• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 
53 struct btrfs_iget_args {
54 	struct btrfs_key *location;
55 	struct btrfs_root *root;
56 };
57 
58 struct btrfs_dio_data {
59 	u64 reserve;
60 	u64 unsubmitted_oe_range_start;
61 	u64 unsubmitted_oe_range_end;
62 	int overwrite;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 static const struct extent_io_ops btrfs_extent_io_ops;
73 
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79 
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct inode *inode,
84 				   struct page *locked_page,
85 				   u64 start, u64 end, int *page_started,
86 				   unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 				       u64 orig_start, u64 block_start,
89 				       u64 block_len, u64 orig_block_len,
90 				       u64 ram_bytes, int compress_type,
91 				       int type);
92 
93 static void __endio_write_update_ordered(struct inode *inode,
94 					 const u64 offset, const u64 bytes,
95 					 const bool uptodate);
96 
97 /*
98  * Cleanup all submitted ordered extents in specified range to handle errors
99  * from the btrfs_run_delalloc_range() callback.
100  *
101  * NOTE: caller must ensure that when an error happens, it can not call
102  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104  * to be released, which we want to happen only when finishing the ordered
105  * extent (btrfs_finish_ordered_io()).
106  */
btrfs_cleanup_ordered_extents(struct inode * inode,struct page * locked_page,u64 offset,u64 bytes)107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
108 						 struct page *locked_page,
109 						 u64 offset, u64 bytes)
110 {
111 	unsigned long index = offset >> PAGE_SHIFT;
112 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
113 	u64 page_start = page_offset(locked_page);
114 	u64 page_end = page_start + PAGE_SIZE - 1;
115 
116 	struct page *page;
117 
118 	while (index <= end_index) {
119 		page = find_get_page(inode->i_mapping, index);
120 		index++;
121 		if (!page)
122 			continue;
123 		ClearPagePrivate2(page);
124 		put_page(page);
125 	}
126 
127 	/*
128 	 * In case this page belongs to the delalloc range being instantiated
129 	 * then skip it, since the first page of a range is going to be
130 	 * properly cleaned up by the caller of run_delalloc_range
131 	 */
132 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 		offset += PAGE_SIZE;
134 		bytes -= PAGE_SIZE;
135 	}
136 
137 	return __endio_write_update_ordered(inode, offset, bytes, false);
138 }
139 
140 static int btrfs_dirty_inode(struct inode *inode);
141 
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)143 void btrfs_test_inode_set_ops(struct inode *inode)
144 {
145 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 }
147 #endif
148 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
150 				     struct inode *inode,  struct inode *dir,
151 				     const struct qstr *qstr)
152 {
153 	int err;
154 
155 	err = btrfs_init_acl(trans, inode, dir);
156 	if (!err)
157 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
158 	return err;
159 }
160 
161 /*
162  * this does all the hard work for inserting an inline extent into
163  * the btree.  The caller should have done a btrfs_drop_extents so that
164  * no overlapping inline items exist in the btree
165  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)166 static int insert_inline_extent(struct btrfs_trans_handle *trans,
167 				struct btrfs_path *path, int extent_inserted,
168 				struct btrfs_root *root, struct inode *inode,
169 				u64 start, size_t size, size_t compressed_size,
170 				int compress_type,
171 				struct page **compressed_pages)
172 {
173 	struct extent_buffer *leaf;
174 	struct page *page = NULL;
175 	char *kaddr;
176 	unsigned long ptr;
177 	struct btrfs_file_extent_item *ei;
178 	int ret;
179 	size_t cur_size = size;
180 	unsigned long offset;
181 
182 	ASSERT((compressed_size > 0 && compressed_pages) ||
183 	       (compressed_size == 0 && !compressed_pages));
184 
185 	if (compressed_size && compressed_pages)
186 		cur_size = compressed_size;
187 
188 	inode_add_bytes(inode, size);
189 
190 	if (!extent_inserted) {
191 		struct btrfs_key key;
192 		size_t datasize;
193 
194 		key.objectid = btrfs_ino(BTRFS_I(inode));
195 		key.offset = start;
196 		key.type = BTRFS_EXTENT_DATA_KEY;
197 
198 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 		path->leave_spinning = 1;
200 		ret = btrfs_insert_empty_item(trans, root, path, &key,
201 					      datasize);
202 		if (ret)
203 			goto fail;
204 	}
205 	leaf = path->nodes[0];
206 	ei = btrfs_item_ptr(leaf, path->slots[0],
207 			    struct btrfs_file_extent_item);
208 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 	btrfs_set_file_extent_encryption(leaf, ei, 0);
211 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 	ptr = btrfs_file_extent_inline_start(ei);
214 
215 	if (compress_type != BTRFS_COMPRESS_NONE) {
216 		struct page *cpage;
217 		int i = 0;
218 		while (compressed_size > 0) {
219 			cpage = compressed_pages[i];
220 			cur_size = min_t(unsigned long, compressed_size,
221 				       PAGE_SIZE);
222 
223 			kaddr = kmap_atomic(cpage);
224 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
225 			kunmap_atomic(kaddr);
226 
227 			i++;
228 			ptr += cur_size;
229 			compressed_size -= cur_size;
230 		}
231 		btrfs_set_file_extent_compression(leaf, ei,
232 						  compress_type);
233 	} else {
234 		page = find_get_page(inode->i_mapping,
235 				     start >> PAGE_SHIFT);
236 		btrfs_set_file_extent_compression(leaf, ei, 0);
237 		kaddr = kmap_atomic(page);
238 		offset = offset_in_page(start);
239 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
240 		kunmap_atomic(kaddr);
241 		put_page(page);
242 	}
243 	btrfs_mark_buffer_dirty(leaf);
244 	btrfs_release_path(path);
245 
246 	/*
247 	 * we're an inline extent, so nobody can
248 	 * extend the file past i_size without locking
249 	 * a page we already have locked.
250 	 *
251 	 * We must do any isize and inode updates
252 	 * before we unlock the pages.  Otherwise we
253 	 * could end up racing with unlink.
254 	 */
255 	BTRFS_I(inode)->disk_i_size = inode->i_size;
256 	ret = btrfs_update_inode(trans, root, inode);
257 
258 fail:
259 	return ret;
260 }
261 
262 
263 /*
264  * conditionally insert an inline extent into the file.  This
265  * does the checks required to make sure the data is small enough
266  * to fit as an inline extent.
267  */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)268 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
269 					  u64 end, size_t compressed_size,
270 					  int compress_type,
271 					  struct page **compressed_pages)
272 {
273 	struct btrfs_root *root = BTRFS_I(inode)->root;
274 	struct btrfs_fs_info *fs_info = root->fs_info;
275 	struct btrfs_trans_handle *trans;
276 	u64 isize = i_size_read(inode);
277 	u64 actual_end = min(end + 1, isize);
278 	u64 inline_len = actual_end - start;
279 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
280 	u64 data_len = inline_len;
281 	int ret;
282 	struct btrfs_path *path;
283 	int extent_inserted = 0;
284 	u32 extent_item_size;
285 
286 	if (compressed_size)
287 		data_len = compressed_size;
288 
289 	if (start > 0 ||
290 	    actual_end > fs_info->sectorsize ||
291 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
292 	    (!compressed_size &&
293 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
294 	    end + 1 < isize ||
295 	    data_len > fs_info->max_inline) {
296 		return 1;
297 	}
298 
299 	path = btrfs_alloc_path();
300 	if (!path)
301 		return -ENOMEM;
302 
303 	trans = btrfs_join_transaction(root);
304 	if (IS_ERR(trans)) {
305 		btrfs_free_path(path);
306 		return PTR_ERR(trans);
307 	}
308 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
309 
310 	if (compressed_size && compressed_pages)
311 		extent_item_size = btrfs_file_extent_calc_inline_size(
312 		   compressed_size);
313 	else
314 		extent_item_size = btrfs_file_extent_calc_inline_size(
315 		    inline_len);
316 
317 	ret = __btrfs_drop_extents(trans, root, inode, path,
318 				   start, aligned_end, NULL,
319 				   1, 1, extent_item_size, &extent_inserted);
320 	if (ret) {
321 		btrfs_abort_transaction(trans, ret);
322 		goto out;
323 	}
324 
325 	if (isize > actual_end)
326 		inline_len = min_t(u64, isize, actual_end);
327 	ret = insert_inline_extent(trans, path, extent_inserted,
328 				   root, inode, start,
329 				   inline_len, compressed_size,
330 				   compress_type, compressed_pages);
331 	if (ret && ret != -ENOSPC) {
332 		btrfs_abort_transaction(trans, ret);
333 		goto out;
334 	} else if (ret == -ENOSPC) {
335 		ret = 1;
336 		goto out;
337 	}
338 
339 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
340 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 	/*
343 	 * Don't forget to free the reserved space, as for inlined extent
344 	 * it won't count as data extent, free them directly here.
345 	 * And at reserve time, it's always aligned to page size, so
346 	 * just free one page here.
347 	 */
348 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 	btrfs_free_path(path);
350 	btrfs_end_transaction(trans);
351 	return ret;
352 }
353 
354 struct async_extent {
355 	u64 start;
356 	u64 ram_size;
357 	u64 compressed_size;
358 	struct page **pages;
359 	unsigned long nr_pages;
360 	int compress_type;
361 	struct list_head list;
362 };
363 
364 struct async_chunk {
365 	struct inode *inode;
366 	struct page *locked_page;
367 	u64 start;
368 	u64 end;
369 	unsigned int write_flags;
370 	struct list_head extents;
371 	struct btrfs_work work;
372 	atomic_t *pending;
373 };
374 
375 struct async_cow {
376 	/* Number of chunks in flight; must be first in the structure */
377 	atomic_t num_chunks;
378 	struct async_chunk chunks[];
379 };
380 
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)381 static noinline int add_async_extent(struct async_chunk *cow,
382 				     u64 start, u64 ram_size,
383 				     u64 compressed_size,
384 				     struct page **pages,
385 				     unsigned long nr_pages,
386 				     int compress_type)
387 {
388 	struct async_extent *async_extent;
389 
390 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 	BUG_ON(!async_extent); /* -ENOMEM */
392 	async_extent->start = start;
393 	async_extent->ram_size = ram_size;
394 	async_extent->compressed_size = compressed_size;
395 	async_extent->pages = pages;
396 	async_extent->nr_pages = nr_pages;
397 	async_extent->compress_type = compress_type;
398 	list_add_tail(&async_extent->list, &cow->extents);
399 	return 0;
400 }
401 
402 /*
403  * Check if the inode has flags compatible with compression
404  */
inode_can_compress(struct inode * inode)405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 		return false;
410 	return true;
411 }
412 
413 /*
414  * Check if the inode needs to be submitted to compression, based on mount
415  * options, defragmentation, properties or heuristics.
416  */
inode_need_compress(struct inode * inode,u64 start,u64 end)417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420 
421 	if (!inode_can_compress(inode)) {
422 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 			btrfs_ino(BTRFS_I(inode)));
425 		return 0;
426 	}
427 	/* force compress */
428 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 		return 1;
430 	/* defrag ioctl */
431 	if (BTRFS_I(inode)->defrag_compress)
432 		return 1;
433 	/* bad compression ratios */
434 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 		return 0;
436 	if (btrfs_test_opt(fs_info, COMPRESS) ||
437 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 	    BTRFS_I(inode)->prop_compress)
439 		return btrfs_compress_heuristic(inode, start, end);
440 	return 0;
441 }
442 
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 		u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 	/* If this is a small write inside eof, kick off a defrag */
447 	if (num_bytes < small_write &&
448 	    (start > 0 || end + 1 < inode->disk_i_size))
449 		btrfs_add_inode_defrag(NULL, inode);
450 }
451 
452 /*
453  * we create compressed extents in two phases.  The first
454  * phase compresses a range of pages that have already been
455  * locked (both pages and state bits are locked).
456  *
457  * This is done inside an ordered work queue, and the compression
458  * is spread across many cpus.  The actual IO submission is step
459  * two, and the ordered work queue takes care of making sure that
460  * happens in the same order things were put onto the queue by
461  * writepages and friends.
462  *
463  * If this code finds it can't get good compression, it puts an
464  * entry onto the work queue to write the uncompressed bytes.  This
465  * makes sure that both compressed inodes and uncompressed inodes
466  * are written in the same order that the flusher thread sent them
467  * down.
468  */
compress_file_range(struct async_chunk * async_chunk)469 static noinline int compress_file_range(struct async_chunk *async_chunk)
470 {
471 	struct inode *inode = async_chunk->inode;
472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
473 	u64 blocksize = fs_info->sectorsize;
474 	u64 start = async_chunk->start;
475 	u64 end = async_chunk->end;
476 	u64 actual_end;
477 	u64 i_size;
478 	int ret = 0;
479 	struct page **pages = NULL;
480 	unsigned long nr_pages;
481 	unsigned long total_compressed = 0;
482 	unsigned long total_in = 0;
483 	int i;
484 	int will_compress;
485 	int compress_type = fs_info->compress_type;
486 	int compressed_extents = 0;
487 	int redirty = 0;
488 
489 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
490 			SZ_16K);
491 
492 	/*
493 	 * We need to save i_size before now because it could change in between
494 	 * us evaluating the size and assigning it.  This is because we lock and
495 	 * unlock the page in truncate and fallocate, and then modify the i_size
496 	 * later on.
497 	 *
498 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
499 	 * does that for us.
500 	 */
501 	barrier();
502 	i_size = i_size_read(inode);
503 	barrier();
504 	actual_end = min_t(u64, i_size, end + 1);
505 again:
506 	will_compress = 0;
507 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
508 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
509 	nr_pages = min_t(unsigned long, nr_pages,
510 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
511 
512 	/*
513 	 * we don't want to send crud past the end of i_size through
514 	 * compression, that's just a waste of CPU time.  So, if the
515 	 * end of the file is before the start of our current
516 	 * requested range of bytes, we bail out to the uncompressed
517 	 * cleanup code that can deal with all of this.
518 	 *
519 	 * It isn't really the fastest way to fix things, but this is a
520 	 * very uncommon corner.
521 	 */
522 	if (actual_end <= start)
523 		goto cleanup_and_bail_uncompressed;
524 
525 	total_compressed = actual_end - start;
526 
527 	/*
528 	 * skip compression for a small file range(<=blocksize) that
529 	 * isn't an inline extent, since it doesn't save disk space at all.
530 	 */
531 	if (total_compressed <= blocksize &&
532 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
533 		goto cleanup_and_bail_uncompressed;
534 
535 	total_compressed = min_t(unsigned long, total_compressed,
536 			BTRFS_MAX_UNCOMPRESSED);
537 	total_in = 0;
538 	ret = 0;
539 
540 	/*
541 	 * we do compression for mount -o compress and when the
542 	 * inode has not been flagged as nocompress.  This flag can
543 	 * change at any time if we discover bad compression ratios.
544 	 */
545 	if (inode_need_compress(inode, start, end)) {
546 		WARN_ON(pages);
547 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
548 		if (!pages) {
549 			/* just bail out to the uncompressed code */
550 			nr_pages = 0;
551 			goto cont;
552 		}
553 
554 		if (BTRFS_I(inode)->defrag_compress)
555 			compress_type = BTRFS_I(inode)->defrag_compress;
556 		else if (BTRFS_I(inode)->prop_compress)
557 			compress_type = BTRFS_I(inode)->prop_compress;
558 
559 		/*
560 		 * we need to call clear_page_dirty_for_io on each
561 		 * page in the range.  Otherwise applications with the file
562 		 * mmap'd can wander in and change the page contents while
563 		 * we are compressing them.
564 		 *
565 		 * If the compression fails for any reason, we set the pages
566 		 * dirty again later on.
567 		 *
568 		 * Note that the remaining part is redirtied, the start pointer
569 		 * has moved, the end is the original one.
570 		 */
571 		if (!redirty) {
572 			extent_range_clear_dirty_for_io(inode, start, end);
573 			redirty = 1;
574 		}
575 
576 		/* Compression level is applied here and only here */
577 		ret = btrfs_compress_pages(
578 			compress_type | (fs_info->compress_level << 4),
579 					   inode->i_mapping, start,
580 					   pages,
581 					   &nr_pages,
582 					   &total_in,
583 					   &total_compressed);
584 
585 		if (!ret) {
586 			unsigned long offset = offset_in_page(total_compressed);
587 			struct page *page = pages[nr_pages - 1];
588 			char *kaddr;
589 
590 			/* zero the tail end of the last page, we might be
591 			 * sending it down to disk
592 			 */
593 			if (offset) {
594 				kaddr = kmap_atomic(page);
595 				memset(kaddr + offset, 0,
596 				       PAGE_SIZE - offset);
597 				kunmap_atomic(kaddr);
598 			}
599 			will_compress = 1;
600 		}
601 	}
602 cont:
603 	if (start == 0) {
604 		/* lets try to make an inline extent */
605 		if (ret || total_in < actual_end) {
606 			/* we didn't compress the entire range, try
607 			 * to make an uncompressed inline extent.
608 			 */
609 			ret = cow_file_range_inline(inode, start, end, 0,
610 						    BTRFS_COMPRESS_NONE, NULL);
611 		} else {
612 			/* try making a compressed inline extent */
613 			ret = cow_file_range_inline(inode, start, end,
614 						    total_compressed,
615 						    compress_type, pages);
616 		}
617 		if (ret <= 0) {
618 			unsigned long clear_flags = EXTENT_DELALLOC |
619 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
620 				EXTENT_DO_ACCOUNTING;
621 			unsigned long page_error_op;
622 
623 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
624 
625 			/*
626 			 * inline extent creation worked or returned error,
627 			 * we don't need to create any more async work items.
628 			 * Unlock and free up our temp pages.
629 			 *
630 			 * We use DO_ACCOUNTING here because we need the
631 			 * delalloc_release_metadata to be done _after_ we drop
632 			 * our outstanding extent for clearing delalloc for this
633 			 * range.
634 			 */
635 			extent_clear_unlock_delalloc(inode, start, end, NULL,
636 						     clear_flags,
637 						     PAGE_UNLOCK |
638 						     PAGE_CLEAR_DIRTY |
639 						     PAGE_SET_WRITEBACK |
640 						     page_error_op |
641 						     PAGE_END_WRITEBACK);
642 
643 			for (i = 0; i < nr_pages; i++) {
644 				WARN_ON(pages[i]->mapping);
645 				put_page(pages[i]);
646 			}
647 			kfree(pages);
648 
649 			return 0;
650 		}
651 	}
652 
653 	if (will_compress) {
654 		/*
655 		 * we aren't doing an inline extent round the compressed size
656 		 * up to a block size boundary so the allocator does sane
657 		 * things
658 		 */
659 		total_compressed = ALIGN(total_compressed, blocksize);
660 
661 		/*
662 		 * one last check to make sure the compression is really a
663 		 * win, compare the page count read with the blocks on disk,
664 		 * compression must free at least one sector size
665 		 */
666 		total_in = ALIGN(total_in, PAGE_SIZE);
667 		if (total_compressed + blocksize <= total_in) {
668 			compressed_extents++;
669 
670 			/*
671 			 * The async work queues will take care of doing actual
672 			 * allocation on disk for these compressed pages, and
673 			 * will submit them to the elevator.
674 			 */
675 			add_async_extent(async_chunk, start, total_in,
676 					total_compressed, pages, nr_pages,
677 					compress_type);
678 
679 			if (start + total_in < end) {
680 				start += total_in;
681 				pages = NULL;
682 				cond_resched();
683 				goto again;
684 			}
685 			return compressed_extents;
686 		}
687 	}
688 	if (pages) {
689 		/*
690 		 * the compression code ran but failed to make things smaller,
691 		 * free any pages it allocated and our page pointer array
692 		 */
693 		for (i = 0; i < nr_pages; i++) {
694 			WARN_ON(pages[i]->mapping);
695 			put_page(pages[i]);
696 		}
697 		kfree(pages);
698 		pages = NULL;
699 		total_compressed = 0;
700 		nr_pages = 0;
701 
702 		/* flag the file so we don't compress in the future */
703 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
704 		    !(BTRFS_I(inode)->prop_compress)) {
705 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
706 		}
707 	}
708 cleanup_and_bail_uncompressed:
709 	/*
710 	 * No compression, but we still need to write the pages in the file
711 	 * we've been given so far.  redirty the locked page if it corresponds
712 	 * to our extent and set things up for the async work queue to run
713 	 * cow_file_range to do the normal delalloc dance.
714 	 */
715 	if (async_chunk->locked_page &&
716 	    (page_offset(async_chunk->locked_page) >= start &&
717 	     page_offset(async_chunk->locked_page)) <= end) {
718 		__set_page_dirty_nobuffers(async_chunk->locked_page);
719 		/* unlocked later on in the async handlers */
720 	}
721 
722 	if (redirty)
723 		extent_range_redirty_for_io(inode, start, end);
724 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
725 			 BTRFS_COMPRESS_NONE);
726 	compressed_extents++;
727 
728 	return compressed_extents;
729 }
730 
free_async_extent_pages(struct async_extent * async_extent)731 static void free_async_extent_pages(struct async_extent *async_extent)
732 {
733 	int i;
734 
735 	if (!async_extent->pages)
736 		return;
737 
738 	for (i = 0; i < async_extent->nr_pages; i++) {
739 		WARN_ON(async_extent->pages[i]->mapping);
740 		put_page(async_extent->pages[i]);
741 	}
742 	kfree(async_extent->pages);
743 	async_extent->nr_pages = 0;
744 	async_extent->pages = NULL;
745 }
746 
747 /*
748  * phase two of compressed writeback.  This is the ordered portion
749  * of the code, which only gets called in the order the work was
750  * queued.  We walk all the async extents created by compress_file_range
751  * and send them down to the disk.
752  */
submit_compressed_extents(struct async_chunk * async_chunk)753 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
754 {
755 	struct inode *inode = async_chunk->inode;
756 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
757 	struct async_extent *async_extent;
758 	u64 alloc_hint = 0;
759 	struct btrfs_key ins;
760 	struct extent_map *em;
761 	struct btrfs_root *root = BTRFS_I(inode)->root;
762 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
763 	int ret = 0;
764 
765 again:
766 	while (!list_empty(&async_chunk->extents)) {
767 		async_extent = list_entry(async_chunk->extents.next,
768 					  struct async_extent, list);
769 		list_del(&async_extent->list);
770 
771 retry:
772 		lock_extent(io_tree, async_extent->start,
773 			    async_extent->start + async_extent->ram_size - 1);
774 		/* did the compression code fall back to uncompressed IO? */
775 		if (!async_extent->pages) {
776 			int page_started = 0;
777 			unsigned long nr_written = 0;
778 
779 			/* allocate blocks */
780 			ret = cow_file_range(inode, async_chunk->locked_page,
781 					     async_extent->start,
782 					     async_extent->start +
783 					     async_extent->ram_size - 1,
784 					     &page_started, &nr_written, 0);
785 
786 			/* JDM XXX */
787 
788 			/*
789 			 * if page_started, cow_file_range inserted an
790 			 * inline extent and took care of all the unlocking
791 			 * and IO for us.  Otherwise, we need to submit
792 			 * all those pages down to the drive.
793 			 */
794 			if (!page_started && !ret)
795 				extent_write_locked_range(inode,
796 						  async_extent->start,
797 						  async_extent->start +
798 						  async_extent->ram_size - 1,
799 						  WB_SYNC_ALL);
800 			else if (ret && async_chunk->locked_page)
801 				unlock_page(async_chunk->locked_page);
802 			kfree(async_extent);
803 			cond_resched();
804 			continue;
805 		}
806 
807 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
808 					   async_extent->compressed_size,
809 					   async_extent->compressed_size,
810 					   0, alloc_hint, &ins, 1, 1);
811 		if (ret) {
812 			free_async_extent_pages(async_extent);
813 
814 			if (ret == -ENOSPC) {
815 				unlock_extent(io_tree, async_extent->start,
816 					      async_extent->start +
817 					      async_extent->ram_size - 1);
818 
819 				/*
820 				 * we need to redirty the pages if we decide to
821 				 * fallback to uncompressed IO, otherwise we
822 				 * will not submit these pages down to lower
823 				 * layers.
824 				 */
825 				extent_range_redirty_for_io(inode,
826 						async_extent->start,
827 						async_extent->start +
828 						async_extent->ram_size - 1);
829 
830 				goto retry;
831 			}
832 			goto out_free;
833 		}
834 		/*
835 		 * here we're doing allocation and writeback of the
836 		 * compressed pages
837 		 */
838 		em = create_io_em(inode, async_extent->start,
839 				  async_extent->ram_size, /* len */
840 				  async_extent->start, /* orig_start */
841 				  ins.objectid, /* block_start */
842 				  ins.offset, /* block_len */
843 				  ins.offset, /* orig_block_len */
844 				  async_extent->ram_size, /* ram_bytes */
845 				  async_extent->compress_type,
846 				  BTRFS_ORDERED_COMPRESSED);
847 		if (IS_ERR(em))
848 			/* ret value is not necessary due to void function */
849 			goto out_free_reserve;
850 		free_extent_map(em);
851 
852 		ret = btrfs_add_ordered_extent_compress(inode,
853 						async_extent->start,
854 						ins.objectid,
855 						async_extent->ram_size,
856 						ins.offset,
857 						BTRFS_ORDERED_COMPRESSED,
858 						async_extent->compress_type);
859 		if (ret) {
860 			btrfs_drop_extent_cache(BTRFS_I(inode),
861 						async_extent->start,
862 						async_extent->start +
863 						async_extent->ram_size - 1, 0);
864 			goto out_free_reserve;
865 		}
866 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
867 
868 		/*
869 		 * clear dirty, set writeback and unlock the pages.
870 		 */
871 		extent_clear_unlock_delalloc(inode, async_extent->start,
872 				async_extent->start +
873 				async_extent->ram_size - 1,
874 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
875 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
876 				PAGE_SET_WRITEBACK);
877 		if (btrfs_submit_compressed_write(inode,
878 				    async_extent->start,
879 				    async_extent->ram_size,
880 				    ins.objectid,
881 				    ins.offset, async_extent->pages,
882 				    async_extent->nr_pages,
883 				    async_chunk->write_flags)) {
884 			struct page *p = async_extent->pages[0];
885 			const u64 start = async_extent->start;
886 			const u64 end = start + async_extent->ram_size - 1;
887 
888 			p->mapping = inode->i_mapping;
889 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
890 
891 			p->mapping = NULL;
892 			extent_clear_unlock_delalloc(inode, start, end,
893 						     NULL, 0,
894 						     PAGE_END_WRITEBACK |
895 						     PAGE_SET_ERROR);
896 			free_async_extent_pages(async_extent);
897 		}
898 		alloc_hint = ins.objectid + ins.offset;
899 		kfree(async_extent);
900 		cond_resched();
901 	}
902 	return;
903 out_free_reserve:
904 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
905 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
906 out_free:
907 	extent_clear_unlock_delalloc(inode, async_extent->start,
908 				     async_extent->start +
909 				     async_extent->ram_size - 1,
910 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
911 				     EXTENT_DELALLOC_NEW |
912 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
913 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
914 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
915 				     PAGE_SET_ERROR);
916 	free_async_extent_pages(async_extent);
917 	kfree(async_extent);
918 	goto again;
919 }
920 
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)921 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
922 				      u64 num_bytes)
923 {
924 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
925 	struct extent_map *em;
926 	u64 alloc_hint = 0;
927 
928 	read_lock(&em_tree->lock);
929 	em = search_extent_mapping(em_tree, start, num_bytes);
930 	if (em) {
931 		/*
932 		 * if block start isn't an actual block number then find the
933 		 * first block in this inode and use that as a hint.  If that
934 		 * block is also bogus then just don't worry about it.
935 		 */
936 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
937 			free_extent_map(em);
938 			em = search_extent_mapping(em_tree, 0, 0);
939 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
940 				alloc_hint = em->block_start;
941 			if (em)
942 				free_extent_map(em);
943 		} else {
944 			alloc_hint = em->block_start;
945 			free_extent_map(em);
946 		}
947 	}
948 	read_unlock(&em_tree->lock);
949 
950 	return alloc_hint;
951 }
952 
953 /*
954  * when extent_io.c finds a delayed allocation range in the file,
955  * the call backs end up in this code.  The basic idea is to
956  * allocate extents on disk for the range, and create ordered data structs
957  * in ram to track those extents.
958  *
959  * locked_page is the page that writepage had locked already.  We use
960  * it to make sure we don't do extra locks or unlocks.
961  *
962  * *page_started is set to one if we unlock locked_page and do everything
963  * required to start IO on it.  It may be clean and already done with
964  * IO when we return.
965  */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)966 static noinline int cow_file_range(struct inode *inode,
967 				   struct page *locked_page,
968 				   u64 start, u64 end, int *page_started,
969 				   unsigned long *nr_written, int unlock)
970 {
971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
972 	struct btrfs_root *root = BTRFS_I(inode)->root;
973 	u64 alloc_hint = 0;
974 	u64 num_bytes;
975 	unsigned long ram_size;
976 	u64 cur_alloc_size = 0;
977 	u64 blocksize = fs_info->sectorsize;
978 	struct btrfs_key ins;
979 	struct extent_map *em;
980 	unsigned clear_bits;
981 	unsigned long page_ops;
982 	bool extent_reserved = false;
983 	int ret = 0;
984 
985 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
986 		WARN_ON_ONCE(1);
987 		ret = -EINVAL;
988 		goto out_unlock;
989 	}
990 
991 	num_bytes = ALIGN(end - start + 1, blocksize);
992 	num_bytes = max(blocksize,  num_bytes);
993 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
994 
995 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
996 
997 	if (start == 0) {
998 		/* lets try to make an inline extent */
999 		ret = cow_file_range_inline(inode, start, end, 0,
1000 					    BTRFS_COMPRESS_NONE, NULL);
1001 		if (ret == 0) {
1002 			/*
1003 			 * We use DO_ACCOUNTING here because we need the
1004 			 * delalloc_release_metadata to be run _after_ we drop
1005 			 * our outstanding extent for clearing delalloc for this
1006 			 * range.
1007 			 */
1008 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1009 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1010 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1011 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1012 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1013 				     PAGE_END_WRITEBACK);
1014 			*nr_written = *nr_written +
1015 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1016 			*page_started = 1;
1017 			goto out;
1018 		} else if (ret < 0) {
1019 			goto out_unlock;
1020 		}
1021 	}
1022 
1023 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1024 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1025 			start + num_bytes - 1, 0);
1026 
1027 	while (num_bytes > 0) {
1028 		cur_alloc_size = num_bytes;
1029 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1030 					   fs_info->sectorsize, 0, alloc_hint,
1031 					   &ins, 1, 1);
1032 		if (ret < 0)
1033 			goto out_unlock;
1034 		cur_alloc_size = ins.offset;
1035 		extent_reserved = true;
1036 
1037 		ram_size = ins.offset;
1038 		em = create_io_em(inode, start, ins.offset, /* len */
1039 				  start, /* orig_start */
1040 				  ins.objectid, /* block_start */
1041 				  ins.offset, /* block_len */
1042 				  ins.offset, /* orig_block_len */
1043 				  ram_size, /* ram_bytes */
1044 				  BTRFS_COMPRESS_NONE, /* compress_type */
1045 				  BTRFS_ORDERED_REGULAR /* type */);
1046 		if (IS_ERR(em)) {
1047 			ret = PTR_ERR(em);
1048 			goto out_reserve;
1049 		}
1050 		free_extent_map(em);
1051 
1052 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1053 					       ram_size, cur_alloc_size, 0);
1054 		if (ret)
1055 			goto out_drop_extent_cache;
1056 
1057 		if (root->root_key.objectid ==
1058 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1059 			ret = btrfs_reloc_clone_csums(inode, start,
1060 						      cur_alloc_size);
1061 			/*
1062 			 * Only drop cache here, and process as normal.
1063 			 *
1064 			 * We must not allow extent_clear_unlock_delalloc()
1065 			 * at out_unlock label to free meta of this ordered
1066 			 * extent, as its meta should be freed by
1067 			 * btrfs_finish_ordered_io().
1068 			 *
1069 			 * So we must continue until @start is increased to
1070 			 * skip current ordered extent.
1071 			 */
1072 			if (ret)
1073 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1074 						start + ram_size - 1, 0);
1075 		}
1076 
1077 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1078 
1079 		/* we're not doing compressed IO, don't unlock the first
1080 		 * page (which the caller expects to stay locked), don't
1081 		 * clear any dirty bits and don't set any writeback bits
1082 		 *
1083 		 * Do set the Private2 bit so we know this page was properly
1084 		 * setup for writepage
1085 		 */
1086 		page_ops = unlock ? PAGE_UNLOCK : 0;
1087 		page_ops |= PAGE_SET_PRIVATE2;
1088 
1089 		extent_clear_unlock_delalloc(inode, start,
1090 					     start + ram_size - 1,
1091 					     locked_page,
1092 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1093 					     page_ops);
1094 		if (num_bytes < cur_alloc_size)
1095 			num_bytes = 0;
1096 		else
1097 			num_bytes -= cur_alloc_size;
1098 		alloc_hint = ins.objectid + ins.offset;
1099 		start += cur_alloc_size;
1100 		extent_reserved = false;
1101 
1102 		/*
1103 		 * btrfs_reloc_clone_csums() error, since start is increased
1104 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1105 		 * free metadata of current ordered extent, we're OK to exit.
1106 		 */
1107 		if (ret)
1108 			goto out_unlock;
1109 	}
1110 out:
1111 	return ret;
1112 
1113 out_drop_extent_cache:
1114 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1115 out_reserve:
1116 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1117 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1118 out_unlock:
1119 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1120 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1121 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1122 		PAGE_END_WRITEBACK;
1123 	/*
1124 	 * If we reserved an extent for our delalloc range (or a subrange) and
1125 	 * failed to create the respective ordered extent, then it means that
1126 	 * when we reserved the extent we decremented the extent's size from
1127 	 * the data space_info's bytes_may_use counter and incremented the
1128 	 * space_info's bytes_reserved counter by the same amount. We must make
1129 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1130 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1131 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1132 	 */
1133 	if (extent_reserved) {
1134 		extent_clear_unlock_delalloc(inode, start,
1135 					     start + cur_alloc_size,
1136 					     locked_page,
1137 					     clear_bits,
1138 					     page_ops);
1139 		start += cur_alloc_size;
1140 		if (start >= end)
1141 			goto out;
1142 	}
1143 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1144 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1145 				     page_ops);
1146 	goto out;
1147 }
1148 
1149 /*
1150  * work queue call back to started compression on a file and pages
1151  */
async_cow_start(struct btrfs_work * work)1152 static noinline void async_cow_start(struct btrfs_work *work)
1153 {
1154 	struct async_chunk *async_chunk;
1155 	int compressed_extents;
1156 
1157 	async_chunk = container_of(work, struct async_chunk, work);
1158 
1159 	compressed_extents = compress_file_range(async_chunk);
1160 	if (compressed_extents == 0) {
1161 		btrfs_add_delayed_iput(async_chunk->inode);
1162 		async_chunk->inode = NULL;
1163 	}
1164 }
1165 
1166 /*
1167  * work queue call back to submit previously compressed pages
1168  */
async_cow_submit(struct btrfs_work * work)1169 static noinline void async_cow_submit(struct btrfs_work *work)
1170 {
1171 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1172 						     work);
1173 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1174 	unsigned long nr_pages;
1175 
1176 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1177 		PAGE_SHIFT;
1178 
1179 	/* atomic_sub_return implies a barrier */
1180 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1181 	    5 * SZ_1M)
1182 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1183 
1184 	/*
1185 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1186 	 * in which case we don't have anything to submit, yet we need to
1187 	 * always adjust ->async_delalloc_pages as its paired with the init
1188 	 * happening in cow_file_range_async
1189 	 */
1190 	if (async_chunk->inode)
1191 		submit_compressed_extents(async_chunk);
1192 }
1193 
async_cow_free(struct btrfs_work * work)1194 static noinline void async_cow_free(struct btrfs_work *work)
1195 {
1196 	struct async_chunk *async_chunk;
1197 
1198 	async_chunk = container_of(work, struct async_chunk, work);
1199 	if (async_chunk->inode)
1200 		btrfs_add_delayed_iput(async_chunk->inode);
1201 	/*
1202 	 * Since the pointer to 'pending' is at the beginning of the array of
1203 	 * async_chunk's, freeing it ensures the whole array has been freed.
1204 	 */
1205 	if (atomic_dec_and_test(async_chunk->pending))
1206 		kvfree(async_chunk->pending);
1207 }
1208 
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1209 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1210 				u64 start, u64 end, int *page_started,
1211 				unsigned long *nr_written,
1212 				unsigned int write_flags)
1213 {
1214 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1215 	struct async_cow *ctx;
1216 	struct async_chunk *async_chunk;
1217 	unsigned long nr_pages;
1218 	u64 cur_end;
1219 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1220 	int i;
1221 	bool should_compress;
1222 	unsigned nofs_flag;
1223 
1224 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1225 
1226 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1227 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1228 		num_chunks = 1;
1229 		should_compress = false;
1230 	} else {
1231 		should_compress = true;
1232 	}
1233 
1234 	nofs_flag = memalloc_nofs_save();
1235 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1236 	memalloc_nofs_restore(nofs_flag);
1237 
1238 	if (!ctx) {
1239 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1240 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1241 			EXTENT_DO_ACCOUNTING;
1242 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1243 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1244 			PAGE_SET_ERROR;
1245 
1246 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1247 					     clear_bits, page_ops);
1248 		return -ENOMEM;
1249 	}
1250 
1251 	async_chunk = ctx->chunks;
1252 	atomic_set(&ctx->num_chunks, num_chunks);
1253 
1254 	for (i = 0; i < num_chunks; i++) {
1255 		if (should_compress)
1256 			cur_end = min(end, start + SZ_512K - 1);
1257 		else
1258 			cur_end = end;
1259 
1260 		/*
1261 		 * igrab is called higher up in the call chain, take only the
1262 		 * lightweight reference for the callback lifetime
1263 		 */
1264 		ihold(inode);
1265 		async_chunk[i].pending = &ctx->num_chunks;
1266 		async_chunk[i].inode = inode;
1267 		async_chunk[i].start = start;
1268 		async_chunk[i].end = cur_end;
1269 		async_chunk[i].write_flags = write_flags;
1270 		INIT_LIST_HEAD(&async_chunk[i].extents);
1271 
1272 		/*
1273 		 * The locked_page comes all the way from writepage and its
1274 		 * the original page we were actually given.  As we spread
1275 		 * this large delalloc region across multiple async_chunk
1276 		 * structs, only the first struct needs a pointer to locked_page
1277 		 *
1278 		 * This way we don't need racey decisions about who is supposed
1279 		 * to unlock it.
1280 		 */
1281 		if (locked_page) {
1282 			async_chunk[i].locked_page = locked_page;
1283 			locked_page = NULL;
1284 		} else {
1285 			async_chunk[i].locked_page = NULL;
1286 		}
1287 
1288 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1289 				async_cow_submit, async_cow_free);
1290 
1291 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1292 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1293 
1294 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1295 
1296 		*nr_written += nr_pages;
1297 		start = cur_end + 1;
1298 	}
1299 	*page_started = 1;
1300 	return 0;
1301 }
1302 
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1303 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1304 					u64 bytenr, u64 num_bytes)
1305 {
1306 	int ret;
1307 	struct btrfs_ordered_sum *sums;
1308 	LIST_HEAD(list);
1309 
1310 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1311 				       bytenr + num_bytes - 1, &list, 0);
1312 	if (ret == 0 && list_empty(&list))
1313 		return 0;
1314 
1315 	while (!list_empty(&list)) {
1316 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1317 		list_del(&sums->list);
1318 		kfree(sums);
1319 	}
1320 	if (ret < 0)
1321 		return ret;
1322 	return 1;
1323 }
1324 
1325 /*
1326  * when nowcow writeback call back.  This checks for snapshots or COW copies
1327  * of the extents that exist in the file, and COWs the file as required.
1328  *
1329  * If no cow copies or snapshots exist, we write directly to the existing
1330  * blocks on disk
1331  */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1332 static noinline int run_delalloc_nocow(struct inode *inode,
1333 				       struct page *locked_page,
1334 				       const u64 start, const u64 end,
1335 				       int *page_started, int force,
1336 				       unsigned long *nr_written)
1337 {
1338 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1339 	struct btrfs_root *root = BTRFS_I(inode)->root;
1340 	struct btrfs_path *path;
1341 	u64 cow_start = (u64)-1;
1342 	u64 cur_offset = start;
1343 	int ret;
1344 	bool check_prev = true;
1345 	const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1346 	u64 ino = btrfs_ino(BTRFS_I(inode));
1347 	bool nocow = false;
1348 	u64 disk_bytenr = 0;
1349 
1350 	path = btrfs_alloc_path();
1351 	if (!path) {
1352 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1353 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1354 					     EXTENT_DO_ACCOUNTING |
1355 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1356 					     PAGE_CLEAR_DIRTY |
1357 					     PAGE_SET_WRITEBACK |
1358 					     PAGE_END_WRITEBACK);
1359 		return -ENOMEM;
1360 	}
1361 
1362 	while (1) {
1363 		struct btrfs_key found_key;
1364 		struct btrfs_file_extent_item *fi;
1365 		struct extent_buffer *leaf;
1366 		u64 extent_end;
1367 		u64 extent_offset;
1368 		u64 num_bytes = 0;
1369 		u64 disk_num_bytes;
1370 		u64 ram_bytes;
1371 		int extent_type;
1372 
1373 		nocow = false;
1374 
1375 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1376 					       cur_offset, 0);
1377 		if (ret < 0)
1378 			goto error;
1379 
1380 		/*
1381 		 * If there is no extent for our range when doing the initial
1382 		 * search, then go back to the previous slot as it will be the
1383 		 * one containing the search offset
1384 		 */
1385 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1386 			leaf = path->nodes[0];
1387 			btrfs_item_key_to_cpu(leaf, &found_key,
1388 					      path->slots[0] - 1);
1389 			if (found_key.objectid == ino &&
1390 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1391 				path->slots[0]--;
1392 		}
1393 		check_prev = false;
1394 next_slot:
1395 		/* Go to next leaf if we have exhausted the current one */
1396 		leaf = path->nodes[0];
1397 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1398 			ret = btrfs_next_leaf(root, path);
1399 			if (ret < 0) {
1400 				if (cow_start != (u64)-1)
1401 					cur_offset = cow_start;
1402 				goto error;
1403 			}
1404 			if (ret > 0)
1405 				break;
1406 			leaf = path->nodes[0];
1407 		}
1408 
1409 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1410 
1411 		/* Didn't find anything for our INO */
1412 		if (found_key.objectid > ino)
1413 			break;
1414 		/*
1415 		 * Keep searching until we find an EXTENT_ITEM or there are no
1416 		 * more extents for this inode
1417 		 */
1418 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1419 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1420 			path->slots[0]++;
1421 			goto next_slot;
1422 		}
1423 
1424 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1425 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1426 		    found_key.offset > end)
1427 			break;
1428 
1429 		/*
1430 		 * If the found extent starts after requested offset, then
1431 		 * adjust extent_end to be right before this extent begins
1432 		 */
1433 		if (found_key.offset > cur_offset) {
1434 			extent_end = found_key.offset;
1435 			extent_type = 0;
1436 			goto out_check;
1437 		}
1438 
1439 		/*
1440 		 * Found extent which begins before our range and potentially
1441 		 * intersect it
1442 		 */
1443 		fi = btrfs_item_ptr(leaf, path->slots[0],
1444 				    struct btrfs_file_extent_item);
1445 		extent_type = btrfs_file_extent_type(leaf, fi);
1446 
1447 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1448 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1449 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1450 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1451 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1452 			extent_end = found_key.offset +
1453 				btrfs_file_extent_num_bytes(leaf, fi);
1454 			disk_num_bytes =
1455 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1456 			/*
1457 			 * If the extent we got ends before our current offset,
1458 			 * skip to the next extent.
1459 			 */
1460 			if (extent_end <= cur_offset) {
1461 				path->slots[0]++;
1462 				goto next_slot;
1463 			}
1464 			/* Skip holes */
1465 			if (disk_bytenr == 0)
1466 				goto out_check;
1467 			/* Skip compressed/encrypted/encoded extents */
1468 			if (btrfs_file_extent_compression(leaf, fi) ||
1469 			    btrfs_file_extent_encryption(leaf, fi) ||
1470 			    btrfs_file_extent_other_encoding(leaf, fi))
1471 				goto out_check;
1472 			/*
1473 			 * If extent is created before the last volume's snapshot
1474 			 * this implies the extent is shared, hence we can't do
1475 			 * nocow. This is the same check as in
1476 			 * btrfs_cross_ref_exist but without calling
1477 			 * btrfs_search_slot.
1478 			 */
1479 			if (!freespace_inode &&
1480 			    btrfs_file_extent_generation(leaf, fi) <=
1481 			    btrfs_root_last_snapshot(&root->root_item))
1482 				goto out_check;
1483 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1484 				goto out_check;
1485 			/* If extent is RO, we must COW it */
1486 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1487 				goto out_check;
1488 			ret = btrfs_cross_ref_exist(root, ino,
1489 						    found_key.offset -
1490 						    extent_offset, disk_bytenr);
1491 			if (ret) {
1492 				/*
1493 				 * ret could be -EIO if the above fails to read
1494 				 * metadata.
1495 				 */
1496 				if (ret < 0) {
1497 					if (cow_start != (u64)-1)
1498 						cur_offset = cow_start;
1499 					goto error;
1500 				}
1501 
1502 				WARN_ON_ONCE(freespace_inode);
1503 				goto out_check;
1504 			}
1505 			disk_bytenr += extent_offset;
1506 			disk_bytenr += cur_offset - found_key.offset;
1507 			num_bytes = min(end + 1, extent_end) - cur_offset;
1508 			/*
1509 			 * If there are pending snapshots for this root, we
1510 			 * fall into common COW way
1511 			 */
1512 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1513 				goto out_check;
1514 			/*
1515 			 * force cow if csum exists in the range.
1516 			 * this ensure that csum for a given extent are
1517 			 * either valid or do not exist.
1518 			 */
1519 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1520 						  num_bytes);
1521 			if (ret) {
1522 				/*
1523 				 * ret could be -EIO if the above fails to read
1524 				 * metadata.
1525 				 */
1526 				if (ret < 0) {
1527 					if (cow_start != (u64)-1)
1528 						cur_offset = cow_start;
1529 					goto error;
1530 				}
1531 				WARN_ON_ONCE(freespace_inode);
1532 				goto out_check;
1533 			}
1534 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1535 				goto out_check;
1536 			nocow = true;
1537 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1538 			extent_end = found_key.offset + ram_bytes;
1539 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1540 			/* Skip extents outside of our requested range */
1541 			if (extent_end <= start) {
1542 				path->slots[0]++;
1543 				goto next_slot;
1544 			}
1545 		} else {
1546 			/* If this triggers then we have a memory corruption */
1547 			BUG();
1548 		}
1549 out_check:
1550 		/*
1551 		 * If nocow is false then record the beginning of the range
1552 		 * that needs to be COWed
1553 		 */
1554 		if (!nocow) {
1555 			if (cow_start == (u64)-1)
1556 				cow_start = cur_offset;
1557 			cur_offset = extent_end;
1558 			if (cur_offset > end)
1559 				break;
1560 			path->slots[0]++;
1561 			goto next_slot;
1562 		}
1563 
1564 		btrfs_release_path(path);
1565 
1566 		/*
1567 		 * COW range from cow_start to found_key.offset - 1. As the key
1568 		 * will contain the beginning of the first extent that can be
1569 		 * NOCOW, following one which needs to be COW'ed
1570 		 */
1571 		if (cow_start != (u64)-1) {
1572 			ret = cow_file_range(inode, locked_page,
1573 					     cow_start, found_key.offset - 1,
1574 					     page_started, nr_written, 1);
1575 			if (ret) {
1576 				if (nocow)
1577 					btrfs_dec_nocow_writers(fs_info,
1578 								disk_bytenr);
1579 				goto error;
1580 			}
1581 			cow_start = (u64)-1;
1582 		}
1583 
1584 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1585 			u64 orig_start = found_key.offset - extent_offset;
1586 			struct extent_map *em;
1587 
1588 			em = create_io_em(inode, cur_offset, num_bytes,
1589 					  orig_start,
1590 					  disk_bytenr, /* block_start */
1591 					  num_bytes, /* block_len */
1592 					  disk_num_bytes, /* orig_block_len */
1593 					  ram_bytes, BTRFS_COMPRESS_NONE,
1594 					  BTRFS_ORDERED_PREALLOC);
1595 			if (IS_ERR(em)) {
1596 				if (nocow)
1597 					btrfs_dec_nocow_writers(fs_info,
1598 								disk_bytenr);
1599 				ret = PTR_ERR(em);
1600 				goto error;
1601 			}
1602 			free_extent_map(em);
1603 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1604 						       disk_bytenr, num_bytes,
1605 						       num_bytes,
1606 						       BTRFS_ORDERED_PREALLOC);
1607 			if (ret) {
1608 				btrfs_drop_extent_cache(BTRFS_I(inode),
1609 							cur_offset,
1610 							cur_offset + num_bytes - 1,
1611 							0);
1612 				goto error;
1613 			}
1614 		} else {
1615 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1616 						       disk_bytenr, num_bytes,
1617 						       num_bytes,
1618 						       BTRFS_ORDERED_NOCOW);
1619 			if (ret)
1620 				goto error;
1621 		}
1622 
1623 		if (nocow)
1624 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1625 		nocow = false;
1626 
1627 		if (root->root_key.objectid ==
1628 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1629 			/*
1630 			 * Error handled later, as we must prevent
1631 			 * extent_clear_unlock_delalloc() in error handler
1632 			 * from freeing metadata of created ordered extent.
1633 			 */
1634 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1635 						      num_bytes);
1636 
1637 		extent_clear_unlock_delalloc(inode, cur_offset,
1638 					     cur_offset + num_bytes - 1,
1639 					     locked_page, EXTENT_LOCKED |
1640 					     EXTENT_DELALLOC |
1641 					     EXTENT_CLEAR_DATA_RESV,
1642 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1643 
1644 		cur_offset = extent_end;
1645 
1646 		/*
1647 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1648 		 * handler, as metadata for created ordered extent will only
1649 		 * be freed by btrfs_finish_ordered_io().
1650 		 */
1651 		if (ret)
1652 			goto error;
1653 		if (cur_offset > end)
1654 			break;
1655 	}
1656 	btrfs_release_path(path);
1657 
1658 	if (cur_offset <= end && cow_start == (u64)-1)
1659 		cow_start = cur_offset;
1660 
1661 	if (cow_start != (u64)-1) {
1662 		cur_offset = end;
1663 		ret = cow_file_range(inode, locked_page, cow_start, end,
1664 				     page_started, nr_written, 1);
1665 		if (ret)
1666 			goto error;
1667 	}
1668 
1669 error:
1670 	if (nocow)
1671 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1672 
1673 	if (ret && cur_offset < end)
1674 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1675 					     locked_page, EXTENT_LOCKED |
1676 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1677 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1678 					     PAGE_CLEAR_DIRTY |
1679 					     PAGE_SET_WRITEBACK |
1680 					     PAGE_END_WRITEBACK);
1681 	btrfs_free_path(path);
1682 	return ret;
1683 }
1684 
need_force_cow(struct inode * inode,u64 start,u64 end)1685 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1686 {
1687 
1688 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1689 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1690 		return 0;
1691 
1692 	/*
1693 	 * @defrag_bytes is a hint value, no spinlock held here,
1694 	 * if is not zero, it means the file is defragging.
1695 	 * Force cow if given extent needs to be defragged.
1696 	 */
1697 	if (BTRFS_I(inode)->defrag_bytes &&
1698 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1699 			   EXTENT_DEFRAG, 0, NULL))
1700 		return 1;
1701 
1702 	return 0;
1703 }
1704 
1705 /*
1706  * Function to process delayed allocation (create CoW) for ranges which are
1707  * being touched for the first time.
1708  */
btrfs_run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1709 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1710 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1711 		struct writeback_control *wbc)
1712 {
1713 	int ret;
1714 	int force_cow = need_force_cow(inode, start, end);
1715 	unsigned int write_flags = wbc_to_write_flags(wbc);
1716 
1717 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1718 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1719 					 page_started, 1, nr_written);
1720 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1721 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1722 					 page_started, 0, nr_written);
1723 	} else if (!inode_can_compress(inode) ||
1724 		   !inode_need_compress(inode, start, end)) {
1725 		ret = cow_file_range(inode, locked_page, start, end,
1726 				      page_started, nr_written, 1);
1727 	} else {
1728 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1729 			&BTRFS_I(inode)->runtime_flags);
1730 		ret = cow_file_range_async(inode, locked_page, start, end,
1731 					   page_started, nr_written,
1732 					   write_flags);
1733 	}
1734 	if (ret)
1735 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1736 					      end - start + 1);
1737 	return ret;
1738 }
1739 
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1740 void btrfs_split_delalloc_extent(struct inode *inode,
1741 				 struct extent_state *orig, u64 split)
1742 {
1743 	u64 size;
1744 
1745 	/* not delalloc, ignore it */
1746 	if (!(orig->state & EXTENT_DELALLOC))
1747 		return;
1748 
1749 	size = orig->end - orig->start + 1;
1750 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1751 		u32 num_extents;
1752 		u64 new_size;
1753 
1754 		/*
1755 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1756 		 * applies here, just in reverse.
1757 		 */
1758 		new_size = orig->end - split + 1;
1759 		num_extents = count_max_extents(new_size);
1760 		new_size = split - orig->start;
1761 		num_extents += count_max_extents(new_size);
1762 		if (count_max_extents(size) >= num_extents)
1763 			return;
1764 	}
1765 
1766 	spin_lock(&BTRFS_I(inode)->lock);
1767 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1768 	spin_unlock(&BTRFS_I(inode)->lock);
1769 }
1770 
1771 /*
1772  * Handle merged delayed allocation extents so we can keep track of new extents
1773  * that are just merged onto old extents, such as when we are doing sequential
1774  * writes, so we can properly account for the metadata space we'll need.
1775  */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1776 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1777 				 struct extent_state *other)
1778 {
1779 	u64 new_size, old_size;
1780 	u32 num_extents;
1781 
1782 	/* not delalloc, ignore it */
1783 	if (!(other->state & EXTENT_DELALLOC))
1784 		return;
1785 
1786 	if (new->start > other->start)
1787 		new_size = new->end - other->start + 1;
1788 	else
1789 		new_size = other->end - new->start + 1;
1790 
1791 	/* we're not bigger than the max, unreserve the space and go */
1792 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1793 		spin_lock(&BTRFS_I(inode)->lock);
1794 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1795 		spin_unlock(&BTRFS_I(inode)->lock);
1796 		return;
1797 	}
1798 
1799 	/*
1800 	 * We have to add up either side to figure out how many extents were
1801 	 * accounted for before we merged into one big extent.  If the number of
1802 	 * extents we accounted for is <= the amount we need for the new range
1803 	 * then we can return, otherwise drop.  Think of it like this
1804 	 *
1805 	 * [ 4k][MAX_SIZE]
1806 	 *
1807 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1808 	 * need 2 outstanding extents, on one side we have 1 and the other side
1809 	 * we have 1 so they are == and we can return.  But in this case
1810 	 *
1811 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1812 	 *
1813 	 * Each range on their own accounts for 2 extents, but merged together
1814 	 * they are only 3 extents worth of accounting, so we need to drop in
1815 	 * this case.
1816 	 */
1817 	old_size = other->end - other->start + 1;
1818 	num_extents = count_max_extents(old_size);
1819 	old_size = new->end - new->start + 1;
1820 	num_extents += count_max_extents(old_size);
1821 	if (count_max_extents(new_size) >= num_extents)
1822 		return;
1823 
1824 	spin_lock(&BTRFS_I(inode)->lock);
1825 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1826 	spin_unlock(&BTRFS_I(inode)->lock);
1827 }
1828 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1829 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1830 				      struct inode *inode)
1831 {
1832 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1833 
1834 	spin_lock(&root->delalloc_lock);
1835 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1836 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1837 			      &root->delalloc_inodes);
1838 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1839 			&BTRFS_I(inode)->runtime_flags);
1840 		root->nr_delalloc_inodes++;
1841 		if (root->nr_delalloc_inodes == 1) {
1842 			spin_lock(&fs_info->delalloc_root_lock);
1843 			BUG_ON(!list_empty(&root->delalloc_root));
1844 			list_add_tail(&root->delalloc_root,
1845 				      &fs_info->delalloc_roots);
1846 			spin_unlock(&fs_info->delalloc_root_lock);
1847 		}
1848 	}
1849 	spin_unlock(&root->delalloc_lock);
1850 }
1851 
1852 
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1853 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1854 				struct btrfs_inode *inode)
1855 {
1856 	struct btrfs_fs_info *fs_info = root->fs_info;
1857 
1858 	if (!list_empty(&inode->delalloc_inodes)) {
1859 		list_del_init(&inode->delalloc_inodes);
1860 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1861 			  &inode->runtime_flags);
1862 		root->nr_delalloc_inodes--;
1863 		if (!root->nr_delalloc_inodes) {
1864 			ASSERT(list_empty(&root->delalloc_inodes));
1865 			spin_lock(&fs_info->delalloc_root_lock);
1866 			BUG_ON(list_empty(&root->delalloc_root));
1867 			list_del_init(&root->delalloc_root);
1868 			spin_unlock(&fs_info->delalloc_root_lock);
1869 		}
1870 	}
1871 }
1872 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1873 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1874 				     struct btrfs_inode *inode)
1875 {
1876 	spin_lock(&root->delalloc_lock);
1877 	__btrfs_del_delalloc_inode(root, inode);
1878 	spin_unlock(&root->delalloc_lock);
1879 }
1880 
1881 /*
1882  * Properly track delayed allocation bytes in the inode and to maintain the
1883  * list of inodes that have pending delalloc work to be done.
1884  */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1885 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1886 			       unsigned *bits)
1887 {
1888 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889 
1890 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1891 		WARN_ON(1);
1892 	/*
1893 	 * set_bit and clear bit hooks normally require _irqsave/restore
1894 	 * but in this case, we are only testing for the DELALLOC
1895 	 * bit, which is only set or cleared with irqs on
1896 	 */
1897 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1898 		struct btrfs_root *root = BTRFS_I(inode)->root;
1899 		u64 len = state->end + 1 - state->start;
1900 		u32 num_extents = count_max_extents(len);
1901 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1902 
1903 		spin_lock(&BTRFS_I(inode)->lock);
1904 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1905 		spin_unlock(&BTRFS_I(inode)->lock);
1906 
1907 		/* For sanity tests */
1908 		if (btrfs_is_testing(fs_info))
1909 			return;
1910 
1911 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1912 					 fs_info->delalloc_batch);
1913 		spin_lock(&BTRFS_I(inode)->lock);
1914 		BTRFS_I(inode)->delalloc_bytes += len;
1915 		if (*bits & EXTENT_DEFRAG)
1916 			BTRFS_I(inode)->defrag_bytes += len;
1917 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1918 					 &BTRFS_I(inode)->runtime_flags))
1919 			btrfs_add_delalloc_inodes(root, inode);
1920 		spin_unlock(&BTRFS_I(inode)->lock);
1921 	}
1922 
1923 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1924 	    (*bits & EXTENT_DELALLOC_NEW)) {
1925 		spin_lock(&BTRFS_I(inode)->lock);
1926 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1927 			state->start;
1928 		spin_unlock(&BTRFS_I(inode)->lock);
1929 	}
1930 }
1931 
1932 /*
1933  * Once a range is no longer delalloc this function ensures that proper
1934  * accounting happens.
1935  */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)1936 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1937 				 struct extent_state *state, unsigned *bits)
1938 {
1939 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1940 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1941 	u64 len = state->end + 1 - state->start;
1942 	u32 num_extents = count_max_extents(len);
1943 
1944 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1945 		spin_lock(&inode->lock);
1946 		inode->defrag_bytes -= len;
1947 		spin_unlock(&inode->lock);
1948 	}
1949 
1950 	/*
1951 	 * set_bit and clear bit hooks normally require _irqsave/restore
1952 	 * but in this case, we are only testing for the DELALLOC
1953 	 * bit, which is only set or cleared with irqs on
1954 	 */
1955 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1956 		struct btrfs_root *root = inode->root;
1957 		bool do_list = !btrfs_is_free_space_inode(inode);
1958 
1959 		spin_lock(&inode->lock);
1960 		btrfs_mod_outstanding_extents(inode, -num_extents);
1961 		spin_unlock(&inode->lock);
1962 
1963 		/*
1964 		 * We don't reserve metadata space for space cache inodes so we
1965 		 * don't need to call delalloc_release_metadata if there is an
1966 		 * error.
1967 		 */
1968 		if (*bits & EXTENT_CLEAR_META_RESV &&
1969 		    root != fs_info->tree_root)
1970 			btrfs_delalloc_release_metadata(inode, len, false);
1971 
1972 		/* For sanity tests. */
1973 		if (btrfs_is_testing(fs_info))
1974 			return;
1975 
1976 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1977 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1978 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1979 			btrfs_free_reserved_data_space_noquota(
1980 					&inode->vfs_inode,
1981 					state->start, len);
1982 
1983 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1984 					 fs_info->delalloc_batch);
1985 		spin_lock(&inode->lock);
1986 		inode->delalloc_bytes -= len;
1987 		if (do_list && inode->delalloc_bytes == 0 &&
1988 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1989 					&inode->runtime_flags))
1990 			btrfs_del_delalloc_inode(root, inode);
1991 		spin_unlock(&inode->lock);
1992 	}
1993 
1994 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1995 	    (*bits & EXTENT_DELALLOC_NEW)) {
1996 		spin_lock(&inode->lock);
1997 		ASSERT(inode->new_delalloc_bytes >= len);
1998 		inode->new_delalloc_bytes -= len;
1999 		spin_unlock(&inode->lock);
2000 	}
2001 }
2002 
2003 /*
2004  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2005  * in a chunk's stripe. This function ensures that bios do not span a
2006  * stripe/chunk
2007  *
2008  * @page - The page we are about to add to the bio
2009  * @size - size we want to add to the bio
2010  * @bio - bio we want to ensure is smaller than a stripe
2011  * @bio_flags - flags of the bio
2012  *
2013  * return 1 if page cannot be added to the bio
2014  * return 0 if page can be added to the bio
2015  * return error otherwise
2016  */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2017 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2018 			     unsigned long bio_flags)
2019 {
2020 	struct inode *inode = page->mapping->host;
2021 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2022 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2023 	u64 length = 0;
2024 	u64 map_length;
2025 	int ret;
2026 	struct btrfs_io_geometry geom;
2027 
2028 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2029 		return 0;
2030 
2031 	length = bio->bi_iter.bi_size;
2032 	map_length = length;
2033 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2034 				    &geom);
2035 	if (ret < 0)
2036 		return ret;
2037 
2038 	if (geom.len < length + size)
2039 		return 1;
2040 	return 0;
2041 }
2042 
2043 /*
2044  * in order to insert checksums into the metadata in large chunks,
2045  * we wait until bio submission time.   All the pages in the bio are
2046  * checksummed and sums are attached onto the ordered extent record.
2047  *
2048  * At IO completion time the cums attached on the ordered extent record
2049  * are inserted into the btree
2050  */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2051 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2052 				    u64 bio_offset)
2053 {
2054 	struct inode *inode = private_data;
2055 	blk_status_t ret = 0;
2056 
2057 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2058 	BUG_ON(ret); /* -ENOMEM */
2059 	return 0;
2060 }
2061 
2062 /*
2063  * extent_io.c submission hook. This does the right thing for csum calculation
2064  * on write, or reading the csums from the tree before a read.
2065  *
2066  * Rules about async/sync submit,
2067  * a) read:				sync submit
2068  *
2069  * b) write without checksum:		sync submit
2070  *
2071  * c) write with checksum:
2072  *    c-1) if bio is issued by fsync:	sync submit
2073  *         (sync_writers != 0)
2074  *
2075  *    c-2) if root is reloc root:	sync submit
2076  *         (only in case of buffered IO)
2077  *
2078  *    c-3) otherwise:			async submit
2079  */
btrfs_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2080 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2081 					  int mirror_num,
2082 					  unsigned long bio_flags)
2083 
2084 {
2085 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2086 	struct btrfs_root *root = BTRFS_I(inode)->root;
2087 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2088 	blk_status_t ret = 0;
2089 	int skip_sum;
2090 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2091 
2092 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2093 
2094 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2095 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2096 
2097 	if (bio_op(bio) != REQ_OP_WRITE) {
2098 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2099 		if (ret)
2100 			goto out;
2101 
2102 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2103 			ret = btrfs_submit_compressed_read(inode, bio,
2104 							   mirror_num,
2105 							   bio_flags);
2106 			goto out;
2107 		} else if (!skip_sum) {
2108 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2109 			if (ret)
2110 				goto out;
2111 		}
2112 		goto mapit;
2113 	} else if (async && !skip_sum) {
2114 		/* csum items have already been cloned */
2115 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2116 			goto mapit;
2117 		/* we're doing a write, do the async checksumming */
2118 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2119 					  0, inode, btrfs_submit_bio_start);
2120 		goto out;
2121 	} else if (!skip_sum) {
2122 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2123 		if (ret)
2124 			goto out;
2125 	}
2126 
2127 mapit:
2128 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2129 
2130 out:
2131 	if (ret) {
2132 		bio->bi_status = ret;
2133 		bio_endio(bio);
2134 	}
2135 	return ret;
2136 }
2137 
2138 /*
2139  * given a list of ordered sums record them in the inode.  This happens
2140  * at IO completion time based on sums calculated at bio submission time.
2141  */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2142 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2143 			     struct inode *inode, struct list_head *list)
2144 {
2145 	struct btrfs_ordered_sum *sum;
2146 	int ret;
2147 
2148 	list_for_each_entry(sum, list, list) {
2149 		trans->adding_csums = true;
2150 		ret = btrfs_csum_file_blocks(trans,
2151 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2152 		trans->adding_csums = false;
2153 		if (ret)
2154 			return ret;
2155 	}
2156 	return 0;
2157 }
2158 
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2159 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2160 			      unsigned int extra_bits,
2161 			      struct extent_state **cached_state)
2162 {
2163 	WARN_ON(PAGE_ALIGNED(end));
2164 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2165 				   extra_bits, cached_state);
2166 }
2167 
2168 /* see btrfs_writepage_start_hook for details on why this is required */
2169 struct btrfs_writepage_fixup {
2170 	struct page *page;
2171 	struct btrfs_work work;
2172 };
2173 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2174 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2175 {
2176 	struct btrfs_writepage_fixup *fixup;
2177 	struct btrfs_ordered_extent *ordered;
2178 	struct extent_state *cached_state = NULL;
2179 	struct extent_changeset *data_reserved = NULL;
2180 	struct page *page;
2181 	struct inode *inode;
2182 	u64 page_start;
2183 	u64 page_end;
2184 	int ret;
2185 
2186 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2187 	page = fixup->page;
2188 again:
2189 	lock_page(page);
2190 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2191 		ClearPageChecked(page);
2192 		goto out_page;
2193 	}
2194 
2195 	inode = page->mapping->host;
2196 	page_start = page_offset(page);
2197 	page_end = page_offset(page) + PAGE_SIZE - 1;
2198 
2199 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2200 			 &cached_state);
2201 
2202 	/* already ordered? We're done */
2203 	if (PagePrivate2(page))
2204 		goto out;
2205 
2206 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2207 					PAGE_SIZE);
2208 	if (ordered) {
2209 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2210 				     page_end, &cached_state);
2211 		unlock_page(page);
2212 		btrfs_start_ordered_extent(inode, ordered, 1);
2213 		btrfs_put_ordered_extent(ordered);
2214 		goto again;
2215 	}
2216 
2217 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2218 					   PAGE_SIZE);
2219 	if (ret) {
2220 		mapping_set_error(page->mapping, ret);
2221 		end_extent_writepage(page, ret, page_start, page_end);
2222 		ClearPageChecked(page);
2223 		goto out;
2224 	 }
2225 
2226 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2227 					&cached_state);
2228 	if (ret) {
2229 		mapping_set_error(page->mapping, ret);
2230 		end_extent_writepage(page, ret, page_start, page_end);
2231 		ClearPageChecked(page);
2232 		goto out_reserved;
2233 	}
2234 
2235 	ClearPageChecked(page);
2236 	set_page_dirty(page);
2237 out_reserved:
2238 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2239 	if (ret)
2240 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2241 					     PAGE_SIZE, true);
2242 out:
2243 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2244 			     &cached_state);
2245 out_page:
2246 	unlock_page(page);
2247 	put_page(page);
2248 	kfree(fixup);
2249 	extent_changeset_free(data_reserved);
2250 }
2251 
2252 /*
2253  * There are a few paths in the higher layers of the kernel that directly
2254  * set the page dirty bit without asking the filesystem if it is a
2255  * good idea.  This causes problems because we want to make sure COW
2256  * properly happens and the data=ordered rules are followed.
2257  *
2258  * In our case any range that doesn't have the ORDERED bit set
2259  * hasn't been properly setup for IO.  We kick off an async process
2260  * to fix it up.  The async helper will wait for ordered extents, set
2261  * the delalloc bit and make it safe to write the page.
2262  */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2263 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2264 {
2265 	struct inode *inode = page->mapping->host;
2266 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2267 	struct btrfs_writepage_fixup *fixup;
2268 
2269 	/* this page is properly in the ordered list */
2270 	if (TestClearPagePrivate2(page))
2271 		return 0;
2272 
2273 	if (PageChecked(page))
2274 		return -EAGAIN;
2275 
2276 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2277 	if (!fixup)
2278 		return -EAGAIN;
2279 
2280 	SetPageChecked(page);
2281 	get_page(page);
2282 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2283 	fixup->page = page;
2284 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2285 	return -EBUSY;
2286 }
2287 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2288 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2289 				       struct inode *inode, u64 file_pos,
2290 				       u64 disk_bytenr, u64 disk_num_bytes,
2291 				       u64 num_bytes, u64 ram_bytes,
2292 				       u8 compression, u8 encryption,
2293 				       u16 other_encoding, int extent_type)
2294 {
2295 	struct btrfs_root *root = BTRFS_I(inode)->root;
2296 	struct btrfs_file_extent_item *fi;
2297 	struct btrfs_path *path;
2298 	struct extent_buffer *leaf;
2299 	struct btrfs_key ins;
2300 	u64 qg_released;
2301 	int extent_inserted = 0;
2302 	int ret;
2303 
2304 	path = btrfs_alloc_path();
2305 	if (!path)
2306 		return -ENOMEM;
2307 
2308 	/*
2309 	 * we may be replacing one extent in the tree with another.
2310 	 * The new extent is pinned in the extent map, and we don't want
2311 	 * to drop it from the cache until it is completely in the btree.
2312 	 *
2313 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2314 	 * the caller is expected to unpin it and allow it to be merged
2315 	 * with the others.
2316 	 */
2317 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2318 				   file_pos + num_bytes, NULL, 0,
2319 				   1, sizeof(*fi), &extent_inserted);
2320 	if (ret)
2321 		goto out;
2322 
2323 	if (!extent_inserted) {
2324 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2325 		ins.offset = file_pos;
2326 		ins.type = BTRFS_EXTENT_DATA_KEY;
2327 
2328 		path->leave_spinning = 1;
2329 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2330 					      sizeof(*fi));
2331 		if (ret)
2332 			goto out;
2333 	}
2334 	leaf = path->nodes[0];
2335 	fi = btrfs_item_ptr(leaf, path->slots[0],
2336 			    struct btrfs_file_extent_item);
2337 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2338 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2339 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2340 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2341 	btrfs_set_file_extent_offset(leaf, fi, 0);
2342 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2343 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2344 	btrfs_set_file_extent_compression(leaf, fi, compression);
2345 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2346 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2347 
2348 	btrfs_mark_buffer_dirty(leaf);
2349 	btrfs_release_path(path);
2350 
2351 	inode_add_bytes(inode, num_bytes);
2352 
2353 	ins.objectid = disk_bytenr;
2354 	ins.offset = disk_num_bytes;
2355 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2356 
2357 	/*
2358 	 * Release the reserved range from inode dirty range map, as it is
2359 	 * already moved into delayed_ref_head
2360 	 */
2361 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2362 	if (ret < 0)
2363 		goto out;
2364 	qg_released = ret;
2365 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2366 					       btrfs_ino(BTRFS_I(inode)),
2367 					       file_pos, qg_released, &ins);
2368 out:
2369 	btrfs_free_path(path);
2370 
2371 	return ret;
2372 }
2373 
2374 /* snapshot-aware defrag */
2375 struct sa_defrag_extent_backref {
2376 	struct rb_node node;
2377 	struct old_sa_defrag_extent *old;
2378 	u64 root_id;
2379 	u64 inum;
2380 	u64 file_pos;
2381 	u64 extent_offset;
2382 	u64 num_bytes;
2383 	u64 generation;
2384 };
2385 
2386 struct old_sa_defrag_extent {
2387 	struct list_head list;
2388 	struct new_sa_defrag_extent *new;
2389 
2390 	u64 extent_offset;
2391 	u64 bytenr;
2392 	u64 offset;
2393 	u64 len;
2394 	int count;
2395 };
2396 
2397 struct new_sa_defrag_extent {
2398 	struct rb_root root;
2399 	struct list_head head;
2400 	struct btrfs_path *path;
2401 	struct inode *inode;
2402 	u64 file_pos;
2403 	u64 len;
2404 	u64 bytenr;
2405 	u64 disk_len;
2406 	u8 compress_type;
2407 };
2408 
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2409 static int backref_comp(struct sa_defrag_extent_backref *b1,
2410 			struct sa_defrag_extent_backref *b2)
2411 {
2412 	if (b1->root_id < b2->root_id)
2413 		return -1;
2414 	else if (b1->root_id > b2->root_id)
2415 		return 1;
2416 
2417 	if (b1->inum < b2->inum)
2418 		return -1;
2419 	else if (b1->inum > b2->inum)
2420 		return 1;
2421 
2422 	if (b1->file_pos < b2->file_pos)
2423 		return -1;
2424 	else if (b1->file_pos > b2->file_pos)
2425 		return 1;
2426 
2427 	/*
2428 	 * [------------------------------] ===> (a range of space)
2429 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2430 	 * |<---------------------------->| ===> (fs/file tree B)
2431 	 *
2432 	 * A range of space can refer to two file extents in one tree while
2433 	 * refer to only one file extent in another tree.
2434 	 *
2435 	 * So we may process a disk offset more than one time(two extents in A)
2436 	 * and locate at the same extent(one extent in B), then insert two same
2437 	 * backrefs(both refer to the extent in B).
2438 	 */
2439 	return 0;
2440 }
2441 
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2442 static void backref_insert(struct rb_root *root,
2443 			   struct sa_defrag_extent_backref *backref)
2444 {
2445 	struct rb_node **p = &root->rb_node;
2446 	struct rb_node *parent = NULL;
2447 	struct sa_defrag_extent_backref *entry;
2448 	int ret;
2449 
2450 	while (*p) {
2451 		parent = *p;
2452 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2453 
2454 		ret = backref_comp(backref, entry);
2455 		if (ret < 0)
2456 			p = &(*p)->rb_left;
2457 		else
2458 			p = &(*p)->rb_right;
2459 	}
2460 
2461 	rb_link_node(&backref->node, parent, p);
2462 	rb_insert_color(&backref->node, root);
2463 }
2464 
2465 /*
2466  * Note the backref might has changed, and in this case we just return 0.
2467  */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2468 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2469 				       void *ctx)
2470 {
2471 	struct btrfs_file_extent_item *extent;
2472 	struct old_sa_defrag_extent *old = ctx;
2473 	struct new_sa_defrag_extent *new = old->new;
2474 	struct btrfs_path *path = new->path;
2475 	struct btrfs_key key;
2476 	struct btrfs_root *root;
2477 	struct sa_defrag_extent_backref *backref;
2478 	struct extent_buffer *leaf;
2479 	struct inode *inode = new->inode;
2480 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2481 	int slot;
2482 	int ret;
2483 	u64 extent_offset;
2484 	u64 num_bytes;
2485 
2486 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2487 	    inum == btrfs_ino(BTRFS_I(inode)))
2488 		return 0;
2489 
2490 	key.objectid = root_id;
2491 	key.type = BTRFS_ROOT_ITEM_KEY;
2492 	key.offset = (u64)-1;
2493 
2494 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2495 	if (IS_ERR(root)) {
2496 		if (PTR_ERR(root) == -ENOENT)
2497 			return 0;
2498 		WARN_ON(1);
2499 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2500 			 inum, offset, root_id);
2501 		return PTR_ERR(root);
2502 	}
2503 
2504 	key.objectid = inum;
2505 	key.type = BTRFS_EXTENT_DATA_KEY;
2506 	if (offset > (u64)-1 << 32)
2507 		key.offset = 0;
2508 	else
2509 		key.offset = offset;
2510 
2511 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2512 	if (WARN_ON(ret < 0))
2513 		return ret;
2514 	ret = 0;
2515 
2516 	while (1) {
2517 		cond_resched();
2518 
2519 		leaf = path->nodes[0];
2520 		slot = path->slots[0];
2521 
2522 		if (slot >= btrfs_header_nritems(leaf)) {
2523 			ret = btrfs_next_leaf(root, path);
2524 			if (ret < 0) {
2525 				goto out;
2526 			} else if (ret > 0) {
2527 				ret = 0;
2528 				goto out;
2529 			}
2530 			continue;
2531 		}
2532 
2533 		path->slots[0]++;
2534 
2535 		btrfs_item_key_to_cpu(leaf, &key, slot);
2536 
2537 		if (key.objectid > inum)
2538 			goto out;
2539 
2540 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2541 			continue;
2542 
2543 		extent = btrfs_item_ptr(leaf, slot,
2544 					struct btrfs_file_extent_item);
2545 
2546 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2547 			continue;
2548 
2549 		/*
2550 		 * 'offset' refers to the exact key.offset,
2551 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2552 		 * (key.offset - extent_offset).
2553 		 */
2554 		if (key.offset != offset)
2555 			continue;
2556 
2557 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2558 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2559 
2560 		if (extent_offset >= old->extent_offset + old->offset +
2561 		    old->len || extent_offset + num_bytes <=
2562 		    old->extent_offset + old->offset)
2563 			continue;
2564 		break;
2565 	}
2566 
2567 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2568 	if (!backref) {
2569 		ret = -ENOENT;
2570 		goto out;
2571 	}
2572 
2573 	backref->root_id = root_id;
2574 	backref->inum = inum;
2575 	backref->file_pos = offset;
2576 	backref->num_bytes = num_bytes;
2577 	backref->extent_offset = extent_offset;
2578 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2579 	backref->old = old;
2580 	backref_insert(&new->root, backref);
2581 	old->count++;
2582 out:
2583 	btrfs_release_path(path);
2584 	WARN_ON(ret);
2585 	return ret;
2586 }
2587 
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2588 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2589 				   struct new_sa_defrag_extent *new)
2590 {
2591 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2592 	struct old_sa_defrag_extent *old, *tmp;
2593 	int ret;
2594 
2595 	new->path = path;
2596 
2597 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 		ret = iterate_inodes_from_logical(old->bytenr +
2599 						  old->extent_offset, fs_info,
2600 						  path, record_one_backref,
2601 						  old, false);
2602 		if (ret < 0 && ret != -ENOENT)
2603 			return false;
2604 
2605 		/* no backref to be processed for this extent */
2606 		if (!old->count) {
2607 			list_del(&old->list);
2608 			kfree(old);
2609 		}
2610 	}
2611 
2612 	if (list_empty(&new->head))
2613 		return false;
2614 
2615 	return true;
2616 }
2617 
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2618 static int relink_is_mergable(struct extent_buffer *leaf,
2619 			      struct btrfs_file_extent_item *fi,
2620 			      struct new_sa_defrag_extent *new)
2621 {
2622 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2623 		return 0;
2624 
2625 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2626 		return 0;
2627 
2628 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2629 		return 0;
2630 
2631 	if (btrfs_file_extent_encryption(leaf, fi) ||
2632 	    btrfs_file_extent_other_encoding(leaf, fi))
2633 		return 0;
2634 
2635 	return 1;
2636 }
2637 
2638 /*
2639  * Note the backref might has changed, and in this case we just return 0.
2640  */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2641 static noinline int relink_extent_backref(struct btrfs_path *path,
2642 				 struct sa_defrag_extent_backref *prev,
2643 				 struct sa_defrag_extent_backref *backref)
2644 {
2645 	struct btrfs_file_extent_item *extent;
2646 	struct btrfs_file_extent_item *item;
2647 	struct btrfs_ordered_extent *ordered;
2648 	struct btrfs_trans_handle *trans;
2649 	struct btrfs_ref ref = { 0 };
2650 	struct btrfs_root *root;
2651 	struct btrfs_key key;
2652 	struct extent_buffer *leaf;
2653 	struct old_sa_defrag_extent *old = backref->old;
2654 	struct new_sa_defrag_extent *new = old->new;
2655 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2656 	struct inode *inode;
2657 	struct extent_state *cached = NULL;
2658 	int ret = 0;
2659 	u64 start;
2660 	u64 len;
2661 	u64 lock_start;
2662 	u64 lock_end;
2663 	bool merge = false;
2664 	int index;
2665 
2666 	if (prev && prev->root_id == backref->root_id &&
2667 	    prev->inum == backref->inum &&
2668 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2669 		merge = true;
2670 
2671 	/* step 1: get root */
2672 	key.objectid = backref->root_id;
2673 	key.type = BTRFS_ROOT_ITEM_KEY;
2674 	key.offset = (u64)-1;
2675 
2676 	index = srcu_read_lock(&fs_info->subvol_srcu);
2677 
2678 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2679 	if (IS_ERR(root)) {
2680 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2681 		if (PTR_ERR(root) == -ENOENT)
2682 			return 0;
2683 		return PTR_ERR(root);
2684 	}
2685 
2686 	if (btrfs_root_readonly(root)) {
2687 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2688 		return 0;
2689 	}
2690 
2691 	/* step 2: get inode */
2692 	key.objectid = backref->inum;
2693 	key.type = BTRFS_INODE_ITEM_KEY;
2694 	key.offset = 0;
2695 
2696 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2697 	if (IS_ERR(inode)) {
2698 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2699 		return 0;
2700 	}
2701 
2702 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2703 
2704 	/* step 3: relink backref */
2705 	lock_start = backref->file_pos;
2706 	lock_end = backref->file_pos + backref->num_bytes - 1;
2707 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2708 			 &cached);
2709 
2710 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2711 	if (ordered) {
2712 		btrfs_put_ordered_extent(ordered);
2713 		goto out_unlock;
2714 	}
2715 
2716 	trans = btrfs_join_transaction(root);
2717 	if (IS_ERR(trans)) {
2718 		ret = PTR_ERR(trans);
2719 		goto out_unlock;
2720 	}
2721 
2722 	key.objectid = backref->inum;
2723 	key.type = BTRFS_EXTENT_DATA_KEY;
2724 	key.offset = backref->file_pos;
2725 
2726 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2727 	if (ret < 0) {
2728 		goto out_free_path;
2729 	} else if (ret > 0) {
2730 		ret = 0;
2731 		goto out_free_path;
2732 	}
2733 
2734 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2735 				struct btrfs_file_extent_item);
2736 
2737 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2738 	    backref->generation)
2739 		goto out_free_path;
2740 
2741 	btrfs_release_path(path);
2742 
2743 	start = backref->file_pos;
2744 	if (backref->extent_offset < old->extent_offset + old->offset)
2745 		start += old->extent_offset + old->offset -
2746 			 backref->extent_offset;
2747 
2748 	len = min(backref->extent_offset + backref->num_bytes,
2749 		  old->extent_offset + old->offset + old->len);
2750 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2751 
2752 	ret = btrfs_drop_extents(trans, root, inode, start,
2753 				 start + len, 1);
2754 	if (ret)
2755 		goto out_free_path;
2756 again:
2757 	key.objectid = btrfs_ino(BTRFS_I(inode));
2758 	key.type = BTRFS_EXTENT_DATA_KEY;
2759 	key.offset = start;
2760 
2761 	path->leave_spinning = 1;
2762 	if (merge) {
2763 		struct btrfs_file_extent_item *fi;
2764 		u64 extent_len;
2765 		struct btrfs_key found_key;
2766 
2767 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2768 		if (ret < 0)
2769 			goto out_free_path;
2770 
2771 		path->slots[0]--;
2772 		leaf = path->nodes[0];
2773 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2774 
2775 		fi = btrfs_item_ptr(leaf, path->slots[0],
2776 				    struct btrfs_file_extent_item);
2777 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2778 
2779 		if (extent_len + found_key.offset == start &&
2780 		    relink_is_mergable(leaf, fi, new)) {
2781 			btrfs_set_file_extent_num_bytes(leaf, fi,
2782 							extent_len + len);
2783 			btrfs_mark_buffer_dirty(leaf);
2784 			inode_add_bytes(inode, len);
2785 
2786 			ret = 1;
2787 			goto out_free_path;
2788 		} else {
2789 			merge = false;
2790 			btrfs_release_path(path);
2791 			goto again;
2792 		}
2793 	}
2794 
2795 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2796 					sizeof(*extent));
2797 	if (ret) {
2798 		btrfs_abort_transaction(trans, ret);
2799 		goto out_free_path;
2800 	}
2801 
2802 	leaf = path->nodes[0];
2803 	item = btrfs_item_ptr(leaf, path->slots[0],
2804 				struct btrfs_file_extent_item);
2805 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2806 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2807 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2808 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2809 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2810 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2811 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2812 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2813 	btrfs_set_file_extent_encryption(leaf, item, 0);
2814 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2815 
2816 	btrfs_mark_buffer_dirty(leaf);
2817 	inode_add_bytes(inode, len);
2818 	btrfs_release_path(path);
2819 
2820 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2821 			       new->disk_len, 0);
2822 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2823 			    new->file_pos);  /* start - extent_offset */
2824 	ret = btrfs_inc_extent_ref(trans, &ref);
2825 	if (ret) {
2826 		btrfs_abort_transaction(trans, ret);
2827 		goto out_free_path;
2828 	}
2829 
2830 	ret = 1;
2831 out_free_path:
2832 	btrfs_release_path(path);
2833 	path->leave_spinning = 0;
2834 	btrfs_end_transaction(trans);
2835 out_unlock:
2836 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2837 			     &cached);
2838 	iput(inode);
2839 	return ret;
2840 }
2841 
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2842 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2843 {
2844 	struct old_sa_defrag_extent *old, *tmp;
2845 
2846 	if (!new)
2847 		return;
2848 
2849 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2850 		kfree(old);
2851 	}
2852 	kfree(new);
2853 }
2854 
relink_file_extents(struct new_sa_defrag_extent * new)2855 static void relink_file_extents(struct new_sa_defrag_extent *new)
2856 {
2857 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2858 	struct btrfs_path *path;
2859 	struct sa_defrag_extent_backref *backref;
2860 	struct sa_defrag_extent_backref *prev = NULL;
2861 	struct rb_node *node;
2862 	int ret;
2863 
2864 	path = btrfs_alloc_path();
2865 	if (!path)
2866 		return;
2867 
2868 	if (!record_extent_backrefs(path, new)) {
2869 		btrfs_free_path(path);
2870 		goto out;
2871 	}
2872 	btrfs_release_path(path);
2873 
2874 	while (1) {
2875 		node = rb_first(&new->root);
2876 		if (!node)
2877 			break;
2878 		rb_erase(node, &new->root);
2879 
2880 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2881 
2882 		ret = relink_extent_backref(path, prev, backref);
2883 		WARN_ON(ret < 0);
2884 
2885 		kfree(prev);
2886 
2887 		if (ret == 1)
2888 			prev = backref;
2889 		else
2890 			prev = NULL;
2891 		cond_resched();
2892 	}
2893 	kfree(prev);
2894 
2895 	btrfs_free_path(path);
2896 out:
2897 	free_sa_defrag_extent(new);
2898 
2899 	atomic_dec(&fs_info->defrag_running);
2900 	wake_up(&fs_info->transaction_wait);
2901 }
2902 
2903 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2904 record_old_file_extents(struct inode *inode,
2905 			struct btrfs_ordered_extent *ordered)
2906 {
2907 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2908 	struct btrfs_root *root = BTRFS_I(inode)->root;
2909 	struct btrfs_path *path;
2910 	struct btrfs_key key;
2911 	struct old_sa_defrag_extent *old;
2912 	struct new_sa_defrag_extent *new;
2913 	int ret;
2914 
2915 	new = kmalloc(sizeof(*new), GFP_NOFS);
2916 	if (!new)
2917 		return NULL;
2918 
2919 	new->inode = inode;
2920 	new->file_pos = ordered->file_offset;
2921 	new->len = ordered->len;
2922 	new->bytenr = ordered->start;
2923 	new->disk_len = ordered->disk_len;
2924 	new->compress_type = ordered->compress_type;
2925 	new->root = RB_ROOT;
2926 	INIT_LIST_HEAD(&new->head);
2927 
2928 	path = btrfs_alloc_path();
2929 	if (!path)
2930 		goto out_kfree;
2931 
2932 	key.objectid = btrfs_ino(BTRFS_I(inode));
2933 	key.type = BTRFS_EXTENT_DATA_KEY;
2934 	key.offset = new->file_pos;
2935 
2936 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2937 	if (ret < 0)
2938 		goto out_free_path;
2939 	if (ret > 0 && path->slots[0] > 0)
2940 		path->slots[0]--;
2941 
2942 	/* find out all the old extents for the file range */
2943 	while (1) {
2944 		struct btrfs_file_extent_item *extent;
2945 		struct extent_buffer *l;
2946 		int slot;
2947 		u64 num_bytes;
2948 		u64 offset;
2949 		u64 end;
2950 		u64 disk_bytenr;
2951 		u64 extent_offset;
2952 
2953 		l = path->nodes[0];
2954 		slot = path->slots[0];
2955 
2956 		if (slot >= btrfs_header_nritems(l)) {
2957 			ret = btrfs_next_leaf(root, path);
2958 			if (ret < 0)
2959 				goto out_free_path;
2960 			else if (ret > 0)
2961 				break;
2962 			continue;
2963 		}
2964 
2965 		btrfs_item_key_to_cpu(l, &key, slot);
2966 
2967 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2968 			break;
2969 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2970 			break;
2971 		if (key.offset >= new->file_pos + new->len)
2972 			break;
2973 
2974 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2975 
2976 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2977 		if (key.offset + num_bytes < new->file_pos)
2978 			goto next;
2979 
2980 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2981 		if (!disk_bytenr)
2982 			goto next;
2983 
2984 		extent_offset = btrfs_file_extent_offset(l, extent);
2985 
2986 		old = kmalloc(sizeof(*old), GFP_NOFS);
2987 		if (!old)
2988 			goto out_free_path;
2989 
2990 		offset = max(new->file_pos, key.offset);
2991 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2992 
2993 		old->bytenr = disk_bytenr;
2994 		old->extent_offset = extent_offset;
2995 		old->offset = offset - key.offset;
2996 		old->len = end - offset;
2997 		old->new = new;
2998 		old->count = 0;
2999 		list_add_tail(&old->list, &new->head);
3000 next:
3001 		path->slots[0]++;
3002 		cond_resched();
3003 	}
3004 
3005 	btrfs_free_path(path);
3006 	atomic_inc(&fs_info->defrag_running);
3007 
3008 	return new;
3009 
3010 out_free_path:
3011 	btrfs_free_path(path);
3012 out_kfree:
3013 	free_sa_defrag_extent(new);
3014 	return NULL;
3015 }
3016 
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3017 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3018 					 u64 start, u64 len)
3019 {
3020 	struct btrfs_block_group_cache *cache;
3021 
3022 	cache = btrfs_lookup_block_group(fs_info, start);
3023 	ASSERT(cache);
3024 
3025 	spin_lock(&cache->lock);
3026 	cache->delalloc_bytes -= len;
3027 	spin_unlock(&cache->lock);
3028 
3029 	btrfs_put_block_group(cache);
3030 }
3031 
3032 /* as ordered data IO finishes, this gets called so we can finish
3033  * an ordered extent if the range of bytes in the file it covers are
3034  * fully written.
3035  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)3036 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3037 {
3038 	struct inode *inode = ordered_extent->inode;
3039 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3040 	struct btrfs_root *root = BTRFS_I(inode)->root;
3041 	struct btrfs_trans_handle *trans = NULL;
3042 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3043 	struct extent_state *cached_state = NULL;
3044 	struct new_sa_defrag_extent *new = NULL;
3045 	int compress_type = 0;
3046 	int ret = 0;
3047 	u64 logical_len = ordered_extent->len;
3048 	bool nolock;
3049 	bool truncated = false;
3050 	bool range_locked = false;
3051 	bool clear_new_delalloc_bytes = false;
3052 	bool clear_reserved_extent = true;
3053 
3054 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3055 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3056 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3057 		clear_new_delalloc_bytes = true;
3058 
3059 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3060 
3061 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3062 		ret = -EIO;
3063 		goto out;
3064 	}
3065 
3066 	btrfs_free_io_failure_record(BTRFS_I(inode),
3067 			ordered_extent->file_offset,
3068 			ordered_extent->file_offset +
3069 			ordered_extent->len - 1);
3070 
3071 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3072 		truncated = true;
3073 		logical_len = ordered_extent->truncated_len;
3074 		/* Truncated the entire extent, don't bother adding */
3075 		if (!logical_len)
3076 			goto out;
3077 	}
3078 
3079 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3080 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3081 
3082 		/*
3083 		 * For mwrite(mmap + memset to write) case, we still reserve
3084 		 * space for NOCOW range.
3085 		 * As NOCOW won't cause a new delayed ref, just free the space
3086 		 */
3087 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3088 				       ordered_extent->len);
3089 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3090 		if (nolock)
3091 			trans = btrfs_join_transaction_nolock(root);
3092 		else
3093 			trans = btrfs_join_transaction(root);
3094 		if (IS_ERR(trans)) {
3095 			ret = PTR_ERR(trans);
3096 			trans = NULL;
3097 			goto out;
3098 		}
3099 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3100 		ret = btrfs_update_inode_fallback(trans, root, inode);
3101 		if (ret) /* -ENOMEM or corruption */
3102 			btrfs_abort_transaction(trans, ret);
3103 		goto out;
3104 	}
3105 
3106 	range_locked = true;
3107 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3108 			 ordered_extent->file_offset + ordered_extent->len - 1,
3109 			 &cached_state);
3110 
3111 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3112 			ordered_extent->file_offset + ordered_extent->len - 1,
3113 			EXTENT_DEFRAG, 0, cached_state);
3114 	if (ret) {
3115 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3116 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3117 			/* the inode is shared */
3118 			new = record_old_file_extents(inode, ordered_extent);
3119 
3120 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3121 			ordered_extent->file_offset + ordered_extent->len - 1,
3122 			EXTENT_DEFRAG, 0, 0, &cached_state);
3123 	}
3124 
3125 	if (nolock)
3126 		trans = btrfs_join_transaction_nolock(root);
3127 	else
3128 		trans = btrfs_join_transaction(root);
3129 	if (IS_ERR(trans)) {
3130 		ret = PTR_ERR(trans);
3131 		trans = NULL;
3132 		goto out;
3133 	}
3134 
3135 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3136 
3137 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3138 		compress_type = ordered_extent->compress_type;
3139 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3140 		BUG_ON(compress_type);
3141 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3142 				       ordered_extent->len);
3143 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3144 						ordered_extent->file_offset,
3145 						ordered_extent->file_offset +
3146 						logical_len);
3147 	} else {
3148 		BUG_ON(root == fs_info->tree_root);
3149 		ret = insert_reserved_file_extent(trans, inode,
3150 						ordered_extent->file_offset,
3151 						ordered_extent->start,
3152 						ordered_extent->disk_len,
3153 						logical_len, logical_len,
3154 						compress_type, 0, 0,
3155 						BTRFS_FILE_EXTENT_REG);
3156 		if (!ret) {
3157 			clear_reserved_extent = false;
3158 			btrfs_release_delalloc_bytes(fs_info,
3159 						     ordered_extent->start,
3160 						     ordered_extent->disk_len);
3161 		}
3162 	}
3163 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3164 			   ordered_extent->file_offset, ordered_extent->len,
3165 			   trans->transid);
3166 	if (ret < 0) {
3167 		btrfs_abort_transaction(trans, ret);
3168 		goto out;
3169 	}
3170 
3171 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3172 	if (ret) {
3173 		btrfs_abort_transaction(trans, ret);
3174 		goto out;
3175 	}
3176 
3177 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3178 	ret = btrfs_update_inode_fallback(trans, root, inode);
3179 	if (ret) { /* -ENOMEM or corruption */
3180 		btrfs_abort_transaction(trans, ret);
3181 		goto out;
3182 	}
3183 	ret = 0;
3184 out:
3185 	if (range_locked || clear_new_delalloc_bytes) {
3186 		unsigned int clear_bits = 0;
3187 
3188 		if (range_locked)
3189 			clear_bits |= EXTENT_LOCKED;
3190 		if (clear_new_delalloc_bytes)
3191 			clear_bits |= EXTENT_DELALLOC_NEW;
3192 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3193 				 ordered_extent->file_offset,
3194 				 ordered_extent->file_offset +
3195 				 ordered_extent->len - 1,
3196 				 clear_bits,
3197 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3198 				 0, &cached_state);
3199 	}
3200 
3201 	if (trans)
3202 		btrfs_end_transaction(trans);
3203 
3204 	if (ret || truncated) {
3205 		u64 start, end;
3206 
3207 		if (truncated)
3208 			start = ordered_extent->file_offset + logical_len;
3209 		else
3210 			start = ordered_extent->file_offset;
3211 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3212 		clear_extent_uptodate(io_tree, start, end, NULL);
3213 
3214 		/* Drop the cache for the part of the extent we didn't write. */
3215 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3216 
3217 		/*
3218 		 * If the ordered extent had an IOERR or something else went
3219 		 * wrong we need to return the space for this ordered extent
3220 		 * back to the allocator.  We only free the extent in the
3221 		 * truncated case if we didn't write out the extent at all.
3222 		 *
3223 		 * If we made it past insert_reserved_file_extent before we
3224 		 * errored out then we don't need to do this as the accounting
3225 		 * has already been done.
3226 		 */
3227 		if ((ret || !logical_len) &&
3228 		    clear_reserved_extent &&
3229 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3230 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3231 			btrfs_free_reserved_extent(fs_info,
3232 						   ordered_extent->start,
3233 						   ordered_extent->disk_len, 1);
3234 	}
3235 
3236 
3237 	/*
3238 	 * This needs to be done to make sure anybody waiting knows we are done
3239 	 * updating everything for this ordered extent.
3240 	 */
3241 	btrfs_remove_ordered_extent(inode, ordered_extent);
3242 
3243 	/* for snapshot-aware defrag */
3244 	if (new) {
3245 		if (ret) {
3246 			free_sa_defrag_extent(new);
3247 			atomic_dec(&fs_info->defrag_running);
3248 		} else {
3249 			relink_file_extents(new);
3250 		}
3251 	}
3252 
3253 	/* once for us */
3254 	btrfs_put_ordered_extent(ordered_extent);
3255 	/* once for the tree */
3256 	btrfs_put_ordered_extent(ordered_extent);
3257 
3258 	return ret;
3259 }
3260 
finish_ordered_fn(struct btrfs_work * work)3261 static void finish_ordered_fn(struct btrfs_work *work)
3262 {
3263 	struct btrfs_ordered_extent *ordered_extent;
3264 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3265 	btrfs_finish_ordered_io(ordered_extent);
3266 }
3267 
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)3268 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3269 					  u64 end, int uptodate)
3270 {
3271 	struct inode *inode = page->mapping->host;
3272 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3273 	struct btrfs_ordered_extent *ordered_extent = NULL;
3274 	struct btrfs_workqueue *wq;
3275 
3276 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3277 
3278 	ClearPagePrivate2(page);
3279 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3280 					    end - start + 1, uptodate))
3281 		return;
3282 
3283 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
3284 		wq = fs_info->endio_freespace_worker;
3285 	else
3286 		wq = fs_info->endio_write_workers;
3287 
3288 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3289 	btrfs_queue_work(wq, &ordered_extent->work);
3290 }
3291 
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3292 static int __readpage_endio_check(struct inode *inode,
3293 				  struct btrfs_io_bio *io_bio,
3294 				  int icsum, struct page *page,
3295 				  int pgoff, u64 start, size_t len)
3296 {
3297 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3298 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3299 	char *kaddr;
3300 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3301 	u8 *csum_expected;
3302 	u8 csum[BTRFS_CSUM_SIZE];
3303 
3304 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3305 
3306 	kaddr = kmap_atomic(page);
3307 	shash->tfm = fs_info->csum_shash;
3308 
3309 	crypto_shash_init(shash);
3310 	crypto_shash_update(shash, kaddr + pgoff, len);
3311 	crypto_shash_final(shash, csum);
3312 
3313 	if (memcmp(csum, csum_expected, csum_size))
3314 		goto zeroit;
3315 
3316 	kunmap_atomic(kaddr);
3317 	return 0;
3318 zeroit:
3319 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3320 				    io_bio->mirror_num);
3321 	memset(kaddr + pgoff, 1, len);
3322 	flush_dcache_page(page);
3323 	kunmap_atomic(kaddr);
3324 	return -EIO;
3325 }
3326 
3327 /*
3328  * when reads are done, we need to check csums to verify the data is correct
3329  * if there's a match, we allow the bio to finish.  If not, the code in
3330  * extent_io.c will try to find good copies for us.
3331  */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3332 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3333 				      u64 phy_offset, struct page *page,
3334 				      u64 start, u64 end, int mirror)
3335 {
3336 	size_t offset = start - page_offset(page);
3337 	struct inode *inode = page->mapping->host;
3338 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3339 	struct btrfs_root *root = BTRFS_I(inode)->root;
3340 
3341 	if (PageChecked(page)) {
3342 		ClearPageChecked(page);
3343 		return 0;
3344 	}
3345 
3346 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3347 		return 0;
3348 
3349 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3350 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3351 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3352 		return 0;
3353 	}
3354 
3355 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3356 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3357 				      start, (size_t)(end - start + 1));
3358 }
3359 
3360 /*
3361  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3362  *
3363  * @inode: The inode we want to perform iput on
3364  *
3365  * This function uses the generic vfs_inode::i_count to track whether we should
3366  * just decrement it (in case it's > 1) or if this is the last iput then link
3367  * the inode to the delayed iput machinery. Delayed iputs are processed at
3368  * transaction commit time/superblock commit/cleaner kthread.
3369  */
btrfs_add_delayed_iput(struct inode * inode)3370 void btrfs_add_delayed_iput(struct inode *inode)
3371 {
3372 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3373 	struct btrfs_inode *binode = BTRFS_I(inode);
3374 
3375 	if (atomic_add_unless(&inode->i_count, -1, 1))
3376 		return;
3377 
3378 	atomic_inc(&fs_info->nr_delayed_iputs);
3379 	spin_lock(&fs_info->delayed_iput_lock);
3380 	ASSERT(list_empty(&binode->delayed_iput));
3381 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3382 	spin_unlock(&fs_info->delayed_iput_lock);
3383 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3384 		wake_up_process(fs_info->cleaner_kthread);
3385 }
3386 
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3387 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3388 				    struct btrfs_inode *inode)
3389 {
3390 	list_del_init(&inode->delayed_iput);
3391 	spin_unlock(&fs_info->delayed_iput_lock);
3392 	iput(&inode->vfs_inode);
3393 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3394 		wake_up(&fs_info->delayed_iputs_wait);
3395 	spin_lock(&fs_info->delayed_iput_lock);
3396 }
3397 
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3398 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3399 				   struct btrfs_inode *inode)
3400 {
3401 	if (!list_empty(&inode->delayed_iput)) {
3402 		spin_lock(&fs_info->delayed_iput_lock);
3403 		if (!list_empty(&inode->delayed_iput))
3404 			run_delayed_iput_locked(fs_info, inode);
3405 		spin_unlock(&fs_info->delayed_iput_lock);
3406 	}
3407 }
3408 
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3409 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3410 {
3411 
3412 	spin_lock(&fs_info->delayed_iput_lock);
3413 	while (!list_empty(&fs_info->delayed_iputs)) {
3414 		struct btrfs_inode *inode;
3415 
3416 		inode = list_first_entry(&fs_info->delayed_iputs,
3417 				struct btrfs_inode, delayed_iput);
3418 		run_delayed_iput_locked(fs_info, inode);
3419 	}
3420 	spin_unlock(&fs_info->delayed_iput_lock);
3421 }
3422 
3423 /**
3424  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3425  * @fs_info - the fs_info for this fs
3426  * @return - EINTR if we were killed, 0 if nothing's pending
3427  *
3428  * This will wait on any delayed iputs that are currently running with KILLABLE
3429  * set.  Once they are all done running we will return, unless we are killed in
3430  * which case we return EINTR. This helps in user operations like fallocate etc
3431  * that might get blocked on the iputs.
3432  */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3433 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3434 {
3435 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3436 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3437 	if (ret)
3438 		return -EINTR;
3439 	return 0;
3440 }
3441 
3442 /*
3443  * This creates an orphan entry for the given inode in case something goes wrong
3444  * in the middle of an unlink.
3445  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3446 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3447 		     struct btrfs_inode *inode)
3448 {
3449 	int ret;
3450 
3451 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3452 	if (ret && ret != -EEXIST) {
3453 		btrfs_abort_transaction(trans, ret);
3454 		return ret;
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 /*
3461  * We have done the delete so we can go ahead and remove the orphan item for
3462  * this particular inode.
3463  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3464 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3465 			    struct btrfs_inode *inode)
3466 {
3467 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3468 }
3469 
3470 /*
3471  * this cleans up any orphans that may be left on the list from the last use
3472  * of this root.
3473  */
btrfs_orphan_cleanup(struct btrfs_root * root)3474 int btrfs_orphan_cleanup(struct btrfs_root *root)
3475 {
3476 	struct btrfs_fs_info *fs_info = root->fs_info;
3477 	struct btrfs_path *path;
3478 	struct extent_buffer *leaf;
3479 	struct btrfs_key key, found_key;
3480 	struct btrfs_trans_handle *trans;
3481 	struct inode *inode;
3482 	u64 last_objectid = 0;
3483 	int ret = 0, nr_unlink = 0;
3484 
3485 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3486 		return 0;
3487 
3488 	path = btrfs_alloc_path();
3489 	if (!path) {
3490 		ret = -ENOMEM;
3491 		goto out;
3492 	}
3493 	path->reada = READA_BACK;
3494 
3495 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3496 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3497 	key.offset = (u64)-1;
3498 
3499 	while (1) {
3500 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3501 		if (ret < 0)
3502 			goto out;
3503 
3504 		/*
3505 		 * if ret == 0 means we found what we were searching for, which
3506 		 * is weird, but possible, so only screw with path if we didn't
3507 		 * find the key and see if we have stuff that matches
3508 		 */
3509 		if (ret > 0) {
3510 			ret = 0;
3511 			if (path->slots[0] == 0)
3512 				break;
3513 			path->slots[0]--;
3514 		}
3515 
3516 		/* pull out the item */
3517 		leaf = path->nodes[0];
3518 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3519 
3520 		/* make sure the item matches what we want */
3521 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3522 			break;
3523 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3524 			break;
3525 
3526 		/* release the path since we're done with it */
3527 		btrfs_release_path(path);
3528 
3529 		/*
3530 		 * this is where we are basically btrfs_lookup, without the
3531 		 * crossing root thing.  we store the inode number in the
3532 		 * offset of the orphan item.
3533 		 */
3534 
3535 		if (found_key.offset == last_objectid) {
3536 			btrfs_err(fs_info,
3537 				  "Error removing orphan entry, stopping orphan cleanup");
3538 			ret = -EINVAL;
3539 			goto out;
3540 		}
3541 
3542 		last_objectid = found_key.offset;
3543 
3544 		found_key.objectid = found_key.offset;
3545 		found_key.type = BTRFS_INODE_ITEM_KEY;
3546 		found_key.offset = 0;
3547 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3548 		ret = PTR_ERR_OR_ZERO(inode);
3549 		if (ret && ret != -ENOENT)
3550 			goto out;
3551 
3552 		if (ret == -ENOENT && root == fs_info->tree_root) {
3553 			struct btrfs_root *dead_root;
3554 			struct btrfs_fs_info *fs_info = root->fs_info;
3555 			int is_dead_root = 0;
3556 
3557 			/*
3558 			 * this is an orphan in the tree root. Currently these
3559 			 * could come from 2 sources:
3560 			 *  a) a snapshot deletion in progress
3561 			 *  b) a free space cache inode
3562 			 * We need to distinguish those two, as the snapshot
3563 			 * orphan must not get deleted.
3564 			 * find_dead_roots already ran before us, so if this
3565 			 * is a snapshot deletion, we should find the root
3566 			 * in the dead_roots list
3567 			 */
3568 			spin_lock(&fs_info->trans_lock);
3569 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3570 					    root_list) {
3571 				if (dead_root->root_key.objectid ==
3572 				    found_key.objectid) {
3573 					is_dead_root = 1;
3574 					break;
3575 				}
3576 			}
3577 			spin_unlock(&fs_info->trans_lock);
3578 			if (is_dead_root) {
3579 				/* prevent this orphan from being found again */
3580 				key.offset = found_key.objectid - 1;
3581 				continue;
3582 			}
3583 
3584 		}
3585 
3586 		/*
3587 		 * If we have an inode with links, there are a couple of
3588 		 * possibilities. Old kernels (before v3.12) used to create an
3589 		 * orphan item for truncate indicating that there were possibly
3590 		 * extent items past i_size that needed to be deleted. In v3.12,
3591 		 * truncate was changed to update i_size in sync with the extent
3592 		 * items, but the (useless) orphan item was still created. Since
3593 		 * v4.18, we don't create the orphan item for truncate at all.
3594 		 *
3595 		 * So, this item could mean that we need to do a truncate, but
3596 		 * only if this filesystem was last used on a pre-v3.12 kernel
3597 		 * and was not cleanly unmounted. The odds of that are quite
3598 		 * slim, and it's a pain to do the truncate now, so just delete
3599 		 * the orphan item.
3600 		 *
3601 		 * It's also possible that this orphan item was supposed to be
3602 		 * deleted but wasn't. The inode number may have been reused,
3603 		 * but either way, we can delete the orphan item.
3604 		 */
3605 		if (ret == -ENOENT || inode->i_nlink) {
3606 			if (!ret)
3607 				iput(inode);
3608 			trans = btrfs_start_transaction(root, 1);
3609 			if (IS_ERR(trans)) {
3610 				ret = PTR_ERR(trans);
3611 				goto out;
3612 			}
3613 			btrfs_debug(fs_info, "auto deleting %Lu",
3614 				    found_key.objectid);
3615 			ret = btrfs_del_orphan_item(trans, root,
3616 						    found_key.objectid);
3617 			btrfs_end_transaction(trans);
3618 			if (ret)
3619 				goto out;
3620 			continue;
3621 		}
3622 
3623 		nr_unlink++;
3624 
3625 		/* this will do delete_inode and everything for us */
3626 		iput(inode);
3627 	}
3628 	/* release the path since we're done with it */
3629 	btrfs_release_path(path);
3630 
3631 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3632 
3633 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3634 		trans = btrfs_join_transaction(root);
3635 		if (!IS_ERR(trans))
3636 			btrfs_end_transaction(trans);
3637 	}
3638 
3639 	if (nr_unlink)
3640 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3641 
3642 out:
3643 	if (ret)
3644 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3645 	btrfs_free_path(path);
3646 	return ret;
3647 }
3648 
3649 /*
3650  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3651  * don't find any xattrs, we know there can't be any acls.
3652  *
3653  * slot is the slot the inode is in, objectid is the objectid of the inode
3654  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3655 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3656 					  int slot, u64 objectid,
3657 					  int *first_xattr_slot)
3658 {
3659 	u32 nritems = btrfs_header_nritems(leaf);
3660 	struct btrfs_key found_key;
3661 	static u64 xattr_access = 0;
3662 	static u64 xattr_default = 0;
3663 	int scanned = 0;
3664 
3665 	if (!xattr_access) {
3666 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3667 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3668 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3669 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3670 	}
3671 
3672 	slot++;
3673 	*first_xattr_slot = -1;
3674 	while (slot < nritems) {
3675 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3676 
3677 		/* we found a different objectid, there must not be acls */
3678 		if (found_key.objectid != objectid)
3679 			return 0;
3680 
3681 		/* we found an xattr, assume we've got an acl */
3682 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3683 			if (*first_xattr_slot == -1)
3684 				*first_xattr_slot = slot;
3685 			if (found_key.offset == xattr_access ||
3686 			    found_key.offset == xattr_default)
3687 				return 1;
3688 		}
3689 
3690 		/*
3691 		 * we found a key greater than an xattr key, there can't
3692 		 * be any acls later on
3693 		 */
3694 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3695 			return 0;
3696 
3697 		slot++;
3698 		scanned++;
3699 
3700 		/*
3701 		 * it goes inode, inode backrefs, xattrs, extents,
3702 		 * so if there are a ton of hard links to an inode there can
3703 		 * be a lot of backrefs.  Don't waste time searching too hard,
3704 		 * this is just an optimization
3705 		 */
3706 		if (scanned >= 8)
3707 			break;
3708 	}
3709 	/* we hit the end of the leaf before we found an xattr or
3710 	 * something larger than an xattr.  We have to assume the inode
3711 	 * has acls
3712 	 */
3713 	if (*first_xattr_slot == -1)
3714 		*first_xattr_slot = slot;
3715 	return 1;
3716 }
3717 
3718 /*
3719  * read an inode from the btree into the in-memory inode
3720  */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3721 static int btrfs_read_locked_inode(struct inode *inode,
3722 				   struct btrfs_path *in_path)
3723 {
3724 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3725 	struct btrfs_path *path = in_path;
3726 	struct extent_buffer *leaf;
3727 	struct btrfs_inode_item *inode_item;
3728 	struct btrfs_root *root = BTRFS_I(inode)->root;
3729 	struct btrfs_key location;
3730 	unsigned long ptr;
3731 	int maybe_acls;
3732 	u32 rdev;
3733 	int ret;
3734 	bool filled = false;
3735 	int first_xattr_slot;
3736 
3737 	ret = btrfs_fill_inode(inode, &rdev);
3738 	if (!ret)
3739 		filled = true;
3740 
3741 	if (!path) {
3742 		path = btrfs_alloc_path();
3743 		if (!path)
3744 			return -ENOMEM;
3745 	}
3746 
3747 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3748 
3749 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3750 	if (ret) {
3751 		if (path != in_path)
3752 			btrfs_free_path(path);
3753 		return ret;
3754 	}
3755 
3756 	leaf = path->nodes[0];
3757 
3758 	if (filled)
3759 		goto cache_index;
3760 
3761 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3762 				    struct btrfs_inode_item);
3763 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3764 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3765 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3766 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3767 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3768 
3769 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3770 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3771 
3772 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3773 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3774 
3775 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3776 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3777 
3778 	BTRFS_I(inode)->i_otime.tv_sec =
3779 		btrfs_timespec_sec(leaf, &inode_item->otime);
3780 	BTRFS_I(inode)->i_otime.tv_nsec =
3781 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3782 
3783 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3784 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3785 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3786 
3787 	inode_set_iversion_queried(inode,
3788 				   btrfs_inode_sequence(leaf, inode_item));
3789 	inode->i_generation = BTRFS_I(inode)->generation;
3790 	inode->i_rdev = 0;
3791 	rdev = btrfs_inode_rdev(leaf, inode_item);
3792 
3793 	BTRFS_I(inode)->index_cnt = (u64)-1;
3794 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3795 
3796 cache_index:
3797 	/*
3798 	 * If we were modified in the current generation and evicted from memory
3799 	 * and then re-read we need to do a full sync since we don't have any
3800 	 * idea about which extents were modified before we were evicted from
3801 	 * cache.
3802 	 *
3803 	 * This is required for both inode re-read from disk and delayed inode
3804 	 * in delayed_nodes_tree.
3805 	 */
3806 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3807 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3808 			&BTRFS_I(inode)->runtime_flags);
3809 
3810 	/*
3811 	 * We don't persist the id of the transaction where an unlink operation
3812 	 * against the inode was last made. So here we assume the inode might
3813 	 * have been evicted, and therefore the exact value of last_unlink_trans
3814 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3815 	 * between the inode and its parent if the inode is fsync'ed and the log
3816 	 * replayed. For example, in the scenario:
3817 	 *
3818 	 * touch mydir/foo
3819 	 * ln mydir/foo mydir/bar
3820 	 * sync
3821 	 * unlink mydir/bar
3822 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3823 	 * xfs_io -c fsync mydir/foo
3824 	 * <power failure>
3825 	 * mount fs, triggers fsync log replay
3826 	 *
3827 	 * We must make sure that when we fsync our inode foo we also log its
3828 	 * parent inode, otherwise after log replay the parent still has the
3829 	 * dentry with the "bar" name but our inode foo has a link count of 1
3830 	 * and doesn't have an inode ref with the name "bar" anymore.
3831 	 *
3832 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3833 	 * but it guarantees correctness at the expense of occasional full
3834 	 * transaction commits on fsync if our inode is a directory, or if our
3835 	 * inode is not a directory, logging its parent unnecessarily.
3836 	 */
3837 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3838 
3839 	path->slots[0]++;
3840 	if (inode->i_nlink != 1 ||
3841 	    path->slots[0] >= btrfs_header_nritems(leaf))
3842 		goto cache_acl;
3843 
3844 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3845 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3846 		goto cache_acl;
3847 
3848 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3849 	if (location.type == BTRFS_INODE_REF_KEY) {
3850 		struct btrfs_inode_ref *ref;
3851 
3852 		ref = (struct btrfs_inode_ref *)ptr;
3853 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3854 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3855 		struct btrfs_inode_extref *extref;
3856 
3857 		extref = (struct btrfs_inode_extref *)ptr;
3858 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3859 								     extref);
3860 	}
3861 cache_acl:
3862 	/*
3863 	 * try to precache a NULL acl entry for files that don't have
3864 	 * any xattrs or acls
3865 	 */
3866 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3867 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3868 	if (first_xattr_slot != -1) {
3869 		path->slots[0] = first_xattr_slot;
3870 		ret = btrfs_load_inode_props(inode, path);
3871 		if (ret)
3872 			btrfs_err(fs_info,
3873 				  "error loading props for ino %llu (root %llu): %d",
3874 				  btrfs_ino(BTRFS_I(inode)),
3875 				  root->root_key.objectid, ret);
3876 	}
3877 	if (path != in_path)
3878 		btrfs_free_path(path);
3879 
3880 	if (!maybe_acls)
3881 		cache_no_acl(inode);
3882 
3883 	switch (inode->i_mode & S_IFMT) {
3884 	case S_IFREG:
3885 		inode->i_mapping->a_ops = &btrfs_aops;
3886 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3887 		inode->i_fop = &btrfs_file_operations;
3888 		inode->i_op = &btrfs_file_inode_operations;
3889 		break;
3890 	case S_IFDIR:
3891 		inode->i_fop = &btrfs_dir_file_operations;
3892 		inode->i_op = &btrfs_dir_inode_operations;
3893 		break;
3894 	case S_IFLNK:
3895 		inode->i_op = &btrfs_symlink_inode_operations;
3896 		inode_nohighmem(inode);
3897 		inode->i_mapping->a_ops = &btrfs_aops;
3898 		break;
3899 	default:
3900 		inode->i_op = &btrfs_special_inode_operations;
3901 		init_special_inode(inode, inode->i_mode, rdev);
3902 		break;
3903 	}
3904 
3905 	btrfs_sync_inode_flags_to_i_flags(inode);
3906 	return 0;
3907 }
3908 
3909 /*
3910  * given a leaf and an inode, copy the inode fields into the leaf
3911  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3912 static void fill_inode_item(struct btrfs_trans_handle *trans,
3913 			    struct extent_buffer *leaf,
3914 			    struct btrfs_inode_item *item,
3915 			    struct inode *inode)
3916 {
3917 	struct btrfs_map_token token;
3918 
3919 	btrfs_init_map_token(&token, leaf);
3920 
3921 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3922 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3923 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3924 				   &token);
3925 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3926 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3927 
3928 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3929 				     inode->i_atime.tv_sec, &token);
3930 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3931 				      inode->i_atime.tv_nsec, &token);
3932 
3933 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3934 				     inode->i_mtime.tv_sec, &token);
3935 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3936 				      inode->i_mtime.tv_nsec, &token);
3937 
3938 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3939 				     inode->i_ctime.tv_sec, &token);
3940 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3941 				      inode->i_ctime.tv_nsec, &token);
3942 
3943 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3944 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3945 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3946 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3947 
3948 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3949 				     &token);
3950 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3951 					 &token);
3952 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3953 				       &token);
3954 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3955 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3956 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3957 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3958 }
3959 
3960 /*
3961  * copy everything in the in-memory inode into the btree.
3962  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3963 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3964 				struct btrfs_root *root, struct inode *inode)
3965 {
3966 	struct btrfs_inode_item *inode_item;
3967 	struct btrfs_path *path;
3968 	struct extent_buffer *leaf;
3969 	int ret;
3970 
3971 	path = btrfs_alloc_path();
3972 	if (!path)
3973 		return -ENOMEM;
3974 
3975 	path->leave_spinning = 1;
3976 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3977 				 1);
3978 	if (ret) {
3979 		if (ret > 0)
3980 			ret = -ENOENT;
3981 		goto failed;
3982 	}
3983 
3984 	leaf = path->nodes[0];
3985 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3986 				    struct btrfs_inode_item);
3987 
3988 	fill_inode_item(trans, leaf, inode_item, inode);
3989 	btrfs_mark_buffer_dirty(leaf);
3990 	btrfs_set_inode_last_trans(trans, inode);
3991 	ret = 0;
3992 failed:
3993 	btrfs_free_path(path);
3994 	return ret;
3995 }
3996 
3997 /*
3998  * copy everything in the in-memory inode into the btree.
3999  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4000 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4001 				struct btrfs_root *root, struct inode *inode)
4002 {
4003 	struct btrfs_fs_info *fs_info = root->fs_info;
4004 	int ret;
4005 
4006 	/*
4007 	 * If the inode is a free space inode, we can deadlock during commit
4008 	 * if we put it into the delayed code.
4009 	 *
4010 	 * The data relocation inode should also be directly updated
4011 	 * without delay
4012 	 */
4013 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4014 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4015 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4016 		btrfs_update_root_times(trans, root);
4017 
4018 		ret = btrfs_delayed_update_inode(trans, root, inode);
4019 		if (!ret)
4020 			btrfs_set_inode_last_trans(trans, inode);
4021 		return ret;
4022 	}
4023 
4024 	return btrfs_update_inode_item(trans, root, inode);
4025 }
4026 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4027 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4028 					 struct btrfs_root *root,
4029 					 struct inode *inode)
4030 {
4031 	int ret;
4032 
4033 	ret = btrfs_update_inode(trans, root, inode);
4034 	if (ret == -ENOSPC)
4035 		return btrfs_update_inode_item(trans, root, inode);
4036 	return ret;
4037 }
4038 
4039 /*
4040  * unlink helper that gets used here in inode.c and in the tree logging
4041  * recovery code.  It remove a link in a directory with a given name, and
4042  * also drops the back refs in the inode to the directory
4043  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4044 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4045 				struct btrfs_root *root,
4046 				struct btrfs_inode *dir,
4047 				struct btrfs_inode *inode,
4048 				const char *name, int name_len)
4049 {
4050 	struct btrfs_fs_info *fs_info = root->fs_info;
4051 	struct btrfs_path *path;
4052 	int ret = 0;
4053 	struct btrfs_dir_item *di;
4054 	u64 index;
4055 	u64 ino = btrfs_ino(inode);
4056 	u64 dir_ino = btrfs_ino(dir);
4057 
4058 	path = btrfs_alloc_path();
4059 	if (!path) {
4060 		ret = -ENOMEM;
4061 		goto out;
4062 	}
4063 
4064 	path->leave_spinning = 1;
4065 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4066 				    name, name_len, -1);
4067 	if (IS_ERR_OR_NULL(di)) {
4068 		ret = di ? PTR_ERR(di) : -ENOENT;
4069 		goto err;
4070 	}
4071 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4072 	if (ret)
4073 		goto err;
4074 	btrfs_release_path(path);
4075 
4076 	/*
4077 	 * If we don't have dir index, we have to get it by looking up
4078 	 * the inode ref, since we get the inode ref, remove it directly,
4079 	 * it is unnecessary to do delayed deletion.
4080 	 *
4081 	 * But if we have dir index, needn't search inode ref to get it.
4082 	 * Since the inode ref is close to the inode item, it is better
4083 	 * that we delay to delete it, and just do this deletion when
4084 	 * we update the inode item.
4085 	 */
4086 	if (inode->dir_index) {
4087 		ret = btrfs_delayed_delete_inode_ref(inode);
4088 		if (!ret) {
4089 			index = inode->dir_index;
4090 			goto skip_backref;
4091 		}
4092 	}
4093 
4094 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4095 				  dir_ino, &index);
4096 	if (ret) {
4097 		btrfs_info(fs_info,
4098 			"failed to delete reference to %.*s, inode %llu parent %llu",
4099 			name_len, name, ino, dir_ino);
4100 		btrfs_abort_transaction(trans, ret);
4101 		goto err;
4102 	}
4103 skip_backref:
4104 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4105 	if (ret) {
4106 		btrfs_abort_transaction(trans, ret);
4107 		goto err;
4108 	}
4109 
4110 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4111 			dir_ino);
4112 	if (ret != 0 && ret != -ENOENT) {
4113 		btrfs_abort_transaction(trans, ret);
4114 		goto err;
4115 	}
4116 
4117 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4118 			index);
4119 	if (ret == -ENOENT)
4120 		ret = 0;
4121 	else if (ret)
4122 		btrfs_abort_transaction(trans, ret);
4123 
4124 	/*
4125 	 * If we have a pending delayed iput we could end up with the final iput
4126 	 * being run in btrfs-cleaner context.  If we have enough of these built
4127 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4128 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4129 	 * the inode we can run the delayed iput here without any issues as the
4130 	 * final iput won't be done until after we drop the ref we're currently
4131 	 * holding.
4132 	 */
4133 	btrfs_run_delayed_iput(fs_info, inode);
4134 err:
4135 	btrfs_free_path(path);
4136 	if (ret)
4137 		goto out;
4138 
4139 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4140 	inode_inc_iversion(&inode->vfs_inode);
4141 	inode_inc_iversion(&dir->vfs_inode);
4142 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4143 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4144 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4145 out:
4146 	return ret;
4147 }
4148 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4149 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4150 		       struct btrfs_root *root,
4151 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4152 		       const char *name, int name_len)
4153 {
4154 	int ret;
4155 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4156 	if (!ret) {
4157 		drop_nlink(&inode->vfs_inode);
4158 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4159 	}
4160 	return ret;
4161 }
4162 
4163 /*
4164  * helper to start transaction for unlink and rmdir.
4165  *
4166  * unlink and rmdir are special in btrfs, they do not always free space, so
4167  * if we cannot make our reservations the normal way try and see if there is
4168  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4169  * allow the unlink to occur.
4170  */
__unlink_start_trans(struct inode * dir)4171 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4172 {
4173 	struct btrfs_root *root = BTRFS_I(dir)->root;
4174 
4175 	/*
4176 	 * 1 for the possible orphan item
4177 	 * 1 for the dir item
4178 	 * 1 for the dir index
4179 	 * 1 for the inode ref
4180 	 * 1 for the inode
4181 	 */
4182 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4183 }
4184 
btrfs_unlink(struct inode * dir,struct dentry * dentry)4185 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4186 {
4187 	struct btrfs_root *root = BTRFS_I(dir)->root;
4188 	struct btrfs_trans_handle *trans;
4189 	struct inode *inode = d_inode(dentry);
4190 	int ret;
4191 
4192 	trans = __unlink_start_trans(dir);
4193 	if (IS_ERR(trans))
4194 		return PTR_ERR(trans);
4195 
4196 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4197 			0);
4198 
4199 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4200 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4201 			dentry->d_name.len);
4202 	if (ret)
4203 		goto out;
4204 
4205 	if (inode->i_nlink == 0) {
4206 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4207 		if (ret)
4208 			goto out;
4209 	}
4210 
4211 out:
4212 	btrfs_end_transaction(trans);
4213 	btrfs_btree_balance_dirty(root->fs_info);
4214 	return ret;
4215 }
4216 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4217 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4218 			       struct inode *dir, struct dentry *dentry)
4219 {
4220 	struct btrfs_root *root = BTRFS_I(dir)->root;
4221 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4222 	struct btrfs_path *path;
4223 	struct extent_buffer *leaf;
4224 	struct btrfs_dir_item *di;
4225 	struct btrfs_key key;
4226 	const char *name = dentry->d_name.name;
4227 	int name_len = dentry->d_name.len;
4228 	u64 index;
4229 	int ret;
4230 	u64 objectid;
4231 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4232 
4233 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4234 		objectid = inode->root->root_key.objectid;
4235 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4236 		objectid = inode->location.objectid;
4237 	} else {
4238 		WARN_ON(1);
4239 		return -EINVAL;
4240 	}
4241 
4242 	path = btrfs_alloc_path();
4243 	if (!path)
4244 		return -ENOMEM;
4245 
4246 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4247 				   name, name_len, -1);
4248 	if (IS_ERR_OR_NULL(di)) {
4249 		ret = di ? PTR_ERR(di) : -ENOENT;
4250 		goto out;
4251 	}
4252 
4253 	leaf = path->nodes[0];
4254 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4255 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4256 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4257 	if (ret) {
4258 		btrfs_abort_transaction(trans, ret);
4259 		goto out;
4260 	}
4261 	btrfs_release_path(path);
4262 
4263 	/*
4264 	 * This is a placeholder inode for a subvolume we didn't have a
4265 	 * reference to at the time of the snapshot creation.  In the meantime
4266 	 * we could have renamed the real subvol link into our snapshot, so
4267 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4268 	 * Instead simply lookup the dir_index_item for this entry so we can
4269 	 * remove it.  Otherwise we know we have a ref to the root and we can
4270 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4271 	 */
4272 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4273 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4274 						 name, name_len);
4275 		if (IS_ERR_OR_NULL(di)) {
4276 			if (!di)
4277 				ret = -ENOENT;
4278 			else
4279 				ret = PTR_ERR(di);
4280 			btrfs_abort_transaction(trans, ret);
4281 			goto out;
4282 		}
4283 
4284 		leaf = path->nodes[0];
4285 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4286 		index = key.offset;
4287 		btrfs_release_path(path);
4288 	} else {
4289 		ret = btrfs_del_root_ref(trans, objectid,
4290 					 root->root_key.objectid, dir_ino,
4291 					 &index, name, name_len);
4292 		if (ret) {
4293 			btrfs_abort_transaction(trans, ret);
4294 			goto out;
4295 		}
4296 	}
4297 
4298 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4299 	if (ret) {
4300 		btrfs_abort_transaction(trans, ret);
4301 		goto out;
4302 	}
4303 
4304 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4305 	inode_inc_iversion(dir);
4306 	dir->i_mtime = dir->i_ctime = current_time(dir);
4307 	ret = btrfs_update_inode_fallback(trans, root, dir);
4308 	if (ret)
4309 		btrfs_abort_transaction(trans, ret);
4310 out:
4311 	btrfs_free_path(path);
4312 	return ret;
4313 }
4314 
4315 /*
4316  * Helper to check if the subvolume references other subvolumes or if it's
4317  * default.
4318  */
may_destroy_subvol(struct btrfs_root * root)4319 static noinline int may_destroy_subvol(struct btrfs_root *root)
4320 {
4321 	struct btrfs_fs_info *fs_info = root->fs_info;
4322 	struct btrfs_path *path;
4323 	struct btrfs_dir_item *di;
4324 	struct btrfs_key key;
4325 	u64 dir_id;
4326 	int ret;
4327 
4328 	path = btrfs_alloc_path();
4329 	if (!path)
4330 		return -ENOMEM;
4331 
4332 	/* Make sure this root isn't set as the default subvol */
4333 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4334 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4335 				   dir_id, "default", 7, 0);
4336 	if (di && !IS_ERR(di)) {
4337 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4338 		if (key.objectid == root->root_key.objectid) {
4339 			ret = -EPERM;
4340 			btrfs_err(fs_info,
4341 				  "deleting default subvolume %llu is not allowed",
4342 				  key.objectid);
4343 			goto out;
4344 		}
4345 		btrfs_release_path(path);
4346 	}
4347 
4348 	key.objectid = root->root_key.objectid;
4349 	key.type = BTRFS_ROOT_REF_KEY;
4350 	key.offset = (u64)-1;
4351 
4352 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4353 	if (ret < 0)
4354 		goto out;
4355 	BUG_ON(ret == 0);
4356 
4357 	ret = 0;
4358 	if (path->slots[0] > 0) {
4359 		path->slots[0]--;
4360 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4361 		if (key.objectid == root->root_key.objectid &&
4362 		    key.type == BTRFS_ROOT_REF_KEY)
4363 			ret = -ENOTEMPTY;
4364 	}
4365 out:
4366 	btrfs_free_path(path);
4367 	return ret;
4368 }
4369 
4370 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4371 static void btrfs_prune_dentries(struct btrfs_root *root)
4372 {
4373 	struct btrfs_fs_info *fs_info = root->fs_info;
4374 	struct rb_node *node;
4375 	struct rb_node *prev;
4376 	struct btrfs_inode *entry;
4377 	struct inode *inode;
4378 	u64 objectid = 0;
4379 
4380 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4381 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4382 
4383 	spin_lock(&root->inode_lock);
4384 again:
4385 	node = root->inode_tree.rb_node;
4386 	prev = NULL;
4387 	while (node) {
4388 		prev = node;
4389 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4390 
4391 		if (objectid < btrfs_ino(entry))
4392 			node = node->rb_left;
4393 		else if (objectid > btrfs_ino(entry))
4394 			node = node->rb_right;
4395 		else
4396 			break;
4397 	}
4398 	if (!node) {
4399 		while (prev) {
4400 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4401 			if (objectid <= btrfs_ino(entry)) {
4402 				node = prev;
4403 				break;
4404 			}
4405 			prev = rb_next(prev);
4406 		}
4407 	}
4408 	while (node) {
4409 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4410 		objectid = btrfs_ino(entry) + 1;
4411 		inode = igrab(&entry->vfs_inode);
4412 		if (inode) {
4413 			spin_unlock(&root->inode_lock);
4414 			if (atomic_read(&inode->i_count) > 1)
4415 				d_prune_aliases(inode);
4416 			/*
4417 			 * btrfs_drop_inode will have it removed from the inode
4418 			 * cache when its usage count hits zero.
4419 			 */
4420 			iput(inode);
4421 			cond_resched();
4422 			spin_lock(&root->inode_lock);
4423 			goto again;
4424 		}
4425 
4426 		if (cond_resched_lock(&root->inode_lock))
4427 			goto again;
4428 
4429 		node = rb_next(node);
4430 	}
4431 	spin_unlock(&root->inode_lock);
4432 }
4433 
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4434 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4435 {
4436 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4437 	struct btrfs_root *root = BTRFS_I(dir)->root;
4438 	struct inode *inode = d_inode(dentry);
4439 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4440 	struct btrfs_trans_handle *trans;
4441 	struct btrfs_block_rsv block_rsv;
4442 	u64 root_flags;
4443 	int ret;
4444 	int err;
4445 
4446 	/*
4447 	 * Don't allow to delete a subvolume with send in progress. This is
4448 	 * inside the inode lock so the error handling that has to drop the bit
4449 	 * again is not run concurrently.
4450 	 */
4451 	spin_lock(&dest->root_item_lock);
4452 	if (dest->send_in_progress) {
4453 		spin_unlock(&dest->root_item_lock);
4454 		btrfs_warn(fs_info,
4455 			   "attempt to delete subvolume %llu during send",
4456 			   dest->root_key.objectid);
4457 		return -EPERM;
4458 	}
4459 	root_flags = btrfs_root_flags(&dest->root_item);
4460 	btrfs_set_root_flags(&dest->root_item,
4461 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4462 	spin_unlock(&dest->root_item_lock);
4463 
4464 	down_write(&fs_info->subvol_sem);
4465 
4466 	err = may_destroy_subvol(dest);
4467 	if (err)
4468 		goto out_up_write;
4469 
4470 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4471 	/*
4472 	 * One for dir inode,
4473 	 * two for dir entries,
4474 	 * two for root ref/backref.
4475 	 */
4476 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4477 	if (err)
4478 		goto out_up_write;
4479 
4480 	trans = btrfs_start_transaction(root, 0);
4481 	if (IS_ERR(trans)) {
4482 		err = PTR_ERR(trans);
4483 		goto out_release;
4484 	}
4485 	trans->block_rsv = &block_rsv;
4486 	trans->bytes_reserved = block_rsv.size;
4487 
4488 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4489 
4490 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4491 	if (ret) {
4492 		err = ret;
4493 		btrfs_abort_transaction(trans, ret);
4494 		goto out_end_trans;
4495 	}
4496 
4497 	btrfs_record_root_in_trans(trans, dest);
4498 
4499 	memset(&dest->root_item.drop_progress, 0,
4500 		sizeof(dest->root_item.drop_progress));
4501 	dest->root_item.drop_level = 0;
4502 	btrfs_set_root_refs(&dest->root_item, 0);
4503 
4504 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4505 		ret = btrfs_insert_orphan_item(trans,
4506 					fs_info->tree_root,
4507 					dest->root_key.objectid);
4508 		if (ret) {
4509 			btrfs_abort_transaction(trans, ret);
4510 			err = ret;
4511 			goto out_end_trans;
4512 		}
4513 	}
4514 
4515 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4516 				  BTRFS_UUID_KEY_SUBVOL,
4517 				  dest->root_key.objectid);
4518 	if (ret && ret != -ENOENT) {
4519 		btrfs_abort_transaction(trans, ret);
4520 		err = ret;
4521 		goto out_end_trans;
4522 	}
4523 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4524 		ret = btrfs_uuid_tree_remove(trans,
4525 					  dest->root_item.received_uuid,
4526 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4527 					  dest->root_key.objectid);
4528 		if (ret && ret != -ENOENT) {
4529 			btrfs_abort_transaction(trans, ret);
4530 			err = ret;
4531 			goto out_end_trans;
4532 		}
4533 	}
4534 
4535 out_end_trans:
4536 	trans->block_rsv = NULL;
4537 	trans->bytes_reserved = 0;
4538 	ret = btrfs_end_transaction(trans);
4539 	if (ret && !err)
4540 		err = ret;
4541 	inode->i_flags |= S_DEAD;
4542 out_release:
4543 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4544 out_up_write:
4545 	up_write(&fs_info->subvol_sem);
4546 	if (err) {
4547 		spin_lock(&dest->root_item_lock);
4548 		root_flags = btrfs_root_flags(&dest->root_item);
4549 		btrfs_set_root_flags(&dest->root_item,
4550 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4551 		spin_unlock(&dest->root_item_lock);
4552 	} else {
4553 		d_invalidate(dentry);
4554 		btrfs_prune_dentries(dest);
4555 		ASSERT(dest->send_in_progress == 0);
4556 
4557 		/* the last ref */
4558 		if (dest->ino_cache_inode) {
4559 			iput(dest->ino_cache_inode);
4560 			dest->ino_cache_inode = NULL;
4561 		}
4562 	}
4563 
4564 	return err;
4565 }
4566 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4567 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4568 {
4569 	struct inode *inode = d_inode(dentry);
4570 	int err = 0;
4571 	struct btrfs_root *root = BTRFS_I(dir)->root;
4572 	struct btrfs_trans_handle *trans;
4573 	u64 last_unlink_trans;
4574 
4575 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4576 		return -ENOTEMPTY;
4577 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4578 		return btrfs_delete_subvolume(dir, dentry);
4579 
4580 	trans = __unlink_start_trans(dir);
4581 	if (IS_ERR(trans))
4582 		return PTR_ERR(trans);
4583 
4584 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4585 		err = btrfs_unlink_subvol(trans, dir, dentry);
4586 		goto out;
4587 	}
4588 
4589 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4590 	if (err)
4591 		goto out;
4592 
4593 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4594 
4595 	/* now the directory is empty */
4596 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4597 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4598 			dentry->d_name.len);
4599 	if (!err) {
4600 		btrfs_i_size_write(BTRFS_I(inode), 0);
4601 		/*
4602 		 * Propagate the last_unlink_trans value of the deleted dir to
4603 		 * its parent directory. This is to prevent an unrecoverable
4604 		 * log tree in the case we do something like this:
4605 		 * 1) create dir foo
4606 		 * 2) create snapshot under dir foo
4607 		 * 3) delete the snapshot
4608 		 * 4) rmdir foo
4609 		 * 5) mkdir foo
4610 		 * 6) fsync foo or some file inside foo
4611 		 */
4612 		if (last_unlink_trans >= trans->transid)
4613 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4614 	}
4615 out:
4616 	btrfs_end_transaction(trans);
4617 	btrfs_btree_balance_dirty(root->fs_info);
4618 
4619 	return err;
4620 }
4621 
4622 /*
4623  * Return this if we need to call truncate_block for the last bit of the
4624  * truncate.
4625  */
4626 #define NEED_TRUNCATE_BLOCK 1
4627 
4628 /*
4629  * this can truncate away extent items, csum items and directory items.
4630  * It starts at a high offset and removes keys until it can't find
4631  * any higher than new_size
4632  *
4633  * csum items that cross the new i_size are truncated to the new size
4634  * as well.
4635  *
4636  * min_type is the minimum key type to truncate down to.  If set to 0, this
4637  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4638  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4639 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4640 			       struct btrfs_root *root,
4641 			       struct inode *inode,
4642 			       u64 new_size, u32 min_type)
4643 {
4644 	struct btrfs_fs_info *fs_info = root->fs_info;
4645 	struct btrfs_path *path;
4646 	struct extent_buffer *leaf;
4647 	struct btrfs_file_extent_item *fi;
4648 	struct btrfs_key key;
4649 	struct btrfs_key found_key;
4650 	u64 extent_start = 0;
4651 	u64 extent_num_bytes = 0;
4652 	u64 extent_offset = 0;
4653 	u64 item_end = 0;
4654 	u64 last_size = new_size;
4655 	u32 found_type = (u8)-1;
4656 	int found_extent;
4657 	int del_item;
4658 	int pending_del_nr = 0;
4659 	int pending_del_slot = 0;
4660 	int extent_type = -1;
4661 	int ret;
4662 	u64 ino = btrfs_ino(BTRFS_I(inode));
4663 	u64 bytes_deleted = 0;
4664 	bool be_nice = false;
4665 	bool should_throttle = false;
4666 
4667 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4668 
4669 	/*
4670 	 * for non-free space inodes and ref cows, we want to back off from
4671 	 * time to time
4672 	 */
4673 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4674 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4675 		be_nice = true;
4676 
4677 	path = btrfs_alloc_path();
4678 	if (!path)
4679 		return -ENOMEM;
4680 	path->reada = READA_BACK;
4681 
4682 	/*
4683 	 * We want to drop from the next block forward in case this new size is
4684 	 * not block aligned since we will be keeping the last block of the
4685 	 * extent just the way it is.
4686 	 */
4687 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4688 	    root == fs_info->tree_root)
4689 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4690 					fs_info->sectorsize),
4691 					(u64)-1, 0);
4692 
4693 	/*
4694 	 * This function is also used to drop the items in the log tree before
4695 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4696 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4697 	 * items.
4698 	 */
4699 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4700 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4701 
4702 	key.objectid = ino;
4703 	key.offset = (u64)-1;
4704 	key.type = (u8)-1;
4705 
4706 search_again:
4707 	/*
4708 	 * with a 16K leaf size and 128MB extents, you can actually queue
4709 	 * up a huge file in a single leaf.  Most of the time that
4710 	 * bytes_deleted is > 0, it will be huge by the time we get here
4711 	 */
4712 	if (be_nice && bytes_deleted > SZ_32M &&
4713 	    btrfs_should_end_transaction(trans)) {
4714 		ret = -EAGAIN;
4715 		goto out;
4716 	}
4717 
4718 	path->leave_spinning = 1;
4719 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4720 	if (ret < 0)
4721 		goto out;
4722 
4723 	if (ret > 0) {
4724 		ret = 0;
4725 		/* there are no items in the tree for us to truncate, we're
4726 		 * done
4727 		 */
4728 		if (path->slots[0] == 0)
4729 			goto out;
4730 		path->slots[0]--;
4731 	}
4732 
4733 	while (1) {
4734 		fi = NULL;
4735 		leaf = path->nodes[0];
4736 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4737 		found_type = found_key.type;
4738 
4739 		if (found_key.objectid != ino)
4740 			break;
4741 
4742 		if (found_type < min_type)
4743 			break;
4744 
4745 		item_end = found_key.offset;
4746 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4747 			fi = btrfs_item_ptr(leaf, path->slots[0],
4748 					    struct btrfs_file_extent_item);
4749 			extent_type = btrfs_file_extent_type(leaf, fi);
4750 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4751 				item_end +=
4752 				    btrfs_file_extent_num_bytes(leaf, fi);
4753 
4754 				trace_btrfs_truncate_show_fi_regular(
4755 					BTRFS_I(inode), leaf, fi,
4756 					found_key.offset);
4757 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4758 				item_end += btrfs_file_extent_ram_bytes(leaf,
4759 									fi);
4760 
4761 				trace_btrfs_truncate_show_fi_inline(
4762 					BTRFS_I(inode), leaf, fi, path->slots[0],
4763 					found_key.offset);
4764 			}
4765 			item_end--;
4766 		}
4767 		if (found_type > min_type) {
4768 			del_item = 1;
4769 		} else {
4770 			if (item_end < new_size)
4771 				break;
4772 			if (found_key.offset >= new_size)
4773 				del_item = 1;
4774 			else
4775 				del_item = 0;
4776 		}
4777 		found_extent = 0;
4778 		/* FIXME, shrink the extent if the ref count is only 1 */
4779 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4780 			goto delete;
4781 
4782 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4783 			u64 num_dec;
4784 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4785 			if (!del_item) {
4786 				u64 orig_num_bytes =
4787 					btrfs_file_extent_num_bytes(leaf, fi);
4788 				extent_num_bytes = ALIGN(new_size -
4789 						found_key.offset,
4790 						fs_info->sectorsize);
4791 				btrfs_set_file_extent_num_bytes(leaf, fi,
4792 							 extent_num_bytes);
4793 				num_dec = (orig_num_bytes -
4794 					   extent_num_bytes);
4795 				if (test_bit(BTRFS_ROOT_REF_COWS,
4796 					     &root->state) &&
4797 				    extent_start != 0)
4798 					inode_sub_bytes(inode, num_dec);
4799 				btrfs_mark_buffer_dirty(leaf);
4800 			} else {
4801 				extent_num_bytes =
4802 					btrfs_file_extent_disk_num_bytes(leaf,
4803 									 fi);
4804 				extent_offset = found_key.offset -
4805 					btrfs_file_extent_offset(leaf, fi);
4806 
4807 				/* FIXME blocksize != 4096 */
4808 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4809 				if (extent_start != 0) {
4810 					found_extent = 1;
4811 					if (test_bit(BTRFS_ROOT_REF_COWS,
4812 						     &root->state))
4813 						inode_sub_bytes(inode, num_dec);
4814 				}
4815 			}
4816 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4817 			/*
4818 			 * we can't truncate inline items that have had
4819 			 * special encodings
4820 			 */
4821 			if (!del_item &&
4822 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4823 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4824 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4825 				u32 size = (u32)(new_size - found_key.offset);
4826 
4827 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4828 				size = btrfs_file_extent_calc_inline_size(size);
4829 				btrfs_truncate_item(path, size, 1);
4830 			} else if (!del_item) {
4831 				/*
4832 				 * We have to bail so the last_size is set to
4833 				 * just before this extent.
4834 				 */
4835 				ret = NEED_TRUNCATE_BLOCK;
4836 				break;
4837 			}
4838 
4839 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4840 				inode_sub_bytes(inode, item_end + 1 - new_size);
4841 		}
4842 delete:
4843 		if (del_item)
4844 			last_size = found_key.offset;
4845 		else
4846 			last_size = new_size;
4847 		if (del_item) {
4848 			if (!pending_del_nr) {
4849 				/* no pending yet, add ourselves */
4850 				pending_del_slot = path->slots[0];
4851 				pending_del_nr = 1;
4852 			} else if (pending_del_nr &&
4853 				   path->slots[0] + 1 == pending_del_slot) {
4854 				/* hop on the pending chunk */
4855 				pending_del_nr++;
4856 				pending_del_slot = path->slots[0];
4857 			} else {
4858 				BUG();
4859 			}
4860 		} else {
4861 			break;
4862 		}
4863 		should_throttle = false;
4864 
4865 		if (found_extent &&
4866 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4867 		     root == fs_info->tree_root)) {
4868 			struct btrfs_ref ref = { 0 };
4869 
4870 			btrfs_set_path_blocking(path);
4871 			bytes_deleted += extent_num_bytes;
4872 
4873 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4874 					extent_start, extent_num_bytes, 0);
4875 			ref.real_root = root->root_key.objectid;
4876 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4877 					ino, extent_offset);
4878 			ret = btrfs_free_extent(trans, &ref);
4879 			if (ret) {
4880 				btrfs_abort_transaction(trans, ret);
4881 				break;
4882 			}
4883 			if (be_nice) {
4884 				if (btrfs_should_throttle_delayed_refs(trans))
4885 					should_throttle = true;
4886 			}
4887 		}
4888 
4889 		if (found_type == BTRFS_INODE_ITEM_KEY)
4890 			break;
4891 
4892 		if (path->slots[0] == 0 ||
4893 		    path->slots[0] != pending_del_slot ||
4894 		    should_throttle) {
4895 			if (pending_del_nr) {
4896 				ret = btrfs_del_items(trans, root, path,
4897 						pending_del_slot,
4898 						pending_del_nr);
4899 				if (ret) {
4900 					btrfs_abort_transaction(trans, ret);
4901 					break;
4902 				}
4903 				pending_del_nr = 0;
4904 			}
4905 			btrfs_release_path(path);
4906 
4907 			/*
4908 			 * We can generate a lot of delayed refs, so we need to
4909 			 * throttle every once and a while and make sure we're
4910 			 * adding enough space to keep up with the work we are
4911 			 * generating.  Since we hold a transaction here we
4912 			 * can't flush, and we don't want to FLUSH_LIMIT because
4913 			 * we could have generated too many delayed refs to
4914 			 * actually allocate, so just bail if we're short and
4915 			 * let the normal reservation dance happen higher up.
4916 			 */
4917 			if (should_throttle) {
4918 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4919 							BTRFS_RESERVE_NO_FLUSH);
4920 				if (ret) {
4921 					ret = -EAGAIN;
4922 					break;
4923 				}
4924 			}
4925 			goto search_again;
4926 		} else {
4927 			path->slots[0]--;
4928 		}
4929 	}
4930 out:
4931 	if (ret >= 0 && pending_del_nr) {
4932 		int err;
4933 
4934 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4935 				      pending_del_nr);
4936 		if (err) {
4937 			btrfs_abort_transaction(trans, err);
4938 			ret = err;
4939 		}
4940 	}
4941 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4942 		ASSERT(last_size >= new_size);
4943 		if (!ret && last_size > new_size)
4944 			last_size = new_size;
4945 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4946 	}
4947 
4948 	btrfs_free_path(path);
4949 	return ret;
4950 }
4951 
4952 /*
4953  * btrfs_truncate_block - read, zero a chunk and write a block
4954  * @inode - inode that we're zeroing
4955  * @from - the offset to start zeroing
4956  * @len - the length to zero, 0 to zero the entire range respective to the
4957  *	offset
4958  * @front - zero up to the offset instead of from the offset on
4959  *
4960  * This will find the block for the "from" offset and cow the block and zero the
4961  * part we want to zero.  This is used with truncate and hole punching.
4962  */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4963 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4964 			int front)
4965 {
4966 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4967 	struct address_space *mapping = inode->i_mapping;
4968 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4969 	struct btrfs_ordered_extent *ordered;
4970 	struct extent_state *cached_state = NULL;
4971 	struct extent_changeset *data_reserved = NULL;
4972 	char *kaddr;
4973 	u32 blocksize = fs_info->sectorsize;
4974 	pgoff_t index = from >> PAGE_SHIFT;
4975 	unsigned offset = from & (blocksize - 1);
4976 	struct page *page;
4977 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4978 	int ret = 0;
4979 	u64 block_start;
4980 	u64 block_end;
4981 
4982 	if (IS_ALIGNED(offset, blocksize) &&
4983 	    (!len || IS_ALIGNED(len, blocksize)))
4984 		goto out;
4985 
4986 	block_start = round_down(from, blocksize);
4987 	block_end = block_start + blocksize - 1;
4988 
4989 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4990 					   block_start, blocksize);
4991 	if (ret)
4992 		goto out;
4993 
4994 again:
4995 	page = find_or_create_page(mapping, index, mask);
4996 	if (!page) {
4997 		btrfs_delalloc_release_space(inode, data_reserved,
4998 					     block_start, blocksize, true);
4999 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5000 		ret = -ENOMEM;
5001 		goto out;
5002 	}
5003 
5004 	if (!PageUptodate(page)) {
5005 		ret = btrfs_readpage(NULL, page);
5006 		lock_page(page);
5007 		if (page->mapping != mapping) {
5008 			unlock_page(page);
5009 			put_page(page);
5010 			goto again;
5011 		}
5012 		if (!PageUptodate(page)) {
5013 			ret = -EIO;
5014 			goto out_unlock;
5015 		}
5016 	}
5017 	wait_on_page_writeback(page);
5018 
5019 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5020 	set_page_extent_mapped(page);
5021 
5022 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
5023 	if (ordered) {
5024 		unlock_extent_cached(io_tree, block_start, block_end,
5025 				     &cached_state);
5026 		unlock_page(page);
5027 		put_page(page);
5028 		btrfs_start_ordered_extent(inode, ordered, 1);
5029 		btrfs_put_ordered_extent(ordered);
5030 		goto again;
5031 	}
5032 
5033 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5034 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5035 			 0, 0, &cached_state);
5036 
5037 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5038 					&cached_state);
5039 	if (ret) {
5040 		unlock_extent_cached(io_tree, block_start, block_end,
5041 				     &cached_state);
5042 		goto out_unlock;
5043 	}
5044 
5045 	if (offset != blocksize) {
5046 		if (!len)
5047 			len = blocksize - offset;
5048 		kaddr = kmap(page);
5049 		if (front)
5050 			memset(kaddr + (block_start - page_offset(page)),
5051 				0, offset);
5052 		else
5053 			memset(kaddr + (block_start - page_offset(page)) +  offset,
5054 				0, len);
5055 		flush_dcache_page(page);
5056 		kunmap(page);
5057 	}
5058 	ClearPageChecked(page);
5059 	set_page_dirty(page);
5060 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5061 
5062 out_unlock:
5063 	if (ret)
5064 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5065 					     blocksize, true);
5066 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5067 	unlock_page(page);
5068 	put_page(page);
5069 out:
5070 	extent_changeset_free(data_reserved);
5071 	return ret;
5072 }
5073 
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)5074 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5075 			     u64 offset, u64 len)
5076 {
5077 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5078 	struct btrfs_trans_handle *trans;
5079 	int ret;
5080 
5081 	/*
5082 	 * Still need to make sure the inode looks like it's been updated so
5083 	 * that any holes get logged if we fsync.
5084 	 */
5085 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5086 		BTRFS_I(inode)->last_trans = fs_info->generation;
5087 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
5088 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5089 		return 0;
5090 	}
5091 
5092 	/*
5093 	 * 1 - for the one we're dropping
5094 	 * 1 - for the one we're adding
5095 	 * 1 - for updating the inode.
5096 	 */
5097 	trans = btrfs_start_transaction(root, 3);
5098 	if (IS_ERR(trans))
5099 		return PTR_ERR(trans);
5100 
5101 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5102 	if (ret) {
5103 		btrfs_abort_transaction(trans, ret);
5104 		btrfs_end_transaction(trans);
5105 		return ret;
5106 	}
5107 
5108 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5109 			offset, 0, 0, len, 0, len, 0, 0, 0);
5110 	if (ret)
5111 		btrfs_abort_transaction(trans, ret);
5112 	else
5113 		btrfs_update_inode(trans, root, inode);
5114 	btrfs_end_transaction(trans);
5115 	return ret;
5116 }
5117 
5118 /*
5119  * This function puts in dummy file extents for the area we're creating a hole
5120  * for.  So if we are truncating this file to a larger size we need to insert
5121  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5122  * the range between oldsize and size
5123  */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5124 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5125 {
5126 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5127 	struct btrfs_root *root = BTRFS_I(inode)->root;
5128 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5129 	struct extent_map *em = NULL;
5130 	struct extent_state *cached_state = NULL;
5131 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5132 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5133 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5134 	u64 last_byte;
5135 	u64 cur_offset;
5136 	u64 hole_size;
5137 	int err = 0;
5138 
5139 	/*
5140 	 * If our size started in the middle of a block we need to zero out the
5141 	 * rest of the block before we expand the i_size, otherwise we could
5142 	 * expose stale data.
5143 	 */
5144 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5145 	if (err)
5146 		return err;
5147 
5148 	if (size <= hole_start)
5149 		return 0;
5150 
5151 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5152 					   block_end - 1, &cached_state);
5153 	cur_offset = hole_start;
5154 	while (1) {
5155 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5156 				block_end - cur_offset, 0);
5157 		if (IS_ERR(em)) {
5158 			err = PTR_ERR(em);
5159 			em = NULL;
5160 			break;
5161 		}
5162 		last_byte = min(extent_map_end(em), block_end);
5163 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5164 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5165 			struct extent_map *hole_em;
5166 			hole_size = last_byte - cur_offset;
5167 
5168 			err = maybe_insert_hole(root, inode, cur_offset,
5169 						hole_size);
5170 			if (err)
5171 				break;
5172 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5173 						cur_offset + hole_size - 1, 0);
5174 			hole_em = alloc_extent_map();
5175 			if (!hole_em) {
5176 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5177 					&BTRFS_I(inode)->runtime_flags);
5178 				goto next;
5179 			}
5180 			hole_em->start = cur_offset;
5181 			hole_em->len = hole_size;
5182 			hole_em->orig_start = cur_offset;
5183 
5184 			hole_em->block_start = EXTENT_MAP_HOLE;
5185 			hole_em->block_len = 0;
5186 			hole_em->orig_block_len = 0;
5187 			hole_em->ram_bytes = hole_size;
5188 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5189 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5190 			hole_em->generation = fs_info->generation;
5191 
5192 			while (1) {
5193 				write_lock(&em_tree->lock);
5194 				err = add_extent_mapping(em_tree, hole_em, 1);
5195 				write_unlock(&em_tree->lock);
5196 				if (err != -EEXIST)
5197 					break;
5198 				btrfs_drop_extent_cache(BTRFS_I(inode),
5199 							cur_offset,
5200 							cur_offset +
5201 							hole_size - 1, 0);
5202 			}
5203 			free_extent_map(hole_em);
5204 		}
5205 next:
5206 		free_extent_map(em);
5207 		em = NULL;
5208 		cur_offset = last_byte;
5209 		if (cur_offset >= block_end)
5210 			break;
5211 	}
5212 	free_extent_map(em);
5213 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5214 	return err;
5215 }
5216 
btrfs_setsize(struct inode * inode,struct iattr * attr)5217 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5218 {
5219 	struct btrfs_root *root = BTRFS_I(inode)->root;
5220 	struct btrfs_trans_handle *trans;
5221 	loff_t oldsize = i_size_read(inode);
5222 	loff_t newsize = attr->ia_size;
5223 	int mask = attr->ia_valid;
5224 	int ret;
5225 
5226 	/*
5227 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5228 	 * special case where we need to update the times despite not having
5229 	 * these flags set.  For all other operations the VFS set these flags
5230 	 * explicitly if it wants a timestamp update.
5231 	 */
5232 	if (newsize != oldsize) {
5233 		inode_inc_iversion(inode);
5234 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5235 			inode->i_ctime = inode->i_mtime =
5236 				current_time(inode);
5237 	}
5238 
5239 	if (newsize > oldsize) {
5240 		/*
5241 		 * Don't do an expanding truncate while snapshotting is ongoing.
5242 		 * This is to ensure the snapshot captures a fully consistent
5243 		 * state of this file - if the snapshot captures this expanding
5244 		 * truncation, it must capture all writes that happened before
5245 		 * this truncation.
5246 		 */
5247 		btrfs_wait_for_snapshot_creation(root);
5248 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5249 		if (ret) {
5250 			btrfs_end_write_no_snapshotting(root);
5251 			return ret;
5252 		}
5253 
5254 		trans = btrfs_start_transaction(root, 1);
5255 		if (IS_ERR(trans)) {
5256 			btrfs_end_write_no_snapshotting(root);
5257 			return PTR_ERR(trans);
5258 		}
5259 
5260 		i_size_write(inode, newsize);
5261 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5262 		pagecache_isize_extended(inode, oldsize, newsize);
5263 		ret = btrfs_update_inode(trans, root, inode);
5264 		btrfs_end_write_no_snapshotting(root);
5265 		btrfs_end_transaction(trans);
5266 	} else {
5267 
5268 		/*
5269 		 * We're truncating a file that used to have good data down to
5270 		 * zero. Make sure it gets into the ordered flush list so that
5271 		 * any new writes get down to disk quickly.
5272 		 */
5273 		if (newsize == 0)
5274 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5275 				&BTRFS_I(inode)->runtime_flags);
5276 
5277 		truncate_setsize(inode, newsize);
5278 
5279 		/* Disable nonlocked read DIO to avoid the endless truncate */
5280 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5281 		inode_dio_wait(inode);
5282 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5283 
5284 		ret = btrfs_truncate(inode, newsize == oldsize);
5285 		if (ret && inode->i_nlink) {
5286 			int err;
5287 
5288 			/*
5289 			 * Truncate failed, so fix up the in-memory size. We
5290 			 * adjusted disk_i_size down as we removed extents, so
5291 			 * wait for disk_i_size to be stable and then update the
5292 			 * in-memory size to match.
5293 			 */
5294 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5295 			if (err)
5296 				return err;
5297 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5298 		}
5299 	}
5300 
5301 	return ret;
5302 }
5303 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5304 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5305 {
5306 	struct inode *inode = d_inode(dentry);
5307 	struct btrfs_root *root = BTRFS_I(inode)->root;
5308 	int err;
5309 
5310 	if (btrfs_root_readonly(root))
5311 		return -EROFS;
5312 
5313 	err = setattr_prepare(dentry, attr);
5314 	if (err)
5315 		return err;
5316 
5317 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5318 		err = btrfs_setsize(inode, attr);
5319 		if (err)
5320 			return err;
5321 	}
5322 
5323 	if (attr->ia_valid) {
5324 		setattr_copy(inode, attr);
5325 		inode_inc_iversion(inode);
5326 		err = btrfs_dirty_inode(inode);
5327 
5328 		if (!err && attr->ia_valid & ATTR_MODE)
5329 			err = posix_acl_chmod(inode, inode->i_mode);
5330 	}
5331 
5332 	return err;
5333 }
5334 
5335 /*
5336  * While truncating the inode pages during eviction, we get the VFS calling
5337  * btrfs_invalidatepage() against each page of the inode. This is slow because
5338  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5339  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5340  * extent_state structures over and over, wasting lots of time.
5341  *
5342  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5343  * those expensive operations on a per page basis and do only the ordered io
5344  * finishing, while we release here the extent_map and extent_state structures,
5345  * without the excessive merging and splitting.
5346  */
evict_inode_truncate_pages(struct inode * inode)5347 static void evict_inode_truncate_pages(struct inode *inode)
5348 {
5349 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5350 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5351 	struct rb_node *node;
5352 
5353 	ASSERT(inode->i_state & I_FREEING);
5354 	truncate_inode_pages_final(&inode->i_data);
5355 
5356 	write_lock(&map_tree->lock);
5357 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5358 		struct extent_map *em;
5359 
5360 		node = rb_first_cached(&map_tree->map);
5361 		em = rb_entry(node, struct extent_map, rb_node);
5362 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5363 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5364 		remove_extent_mapping(map_tree, em);
5365 		free_extent_map(em);
5366 		if (need_resched()) {
5367 			write_unlock(&map_tree->lock);
5368 			cond_resched();
5369 			write_lock(&map_tree->lock);
5370 		}
5371 	}
5372 	write_unlock(&map_tree->lock);
5373 
5374 	/*
5375 	 * Keep looping until we have no more ranges in the io tree.
5376 	 * We can have ongoing bios started by readpages (called from readahead)
5377 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5378 	 * still in progress (unlocked the pages in the bio but did not yet
5379 	 * unlocked the ranges in the io tree). Therefore this means some
5380 	 * ranges can still be locked and eviction started because before
5381 	 * submitting those bios, which are executed by a separate task (work
5382 	 * queue kthread), inode references (inode->i_count) were not taken
5383 	 * (which would be dropped in the end io callback of each bio).
5384 	 * Therefore here we effectively end up waiting for those bios and
5385 	 * anyone else holding locked ranges without having bumped the inode's
5386 	 * reference count - if we don't do it, when they access the inode's
5387 	 * io_tree to unlock a range it may be too late, leading to an
5388 	 * use-after-free issue.
5389 	 */
5390 	spin_lock(&io_tree->lock);
5391 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5392 		struct extent_state *state;
5393 		struct extent_state *cached_state = NULL;
5394 		u64 start;
5395 		u64 end;
5396 		unsigned state_flags;
5397 
5398 		node = rb_first(&io_tree->state);
5399 		state = rb_entry(node, struct extent_state, rb_node);
5400 		start = state->start;
5401 		end = state->end;
5402 		state_flags = state->state;
5403 		spin_unlock(&io_tree->lock);
5404 
5405 		lock_extent_bits(io_tree, start, end, &cached_state);
5406 
5407 		/*
5408 		 * If still has DELALLOC flag, the extent didn't reach disk,
5409 		 * and its reserved space won't be freed by delayed_ref.
5410 		 * So we need to free its reserved space here.
5411 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5412 		 *
5413 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5414 		 */
5415 		if (state_flags & EXTENT_DELALLOC)
5416 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5417 
5418 		clear_extent_bit(io_tree, start, end,
5419 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5420 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5421 				 &cached_state);
5422 
5423 		cond_resched();
5424 		spin_lock(&io_tree->lock);
5425 	}
5426 	spin_unlock(&io_tree->lock);
5427 }
5428 
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5429 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5430 							struct btrfs_block_rsv *rsv)
5431 {
5432 	struct btrfs_fs_info *fs_info = root->fs_info;
5433 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5434 	struct btrfs_trans_handle *trans;
5435 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5436 	int ret;
5437 
5438 	/*
5439 	 * Eviction should be taking place at some place safe because of our
5440 	 * delayed iputs.  However the normal flushing code will run delayed
5441 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5442 	 *
5443 	 * We reserve the delayed_refs_extra here again because we can't use
5444 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5445 	 * above.  We reserve our extra bit here because we generate a ton of
5446 	 * delayed refs activity by truncating.
5447 	 *
5448 	 * If we cannot make our reservation we'll attempt to steal from the
5449 	 * global reserve, because we really want to be able to free up space.
5450 	 */
5451 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5452 				     BTRFS_RESERVE_FLUSH_EVICT);
5453 	if (ret) {
5454 		/*
5455 		 * Try to steal from the global reserve if there is space for
5456 		 * it.
5457 		 */
5458 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5459 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5460 			btrfs_warn(fs_info,
5461 				   "could not allocate space for delete; will truncate on mount");
5462 			return ERR_PTR(-ENOSPC);
5463 		}
5464 		delayed_refs_extra = 0;
5465 	}
5466 
5467 	trans = btrfs_join_transaction(root);
5468 	if (IS_ERR(trans))
5469 		return trans;
5470 
5471 	if (delayed_refs_extra) {
5472 		trans->block_rsv = &fs_info->trans_block_rsv;
5473 		trans->bytes_reserved = delayed_refs_extra;
5474 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5475 					delayed_refs_extra, 1);
5476 	}
5477 	return trans;
5478 }
5479 
btrfs_evict_inode(struct inode * inode)5480 void btrfs_evict_inode(struct inode *inode)
5481 {
5482 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5483 	struct btrfs_trans_handle *trans;
5484 	struct btrfs_root *root = BTRFS_I(inode)->root;
5485 	struct btrfs_block_rsv *rsv;
5486 	int ret;
5487 
5488 	trace_btrfs_inode_evict(inode);
5489 
5490 	if (!root) {
5491 		clear_inode(inode);
5492 		return;
5493 	}
5494 
5495 	evict_inode_truncate_pages(inode);
5496 
5497 	if (inode->i_nlink &&
5498 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5499 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5500 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5501 		goto no_delete;
5502 
5503 	if (is_bad_inode(inode))
5504 		goto no_delete;
5505 
5506 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5507 
5508 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5509 		goto no_delete;
5510 
5511 	if (inode->i_nlink > 0) {
5512 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5513 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5514 		goto no_delete;
5515 	}
5516 
5517 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5518 	if (ret)
5519 		goto no_delete;
5520 
5521 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5522 	if (!rsv)
5523 		goto no_delete;
5524 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5525 	rsv->failfast = 1;
5526 
5527 	btrfs_i_size_write(BTRFS_I(inode), 0);
5528 
5529 	while (1) {
5530 		trans = evict_refill_and_join(root, rsv);
5531 		if (IS_ERR(trans))
5532 			goto free_rsv;
5533 
5534 		trans->block_rsv = rsv;
5535 
5536 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5537 		trans->block_rsv = &fs_info->trans_block_rsv;
5538 		btrfs_end_transaction(trans);
5539 		btrfs_btree_balance_dirty(fs_info);
5540 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5541 			goto free_rsv;
5542 		else if (!ret)
5543 			break;
5544 	}
5545 
5546 	/*
5547 	 * Errors here aren't a big deal, it just means we leave orphan items in
5548 	 * the tree. They will be cleaned up on the next mount. If the inode
5549 	 * number gets reused, cleanup deletes the orphan item without doing
5550 	 * anything, and unlink reuses the existing orphan item.
5551 	 *
5552 	 * If it turns out that we are dropping too many of these, we might want
5553 	 * to add a mechanism for retrying these after a commit.
5554 	 */
5555 	trans = evict_refill_and_join(root, rsv);
5556 	if (!IS_ERR(trans)) {
5557 		trans->block_rsv = rsv;
5558 		btrfs_orphan_del(trans, BTRFS_I(inode));
5559 		trans->block_rsv = &fs_info->trans_block_rsv;
5560 		btrfs_end_transaction(trans);
5561 	}
5562 
5563 	if (!(root == fs_info->tree_root ||
5564 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5565 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5566 
5567 free_rsv:
5568 	btrfs_free_block_rsv(fs_info, rsv);
5569 no_delete:
5570 	/*
5571 	 * If we didn't successfully delete, the orphan item will still be in
5572 	 * the tree and we'll retry on the next mount. Again, we might also want
5573 	 * to retry these periodically in the future.
5574 	 */
5575 	btrfs_remove_delayed_node(BTRFS_I(inode));
5576 	clear_inode(inode);
5577 }
5578 
5579 /*
5580  * Return the key found in the dir entry in the location pointer, fill @type
5581  * with BTRFS_FT_*, and return 0.
5582  *
5583  * If no dir entries were found, returns -ENOENT.
5584  * If found a corrupted location in dir entry, returns -EUCLEAN.
5585  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5586 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5587 			       struct btrfs_key *location, u8 *type)
5588 {
5589 	const char *name = dentry->d_name.name;
5590 	int namelen = dentry->d_name.len;
5591 	struct btrfs_dir_item *di;
5592 	struct btrfs_path *path;
5593 	struct btrfs_root *root = BTRFS_I(dir)->root;
5594 	int ret = 0;
5595 
5596 	path = btrfs_alloc_path();
5597 	if (!path)
5598 		return -ENOMEM;
5599 
5600 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5601 			name, namelen, 0);
5602 	if (IS_ERR_OR_NULL(di)) {
5603 		ret = di ? PTR_ERR(di) : -ENOENT;
5604 		goto out;
5605 	}
5606 
5607 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5608 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5609 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5610 		ret = -EUCLEAN;
5611 		btrfs_warn(root->fs_info,
5612 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5613 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5614 			   location->objectid, location->type, location->offset);
5615 	}
5616 	if (!ret)
5617 		*type = btrfs_dir_type(path->nodes[0], di);
5618 out:
5619 	btrfs_free_path(path);
5620 	return ret;
5621 }
5622 
5623 /*
5624  * when we hit a tree root in a directory, the btrfs part of the inode
5625  * needs to be changed to reflect the root directory of the tree root.  This
5626  * is kind of like crossing a mount point.
5627  */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5628 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5629 				    struct inode *dir,
5630 				    struct dentry *dentry,
5631 				    struct btrfs_key *location,
5632 				    struct btrfs_root **sub_root)
5633 {
5634 	struct btrfs_path *path;
5635 	struct btrfs_root *new_root;
5636 	struct btrfs_root_ref *ref;
5637 	struct extent_buffer *leaf;
5638 	struct btrfs_key key;
5639 	int ret;
5640 	int err = 0;
5641 
5642 	path = btrfs_alloc_path();
5643 	if (!path) {
5644 		err = -ENOMEM;
5645 		goto out;
5646 	}
5647 
5648 	err = -ENOENT;
5649 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5650 	key.type = BTRFS_ROOT_REF_KEY;
5651 	key.offset = location->objectid;
5652 
5653 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5654 	if (ret) {
5655 		if (ret < 0)
5656 			err = ret;
5657 		goto out;
5658 	}
5659 
5660 	leaf = path->nodes[0];
5661 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5662 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5663 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5664 		goto out;
5665 
5666 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5667 				   (unsigned long)(ref + 1),
5668 				   dentry->d_name.len);
5669 	if (ret)
5670 		goto out;
5671 
5672 	btrfs_release_path(path);
5673 
5674 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5675 	if (IS_ERR(new_root)) {
5676 		err = PTR_ERR(new_root);
5677 		goto out;
5678 	}
5679 
5680 	*sub_root = new_root;
5681 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5682 	location->type = BTRFS_INODE_ITEM_KEY;
5683 	location->offset = 0;
5684 	err = 0;
5685 out:
5686 	btrfs_free_path(path);
5687 	return err;
5688 }
5689 
inode_tree_add(struct inode * inode)5690 static void inode_tree_add(struct inode *inode)
5691 {
5692 	struct btrfs_root *root = BTRFS_I(inode)->root;
5693 	struct btrfs_inode *entry;
5694 	struct rb_node **p;
5695 	struct rb_node *parent;
5696 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5697 	u64 ino = btrfs_ino(BTRFS_I(inode));
5698 
5699 	if (inode_unhashed(inode))
5700 		return;
5701 	parent = NULL;
5702 	spin_lock(&root->inode_lock);
5703 	p = &root->inode_tree.rb_node;
5704 	while (*p) {
5705 		parent = *p;
5706 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5707 
5708 		if (ino < btrfs_ino(entry))
5709 			p = &parent->rb_left;
5710 		else if (ino > btrfs_ino(entry))
5711 			p = &parent->rb_right;
5712 		else {
5713 			WARN_ON(!(entry->vfs_inode.i_state &
5714 				  (I_WILL_FREE | I_FREEING)));
5715 			rb_replace_node(parent, new, &root->inode_tree);
5716 			RB_CLEAR_NODE(parent);
5717 			spin_unlock(&root->inode_lock);
5718 			return;
5719 		}
5720 	}
5721 	rb_link_node(new, parent, p);
5722 	rb_insert_color(new, &root->inode_tree);
5723 	spin_unlock(&root->inode_lock);
5724 }
5725 
inode_tree_del(struct inode * inode)5726 static void inode_tree_del(struct inode *inode)
5727 {
5728 	struct btrfs_root *root = BTRFS_I(inode)->root;
5729 	int empty = 0;
5730 
5731 	spin_lock(&root->inode_lock);
5732 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5733 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5734 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5735 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5736 	}
5737 	spin_unlock(&root->inode_lock);
5738 
5739 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5740 		spin_lock(&root->inode_lock);
5741 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5742 		spin_unlock(&root->inode_lock);
5743 		if (empty)
5744 			btrfs_add_dead_root(root);
5745 	}
5746 }
5747 
5748 
btrfs_init_locked_inode(struct inode * inode,void * p)5749 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5750 {
5751 	struct btrfs_iget_args *args = p;
5752 	inode->i_ino = args->location->objectid;
5753 	memcpy(&BTRFS_I(inode)->location, args->location,
5754 	       sizeof(*args->location));
5755 	BTRFS_I(inode)->root = args->root;
5756 	return 0;
5757 }
5758 
btrfs_find_actor(struct inode * inode,void * opaque)5759 static int btrfs_find_actor(struct inode *inode, void *opaque)
5760 {
5761 	struct btrfs_iget_args *args = opaque;
5762 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5763 		args->root == BTRFS_I(inode)->root;
5764 }
5765 
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5766 static struct inode *btrfs_iget_locked(struct super_block *s,
5767 				       struct btrfs_key *location,
5768 				       struct btrfs_root *root)
5769 {
5770 	struct inode *inode;
5771 	struct btrfs_iget_args args;
5772 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5773 
5774 	args.location = location;
5775 	args.root = root;
5776 
5777 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5778 			     btrfs_init_locked_inode,
5779 			     (void *)&args);
5780 	return inode;
5781 }
5782 
5783 /* Get an inode object given its location and corresponding root.
5784  * Returns in *is_new if the inode was read from disk
5785  */
btrfs_iget_path(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new,struct btrfs_path * path)5786 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5787 			      struct btrfs_root *root, int *new,
5788 			      struct btrfs_path *path)
5789 {
5790 	struct inode *inode;
5791 
5792 	inode = btrfs_iget_locked(s, location, root);
5793 	if (!inode)
5794 		return ERR_PTR(-ENOMEM);
5795 
5796 	if (inode->i_state & I_NEW) {
5797 		int ret;
5798 
5799 		ret = btrfs_read_locked_inode(inode, path);
5800 		if (!ret) {
5801 			inode_tree_add(inode);
5802 			unlock_new_inode(inode);
5803 			if (new)
5804 				*new = 1;
5805 		} else {
5806 			iget_failed(inode);
5807 			/*
5808 			 * ret > 0 can come from btrfs_search_slot called by
5809 			 * btrfs_read_locked_inode, this means the inode item
5810 			 * was not found.
5811 			 */
5812 			if (ret > 0)
5813 				ret = -ENOENT;
5814 			inode = ERR_PTR(ret);
5815 		}
5816 	}
5817 
5818 	return inode;
5819 }
5820 
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5821 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5822 			 struct btrfs_root *root, int *new)
5823 {
5824 	return btrfs_iget_path(s, location, root, new, NULL);
5825 }
5826 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5827 static struct inode *new_simple_dir(struct super_block *s,
5828 				    struct btrfs_key *key,
5829 				    struct btrfs_root *root)
5830 {
5831 	struct inode *inode = new_inode(s);
5832 
5833 	if (!inode)
5834 		return ERR_PTR(-ENOMEM);
5835 
5836 	BTRFS_I(inode)->root = root;
5837 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5838 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5839 
5840 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5841 	inode->i_op = &btrfs_dir_ro_inode_operations;
5842 	inode->i_opflags &= ~IOP_XATTR;
5843 	inode->i_fop = &simple_dir_operations;
5844 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5845 	inode->i_mtime = current_time(inode);
5846 	inode->i_atime = inode->i_mtime;
5847 	inode->i_ctime = inode->i_mtime;
5848 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5849 
5850 	return inode;
5851 }
5852 
btrfs_inode_type(struct inode * inode)5853 static inline u8 btrfs_inode_type(struct inode *inode)
5854 {
5855 	/*
5856 	 * Compile-time asserts that generic FT_* types still match
5857 	 * BTRFS_FT_* types
5858 	 */
5859 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5860 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5861 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5862 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5863 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5864 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5865 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5866 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5867 
5868 	return fs_umode_to_ftype(inode->i_mode);
5869 }
5870 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5871 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5872 {
5873 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5874 	struct inode *inode;
5875 	struct btrfs_root *root = BTRFS_I(dir)->root;
5876 	struct btrfs_root *sub_root = root;
5877 	struct btrfs_key location;
5878 	u8 di_type = 0;
5879 	int index;
5880 	int ret = 0;
5881 
5882 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5883 		return ERR_PTR(-ENAMETOOLONG);
5884 
5885 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5886 	if (ret < 0)
5887 		return ERR_PTR(ret);
5888 
5889 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5890 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5891 		if (IS_ERR(inode))
5892 			return inode;
5893 
5894 		/* Do extra check against inode mode with di_type */
5895 		if (btrfs_inode_type(inode) != di_type) {
5896 			btrfs_crit(fs_info,
5897 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5898 				  inode->i_mode, btrfs_inode_type(inode),
5899 				  di_type);
5900 			iput(inode);
5901 			return ERR_PTR(-EUCLEAN);
5902 		}
5903 		return inode;
5904 	}
5905 
5906 	index = srcu_read_lock(&fs_info->subvol_srcu);
5907 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5908 				       &location, &sub_root);
5909 	if (ret < 0) {
5910 		if (ret != -ENOENT)
5911 			inode = ERR_PTR(ret);
5912 		else
5913 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5914 	} else {
5915 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5916 	}
5917 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5918 
5919 	if (!IS_ERR(inode) && root != sub_root) {
5920 		down_read(&fs_info->cleanup_work_sem);
5921 		if (!sb_rdonly(inode->i_sb))
5922 			ret = btrfs_orphan_cleanup(sub_root);
5923 		up_read(&fs_info->cleanup_work_sem);
5924 		if (ret) {
5925 			iput(inode);
5926 			inode = ERR_PTR(ret);
5927 		}
5928 	}
5929 
5930 	return inode;
5931 }
5932 
btrfs_dentry_delete(const struct dentry * dentry)5933 static int btrfs_dentry_delete(const struct dentry *dentry)
5934 {
5935 	struct btrfs_root *root;
5936 	struct inode *inode = d_inode(dentry);
5937 
5938 	if (!inode && !IS_ROOT(dentry))
5939 		inode = d_inode(dentry->d_parent);
5940 
5941 	if (inode) {
5942 		root = BTRFS_I(inode)->root;
5943 		if (btrfs_root_refs(&root->root_item) == 0)
5944 			return 1;
5945 
5946 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5947 			return 1;
5948 	}
5949 	return 0;
5950 }
5951 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5952 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5953 				   unsigned int flags)
5954 {
5955 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5956 
5957 	if (inode == ERR_PTR(-ENOENT))
5958 		inode = NULL;
5959 	return d_splice_alias(inode, dentry);
5960 }
5961 
5962 /*
5963  * All this infrastructure exists because dir_emit can fault, and we are holding
5964  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5965  * our information into that, and then dir_emit from the buffer.  This is
5966  * similar to what NFS does, only we don't keep the buffer around in pagecache
5967  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5968  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5969  * tree lock.
5970  */
btrfs_opendir(struct inode * inode,struct file * file)5971 static int btrfs_opendir(struct inode *inode, struct file *file)
5972 {
5973 	struct btrfs_file_private *private;
5974 
5975 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5976 	if (!private)
5977 		return -ENOMEM;
5978 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5979 	if (!private->filldir_buf) {
5980 		kfree(private);
5981 		return -ENOMEM;
5982 	}
5983 	file->private_data = private;
5984 	return 0;
5985 }
5986 
5987 struct dir_entry {
5988 	u64 ino;
5989 	u64 offset;
5990 	unsigned type;
5991 	int name_len;
5992 };
5993 
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5994 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5995 {
5996 	while (entries--) {
5997 		struct dir_entry *entry = addr;
5998 		char *name = (char *)(entry + 1);
5999 
6000 		ctx->pos = get_unaligned(&entry->offset);
6001 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6002 					 get_unaligned(&entry->ino),
6003 					 get_unaligned(&entry->type)))
6004 			return 1;
6005 		addr += sizeof(struct dir_entry) +
6006 			get_unaligned(&entry->name_len);
6007 		ctx->pos++;
6008 	}
6009 	return 0;
6010 }
6011 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6012 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6013 {
6014 	struct inode *inode = file_inode(file);
6015 	struct btrfs_root *root = BTRFS_I(inode)->root;
6016 	struct btrfs_file_private *private = file->private_data;
6017 	struct btrfs_dir_item *di;
6018 	struct btrfs_key key;
6019 	struct btrfs_key found_key;
6020 	struct btrfs_path *path;
6021 	void *addr;
6022 	struct list_head ins_list;
6023 	struct list_head del_list;
6024 	int ret;
6025 	struct extent_buffer *leaf;
6026 	int slot;
6027 	char *name_ptr;
6028 	int name_len;
6029 	int entries = 0;
6030 	int total_len = 0;
6031 	bool put = false;
6032 	struct btrfs_key location;
6033 
6034 	if (!dir_emit_dots(file, ctx))
6035 		return 0;
6036 
6037 	path = btrfs_alloc_path();
6038 	if (!path)
6039 		return -ENOMEM;
6040 
6041 	addr = private->filldir_buf;
6042 	path->reada = READA_FORWARD;
6043 
6044 	INIT_LIST_HEAD(&ins_list);
6045 	INIT_LIST_HEAD(&del_list);
6046 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6047 
6048 again:
6049 	key.type = BTRFS_DIR_INDEX_KEY;
6050 	key.offset = ctx->pos;
6051 	key.objectid = btrfs_ino(BTRFS_I(inode));
6052 
6053 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6054 	if (ret < 0)
6055 		goto err;
6056 
6057 	while (1) {
6058 		struct dir_entry *entry;
6059 
6060 		leaf = path->nodes[0];
6061 		slot = path->slots[0];
6062 		if (slot >= btrfs_header_nritems(leaf)) {
6063 			ret = btrfs_next_leaf(root, path);
6064 			if (ret < 0)
6065 				goto err;
6066 			else if (ret > 0)
6067 				break;
6068 			continue;
6069 		}
6070 
6071 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6072 
6073 		if (found_key.objectid != key.objectid)
6074 			break;
6075 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6076 			break;
6077 		if (found_key.offset < ctx->pos)
6078 			goto next;
6079 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6080 			goto next;
6081 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6082 		name_len = btrfs_dir_name_len(leaf, di);
6083 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6084 		    PAGE_SIZE) {
6085 			btrfs_release_path(path);
6086 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6087 			if (ret)
6088 				goto nopos;
6089 			addr = private->filldir_buf;
6090 			entries = 0;
6091 			total_len = 0;
6092 			goto again;
6093 		}
6094 
6095 		entry = addr;
6096 		put_unaligned(name_len, &entry->name_len);
6097 		name_ptr = (char *)(entry + 1);
6098 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6099 				   name_len);
6100 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6101 				&entry->type);
6102 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6103 		put_unaligned(location.objectid, &entry->ino);
6104 		put_unaligned(found_key.offset, &entry->offset);
6105 		entries++;
6106 		addr += sizeof(struct dir_entry) + name_len;
6107 		total_len += sizeof(struct dir_entry) + name_len;
6108 next:
6109 		path->slots[0]++;
6110 	}
6111 	btrfs_release_path(path);
6112 
6113 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6114 	if (ret)
6115 		goto nopos;
6116 
6117 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6118 	if (ret)
6119 		goto nopos;
6120 
6121 	/*
6122 	 * Stop new entries from being returned after we return the last
6123 	 * entry.
6124 	 *
6125 	 * New directory entries are assigned a strictly increasing
6126 	 * offset.  This means that new entries created during readdir
6127 	 * are *guaranteed* to be seen in the future by that readdir.
6128 	 * This has broken buggy programs which operate on names as
6129 	 * they're returned by readdir.  Until we re-use freed offsets
6130 	 * we have this hack to stop new entries from being returned
6131 	 * under the assumption that they'll never reach this huge
6132 	 * offset.
6133 	 *
6134 	 * This is being careful not to overflow 32bit loff_t unless the
6135 	 * last entry requires it because doing so has broken 32bit apps
6136 	 * in the past.
6137 	 */
6138 	if (ctx->pos >= INT_MAX)
6139 		ctx->pos = LLONG_MAX;
6140 	else
6141 		ctx->pos = INT_MAX;
6142 nopos:
6143 	ret = 0;
6144 err:
6145 	if (put)
6146 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6147 	btrfs_free_path(path);
6148 	return ret;
6149 }
6150 
6151 /*
6152  * This is somewhat expensive, updating the tree every time the
6153  * inode changes.  But, it is most likely to find the inode in cache.
6154  * FIXME, needs more benchmarking...there are no reasons other than performance
6155  * to keep or drop this code.
6156  */
btrfs_dirty_inode(struct inode * inode)6157 static int btrfs_dirty_inode(struct inode *inode)
6158 {
6159 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6160 	struct btrfs_root *root = BTRFS_I(inode)->root;
6161 	struct btrfs_trans_handle *trans;
6162 	int ret;
6163 
6164 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6165 		return 0;
6166 
6167 	trans = btrfs_join_transaction(root);
6168 	if (IS_ERR(trans))
6169 		return PTR_ERR(trans);
6170 
6171 	ret = btrfs_update_inode(trans, root, inode);
6172 	if (ret && ret == -ENOSPC) {
6173 		/* whoops, lets try again with the full transaction */
6174 		btrfs_end_transaction(trans);
6175 		trans = btrfs_start_transaction(root, 1);
6176 		if (IS_ERR(trans))
6177 			return PTR_ERR(trans);
6178 
6179 		ret = btrfs_update_inode(trans, root, inode);
6180 	}
6181 	btrfs_end_transaction(trans);
6182 	if (BTRFS_I(inode)->delayed_node)
6183 		btrfs_balance_delayed_items(fs_info);
6184 
6185 	return ret;
6186 }
6187 
6188 /*
6189  * This is a copy of file_update_time.  We need this so we can return error on
6190  * ENOSPC for updating the inode in the case of file write and mmap writes.
6191  */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6192 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6193 			     int flags)
6194 {
6195 	struct btrfs_root *root = BTRFS_I(inode)->root;
6196 	bool dirty = flags & ~S_VERSION;
6197 
6198 	if (btrfs_root_readonly(root))
6199 		return -EROFS;
6200 
6201 	if (flags & S_VERSION)
6202 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6203 	if (flags & S_CTIME)
6204 		inode->i_ctime = *now;
6205 	if (flags & S_MTIME)
6206 		inode->i_mtime = *now;
6207 	if (flags & S_ATIME)
6208 		inode->i_atime = *now;
6209 	return dirty ? btrfs_dirty_inode(inode) : 0;
6210 }
6211 
6212 /*
6213  * find the highest existing sequence number in a directory
6214  * and then set the in-memory index_cnt variable to reflect
6215  * free sequence numbers
6216  */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6217 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6218 {
6219 	struct btrfs_root *root = inode->root;
6220 	struct btrfs_key key, found_key;
6221 	struct btrfs_path *path;
6222 	struct extent_buffer *leaf;
6223 	int ret;
6224 
6225 	key.objectid = btrfs_ino(inode);
6226 	key.type = BTRFS_DIR_INDEX_KEY;
6227 	key.offset = (u64)-1;
6228 
6229 	path = btrfs_alloc_path();
6230 	if (!path)
6231 		return -ENOMEM;
6232 
6233 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6234 	if (ret < 0)
6235 		goto out;
6236 	/* FIXME: we should be able to handle this */
6237 	if (ret == 0)
6238 		goto out;
6239 	ret = 0;
6240 
6241 	/*
6242 	 * MAGIC NUMBER EXPLANATION:
6243 	 * since we search a directory based on f_pos we have to start at 2
6244 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6245 	 * else has to start at 2
6246 	 */
6247 	if (path->slots[0] == 0) {
6248 		inode->index_cnt = 2;
6249 		goto out;
6250 	}
6251 
6252 	path->slots[0]--;
6253 
6254 	leaf = path->nodes[0];
6255 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6256 
6257 	if (found_key.objectid != btrfs_ino(inode) ||
6258 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6259 		inode->index_cnt = 2;
6260 		goto out;
6261 	}
6262 
6263 	inode->index_cnt = found_key.offset + 1;
6264 out:
6265 	btrfs_free_path(path);
6266 	return ret;
6267 }
6268 
6269 /*
6270  * helper to find a free sequence number in a given directory.  This current
6271  * code is very simple, later versions will do smarter things in the btree
6272  */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6273 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6274 {
6275 	int ret = 0;
6276 
6277 	if (dir->index_cnt == (u64)-1) {
6278 		ret = btrfs_inode_delayed_dir_index_count(dir);
6279 		if (ret) {
6280 			ret = btrfs_set_inode_index_count(dir);
6281 			if (ret)
6282 				return ret;
6283 		}
6284 	}
6285 
6286 	*index = dir->index_cnt;
6287 	dir->index_cnt++;
6288 
6289 	return ret;
6290 }
6291 
btrfs_insert_inode_locked(struct inode * inode)6292 static int btrfs_insert_inode_locked(struct inode *inode)
6293 {
6294 	struct btrfs_iget_args args;
6295 	args.location = &BTRFS_I(inode)->location;
6296 	args.root = BTRFS_I(inode)->root;
6297 
6298 	return insert_inode_locked4(inode,
6299 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6300 		   btrfs_find_actor, &args);
6301 }
6302 
6303 /*
6304  * Inherit flags from the parent inode.
6305  *
6306  * Currently only the compression flags and the cow flags are inherited.
6307  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6308 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6309 {
6310 	unsigned int flags;
6311 
6312 	if (!dir)
6313 		return;
6314 
6315 	flags = BTRFS_I(dir)->flags;
6316 
6317 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6318 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6319 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6320 	} else if (flags & BTRFS_INODE_COMPRESS) {
6321 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6322 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6323 	}
6324 
6325 	if (flags & BTRFS_INODE_NODATACOW) {
6326 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6327 		if (S_ISREG(inode->i_mode))
6328 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6329 	}
6330 
6331 	btrfs_sync_inode_flags_to_i_flags(inode);
6332 }
6333 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6334 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6335 				     struct btrfs_root *root,
6336 				     struct inode *dir,
6337 				     const char *name, int name_len,
6338 				     u64 ref_objectid, u64 objectid,
6339 				     umode_t mode, u64 *index)
6340 {
6341 	struct btrfs_fs_info *fs_info = root->fs_info;
6342 	struct inode *inode;
6343 	struct btrfs_inode_item *inode_item;
6344 	struct btrfs_key *location;
6345 	struct btrfs_path *path;
6346 	struct btrfs_inode_ref *ref;
6347 	struct btrfs_key key[2];
6348 	u32 sizes[2];
6349 	int nitems = name ? 2 : 1;
6350 	unsigned long ptr;
6351 	unsigned int nofs_flag;
6352 	int ret;
6353 
6354 	path = btrfs_alloc_path();
6355 	if (!path)
6356 		return ERR_PTR(-ENOMEM);
6357 
6358 	nofs_flag = memalloc_nofs_save();
6359 	inode = new_inode(fs_info->sb);
6360 	memalloc_nofs_restore(nofs_flag);
6361 	if (!inode) {
6362 		btrfs_free_path(path);
6363 		return ERR_PTR(-ENOMEM);
6364 	}
6365 
6366 	/*
6367 	 * O_TMPFILE, set link count to 0, so that after this point,
6368 	 * we fill in an inode item with the correct link count.
6369 	 */
6370 	if (!name)
6371 		set_nlink(inode, 0);
6372 
6373 	/*
6374 	 * we have to initialize this early, so we can reclaim the inode
6375 	 * number if we fail afterwards in this function.
6376 	 */
6377 	inode->i_ino = objectid;
6378 
6379 	if (dir && name) {
6380 		trace_btrfs_inode_request(dir);
6381 
6382 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6383 		if (ret) {
6384 			btrfs_free_path(path);
6385 			iput(inode);
6386 			return ERR_PTR(ret);
6387 		}
6388 	} else if (dir) {
6389 		*index = 0;
6390 	}
6391 	/*
6392 	 * index_cnt is ignored for everything but a dir,
6393 	 * btrfs_set_inode_index_count has an explanation for the magic
6394 	 * number
6395 	 */
6396 	BTRFS_I(inode)->index_cnt = 2;
6397 	BTRFS_I(inode)->dir_index = *index;
6398 	BTRFS_I(inode)->root = root;
6399 	BTRFS_I(inode)->generation = trans->transid;
6400 	inode->i_generation = BTRFS_I(inode)->generation;
6401 
6402 	/*
6403 	 * We could have gotten an inode number from somebody who was fsynced
6404 	 * and then removed in this same transaction, so let's just set full
6405 	 * sync since it will be a full sync anyway and this will blow away the
6406 	 * old info in the log.
6407 	 */
6408 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6409 
6410 	key[0].objectid = objectid;
6411 	key[0].type = BTRFS_INODE_ITEM_KEY;
6412 	key[0].offset = 0;
6413 
6414 	sizes[0] = sizeof(struct btrfs_inode_item);
6415 
6416 	if (name) {
6417 		/*
6418 		 * Start new inodes with an inode_ref. This is slightly more
6419 		 * efficient for small numbers of hard links since they will
6420 		 * be packed into one item. Extended refs will kick in if we
6421 		 * add more hard links than can fit in the ref item.
6422 		 */
6423 		key[1].objectid = objectid;
6424 		key[1].type = BTRFS_INODE_REF_KEY;
6425 		key[1].offset = ref_objectid;
6426 
6427 		sizes[1] = name_len + sizeof(*ref);
6428 	}
6429 
6430 	location = &BTRFS_I(inode)->location;
6431 	location->objectid = objectid;
6432 	location->offset = 0;
6433 	location->type = BTRFS_INODE_ITEM_KEY;
6434 
6435 	ret = btrfs_insert_inode_locked(inode);
6436 	if (ret < 0) {
6437 		iput(inode);
6438 		goto fail;
6439 	}
6440 
6441 	path->leave_spinning = 1;
6442 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6443 	if (ret != 0)
6444 		goto fail_unlock;
6445 
6446 	inode_init_owner(inode, dir, mode);
6447 	inode_set_bytes(inode, 0);
6448 
6449 	inode->i_mtime = current_time(inode);
6450 	inode->i_atime = inode->i_mtime;
6451 	inode->i_ctime = inode->i_mtime;
6452 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6453 
6454 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6455 				  struct btrfs_inode_item);
6456 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6457 			     sizeof(*inode_item));
6458 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6459 
6460 	if (name) {
6461 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6462 				     struct btrfs_inode_ref);
6463 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6464 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6465 		ptr = (unsigned long)(ref + 1);
6466 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6467 	}
6468 
6469 	btrfs_mark_buffer_dirty(path->nodes[0]);
6470 	btrfs_free_path(path);
6471 
6472 	btrfs_inherit_iflags(inode, dir);
6473 
6474 	if (S_ISREG(mode)) {
6475 		if (btrfs_test_opt(fs_info, NODATASUM))
6476 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6477 		if (btrfs_test_opt(fs_info, NODATACOW))
6478 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6479 				BTRFS_INODE_NODATASUM;
6480 	}
6481 
6482 	inode_tree_add(inode);
6483 
6484 	trace_btrfs_inode_new(inode);
6485 	btrfs_set_inode_last_trans(trans, inode);
6486 
6487 	btrfs_update_root_times(trans, root);
6488 
6489 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6490 	if (ret)
6491 		btrfs_err(fs_info,
6492 			  "error inheriting props for ino %llu (root %llu): %d",
6493 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6494 
6495 	return inode;
6496 
6497 fail_unlock:
6498 	discard_new_inode(inode);
6499 fail:
6500 	if (dir && name)
6501 		BTRFS_I(dir)->index_cnt--;
6502 	btrfs_free_path(path);
6503 	return ERR_PTR(ret);
6504 }
6505 
6506 /*
6507  * utility function to add 'inode' into 'parent_inode' with
6508  * a give name and a given sequence number.
6509  * if 'add_backref' is true, also insert a backref from the
6510  * inode to the parent directory.
6511  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6512 int btrfs_add_link(struct btrfs_trans_handle *trans,
6513 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6514 		   const char *name, int name_len, int add_backref, u64 index)
6515 {
6516 	int ret = 0;
6517 	struct btrfs_key key;
6518 	struct btrfs_root *root = parent_inode->root;
6519 	u64 ino = btrfs_ino(inode);
6520 	u64 parent_ino = btrfs_ino(parent_inode);
6521 
6522 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6523 		memcpy(&key, &inode->root->root_key, sizeof(key));
6524 	} else {
6525 		key.objectid = ino;
6526 		key.type = BTRFS_INODE_ITEM_KEY;
6527 		key.offset = 0;
6528 	}
6529 
6530 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6531 		ret = btrfs_add_root_ref(trans, key.objectid,
6532 					 root->root_key.objectid, parent_ino,
6533 					 index, name, name_len);
6534 	} else if (add_backref) {
6535 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6536 					     parent_ino, index);
6537 	}
6538 
6539 	/* Nothing to clean up yet */
6540 	if (ret)
6541 		return ret;
6542 
6543 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6544 				    btrfs_inode_type(&inode->vfs_inode), index);
6545 	if (ret == -EEXIST || ret == -EOVERFLOW)
6546 		goto fail_dir_item;
6547 	else if (ret) {
6548 		btrfs_abort_transaction(trans, ret);
6549 		return ret;
6550 	}
6551 
6552 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6553 			   name_len * 2);
6554 	inode_inc_iversion(&parent_inode->vfs_inode);
6555 	/*
6556 	 * If we are replaying a log tree, we do not want to update the mtime
6557 	 * and ctime of the parent directory with the current time, since the
6558 	 * log replay procedure is responsible for setting them to their correct
6559 	 * values (the ones it had when the fsync was done).
6560 	 */
6561 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6562 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6563 
6564 		parent_inode->vfs_inode.i_mtime = now;
6565 		parent_inode->vfs_inode.i_ctime = now;
6566 	}
6567 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6568 	if (ret)
6569 		btrfs_abort_transaction(trans, ret);
6570 	return ret;
6571 
6572 fail_dir_item:
6573 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6574 		u64 local_index;
6575 		int err;
6576 		err = btrfs_del_root_ref(trans, key.objectid,
6577 					 root->root_key.objectid, parent_ino,
6578 					 &local_index, name, name_len);
6579 		if (err)
6580 			btrfs_abort_transaction(trans, err);
6581 	} else if (add_backref) {
6582 		u64 local_index;
6583 		int err;
6584 
6585 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6586 					  ino, parent_ino, &local_index);
6587 		if (err)
6588 			btrfs_abort_transaction(trans, err);
6589 	}
6590 
6591 	/* Return the original error code */
6592 	return ret;
6593 }
6594 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6595 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6596 			    struct btrfs_inode *dir, struct dentry *dentry,
6597 			    struct btrfs_inode *inode, int backref, u64 index)
6598 {
6599 	int err = btrfs_add_link(trans, dir, inode,
6600 				 dentry->d_name.name, dentry->d_name.len,
6601 				 backref, index);
6602 	if (err > 0)
6603 		err = -EEXIST;
6604 	return err;
6605 }
6606 
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6607 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6608 			umode_t mode, dev_t rdev)
6609 {
6610 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6611 	struct btrfs_trans_handle *trans;
6612 	struct btrfs_root *root = BTRFS_I(dir)->root;
6613 	struct inode *inode = NULL;
6614 	int err;
6615 	u64 objectid;
6616 	u64 index = 0;
6617 
6618 	/*
6619 	 * 2 for inode item and ref
6620 	 * 2 for dir items
6621 	 * 1 for xattr if selinux is on
6622 	 */
6623 	trans = btrfs_start_transaction(root, 5);
6624 	if (IS_ERR(trans))
6625 		return PTR_ERR(trans);
6626 
6627 	err = btrfs_find_free_ino(root, &objectid);
6628 	if (err)
6629 		goto out_unlock;
6630 
6631 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6632 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6633 			mode, &index);
6634 	if (IS_ERR(inode)) {
6635 		err = PTR_ERR(inode);
6636 		inode = NULL;
6637 		goto out_unlock;
6638 	}
6639 
6640 	/*
6641 	* If the active LSM wants to access the inode during
6642 	* d_instantiate it needs these. Smack checks to see
6643 	* if the filesystem supports xattrs by looking at the
6644 	* ops vector.
6645 	*/
6646 	inode->i_op = &btrfs_special_inode_operations;
6647 	init_special_inode(inode, inode->i_mode, rdev);
6648 
6649 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6650 	if (err)
6651 		goto out_unlock;
6652 
6653 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6654 			0, index);
6655 	if (err)
6656 		goto out_unlock;
6657 
6658 	btrfs_update_inode(trans, root, inode);
6659 	d_instantiate_new(dentry, inode);
6660 
6661 out_unlock:
6662 	btrfs_end_transaction(trans);
6663 	btrfs_btree_balance_dirty(fs_info);
6664 	if (err && inode) {
6665 		inode_dec_link_count(inode);
6666 		discard_new_inode(inode);
6667 	}
6668 	return err;
6669 }
6670 
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6671 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6672 			umode_t mode, bool excl)
6673 {
6674 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6675 	struct btrfs_trans_handle *trans;
6676 	struct btrfs_root *root = BTRFS_I(dir)->root;
6677 	struct inode *inode = NULL;
6678 	int err;
6679 	u64 objectid;
6680 	u64 index = 0;
6681 
6682 	/*
6683 	 * 2 for inode item and ref
6684 	 * 2 for dir items
6685 	 * 1 for xattr if selinux is on
6686 	 */
6687 	trans = btrfs_start_transaction(root, 5);
6688 	if (IS_ERR(trans))
6689 		return PTR_ERR(trans);
6690 
6691 	err = btrfs_find_free_ino(root, &objectid);
6692 	if (err)
6693 		goto out_unlock;
6694 
6695 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6696 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6697 			mode, &index);
6698 	if (IS_ERR(inode)) {
6699 		err = PTR_ERR(inode);
6700 		inode = NULL;
6701 		goto out_unlock;
6702 	}
6703 	/*
6704 	* If the active LSM wants to access the inode during
6705 	* d_instantiate it needs these. Smack checks to see
6706 	* if the filesystem supports xattrs by looking at the
6707 	* ops vector.
6708 	*/
6709 	inode->i_fop = &btrfs_file_operations;
6710 	inode->i_op = &btrfs_file_inode_operations;
6711 	inode->i_mapping->a_ops = &btrfs_aops;
6712 
6713 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6714 	if (err)
6715 		goto out_unlock;
6716 
6717 	err = btrfs_update_inode(trans, root, inode);
6718 	if (err)
6719 		goto out_unlock;
6720 
6721 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6722 			0, index);
6723 	if (err)
6724 		goto out_unlock;
6725 
6726 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6727 	d_instantiate_new(dentry, inode);
6728 
6729 out_unlock:
6730 	btrfs_end_transaction(trans);
6731 	if (err && inode) {
6732 		inode_dec_link_count(inode);
6733 		discard_new_inode(inode);
6734 	}
6735 	btrfs_btree_balance_dirty(fs_info);
6736 	return err;
6737 }
6738 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6739 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6740 		      struct dentry *dentry)
6741 {
6742 	struct btrfs_trans_handle *trans = NULL;
6743 	struct btrfs_root *root = BTRFS_I(dir)->root;
6744 	struct inode *inode = d_inode(old_dentry);
6745 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6746 	u64 index;
6747 	int err;
6748 	int drop_inode = 0;
6749 
6750 	/* do not allow sys_link's with other subvols of the same device */
6751 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6752 		return -EXDEV;
6753 
6754 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6755 		return -EMLINK;
6756 
6757 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6758 	if (err)
6759 		goto fail;
6760 
6761 	/*
6762 	 * 2 items for inode and inode ref
6763 	 * 2 items for dir items
6764 	 * 1 item for parent inode
6765 	 * 1 item for orphan item deletion if O_TMPFILE
6766 	 */
6767 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6768 	if (IS_ERR(trans)) {
6769 		err = PTR_ERR(trans);
6770 		trans = NULL;
6771 		goto fail;
6772 	}
6773 
6774 	/* There are several dir indexes for this inode, clear the cache. */
6775 	BTRFS_I(inode)->dir_index = 0ULL;
6776 	inc_nlink(inode);
6777 	inode_inc_iversion(inode);
6778 	inode->i_ctime = current_time(inode);
6779 	ihold(inode);
6780 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6781 
6782 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6783 			1, index);
6784 
6785 	if (err) {
6786 		drop_inode = 1;
6787 	} else {
6788 		struct dentry *parent = dentry->d_parent;
6789 		int ret;
6790 
6791 		err = btrfs_update_inode(trans, root, inode);
6792 		if (err)
6793 			goto fail;
6794 		if (inode->i_nlink == 1) {
6795 			/*
6796 			 * If new hard link count is 1, it's a file created
6797 			 * with open(2) O_TMPFILE flag.
6798 			 */
6799 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6800 			if (err)
6801 				goto fail;
6802 		}
6803 		d_instantiate(dentry, inode);
6804 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6805 					 true, NULL);
6806 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6807 			err = btrfs_commit_transaction(trans);
6808 			trans = NULL;
6809 		}
6810 	}
6811 
6812 fail:
6813 	if (trans)
6814 		btrfs_end_transaction(trans);
6815 	if (drop_inode) {
6816 		inode_dec_link_count(inode);
6817 		iput(inode);
6818 	}
6819 	btrfs_btree_balance_dirty(fs_info);
6820 	return err;
6821 }
6822 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6823 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6824 {
6825 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6826 	struct inode *inode = NULL;
6827 	struct btrfs_trans_handle *trans;
6828 	struct btrfs_root *root = BTRFS_I(dir)->root;
6829 	int err = 0;
6830 	u64 objectid = 0;
6831 	u64 index = 0;
6832 
6833 	/*
6834 	 * 2 items for inode and ref
6835 	 * 2 items for dir items
6836 	 * 1 for xattr if selinux is on
6837 	 */
6838 	trans = btrfs_start_transaction(root, 5);
6839 	if (IS_ERR(trans))
6840 		return PTR_ERR(trans);
6841 
6842 	err = btrfs_find_free_ino(root, &objectid);
6843 	if (err)
6844 		goto out_fail;
6845 
6846 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6847 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6848 			S_IFDIR | mode, &index);
6849 	if (IS_ERR(inode)) {
6850 		err = PTR_ERR(inode);
6851 		inode = NULL;
6852 		goto out_fail;
6853 	}
6854 
6855 	/* these must be set before we unlock the inode */
6856 	inode->i_op = &btrfs_dir_inode_operations;
6857 	inode->i_fop = &btrfs_dir_file_operations;
6858 
6859 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6860 	if (err)
6861 		goto out_fail;
6862 
6863 	btrfs_i_size_write(BTRFS_I(inode), 0);
6864 	err = btrfs_update_inode(trans, root, inode);
6865 	if (err)
6866 		goto out_fail;
6867 
6868 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6869 			dentry->d_name.name,
6870 			dentry->d_name.len, 0, index);
6871 	if (err)
6872 		goto out_fail;
6873 
6874 	d_instantiate_new(dentry, inode);
6875 
6876 out_fail:
6877 	btrfs_end_transaction(trans);
6878 	if (err && inode) {
6879 		inode_dec_link_count(inode);
6880 		discard_new_inode(inode);
6881 	}
6882 	btrfs_btree_balance_dirty(fs_info);
6883 	return err;
6884 }
6885 
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6886 static noinline int uncompress_inline(struct btrfs_path *path,
6887 				      struct page *page,
6888 				      size_t pg_offset, u64 extent_offset,
6889 				      struct btrfs_file_extent_item *item)
6890 {
6891 	int ret;
6892 	struct extent_buffer *leaf = path->nodes[0];
6893 	char *tmp;
6894 	size_t max_size;
6895 	unsigned long inline_size;
6896 	unsigned long ptr;
6897 	int compress_type;
6898 
6899 	WARN_ON(pg_offset != 0);
6900 	compress_type = btrfs_file_extent_compression(leaf, item);
6901 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6902 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6903 					btrfs_item_nr(path->slots[0]));
6904 	tmp = kmalloc(inline_size, GFP_NOFS);
6905 	if (!tmp)
6906 		return -ENOMEM;
6907 	ptr = btrfs_file_extent_inline_start(item);
6908 
6909 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6910 
6911 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6912 	ret = btrfs_decompress(compress_type, tmp, page,
6913 			       extent_offset, inline_size, max_size);
6914 
6915 	/*
6916 	 * decompression code contains a memset to fill in any space between the end
6917 	 * of the uncompressed data and the end of max_size in case the decompressed
6918 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6919 	 * the end of an inline extent and the beginning of the next block, so we
6920 	 * cover that region here.
6921 	 */
6922 
6923 	if (max_size + pg_offset < PAGE_SIZE) {
6924 		char *map = kmap(page);
6925 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6926 		kunmap(page);
6927 	}
6928 	kfree(tmp);
6929 	return ret;
6930 }
6931 
6932 /*
6933  * a bit scary, this does extent mapping from logical file offset to the disk.
6934  * the ugly parts come from merging extents from the disk with the in-ram
6935  * representation.  This gets more complex because of the data=ordered code,
6936  * where the in-ram extents might be locked pending data=ordered completion.
6937  *
6938  * This also copies inline extents directly into the page.
6939  */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6940 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6941 				    struct page *page,
6942 				    size_t pg_offset, u64 start, u64 len,
6943 				    int create)
6944 {
6945 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6946 	int ret;
6947 	int err = 0;
6948 	u64 extent_start = 0;
6949 	u64 extent_end = 0;
6950 	u64 objectid = btrfs_ino(inode);
6951 	int extent_type = -1;
6952 	struct btrfs_path *path = NULL;
6953 	struct btrfs_root *root = inode->root;
6954 	struct btrfs_file_extent_item *item;
6955 	struct extent_buffer *leaf;
6956 	struct btrfs_key found_key;
6957 	struct extent_map *em = NULL;
6958 	struct extent_map_tree *em_tree = &inode->extent_tree;
6959 	struct extent_io_tree *io_tree = &inode->io_tree;
6960 	const bool new_inline = !page || create;
6961 
6962 	read_lock(&em_tree->lock);
6963 	em = lookup_extent_mapping(em_tree, start, len);
6964 	if (em)
6965 		em->bdev = fs_info->fs_devices->latest_bdev;
6966 	read_unlock(&em_tree->lock);
6967 
6968 	if (em) {
6969 		if (em->start > start || em->start + em->len <= start)
6970 			free_extent_map(em);
6971 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6972 			free_extent_map(em);
6973 		else
6974 			goto out;
6975 	}
6976 	em = alloc_extent_map();
6977 	if (!em) {
6978 		err = -ENOMEM;
6979 		goto out;
6980 	}
6981 	em->bdev = fs_info->fs_devices->latest_bdev;
6982 	em->start = EXTENT_MAP_HOLE;
6983 	em->orig_start = EXTENT_MAP_HOLE;
6984 	em->len = (u64)-1;
6985 	em->block_len = (u64)-1;
6986 
6987 	path = btrfs_alloc_path();
6988 	if (!path) {
6989 		err = -ENOMEM;
6990 		goto out;
6991 	}
6992 
6993 	/* Chances are we'll be called again, so go ahead and do readahead */
6994 	path->reada = READA_FORWARD;
6995 
6996 	/*
6997 	 * Unless we're going to uncompress the inline extent, no sleep would
6998 	 * happen.
6999 	 */
7000 	path->leave_spinning = 1;
7001 
7002 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7003 	if (ret < 0) {
7004 		err = ret;
7005 		goto out;
7006 	} else if (ret > 0) {
7007 		if (path->slots[0] == 0)
7008 			goto not_found;
7009 		path->slots[0]--;
7010 	}
7011 
7012 	leaf = path->nodes[0];
7013 	item = btrfs_item_ptr(leaf, path->slots[0],
7014 			      struct btrfs_file_extent_item);
7015 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7016 	if (found_key.objectid != objectid ||
7017 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
7018 		/*
7019 		 * If we backup past the first extent we want to move forward
7020 		 * and see if there is an extent in front of us, otherwise we'll
7021 		 * say there is a hole for our whole search range which can
7022 		 * cause problems.
7023 		 */
7024 		extent_end = start;
7025 		goto next;
7026 	}
7027 
7028 	extent_type = btrfs_file_extent_type(leaf, item);
7029 	extent_start = found_key.offset;
7030 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7031 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7032 		/* Only regular file could have regular/prealloc extent */
7033 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7034 			ret = -EUCLEAN;
7035 			btrfs_crit(fs_info,
7036 		"regular/prealloc extent found for non-regular inode %llu",
7037 				   btrfs_ino(inode));
7038 			goto out;
7039 		}
7040 		extent_end = extent_start +
7041 		       btrfs_file_extent_num_bytes(leaf, item);
7042 
7043 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7044 						       extent_start);
7045 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7046 		size_t size;
7047 
7048 		size = btrfs_file_extent_ram_bytes(leaf, item);
7049 		extent_end = ALIGN(extent_start + size,
7050 				   fs_info->sectorsize);
7051 
7052 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7053 						      path->slots[0],
7054 						      extent_start);
7055 	}
7056 next:
7057 	if (start >= extent_end) {
7058 		path->slots[0]++;
7059 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7060 			ret = btrfs_next_leaf(root, path);
7061 			if (ret < 0) {
7062 				err = ret;
7063 				goto out;
7064 			} else if (ret > 0) {
7065 				goto not_found;
7066 			}
7067 			leaf = path->nodes[0];
7068 		}
7069 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7070 		if (found_key.objectid != objectid ||
7071 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7072 			goto not_found;
7073 		if (start + len <= found_key.offset)
7074 			goto not_found;
7075 		if (start > found_key.offset)
7076 			goto next;
7077 
7078 		/* New extent overlaps with existing one */
7079 		em->start = start;
7080 		em->orig_start = start;
7081 		em->len = found_key.offset - start;
7082 		em->block_start = EXTENT_MAP_HOLE;
7083 		goto insert;
7084 	}
7085 
7086 	btrfs_extent_item_to_extent_map(inode, path, item,
7087 			new_inline, em);
7088 
7089 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7090 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7091 		goto insert;
7092 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7093 		unsigned long ptr;
7094 		char *map;
7095 		size_t size;
7096 		size_t extent_offset;
7097 		size_t copy_size;
7098 
7099 		if (new_inline)
7100 			goto out;
7101 
7102 		size = btrfs_file_extent_ram_bytes(leaf, item);
7103 		extent_offset = page_offset(page) + pg_offset - extent_start;
7104 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7105 				  size - extent_offset);
7106 		em->start = extent_start + extent_offset;
7107 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7108 		em->orig_block_len = em->len;
7109 		em->orig_start = em->start;
7110 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7111 
7112 		btrfs_set_path_blocking(path);
7113 		if (!PageUptodate(page)) {
7114 			if (btrfs_file_extent_compression(leaf, item) !=
7115 			    BTRFS_COMPRESS_NONE) {
7116 				ret = uncompress_inline(path, page, pg_offset,
7117 							extent_offset, item);
7118 				if (ret) {
7119 					err = ret;
7120 					goto out;
7121 				}
7122 			} else {
7123 				map = kmap(page);
7124 				read_extent_buffer(leaf, map + pg_offset, ptr,
7125 						   copy_size);
7126 				if (pg_offset + copy_size < PAGE_SIZE) {
7127 					memset(map + pg_offset + copy_size, 0,
7128 					       PAGE_SIZE - pg_offset -
7129 					       copy_size);
7130 				}
7131 				kunmap(page);
7132 			}
7133 			flush_dcache_page(page);
7134 		}
7135 		set_extent_uptodate(io_tree, em->start,
7136 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7137 		goto insert;
7138 	}
7139 not_found:
7140 	em->start = start;
7141 	em->orig_start = start;
7142 	em->len = len;
7143 	em->block_start = EXTENT_MAP_HOLE;
7144 insert:
7145 	btrfs_release_path(path);
7146 	if (em->start > start || extent_map_end(em) <= start) {
7147 		btrfs_err(fs_info,
7148 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7149 			  em->start, em->len, start, len);
7150 		err = -EIO;
7151 		goto out;
7152 	}
7153 
7154 	err = 0;
7155 	write_lock(&em_tree->lock);
7156 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7157 	write_unlock(&em_tree->lock);
7158 out:
7159 	btrfs_free_path(path);
7160 
7161 	trace_btrfs_get_extent(root, inode, em);
7162 
7163 	if (err) {
7164 		free_extent_map(em);
7165 		return ERR_PTR(err);
7166 	}
7167 	BUG_ON(!em); /* Error is always set */
7168 	return em;
7169 }
7170 
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)7171 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7172 					   u64 start, u64 len)
7173 {
7174 	struct extent_map *em;
7175 	struct extent_map *hole_em = NULL;
7176 	u64 delalloc_start = start;
7177 	u64 end;
7178 	u64 delalloc_len;
7179 	u64 delalloc_end;
7180 	int err = 0;
7181 
7182 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7183 	if (IS_ERR(em))
7184 		return em;
7185 	/*
7186 	 * If our em maps to:
7187 	 * - a hole or
7188 	 * - a pre-alloc extent,
7189 	 * there might actually be delalloc bytes behind it.
7190 	 */
7191 	if (em->block_start != EXTENT_MAP_HOLE &&
7192 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7193 		return em;
7194 	else
7195 		hole_em = em;
7196 
7197 	/* check to see if we've wrapped (len == -1 or similar) */
7198 	end = start + len;
7199 	if (end < start)
7200 		end = (u64)-1;
7201 	else
7202 		end -= 1;
7203 
7204 	em = NULL;
7205 
7206 	/* ok, we didn't find anything, lets look for delalloc */
7207 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7208 				 end, len, EXTENT_DELALLOC, 1);
7209 	delalloc_end = delalloc_start + delalloc_len;
7210 	if (delalloc_end < delalloc_start)
7211 		delalloc_end = (u64)-1;
7212 
7213 	/*
7214 	 * We didn't find anything useful, return the original results from
7215 	 * get_extent()
7216 	 */
7217 	if (delalloc_start > end || delalloc_end <= start) {
7218 		em = hole_em;
7219 		hole_em = NULL;
7220 		goto out;
7221 	}
7222 
7223 	/*
7224 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7225 	 * the start they passed in
7226 	 */
7227 	delalloc_start = max(start, delalloc_start);
7228 	delalloc_len = delalloc_end - delalloc_start;
7229 
7230 	if (delalloc_len > 0) {
7231 		u64 hole_start;
7232 		u64 hole_len;
7233 		const u64 hole_end = extent_map_end(hole_em);
7234 
7235 		em = alloc_extent_map();
7236 		if (!em) {
7237 			err = -ENOMEM;
7238 			goto out;
7239 		}
7240 		em->bdev = NULL;
7241 
7242 		ASSERT(hole_em);
7243 		/*
7244 		 * When btrfs_get_extent can't find anything it returns one
7245 		 * huge hole
7246 		 *
7247 		 * Make sure what it found really fits our range, and adjust to
7248 		 * make sure it is based on the start from the caller
7249 		 */
7250 		if (hole_end <= start || hole_em->start > end) {
7251 		       free_extent_map(hole_em);
7252 		       hole_em = NULL;
7253 		} else {
7254 		       hole_start = max(hole_em->start, start);
7255 		       hole_len = hole_end - hole_start;
7256 		}
7257 
7258 		if (hole_em && delalloc_start > hole_start) {
7259 			/*
7260 			 * Our hole starts before our delalloc, so we have to
7261 			 * return just the parts of the hole that go until the
7262 			 * delalloc starts
7263 			 */
7264 			em->len = min(hole_len, delalloc_start - hole_start);
7265 			em->start = hole_start;
7266 			em->orig_start = hole_start;
7267 			/*
7268 			 * Don't adjust block start at all, it is fixed at
7269 			 * EXTENT_MAP_HOLE
7270 			 */
7271 			em->block_start = hole_em->block_start;
7272 			em->block_len = hole_len;
7273 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7274 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7275 		} else {
7276 			/*
7277 			 * Hole is out of passed range or it starts after
7278 			 * delalloc range
7279 			 */
7280 			em->start = delalloc_start;
7281 			em->len = delalloc_len;
7282 			em->orig_start = delalloc_start;
7283 			em->block_start = EXTENT_MAP_DELALLOC;
7284 			em->block_len = delalloc_len;
7285 		}
7286 	} else {
7287 		return hole_em;
7288 	}
7289 out:
7290 
7291 	free_extent_map(hole_em);
7292 	if (err) {
7293 		free_extent_map(em);
7294 		return ERR_PTR(err);
7295 	}
7296 	return em;
7297 }
7298 
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7299 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7300 						  const u64 start,
7301 						  const u64 len,
7302 						  const u64 orig_start,
7303 						  const u64 block_start,
7304 						  const u64 block_len,
7305 						  const u64 orig_block_len,
7306 						  const u64 ram_bytes,
7307 						  const int type)
7308 {
7309 	struct extent_map *em = NULL;
7310 	int ret;
7311 
7312 	if (type != BTRFS_ORDERED_NOCOW) {
7313 		em = create_io_em(inode, start, len, orig_start,
7314 				  block_start, block_len, orig_block_len,
7315 				  ram_bytes,
7316 				  BTRFS_COMPRESS_NONE, /* compress_type */
7317 				  type);
7318 		if (IS_ERR(em))
7319 			goto out;
7320 	}
7321 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7322 					   len, block_len, type);
7323 	if (ret) {
7324 		if (em) {
7325 			free_extent_map(em);
7326 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7327 						start + len - 1, 0);
7328 		}
7329 		em = ERR_PTR(ret);
7330 	}
7331  out:
7332 
7333 	return em;
7334 }
7335 
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7336 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7337 						  u64 start, u64 len)
7338 {
7339 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7340 	struct btrfs_root *root = BTRFS_I(inode)->root;
7341 	struct extent_map *em;
7342 	struct btrfs_key ins;
7343 	u64 alloc_hint;
7344 	int ret;
7345 
7346 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7347 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7348 				   0, alloc_hint, &ins, 1, 1);
7349 	if (ret)
7350 		return ERR_PTR(ret);
7351 
7352 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7353 				     ins.objectid, ins.offset, ins.offset,
7354 				     ins.offset, BTRFS_ORDERED_REGULAR);
7355 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7356 	if (IS_ERR(em))
7357 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7358 					   ins.offset, 1);
7359 
7360 	return em;
7361 }
7362 
7363 /*
7364  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7365  * block must be cow'd
7366  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7367 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7368 			      u64 *orig_start, u64 *orig_block_len,
7369 			      u64 *ram_bytes)
7370 {
7371 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7372 	struct btrfs_path *path;
7373 	int ret;
7374 	struct extent_buffer *leaf;
7375 	struct btrfs_root *root = BTRFS_I(inode)->root;
7376 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7377 	struct btrfs_file_extent_item *fi;
7378 	struct btrfs_key key;
7379 	u64 disk_bytenr;
7380 	u64 backref_offset;
7381 	u64 extent_end;
7382 	u64 num_bytes;
7383 	int slot;
7384 	int found_type;
7385 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7386 
7387 	path = btrfs_alloc_path();
7388 	if (!path)
7389 		return -ENOMEM;
7390 
7391 	ret = btrfs_lookup_file_extent(NULL, root, path,
7392 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7393 	if (ret < 0)
7394 		goto out;
7395 
7396 	slot = path->slots[0];
7397 	if (ret == 1) {
7398 		if (slot == 0) {
7399 			/* can't find the item, must cow */
7400 			ret = 0;
7401 			goto out;
7402 		}
7403 		slot--;
7404 	}
7405 	ret = 0;
7406 	leaf = path->nodes[0];
7407 	btrfs_item_key_to_cpu(leaf, &key, slot);
7408 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7409 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7410 		/* not our file or wrong item type, must cow */
7411 		goto out;
7412 	}
7413 
7414 	if (key.offset > offset) {
7415 		/* Wrong offset, must cow */
7416 		goto out;
7417 	}
7418 
7419 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7420 	found_type = btrfs_file_extent_type(leaf, fi);
7421 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7422 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7423 		/* not a regular extent, must cow */
7424 		goto out;
7425 	}
7426 
7427 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7428 		goto out;
7429 
7430 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7431 	if (extent_end <= offset)
7432 		goto out;
7433 
7434 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7435 	if (disk_bytenr == 0)
7436 		goto out;
7437 
7438 	if (btrfs_file_extent_compression(leaf, fi) ||
7439 	    btrfs_file_extent_encryption(leaf, fi) ||
7440 	    btrfs_file_extent_other_encoding(leaf, fi))
7441 		goto out;
7442 
7443 	/*
7444 	 * Do the same check as in btrfs_cross_ref_exist but without the
7445 	 * unnecessary search.
7446 	 */
7447 	if (btrfs_file_extent_generation(leaf, fi) <=
7448 	    btrfs_root_last_snapshot(&root->root_item))
7449 		goto out;
7450 
7451 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7452 
7453 	if (orig_start) {
7454 		*orig_start = key.offset - backref_offset;
7455 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7456 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7457 	}
7458 
7459 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7460 		goto out;
7461 
7462 	num_bytes = min(offset + *len, extent_end) - offset;
7463 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7464 		u64 range_end;
7465 
7466 		range_end = round_up(offset + num_bytes,
7467 				     root->fs_info->sectorsize) - 1;
7468 		ret = test_range_bit(io_tree, offset, range_end,
7469 				     EXTENT_DELALLOC, 0, NULL);
7470 		if (ret) {
7471 			ret = -EAGAIN;
7472 			goto out;
7473 		}
7474 	}
7475 
7476 	btrfs_release_path(path);
7477 
7478 	/*
7479 	 * look for other files referencing this extent, if we
7480 	 * find any we must cow
7481 	 */
7482 
7483 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7484 				    key.offset - backref_offset, disk_bytenr);
7485 	if (ret) {
7486 		ret = 0;
7487 		goto out;
7488 	}
7489 
7490 	/*
7491 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7492 	 * in this extent we are about to write.  If there
7493 	 * are any csums in that range we have to cow in order
7494 	 * to keep the csums correct
7495 	 */
7496 	disk_bytenr += backref_offset;
7497 	disk_bytenr += offset - key.offset;
7498 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7499 		goto out;
7500 	/*
7501 	 * all of the above have passed, it is safe to overwrite this extent
7502 	 * without cow
7503 	 */
7504 	*len = num_bytes;
7505 	ret = 1;
7506 out:
7507 	btrfs_free_path(path);
7508 	return ret;
7509 }
7510 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7511 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7512 			      struct extent_state **cached_state, int writing)
7513 {
7514 	struct btrfs_ordered_extent *ordered;
7515 	int ret = 0;
7516 
7517 	while (1) {
7518 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7519 				 cached_state);
7520 		/*
7521 		 * We're concerned with the entire range that we're going to be
7522 		 * doing DIO to, so we need to make sure there's no ordered
7523 		 * extents in this range.
7524 		 */
7525 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7526 						     lockend - lockstart + 1);
7527 
7528 		/*
7529 		 * We need to make sure there are no buffered pages in this
7530 		 * range either, we could have raced between the invalidate in
7531 		 * generic_file_direct_write and locking the extent.  The
7532 		 * invalidate needs to happen so that reads after a write do not
7533 		 * get stale data.
7534 		 */
7535 		if (!ordered &&
7536 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7537 							 lockstart, lockend)))
7538 			break;
7539 
7540 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7541 				     cached_state);
7542 
7543 		if (ordered) {
7544 			/*
7545 			 * If we are doing a DIO read and the ordered extent we
7546 			 * found is for a buffered write, we can not wait for it
7547 			 * to complete and retry, because if we do so we can
7548 			 * deadlock with concurrent buffered writes on page
7549 			 * locks. This happens only if our DIO read covers more
7550 			 * than one extent map, if at this point has already
7551 			 * created an ordered extent for a previous extent map
7552 			 * and locked its range in the inode's io tree, and a
7553 			 * concurrent write against that previous extent map's
7554 			 * range and this range started (we unlock the ranges
7555 			 * in the io tree only when the bios complete and
7556 			 * buffered writes always lock pages before attempting
7557 			 * to lock range in the io tree).
7558 			 */
7559 			if (writing ||
7560 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7561 				btrfs_start_ordered_extent(inode, ordered, 1);
7562 			else
7563 				ret = -ENOTBLK;
7564 			btrfs_put_ordered_extent(ordered);
7565 		} else {
7566 			/*
7567 			 * We could trigger writeback for this range (and wait
7568 			 * for it to complete) and then invalidate the pages for
7569 			 * this range (through invalidate_inode_pages2_range()),
7570 			 * but that can lead us to a deadlock with a concurrent
7571 			 * call to readpages() (a buffered read or a defrag call
7572 			 * triggered a readahead) on a page lock due to an
7573 			 * ordered dio extent we created before but did not have
7574 			 * yet a corresponding bio submitted (whence it can not
7575 			 * complete), which makes readpages() wait for that
7576 			 * ordered extent to complete while holding a lock on
7577 			 * that page.
7578 			 */
7579 			ret = -ENOTBLK;
7580 		}
7581 
7582 		if (ret)
7583 			break;
7584 
7585 		cond_resched();
7586 	}
7587 
7588 	return ret;
7589 }
7590 
7591 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7592 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7593 				       u64 orig_start, u64 block_start,
7594 				       u64 block_len, u64 orig_block_len,
7595 				       u64 ram_bytes, int compress_type,
7596 				       int type)
7597 {
7598 	struct extent_map_tree *em_tree;
7599 	struct extent_map *em;
7600 	struct btrfs_root *root = BTRFS_I(inode)->root;
7601 	int ret;
7602 
7603 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7604 	       type == BTRFS_ORDERED_COMPRESSED ||
7605 	       type == BTRFS_ORDERED_NOCOW ||
7606 	       type == BTRFS_ORDERED_REGULAR);
7607 
7608 	em_tree = &BTRFS_I(inode)->extent_tree;
7609 	em = alloc_extent_map();
7610 	if (!em)
7611 		return ERR_PTR(-ENOMEM);
7612 
7613 	em->start = start;
7614 	em->orig_start = orig_start;
7615 	em->len = len;
7616 	em->block_len = block_len;
7617 	em->block_start = block_start;
7618 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7619 	em->orig_block_len = orig_block_len;
7620 	em->ram_bytes = ram_bytes;
7621 	em->generation = -1;
7622 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7623 	if (type == BTRFS_ORDERED_PREALLOC) {
7624 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7625 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7626 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7627 		em->compress_type = compress_type;
7628 	}
7629 
7630 	do {
7631 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7632 				em->start + em->len - 1, 0);
7633 		write_lock(&em_tree->lock);
7634 		ret = add_extent_mapping(em_tree, em, 1);
7635 		write_unlock(&em_tree->lock);
7636 		/*
7637 		 * The caller has taken lock_extent(), who could race with us
7638 		 * to add em?
7639 		 */
7640 	} while (ret == -EEXIST);
7641 
7642 	if (ret) {
7643 		free_extent_map(em);
7644 		return ERR_PTR(ret);
7645 	}
7646 
7647 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7648 	return em;
7649 }
7650 
7651 
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7652 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7653 					struct buffer_head *bh_result,
7654 					struct inode *inode,
7655 					u64 start, u64 len)
7656 {
7657 	if (em->block_start == EXTENT_MAP_HOLE ||
7658 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7659 		return -ENOENT;
7660 
7661 	len = min(len, em->len - (start - em->start));
7662 
7663 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7664 		inode->i_blkbits;
7665 	bh_result->b_size = len;
7666 	bh_result->b_bdev = em->bdev;
7667 	set_buffer_mapped(bh_result);
7668 
7669 	return 0;
7670 }
7671 
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7672 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7673 					 struct buffer_head *bh_result,
7674 					 struct inode *inode,
7675 					 struct btrfs_dio_data *dio_data,
7676 					 u64 start, u64 len)
7677 {
7678 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7679 	struct extent_map *em = *map;
7680 	int ret = 0;
7681 
7682 	/*
7683 	 * We don't allocate a new extent in the following cases
7684 	 *
7685 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7686 	 * existing extent.
7687 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7688 	 * just use the extent.
7689 	 *
7690 	 */
7691 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7692 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7693 	     em->block_start != EXTENT_MAP_HOLE)) {
7694 		int type;
7695 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7696 
7697 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7698 			type = BTRFS_ORDERED_PREALLOC;
7699 		else
7700 			type = BTRFS_ORDERED_NOCOW;
7701 		len = min(len, em->len - (start - em->start));
7702 		block_start = em->block_start + (start - em->start);
7703 
7704 		if (can_nocow_extent(inode, start, &len, &orig_start,
7705 				     &orig_block_len, &ram_bytes) == 1 &&
7706 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7707 			struct extent_map *em2;
7708 
7709 			em2 = btrfs_create_dio_extent(inode, start, len,
7710 						      orig_start, block_start,
7711 						      len, orig_block_len,
7712 						      ram_bytes, type);
7713 			btrfs_dec_nocow_writers(fs_info, block_start);
7714 			if (type == BTRFS_ORDERED_PREALLOC) {
7715 				free_extent_map(em);
7716 				*map = em = em2;
7717 			}
7718 
7719 			if (em2 && IS_ERR(em2)) {
7720 				ret = PTR_ERR(em2);
7721 				goto out;
7722 			}
7723 			/*
7724 			 * For inode marked NODATACOW or extent marked PREALLOC,
7725 			 * use the existing or preallocated extent, so does not
7726 			 * need to adjust btrfs_space_info's bytes_may_use.
7727 			 */
7728 			btrfs_free_reserved_data_space_noquota(inode, start,
7729 							       len);
7730 			goto skip_cow;
7731 		}
7732 	}
7733 
7734 	/* this will cow the extent */
7735 	len = bh_result->b_size;
7736 	free_extent_map(em);
7737 	*map = em = btrfs_new_extent_direct(inode, start, len);
7738 	if (IS_ERR(em)) {
7739 		ret = PTR_ERR(em);
7740 		goto out;
7741 	}
7742 
7743 	len = min(len, em->len - (start - em->start));
7744 
7745 skip_cow:
7746 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7747 		inode->i_blkbits;
7748 	bh_result->b_size = len;
7749 	bh_result->b_bdev = em->bdev;
7750 	set_buffer_mapped(bh_result);
7751 
7752 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7753 		set_buffer_new(bh_result);
7754 
7755 	/*
7756 	 * Need to update the i_size under the extent lock so buffered
7757 	 * readers will get the updated i_size when we unlock.
7758 	 */
7759 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7760 		i_size_write(inode, start + len);
7761 
7762 	WARN_ON(dio_data->reserve < len);
7763 	dio_data->reserve -= len;
7764 	dio_data->unsubmitted_oe_range_end = start + len;
7765 	current->journal_info = dio_data;
7766 out:
7767 	return ret;
7768 }
7769 
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7770 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7771 				   struct buffer_head *bh_result, int create)
7772 {
7773 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7774 	struct extent_map *em;
7775 	struct extent_state *cached_state = NULL;
7776 	struct btrfs_dio_data *dio_data = NULL;
7777 	u64 start = iblock << inode->i_blkbits;
7778 	u64 lockstart, lockend;
7779 	u64 len = bh_result->b_size;
7780 	int ret = 0;
7781 
7782 	if (!create)
7783 		len = min_t(u64, len, fs_info->sectorsize);
7784 
7785 	lockstart = start;
7786 	lockend = start + len - 1;
7787 
7788 	if (current->journal_info) {
7789 		/*
7790 		 * Need to pull our outstanding extents and set journal_info to NULL so
7791 		 * that anything that needs to check if there's a transaction doesn't get
7792 		 * confused.
7793 		 */
7794 		dio_data = current->journal_info;
7795 		current->journal_info = NULL;
7796 	}
7797 
7798 	/*
7799 	 * If this errors out it's because we couldn't invalidate pagecache for
7800 	 * this range and we need to fallback to buffered.
7801 	 */
7802 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7803 			       create)) {
7804 		ret = -ENOTBLK;
7805 		goto err;
7806 	}
7807 
7808 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7809 	if (IS_ERR(em)) {
7810 		ret = PTR_ERR(em);
7811 		goto unlock_err;
7812 	}
7813 
7814 	/*
7815 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7816 	 * io.  INLINE is special, and we could probably kludge it in here, but
7817 	 * it's still buffered so for safety lets just fall back to the generic
7818 	 * buffered path.
7819 	 *
7820 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7821 	 * decompress it, so there will be buffering required no matter what we
7822 	 * do, so go ahead and fallback to buffered.
7823 	 *
7824 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7825 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7826 	 * the generic code.
7827 	 */
7828 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7829 	    em->block_start == EXTENT_MAP_INLINE) {
7830 		free_extent_map(em);
7831 		ret = -ENOTBLK;
7832 		goto unlock_err;
7833 	}
7834 
7835 	if (create) {
7836 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7837 						    dio_data, start, len);
7838 		if (ret < 0)
7839 			goto unlock_err;
7840 
7841 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7842 				     lockend, &cached_state);
7843 	} else {
7844 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7845 						   start, len);
7846 		/* Can be negative only if we read from a hole */
7847 		if (ret < 0) {
7848 			ret = 0;
7849 			free_extent_map(em);
7850 			goto unlock_err;
7851 		}
7852 		/*
7853 		 * We need to unlock only the end area that we aren't using.
7854 		 * The rest is going to be unlocked by the endio routine.
7855 		 */
7856 		lockstart = start + bh_result->b_size;
7857 		if (lockstart < lockend) {
7858 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7859 					     lockstart, lockend, &cached_state);
7860 		} else {
7861 			free_extent_state(cached_state);
7862 		}
7863 	}
7864 
7865 	free_extent_map(em);
7866 
7867 	return 0;
7868 
7869 unlock_err:
7870 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7871 			     &cached_state);
7872 err:
7873 	if (dio_data)
7874 		current->journal_info = dio_data;
7875 	return ret;
7876 }
7877 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7878 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7879 						 struct bio *bio,
7880 						 int mirror_num)
7881 {
7882 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7883 	blk_status_t ret;
7884 
7885 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7886 
7887 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7888 	if (ret)
7889 		return ret;
7890 
7891 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7892 
7893 	return ret;
7894 }
7895 
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7896 static int btrfs_check_dio_repairable(struct inode *inode,
7897 				      struct bio *failed_bio,
7898 				      struct io_failure_record *failrec,
7899 				      int failed_mirror)
7900 {
7901 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7902 	int num_copies;
7903 
7904 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7905 	if (num_copies == 1) {
7906 		/*
7907 		 * we only have a single copy of the data, so don't bother with
7908 		 * all the retry and error correction code that follows. no
7909 		 * matter what the error is, it is very likely to persist.
7910 		 */
7911 		btrfs_debug(fs_info,
7912 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7913 			num_copies, failrec->this_mirror, failed_mirror);
7914 		return 0;
7915 	}
7916 
7917 	failrec->failed_mirror = failed_mirror;
7918 	failrec->this_mirror++;
7919 	if (failrec->this_mirror == failed_mirror)
7920 		failrec->this_mirror++;
7921 
7922 	if (failrec->this_mirror > num_copies) {
7923 		btrfs_debug(fs_info,
7924 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7925 			num_copies, failrec->this_mirror, failed_mirror);
7926 		return 0;
7927 	}
7928 
7929 	return 1;
7930 }
7931 
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7932 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7933 				   struct page *page, unsigned int pgoff,
7934 				   u64 start, u64 end, int failed_mirror,
7935 				   bio_end_io_t *repair_endio, void *repair_arg)
7936 {
7937 	struct io_failure_record *failrec;
7938 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7939 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7940 	struct bio *bio;
7941 	int isector;
7942 	unsigned int read_mode = 0;
7943 	int segs;
7944 	int ret;
7945 	blk_status_t status;
7946 	struct bio_vec bvec;
7947 
7948 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7949 
7950 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7951 	if (ret)
7952 		return errno_to_blk_status(ret);
7953 
7954 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7955 					 failed_mirror);
7956 	if (!ret) {
7957 		free_io_failure(failure_tree, io_tree, failrec);
7958 		return BLK_STS_IOERR;
7959 	}
7960 
7961 	segs = bio_segments(failed_bio);
7962 	bio_get_first_bvec(failed_bio, &bvec);
7963 	if (segs > 1 ||
7964 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7965 		read_mode |= REQ_FAILFAST_DEV;
7966 
7967 	isector = start - btrfs_io_bio(failed_bio)->logical;
7968 	isector >>= inode->i_sb->s_blocksize_bits;
7969 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7970 				pgoff, isector, repair_endio, repair_arg);
7971 	bio->bi_opf = REQ_OP_READ | read_mode;
7972 
7973 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7974 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7975 		    read_mode, failrec->this_mirror, failrec->in_validation);
7976 
7977 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7978 	if (status) {
7979 		free_io_failure(failure_tree, io_tree, failrec);
7980 		bio_put(bio);
7981 	}
7982 
7983 	return status;
7984 }
7985 
7986 struct btrfs_retry_complete {
7987 	struct completion done;
7988 	struct inode *inode;
7989 	u64 start;
7990 	int uptodate;
7991 };
7992 
btrfs_retry_endio_nocsum(struct bio * bio)7993 static void btrfs_retry_endio_nocsum(struct bio *bio)
7994 {
7995 	struct btrfs_retry_complete *done = bio->bi_private;
7996 	struct inode *inode = done->inode;
7997 	struct bio_vec *bvec;
7998 	struct extent_io_tree *io_tree, *failure_tree;
7999 	struct bvec_iter_all iter_all;
8000 
8001 	if (bio->bi_status)
8002 		goto end;
8003 
8004 	ASSERT(bio->bi_vcnt == 1);
8005 	io_tree = &BTRFS_I(inode)->io_tree;
8006 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8007 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
8008 
8009 	done->uptodate = 1;
8010 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8011 	bio_for_each_segment_all(bvec, bio, iter_all)
8012 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8013 				 io_tree, done->start, bvec->bv_page,
8014 				 btrfs_ino(BTRFS_I(inode)), 0);
8015 end:
8016 	complete(&done->done);
8017 	bio_put(bio);
8018 }
8019 
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8020 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8021 						struct btrfs_io_bio *io_bio)
8022 {
8023 	struct btrfs_fs_info *fs_info;
8024 	struct bio_vec bvec;
8025 	struct bvec_iter iter;
8026 	struct btrfs_retry_complete done;
8027 	u64 start;
8028 	unsigned int pgoff;
8029 	u32 sectorsize;
8030 	int nr_sectors;
8031 	blk_status_t ret;
8032 	blk_status_t err = BLK_STS_OK;
8033 
8034 	fs_info = BTRFS_I(inode)->root->fs_info;
8035 	sectorsize = fs_info->sectorsize;
8036 
8037 	start = io_bio->logical;
8038 	done.inode = inode;
8039 	io_bio->bio.bi_iter = io_bio->iter;
8040 
8041 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8042 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8043 		pgoff = bvec.bv_offset;
8044 
8045 next_block_or_try_again:
8046 		done.uptodate = 0;
8047 		done.start = start;
8048 		init_completion(&done.done);
8049 
8050 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8051 				pgoff, start, start + sectorsize - 1,
8052 				io_bio->mirror_num,
8053 				btrfs_retry_endio_nocsum, &done);
8054 		if (ret) {
8055 			err = ret;
8056 			goto next;
8057 		}
8058 
8059 		wait_for_completion_io(&done.done);
8060 
8061 		if (!done.uptodate) {
8062 			/* We might have another mirror, so try again */
8063 			goto next_block_or_try_again;
8064 		}
8065 
8066 next:
8067 		start += sectorsize;
8068 
8069 		nr_sectors--;
8070 		if (nr_sectors) {
8071 			pgoff += sectorsize;
8072 			ASSERT(pgoff < PAGE_SIZE);
8073 			goto next_block_or_try_again;
8074 		}
8075 	}
8076 
8077 	return err;
8078 }
8079 
btrfs_retry_endio(struct bio * bio)8080 static void btrfs_retry_endio(struct bio *bio)
8081 {
8082 	struct btrfs_retry_complete *done = bio->bi_private;
8083 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8084 	struct extent_io_tree *io_tree, *failure_tree;
8085 	struct inode *inode = done->inode;
8086 	struct bio_vec *bvec;
8087 	int uptodate;
8088 	int ret;
8089 	int i = 0;
8090 	struct bvec_iter_all iter_all;
8091 
8092 	if (bio->bi_status)
8093 		goto end;
8094 
8095 	uptodate = 1;
8096 
8097 	ASSERT(bio->bi_vcnt == 1);
8098 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8099 
8100 	io_tree = &BTRFS_I(inode)->io_tree;
8101 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8102 
8103 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8104 	bio_for_each_segment_all(bvec, bio, iter_all) {
8105 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8106 					     bvec->bv_offset, done->start,
8107 					     bvec->bv_len);
8108 		if (!ret)
8109 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8110 					 failure_tree, io_tree, done->start,
8111 					 bvec->bv_page,
8112 					 btrfs_ino(BTRFS_I(inode)),
8113 					 bvec->bv_offset);
8114 		else
8115 			uptodate = 0;
8116 		i++;
8117 	}
8118 
8119 	done->uptodate = uptodate;
8120 end:
8121 	complete(&done->done);
8122 	bio_put(bio);
8123 }
8124 
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8125 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8126 		struct btrfs_io_bio *io_bio, blk_status_t err)
8127 {
8128 	struct btrfs_fs_info *fs_info;
8129 	struct bio_vec bvec;
8130 	struct bvec_iter iter;
8131 	struct btrfs_retry_complete done;
8132 	u64 start;
8133 	u64 offset = 0;
8134 	u32 sectorsize;
8135 	int nr_sectors;
8136 	unsigned int pgoff;
8137 	int csum_pos;
8138 	bool uptodate = (err == 0);
8139 	int ret;
8140 	blk_status_t status;
8141 
8142 	fs_info = BTRFS_I(inode)->root->fs_info;
8143 	sectorsize = fs_info->sectorsize;
8144 
8145 	err = BLK_STS_OK;
8146 	start = io_bio->logical;
8147 	done.inode = inode;
8148 	io_bio->bio.bi_iter = io_bio->iter;
8149 
8150 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8151 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8152 
8153 		pgoff = bvec.bv_offset;
8154 next_block:
8155 		if (uptodate) {
8156 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8157 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8158 					bvec.bv_page, pgoff, start, sectorsize);
8159 			if (likely(!ret))
8160 				goto next;
8161 		}
8162 try_again:
8163 		done.uptodate = 0;
8164 		done.start = start;
8165 		init_completion(&done.done);
8166 
8167 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8168 					pgoff, start, start + sectorsize - 1,
8169 					io_bio->mirror_num, btrfs_retry_endio,
8170 					&done);
8171 		if (status) {
8172 			err = status;
8173 			goto next;
8174 		}
8175 
8176 		wait_for_completion_io(&done.done);
8177 
8178 		if (!done.uptodate) {
8179 			/* We might have another mirror, so try again */
8180 			goto try_again;
8181 		}
8182 next:
8183 		offset += sectorsize;
8184 		start += sectorsize;
8185 
8186 		ASSERT(nr_sectors);
8187 
8188 		nr_sectors--;
8189 		if (nr_sectors) {
8190 			pgoff += sectorsize;
8191 			ASSERT(pgoff < PAGE_SIZE);
8192 			goto next_block;
8193 		}
8194 	}
8195 
8196 	return err;
8197 }
8198 
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8199 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8200 		struct btrfs_io_bio *io_bio, blk_status_t err)
8201 {
8202 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8203 
8204 	if (skip_csum) {
8205 		if (unlikely(err))
8206 			return __btrfs_correct_data_nocsum(inode, io_bio);
8207 		else
8208 			return BLK_STS_OK;
8209 	} else {
8210 		return __btrfs_subio_endio_read(inode, io_bio, err);
8211 	}
8212 }
8213 
btrfs_endio_direct_read(struct bio * bio)8214 static void btrfs_endio_direct_read(struct bio *bio)
8215 {
8216 	struct btrfs_dio_private *dip = bio->bi_private;
8217 	struct inode *inode = dip->inode;
8218 	struct bio *dio_bio;
8219 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8220 	blk_status_t err = bio->bi_status;
8221 
8222 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8223 		err = btrfs_subio_endio_read(inode, io_bio, err);
8224 
8225 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8226 		      dip->logical_offset + dip->bytes - 1);
8227 	dio_bio = dip->dio_bio;
8228 
8229 	kfree(dip);
8230 
8231 	dio_bio->bi_status = err;
8232 	dio_end_io(dio_bio);
8233 	btrfs_io_bio_free_csum(io_bio);
8234 	bio_put(bio);
8235 }
8236 
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8237 static void __endio_write_update_ordered(struct inode *inode,
8238 					 const u64 offset, const u64 bytes,
8239 					 const bool uptodate)
8240 {
8241 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8242 	struct btrfs_ordered_extent *ordered = NULL;
8243 	struct btrfs_workqueue *wq;
8244 	u64 ordered_offset = offset;
8245 	u64 ordered_bytes = bytes;
8246 	u64 last_offset;
8247 
8248 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
8249 		wq = fs_info->endio_freespace_worker;
8250 	else
8251 		wq = fs_info->endio_write_workers;
8252 
8253 	while (ordered_offset < offset + bytes) {
8254 		last_offset = ordered_offset;
8255 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8256 							   &ordered_offset,
8257 							   ordered_bytes,
8258 							   uptodate)) {
8259 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
8260 					NULL);
8261 			btrfs_queue_work(wq, &ordered->work);
8262 		}
8263 		/*
8264 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8265 		 * extent in the range, we can exit.
8266 		 */
8267 		if (ordered_offset == last_offset)
8268 			return;
8269 		/*
8270 		 * Our bio might span multiple ordered extents. In this case
8271 		 * we keep going until we have accounted the whole dio.
8272 		 */
8273 		if (ordered_offset < offset + bytes) {
8274 			ordered_bytes = offset + bytes - ordered_offset;
8275 			ordered = NULL;
8276 		}
8277 	}
8278 }
8279 
btrfs_endio_direct_write(struct bio * bio)8280 static void btrfs_endio_direct_write(struct bio *bio)
8281 {
8282 	struct btrfs_dio_private *dip = bio->bi_private;
8283 	struct bio *dio_bio = dip->dio_bio;
8284 
8285 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8286 				     dip->bytes, !bio->bi_status);
8287 
8288 	kfree(dip);
8289 
8290 	dio_bio->bi_status = bio->bi_status;
8291 	dio_end_io(dio_bio);
8292 	bio_put(bio);
8293 }
8294 
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8295 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8296 				    struct bio *bio, u64 offset)
8297 {
8298 	struct inode *inode = private_data;
8299 	blk_status_t ret;
8300 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8301 	BUG_ON(ret); /* -ENOMEM */
8302 	return 0;
8303 }
8304 
btrfs_end_dio_bio(struct bio * bio)8305 static void btrfs_end_dio_bio(struct bio *bio)
8306 {
8307 	struct btrfs_dio_private *dip = bio->bi_private;
8308 	blk_status_t err = bio->bi_status;
8309 
8310 	if (err)
8311 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8312 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8313 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8314 			   bio->bi_opf,
8315 			   (unsigned long long)bio->bi_iter.bi_sector,
8316 			   bio->bi_iter.bi_size, err);
8317 
8318 	if (dip->subio_endio)
8319 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8320 
8321 	if (err) {
8322 		/*
8323 		 * We want to perceive the errors flag being set before
8324 		 * decrementing the reference count. We don't need a barrier
8325 		 * since atomic operations with a return value are fully
8326 		 * ordered as per atomic_t.txt
8327 		 */
8328 		dip->errors = 1;
8329 	}
8330 
8331 	/* if there are more bios still pending for this dio, just exit */
8332 	if (!atomic_dec_and_test(&dip->pending_bios))
8333 		goto out;
8334 
8335 	if (dip->errors) {
8336 		bio_io_error(dip->orig_bio);
8337 	} else {
8338 		dip->dio_bio->bi_status = BLK_STS_OK;
8339 		bio_endio(dip->orig_bio);
8340 	}
8341 out:
8342 	bio_put(bio);
8343 }
8344 
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8345 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8346 						 struct btrfs_dio_private *dip,
8347 						 struct bio *bio,
8348 						 u64 file_offset)
8349 {
8350 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8351 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8352 	blk_status_t ret;
8353 
8354 	/*
8355 	 * We load all the csum data we need when we submit
8356 	 * the first bio to reduce the csum tree search and
8357 	 * contention.
8358 	 */
8359 	if (dip->logical_offset == file_offset) {
8360 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8361 						file_offset);
8362 		if (ret)
8363 			return ret;
8364 	}
8365 
8366 	if (bio == dip->orig_bio)
8367 		return 0;
8368 
8369 	file_offset -= dip->logical_offset;
8370 	file_offset >>= inode->i_sb->s_blocksize_bits;
8371 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8372 
8373 	return 0;
8374 }
8375 
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8376 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8377 		struct inode *inode, u64 file_offset, int async_submit)
8378 {
8379 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8380 	struct btrfs_dio_private *dip = bio->bi_private;
8381 	bool write = bio_op(bio) == REQ_OP_WRITE;
8382 	blk_status_t ret;
8383 
8384 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8385 	if (async_submit)
8386 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8387 
8388 	if (!write) {
8389 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8390 		if (ret)
8391 			goto err;
8392 	}
8393 
8394 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8395 		goto map;
8396 
8397 	if (write && async_submit) {
8398 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8399 					  file_offset, inode,
8400 					  btrfs_submit_bio_start_direct_io);
8401 		goto err;
8402 	} else if (write) {
8403 		/*
8404 		 * If we aren't doing async submit, calculate the csum of the
8405 		 * bio now.
8406 		 */
8407 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8408 		if (ret)
8409 			goto err;
8410 	} else {
8411 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8412 						     file_offset);
8413 		if (ret)
8414 			goto err;
8415 	}
8416 map:
8417 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8418 err:
8419 	return ret;
8420 }
8421 
btrfs_submit_direct_hook(struct btrfs_dio_private * dip)8422 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8423 {
8424 	struct inode *inode = dip->inode;
8425 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8426 	struct bio *bio;
8427 	struct bio *orig_bio = dip->orig_bio;
8428 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8429 	u64 file_offset = dip->logical_offset;
8430 	int async_submit = 0;
8431 	u64 submit_len;
8432 	int clone_offset = 0;
8433 	int clone_len;
8434 	int ret;
8435 	blk_status_t status;
8436 	struct btrfs_io_geometry geom;
8437 
8438 	submit_len = orig_bio->bi_iter.bi_size;
8439 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8440 				    start_sector << 9, submit_len, &geom);
8441 	if (ret)
8442 		return -EIO;
8443 
8444 	if (geom.len >= submit_len) {
8445 		bio = orig_bio;
8446 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8447 		goto submit;
8448 	}
8449 
8450 	/* async crcs make it difficult to collect full stripe writes. */
8451 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8452 		async_submit = 0;
8453 	else
8454 		async_submit = 1;
8455 
8456 	/* bio split */
8457 	ASSERT(geom.len <= INT_MAX);
8458 	atomic_inc(&dip->pending_bios);
8459 	do {
8460 		clone_len = min_t(int, submit_len, geom.len);
8461 
8462 		/*
8463 		 * This will never fail as it's passing GPF_NOFS and
8464 		 * the allocation is backed by btrfs_bioset.
8465 		 */
8466 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8467 					      clone_len);
8468 		bio->bi_private = dip;
8469 		bio->bi_end_io = btrfs_end_dio_bio;
8470 		btrfs_io_bio(bio)->logical = file_offset;
8471 
8472 		ASSERT(submit_len >= clone_len);
8473 		submit_len -= clone_len;
8474 		if (submit_len == 0)
8475 			break;
8476 
8477 		/*
8478 		 * Increase the count before we submit the bio so we know
8479 		 * the end IO handler won't happen before we increase the
8480 		 * count. Otherwise, the dip might get freed before we're
8481 		 * done setting it up.
8482 		 */
8483 		atomic_inc(&dip->pending_bios);
8484 
8485 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8486 						async_submit);
8487 		if (status) {
8488 			bio_put(bio);
8489 			atomic_dec(&dip->pending_bios);
8490 			goto out_err;
8491 		}
8492 
8493 		clone_offset += clone_len;
8494 		start_sector += clone_len >> 9;
8495 		file_offset += clone_len;
8496 
8497 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8498 				      start_sector << 9, submit_len, &geom);
8499 		if (ret)
8500 			goto out_err;
8501 	} while (submit_len > 0);
8502 
8503 submit:
8504 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8505 	if (!status)
8506 		return 0;
8507 
8508 	bio_put(bio);
8509 out_err:
8510 	dip->errors = 1;
8511 	/*
8512 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8513 	 * perceived to be set. This ordering is ensured by the fact that an
8514 	 * atomic operations with a return value are fully ordered as per
8515 	 * atomic_t.txt
8516 	 */
8517 	if (atomic_dec_and_test(&dip->pending_bios))
8518 		bio_io_error(dip->orig_bio);
8519 
8520 	/* bio_end_io() will handle error, so we needn't return it */
8521 	return 0;
8522 }
8523 
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8524 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8525 				loff_t file_offset)
8526 {
8527 	struct btrfs_dio_private *dip = NULL;
8528 	struct bio *bio = NULL;
8529 	struct btrfs_io_bio *io_bio;
8530 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8531 	int ret = 0;
8532 
8533 	bio = btrfs_bio_clone(dio_bio);
8534 
8535 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8536 	if (!dip) {
8537 		ret = -ENOMEM;
8538 		goto free_ordered;
8539 	}
8540 
8541 	dip->private = dio_bio->bi_private;
8542 	dip->inode = inode;
8543 	dip->logical_offset = file_offset;
8544 	dip->bytes = dio_bio->bi_iter.bi_size;
8545 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8546 	bio->bi_private = dip;
8547 	dip->orig_bio = bio;
8548 	dip->dio_bio = dio_bio;
8549 	atomic_set(&dip->pending_bios, 0);
8550 	io_bio = btrfs_io_bio(bio);
8551 	io_bio->logical = file_offset;
8552 
8553 	if (write) {
8554 		bio->bi_end_io = btrfs_endio_direct_write;
8555 	} else {
8556 		bio->bi_end_io = btrfs_endio_direct_read;
8557 		dip->subio_endio = btrfs_subio_endio_read;
8558 	}
8559 
8560 	/*
8561 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8562 	 * even if we fail to submit a bio, because in such case we do the
8563 	 * corresponding error handling below and it must not be done a second
8564 	 * time by btrfs_direct_IO().
8565 	 */
8566 	if (write) {
8567 		struct btrfs_dio_data *dio_data = current->journal_info;
8568 
8569 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8570 			dip->bytes;
8571 		dio_data->unsubmitted_oe_range_start =
8572 			dio_data->unsubmitted_oe_range_end;
8573 	}
8574 
8575 	ret = btrfs_submit_direct_hook(dip);
8576 	if (!ret)
8577 		return;
8578 
8579 	btrfs_io_bio_free_csum(io_bio);
8580 
8581 free_ordered:
8582 	/*
8583 	 * If we arrived here it means either we failed to submit the dip
8584 	 * or we either failed to clone the dio_bio or failed to allocate the
8585 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8586 	 * call bio_endio against our io_bio so that we get proper resource
8587 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8588 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8589 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8590 	 */
8591 	if (bio && dip) {
8592 		bio_io_error(bio);
8593 		/*
8594 		 * The end io callbacks free our dip, do the final put on bio
8595 		 * and all the cleanup and final put for dio_bio (through
8596 		 * dio_end_io()).
8597 		 */
8598 		dip = NULL;
8599 		bio = NULL;
8600 	} else {
8601 		if (write)
8602 			__endio_write_update_ordered(inode,
8603 						file_offset,
8604 						dio_bio->bi_iter.bi_size,
8605 						false);
8606 		else
8607 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8608 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8609 
8610 		dio_bio->bi_status = BLK_STS_IOERR;
8611 		/*
8612 		 * Releases and cleans up our dio_bio, no need to bio_put()
8613 		 * nor bio_endio()/bio_io_error() against dio_bio.
8614 		 */
8615 		dio_end_io(dio_bio);
8616 	}
8617 	if (bio)
8618 		bio_put(bio);
8619 	kfree(dip);
8620 }
8621 
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8622 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8623 			       const struct iov_iter *iter, loff_t offset)
8624 {
8625 	int seg;
8626 	int i;
8627 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8628 	ssize_t retval = -EINVAL;
8629 
8630 	if (offset & blocksize_mask)
8631 		goto out;
8632 
8633 	if (iov_iter_alignment(iter) & blocksize_mask)
8634 		goto out;
8635 
8636 	/* If this is a write we don't need to check anymore */
8637 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8638 		return 0;
8639 	/*
8640 	 * Check to make sure we don't have duplicate iov_base's in this
8641 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8642 	 * when reading back.
8643 	 */
8644 	for (seg = 0; seg < iter->nr_segs; seg++) {
8645 		for (i = seg + 1; i < iter->nr_segs; i++) {
8646 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8647 				goto out;
8648 		}
8649 	}
8650 	retval = 0;
8651 out:
8652 	return retval;
8653 }
8654 
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8655 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8656 {
8657 	struct file *file = iocb->ki_filp;
8658 	struct inode *inode = file->f_mapping->host;
8659 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8660 	struct btrfs_dio_data dio_data = { 0 };
8661 	struct extent_changeset *data_reserved = NULL;
8662 	loff_t offset = iocb->ki_pos;
8663 	size_t count = 0;
8664 	int flags = 0;
8665 	bool wakeup = true;
8666 	bool relock = false;
8667 	ssize_t ret;
8668 
8669 	if (check_direct_IO(fs_info, iter, offset))
8670 		return 0;
8671 
8672 	inode_dio_begin(inode);
8673 
8674 	/*
8675 	 * The generic stuff only does filemap_write_and_wait_range, which
8676 	 * isn't enough if we've written compressed pages to this area, so
8677 	 * we need to flush the dirty pages again to make absolutely sure
8678 	 * that any outstanding dirty pages are on disk.
8679 	 */
8680 	count = iov_iter_count(iter);
8681 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8682 		     &BTRFS_I(inode)->runtime_flags))
8683 		filemap_fdatawrite_range(inode->i_mapping, offset,
8684 					 offset + count - 1);
8685 
8686 	if (iov_iter_rw(iter) == WRITE) {
8687 		/*
8688 		 * If the write DIO is beyond the EOF, we need update
8689 		 * the isize, but it is protected by i_mutex. So we can
8690 		 * not unlock the i_mutex at this case.
8691 		 */
8692 		if (offset + count <= inode->i_size) {
8693 			dio_data.overwrite = 1;
8694 			inode_unlock(inode);
8695 			relock = true;
8696 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8697 			ret = -EAGAIN;
8698 			goto out;
8699 		}
8700 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8701 						   offset, count);
8702 		if (ret)
8703 			goto out;
8704 
8705 		/*
8706 		 * We need to know how many extents we reserved so that we can
8707 		 * do the accounting properly if we go over the number we
8708 		 * originally calculated.  Abuse current->journal_info for this.
8709 		 */
8710 		dio_data.reserve = round_up(count,
8711 					    fs_info->sectorsize);
8712 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8713 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8714 		current->journal_info = &dio_data;
8715 		down_read(&BTRFS_I(inode)->dio_sem);
8716 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8717 				     &BTRFS_I(inode)->runtime_flags)) {
8718 		inode_dio_end(inode);
8719 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8720 		wakeup = false;
8721 	}
8722 
8723 	ret = __blockdev_direct_IO(iocb, inode,
8724 				   fs_info->fs_devices->latest_bdev,
8725 				   iter, btrfs_get_blocks_direct, NULL,
8726 				   btrfs_submit_direct, flags);
8727 	if (iov_iter_rw(iter) == WRITE) {
8728 		up_read(&BTRFS_I(inode)->dio_sem);
8729 		current->journal_info = NULL;
8730 		if (ret < 0 && ret != -EIOCBQUEUED) {
8731 			if (dio_data.reserve)
8732 				btrfs_delalloc_release_space(inode, data_reserved,
8733 					offset, dio_data.reserve, true);
8734 			/*
8735 			 * On error we might have left some ordered extents
8736 			 * without submitting corresponding bios for them, so
8737 			 * cleanup them up to avoid other tasks getting them
8738 			 * and waiting for them to complete forever.
8739 			 */
8740 			if (dio_data.unsubmitted_oe_range_start <
8741 			    dio_data.unsubmitted_oe_range_end)
8742 				__endio_write_update_ordered(inode,
8743 					dio_data.unsubmitted_oe_range_start,
8744 					dio_data.unsubmitted_oe_range_end -
8745 					dio_data.unsubmitted_oe_range_start,
8746 					false);
8747 		} else if (ret >= 0 && (size_t)ret < count)
8748 			btrfs_delalloc_release_space(inode, data_reserved,
8749 					offset, count - (size_t)ret, true);
8750 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8751 	}
8752 out:
8753 	if (wakeup)
8754 		inode_dio_end(inode);
8755 	if (relock)
8756 		inode_lock(inode);
8757 
8758 	extent_changeset_free(data_reserved);
8759 	return ret;
8760 }
8761 
8762 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8763 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8764 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8765 		__u64 start, __u64 len)
8766 {
8767 	int	ret;
8768 
8769 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8770 	if (ret)
8771 		return ret;
8772 
8773 	return extent_fiemap(inode, fieinfo, start, len);
8774 }
8775 
btrfs_readpage(struct file * file,struct page * page)8776 int btrfs_readpage(struct file *file, struct page *page)
8777 {
8778 	struct extent_io_tree *tree;
8779 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8780 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8781 }
8782 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8783 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8784 {
8785 	struct inode *inode = page->mapping->host;
8786 	int ret;
8787 
8788 	if (current->flags & PF_MEMALLOC) {
8789 		redirty_page_for_writepage(wbc, page);
8790 		unlock_page(page);
8791 		return 0;
8792 	}
8793 
8794 	/*
8795 	 * If we are under memory pressure we will call this directly from the
8796 	 * VM, we need to make sure we have the inode referenced for the ordered
8797 	 * extent.  If not just return like we didn't do anything.
8798 	 */
8799 	if (!igrab(inode)) {
8800 		redirty_page_for_writepage(wbc, page);
8801 		return AOP_WRITEPAGE_ACTIVATE;
8802 	}
8803 	ret = extent_write_full_page(page, wbc);
8804 	btrfs_add_delayed_iput(inode);
8805 	return ret;
8806 }
8807 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8808 static int btrfs_writepages(struct address_space *mapping,
8809 			    struct writeback_control *wbc)
8810 {
8811 	return extent_writepages(mapping, wbc);
8812 }
8813 
8814 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8815 btrfs_readpages(struct file *file, struct address_space *mapping,
8816 		struct list_head *pages, unsigned nr_pages)
8817 {
8818 	return extent_readpages(mapping, pages, nr_pages);
8819 }
8820 
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8821 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8822 {
8823 	int ret = try_release_extent_mapping(page, gfp_flags);
8824 	if (ret == 1) {
8825 		ClearPagePrivate(page);
8826 		set_page_private(page, 0);
8827 		put_page(page);
8828 	}
8829 	return ret;
8830 }
8831 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8832 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8833 {
8834 	if (PageWriteback(page) || PageDirty(page))
8835 		return 0;
8836 	return __btrfs_releasepage(page, gfp_flags);
8837 }
8838 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8839 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8840 				 unsigned int length)
8841 {
8842 	struct inode *inode = page->mapping->host;
8843 	struct extent_io_tree *tree;
8844 	struct btrfs_ordered_extent *ordered;
8845 	struct extent_state *cached_state = NULL;
8846 	u64 page_start = page_offset(page);
8847 	u64 page_end = page_start + PAGE_SIZE - 1;
8848 	u64 start;
8849 	u64 end;
8850 	int inode_evicting = inode->i_state & I_FREEING;
8851 
8852 	/*
8853 	 * we have the page locked, so new writeback can't start,
8854 	 * and the dirty bit won't be cleared while we are here.
8855 	 *
8856 	 * Wait for IO on this page so that we can safely clear
8857 	 * the PagePrivate2 bit and do ordered accounting
8858 	 */
8859 	wait_on_page_writeback(page);
8860 
8861 	tree = &BTRFS_I(inode)->io_tree;
8862 	if (offset) {
8863 		btrfs_releasepage(page, GFP_NOFS);
8864 		return;
8865 	}
8866 
8867 	if (!inode_evicting)
8868 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8869 again:
8870 	start = page_start;
8871 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8872 					page_end - start + 1);
8873 	if (ordered) {
8874 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8875 		/*
8876 		 * IO on this page will never be started, so we need
8877 		 * to account for any ordered extents now
8878 		 */
8879 		if (!inode_evicting)
8880 			clear_extent_bit(tree, start, end,
8881 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8882 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8883 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8884 		/*
8885 		 * whoever cleared the private bit is responsible
8886 		 * for the finish_ordered_io
8887 		 */
8888 		if (TestClearPagePrivate2(page)) {
8889 			struct btrfs_ordered_inode_tree *tree;
8890 			u64 new_len;
8891 
8892 			tree = &BTRFS_I(inode)->ordered_tree;
8893 
8894 			spin_lock_irq(&tree->lock);
8895 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8896 			new_len = start - ordered->file_offset;
8897 			if (new_len < ordered->truncated_len)
8898 				ordered->truncated_len = new_len;
8899 			spin_unlock_irq(&tree->lock);
8900 
8901 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8902 							   start,
8903 							   end - start + 1, 1))
8904 				btrfs_finish_ordered_io(ordered);
8905 		}
8906 		btrfs_put_ordered_extent(ordered);
8907 		if (!inode_evicting) {
8908 			cached_state = NULL;
8909 			lock_extent_bits(tree, start, end,
8910 					 &cached_state);
8911 		}
8912 
8913 		start = end + 1;
8914 		if (start < page_end)
8915 			goto again;
8916 	}
8917 
8918 	/*
8919 	 * Qgroup reserved space handler
8920 	 * Page here will be either
8921 	 * 1) Already written to disk
8922 	 *    In this case, its reserved space is released from data rsv map
8923 	 *    and will be freed by delayed_ref handler finally.
8924 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8925 	 *    space.
8926 	 * 2) Not written to disk
8927 	 *    This means the reserved space should be freed here. However,
8928 	 *    if a truncate invalidates the page (by clearing PageDirty)
8929 	 *    and the page is accounted for while allocating extent
8930 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8931 	 *    free the entire extent.
8932 	 */
8933 	if (PageDirty(page))
8934 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8935 	if (!inode_evicting) {
8936 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8937 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8938 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8939 				 &cached_state);
8940 
8941 		__btrfs_releasepage(page, GFP_NOFS);
8942 	}
8943 
8944 	ClearPageChecked(page);
8945 	if (PagePrivate(page)) {
8946 		ClearPagePrivate(page);
8947 		set_page_private(page, 0);
8948 		put_page(page);
8949 	}
8950 }
8951 
8952 /*
8953  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8954  * called from a page fault handler when a page is first dirtied. Hence we must
8955  * be careful to check for EOF conditions here. We set the page up correctly
8956  * for a written page which means we get ENOSPC checking when writing into
8957  * holes and correct delalloc and unwritten extent mapping on filesystems that
8958  * support these features.
8959  *
8960  * We are not allowed to take the i_mutex here so we have to play games to
8961  * protect against truncate races as the page could now be beyond EOF.  Because
8962  * truncate_setsize() writes the inode size before removing pages, once we have
8963  * the page lock we can determine safely if the page is beyond EOF. If it is not
8964  * beyond EOF, then the page is guaranteed safe against truncation until we
8965  * unlock the page.
8966  */
btrfs_page_mkwrite(struct vm_fault * vmf)8967 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8968 {
8969 	struct page *page = vmf->page;
8970 	struct inode *inode = file_inode(vmf->vma->vm_file);
8971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8972 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8973 	struct btrfs_ordered_extent *ordered;
8974 	struct extent_state *cached_state = NULL;
8975 	struct extent_changeset *data_reserved = NULL;
8976 	char *kaddr;
8977 	unsigned long zero_start;
8978 	loff_t size;
8979 	vm_fault_t ret;
8980 	int ret2;
8981 	int reserved = 0;
8982 	u64 reserved_space;
8983 	u64 page_start;
8984 	u64 page_end;
8985 	u64 end;
8986 
8987 	reserved_space = PAGE_SIZE;
8988 
8989 	sb_start_pagefault(inode->i_sb);
8990 	page_start = page_offset(page);
8991 	page_end = page_start + PAGE_SIZE - 1;
8992 	end = page_end;
8993 
8994 	/*
8995 	 * Reserving delalloc space after obtaining the page lock can lead to
8996 	 * deadlock. For example, if a dirty page is locked by this function
8997 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8998 	 * dirty page write out, then the btrfs_writepage() function could
8999 	 * end up waiting indefinitely to get a lock on the page currently
9000 	 * being processed by btrfs_page_mkwrite() function.
9001 	 */
9002 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9003 					   reserved_space);
9004 	if (!ret2) {
9005 		ret2 = file_update_time(vmf->vma->vm_file);
9006 		reserved = 1;
9007 	}
9008 	if (ret2) {
9009 		ret = vmf_error(ret2);
9010 		if (reserved)
9011 			goto out;
9012 		goto out_noreserve;
9013 	}
9014 
9015 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9016 again:
9017 	lock_page(page);
9018 	size = i_size_read(inode);
9019 
9020 	if ((page->mapping != inode->i_mapping) ||
9021 	    (page_start >= size)) {
9022 		/* page got truncated out from underneath us */
9023 		goto out_unlock;
9024 	}
9025 	wait_on_page_writeback(page);
9026 
9027 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9028 	set_page_extent_mapped(page);
9029 
9030 	/*
9031 	 * we can't set the delalloc bits if there are pending ordered
9032 	 * extents.  Drop our locks and wait for them to finish
9033 	 */
9034 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9035 			PAGE_SIZE);
9036 	if (ordered) {
9037 		unlock_extent_cached(io_tree, page_start, page_end,
9038 				     &cached_state);
9039 		unlock_page(page);
9040 		btrfs_start_ordered_extent(inode, ordered, 1);
9041 		btrfs_put_ordered_extent(ordered);
9042 		goto again;
9043 	}
9044 
9045 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9046 		reserved_space = round_up(size - page_start,
9047 					  fs_info->sectorsize);
9048 		if (reserved_space < PAGE_SIZE) {
9049 			end = page_start + reserved_space - 1;
9050 			btrfs_delalloc_release_space(inode, data_reserved,
9051 					page_start, PAGE_SIZE - reserved_space,
9052 					true);
9053 		}
9054 	}
9055 
9056 	/*
9057 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9058 	 * faulted in, but write(2) could also dirty a page and set delalloc
9059 	 * bits, thus in this case for space account reason, we still need to
9060 	 * clear any delalloc bits within this page range since we have to
9061 	 * reserve data&meta space before lock_page() (see above comments).
9062 	 */
9063 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9064 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9065 			  EXTENT_DEFRAG, 0, 0, &cached_state);
9066 
9067 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9068 					&cached_state);
9069 	if (ret2) {
9070 		unlock_extent_cached(io_tree, page_start, page_end,
9071 				     &cached_state);
9072 		ret = VM_FAULT_SIGBUS;
9073 		goto out_unlock;
9074 	}
9075 	ret2 = 0;
9076 
9077 	/* page is wholly or partially inside EOF */
9078 	if (page_start + PAGE_SIZE > size)
9079 		zero_start = offset_in_page(size);
9080 	else
9081 		zero_start = PAGE_SIZE;
9082 
9083 	if (zero_start != PAGE_SIZE) {
9084 		kaddr = kmap(page);
9085 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9086 		flush_dcache_page(page);
9087 		kunmap(page);
9088 	}
9089 	ClearPageChecked(page);
9090 	set_page_dirty(page);
9091 	SetPageUptodate(page);
9092 
9093 	BTRFS_I(inode)->last_trans = fs_info->generation;
9094 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9095 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9096 
9097 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9098 
9099 	if (!ret2) {
9100 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9101 		sb_end_pagefault(inode->i_sb);
9102 		extent_changeset_free(data_reserved);
9103 		return VM_FAULT_LOCKED;
9104 	}
9105 
9106 out_unlock:
9107 	unlock_page(page);
9108 out:
9109 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9110 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9111 				     reserved_space, (ret != 0));
9112 out_noreserve:
9113 	sb_end_pagefault(inode->i_sb);
9114 	extent_changeset_free(data_reserved);
9115 	return ret;
9116 }
9117 
btrfs_truncate(struct inode * inode,bool skip_writeback)9118 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9119 {
9120 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9121 	struct btrfs_root *root = BTRFS_I(inode)->root;
9122 	struct btrfs_block_rsv *rsv;
9123 	int ret;
9124 	struct btrfs_trans_handle *trans;
9125 	u64 mask = fs_info->sectorsize - 1;
9126 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9127 
9128 	if (!skip_writeback) {
9129 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9130 					       (u64)-1);
9131 		if (ret)
9132 			return ret;
9133 	}
9134 
9135 	/*
9136 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9137 	 * things going on here:
9138 	 *
9139 	 * 1) We need to reserve space to update our inode.
9140 	 *
9141 	 * 2) We need to have something to cache all the space that is going to
9142 	 * be free'd up by the truncate operation, but also have some slack
9143 	 * space reserved in case it uses space during the truncate (thank you
9144 	 * very much snapshotting).
9145 	 *
9146 	 * And we need these to be separate.  The fact is we can use a lot of
9147 	 * space doing the truncate, and we have no earthly idea how much space
9148 	 * we will use, so we need the truncate reservation to be separate so it
9149 	 * doesn't end up using space reserved for updating the inode.  We also
9150 	 * need to be able to stop the transaction and start a new one, which
9151 	 * means we need to be able to update the inode several times, and we
9152 	 * have no idea of knowing how many times that will be, so we can't just
9153 	 * reserve 1 item for the entirety of the operation, so that has to be
9154 	 * done separately as well.
9155 	 *
9156 	 * So that leaves us with
9157 	 *
9158 	 * 1) rsv - for the truncate reservation, which we will steal from the
9159 	 * transaction reservation.
9160 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9161 	 * updating the inode.
9162 	 */
9163 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9164 	if (!rsv)
9165 		return -ENOMEM;
9166 	rsv->size = min_size;
9167 	rsv->failfast = 1;
9168 
9169 	/*
9170 	 * 1 for the truncate slack space
9171 	 * 1 for updating the inode.
9172 	 */
9173 	trans = btrfs_start_transaction(root, 2);
9174 	if (IS_ERR(trans)) {
9175 		ret = PTR_ERR(trans);
9176 		goto out;
9177 	}
9178 
9179 	/* Migrate the slack space for the truncate to our reserve */
9180 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9181 				      min_size, false);
9182 	BUG_ON(ret);
9183 
9184 	/*
9185 	 * So if we truncate and then write and fsync we normally would just
9186 	 * write the extents that changed, which is a problem if we need to
9187 	 * first truncate that entire inode.  So set this flag so we write out
9188 	 * all of the extents in the inode to the sync log so we're completely
9189 	 * safe.
9190 	 */
9191 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9192 	trans->block_rsv = rsv;
9193 
9194 	while (1) {
9195 		ret = btrfs_truncate_inode_items(trans, root, inode,
9196 						 inode->i_size,
9197 						 BTRFS_EXTENT_DATA_KEY);
9198 		trans->block_rsv = &fs_info->trans_block_rsv;
9199 		if (ret != -ENOSPC && ret != -EAGAIN)
9200 			break;
9201 
9202 		ret = btrfs_update_inode(trans, root, inode);
9203 		if (ret)
9204 			break;
9205 
9206 		btrfs_end_transaction(trans);
9207 		btrfs_btree_balance_dirty(fs_info);
9208 
9209 		trans = btrfs_start_transaction(root, 2);
9210 		if (IS_ERR(trans)) {
9211 			ret = PTR_ERR(trans);
9212 			trans = NULL;
9213 			break;
9214 		}
9215 
9216 		btrfs_block_rsv_release(fs_info, rsv, -1);
9217 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9218 					      rsv, min_size, false);
9219 		BUG_ON(ret);	/* shouldn't happen */
9220 		trans->block_rsv = rsv;
9221 	}
9222 
9223 	/*
9224 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9225 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9226 	 * we've truncated everything except the last little bit, and can do
9227 	 * btrfs_truncate_block and then update the disk_i_size.
9228 	 */
9229 	if (ret == NEED_TRUNCATE_BLOCK) {
9230 		btrfs_end_transaction(trans);
9231 		btrfs_btree_balance_dirty(fs_info);
9232 
9233 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9234 		if (ret)
9235 			goto out;
9236 		trans = btrfs_start_transaction(root, 1);
9237 		if (IS_ERR(trans)) {
9238 			ret = PTR_ERR(trans);
9239 			goto out;
9240 		}
9241 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9242 	}
9243 
9244 	if (trans) {
9245 		int ret2;
9246 
9247 		trans->block_rsv = &fs_info->trans_block_rsv;
9248 		ret2 = btrfs_update_inode(trans, root, inode);
9249 		if (ret2 && !ret)
9250 			ret = ret2;
9251 
9252 		ret2 = btrfs_end_transaction(trans);
9253 		if (ret2 && !ret)
9254 			ret = ret2;
9255 		btrfs_btree_balance_dirty(fs_info);
9256 	}
9257 out:
9258 	btrfs_free_block_rsv(fs_info, rsv);
9259 
9260 	return ret;
9261 }
9262 
9263 /*
9264  * create a new subvolume directory/inode (helper for the ioctl).
9265  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9266 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9267 			     struct btrfs_root *new_root,
9268 			     struct btrfs_root *parent_root,
9269 			     u64 new_dirid)
9270 {
9271 	struct inode *inode;
9272 	int err;
9273 	u64 index = 0;
9274 
9275 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9276 				new_dirid, new_dirid,
9277 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9278 				&index);
9279 	if (IS_ERR(inode))
9280 		return PTR_ERR(inode);
9281 	inode->i_op = &btrfs_dir_inode_operations;
9282 	inode->i_fop = &btrfs_dir_file_operations;
9283 
9284 	set_nlink(inode, 1);
9285 	btrfs_i_size_write(BTRFS_I(inode), 0);
9286 	unlock_new_inode(inode);
9287 
9288 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9289 	if (err)
9290 		btrfs_err(new_root->fs_info,
9291 			  "error inheriting subvolume %llu properties: %d",
9292 			  new_root->root_key.objectid, err);
9293 
9294 	err = btrfs_update_inode(trans, new_root, inode);
9295 
9296 	iput(inode);
9297 	return err;
9298 }
9299 
btrfs_alloc_inode(struct super_block * sb)9300 struct inode *btrfs_alloc_inode(struct super_block *sb)
9301 {
9302 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9303 	struct btrfs_inode *ei;
9304 	struct inode *inode;
9305 
9306 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9307 	if (!ei)
9308 		return NULL;
9309 
9310 	ei->root = NULL;
9311 	ei->generation = 0;
9312 	ei->last_trans = 0;
9313 	ei->last_sub_trans = 0;
9314 	ei->logged_trans = 0;
9315 	ei->delalloc_bytes = 0;
9316 	ei->new_delalloc_bytes = 0;
9317 	ei->defrag_bytes = 0;
9318 	ei->disk_i_size = 0;
9319 	ei->flags = 0;
9320 	ei->csum_bytes = 0;
9321 	ei->index_cnt = (u64)-1;
9322 	ei->dir_index = 0;
9323 	ei->last_unlink_trans = 0;
9324 	ei->last_log_commit = 0;
9325 
9326 	spin_lock_init(&ei->lock);
9327 	ei->outstanding_extents = 0;
9328 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9329 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9330 					      BTRFS_BLOCK_RSV_DELALLOC);
9331 	ei->runtime_flags = 0;
9332 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9333 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9334 
9335 	ei->delayed_node = NULL;
9336 
9337 	ei->i_otime.tv_sec = 0;
9338 	ei->i_otime.tv_nsec = 0;
9339 
9340 	inode = &ei->vfs_inode;
9341 	extent_map_tree_init(&ei->extent_tree);
9342 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9343 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9344 			    IO_TREE_INODE_IO_FAILURE, inode);
9345 	ei->io_tree.track_uptodate = true;
9346 	ei->io_failure_tree.track_uptodate = true;
9347 	atomic_set(&ei->sync_writers, 0);
9348 	mutex_init(&ei->log_mutex);
9349 	mutex_init(&ei->delalloc_mutex);
9350 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9351 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9352 	INIT_LIST_HEAD(&ei->delayed_iput);
9353 	RB_CLEAR_NODE(&ei->rb_node);
9354 	init_rwsem(&ei->dio_sem);
9355 
9356 	return inode;
9357 }
9358 
9359 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9360 void btrfs_test_destroy_inode(struct inode *inode)
9361 {
9362 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9363 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9364 }
9365 #endif
9366 
btrfs_free_inode(struct inode * inode)9367 void btrfs_free_inode(struct inode *inode)
9368 {
9369 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9370 }
9371 
btrfs_destroy_inode(struct inode * inode)9372 void btrfs_destroy_inode(struct inode *inode)
9373 {
9374 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9375 	struct btrfs_ordered_extent *ordered;
9376 	struct btrfs_root *root = BTRFS_I(inode)->root;
9377 
9378 	WARN_ON(!hlist_empty(&inode->i_dentry));
9379 	WARN_ON(inode->i_data.nrpages);
9380 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9381 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9382 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9383 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9384 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9385 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9386 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9387 
9388 	/*
9389 	 * This can happen where we create an inode, but somebody else also
9390 	 * created the same inode and we need to destroy the one we already
9391 	 * created.
9392 	 */
9393 	if (!root)
9394 		return;
9395 
9396 	while (1) {
9397 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9398 		if (!ordered)
9399 			break;
9400 		else {
9401 			btrfs_err(fs_info,
9402 				  "found ordered extent %llu %llu on inode cleanup",
9403 				  ordered->file_offset, ordered->len);
9404 			btrfs_remove_ordered_extent(inode, ordered);
9405 			btrfs_put_ordered_extent(ordered);
9406 			btrfs_put_ordered_extent(ordered);
9407 		}
9408 	}
9409 	btrfs_qgroup_check_reserved_leak(inode);
9410 	inode_tree_del(inode);
9411 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9412 }
9413 
btrfs_drop_inode(struct inode * inode)9414 int btrfs_drop_inode(struct inode *inode)
9415 {
9416 	struct btrfs_root *root = BTRFS_I(inode)->root;
9417 
9418 	if (root == NULL)
9419 		return 1;
9420 
9421 	/* the snap/subvol tree is on deleting */
9422 	if (btrfs_root_refs(&root->root_item) == 0)
9423 		return 1;
9424 	else
9425 		return generic_drop_inode(inode);
9426 }
9427 
init_once(void * foo)9428 static void init_once(void *foo)
9429 {
9430 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9431 
9432 	inode_init_once(&ei->vfs_inode);
9433 }
9434 
btrfs_destroy_cachep(void)9435 void __cold btrfs_destroy_cachep(void)
9436 {
9437 	/*
9438 	 * Make sure all delayed rcu free inodes are flushed before we
9439 	 * destroy cache.
9440 	 */
9441 	rcu_barrier();
9442 	kmem_cache_destroy(btrfs_inode_cachep);
9443 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9444 	kmem_cache_destroy(btrfs_path_cachep);
9445 	kmem_cache_destroy(btrfs_free_space_cachep);
9446 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9447 }
9448 
btrfs_init_cachep(void)9449 int __init btrfs_init_cachep(void)
9450 {
9451 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9452 			sizeof(struct btrfs_inode), 0,
9453 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9454 			init_once);
9455 	if (!btrfs_inode_cachep)
9456 		goto fail;
9457 
9458 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9459 			sizeof(struct btrfs_trans_handle), 0,
9460 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9461 	if (!btrfs_trans_handle_cachep)
9462 		goto fail;
9463 
9464 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9465 			sizeof(struct btrfs_path), 0,
9466 			SLAB_MEM_SPREAD, NULL);
9467 	if (!btrfs_path_cachep)
9468 		goto fail;
9469 
9470 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9471 			sizeof(struct btrfs_free_space), 0,
9472 			SLAB_MEM_SPREAD, NULL);
9473 	if (!btrfs_free_space_cachep)
9474 		goto fail;
9475 
9476 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9477 							PAGE_SIZE, PAGE_SIZE,
9478 							SLAB_RED_ZONE, NULL);
9479 	if (!btrfs_free_space_bitmap_cachep)
9480 		goto fail;
9481 
9482 	return 0;
9483 fail:
9484 	btrfs_destroy_cachep();
9485 	return -ENOMEM;
9486 }
9487 
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9488 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9489 			 u32 request_mask, unsigned int flags)
9490 {
9491 	u64 delalloc_bytes;
9492 	struct inode *inode = d_inode(path->dentry);
9493 	u32 blocksize = inode->i_sb->s_blocksize;
9494 	u32 bi_flags = BTRFS_I(inode)->flags;
9495 
9496 	stat->result_mask |= STATX_BTIME;
9497 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9498 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9499 	if (bi_flags & BTRFS_INODE_APPEND)
9500 		stat->attributes |= STATX_ATTR_APPEND;
9501 	if (bi_flags & BTRFS_INODE_COMPRESS)
9502 		stat->attributes |= STATX_ATTR_COMPRESSED;
9503 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9504 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9505 	if (bi_flags & BTRFS_INODE_NODUMP)
9506 		stat->attributes |= STATX_ATTR_NODUMP;
9507 
9508 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9509 				  STATX_ATTR_COMPRESSED |
9510 				  STATX_ATTR_IMMUTABLE |
9511 				  STATX_ATTR_NODUMP);
9512 
9513 	generic_fillattr(inode, stat);
9514 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9515 
9516 	spin_lock(&BTRFS_I(inode)->lock);
9517 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9518 	spin_unlock(&BTRFS_I(inode)->lock);
9519 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9520 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9521 	return 0;
9522 }
9523 
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9524 static int btrfs_rename_exchange(struct inode *old_dir,
9525 			      struct dentry *old_dentry,
9526 			      struct inode *new_dir,
9527 			      struct dentry *new_dentry)
9528 {
9529 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9530 	struct btrfs_trans_handle *trans;
9531 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9532 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9533 	struct inode *new_inode = new_dentry->d_inode;
9534 	struct inode *old_inode = old_dentry->d_inode;
9535 	struct timespec64 ctime = current_time(old_inode);
9536 	struct dentry *parent;
9537 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9538 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9539 	u64 old_idx = 0;
9540 	u64 new_idx = 0;
9541 	int ret;
9542 	bool root_log_pinned = false;
9543 	bool dest_log_pinned = false;
9544 	struct btrfs_log_ctx ctx_root;
9545 	struct btrfs_log_ctx ctx_dest;
9546 	bool sync_log_root = false;
9547 	bool sync_log_dest = false;
9548 	bool commit_transaction = false;
9549 
9550 	/* we only allow rename subvolume link between subvolumes */
9551 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9552 		return -EXDEV;
9553 
9554 	btrfs_init_log_ctx(&ctx_root, old_inode);
9555 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9556 
9557 	/* close the race window with snapshot create/destroy ioctl */
9558 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9559 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9560 		down_read(&fs_info->subvol_sem);
9561 
9562 	/*
9563 	 * We want to reserve the absolute worst case amount of items.  So if
9564 	 * both inodes are subvols and we need to unlink them then that would
9565 	 * require 4 item modifications, but if they are both normal inodes it
9566 	 * would require 5 item modifications, so we'll assume their normal
9567 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9568 	 * should cover the worst case number of items we'll modify.
9569 	 */
9570 	trans = btrfs_start_transaction(root, 12);
9571 	if (IS_ERR(trans)) {
9572 		ret = PTR_ERR(trans);
9573 		goto out_notrans;
9574 	}
9575 
9576 	if (dest != root)
9577 		btrfs_record_root_in_trans(trans, dest);
9578 
9579 	/*
9580 	 * We need to find a free sequence number both in the source and
9581 	 * in the destination directory for the exchange.
9582 	 */
9583 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9584 	if (ret)
9585 		goto out_fail;
9586 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9587 	if (ret)
9588 		goto out_fail;
9589 
9590 	BTRFS_I(old_inode)->dir_index = 0ULL;
9591 	BTRFS_I(new_inode)->dir_index = 0ULL;
9592 
9593 	/* Reference for the source. */
9594 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9595 		/* force full log commit if subvolume involved. */
9596 		btrfs_set_log_full_commit(trans);
9597 	} else {
9598 		btrfs_pin_log_trans(root);
9599 		root_log_pinned = true;
9600 		ret = btrfs_insert_inode_ref(trans, dest,
9601 					     new_dentry->d_name.name,
9602 					     new_dentry->d_name.len,
9603 					     old_ino,
9604 					     btrfs_ino(BTRFS_I(new_dir)),
9605 					     old_idx);
9606 		if (ret)
9607 			goto out_fail;
9608 	}
9609 
9610 	/* And now for the dest. */
9611 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9612 		/* force full log commit if subvolume involved. */
9613 		btrfs_set_log_full_commit(trans);
9614 	} else {
9615 		btrfs_pin_log_trans(dest);
9616 		dest_log_pinned = true;
9617 		ret = btrfs_insert_inode_ref(trans, root,
9618 					     old_dentry->d_name.name,
9619 					     old_dentry->d_name.len,
9620 					     new_ino,
9621 					     btrfs_ino(BTRFS_I(old_dir)),
9622 					     new_idx);
9623 		if (ret)
9624 			goto out_fail;
9625 	}
9626 
9627 	/* Update inode version and ctime/mtime. */
9628 	inode_inc_iversion(old_dir);
9629 	inode_inc_iversion(new_dir);
9630 	inode_inc_iversion(old_inode);
9631 	inode_inc_iversion(new_inode);
9632 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9633 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9634 	old_inode->i_ctime = ctime;
9635 	new_inode->i_ctime = ctime;
9636 
9637 	if (old_dentry->d_parent != new_dentry->d_parent) {
9638 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9639 				BTRFS_I(old_inode), 1);
9640 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9641 				BTRFS_I(new_inode), 1);
9642 	}
9643 
9644 	/* src is a subvolume */
9645 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9646 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9647 	} else { /* src is an inode */
9648 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9649 					   BTRFS_I(old_dentry->d_inode),
9650 					   old_dentry->d_name.name,
9651 					   old_dentry->d_name.len);
9652 		if (!ret)
9653 			ret = btrfs_update_inode(trans, root, old_inode);
9654 	}
9655 	if (ret) {
9656 		btrfs_abort_transaction(trans, ret);
9657 		goto out_fail;
9658 	}
9659 
9660 	/* dest is a subvolume */
9661 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9662 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9663 	} else { /* dest is an inode */
9664 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9665 					   BTRFS_I(new_dentry->d_inode),
9666 					   new_dentry->d_name.name,
9667 					   new_dentry->d_name.len);
9668 		if (!ret)
9669 			ret = btrfs_update_inode(trans, dest, new_inode);
9670 	}
9671 	if (ret) {
9672 		btrfs_abort_transaction(trans, ret);
9673 		goto out_fail;
9674 	}
9675 
9676 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9677 			     new_dentry->d_name.name,
9678 			     new_dentry->d_name.len, 0, old_idx);
9679 	if (ret) {
9680 		btrfs_abort_transaction(trans, ret);
9681 		goto out_fail;
9682 	}
9683 
9684 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9685 			     old_dentry->d_name.name,
9686 			     old_dentry->d_name.len, 0, new_idx);
9687 	if (ret) {
9688 		btrfs_abort_transaction(trans, ret);
9689 		goto out_fail;
9690 	}
9691 
9692 	if (old_inode->i_nlink == 1)
9693 		BTRFS_I(old_inode)->dir_index = old_idx;
9694 	if (new_inode->i_nlink == 1)
9695 		BTRFS_I(new_inode)->dir_index = new_idx;
9696 
9697 	if (root_log_pinned) {
9698 		parent = new_dentry->d_parent;
9699 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9700 					 BTRFS_I(old_dir), parent,
9701 					 false, &ctx_root);
9702 		if (ret == BTRFS_NEED_LOG_SYNC)
9703 			sync_log_root = true;
9704 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9705 			commit_transaction = true;
9706 		ret = 0;
9707 		btrfs_end_log_trans(root);
9708 		root_log_pinned = false;
9709 	}
9710 	if (dest_log_pinned) {
9711 		if (!commit_transaction) {
9712 			parent = old_dentry->d_parent;
9713 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9714 						 BTRFS_I(new_dir), parent,
9715 						 false, &ctx_dest);
9716 			if (ret == BTRFS_NEED_LOG_SYNC)
9717 				sync_log_dest = true;
9718 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9719 				commit_transaction = true;
9720 			ret = 0;
9721 		}
9722 		btrfs_end_log_trans(dest);
9723 		dest_log_pinned = false;
9724 	}
9725 out_fail:
9726 	/*
9727 	 * If we have pinned a log and an error happened, we unpin tasks
9728 	 * trying to sync the log and force them to fallback to a transaction
9729 	 * commit if the log currently contains any of the inodes involved in
9730 	 * this rename operation (to ensure we do not persist a log with an
9731 	 * inconsistent state for any of these inodes or leading to any
9732 	 * inconsistencies when replayed). If the transaction was aborted, the
9733 	 * abortion reason is propagated to userspace when attempting to commit
9734 	 * the transaction. If the log does not contain any of these inodes, we
9735 	 * allow the tasks to sync it.
9736 	 */
9737 	if (ret && (root_log_pinned || dest_log_pinned)) {
9738 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9739 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9740 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9741 		    (new_inode &&
9742 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9743 			btrfs_set_log_full_commit(trans);
9744 
9745 		if (root_log_pinned) {
9746 			btrfs_end_log_trans(root);
9747 			root_log_pinned = false;
9748 		}
9749 		if (dest_log_pinned) {
9750 			btrfs_end_log_trans(dest);
9751 			dest_log_pinned = false;
9752 		}
9753 	}
9754 	if (!ret && sync_log_root && !commit_transaction) {
9755 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9756 				     &ctx_root);
9757 		if (ret)
9758 			commit_transaction = true;
9759 	}
9760 	if (!ret && sync_log_dest && !commit_transaction) {
9761 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9762 				     &ctx_dest);
9763 		if (ret)
9764 			commit_transaction = true;
9765 	}
9766 	if (commit_transaction) {
9767 		/*
9768 		 * We may have set commit_transaction when logging the new name
9769 		 * in the destination root, in which case we left the source
9770 		 * root context in the list of log contextes. So make sure we
9771 		 * remove it to avoid invalid memory accesses, since the context
9772 		 * was allocated in our stack frame.
9773 		 */
9774 		if (sync_log_root) {
9775 			mutex_lock(&root->log_mutex);
9776 			list_del_init(&ctx_root.list);
9777 			mutex_unlock(&root->log_mutex);
9778 		}
9779 		ret = btrfs_commit_transaction(trans);
9780 	} else {
9781 		int ret2;
9782 
9783 		ret2 = btrfs_end_transaction(trans);
9784 		ret = ret ? ret : ret2;
9785 	}
9786 out_notrans:
9787 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9788 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9789 		up_read(&fs_info->subvol_sem);
9790 
9791 	ASSERT(list_empty(&ctx_root.list));
9792 	ASSERT(list_empty(&ctx_dest.list));
9793 
9794 	return ret;
9795 }
9796 
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9797 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9798 				     struct btrfs_root *root,
9799 				     struct inode *dir,
9800 				     struct dentry *dentry)
9801 {
9802 	int ret;
9803 	struct inode *inode;
9804 	u64 objectid;
9805 	u64 index;
9806 
9807 	ret = btrfs_find_free_ino(root, &objectid);
9808 	if (ret)
9809 		return ret;
9810 
9811 	inode = btrfs_new_inode(trans, root, dir,
9812 				dentry->d_name.name,
9813 				dentry->d_name.len,
9814 				btrfs_ino(BTRFS_I(dir)),
9815 				objectid,
9816 				S_IFCHR | WHITEOUT_MODE,
9817 				&index);
9818 
9819 	if (IS_ERR(inode)) {
9820 		ret = PTR_ERR(inode);
9821 		return ret;
9822 	}
9823 
9824 	inode->i_op = &btrfs_special_inode_operations;
9825 	init_special_inode(inode, inode->i_mode,
9826 		WHITEOUT_DEV);
9827 
9828 	ret = btrfs_init_inode_security(trans, inode, dir,
9829 				&dentry->d_name);
9830 	if (ret)
9831 		goto out;
9832 
9833 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9834 				BTRFS_I(inode), 0, index);
9835 	if (ret)
9836 		goto out;
9837 
9838 	ret = btrfs_update_inode(trans, root, inode);
9839 out:
9840 	unlock_new_inode(inode);
9841 	if (ret)
9842 		inode_dec_link_count(inode);
9843 	iput(inode);
9844 
9845 	return ret;
9846 }
9847 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9848 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9849 			   struct inode *new_dir, struct dentry *new_dentry,
9850 			   unsigned int flags)
9851 {
9852 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9853 	struct btrfs_trans_handle *trans;
9854 	unsigned int trans_num_items;
9855 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9856 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9857 	struct inode *new_inode = d_inode(new_dentry);
9858 	struct inode *old_inode = d_inode(old_dentry);
9859 	u64 index = 0;
9860 	int ret;
9861 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9862 	bool log_pinned = false;
9863 	struct btrfs_log_ctx ctx;
9864 	bool sync_log = false;
9865 	bool commit_transaction = false;
9866 
9867 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9868 		return -EPERM;
9869 
9870 	/* we only allow rename subvolume link between subvolumes */
9871 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9872 		return -EXDEV;
9873 
9874 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9875 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9876 		return -ENOTEMPTY;
9877 
9878 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9879 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9880 		return -ENOTEMPTY;
9881 
9882 
9883 	/* check for collisions, even if the  name isn't there */
9884 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9885 			     new_dentry->d_name.name,
9886 			     new_dentry->d_name.len);
9887 
9888 	if (ret) {
9889 		if (ret == -EEXIST) {
9890 			/* we shouldn't get
9891 			 * eexist without a new_inode */
9892 			if (WARN_ON(!new_inode)) {
9893 				return ret;
9894 			}
9895 		} else {
9896 			/* maybe -EOVERFLOW */
9897 			return ret;
9898 		}
9899 	}
9900 	ret = 0;
9901 
9902 	/*
9903 	 * we're using rename to replace one file with another.  Start IO on it
9904 	 * now so  we don't add too much work to the end of the transaction
9905 	 */
9906 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9907 		filemap_flush(old_inode->i_mapping);
9908 
9909 	/* close the racy window with snapshot create/destroy ioctl */
9910 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9911 		down_read(&fs_info->subvol_sem);
9912 	/*
9913 	 * We want to reserve the absolute worst case amount of items.  So if
9914 	 * both inodes are subvols and we need to unlink them then that would
9915 	 * require 4 item modifications, but if they are both normal inodes it
9916 	 * would require 5 item modifications, so we'll assume they are normal
9917 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9918 	 * should cover the worst case number of items we'll modify.
9919 	 * If our rename has the whiteout flag, we need more 5 units for the
9920 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9921 	 * when selinux is enabled).
9922 	 */
9923 	trans_num_items = 11;
9924 	if (flags & RENAME_WHITEOUT)
9925 		trans_num_items += 5;
9926 	trans = btrfs_start_transaction(root, trans_num_items);
9927 	if (IS_ERR(trans)) {
9928 		ret = PTR_ERR(trans);
9929 		goto out_notrans;
9930 	}
9931 
9932 	if (dest != root)
9933 		btrfs_record_root_in_trans(trans, dest);
9934 
9935 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9936 	if (ret)
9937 		goto out_fail;
9938 
9939 	BTRFS_I(old_inode)->dir_index = 0ULL;
9940 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9941 		/* force full log commit if subvolume involved. */
9942 		btrfs_set_log_full_commit(trans);
9943 	} else {
9944 		btrfs_pin_log_trans(root);
9945 		log_pinned = true;
9946 		ret = btrfs_insert_inode_ref(trans, dest,
9947 					     new_dentry->d_name.name,
9948 					     new_dentry->d_name.len,
9949 					     old_ino,
9950 					     btrfs_ino(BTRFS_I(new_dir)), index);
9951 		if (ret)
9952 			goto out_fail;
9953 	}
9954 
9955 	inode_inc_iversion(old_dir);
9956 	inode_inc_iversion(new_dir);
9957 	inode_inc_iversion(old_inode);
9958 	old_dir->i_ctime = old_dir->i_mtime =
9959 	new_dir->i_ctime = new_dir->i_mtime =
9960 	old_inode->i_ctime = current_time(old_dir);
9961 
9962 	if (old_dentry->d_parent != new_dentry->d_parent)
9963 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9964 				BTRFS_I(old_inode), 1);
9965 
9966 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9967 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9968 	} else {
9969 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9970 					BTRFS_I(d_inode(old_dentry)),
9971 					old_dentry->d_name.name,
9972 					old_dentry->d_name.len);
9973 		if (!ret)
9974 			ret = btrfs_update_inode(trans, root, old_inode);
9975 	}
9976 	if (ret) {
9977 		btrfs_abort_transaction(trans, ret);
9978 		goto out_fail;
9979 	}
9980 
9981 	if (new_inode) {
9982 		inode_inc_iversion(new_inode);
9983 		new_inode->i_ctime = current_time(new_inode);
9984 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9985 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9986 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9987 			BUG_ON(new_inode->i_nlink == 0);
9988 		} else {
9989 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9990 						 BTRFS_I(d_inode(new_dentry)),
9991 						 new_dentry->d_name.name,
9992 						 new_dentry->d_name.len);
9993 		}
9994 		if (!ret && new_inode->i_nlink == 0)
9995 			ret = btrfs_orphan_add(trans,
9996 					BTRFS_I(d_inode(new_dentry)));
9997 		if (ret) {
9998 			btrfs_abort_transaction(trans, ret);
9999 			goto out_fail;
10000 		}
10001 	}
10002 
10003 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10004 			     new_dentry->d_name.name,
10005 			     new_dentry->d_name.len, 0, index);
10006 	if (ret) {
10007 		btrfs_abort_transaction(trans, ret);
10008 		goto out_fail;
10009 	}
10010 
10011 	if (old_inode->i_nlink == 1)
10012 		BTRFS_I(old_inode)->dir_index = index;
10013 
10014 	if (log_pinned) {
10015 		struct dentry *parent = new_dentry->d_parent;
10016 
10017 		btrfs_init_log_ctx(&ctx, old_inode);
10018 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10019 					 BTRFS_I(old_dir), parent,
10020 					 false, &ctx);
10021 		if (ret == BTRFS_NEED_LOG_SYNC)
10022 			sync_log = true;
10023 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
10024 			commit_transaction = true;
10025 		ret = 0;
10026 		btrfs_end_log_trans(root);
10027 		log_pinned = false;
10028 	}
10029 
10030 	if (flags & RENAME_WHITEOUT) {
10031 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10032 						old_dentry);
10033 
10034 		if (ret) {
10035 			btrfs_abort_transaction(trans, ret);
10036 			goto out_fail;
10037 		}
10038 	}
10039 out_fail:
10040 	/*
10041 	 * If we have pinned the log and an error happened, we unpin tasks
10042 	 * trying to sync the log and force them to fallback to a transaction
10043 	 * commit if the log currently contains any of the inodes involved in
10044 	 * this rename operation (to ensure we do not persist a log with an
10045 	 * inconsistent state for any of these inodes or leading to any
10046 	 * inconsistencies when replayed). If the transaction was aborted, the
10047 	 * abortion reason is propagated to userspace when attempting to commit
10048 	 * the transaction. If the log does not contain any of these inodes, we
10049 	 * allow the tasks to sync it.
10050 	 */
10051 	if (ret && log_pinned) {
10052 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10053 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10054 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10055 		    (new_inode &&
10056 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10057 			btrfs_set_log_full_commit(trans);
10058 
10059 		btrfs_end_log_trans(root);
10060 		log_pinned = false;
10061 	}
10062 	if (!ret && sync_log) {
10063 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10064 		if (ret)
10065 			commit_transaction = true;
10066 	}
10067 	if (commit_transaction) {
10068 		ret = btrfs_commit_transaction(trans);
10069 	} else {
10070 		int ret2;
10071 
10072 		ret2 = btrfs_end_transaction(trans);
10073 		ret = ret ? ret : ret2;
10074 	}
10075 out_notrans:
10076 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10077 		up_read(&fs_info->subvol_sem);
10078 
10079 	return ret;
10080 }
10081 
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10082 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10083 			 struct inode *new_dir, struct dentry *new_dentry,
10084 			 unsigned int flags)
10085 {
10086 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10087 		return -EINVAL;
10088 
10089 	if (flags & RENAME_EXCHANGE)
10090 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10091 					  new_dentry);
10092 
10093 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10094 }
10095 
10096 struct btrfs_delalloc_work {
10097 	struct inode *inode;
10098 	struct completion completion;
10099 	struct list_head list;
10100 	struct btrfs_work work;
10101 };
10102 
btrfs_run_delalloc_work(struct btrfs_work * work)10103 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10104 {
10105 	struct btrfs_delalloc_work *delalloc_work;
10106 	struct inode *inode;
10107 
10108 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10109 				     work);
10110 	inode = delalloc_work->inode;
10111 	filemap_flush(inode->i_mapping);
10112 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10113 				&BTRFS_I(inode)->runtime_flags))
10114 		filemap_flush(inode->i_mapping);
10115 
10116 	iput(inode);
10117 	complete(&delalloc_work->completion);
10118 }
10119 
btrfs_alloc_delalloc_work(struct inode * inode)10120 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10121 {
10122 	struct btrfs_delalloc_work *work;
10123 
10124 	work = kmalloc(sizeof(*work), GFP_NOFS);
10125 	if (!work)
10126 		return NULL;
10127 
10128 	init_completion(&work->completion);
10129 	INIT_LIST_HEAD(&work->list);
10130 	work->inode = inode;
10131 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
10132 
10133 	return work;
10134 }
10135 
10136 /*
10137  * some fairly slow code that needs optimization. This walks the list
10138  * of all the inodes with pending delalloc and forces them to disk.
10139  */
start_delalloc_inodes(struct btrfs_root * root,int nr,bool snapshot)10140 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10141 {
10142 	struct btrfs_inode *binode;
10143 	struct inode *inode;
10144 	struct btrfs_delalloc_work *work, *next;
10145 	struct list_head works;
10146 	struct list_head splice;
10147 	int ret = 0;
10148 
10149 	INIT_LIST_HEAD(&works);
10150 	INIT_LIST_HEAD(&splice);
10151 
10152 	mutex_lock(&root->delalloc_mutex);
10153 	spin_lock(&root->delalloc_lock);
10154 	list_splice_init(&root->delalloc_inodes, &splice);
10155 	while (!list_empty(&splice)) {
10156 		binode = list_entry(splice.next, struct btrfs_inode,
10157 				    delalloc_inodes);
10158 
10159 		list_move_tail(&binode->delalloc_inodes,
10160 			       &root->delalloc_inodes);
10161 		inode = igrab(&binode->vfs_inode);
10162 		if (!inode) {
10163 			cond_resched_lock(&root->delalloc_lock);
10164 			continue;
10165 		}
10166 		spin_unlock(&root->delalloc_lock);
10167 
10168 		if (snapshot)
10169 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10170 				&binode->runtime_flags);
10171 		work = btrfs_alloc_delalloc_work(inode);
10172 		if (!work) {
10173 			iput(inode);
10174 			ret = -ENOMEM;
10175 			goto out;
10176 		}
10177 		list_add_tail(&work->list, &works);
10178 		btrfs_queue_work(root->fs_info->flush_workers,
10179 				 &work->work);
10180 		ret++;
10181 		if (nr != -1 && ret >= nr)
10182 			goto out;
10183 		cond_resched();
10184 		spin_lock(&root->delalloc_lock);
10185 	}
10186 	spin_unlock(&root->delalloc_lock);
10187 
10188 out:
10189 	list_for_each_entry_safe(work, next, &works, list) {
10190 		list_del_init(&work->list);
10191 		wait_for_completion(&work->completion);
10192 		kfree(work);
10193 	}
10194 
10195 	if (!list_empty(&splice)) {
10196 		spin_lock(&root->delalloc_lock);
10197 		list_splice_tail(&splice, &root->delalloc_inodes);
10198 		spin_unlock(&root->delalloc_lock);
10199 	}
10200 	mutex_unlock(&root->delalloc_mutex);
10201 	return ret;
10202 }
10203 
btrfs_start_delalloc_snapshot(struct btrfs_root * root)10204 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10205 {
10206 	struct btrfs_fs_info *fs_info = root->fs_info;
10207 	int ret;
10208 
10209 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10210 		return -EROFS;
10211 
10212 	ret = start_delalloc_inodes(root, -1, true);
10213 	if (ret > 0)
10214 		ret = 0;
10215 	return ret;
10216 }
10217 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10218 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10219 {
10220 	struct btrfs_root *root;
10221 	struct list_head splice;
10222 	int ret;
10223 
10224 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10225 		return -EROFS;
10226 
10227 	INIT_LIST_HEAD(&splice);
10228 
10229 	mutex_lock(&fs_info->delalloc_root_mutex);
10230 	spin_lock(&fs_info->delalloc_root_lock);
10231 	list_splice_init(&fs_info->delalloc_roots, &splice);
10232 	while (!list_empty(&splice) && nr) {
10233 		root = list_first_entry(&splice, struct btrfs_root,
10234 					delalloc_root);
10235 		root = btrfs_grab_fs_root(root);
10236 		BUG_ON(!root);
10237 		list_move_tail(&root->delalloc_root,
10238 			       &fs_info->delalloc_roots);
10239 		spin_unlock(&fs_info->delalloc_root_lock);
10240 
10241 		ret = start_delalloc_inodes(root, nr, false);
10242 		btrfs_put_fs_root(root);
10243 		if (ret < 0)
10244 			goto out;
10245 
10246 		if (nr != -1) {
10247 			nr -= ret;
10248 			WARN_ON(nr < 0);
10249 		}
10250 		spin_lock(&fs_info->delalloc_root_lock);
10251 	}
10252 	spin_unlock(&fs_info->delalloc_root_lock);
10253 
10254 	ret = 0;
10255 out:
10256 	if (!list_empty(&splice)) {
10257 		spin_lock(&fs_info->delalloc_root_lock);
10258 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10259 		spin_unlock(&fs_info->delalloc_root_lock);
10260 	}
10261 	mutex_unlock(&fs_info->delalloc_root_mutex);
10262 	return ret;
10263 }
10264 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10265 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10266 			 const char *symname)
10267 {
10268 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10269 	struct btrfs_trans_handle *trans;
10270 	struct btrfs_root *root = BTRFS_I(dir)->root;
10271 	struct btrfs_path *path;
10272 	struct btrfs_key key;
10273 	struct inode *inode = NULL;
10274 	int err;
10275 	u64 objectid;
10276 	u64 index = 0;
10277 	int name_len;
10278 	int datasize;
10279 	unsigned long ptr;
10280 	struct btrfs_file_extent_item *ei;
10281 	struct extent_buffer *leaf;
10282 
10283 	name_len = strlen(symname);
10284 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10285 		return -ENAMETOOLONG;
10286 
10287 	/*
10288 	 * 2 items for inode item and ref
10289 	 * 2 items for dir items
10290 	 * 1 item for updating parent inode item
10291 	 * 1 item for the inline extent item
10292 	 * 1 item for xattr if selinux is on
10293 	 */
10294 	trans = btrfs_start_transaction(root, 7);
10295 	if (IS_ERR(trans))
10296 		return PTR_ERR(trans);
10297 
10298 	err = btrfs_find_free_ino(root, &objectid);
10299 	if (err)
10300 		goto out_unlock;
10301 
10302 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10303 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10304 				objectid, S_IFLNK|S_IRWXUGO, &index);
10305 	if (IS_ERR(inode)) {
10306 		err = PTR_ERR(inode);
10307 		inode = NULL;
10308 		goto out_unlock;
10309 	}
10310 
10311 	/*
10312 	* If the active LSM wants to access the inode during
10313 	* d_instantiate it needs these. Smack checks to see
10314 	* if the filesystem supports xattrs by looking at the
10315 	* ops vector.
10316 	*/
10317 	inode->i_fop = &btrfs_file_operations;
10318 	inode->i_op = &btrfs_file_inode_operations;
10319 	inode->i_mapping->a_ops = &btrfs_aops;
10320 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10321 
10322 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10323 	if (err)
10324 		goto out_unlock;
10325 
10326 	path = btrfs_alloc_path();
10327 	if (!path) {
10328 		err = -ENOMEM;
10329 		goto out_unlock;
10330 	}
10331 	key.objectid = btrfs_ino(BTRFS_I(inode));
10332 	key.offset = 0;
10333 	key.type = BTRFS_EXTENT_DATA_KEY;
10334 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10335 	err = btrfs_insert_empty_item(trans, root, path, &key,
10336 				      datasize);
10337 	if (err) {
10338 		btrfs_free_path(path);
10339 		goto out_unlock;
10340 	}
10341 	leaf = path->nodes[0];
10342 	ei = btrfs_item_ptr(leaf, path->slots[0],
10343 			    struct btrfs_file_extent_item);
10344 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10345 	btrfs_set_file_extent_type(leaf, ei,
10346 				   BTRFS_FILE_EXTENT_INLINE);
10347 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10348 	btrfs_set_file_extent_compression(leaf, ei, 0);
10349 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10350 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10351 
10352 	ptr = btrfs_file_extent_inline_start(ei);
10353 	write_extent_buffer(leaf, symname, ptr, name_len);
10354 	btrfs_mark_buffer_dirty(leaf);
10355 	btrfs_free_path(path);
10356 
10357 	inode->i_op = &btrfs_symlink_inode_operations;
10358 	inode_nohighmem(inode);
10359 	inode_set_bytes(inode, name_len);
10360 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10361 	err = btrfs_update_inode(trans, root, inode);
10362 	/*
10363 	 * Last step, add directory indexes for our symlink inode. This is the
10364 	 * last step to avoid extra cleanup of these indexes if an error happens
10365 	 * elsewhere above.
10366 	 */
10367 	if (!err)
10368 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10369 				BTRFS_I(inode), 0, index);
10370 	if (err)
10371 		goto out_unlock;
10372 
10373 	d_instantiate_new(dentry, inode);
10374 
10375 out_unlock:
10376 	btrfs_end_transaction(trans);
10377 	if (err && inode) {
10378 		inode_dec_link_count(inode);
10379 		discard_new_inode(inode);
10380 	}
10381 	btrfs_btree_balance_dirty(fs_info);
10382 	return err;
10383 }
10384 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10385 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10386 				       u64 start, u64 num_bytes, u64 min_size,
10387 				       loff_t actual_len, u64 *alloc_hint,
10388 				       struct btrfs_trans_handle *trans)
10389 {
10390 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10391 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10392 	struct extent_map *em;
10393 	struct btrfs_root *root = BTRFS_I(inode)->root;
10394 	struct btrfs_key ins;
10395 	u64 cur_offset = start;
10396 	u64 i_size;
10397 	u64 cur_bytes;
10398 	u64 last_alloc = (u64)-1;
10399 	int ret = 0;
10400 	bool own_trans = true;
10401 	u64 end = start + num_bytes - 1;
10402 
10403 	if (trans)
10404 		own_trans = false;
10405 	while (num_bytes > 0) {
10406 		if (own_trans) {
10407 			trans = btrfs_start_transaction(root, 3);
10408 			if (IS_ERR(trans)) {
10409 				ret = PTR_ERR(trans);
10410 				break;
10411 			}
10412 		}
10413 
10414 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10415 		cur_bytes = max(cur_bytes, min_size);
10416 		/*
10417 		 * If we are severely fragmented we could end up with really
10418 		 * small allocations, so if the allocator is returning small
10419 		 * chunks lets make its job easier by only searching for those
10420 		 * sized chunks.
10421 		 */
10422 		cur_bytes = min(cur_bytes, last_alloc);
10423 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10424 				min_size, 0, *alloc_hint, &ins, 1, 0);
10425 		if (ret) {
10426 			if (own_trans)
10427 				btrfs_end_transaction(trans);
10428 			break;
10429 		}
10430 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10431 
10432 		last_alloc = ins.offset;
10433 		ret = insert_reserved_file_extent(trans, inode,
10434 						  cur_offset, ins.objectid,
10435 						  ins.offset, ins.offset,
10436 						  ins.offset, 0, 0, 0,
10437 						  BTRFS_FILE_EXTENT_PREALLOC);
10438 		if (ret) {
10439 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10440 						   ins.offset, 0);
10441 			btrfs_abort_transaction(trans, ret);
10442 			if (own_trans)
10443 				btrfs_end_transaction(trans);
10444 			break;
10445 		}
10446 
10447 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10448 					cur_offset + ins.offset -1, 0);
10449 
10450 		em = alloc_extent_map();
10451 		if (!em) {
10452 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10453 				&BTRFS_I(inode)->runtime_flags);
10454 			goto next;
10455 		}
10456 
10457 		em->start = cur_offset;
10458 		em->orig_start = cur_offset;
10459 		em->len = ins.offset;
10460 		em->block_start = ins.objectid;
10461 		em->block_len = ins.offset;
10462 		em->orig_block_len = ins.offset;
10463 		em->ram_bytes = ins.offset;
10464 		em->bdev = fs_info->fs_devices->latest_bdev;
10465 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10466 		em->generation = trans->transid;
10467 
10468 		while (1) {
10469 			write_lock(&em_tree->lock);
10470 			ret = add_extent_mapping(em_tree, em, 1);
10471 			write_unlock(&em_tree->lock);
10472 			if (ret != -EEXIST)
10473 				break;
10474 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10475 						cur_offset + ins.offset - 1,
10476 						0);
10477 		}
10478 		free_extent_map(em);
10479 next:
10480 		num_bytes -= ins.offset;
10481 		cur_offset += ins.offset;
10482 		*alloc_hint = ins.objectid + ins.offset;
10483 
10484 		inode_inc_iversion(inode);
10485 		inode->i_ctime = current_time(inode);
10486 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10487 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10488 		    (actual_len > inode->i_size) &&
10489 		    (cur_offset > inode->i_size)) {
10490 			if (cur_offset > actual_len)
10491 				i_size = actual_len;
10492 			else
10493 				i_size = cur_offset;
10494 			i_size_write(inode, i_size);
10495 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10496 		}
10497 
10498 		ret = btrfs_update_inode(trans, root, inode);
10499 
10500 		if (ret) {
10501 			btrfs_abort_transaction(trans, ret);
10502 			if (own_trans)
10503 				btrfs_end_transaction(trans);
10504 			break;
10505 		}
10506 
10507 		if (own_trans)
10508 			btrfs_end_transaction(trans);
10509 	}
10510 	if (cur_offset < end)
10511 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10512 			end - cur_offset + 1);
10513 	return ret;
10514 }
10515 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10516 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10517 			      u64 start, u64 num_bytes, u64 min_size,
10518 			      loff_t actual_len, u64 *alloc_hint)
10519 {
10520 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10521 					   min_size, actual_len, alloc_hint,
10522 					   NULL);
10523 }
10524 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10525 int btrfs_prealloc_file_range_trans(struct inode *inode,
10526 				    struct btrfs_trans_handle *trans, int mode,
10527 				    u64 start, u64 num_bytes, u64 min_size,
10528 				    loff_t actual_len, u64 *alloc_hint)
10529 {
10530 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10531 					   min_size, actual_len, alloc_hint, trans);
10532 }
10533 
btrfs_set_page_dirty(struct page * page)10534 static int btrfs_set_page_dirty(struct page *page)
10535 {
10536 	return __set_page_dirty_nobuffers(page);
10537 }
10538 
btrfs_permission(struct inode * inode,int mask)10539 static int btrfs_permission(struct inode *inode, int mask)
10540 {
10541 	struct btrfs_root *root = BTRFS_I(inode)->root;
10542 	umode_t mode = inode->i_mode;
10543 
10544 	if (mask & MAY_WRITE &&
10545 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10546 		if (btrfs_root_readonly(root))
10547 			return -EROFS;
10548 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10549 			return -EACCES;
10550 	}
10551 	return generic_permission(inode, mask);
10552 }
10553 
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10554 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10555 {
10556 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10557 	struct btrfs_trans_handle *trans;
10558 	struct btrfs_root *root = BTRFS_I(dir)->root;
10559 	struct inode *inode = NULL;
10560 	u64 objectid;
10561 	u64 index;
10562 	int ret = 0;
10563 
10564 	/*
10565 	 * 5 units required for adding orphan entry
10566 	 */
10567 	trans = btrfs_start_transaction(root, 5);
10568 	if (IS_ERR(trans))
10569 		return PTR_ERR(trans);
10570 
10571 	ret = btrfs_find_free_ino(root, &objectid);
10572 	if (ret)
10573 		goto out;
10574 
10575 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10576 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10577 	if (IS_ERR(inode)) {
10578 		ret = PTR_ERR(inode);
10579 		inode = NULL;
10580 		goto out;
10581 	}
10582 
10583 	inode->i_fop = &btrfs_file_operations;
10584 	inode->i_op = &btrfs_file_inode_operations;
10585 
10586 	inode->i_mapping->a_ops = &btrfs_aops;
10587 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10588 
10589 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10590 	if (ret)
10591 		goto out;
10592 
10593 	ret = btrfs_update_inode(trans, root, inode);
10594 	if (ret)
10595 		goto out;
10596 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10597 	if (ret)
10598 		goto out;
10599 
10600 	/*
10601 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10602 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10603 	 * through:
10604 	 *
10605 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10606 	 */
10607 	set_nlink(inode, 1);
10608 	d_tmpfile(dentry, inode);
10609 	unlock_new_inode(inode);
10610 	mark_inode_dirty(inode);
10611 out:
10612 	btrfs_end_transaction(trans);
10613 	if (ret && inode)
10614 		discard_new_inode(inode);
10615 	btrfs_btree_balance_dirty(fs_info);
10616 	return ret;
10617 }
10618 
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10619 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10620 {
10621 	struct inode *inode = tree->private_data;
10622 	unsigned long index = start >> PAGE_SHIFT;
10623 	unsigned long end_index = end >> PAGE_SHIFT;
10624 	struct page *page;
10625 
10626 	while (index <= end_index) {
10627 		page = find_get_page(inode->i_mapping, index);
10628 		ASSERT(page); /* Pages should be in the extent_io_tree */
10629 		set_page_writeback(page);
10630 		put_page(page);
10631 		index++;
10632 	}
10633 }
10634 
10635 #ifdef CONFIG_SWAP
10636 /*
10637  * Add an entry indicating a block group or device which is pinned by a
10638  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10639  * negative errno on failure.
10640  */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10641 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10642 				  bool is_block_group)
10643 {
10644 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10645 	struct btrfs_swapfile_pin *sp, *entry;
10646 	struct rb_node **p;
10647 	struct rb_node *parent = NULL;
10648 
10649 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10650 	if (!sp)
10651 		return -ENOMEM;
10652 	sp->ptr = ptr;
10653 	sp->inode = inode;
10654 	sp->is_block_group = is_block_group;
10655 
10656 	spin_lock(&fs_info->swapfile_pins_lock);
10657 	p = &fs_info->swapfile_pins.rb_node;
10658 	while (*p) {
10659 		parent = *p;
10660 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10661 		if (sp->ptr < entry->ptr ||
10662 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10663 			p = &(*p)->rb_left;
10664 		} else if (sp->ptr > entry->ptr ||
10665 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10666 			p = &(*p)->rb_right;
10667 		} else {
10668 			spin_unlock(&fs_info->swapfile_pins_lock);
10669 			kfree(sp);
10670 			return 1;
10671 		}
10672 	}
10673 	rb_link_node(&sp->node, parent, p);
10674 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10675 	spin_unlock(&fs_info->swapfile_pins_lock);
10676 	return 0;
10677 }
10678 
10679 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10680 static void btrfs_free_swapfile_pins(struct inode *inode)
10681 {
10682 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10683 	struct btrfs_swapfile_pin *sp;
10684 	struct rb_node *node, *next;
10685 
10686 	spin_lock(&fs_info->swapfile_pins_lock);
10687 	node = rb_first(&fs_info->swapfile_pins);
10688 	while (node) {
10689 		next = rb_next(node);
10690 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10691 		if (sp->inode == inode) {
10692 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10693 			if (sp->is_block_group)
10694 				btrfs_put_block_group(sp->ptr);
10695 			kfree(sp);
10696 		}
10697 		node = next;
10698 	}
10699 	spin_unlock(&fs_info->swapfile_pins_lock);
10700 }
10701 
10702 struct btrfs_swap_info {
10703 	u64 start;
10704 	u64 block_start;
10705 	u64 block_len;
10706 	u64 lowest_ppage;
10707 	u64 highest_ppage;
10708 	unsigned long nr_pages;
10709 	int nr_extents;
10710 };
10711 
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10712 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10713 				 struct btrfs_swap_info *bsi)
10714 {
10715 	unsigned long nr_pages;
10716 	u64 first_ppage, first_ppage_reported, next_ppage;
10717 	int ret;
10718 
10719 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10720 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10721 				PAGE_SIZE) >> PAGE_SHIFT;
10722 
10723 	if (first_ppage >= next_ppage)
10724 		return 0;
10725 	nr_pages = next_ppage - first_ppage;
10726 
10727 	first_ppage_reported = first_ppage;
10728 	if (bsi->start == 0)
10729 		first_ppage_reported++;
10730 	if (bsi->lowest_ppage > first_ppage_reported)
10731 		bsi->lowest_ppage = first_ppage_reported;
10732 	if (bsi->highest_ppage < (next_ppage - 1))
10733 		bsi->highest_ppage = next_ppage - 1;
10734 
10735 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10736 	if (ret < 0)
10737 		return ret;
10738 	bsi->nr_extents += ret;
10739 	bsi->nr_pages += nr_pages;
10740 	return 0;
10741 }
10742 
btrfs_swap_deactivate(struct file * file)10743 static void btrfs_swap_deactivate(struct file *file)
10744 {
10745 	struct inode *inode = file_inode(file);
10746 
10747 	btrfs_free_swapfile_pins(inode);
10748 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10749 }
10750 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10751 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10752 			       sector_t *span)
10753 {
10754 	struct inode *inode = file_inode(file);
10755 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10756 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10757 	struct extent_state *cached_state = NULL;
10758 	struct extent_map *em = NULL;
10759 	struct btrfs_device *device = NULL;
10760 	struct btrfs_swap_info bsi = {
10761 		.lowest_ppage = (sector_t)-1ULL,
10762 	};
10763 	int ret = 0;
10764 	u64 isize;
10765 	u64 start;
10766 
10767 	/*
10768 	 * If the swap file was just created, make sure delalloc is done. If the
10769 	 * file changes again after this, the user is doing something stupid and
10770 	 * we don't really care.
10771 	 */
10772 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10773 	if (ret)
10774 		return ret;
10775 
10776 	/*
10777 	 * The inode is locked, so these flags won't change after we check them.
10778 	 */
10779 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10780 		btrfs_warn(fs_info, "swapfile must not be compressed");
10781 		return -EINVAL;
10782 	}
10783 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10784 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10785 		return -EINVAL;
10786 	}
10787 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10788 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10789 		return -EINVAL;
10790 	}
10791 
10792 	/*
10793 	 * Balance or device remove/replace/resize can move stuff around from
10794 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10795 	 * concurrently while we are mapping the swap extents, and
10796 	 * fs_info->swapfile_pins prevents them from running while the swap file
10797 	 * is active and moving the extents. Note that this also prevents a
10798 	 * concurrent device add which isn't actually necessary, but it's not
10799 	 * really worth the trouble to allow it.
10800 	 */
10801 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10802 		btrfs_warn(fs_info,
10803 	   "cannot activate swapfile while exclusive operation is running");
10804 		return -EBUSY;
10805 	}
10806 	/*
10807 	 * Snapshots can create extents which require COW even if NODATACOW is
10808 	 * set. We use this counter to prevent snapshots. We must increment it
10809 	 * before walking the extents because we don't want a concurrent
10810 	 * snapshot to run after we've already checked the extents.
10811 	 */
10812 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10813 
10814 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10815 
10816 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10817 	start = 0;
10818 	while (start < isize) {
10819 		u64 logical_block_start, physical_block_start;
10820 		struct btrfs_block_group_cache *bg;
10821 		u64 len = isize - start;
10822 
10823 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10824 		if (IS_ERR(em)) {
10825 			ret = PTR_ERR(em);
10826 			goto out;
10827 		}
10828 
10829 		if (em->block_start == EXTENT_MAP_HOLE) {
10830 			btrfs_warn(fs_info, "swapfile must not have holes");
10831 			ret = -EINVAL;
10832 			goto out;
10833 		}
10834 		if (em->block_start == EXTENT_MAP_INLINE) {
10835 			/*
10836 			 * It's unlikely we'll ever actually find ourselves
10837 			 * here, as a file small enough to fit inline won't be
10838 			 * big enough to store more than the swap header, but in
10839 			 * case something changes in the future, let's catch it
10840 			 * here rather than later.
10841 			 */
10842 			btrfs_warn(fs_info, "swapfile must not be inline");
10843 			ret = -EINVAL;
10844 			goto out;
10845 		}
10846 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10847 			btrfs_warn(fs_info, "swapfile must not be compressed");
10848 			ret = -EINVAL;
10849 			goto out;
10850 		}
10851 
10852 		logical_block_start = em->block_start + (start - em->start);
10853 		len = min(len, em->len - (start - em->start));
10854 		free_extent_map(em);
10855 		em = NULL;
10856 
10857 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10858 		if (ret < 0) {
10859 			goto out;
10860 		} else if (ret) {
10861 			ret = 0;
10862 		} else {
10863 			btrfs_warn(fs_info,
10864 				   "swapfile must not be copy-on-write");
10865 			ret = -EINVAL;
10866 			goto out;
10867 		}
10868 
10869 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10870 		if (IS_ERR(em)) {
10871 			ret = PTR_ERR(em);
10872 			goto out;
10873 		}
10874 
10875 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10876 			btrfs_warn(fs_info,
10877 				   "swapfile must have single data profile");
10878 			ret = -EINVAL;
10879 			goto out;
10880 		}
10881 
10882 		if (device == NULL) {
10883 			device = em->map_lookup->stripes[0].dev;
10884 			ret = btrfs_add_swapfile_pin(inode, device, false);
10885 			if (ret == 1)
10886 				ret = 0;
10887 			else if (ret)
10888 				goto out;
10889 		} else if (device != em->map_lookup->stripes[0].dev) {
10890 			btrfs_warn(fs_info, "swapfile must be on one device");
10891 			ret = -EINVAL;
10892 			goto out;
10893 		}
10894 
10895 		physical_block_start = (em->map_lookup->stripes[0].physical +
10896 					(logical_block_start - em->start));
10897 		len = min(len, em->len - (logical_block_start - em->start));
10898 		free_extent_map(em);
10899 		em = NULL;
10900 
10901 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10902 		if (!bg) {
10903 			btrfs_warn(fs_info,
10904 			   "could not find block group containing swapfile");
10905 			ret = -EINVAL;
10906 			goto out;
10907 		}
10908 
10909 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10910 		if (ret) {
10911 			btrfs_put_block_group(bg);
10912 			if (ret == 1)
10913 				ret = 0;
10914 			else
10915 				goto out;
10916 		}
10917 
10918 		if (bsi.block_len &&
10919 		    bsi.block_start + bsi.block_len == physical_block_start) {
10920 			bsi.block_len += len;
10921 		} else {
10922 			if (bsi.block_len) {
10923 				ret = btrfs_add_swap_extent(sis, &bsi);
10924 				if (ret)
10925 					goto out;
10926 			}
10927 			bsi.start = start;
10928 			bsi.block_start = physical_block_start;
10929 			bsi.block_len = len;
10930 		}
10931 
10932 		start += len;
10933 	}
10934 
10935 	if (bsi.block_len)
10936 		ret = btrfs_add_swap_extent(sis, &bsi);
10937 
10938 out:
10939 	if (!IS_ERR_OR_NULL(em))
10940 		free_extent_map(em);
10941 
10942 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10943 
10944 	if (ret)
10945 		btrfs_swap_deactivate(file);
10946 
10947 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10948 
10949 	if (ret)
10950 		return ret;
10951 
10952 	if (device)
10953 		sis->bdev = device->bdev;
10954 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10955 	sis->max = bsi.nr_pages;
10956 	sis->pages = bsi.nr_pages - 1;
10957 	sis->highest_bit = bsi.nr_pages - 1;
10958 	return bsi.nr_extents;
10959 }
10960 #else
btrfs_swap_deactivate(struct file * file)10961 static void btrfs_swap_deactivate(struct file *file)
10962 {
10963 }
10964 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10965 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10966 			       sector_t *span)
10967 {
10968 	return -EOPNOTSUPP;
10969 }
10970 #endif
10971 
10972 static const struct inode_operations btrfs_dir_inode_operations = {
10973 	.getattr	= btrfs_getattr,
10974 	.lookup		= btrfs_lookup,
10975 	.create		= btrfs_create,
10976 	.unlink		= btrfs_unlink,
10977 	.link		= btrfs_link,
10978 	.mkdir		= btrfs_mkdir,
10979 	.rmdir		= btrfs_rmdir,
10980 	.rename		= btrfs_rename2,
10981 	.symlink	= btrfs_symlink,
10982 	.setattr	= btrfs_setattr,
10983 	.mknod		= btrfs_mknod,
10984 	.listxattr	= btrfs_listxattr,
10985 	.permission	= btrfs_permission,
10986 	.get_acl	= btrfs_get_acl,
10987 	.set_acl	= btrfs_set_acl,
10988 	.update_time	= btrfs_update_time,
10989 	.tmpfile        = btrfs_tmpfile,
10990 };
10991 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10992 	.lookup		= btrfs_lookup,
10993 	.permission	= btrfs_permission,
10994 	.update_time	= btrfs_update_time,
10995 };
10996 
10997 static const struct file_operations btrfs_dir_file_operations = {
10998 	.llseek		= generic_file_llseek,
10999 	.read		= generic_read_dir,
11000 	.iterate_shared	= btrfs_real_readdir,
11001 	.open		= btrfs_opendir,
11002 	.unlocked_ioctl	= btrfs_ioctl,
11003 #ifdef CONFIG_COMPAT
11004 	.compat_ioctl	= btrfs_compat_ioctl,
11005 #endif
11006 	.release        = btrfs_release_file,
11007 	.fsync		= btrfs_sync_file,
11008 };
11009 
11010 static const struct extent_io_ops btrfs_extent_io_ops = {
11011 	/* mandatory callbacks */
11012 	.submit_bio_hook = btrfs_submit_bio_hook,
11013 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
11014 };
11015 
11016 /*
11017  * btrfs doesn't support the bmap operation because swapfiles
11018  * use bmap to make a mapping of extents in the file.  They assume
11019  * these extents won't change over the life of the file and they
11020  * use the bmap result to do IO directly to the drive.
11021  *
11022  * the btrfs bmap call would return logical addresses that aren't
11023  * suitable for IO and they also will change frequently as COW
11024  * operations happen.  So, swapfile + btrfs == corruption.
11025  *
11026  * For now we're avoiding this by dropping bmap.
11027  */
11028 static const struct address_space_operations btrfs_aops = {
11029 	.readpage	= btrfs_readpage,
11030 	.writepage	= btrfs_writepage,
11031 	.writepages	= btrfs_writepages,
11032 	.readpages	= btrfs_readpages,
11033 	.direct_IO	= btrfs_direct_IO,
11034 	.invalidatepage = btrfs_invalidatepage,
11035 	.releasepage	= btrfs_releasepage,
11036 	.set_page_dirty	= btrfs_set_page_dirty,
11037 	.error_remove_page = generic_error_remove_page,
11038 	.swap_activate	= btrfs_swap_activate,
11039 	.swap_deactivate = btrfs_swap_deactivate,
11040 };
11041 
11042 static const struct inode_operations btrfs_file_inode_operations = {
11043 	.getattr	= btrfs_getattr,
11044 	.setattr	= btrfs_setattr,
11045 	.listxattr      = btrfs_listxattr,
11046 	.permission	= btrfs_permission,
11047 	.fiemap		= btrfs_fiemap,
11048 	.get_acl	= btrfs_get_acl,
11049 	.set_acl	= btrfs_set_acl,
11050 	.update_time	= btrfs_update_time,
11051 };
11052 static const struct inode_operations btrfs_special_inode_operations = {
11053 	.getattr	= btrfs_getattr,
11054 	.setattr	= btrfs_setattr,
11055 	.permission	= btrfs_permission,
11056 	.listxattr	= btrfs_listxattr,
11057 	.get_acl	= btrfs_get_acl,
11058 	.set_acl	= btrfs_set_acl,
11059 	.update_time	= btrfs_update_time,
11060 };
11061 static const struct inode_operations btrfs_symlink_inode_operations = {
11062 	.get_link	= page_get_link,
11063 	.getattr	= btrfs_getattr,
11064 	.setattr	= btrfs_setattr,
11065 	.permission	= btrfs_permission,
11066 	.listxattr	= btrfs_listxattr,
11067 	.update_time	= btrfs_update_time,
11068 };
11069 
11070 const struct dentry_operations btrfs_dentry_operations = {
11071 	.d_delete	= btrfs_dentry_delete,
11072 };
11073