_cmp_device_info(const void * a,const void * b)4885 static int btrfs_cmp_device_info(const void *a, const void *b)
4886 {
4887 const struct btrfs_device_info *di_a = a;
4888 const struct btrfs_device_info *di_b = b;
4889
4890 if (di_a->max_avail > di_b->max_avail)
4891 return -1;
4892 if (di_a->max_avail < di_b->max_avail)
4893 return 1;
4894 if (di_a->total_avail > di_b->total_avail)
4895 return -1;
4896 if (di_a->total_avail < di_b->total_avail)
4897 return 1;
4898 return 0;
4899 }
4900
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4901 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4902 {
4903 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4904 return;
4905
4906 btrfs_set_fs_incompat(info, RAID56);
4907 }
4908
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 start,u64 type)4909 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4910 u64 start, u64 type)
4911 {
4912 struct btrfs_fs_info *info = trans->fs_info;
4913 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4914 struct btrfs_device *device;
4915 struct map_lookup *map = NULL;
4916 struct extent_map_tree *em_tree;
4917 struct extent_map *em;
4918 struct btrfs_device_info *devices_info = NULL;
4919 u64 total_avail;
4920 int num_stripes; /* total number of stripes to allocate */
4921 int data_stripes; /* number of stripes that count for
4922 block group size */
4923 int sub_stripes; /* sub_stripes info for map */
4924 int dev_stripes; /* stripes per dev */
4925 int devs_max; /* max devs to use */
4926 int devs_min; /* min devs needed */
4927 int devs_increment; /* ndevs has to be a multiple of this */
4928 int ncopies; /* how many copies to data has */
4929 int nparity; /* number of stripes worth of bytes to
4930 store parity information */
4931 int ret;
4932 u64 max_stripe_size;
4933 u64 max_chunk_size;
4934 u64 stripe_size;
4935 u64 chunk_size;
4936 int ndevs;
4937 int i;
4938 int j;
4939 int index;
4940
4941 BUG_ON(!alloc_profile_is_valid(type, 0));
4942
4943 if (list_empty(&fs_devices->alloc_list)) {
4944 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4945 btrfs_debug(info, "%s: no writable device", __func__);
4946 return -ENOSPC;
4947 }
4948
4949 index = btrfs_bg_flags_to_raid_index(type);
4950
4951 sub_stripes = btrfs_raid_array[index].sub_stripes;
4952 dev_stripes = btrfs_raid_array[index].dev_stripes;
4953 devs_max = btrfs_raid_array[index].devs_max;
4954 if (!devs_max)
4955 devs_max = BTRFS_MAX_DEVS(info);
4956 devs_min = btrfs_raid_array[index].devs_min;
4957 devs_increment = btrfs_raid_array[index].devs_increment;
4958 ncopies = btrfs_raid_array[index].ncopies;
4959 nparity = btrfs_raid_array[index].nparity;
4960
4961 if (type & BTRFS_BLOCK_GROUP_DATA) {
4962 max_stripe_size = SZ_1G;
4963 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4964 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4965 /* for larger filesystems, use larger metadata chunks */
4966 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4967 max_stripe_size = SZ_1G;
4968 else
4969 max_stripe_size = SZ_256M;
4970 max_chunk_size = max_stripe_size;
4971 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4972 max_stripe_size = SZ_32M;
4973 max_chunk_size = 2 * max_stripe_size;
4974 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4975 } else {
4976 btrfs_err(info, "invalid chunk type 0x%llx requested",
4977 type);
4978 BUG();
4979 }
4980
4981 /* We don't want a chunk larger than 10% of writable space */
4982 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4983 max_chunk_size);
4984
4985 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4986 GFP_NOFS);
4987 if (!devices_info)
4988 return -ENOMEM;
4989
4990 /*
4991 * in the first pass through the devices list, we gather information
4992 * about the available holes on each device.
4993 */
4994 ndevs = 0;
4995 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4996 u64 max_avail;
4997 u64 dev_offset;
4998
4999 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5000 WARN(1, KERN_ERR
5001 "BTRFS: read-only device in alloc_list\n");
5002 continue;
5003 }
5004
5005 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5006 &device->dev_state) ||
5007 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5008 continue;
5009
5010 if (device->total_bytes > device->bytes_used)
5011 total_avail = device->total_bytes - device->bytes_used;
5012 else
5013 total_avail = 0;
5014
5015 /* If there is no space on this device, skip it. */
5016 if (total_avail == 0)
5017 continue;
5018
5019 ret = find_free_dev_extent(device,
5020 max_stripe_size * dev_stripes,
5021 &dev_offset, &max_avail);
5022 if (ret && ret != -ENOSPC)
5023 goto error;
5024
5025 if (ret == 0)
5026 max_avail = max_stripe_size * dev_stripes;
5027
5028 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5029 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5030 btrfs_debug(info,
5031 "%s: devid %llu has no free space, have=%llu want=%u",
5032 __func__, device->devid, max_avail,
5033 BTRFS_STRIPE_LEN * dev_stripes);
5034 continue;
5035 }
5036
5037 if (ndevs == fs_devices->rw_devices) {
5038 WARN(1, "%s: found more than %llu devices\n",
5039 __func__, fs_devices->rw_devices);
5040 break;
5041 }
5042 devices_info[ndevs].dev_offset = dev_offset;
5043 devices_info[ndevs].max_avail = max_avail;
5044 devices_info[ndevs].total_avail = total_avail;
5045 devices_info[ndevs].dev = device;
5046 ++ndevs;
5047 }
5048
5049 /*
5050 * now sort the devices by hole size / available space
5051 */
5052 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5053 btrfs_cmp_device_info, NULL);
5054
5055 /* round down to number of usable stripes */
5056 ndevs = round_down(ndevs, devs_increment);
5057
5058 if (ndevs < devs_min) {
5059 ret = -ENOSPC;
5060 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5061 btrfs_debug(info,
5062 "%s: not enough devices with free space: have=%d minimum required=%d",
5063 __func__, ndevs, devs_min);
5064 }
5065 goto error;
5066 }
5067
5068 ndevs = min(ndevs, devs_max);
5069
5070 /*
5071 * The primary goal is to maximize the number of stripes, so use as
5072 * many devices as possible, even if the stripes are not maximum sized.
5073 *
5074 * The DUP profile stores more than one stripe per device, the
5075 * max_avail is the total size so we have to adjust.
5076 */
5077 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5078 num_stripes = ndevs * dev_stripes;
5079
5080 /*
5081 * this will have to be fixed for RAID1 and RAID10 over
5082 * more drives
5083 */
5084 data_stripes = (num_stripes - nparity) / ncopies;
5085
5086 /*
5087 * Use the number of data stripes to figure out how big this chunk
5088 * is really going to be in terms of logical address space,
5089 * and compare that answer with the max chunk size. If it's higher,
5090 * we try to reduce stripe_size.
5091 */
5092 if (stripe_size * data_stripes > max_chunk_size) {
5093 /*
5094 * Reduce stripe_size, round it up to a 16MB boundary again and
5095 * then use it, unless it ends up being even bigger than the
5096 * previous value we had already.
5097 */
5098 stripe_size = min(round_up(div_u64(max_chunk_size,
5099 data_stripes), SZ_16M),
5100 stripe_size);
5101 }
5102
5103 /* align to BTRFS_STRIPE_LEN */
5104 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5105
5106 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5107 if (!map) {
5108 ret = -ENOMEM;
5109 goto error;
5110 }
5111 map->num_stripes = num_stripes;
5112
5113 for (i = 0; i < ndevs; ++i) {
5114 for (j = 0; j < dev_stripes; ++j) {
5115 int s = i * dev_stripes + j;
5116 map->stripes[s].dev = devices_info[i].dev;
5117 map->stripes[s].physical = devices_info[i].dev_offset +
5118 j * stripe_size;
5119 }
5120 }
5121 map->stripe_len = BTRFS_STRIPE_LEN;
5122 map->io_align = BTRFS_STRIPE_LEN;
5123 map->io_width = BTRFS_STRIPE_LEN;
5124 map->type = type;
5125 map->sub_stripes = sub_stripes;
5126
5127 chunk_size = stripe_size * data_stripes;
5128
5129 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5130
5131 em = alloc_extent_map();
5132 if (!em) {
5133 kfree(map);
5134 ret = -ENOMEM;
5135 goto error;
5136 }
5137 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5138 em->map_lookup = map;
5139 em->start = start;
5140 em->len = chunk_size;
5141 em->block_start = 0;
5142 em->block_len = em->len;
5143 em->orig_block_len = stripe_size;
5144
5145 em_tree = &info->mapping_tree;
5146 write_lock(&em_tree->lock);
5147 ret = add_extent_mapping(em_tree, em, 0);
5148 if (ret) {
5149 write_unlock(&em_tree->lock);
5150 free_extent_map(em);
5151 goto error;
5152 }
5153 write_unlock(&em_tree->lock);
5154
5155 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5156 if (ret)
5157 goto error_del_extent;
5158
5159 for (i = 0; i < map->num_stripes; i++) {
5160 struct btrfs_device *dev = map->stripes[i].dev;
5161
5162 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5163 if (list_empty(&dev->post_commit_list))
5164 list_add_tail(&dev->post_commit_list,
5165 &trans->transaction->dev_update_list);
5166 }
5167
5168 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5169
5170 free_extent_map(em);
5171 check_raid56_incompat_flag(info, type);
5172
5173 kfree(devices_info);
5174 return 0;
5175
5176 error_del_extent:
5177 write_lock(&em_tree->lock);
5178 remove_extent_mapping(em_tree, em);
5179 write_unlock(&em_tree->lock);
5180
5181 /* One for our allocation */
5182 free_extent_map(em);
5183 /* One for the tree reference */
5184 free_extent_map(em);
5185 error:
5186 kfree(devices_info);
5187 return ret;
5188 }
5189
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)5190 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5191 u64 chunk_offset, u64 chunk_size)
5192 {
5193 struct btrfs_fs_info *fs_info = trans->fs_info;
5194 struct btrfs_root *extent_root = fs_info->extent_root;
5195 struct btrfs_root *chunk_root = fs_info->chunk_root;
5196 struct btrfs_key key;
5197 struct btrfs_device *device;
5198 struct btrfs_chunk *chunk;
5199 struct btrfs_stripe *stripe;
5200 struct extent_map *em;
5201 struct map_lookup *map;
5202 size_t item_size;
5203 u64 dev_offset;
5204 u64 stripe_size;
5205 int i = 0;
5206 int ret = 0;
5207
5208 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5209 if (IS_ERR(em))
5210 return PTR_ERR(em);
5211
5212 map = em->map_lookup;
5213 item_size = btrfs_chunk_item_size(map->num_stripes);
5214 stripe_size = em->orig_block_len;
5215
5216 chunk = kzalloc(item_size, GFP_NOFS);
5217 if (!chunk) {
5218 ret = -ENOMEM;
5219 goto out;
5220 }
5221
5222 /*
5223 * Take the device list mutex to prevent races with the final phase of
5224 * a device replace operation that replaces the device object associated
5225 * with the map's stripes, because the device object's id can change
5226 * at any time during that final phase of the device replace operation
5227 * (dev-replace.c:btrfs_dev_replace_finishing()).
5228 */
5229 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5230 for (i = 0; i < map->num_stripes; i++) {
5231 device = map->stripes[i].dev;
5232 dev_offset = map->stripes[i].physical;
5233
5234 ret = btrfs_update_device(trans, device);
5235 if (ret)
5236 break;
5237 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5238 dev_offset, stripe_size);
5239 if (ret)
5240 break;
5241 }
5242 if (ret) {
5243 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5244 goto out;
5245 }
5246
5247 stripe = &chunk->stripe;
5248 for (i = 0; i < map->num_stripes; i++) {
5249 device = map->stripes[i].dev;
5250 dev_offset = map->stripes[i].physical;
5251
5252 btrfs_set_stack_stripe_devid(stripe, device->devid);
5253 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5254 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5255 stripe++;
5256 }
5257 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5258
5259 btrfs_set_stack_chunk_length(chunk, chunk_size);
5260 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5261 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5262 btrfs_set_stack_chunk_type(chunk, map->type);
5263 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5264 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5265 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5266 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5267 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5268
5269 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5270 key.type = BTRFS_CHUNK_ITEM_KEY;
5271 key.offset = chunk_offset;
5272
5273 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5274 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5275 /*
5276 * TODO: Cleanup of inserted chunk root in case of
5277 * failure.
5278 */
5279 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5280 }
5281
5282 out:
5283 kfree(chunk);
5284 free_extent_map(em);
5285 return ret;
5286 }
5287
5288 /*
5289 * Chunk allocation falls into two parts. The first part does work
5290 * that makes the new allocated chunk usable, but does not do any operation
5291 * that modifies the chunk tree. The second part does the work that
5292 * requires modifying the chunk tree. This division is important for the
5293 * bootstrap process of adding storage to a seed btrfs.
5294 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5295 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5296 {
5297 u64 chunk_offset;
5298
5299 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5300 chunk_offset = find_next_chunk(trans->fs_info);
5301 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5302 }
5303
init_first_rw_device(struct btrfs_trans_handle * trans)5304 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5305 {
5306 struct btrfs_fs_info *fs_info = trans->fs_info;
5307 u64 chunk_offset;
5308 u64 sys_chunk_offset;
5309 u64 alloc_profile;
5310 int ret;
5311
5312 chunk_offset = find_next_chunk(fs_info);
5313 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5314 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5315 if (ret)
5316 return ret;
5317
5318 sys_chunk_offset = find_next_chunk(fs_info);
5319 alloc_profile = btrfs_system_alloc_profile(fs_info);
5320 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5321 return ret;
5322 }
5323
btrfs_chunk_max_errors(struct map_lookup * map)5324 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5325 {
5326 const int index = btrfs_bg_flags_to_raid_index(map->type);
5327
5328 return btrfs_raid_array[index].tolerated_failures;
5329 }
5330
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5331 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5332 {
5333 struct extent_map *em;
5334 struct map_lookup *map;
5335 int readonly = 0;
5336 int miss_ndevs = 0;
5337 int i;
5338
5339 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5340 if (IS_ERR(em))
5341 return 1;
5342
5343 map = em->map_lookup;
5344 for (i = 0; i < map->num_stripes; i++) {
5345 if (test_bit(BTRFS_DEV_STATE_MISSING,
5346 &map->stripes[i].dev->dev_state)) {
5347 miss_ndevs++;
5348 continue;
5349 }
5350 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5351 &map->stripes[i].dev->dev_state)) {
5352 readonly = 1;
5353 goto end;
5354 }
5355 }
5356
5357 /*
5358 * If the number of missing devices is larger than max errors,
5359 * we can not write the data into that chunk successfully, so
5360 * set it readonly.
5361 */
5362 if (miss_ndevs > btrfs_chunk_max_errors(map))
5363 readonly = 1;
5364 end:
5365 free_extent_map(em);
5366 return readonly;
5367 }
5368
btrfs_mapping_tree_free(struct extent_map_tree * tree)5369 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5370 {
5371 struct extent_map *em;
5372
5373 while (1) {
5374 write_lock(&tree->lock);
5375 em = lookup_extent_mapping(tree, 0, (u64)-1);
5376 if (em)
5377 remove_extent_mapping(tree, em);
5378 write_unlock(&tree->lock);
5379 if (!em)
5380 break;
5381 /* once for us */
5382 free_extent_map(em);
5383 /* once for the tree */
5384 free_extent_map(em);
5385 }
5386 }
5387
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5388 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5389 {
5390 struct extent_map *em;
5391 struct map_lookup *map;
5392 int ret;
5393
5394 em = btrfs_get_chunk_map(fs_info, logical, len);
5395 if (IS_ERR(em))
5396 /*
5397 * We could return errors for these cases, but that could get
5398 * ugly and we'd probably do the same thing which is just not do
5399 * anything else and exit, so return 1 so the callers don't try
5400 * to use other copies.
5401 */
5402 return 1;
5403
5404 map = em->map_lookup;
5405 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5406 ret = map->num_stripes;
5407 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5408 ret = map->sub_stripes;
5409 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5410 ret = 2;
5411 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5412 /*
5413 * There could be two corrupted data stripes, we need
5414 * to loop retry in order to rebuild the correct data.
5415 *
5416 * Fail a stripe at a time on every retry except the
5417 * stripe under reconstruction.
5418 */
5419 ret = map->num_stripes;
5420 else
5421 ret = 1;
5422 free_extent_map(em);
5423
5424 down_read(&fs_info->dev_replace.rwsem);
5425 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5426 fs_info->dev_replace.tgtdev)
5427 ret++;
5428 up_read(&fs_info->dev_replace.rwsem);
5429
5430 return ret;
5431 }
5432
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5433 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5434 u64 logical)
5435 {
5436 struct extent_map *em;
5437 struct map_lookup *map;
5438 unsigned long len = fs_info->sectorsize;
5439
5440 em = btrfs_get_chunk_map(fs_info, logical, len);
5441
5442 if (!WARN_ON(IS_ERR(em))) {
5443 map = em->map_lookup;
5444 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5445 len = map->stripe_len * nr_data_stripes(map);
5446 free_extent_map(em);
5447 }
5448 return len;
5449 }
5450
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5451 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5452 {
5453 struct extent_map *em;
5454 struct map_lookup *map;
5455 int ret = 0;
5456
5457 em = btrfs_get_chunk_map(fs_info, logical, len);
5458
5459 if(!WARN_ON(IS_ERR(em))) {
5460 map = em->map_lookup;
5461 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5462 ret = 1;
5463 free_extent_map(em);
5464 }
5465 return ret;
5466 }
5467
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5468 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5469 struct map_lookup *map, int first,
5470 int dev_replace_is_ongoing)
5471 {
5472 int i;
5473 int num_stripes;
5474 int preferred_mirror;
5475 int tolerance;
5476 struct btrfs_device *srcdev;
5477
5478 ASSERT((map->type &
5479 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5480
5481 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5482 num_stripes = map->sub_stripes;
5483 else
5484 num_stripes = map->num_stripes;
5485
5486 preferred_mirror = first + current->pid % num_stripes;
5487
5488 if (dev_replace_is_ongoing &&
5489 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5490 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5491 srcdev = fs_info->dev_replace.srcdev;
5492 else
5493 srcdev = NULL;
5494
5495 /*
5496 * try to avoid the drive that is the source drive for a
5497 * dev-replace procedure, only choose it if no other non-missing
5498 * mirror is available
5499 */
5500 for (tolerance = 0; tolerance < 2; tolerance++) {
5501 if (map->stripes[preferred_mirror].dev->bdev &&
5502 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5503 return preferred_mirror;
5504 for (i = first; i < first + num_stripes; i++) {
5505 if (map->stripes[i].dev->bdev &&
5506 (tolerance || map->stripes[i].dev != srcdev))
5507 return i;
5508 }
5509 }
5510
5511 /* we couldn't find one that doesn't fail. Just return something
5512 * and the io error handling code will clean up eventually
5513 */
5514 return preferred_mirror;
5515 }
5516
parity_smaller(u64 a,u64 b)5517 static inline int parity_smaller(u64 a, u64 b)
5518 {
5519 return a > b;
5520 }
5521
5522 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5523 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5524 {
5525 struct btrfs_bio_stripe s;
5526 int i;
5527 u64 l;
5528 int again = 1;
5529
5530 while (again) {
5531 again = 0;
5532 for (i = 0; i < num_stripes - 1; i++) {
5533 if (parity_smaller(bbio->raid_map[i],
5534 bbio->raid_map[i+1])) {
5535 s = bbio->stripes[i];
5536 l = bbio->raid_map[i];
5537 bbio->stripes[i] = bbio->stripes[i+1];
5538 bbio->raid_map[i] = bbio->raid_map[i+1];
5539 bbio->stripes[i+1] = s;
5540 bbio->raid_map[i+1] = l;
5541
5542 again = 1;
5543 }
5544 }
5545 }
5546 }
5547
alloc_btrfs_bio(int total_stripes,int real_stripes)5548 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5549 {
5550 struct btrfs_bio *bbio = kzalloc(
5551 /* the size of the btrfs_bio */
5552 sizeof(struct btrfs_bio) +
5553 /* plus the variable array for the stripes */
5554 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5555 /* plus the variable array for the tgt dev */
5556 sizeof(int) * (real_stripes) +
5557 /*
5558 * plus the raid_map, which includes both the tgt dev
5559 * and the stripes
5560 */
5561 sizeof(u64) * (total_stripes),
5562 GFP_NOFS|__GFP_NOFAIL);
5563
5564 atomic_set(&bbio->error, 0);
5565 refcount_set(&bbio->refs, 1);
5566
5567 return bbio;
5568 }
5569
btrfs_get_bbio(struct btrfs_bio * bbio)5570 void btrfs_get_bbio(struct btrfs_bio *bbio)
5571 {
5572 WARN_ON(!refcount_read(&bbio->refs));
5573 refcount_inc(&bbio->refs);
5574 }
5575
btrfs_put_bbio(struct btrfs_bio * bbio)5576 void btrfs_put_bbio(struct btrfs_bio *bbio)
5577 {
5578 if (!bbio)
5579 return;
5580 if (refcount_dec_and_test(&bbio->refs))
5581 kfree(bbio);
5582 }
5583
5584 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5585 /*
5586 * Please note that, discard won't be sent to target device of device
5587 * replace.
5588 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 length,struct btrfs_bio ** bbio_ret)5589 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5590 u64 logical, u64 length,
5591 struct btrfs_bio **bbio_ret)
5592 {
5593 struct extent_map *em;
5594 struct map_lookup *map;
5595 struct btrfs_bio *bbio;
5596 u64 offset;
5597 u64 stripe_nr;
5598 u64 stripe_nr_end;
5599 u64 stripe_end_offset;
5600 u64 stripe_cnt;
5601 u64 stripe_len;
5602 u64 stripe_offset;
5603 u64 num_stripes;
5604 u32 stripe_index;
5605 u32 factor = 0;
5606 u32 sub_stripes = 0;
5607 u64 stripes_per_dev = 0;
5608 u32 remaining_stripes = 0;
5609 u32 last_stripe = 0;
5610 int ret = 0;
5611 int i;
5612
5613 /* discard always return a bbio */
5614 ASSERT(bbio_ret);
5615
5616 em = btrfs_get_chunk_map(fs_info, logical, length);
5617 if (IS_ERR(em))
5618 return PTR_ERR(em);
5619
5620 map = em->map_lookup;
5621 /* we don't discard raid56 yet */
5622 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5623 ret = -EOPNOTSUPP;
5624 goto out;
5625 }
5626
5627 offset = logical - em->start;
5628 length = min_t(u64, em->len - offset, length);
5629
5630 stripe_len = map->stripe_len;
5631 /*
5632 * stripe_nr counts the total number of stripes we have to stride
5633 * to get to this block
5634 */
5635 stripe_nr = div64_u64(offset, stripe_len);
5636
5637 /* stripe_offset is the offset of this block in its stripe */
5638 stripe_offset = offset - stripe_nr * stripe_len;
5639
5640 stripe_nr_end = round_up(offset + length, map->stripe_len);
5641 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5642 stripe_cnt = stripe_nr_end - stripe_nr;
5643 stripe_end_offset = stripe_nr_end * map->stripe_len -
5644 (offset + length);
5645 /*
5646 * after this, stripe_nr is the number of stripes on this
5647 * device we have to walk to find the data, and stripe_index is
5648 * the number of our device in the stripe array
5649 */
5650 num_stripes = 1;
5651 stripe_index = 0;
5652 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5653 BTRFS_BLOCK_GROUP_RAID10)) {
5654 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5655 sub_stripes = 1;
5656 else
5657 sub_stripes = map->sub_stripes;
5658
5659 factor = map->num_stripes / sub_stripes;
5660 num_stripes = min_t(u64, map->num_stripes,
5661 sub_stripes * stripe_cnt);
5662 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5663 stripe_index *= sub_stripes;
5664 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5665 &remaining_stripes);
5666 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5667 last_stripe *= sub_stripes;
5668 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5669 BTRFS_BLOCK_GROUP_DUP)) {
5670 num_stripes = map->num_stripes;
5671 } else {
5672 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5673 &stripe_index);
5674 }
5675
5676 bbio = alloc_btrfs_bio(num_stripes, 0);
5677 if (!bbio) {
5678 ret = -ENOMEM;
5679 goto out;
5680 }
5681
5682 for (i = 0; i < num_stripes; i++) {
5683 bbio->stripes[i].physical =
5684 map->stripes[stripe_index].physical +
5685 stripe_offset + stripe_nr * map->stripe_len;
5686 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5687
5688 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5689 BTRFS_BLOCK_GROUP_RAID10)) {
5690 bbio->stripes[i].length = stripes_per_dev *
5691 map->stripe_len;
5692
5693 if (i / sub_stripes < remaining_stripes)
5694 bbio->stripes[i].length +=
5695 map->stripe_len;
5696
5697 /*
5698 * Special for the first stripe and
5699 * the last stripe:
5700 *
5701 * |-------|...|-------|
5702 * |----------|
5703 * off end_off
5704 */
5705 if (i < sub_stripes)
5706 bbio->stripes[i].length -=
5707 stripe_offset;
5708
5709 if (stripe_index >= last_stripe &&
5710 stripe_index <= (last_stripe +
5711 sub_stripes - 1))
5712 bbio->stripes[i].length -=
5713 stripe_end_offset;
5714
5715 if (i == sub_stripes - 1)
5716 stripe_offset = 0;
5717 } else {
5718 bbio->stripes[i].length = length;
5719 }
5720
5721 stripe_index++;
5722 if (stripe_index == map->num_stripes) {
5723 stripe_index = 0;
5724 stripe_nr++;
5725 }
5726 }
5727
5728 *bbio_ret = bbio;
5729 bbio->map_type = map->type;
5730 bbio->num_stripes = num_stripes;
5731 out:
5732 free_extent_map(em);
5733 return ret;
5734 }
5735
5736 /*
5737 * In dev-replace case, for repair case (that's the only case where the mirror
5738 * is selected explicitly when calling btrfs_map_block), blocks left of the
5739 * left cursor can also be read from the target drive.
5740 *
5741 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5742 * array of stripes.
5743 * For READ, it also needs to be supported using the same mirror number.
5744 *
5745 * If the requested block is not left of the left cursor, EIO is returned. This
5746 * can happen because btrfs_num_copies() returns one more in the dev-replace
5747 * case.
5748 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5749 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5750 u64 logical, u64 length,
5751 u64 srcdev_devid, int *mirror_num,
5752 u64 *physical)
5753 {
5754 struct btrfs_bio *bbio = NULL;
5755 int num_stripes;
5756 int index_srcdev = 0;
5757 int found = 0;
5758 u64 physical_of_found = 0;
5759 int i;
5760 int ret = 0;
5761
5762 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5763 logical, &length, &bbio, 0, 0);
5764 if (ret) {
5765 ASSERT(bbio == NULL);
5766 return ret;
5767 }
5768
5769 num_stripes = bbio->num_stripes;
5770 if (*mirror_num > num_stripes) {
5771 /*
5772 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5773 * that means that the requested area is not left of the left
5774 * cursor
5775 */
5776 btrfs_put_bbio(bbio);
5777 return -EIO;
5778 }
5779
5780 /*
5781 * process the rest of the function using the mirror_num of the source
5782 * drive. Therefore look it up first. At the end, patch the device
5783 * pointer to the one of the target drive.
5784 */
5785 for (i = 0; i < num_stripes; i++) {
5786 if (bbio->stripes[i].dev->devid != srcdev_devid)
5787 continue;
5788
5789 /*
5790 * In case of DUP, in order to keep it simple, only add the
5791 * mirror with the lowest physical address
5792 */
5793 if (found &&
5794 physical_of_found <= bbio->stripes[i].physical)
5795 continue;
5796
5797 index_srcdev = i;
5798 found = 1;
5799 physical_of_found = bbio->stripes[i].physical;
5800 }
5801
5802 btrfs_put_bbio(bbio);
5803
5804 ASSERT(found);
5805 if (!found)
5806 return -EIO;
5807
5808 *mirror_num = index_srcdev + 1;
5809 *physical = physical_of_found;
5810 return ret;
5811 }
5812
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5813 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5814 struct btrfs_bio **bbio_ret,
5815 struct btrfs_dev_replace *dev_replace,
5816 int *num_stripes_ret, int *max_errors_ret)
5817 {
5818 struct btrfs_bio *bbio = *bbio_ret;
5819 u64 srcdev_devid = dev_replace->srcdev->devid;
5820 int tgtdev_indexes = 0;
5821 int num_stripes = *num_stripes_ret;
5822 int max_errors = *max_errors_ret;
5823 int i;
5824
5825 if (op == BTRFS_MAP_WRITE) {
5826 int index_where_to_add;
5827
5828 /*
5829 * duplicate the write operations while the dev replace
5830 * procedure is running. Since the copying of the old disk to
5831 * the new disk takes place at run time while the filesystem is
5832 * mounted writable, the regular write operations to the old
5833 * disk have to be duplicated to go to the new disk as well.
5834 *
5835 * Note that device->missing is handled by the caller, and that
5836 * the write to the old disk is already set up in the stripes
5837 * array.
5838 */
5839 index_where_to_add = num_stripes;
5840 for (i = 0; i < num_stripes; i++) {
5841 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5842 /* write to new disk, too */
5843 struct btrfs_bio_stripe *new =
5844 bbio->stripes + index_where_to_add;
5845 struct btrfs_bio_stripe *old =
5846 bbio->stripes + i;
5847
5848 new->physical = old->physical;
5849 new->length = old->length;
5850 new->dev = dev_replace->tgtdev;
5851 bbio->tgtdev_map[i] = index_where_to_add;
5852 index_where_to_add++;
5853 max_errors++;
5854 tgtdev_indexes++;
5855 }
5856 }
5857 num_stripes = index_where_to_add;
5858 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5859 int index_srcdev = 0;
5860 int found = 0;
5861 u64 physical_of_found = 0;
5862
5863 /*
5864 * During the dev-replace procedure, the target drive can also
5865 * be used to read data in case it is needed to repair a corrupt
5866 * block elsewhere. This is possible if the requested area is
5867 * left of the left cursor. In this area, the target drive is a
5868 * full copy of the source drive.
5869 */
5870 for (i = 0; i < num_stripes; i++) {
5871 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5872 /*
5873 * In case of DUP, in order to keep it simple,
5874 * only add the mirror with the lowest physical
5875 * address
5876 */
5877 if (found &&
5878 physical_of_found <=
5879 bbio->stripes[i].physical)
5880 continue;
5881 index_srcdev = i;
5882 found = 1;
5883 physical_of_found = bbio->stripes[i].physical;
5884 }
5885 }
5886 if (found) {
5887 struct btrfs_bio_stripe *tgtdev_stripe =
5888 bbio->stripes + num_stripes;
5889
5890 tgtdev_stripe->physical = physical_of_found;
5891 tgtdev_stripe->length =
5892 bbio->stripes[index_srcdev].length;
5893 tgtdev_stripe->dev = dev_replace->tgtdev;
5894 bbio->tgtdev_map[index_srcdev] = num_stripes;
5895
5896 tgtdev_indexes++;
5897 num_stripes++;
5898 }
5899 }
5900
5901 *num_stripes_ret = num_stripes;
5902 *max_errors_ret = max_errors;
5903 bbio->num_tgtdevs = tgtdev_indexes;
5904 *bbio_ret = bbio;
5905 }
5906
need_full_stripe(enum btrfs_map_op op)5907 static bool need_full_stripe(enum btrfs_map_op op)
5908 {
5909 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5910 }
5911
5912 /*
5913 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5914 * tuple. This information is used to calculate how big a
5915 * particular bio can get before it straddles a stripe.
5916 *
5917 * @fs_info - the filesystem
5918 * @logical - address that we want to figure out the geometry of
5919 * @len - the length of IO we are going to perform, starting at @logical
5920 * @op - type of operation - write or read
5921 * @io_geom - pointer used to return values
5922 *
5923 * Returns < 0 in case a chunk for the given logical address cannot be found,
5924 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5925 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 len,struct btrfs_io_geometry * io_geom)5926 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5927 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5928 {
5929 struct extent_map *em;
5930 struct map_lookup *map;
5931 u64 offset;
5932 u64 stripe_offset;
5933 u64 stripe_nr;
5934 u64 stripe_len;
5935 u64 raid56_full_stripe_start = (u64)-1;
5936 int data_stripes;
5937 int ret = 0;
5938
5939 ASSERT(op != BTRFS_MAP_DISCARD);
5940
5941 em = btrfs_get_chunk_map(fs_info, logical, len);
5942 if (IS_ERR(em))
5943 return PTR_ERR(em);
5944
5945 map = em->map_lookup;
5946 /* Offset of this logical address in the chunk */
5947 offset = logical - em->start;
5948 /* Len of a stripe in a chunk */
5949 stripe_len = map->stripe_len;
5950 /* Stripe wher this block falls in */
5951 stripe_nr = div64_u64(offset, stripe_len);
5952 /* Offset of stripe in the chunk */
5953 stripe_offset = stripe_nr * stripe_len;
5954 if (offset < stripe_offset) {
5955 btrfs_crit(fs_info,
5956 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5957 stripe_offset, offset, em->start, logical, stripe_len);
5958 ret = -EINVAL;
5959 goto out;
5960 }
5961
5962 /* stripe_offset is the offset of this block in its stripe */
5963 stripe_offset = offset - stripe_offset;
5964 data_stripes = nr_data_stripes(map);
5965
5966 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5967 u64 max_len = stripe_len - stripe_offset;
5968
5969 /*
5970 * In case of raid56, we need to know the stripe aligned start
5971 */
5972 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5973 unsigned long full_stripe_len = stripe_len * data_stripes;
5974 raid56_full_stripe_start = offset;
5975
5976 /*
5977 * Allow a write of a full stripe, but make sure we
5978 * don't allow straddling of stripes
5979 */
5980 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5981 full_stripe_len);
5982 raid56_full_stripe_start *= full_stripe_len;
5983
5984 /*
5985 * For writes to RAID[56], allow a full stripeset across
5986 * all disks. For other RAID types and for RAID[56]
5987 * reads, just allow a single stripe (on a single disk).
5988 */
5989 if (op == BTRFS_MAP_WRITE) {
5990 max_len = stripe_len * data_stripes -
5991 (offset - raid56_full_stripe_start);
5992 }
5993 }
5994 len = min_t(u64, em->len - offset, max_len);
5995 } else {
5996 len = em->len - offset;
5997 }
5998
5999 io_geom->len = len;
6000 io_geom->offset = offset;
6001 io_geom->stripe_len = stripe_len;
6002 io_geom->stripe_nr = stripe_nr;
6003 io_geom->stripe_offset = stripe_offset;
6004 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6005
6006 out:
6007 /* once for us */
6008 free_extent_map(em);
6009 return ret;
6010 }
6011
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6012 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6013 enum btrfs_map_op op,
6014 u64 logical, u64 *length,
6015 struct btrfs_bio **bbio_ret,
6016 int mirror_num, int need_raid_map)
6017 {
6018 struct extent_map *em;
6019 struct map_lookup *map;
6020 u64 stripe_offset;
6021 u64 stripe_nr;
6022 u64 stripe_len;
6023 u32 stripe_index;
6024 int data_stripes;
6025 int i;
6026 int ret = 0;
6027 int num_stripes;
6028 int max_errors = 0;
6029 int tgtdev_indexes = 0;
6030 struct btrfs_bio *bbio = NULL;
6031 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6032 int dev_replace_is_ongoing = 0;
6033 int num_alloc_stripes;
6034 int patch_the_first_stripe_for_dev_replace = 0;
6035 u64 physical_to_patch_in_first_stripe = 0;
6036 u64 raid56_full_stripe_start = (u64)-1;
6037 struct btrfs_io_geometry geom;
6038
6039 ASSERT(bbio_ret);
6040
6041 if (op == BTRFS_MAP_DISCARD)
6042 return __btrfs_map_block_for_discard(fs_info, logical,
6043 *length, bbio_ret);
6044
6045 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6046 if (ret < 0)
6047 return ret;
6048
6049 em = btrfs_get_chunk_map(fs_info, logical, *length);
6050 ASSERT(!IS_ERR(em));
6051 map = em->map_lookup;
6052
6053 *length = geom.len;
6054 stripe_len = geom.stripe_len;
6055 stripe_nr = geom.stripe_nr;
6056 stripe_offset = geom.stripe_offset;
6057 raid56_full_stripe_start = geom.raid56_stripe_offset;
6058 data_stripes = nr_data_stripes(map);
6059
6060 down_read(&dev_replace->rwsem);
6061 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6062 /*
6063 * Hold the semaphore for read during the whole operation, write is
6064 * requested at commit time but must wait.
6065 */
6066 if (!dev_replace_is_ongoing)
6067 up_read(&dev_replace->rwsem);
6068
6069 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6070 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6071 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6072 dev_replace->srcdev->devid,
6073 &mirror_num,
6074 &physical_to_patch_in_first_stripe);
6075 if (ret)
6076 goto out;
6077 else
6078 patch_the_first_stripe_for_dev_replace = 1;
6079 } else if (mirror_num > map->num_stripes) {
6080 mirror_num = 0;
6081 }
6082
6083 num_stripes = 1;
6084 stripe_index = 0;
6085 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6086 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6087 &stripe_index);
6088 if (!need_full_stripe(op))
6089 mirror_num = 1;
6090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6091 if (need_full_stripe(op))
6092 num_stripes = map->num_stripes;
6093 else if (mirror_num)
6094 stripe_index = mirror_num - 1;
6095 else {
6096 stripe_index = find_live_mirror(fs_info, map, 0,
6097 dev_replace_is_ongoing);
6098 mirror_num = stripe_index + 1;
6099 }
6100
6101 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6102 if (need_full_stripe(op)) {
6103 num_stripes = map->num_stripes;
6104 } else if (mirror_num) {
6105 stripe_index = mirror_num - 1;
6106 } else {
6107 mirror_num = 1;
6108 }
6109
6110 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6111 u32 factor = map->num_stripes / map->sub_stripes;
6112
6113 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6114 stripe_index *= map->sub_stripes;
6115
6116 if (need_full_stripe(op))
6117 num_stripes = map->sub_stripes;
6118 else if (mirror_num)
6119 stripe_index += mirror_num - 1;
6120 else {
6121 int old_stripe_index = stripe_index;
6122 stripe_index = find_live_mirror(fs_info, map,
6123 stripe_index,
6124 dev_replace_is_ongoing);
6125 mirror_num = stripe_index - old_stripe_index + 1;
6126 }
6127
6128 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6129 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6130 /* push stripe_nr back to the start of the full stripe */
6131 stripe_nr = div64_u64(raid56_full_stripe_start,
6132 stripe_len * data_stripes);
6133
6134 /* RAID[56] write or recovery. Return all stripes */
6135 num_stripes = map->num_stripes;
6136 max_errors = nr_parity_stripes(map);
6137
6138 *length = map->stripe_len;
6139 stripe_index = 0;
6140 stripe_offset = 0;
6141 } else {
6142 /*
6143 * Mirror #0 or #1 means the original data block.
6144 * Mirror #2 is RAID5 parity block.
6145 * Mirror #3 is RAID6 Q block.
6146 */
6147 stripe_nr = div_u64_rem(stripe_nr,
6148 data_stripes, &stripe_index);
6149 if (mirror_num > 1)
6150 stripe_index = data_stripes + mirror_num - 2;
6151
6152 /* We distribute the parity blocks across stripes */
6153 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6154 &stripe_index);
6155 if (!need_full_stripe(op) && mirror_num <= 1)
6156 mirror_num = 1;
6157 }
6158 } else {
6159 /*
6160 * after this, stripe_nr is the number of stripes on this
6161 * device we have to walk to find the data, and stripe_index is
6162 * the number of our device in the stripe array
6163 */
6164 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6165 &stripe_index);
6166 mirror_num = stripe_index + 1;
6167 }
6168 if (stripe_index >= map->num_stripes) {
6169 btrfs_crit(fs_info,
6170 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6171 stripe_index, map->num_stripes);
6172 ret = -EINVAL;
6173 goto out;
6174 }
6175
6176 num_alloc_stripes = num_stripes;
6177 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6178 if (op == BTRFS_MAP_WRITE)
6179 num_alloc_stripes <<= 1;
6180 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6181 num_alloc_stripes++;
6182 tgtdev_indexes = num_stripes;
6183 }
6184
6185 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6186 if (!bbio) {
6187 ret = -ENOMEM;
6188 goto out;
6189 }
6190 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6191 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6192
6193 /* build raid_map */
6194 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6195 (need_full_stripe(op) || mirror_num > 1)) {
6196 u64 tmp;
6197 unsigned rot;
6198
6199 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6200 sizeof(struct btrfs_bio_stripe) *
6201 num_alloc_stripes +
6202 sizeof(int) * tgtdev_indexes);
6203
6204 /* Work out the disk rotation on this stripe-set */
6205 div_u64_rem(stripe_nr, num_stripes, &rot);
6206
6207 /* Fill in the logical address of each stripe */
6208 tmp = stripe_nr * data_stripes;
6209 for (i = 0; i < data_stripes; i++)
6210 bbio->raid_map[(i+rot) % num_stripes] =
6211 em->start + (tmp + i) * map->stripe_len;
6212
6213 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6214 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6215 bbio->raid_map[(i+rot+1) % num_stripes] =
6216 RAID6_Q_STRIPE;
6217 }
6218
6219
6220 for (i = 0; i < num_stripes; i++) {
6221 bbio->stripes[i].physical =
6222 map->stripes[stripe_index].physical +
6223 stripe_offset +
6224 stripe_nr * map->stripe_len;
6225 bbio->stripes[i].dev =
6226 map->stripes[stripe_index].dev;
6227 stripe_index++;
6228 }
6229
6230 if (need_full_stripe(op))
6231 max_errors = btrfs_chunk_max_errors(map);
6232
6233 if (bbio->raid_map)
6234 sort_parity_stripes(bbio, num_stripes);
6235
6236 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6237 need_full_stripe(op)) {
6238 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6239 &max_errors);
6240 }
6241
6242 *bbio_ret = bbio;
6243 bbio->map_type = map->type;
6244 bbio->num_stripes = num_stripes;
6245 bbio->max_errors = max_errors;
6246 bbio->mirror_num = mirror_num;
6247
6248 /*
6249 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6250 * mirror_num == num_stripes + 1 && dev_replace target drive is
6251 * available as a mirror
6252 */
6253 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6254 WARN_ON(num_stripes > 1);
6255 bbio->stripes[0].dev = dev_replace->tgtdev;
6256 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6257 bbio->mirror_num = map->num_stripes + 1;
6258 }
6259 out:
6260 if (dev_replace_is_ongoing) {
6261 lockdep_assert_held(&dev_replace->rwsem);
6262 /* Unlock and let waiting writers proceed */
6263 up_read(&dev_replace->rwsem);
6264 }
6265 free_extent_map(em);
6266 return ret;
6267 }
6268
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6269 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6270 u64 logical, u64 *length,
6271 struct btrfs_bio **bbio_ret, int mirror_num)
6272 {
6273 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6274 mirror_num, 0);
6275 }
6276
6277 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6278 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6279 u64 logical, u64 *length,
6280 struct btrfs_bio **bbio_ret)
6281 {
6282 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6283 }
6284
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)6285 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6286 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6287 {
6288 struct extent_map *em;
6289 struct map_lookup *map;
6290 u64 *buf;
6291 u64 bytenr;
6292 u64 length;
6293 u64 stripe_nr;
6294 u64 rmap_len;
6295 int i, j, nr = 0;
6296
6297 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6298 if (IS_ERR(em))
6299 return -EIO;
6300
6301 map = em->map_lookup;
6302 length = em->len;
6303 rmap_len = map->stripe_len;
6304
6305 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6306 length = div_u64(length, map->num_stripes / map->sub_stripes);
6307 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6308 length = div_u64(length, map->num_stripes);
6309 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6310 length = div_u64(length, nr_data_stripes(map));
6311 rmap_len = map->stripe_len * nr_data_stripes(map);
6312 }
6313
6314 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6315 BUG_ON(!buf); /* -ENOMEM */
6316
6317 for (i = 0; i < map->num_stripes; i++) {
6318 if (map->stripes[i].physical > physical ||
6319 map->stripes[i].physical + length <= physical)
6320 continue;
6321
6322 stripe_nr = physical - map->stripes[i].physical;
6323 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6324
6325 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6326 stripe_nr = stripe_nr * map->num_stripes + i;
6327 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6328 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6329 stripe_nr = stripe_nr * map->num_stripes + i;
6330 } /* else if RAID[56], multiply by nr_data_stripes().
6331 * Alternatively, just use rmap_len below instead of
6332 * map->stripe_len */
6333
6334 bytenr = chunk_start + stripe_nr * rmap_len;
6335 WARN_ON(nr >= map->num_stripes);
6336 for (j = 0; j < nr; j++) {
6337 if (buf[j] == bytenr)
6338 break;
6339 }
6340 if (j == nr) {
6341 WARN_ON(nr >= map->num_stripes);
6342 buf[nr++] = bytenr;
6343 }
6344 }
6345
6346 *logical = buf;
6347 *naddrs = nr;
6348 *stripe_len = rmap_len;
6349
6350 free_extent_map(em);
6351 return 0;
6352 }
6353
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6354 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6355 {
6356 bio->bi_private = bbio->private;
6357 bio->bi_end_io = bbio->end_io;
6358 bio_endio(bio);
6359
6360 btrfs_put_bbio(bbio);
6361 }
6362
btrfs_end_bio(struct bio * bio)6363 static void btrfs_end_bio(struct bio *bio)
6364 {
6365 struct btrfs_bio *bbio = bio->bi_private;
6366 int is_orig_bio = 0;
6367
6368 if (bio->bi_status) {
6369 atomic_inc(&bbio->error);
6370 if (bio->bi_status == BLK_STS_IOERR ||
6371 bio->bi_status == BLK_STS_TARGET) {
6372 unsigned int stripe_index =
6373 btrfs_io_bio(bio)->stripe_index;
6374 struct btrfs_device *dev;
6375
6376 BUG_ON(stripe_index >= bbio->num_stripes);
6377 dev = bbio->stripes[stripe_index].dev;
6378 if (dev->bdev) {
6379 if (bio_op(bio) == REQ_OP_WRITE)
6380 btrfs_dev_stat_inc_and_print(dev,
6381 BTRFS_DEV_STAT_WRITE_ERRS);
6382 else if (!(bio->bi_opf & REQ_RAHEAD))
6383 btrfs_dev_stat_inc_and_print(dev,
6384 BTRFS_DEV_STAT_READ_ERRS);
6385 if (bio->bi_opf & REQ_PREFLUSH)
6386 btrfs_dev_stat_inc_and_print(dev,
6387 BTRFS_DEV_STAT_FLUSH_ERRS);
6388 }
6389 }
6390 }
6391
6392 if (bio == bbio->orig_bio)
6393 is_orig_bio = 1;
6394
6395 btrfs_bio_counter_dec(bbio->fs_info);
6396
6397 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6398 if (!is_orig_bio) {
6399 bio_put(bio);
6400 bio = bbio->orig_bio;
6401 }
6402
6403 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6404 /* only send an error to the higher layers if it is
6405 * beyond the tolerance of the btrfs bio
6406 */
6407 if (atomic_read(&bbio->error) > bbio->max_errors) {
6408 bio->bi_status = BLK_STS_IOERR;
6409 } else {
6410 /*
6411 * this bio is actually up to date, we didn't
6412 * go over the max number of errors
6413 */
6414 bio->bi_status = BLK_STS_OK;
6415 }
6416
6417 btrfs_end_bbio(bbio, bio);
6418 } else if (!is_orig_bio) {
6419 bio_put(bio);
6420 }
6421 }
6422
6423 /*
6424 * see run_scheduled_bios for a description of why bios are collected for
6425 * async submit.
6426 *
6427 * This will add one bio to the pending list for a device and make sure
6428 * the work struct is scheduled.
6429 */
btrfs_schedule_bio(struct btrfs_device * device,struct bio * bio)6430 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6431 struct bio *bio)
6432 {
6433 struct btrfs_fs_info *fs_info = device->fs_info;
6434 int should_queue = 1;
6435 struct btrfs_pending_bios *pending_bios;
6436
6437 /* don't bother with additional async steps for reads, right now */
6438 if (bio_op(bio) == REQ_OP_READ) {
6439 btrfsic_submit_bio(bio);
6440 return;
6441 }
6442
6443 WARN_ON(bio->bi_next);
6444 bio->bi_next = NULL;
6445
6446 spin_lock(&device->io_lock);
6447 if (op_is_sync(bio->bi_opf))
6448 pending_bios = &device->pending_sync_bios;
6449 else
6450 pending_bios = &device->pending_bios;
6451
6452 if (pending_bios->tail)
6453 pending_bios->tail->bi_next = bio;
6454
6455 pending_bios->tail = bio;
6456 if (!pending_bios->head)
6457 pending_bios->head = bio;
6458 if (device->running_pending)
6459 should_queue = 0;
6460
6461 spin_unlock(&device->io_lock);
6462
6463 if (should_queue)
6464 btrfs_queue_work(fs_info->submit_workers, &device->work);
6465 }
6466
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6467 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6468 u64 physical, int dev_nr, int async)
6469 {
6470 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6471 struct btrfs_fs_info *fs_info = bbio->fs_info;
6472
6473 bio->bi_private = bbio;
6474 btrfs_io_bio(bio)->stripe_index = dev_nr;
6475 bio->bi_end_io = btrfs_end_bio;
6476 bio->bi_iter.bi_sector = physical >> 9;
6477 btrfs_debug_in_rcu(fs_info,
6478 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6479 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6480 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6481 bio->bi_iter.bi_size);
6482 bio_set_dev(bio, dev->bdev);
6483
6484 btrfs_bio_counter_inc_noblocked(fs_info);
6485
6486 if (async)
6487 btrfs_schedule_bio(dev, bio);
6488 else
6489 btrfsic_submit_bio(bio);
6490 }
6491
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6492 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6493 {
6494 atomic_inc(&bbio->error);
6495 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6496 /* Should be the original bio. */
6497 WARN_ON(bio != bbio->orig_bio);
6498
6499 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6500 bio->bi_iter.bi_sector = logical >> 9;
6501 if (atomic_read(&bbio->error) > bbio->max_errors)
6502 bio->bi_status = BLK_STS_IOERR;
6503 else
6504 bio->bi_status = BLK_STS_OK;
6505 btrfs_end_bbio(bbio, bio);
6506 }
6507 }
6508
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,int async_submit)6509 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6510 int mirror_num, int async_submit)
6511 {
6512 struct btrfs_device *dev;
6513 struct bio *first_bio = bio;
6514 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6515 u64 length = 0;
6516 u64 map_length;
6517 int ret;
6518 int dev_nr;
6519 int total_devs;
6520 struct btrfs_bio *bbio = NULL;
6521
6522 length = bio->bi_iter.bi_size;
6523 map_length = length;
6524
6525 btrfs_bio_counter_inc_blocked(fs_info);
6526 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6527 &map_length, &bbio, mirror_num, 1);
6528 if (ret) {
6529 btrfs_bio_counter_dec(fs_info);
6530 return errno_to_blk_status(ret);
6531 }
6532
6533 total_devs = bbio->num_stripes;
6534 bbio->orig_bio = first_bio;
6535 bbio->private = first_bio->bi_private;
6536 bbio->end_io = first_bio->bi_end_io;
6537 bbio->fs_info = fs_info;
6538 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6539
6540 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6541 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6542 /* In this case, map_length has been set to the length of
6543 a single stripe; not the whole write */
6544 if (bio_op(bio) == REQ_OP_WRITE) {
6545 ret = raid56_parity_write(fs_info, bio, bbio,
6546 map_length);
6547 } else {
6548 ret = raid56_parity_recover(fs_info, bio, bbio,
6549 map_length, mirror_num, 1);
6550 }
6551
6552 btrfs_bio_counter_dec(fs_info);
6553 return errno_to_blk_status(ret);
6554 }
6555
6556 if (map_length < length) {
6557 btrfs_crit(fs_info,
6558 "mapping failed logical %llu bio len %llu len %llu",
6559 logical, length, map_length);
6560 BUG();
6561 }
6562
6563 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6564 dev = bbio->stripes[dev_nr].dev;
6565 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6566 &dev->dev_state) ||
6567 (bio_op(first_bio) == REQ_OP_WRITE &&
6568 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6569 bbio_error(bbio, first_bio, logical);
6570 continue;
6571 }
6572
6573 if (dev_nr < total_devs - 1)
6574 bio = btrfs_bio_clone(first_bio);
6575 else
6576 bio = first_bio;
6577
6578 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6579 dev_nr, async_submit);
6580 }
6581 btrfs_bio_counter_dec(fs_info);
6582 return BLK_STS_OK;
6583 }
6584
6585 /*
6586 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6587 * return NULL.
6588 *
6589 * If devid and uuid are both specified, the match must be exact, otherwise
6590 * only devid is used.
6591 *
6592 * If @seed is true, traverse through the seed devices.
6593 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6594 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6595 u64 devid, u8 *uuid, u8 *fsid,
6596 bool seed)
6597 {
6598 struct btrfs_device *device;
6599
6600 while (fs_devices) {
6601 if (!fsid ||
6602 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6603 list_for_each_entry(device, &fs_devices->devices,
6604 dev_list) {
6605 if (device->devid == devid &&
6606 (!uuid || memcmp(device->uuid, uuid,
6607 BTRFS_UUID_SIZE) == 0))
6608 return device;
6609 }
6610 }
6611 if (seed)
6612 fs_devices = fs_devices->seed;
6613 else
6614 return NULL;
6615 }
6616 return NULL;
6617 }
6618
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6619 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6620 u64 devid, u8 *dev_uuid)
6621 {
6622 struct btrfs_device *device;
6623
6624 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6625 if (IS_ERR(device))
6626 return device;
6627
6628 list_add(&device->dev_list, &fs_devices->devices);
6629 device->fs_devices = fs_devices;
6630 fs_devices->num_devices++;
6631
6632 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6633 fs_devices->missing_devices++;
6634
6635 return device;
6636 }
6637
6638 /**
6639 * btrfs_alloc_device - allocate struct btrfs_device
6640 * @fs_info: used only for generating a new devid, can be NULL if
6641 * devid is provided (i.e. @devid != NULL).
6642 * @devid: a pointer to devid for this device. If NULL a new devid
6643 * is generated.
6644 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6645 * is generated.
6646 *
6647 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6648 * on error. Returned struct is not linked onto any lists and must be
6649 * destroyed with btrfs_free_device.
6650 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6651 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6652 const u64 *devid,
6653 const u8 *uuid)
6654 {
6655 struct btrfs_device *dev;
6656 u64 tmp;
6657
6658 if (WARN_ON(!devid && !fs_info))
6659 return ERR_PTR(-EINVAL);
6660
6661 dev = __alloc_device();
6662 if (IS_ERR(dev))
6663 return dev;
6664
6665 if (devid)
6666 tmp = *devid;
6667 else {
6668 int ret;
6669
6670 ret = find_next_devid(fs_info, &tmp);
6671 if (ret) {
6672 btrfs_free_device(dev);
6673 return ERR_PTR(ret);
6674 }
6675 }
6676 dev->devid = tmp;
6677
6678 if (uuid)
6679 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6680 else
6681 generate_random_uuid(dev->uuid);
6682
6683 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
6684
6685 return dev;
6686 }
6687
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6688 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6689 u64 devid, u8 *uuid, bool error)
6690 {
6691 if (error)
6692 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6693 devid, uuid);
6694 else
6695 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6696 devid, uuid);
6697 }
6698
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6699 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6700 {
6701 int index = btrfs_bg_flags_to_raid_index(type);
6702 int ncopies = btrfs_raid_array[index].ncopies;
6703 int data_stripes;
6704
6705 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6706 case BTRFS_BLOCK_GROUP_RAID5:
6707 data_stripes = num_stripes - 1;
6708 break;
6709 case BTRFS_BLOCK_GROUP_RAID6:
6710 data_stripes = num_stripes - 2;
6711 break;
6712 default:
6713 data_stripes = num_stripes / ncopies;
6714 break;
6715 }
6716 return div_u64(chunk_len, data_stripes);
6717 }
6718
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6719 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6720 struct btrfs_chunk *chunk)
6721 {
6722 struct btrfs_fs_info *fs_info = leaf->fs_info;
6723 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6724 struct map_lookup *map;
6725 struct extent_map *em;
6726 u64 logical;
6727 u64 length;
6728 u64 devid;
6729 u8 uuid[BTRFS_UUID_SIZE];
6730 int num_stripes;
6731 int ret;
6732 int i;
6733
6734 logical = key->offset;
6735 length = btrfs_chunk_length(leaf, chunk);
6736 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6737
6738 /*
6739 * Only need to verify chunk item if we're reading from sys chunk array,
6740 * as chunk item in tree block is already verified by tree-checker.
6741 */
6742 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6743 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6744 if (ret)
6745 return ret;
6746 }
6747
6748 read_lock(&map_tree->lock);
6749 em = lookup_extent_mapping(map_tree, logical, 1);
6750 read_unlock(&map_tree->lock);
6751
6752 /* already mapped? */
6753 if (em && em->start <= logical && em->start + em->len > logical) {
6754 free_extent_map(em);
6755 return 0;
6756 } else if (em) {
6757 free_extent_map(em);
6758 }
6759
6760 em = alloc_extent_map();
6761 if (!em)
6762 return -ENOMEM;
6763 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6764 if (!map) {
6765 free_extent_map(em);
6766 return -ENOMEM;
6767 }
6768
6769 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6770 em->map_lookup = map;
6771 em->start = logical;
6772 em->len = length;
6773 em->orig_start = 0;
6774 em->block_start = 0;
6775 em->block_len = em->len;
6776
6777 map->num_stripes = num_stripes;
6778 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6779 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6780 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6781 map->type = btrfs_chunk_type(leaf, chunk);
6782 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6783 map->verified_stripes = 0;
6784 em->orig_block_len = calc_stripe_length(map->type, em->len,
6785 map->num_stripes);
6786 for (i = 0; i < num_stripes; i++) {
6787 map->stripes[i].physical =
6788 btrfs_stripe_offset_nr(leaf, chunk, i);
6789 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6790 read_extent_buffer(leaf, uuid, (unsigned long)
6791 btrfs_stripe_dev_uuid_nr(chunk, i),
6792 BTRFS_UUID_SIZE);
6793 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6794 devid, uuid, NULL, true);
6795 if (!map->stripes[i].dev &&
6796 !btrfs_test_opt(fs_info, DEGRADED)) {
6797 free_extent_map(em);
6798 btrfs_report_missing_device(fs_info, devid, uuid, true);
6799 return -ENOENT;
6800 }
6801 if (!map->stripes[i].dev) {
6802 map->stripes[i].dev =
6803 add_missing_dev(fs_info->fs_devices, devid,
6804 uuid);
6805 if (IS_ERR(map->stripes[i].dev)) {
6806 free_extent_map(em);
6807 btrfs_err(fs_info,
6808 "failed to init missing dev %llu: %ld",
6809 devid, PTR_ERR(map->stripes[i].dev));
6810 return PTR_ERR(map->stripes[i].dev);
6811 }
6812 btrfs_report_missing_device(fs_info, devid, uuid, false);
6813 }
6814 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6815 &(map->stripes[i].dev->dev_state));
6816
6817 }
6818
6819 write_lock(&map_tree->lock);
6820 ret = add_extent_mapping(map_tree, em, 0);
6821 write_unlock(&map_tree->lock);
6822 if (ret < 0) {
6823 btrfs_err(fs_info,
6824 "failed to add chunk map, start=%llu len=%llu: %d",
6825 em->start, em->len, ret);
6826 }
6827 free_extent_map(em);
6828
6829 return ret;
6830 }
6831
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6832 static void fill_device_from_item(struct extent_buffer *leaf,
6833 struct btrfs_dev_item *dev_item,
6834 struct btrfs_device *device)
6835 {
6836 unsigned long ptr;
6837
6838 device->devid = btrfs_device_id(leaf, dev_item);
6839 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6840 device->total_bytes = device->disk_total_bytes;
6841 device->commit_total_bytes = device->disk_total_bytes;
6842 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6843 device->commit_bytes_used = device->bytes_used;
6844 device->type = btrfs_device_type(leaf, dev_item);
6845 device->io_align = btrfs_device_io_align(leaf, dev_item);
6846 device->io_width = btrfs_device_io_width(leaf, dev_item);
6847 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6848 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6849 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6850
6851 ptr = btrfs_device_uuid(dev_item);
6852 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6853 }
6854
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6855 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6856 u8 *fsid)
6857 {
6858 struct btrfs_fs_devices *fs_devices;
6859 int ret;
6860
6861 lockdep_assert_held(&uuid_mutex);
6862 ASSERT(fsid);
6863
6864 fs_devices = fs_info->fs_devices->seed;
6865 while (fs_devices) {
6866 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6867 return fs_devices;
6868
6869 fs_devices = fs_devices->seed;
6870 }
6871
6872 fs_devices = find_fsid(fsid, NULL);
6873 if (!fs_devices) {
6874 if (!btrfs_test_opt(fs_info, DEGRADED))
6875 return ERR_PTR(-ENOENT);
6876
6877 fs_devices = alloc_fs_devices(fsid, NULL);
6878 if (IS_ERR(fs_devices))
6879 return fs_devices;
6880
6881 fs_devices->seeding = 1;
6882 fs_devices->opened = 1;
6883 return fs_devices;
6884 }
6885
6886 fs_devices = clone_fs_devices(fs_devices);
6887 if (IS_ERR(fs_devices))
6888 return fs_devices;
6889
6890 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6891 if (ret) {
6892 free_fs_devices(fs_devices);
6893 fs_devices = ERR_PTR(ret);
6894 goto out;
6895 }
6896
6897 if (!fs_devices->seeding) {
6898 close_fs_devices(fs_devices);
6899 free_fs_devices(fs_devices);
6900 fs_devices = ERR_PTR(-EINVAL);
6901 goto out;
6902 }
6903
6904 fs_devices->seed = fs_info->fs_devices->seed;
6905 fs_info->fs_devices->seed = fs_devices;
6906 out:
6907 return fs_devices;
6908 }
6909
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6910 static int read_one_dev(struct extent_buffer *leaf,
6911 struct btrfs_dev_item *dev_item)
6912 {
6913 struct btrfs_fs_info *fs_info = leaf->fs_info;
6914 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6915 struct btrfs_device *device;
6916 u64 devid;
6917 int ret;
6918 u8 fs_uuid[BTRFS_FSID_SIZE];
6919 u8 dev_uuid[BTRFS_UUID_SIZE];
6920
6921 devid = btrfs_device_id(leaf, dev_item);
6922 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6923 BTRFS_UUID_SIZE);
6924 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6925 BTRFS_FSID_SIZE);
6926
6927 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6928 fs_devices = open_seed_devices(fs_info, fs_uuid);
6929 if (IS_ERR(fs_devices))
6930 return PTR_ERR(fs_devices);
6931 }
6932
6933 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6934 fs_uuid, true);
6935 if (!device) {
6936 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6937 btrfs_report_missing_device(fs_info, devid,
6938 dev_uuid, true);
6939 return -ENOENT;
6940 }
6941
6942 device = add_missing_dev(fs_devices, devid, dev_uuid);
6943 if (IS_ERR(device)) {
6944 btrfs_err(fs_info,
6945 "failed to add missing dev %llu: %ld",
6946 devid, PTR_ERR(device));
6947 return PTR_ERR(device);
6948 }
6949 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6950 } else {
6951 if (!device->bdev) {
6952 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6953 btrfs_report_missing_device(fs_info,
6954 devid, dev_uuid, true);
6955 return -ENOENT;
6956 }
6957 btrfs_report_missing_device(fs_info, devid,
6958 dev_uuid, false);
6959 }
6960
6961 if (!device->bdev &&
6962 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6963 /*
6964 * this happens when a device that was properly setup
6965 * in the device info lists suddenly goes bad.
6966 * device->bdev is NULL, and so we have to set
6967 * device->missing to one here
6968 */
6969 device->fs_devices->missing_devices++;
6970 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6971 }
6972
6973 /* Move the device to its own fs_devices */
6974 if (device->fs_devices != fs_devices) {
6975 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6976 &device->dev_state));
6977
6978 list_move(&device->dev_list, &fs_devices->devices);
6979 device->fs_devices->num_devices--;
6980 fs_devices->num_devices++;
6981
6982 device->fs_devices->missing_devices--;
6983 fs_devices->missing_devices++;
6984
6985 device->fs_devices = fs_devices;
6986 }
6987 }
6988
6989 if (device->fs_devices != fs_info->fs_devices) {
6990 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6991 if (device->generation !=
6992 btrfs_device_generation(leaf, dev_item))
6993 return -EINVAL;
6994 }
6995
6996 fill_device_from_item(leaf, dev_item, device);
6997 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6998 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6999 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7000 device->fs_devices->total_rw_bytes += device->total_bytes;
7001 atomic64_add(device->total_bytes - device->bytes_used,
7002 &fs_info->free_chunk_space);
7003 }
7004 ret = 0;
7005 return ret;
7006 }
7007
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7008 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7009 {
7010 struct btrfs_root *root = fs_info->tree_root;
7011 struct btrfs_super_block *super_copy = fs_info->super_copy;
7012 struct extent_buffer *sb;
7013 struct btrfs_disk_key *disk_key;
7014 struct btrfs_chunk *chunk;
7015 u8 *array_ptr;
7016 unsigned long sb_array_offset;
7017 int ret = 0;
7018 u32 num_stripes;
7019 u32 array_size;
7020 u32 len = 0;
7021 u32 cur_offset;
7022 u64 type;
7023 struct btrfs_key key;
7024
7025 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7026 /*
7027 * This will create extent buffer of nodesize, superblock size is
7028 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7029 * overallocate but we can keep it as-is, only the first page is used.
7030 */
7031 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7032 if (IS_ERR(sb))
7033 return PTR_ERR(sb);
7034 set_extent_buffer_uptodate(sb);
7035 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7036 /*
7037 * The sb extent buffer is artificial and just used to read the system array.
7038 * set_extent_buffer_uptodate() call does not properly mark all it's
7039 * pages up-to-date when the page is larger: extent does not cover the
7040 * whole page and consequently check_page_uptodate does not find all
7041 * the page's extents up-to-date (the hole beyond sb),
7042 * write_extent_buffer then triggers a WARN_ON.
7043 *
7044 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7045 * but sb spans only this function. Add an explicit SetPageUptodate call
7046 * to silence the warning eg. on PowerPC 64.
7047 */
7048 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7049 SetPageUptodate(sb->pages[0]);
7050
7051 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7052 array_size = btrfs_super_sys_array_size(super_copy);
7053
7054 array_ptr = super_copy->sys_chunk_array;
7055 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7056 cur_offset = 0;
7057
7058 while (cur_offset < array_size) {
7059 disk_key = (struct btrfs_disk_key *)array_ptr;
7060 len = sizeof(*disk_key);
7061 if (cur_offset + len > array_size)
7062 goto out_short_read;
7063
7064 btrfs_disk_key_to_cpu(&key, disk_key);
7065
7066 array_ptr += len;
7067 sb_array_offset += len;
7068 cur_offset += len;
7069
7070 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7071 chunk = (struct btrfs_chunk *)sb_array_offset;
7072 /*
7073 * At least one btrfs_chunk with one stripe must be
7074 * present, exact stripe count check comes afterwards
7075 */
7076 len = btrfs_chunk_item_size(1);
7077 if (cur_offset + len > array_size)
7078 goto out_short_read;
7079
7080 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7081 if (!num_stripes) {
7082 btrfs_err(fs_info,
7083 "invalid number of stripes %u in sys_array at offset %u",
7084 num_stripes, cur_offset);
7085 ret = -EIO;
7086 break;
7087 }
7088
7089 type = btrfs_chunk_type(sb, chunk);
7090 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7091 btrfs_err(fs_info,
7092 "invalid chunk type %llu in sys_array at offset %u",
7093 type, cur_offset);
7094 ret = -EIO;
7095 break;
7096 }
7097
7098 len = btrfs_chunk_item_size(num_stripes);
7099 if (cur_offset + len > array_size)
7100 goto out_short_read;
7101
7102 ret = read_one_chunk(&key, sb, chunk);
7103 if (ret)
7104 break;
7105 } else {
7106 btrfs_err(fs_info,
7107 "unexpected item type %u in sys_array at offset %u",
7108 (u32)key.type, cur_offset);
7109 ret = -EIO;
7110 break;
7111 }
7112 array_ptr += len;
7113 sb_array_offset += len;
7114 cur_offset += len;
7115 }
7116 clear_extent_buffer_uptodate(sb);
7117 free_extent_buffer_stale(sb);
7118 return ret;
7119
7120 out_short_read:
7121 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7122 len, cur_offset);
7123 clear_extent_buffer_uptodate(sb);
7124 free_extent_buffer_stale(sb);
7125 return -EIO;
7126 }
7127
7128 /*
7129 * Check if all chunks in the fs are OK for read-write degraded mount
7130 *
7131 * If the @failing_dev is specified, it's accounted as missing.
7132 *
7133 * Return true if all chunks meet the minimal RW mount requirements.
7134 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7135 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7136 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7137 struct btrfs_device *failing_dev)
7138 {
7139 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7140 struct extent_map *em;
7141 u64 next_start = 0;
7142 bool ret = true;
7143
7144 read_lock(&map_tree->lock);
7145 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7146 read_unlock(&map_tree->lock);
7147 /* No chunk at all? Return false anyway */
7148 if (!em) {
7149 ret = false;
7150 goto out;
7151 }
7152 while (em) {
7153 struct map_lookup *map;
7154 int missing = 0;
7155 int max_tolerated;
7156 int i;
7157
7158 map = em->map_lookup;
7159 max_tolerated =
7160 btrfs_get_num_tolerated_disk_barrier_failures(
7161 map->type);
7162 for (i = 0; i < map->num_stripes; i++) {
7163 struct btrfs_device *dev = map->stripes[i].dev;
7164
7165 if (!dev || !dev->bdev ||
7166 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7167 dev->last_flush_error)
7168 missing++;
7169 else if (failing_dev && failing_dev == dev)
7170 missing++;
7171 }
7172 if (missing > max_tolerated) {
7173 if (!failing_dev)
7174 btrfs_warn(fs_info,
7175 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7176 em->start, missing, max_tolerated);
7177 free_extent_map(em);
7178 ret = false;
7179 goto out;
7180 }
7181 next_start = extent_map_end(em);
7182 free_extent_map(em);
7183
7184 read_lock(&map_tree->lock);
7185 em = lookup_extent_mapping(map_tree, next_start,
7186 (u64)(-1) - next_start);
7187 read_unlock(&map_tree->lock);
7188 }
7189 out:
7190 return ret;
7191 }
7192
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7193 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7194 {
7195 struct btrfs_root *root = fs_info->chunk_root;
7196 struct btrfs_path *path;
7197 struct extent_buffer *leaf;
7198 struct btrfs_key key;
7199 struct btrfs_key found_key;
7200 int ret;
7201 int slot;
7202 u64 total_dev = 0;
7203
7204 path = btrfs_alloc_path();
7205 if (!path)
7206 return -ENOMEM;
7207
7208 /*
7209 * uuid_mutex is needed only if we are mounting a sprout FS
7210 * otherwise we don't need it.
7211 */
7212 mutex_lock(&uuid_mutex);
7213 mutex_lock(&fs_info->chunk_mutex);
7214
7215 /*
7216 * Read all device items, and then all the chunk items. All
7217 * device items are found before any chunk item (their object id
7218 * is smaller than the lowest possible object id for a chunk
7219 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7220 */
7221 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7222 key.offset = 0;
7223 key.type = 0;
7224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7225 if (ret < 0)
7226 goto error;
7227 while (1) {
7228 leaf = path->nodes[0];
7229 slot = path->slots[0];
7230 if (slot >= btrfs_header_nritems(leaf)) {
7231 ret = btrfs_next_leaf(root, path);
7232 if (ret == 0)
7233 continue;
7234 if (ret < 0)
7235 goto error;
7236 break;
7237 }
7238 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7239 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7240 struct btrfs_dev_item *dev_item;
7241 dev_item = btrfs_item_ptr(leaf, slot,
7242 struct btrfs_dev_item);
7243 ret = read_one_dev(leaf, dev_item);
7244 if (ret)
7245 goto error;
7246 total_dev++;
7247 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7248 struct btrfs_chunk *chunk;
7249 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7250 ret = read_one_chunk(&found_key, leaf, chunk);
7251 if (ret)
7252 goto error;
7253 }
7254 path->slots[0]++;
7255 }
7256
7257 /*
7258 * After loading chunk tree, we've got all device information,
7259 * do another round of validation checks.
7260 */
7261 if (total_dev != fs_info->fs_devices->total_devices) {
7262 btrfs_err(fs_info,
7263 "super_num_devices %llu mismatch with num_devices %llu found here",
7264 btrfs_super_num_devices(fs_info->super_copy),
7265 total_dev);
7266 ret = -EINVAL;
7267 goto error;
7268 }
7269 if (btrfs_super_total_bytes(fs_info->super_copy) <
7270 fs_info->fs_devices->total_rw_bytes) {
7271 btrfs_err(fs_info,
7272 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7273 btrfs_super_total_bytes(fs_info->super_copy),
7274 fs_info->fs_devices->total_rw_bytes);
7275 ret = -EINVAL;
7276 goto error;
7277 }
7278 ret = 0;
7279 error:
7280 mutex_unlock(&fs_info->chunk_mutex);
7281 mutex_unlock(&uuid_mutex);
7282
7283 btrfs_free_path(path);
7284 return ret;
7285 }
7286
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7287 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7288 {
7289 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7290 struct btrfs_device *device;
7291
7292 while (fs_devices) {
7293 mutex_lock(&fs_devices->device_list_mutex);
7294 list_for_each_entry(device, &fs_devices->devices, dev_list)
7295 device->fs_info = fs_info;
7296 mutex_unlock(&fs_devices->device_list_mutex);
7297
7298 fs_devices = fs_devices->seed;
7299 }
7300 }
7301
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7302 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7303 const struct btrfs_dev_stats_item *ptr,
7304 int index)
7305 {
7306 u64 val;
7307
7308 read_extent_buffer(eb, &val,
7309 offsetof(struct btrfs_dev_stats_item, values) +
7310 ((unsigned long)ptr) + (index * sizeof(u64)),
7311 sizeof(val));
7312 return val;
7313 }
7314
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7315 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7316 struct btrfs_dev_stats_item *ptr,
7317 int index, u64 val)
7318 {
7319 write_extent_buffer(eb, &val,
7320 offsetof(struct btrfs_dev_stats_item, values) +
7321 ((unsigned long)ptr) + (index * sizeof(u64)),
7322 sizeof(val));
7323 }
7324
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7325 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7326 {
7327 struct btrfs_key key;
7328 struct btrfs_root *dev_root = fs_info->dev_root;
7329 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7330 struct extent_buffer *eb;
7331 int slot;
7332 int ret = 0;
7333 struct btrfs_device *device;
7334 struct btrfs_path *path = NULL;
7335 int i;
7336
7337 path = btrfs_alloc_path();
7338 if (!path)
7339 return -ENOMEM;
7340
7341 mutex_lock(&fs_devices->device_list_mutex);
7342 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7343 int item_size;
7344 struct btrfs_dev_stats_item *ptr;
7345
7346 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7347 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7348 key.offset = device->devid;
7349 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7350 if (ret) {
7351 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7352 btrfs_dev_stat_set(device, i, 0);
7353 device->dev_stats_valid = 1;
7354 btrfs_release_path(path);
7355 continue;
7356 }
7357 slot = path->slots[0];
7358 eb = path->nodes[0];
7359 item_size = btrfs_item_size_nr(eb, slot);
7360
7361 ptr = btrfs_item_ptr(eb, slot,
7362 struct btrfs_dev_stats_item);
7363
7364 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7365 if (item_size >= (1 + i) * sizeof(__le64))
7366 btrfs_dev_stat_set(device, i,
7367 btrfs_dev_stats_value(eb, ptr, i));
7368 else
7369 btrfs_dev_stat_set(device, i, 0);
7370 }
7371
7372 device->dev_stats_valid = 1;
7373 btrfs_dev_stat_print_on_load(device);
7374 btrfs_release_path(path);
7375 }
7376 mutex_unlock(&fs_devices->device_list_mutex);
7377
7378 btrfs_free_path(path);
7379 return ret < 0 ? ret : 0;
7380 }
7381
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7382 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7383 struct btrfs_device *device)
7384 {
7385 struct btrfs_fs_info *fs_info = trans->fs_info;
7386 struct btrfs_root *dev_root = fs_info->dev_root;
7387 struct btrfs_path *path;
7388 struct btrfs_key key;
7389 struct extent_buffer *eb;
7390 struct btrfs_dev_stats_item *ptr;
7391 int ret;
7392 int i;
7393
7394 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7395 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7396 key.offset = device->devid;
7397
7398 path = btrfs_alloc_path();
7399 if (!path)
7400 return -ENOMEM;
7401 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7402 if (ret < 0) {
7403 btrfs_warn_in_rcu(fs_info,
7404 "error %d while searching for dev_stats item for device %s",
7405 ret, rcu_str_deref(device->name));
7406 goto out;
7407 }
7408
7409 if (ret == 0 &&
7410 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7411 /* need to delete old one and insert a new one */
7412 ret = btrfs_del_item(trans, dev_root, path);
7413 if (ret != 0) {
7414 btrfs_warn_in_rcu(fs_info,
7415 "delete too small dev_stats item for device %s failed %d",
7416 rcu_str_deref(device->name), ret);
7417 goto out;
7418 }
7419 ret = 1;
7420 }
7421
7422 if (ret == 1) {
7423 /* need to insert a new item */
7424 btrfs_release_path(path);
7425 ret = btrfs_insert_empty_item(trans, dev_root, path,
7426 &key, sizeof(*ptr));
7427 if (ret < 0) {
7428 btrfs_warn_in_rcu(fs_info,
7429 "insert dev_stats item for device %s failed %d",
7430 rcu_str_deref(device->name), ret);
7431 goto out;
7432 }
7433 }
7434
7435 eb = path->nodes[0];
7436 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7437 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7438 btrfs_set_dev_stats_value(eb, ptr, i,
7439 btrfs_dev_stat_read(device, i));
7440 btrfs_mark_buffer_dirty(eb);
7441
7442 out:
7443 btrfs_free_path(path);
7444 return ret;
7445 }
7446
7447 /*
7448 * called from commit_transaction. Writes all changed device stats to disk.
7449 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7450 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7451 {
7452 struct btrfs_fs_info *fs_info = trans->fs_info;
7453 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7454 struct btrfs_device *device;
7455 int stats_cnt;
7456 int ret = 0;
7457
7458 mutex_lock(&fs_devices->device_list_mutex);
7459 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7460 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7461 if (!device->dev_stats_valid || stats_cnt == 0)
7462 continue;
7463
7464
7465 /*
7466 * There is a LOAD-LOAD control dependency between the value of
7467 * dev_stats_ccnt and updating the on-disk values which requires
7468 * reading the in-memory counters. Such control dependencies
7469 * require explicit read memory barriers.
7470 *
7471 * This memory barriers pairs with smp_mb__before_atomic in
7472 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7473 * barrier implied by atomic_xchg in
7474 * btrfs_dev_stats_read_and_reset
7475 */
7476 smp_rmb();
7477
7478 ret = update_dev_stat_item(trans, device);
7479 if (!ret)
7480 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7481 }
7482 mutex_unlock(&fs_devices->device_list_mutex);
7483
7484 return ret;
7485 }
7486
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7487 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7488 {
7489 btrfs_dev_stat_inc(dev, index);
7490 btrfs_dev_stat_print_on_error(dev);
7491 }
7492
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7493 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7494 {
7495 if (!dev->dev_stats_valid)
7496 return;
7497 btrfs_err_rl_in_rcu(dev->fs_info,
7498 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7499 rcu_str_deref(dev->name),
7500 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7501 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7502 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7503 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7504 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7505 }
7506
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7507 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7508 {
7509 int i;
7510
7511 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7512 if (btrfs_dev_stat_read(dev, i) != 0)
7513 break;
7514 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7515 return; /* all values == 0, suppress message */
7516
7517 btrfs_info_in_rcu(dev->fs_info,
7518 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7519 rcu_str_deref(dev->name),
7520 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7521 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7522 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7523 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7524 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7525 }
7526
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7527 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7528 struct btrfs_ioctl_get_dev_stats *stats)
7529 {
7530 struct btrfs_device *dev;
7531 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7532 int i;
7533
7534 mutex_lock(&fs_devices->device_list_mutex);
7535 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7536 true);
7537 mutex_unlock(&fs_devices->device_list_mutex);
7538
7539 if (!dev) {
7540 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7541 return -ENODEV;
7542 } else if (!dev->dev_stats_valid) {
7543 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7544 return -ENODEV;
7545 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7546 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7547 if (stats->nr_items > i)
7548 stats->values[i] =
7549 btrfs_dev_stat_read_and_reset(dev, i);
7550 else
7551 btrfs_dev_stat_set(dev, i, 0);
7552 }
7553 } else {
7554 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7555 if (stats->nr_items > i)
7556 stats->values[i] = btrfs_dev_stat_read(dev, i);
7557 }
7558 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7559 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7560 return 0;
7561 }
7562
btrfs_scratch_superblocks(struct block_device * bdev,const char * device_path)7563 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7564 {
7565 struct buffer_head *bh;
7566 struct btrfs_super_block *disk_super;
7567 int copy_num;
7568
7569 if (!bdev)
7570 return;
7571
7572 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7573 copy_num++) {
7574
7575 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7576 continue;
7577
7578 disk_super = (struct btrfs_super_block *)bh->b_data;
7579
7580 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7581 set_buffer_dirty(bh);
7582 sync_dirty_buffer(bh);
7583 brelse(bh);
7584 }
7585
7586 /* Notify udev that device has changed */
7587 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7588
7589 /* Update ctime/mtime for device path for libblkid */
7590 update_dev_time(device_path);
7591 }
7592
7593 /*
7594 * Update the size and bytes used for each device where it changed. This is
7595 * delayed since we would otherwise get errors while writing out the
7596 * superblocks.
7597 *
7598 * Must be invoked during transaction commit.
7599 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7600 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7601 {
7602 struct btrfs_device *curr, *next;
7603
7604 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7605
7606 if (list_empty(&trans->dev_update_list))
7607 return;
7608
7609 /*
7610 * We don't need the device_list_mutex here. This list is owned by the
7611 * transaction and the transaction must complete before the device is
7612 * released.
7613 */
7614 mutex_lock(&trans->fs_info->chunk_mutex);
7615 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7616 post_commit_list) {
7617 list_del_init(&curr->post_commit_list);
7618 curr->commit_total_bytes = curr->disk_total_bytes;
7619 curr->commit_bytes_used = curr->bytes_used;
7620 }
7621 mutex_unlock(&trans->fs_info->chunk_mutex);
7622 }
7623
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7624 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7625 {
7626 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7627 while (fs_devices) {
7628 fs_devices->fs_info = fs_info;
7629 fs_devices = fs_devices->seed;
7630 }
7631 }
7632
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7633 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7634 {
7635 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7636 while (fs_devices) {
7637 fs_devices->fs_info = NULL;
7638 fs_devices = fs_devices->seed;
7639 }
7640 }
7641
7642 /*
7643 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7644 */
btrfs_bg_type_to_factor(u64 flags)7645 int btrfs_bg_type_to_factor(u64 flags)
7646 {
7647 const int index = btrfs_bg_flags_to_raid_index(flags);
7648
7649 return btrfs_raid_array[index].ncopies;
7650 }
7651
7652
7653
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7654 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7655 u64 chunk_offset, u64 devid,
7656 u64 physical_offset, u64 physical_len)
7657 {
7658 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7659 struct extent_map *em;
7660 struct map_lookup *map;
7661 struct btrfs_device *dev;
7662 u64 stripe_len;
7663 bool found = false;
7664 int ret = 0;
7665 int i;
7666
7667 read_lock(&em_tree->lock);
7668 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7669 read_unlock(&em_tree->lock);
7670
7671 if (!em) {
7672 btrfs_err(fs_info,
7673 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7674 physical_offset, devid);
7675 ret = -EUCLEAN;
7676 goto out;
7677 }
7678
7679 map = em->map_lookup;
7680 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7681 if (physical_len != stripe_len) {
7682 btrfs_err(fs_info,
7683 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7684 physical_offset, devid, em->start, physical_len,
7685 stripe_len);
7686 ret = -EUCLEAN;
7687 goto out;
7688 }
7689
7690 for (i = 0; i < map->num_stripes; i++) {
7691 if (map->stripes[i].dev->devid == devid &&
7692 map->stripes[i].physical == physical_offset) {
7693 found = true;
7694 if (map->verified_stripes >= map->num_stripes) {
7695 btrfs_err(fs_info,
7696 "too many dev extents for chunk %llu found",
7697 em->start);
7698 ret = -EUCLEAN;
7699 goto out;
7700 }
7701 map->verified_stripes++;
7702 break;
7703 }
7704 }
7705 if (!found) {
7706 btrfs_err(fs_info,
7707 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7708 physical_offset, devid);
7709 ret = -EUCLEAN;
7710 }
7711
7712 /* Make sure no dev extent is beyond device bondary */
7713 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7714 if (!dev) {
7715 btrfs_err(fs_info, "failed to find devid %llu", devid);
7716 ret = -EUCLEAN;
7717 goto out;
7718 }
7719
7720 /* It's possible this device is a dummy for seed device */
7721 if (dev->disk_total_bytes == 0) {
7722 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7723 NULL, false);
7724 if (!dev) {
7725 btrfs_err(fs_info, "failed to find seed devid %llu",
7726 devid);
7727 ret = -EUCLEAN;
7728 goto out;
7729 }
7730 }
7731
7732 if (physical_offset + physical_len > dev->disk_total_bytes) {
7733 btrfs_err(fs_info,
7734 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7735 devid, physical_offset, physical_len,
7736 dev->disk_total_bytes);
7737 ret = -EUCLEAN;
7738 goto out;
7739 }
7740 out:
7741 free_extent_map(em);
7742 return ret;
7743 }
7744
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7745 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7746 {
7747 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7748 struct extent_map *em;
7749 struct rb_node *node;
7750 int ret = 0;
7751
7752 read_lock(&em_tree->lock);
7753 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7754 em = rb_entry(node, struct extent_map, rb_node);
7755 if (em->map_lookup->num_stripes !=
7756 em->map_lookup->verified_stripes) {
7757 btrfs_err(fs_info,
7758 "chunk %llu has missing dev extent, have %d expect %d",
7759 em->start, em->map_lookup->verified_stripes,
7760 em->map_lookup->num_stripes);
7761 ret = -EUCLEAN;
7762 goto out;
7763 }
7764 }
7765 out:
7766 read_unlock(&em_tree->lock);
7767 return ret;
7768 }
7769
7770 /*
7771 * Ensure that all dev extents are mapped to correct chunk, otherwise
7772 * later chunk allocation/free would cause unexpected behavior.
7773 *
7774 * NOTE: This will iterate through the whole device tree, which should be of
7775 * the same size level as the chunk tree. This slightly increases mount time.
7776 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7777 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7778 {
7779 struct btrfs_path *path;
7780 struct btrfs_root *root = fs_info->dev_root;
7781 struct btrfs_key key;
7782 u64 prev_devid = 0;
7783 u64 prev_dev_ext_end = 0;
7784 int ret = 0;
7785
7786 key.objectid = 1;
7787 key.type = BTRFS_DEV_EXTENT_KEY;
7788 key.offset = 0;
7789
7790 path = btrfs_alloc_path();
7791 if (!path)
7792 return -ENOMEM;
7793
7794 path->reada = READA_FORWARD;
7795 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7796 if (ret < 0)
7797 goto out;
7798
7799 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7800 ret = btrfs_next_item(root, path);
7801 if (ret < 0)
7802 goto out;
7803 /* No dev extents at all? Not good */
7804 if (ret > 0) {
7805 ret = -EUCLEAN;
7806 goto out;
7807 }
7808 }
7809 while (1) {
7810 struct extent_buffer *leaf = path->nodes[0];
7811 struct btrfs_dev_extent *dext;
7812 int slot = path->slots[0];
7813 u64 chunk_offset;
7814 u64 physical_offset;
7815 u64 physical_len;
7816 u64 devid;
7817
7818 btrfs_item_key_to_cpu(leaf, &key, slot);
7819 if (key.type != BTRFS_DEV_EXTENT_KEY)
7820 break;
7821 devid = key.objectid;
7822 physical_offset = key.offset;
7823
7824 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7825 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7826 physical_len = btrfs_dev_extent_length(leaf, dext);
7827
7828 /* Check if this dev extent overlaps with the previous one */
7829 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7830 btrfs_err(fs_info,
7831 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7832 devid, physical_offset, prev_dev_ext_end);
7833 ret = -EUCLEAN;
7834 goto out;
7835 }
7836
7837 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7838 physical_offset, physical_len);
7839 if (ret < 0)
7840 goto out;
7841 prev_devid = devid;
7842 prev_dev_ext_end = physical_offset + physical_len;
7843
7844 ret = btrfs_next_item(root, path);
7845 if (ret < 0)
7846 goto out;
7847 if (ret > 0) {
7848 ret = 0;
7849 break;
7850 }
7851 }
7852
7853 /* Ensure all chunks have corresponding dev extents */
7854 ret = verify_chunk_dev_extent_mapping(fs_info);
7855 out:
7856 btrfs_free_path(path);
7857 return ret;
7858 }
7859
7860 /*
7861 * Check whether the given block group or device is pinned by any inode being
7862 * used as a swapfile.
7863 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7864 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7865 {
7866 struct btrfs_swapfile_pin *sp;
7867 struct rb_node *node;
7868
7869 spin_lock(&fs_info->swapfile_pins_lock);
7870 node = fs_info->swapfile_pins.rb_node;
7871 while (node) {
7872 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7873 if (ptr < sp->ptr)
7874 node = node->rb_left;
7875 else if (ptr > sp->ptr)
7876 node = node->rb_right;
7877 else
7878 break;
7879 }
7880 spin_unlock(&fs_info->swapfile_pins_lock);
7881 return node != NULL;
7882 }
7883