1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52
53 struct btrfs_iget_args {
54 struct btrfs_key *location;
55 struct btrfs_root *root;
56 };
57
58 struct btrfs_dio_data {
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
62 int overwrite;
63 };
64
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 static const struct extent_io_ops btrfs_extent_io_ops;
73
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct inode *inode,
84 struct page *locked_page,
85 u64 start, u64 end, int *page_started,
86 unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
92
93 static void __endio_write_update_ordered(struct inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97 /*
98 * Cleanup all submitted ordered extents in specified range to handle errors
99 * from the btrfs_run_delalloc_range() callback.
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
105 * extent (btrfs_finish_ordered_io()).
106 */
btrfs_cleanup_ordered_extents(struct inode * inode,struct page * locked_page,u64 offset,u64 bytes)107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
108 struct page *locked_page,
109 u64 offset, u64 bytes)
110 {
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
116 struct page *page;
117
118 while (index <= end_index) {
119 page = find_get_page(inode->i_mapping, index);
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
137 return __endio_write_update_ordered(inode, offset, bytes, false);
138 }
139
140 static int btrfs_dirty_inode(struct inode *inode);
141
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)143 void btrfs_test_inode_set_ops(struct inode *inode)
144 {
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 }
147 #endif
148
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
152 {
153 int err;
154
155 err = btrfs_init_acl(trans, inode, dir);
156 if (!err)
157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
158 return err;
159 }
160
161 /*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)166 static int insert_inline_extent(struct btrfs_trans_handle *trans,
167 struct btrfs_path *path, int extent_inserted,
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
170 int compress_type,
171 struct page **compressed_pages)
172 {
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
178 int ret;
179 size_t cur_size = size;
180 unsigned long offset;
181
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
185 if (compressed_size && compressed_pages)
186 cur_size = compressed_size;
187
188 inode_add_bytes(inode, size);
189
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
193
194 key.objectid = btrfs_ino(BTRFS_I(inode));
195 key.offset = start;
196 key.type = BTRFS_EXTENT_DATA_KEY;
197
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
202 if (ret)
203 goto fail;
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
215 if (compress_type != BTRFS_COMPRESS_NONE) {
216 struct page *cpage;
217 int i = 0;
218 while (compressed_size > 0) {
219 cpage = compressed_pages[i];
220 cur_size = min_t(unsigned long, compressed_size,
221 PAGE_SIZE);
222
223 kaddr = kmap_atomic(cpage);
224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
225 kunmap_atomic(kaddr);
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
232 compress_type);
233 } else {
234 page = find_get_page(inode->i_mapping,
235 start >> PAGE_SHIFT);
236 btrfs_set_file_extent_compression(leaf, ei, 0);
237 kaddr = kmap_atomic(page);
238 offset = offset_in_page(start);
239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
240 kunmap_atomic(kaddr);
241 put_page(page);
242 }
243 btrfs_mark_buffer_dirty(leaf);
244 btrfs_release_path(path);
245
246 /*
247 * we're an inline extent, so nobody can
248 * extend the file past i_size without locking
249 * a page we already have locked.
250 *
251 * We must do any isize and inode updates
252 * before we unlock the pages. Otherwise we
253 * could end up racing with unlink.
254 */
255 BTRFS_I(inode)->disk_i_size = inode->i_size;
256 ret = btrfs_update_inode(trans, root, inode);
257
258 fail:
259 return ret;
260 }
261
262
263 /*
264 * conditionally insert an inline extent into the file. This
265 * does the checks required to make sure the data is small enough
266 * to fit as an inline extent.
267 */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)268 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
272 {
273 struct btrfs_root *root = BTRFS_I(inode)->root;
274 struct btrfs_fs_info *fs_info = root->fs_info;
275 struct btrfs_trans_handle *trans;
276 u64 isize = i_size_read(inode);
277 u64 actual_end = min(end + 1, isize);
278 u64 inline_len = actual_end - start;
279 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
280 u64 data_len = inline_len;
281 int ret;
282 struct btrfs_path *path;
283 int extent_inserted = 0;
284 u32 extent_item_size;
285
286 if (compressed_size)
287 data_len = compressed_size;
288
289 if (start > 0 ||
290 actual_end > fs_info->sectorsize ||
291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
292 (!compressed_size &&
293 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
294 end + 1 < isize ||
295 data_len > fs_info->max_inline) {
296 return 1;
297 }
298
299 path = btrfs_alloc_path();
300 if (!path)
301 return -ENOMEM;
302
303 trans = btrfs_join_transaction(root);
304 if (IS_ERR(trans)) {
305 btrfs_free_path(path);
306 return PTR_ERR(trans);
307 }
308 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
309
310 if (compressed_size && compressed_pages)
311 extent_item_size = btrfs_file_extent_calc_inline_size(
312 compressed_size);
313 else
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 inline_len);
316
317 ret = __btrfs_drop_extents(trans, root, inode, path,
318 start, aligned_end, NULL,
319 1, 1, extent_item_size, &extent_inserted);
320 if (ret) {
321 btrfs_abort_transaction(trans, ret);
322 goto out;
323 }
324
325 if (isize > actual_end)
326 inline_len = min_t(u64, isize, actual_end);
327 ret = insert_inline_extent(trans, path, extent_inserted,
328 root, inode, start,
329 inline_len, compressed_size,
330 compress_type, compressed_pages);
331 if (ret && ret != -ENOSPC) {
332 btrfs_abort_transaction(trans, ret);
333 goto out;
334 } else if (ret == -ENOSPC) {
335 ret = 1;
336 goto out;
337 }
338
339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 btrfs_free_path(path);
350 btrfs_end_transaction(trans);
351 return ret;
352 }
353
354 struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
360 int compress_type;
361 struct list_head list;
362 };
363
364 struct async_chunk {
365 struct inode *inode;
366 struct page *locked_page;
367 u64 start;
368 u64 end;
369 unsigned int write_flags;
370 struct list_head extents;
371 struct btrfs_work work;
372 atomic_t *pending;
373 };
374
375 struct async_cow {
376 /* Number of chunks in flight; must be first in the structure */
377 atomic_t num_chunks;
378 struct async_chunk chunks[];
379 };
380
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)381 static noinline int add_async_extent(struct async_chunk *cow,
382 u64 start, u64 ram_size,
383 u64 compressed_size,
384 struct page **pages,
385 unsigned long nr_pages,
386 int compress_type)
387 {
388 struct async_extent *async_extent;
389
390 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 BUG_ON(!async_extent); /* -ENOMEM */
392 async_extent->start = start;
393 async_extent->ram_size = ram_size;
394 async_extent->compressed_size = compressed_size;
395 async_extent->pages = pages;
396 async_extent->nr_pages = nr_pages;
397 async_extent->compress_type = compress_type;
398 list_add_tail(&async_extent->list, &cow->extents);
399 return 0;
400 }
401
402 /*
403 * Check if the inode has flags compatible with compression
404 */
inode_can_compress(struct inode * inode)405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 return false;
410 return true;
411 }
412
413 /*
414 * Check if the inode needs to be submitted to compression, based on mount
415 * options, defragmentation, properties or heuristics.
416 */
inode_need_compress(struct inode * inode,u64 start,u64 end)417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420
421 if (!inode_can_compress(inode)) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 btrfs_ino(BTRFS_I(inode)));
425 return 0;
426 }
427 /* force compress */
428 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 return 1;
430 /* defrag ioctl */
431 if (BTRFS_I(inode)->defrag_compress)
432 return 1;
433 /* bad compression ratios */
434 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 return 0;
436 if (btrfs_test_opt(fs_info, COMPRESS) ||
437 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 BTRFS_I(inode)->prop_compress)
439 return btrfs_compress_heuristic(inode, start, end);
440 return 0;
441 }
442
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 /* If this is a small write inside eof, kick off a defrag */
447 if (num_bytes < small_write &&
448 (start > 0 || end + 1 < inode->disk_i_size))
449 btrfs_add_inode_defrag(NULL, inode);
450 }
451
452 /*
453 * we create compressed extents in two phases. The first
454 * phase compresses a range of pages that have already been
455 * locked (both pages and state bits are locked).
456 *
457 * This is done inside an ordered work queue, and the compression
458 * is spread across many cpus. The actual IO submission is step
459 * two, and the ordered work queue takes care of making sure that
460 * happens in the same order things were put onto the queue by
461 * writepages and friends.
462 *
463 * If this code finds it can't get good compression, it puts an
464 * entry onto the work queue to write the uncompressed bytes. This
465 * makes sure that both compressed inodes and uncompressed inodes
466 * are written in the same order that the flusher thread sent them
467 * down.
468 */
compress_file_range(struct async_chunk * async_chunk)469 static noinline int compress_file_range(struct async_chunk *async_chunk)
470 {
471 struct inode *inode = async_chunk->inode;
472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
473 u64 blocksize = fs_info->sectorsize;
474 u64 start = async_chunk->start;
475 u64 end = async_chunk->end;
476 u64 actual_end;
477 u64 i_size;
478 int ret = 0;
479 struct page **pages = NULL;
480 unsigned long nr_pages;
481 unsigned long total_compressed = 0;
482 unsigned long total_in = 0;
483 int i;
484 int will_compress;
485 int compress_type = fs_info->compress_type;
486 int compressed_extents = 0;
487 int redirty = 0;
488
489 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
490 SZ_16K);
491
492 /*
493 * We need to save i_size before now because it could change in between
494 * us evaluating the size and assigning it. This is because we lock and
495 * unlock the page in truncate and fallocate, and then modify the i_size
496 * later on.
497 *
498 * The barriers are to emulate READ_ONCE, remove that once i_size_read
499 * does that for us.
500 */
501 barrier();
502 i_size = i_size_read(inode);
503 barrier();
504 actual_end = min_t(u64, i_size, end + 1);
505 again:
506 will_compress = 0;
507 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
508 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
509 nr_pages = min_t(unsigned long, nr_pages,
510 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
511
512 /*
513 * we don't want to send crud past the end of i_size through
514 * compression, that's just a waste of CPU time. So, if the
515 * end of the file is before the start of our current
516 * requested range of bytes, we bail out to the uncompressed
517 * cleanup code that can deal with all of this.
518 *
519 * It isn't really the fastest way to fix things, but this is a
520 * very uncommon corner.
521 */
522 if (actual_end <= start)
523 goto cleanup_and_bail_uncompressed;
524
525 total_compressed = actual_end - start;
526
527 /*
528 * skip compression for a small file range(<=blocksize) that
529 * isn't an inline extent, since it doesn't save disk space at all.
530 */
531 if (total_compressed <= blocksize &&
532 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
533 goto cleanup_and_bail_uncompressed;
534
535 total_compressed = min_t(unsigned long, total_compressed,
536 BTRFS_MAX_UNCOMPRESSED);
537 total_in = 0;
538 ret = 0;
539
540 /*
541 * we do compression for mount -o compress and when the
542 * inode has not been flagged as nocompress. This flag can
543 * change at any time if we discover bad compression ratios.
544 */
545 if (inode_need_compress(inode, start, end)) {
546 WARN_ON(pages);
547 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
548 if (!pages) {
549 /* just bail out to the uncompressed code */
550 nr_pages = 0;
551 goto cont;
552 }
553
554 if (BTRFS_I(inode)->defrag_compress)
555 compress_type = BTRFS_I(inode)->defrag_compress;
556 else if (BTRFS_I(inode)->prop_compress)
557 compress_type = BTRFS_I(inode)->prop_compress;
558
559 /*
560 * we need to call clear_page_dirty_for_io on each
561 * page in the range. Otherwise applications with the file
562 * mmap'd can wander in and change the page contents while
563 * we are compressing them.
564 *
565 * If the compression fails for any reason, we set the pages
566 * dirty again later on.
567 *
568 * Note that the remaining part is redirtied, the start pointer
569 * has moved, the end is the original one.
570 */
571 if (!redirty) {
572 extent_range_clear_dirty_for_io(inode, start, end);
573 redirty = 1;
574 }
575
576 /* Compression level is applied here and only here */
577 ret = btrfs_compress_pages(
578 compress_type | (fs_info->compress_level << 4),
579 inode->i_mapping, start,
580 pages,
581 &nr_pages,
582 &total_in,
583 &total_compressed);
584
585 if (!ret) {
586 unsigned long offset = offset_in_page(total_compressed);
587 struct page *page = pages[nr_pages - 1];
588 char *kaddr;
589
590 /* zero the tail end of the last page, we might be
591 * sending it down to disk
592 */
593 if (offset) {
594 kaddr = kmap_atomic(page);
595 memset(kaddr + offset, 0,
596 PAGE_SIZE - offset);
597 kunmap_atomic(kaddr);
598 }
599 will_compress = 1;
600 }
601 }
602 cont:
603 if (start == 0) {
604 /* lets try to make an inline extent */
605 if (ret || total_in < actual_end) {
606 /* we didn't compress the entire range, try
607 * to make an uncompressed inline extent.
608 */
609 ret = cow_file_range_inline(inode, start, end, 0,
610 BTRFS_COMPRESS_NONE, NULL);
611 } else {
612 /* try making a compressed inline extent */
613 ret = cow_file_range_inline(inode, start, end,
614 total_compressed,
615 compress_type, pages);
616 }
617 if (ret <= 0) {
618 unsigned long clear_flags = EXTENT_DELALLOC |
619 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
620 EXTENT_DO_ACCOUNTING;
621 unsigned long page_error_op;
622
623 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
624
625 /*
626 * inline extent creation worked or returned error,
627 * we don't need to create any more async work items.
628 * Unlock and free up our temp pages.
629 *
630 * We use DO_ACCOUNTING here because we need the
631 * delalloc_release_metadata to be done _after_ we drop
632 * our outstanding extent for clearing delalloc for this
633 * range.
634 */
635 extent_clear_unlock_delalloc(inode, start, end, NULL,
636 clear_flags,
637 PAGE_UNLOCK |
638 PAGE_CLEAR_DIRTY |
639 PAGE_SET_WRITEBACK |
640 page_error_op |
641 PAGE_END_WRITEBACK);
642
643 for (i = 0; i < nr_pages; i++) {
644 WARN_ON(pages[i]->mapping);
645 put_page(pages[i]);
646 }
647 kfree(pages);
648
649 return 0;
650 }
651 }
652
653 if (will_compress) {
654 /*
655 * we aren't doing an inline extent round the compressed size
656 * up to a block size boundary so the allocator does sane
657 * things
658 */
659 total_compressed = ALIGN(total_compressed, blocksize);
660
661 /*
662 * one last check to make sure the compression is really a
663 * win, compare the page count read with the blocks on disk,
664 * compression must free at least one sector size
665 */
666 total_in = ALIGN(total_in, PAGE_SIZE);
667 if (total_compressed + blocksize <= total_in) {
668 compressed_extents++;
669
670 /*
671 * The async work queues will take care of doing actual
672 * allocation on disk for these compressed pages, and
673 * will submit them to the elevator.
674 */
675 add_async_extent(async_chunk, start, total_in,
676 total_compressed, pages, nr_pages,
677 compress_type);
678
679 if (start + total_in < end) {
680 start += total_in;
681 pages = NULL;
682 cond_resched();
683 goto again;
684 }
685 return compressed_extents;
686 }
687 }
688 if (pages) {
689 /*
690 * the compression code ran but failed to make things smaller,
691 * free any pages it allocated and our page pointer array
692 */
693 for (i = 0; i < nr_pages; i++) {
694 WARN_ON(pages[i]->mapping);
695 put_page(pages[i]);
696 }
697 kfree(pages);
698 pages = NULL;
699 total_compressed = 0;
700 nr_pages = 0;
701
702 /* flag the file so we don't compress in the future */
703 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
704 !(BTRFS_I(inode)->prop_compress)) {
705 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
706 }
707 }
708 cleanup_and_bail_uncompressed:
709 /*
710 * No compression, but we still need to write the pages in the file
711 * we've been given so far. redirty the locked page if it corresponds
712 * to our extent and set things up for the async work queue to run
713 * cow_file_range to do the normal delalloc dance.
714 */
715 if (async_chunk->locked_page &&
716 (page_offset(async_chunk->locked_page) >= start &&
717 page_offset(async_chunk->locked_page)) <= end) {
718 __set_page_dirty_nobuffers(async_chunk->locked_page);
719 /* unlocked later on in the async handlers */
720 }
721
722 if (redirty)
723 extent_range_redirty_for_io(inode, start, end);
724 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
725 BTRFS_COMPRESS_NONE);
726 compressed_extents++;
727
728 return compressed_extents;
729 }
730
free_async_extent_pages(struct async_extent * async_extent)731 static void free_async_extent_pages(struct async_extent *async_extent)
732 {
733 int i;
734
735 if (!async_extent->pages)
736 return;
737
738 for (i = 0; i < async_extent->nr_pages; i++) {
739 WARN_ON(async_extent->pages[i]->mapping);
740 put_page(async_extent->pages[i]);
741 }
742 kfree(async_extent->pages);
743 async_extent->nr_pages = 0;
744 async_extent->pages = NULL;
745 }
746
747 /*
748 * phase two of compressed writeback. This is the ordered portion
749 * of the code, which only gets called in the order the work was
750 * queued. We walk all the async extents created by compress_file_range
751 * and send them down to the disk.
752 */
submit_compressed_extents(struct async_chunk * async_chunk)753 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
754 {
755 struct inode *inode = async_chunk->inode;
756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
757 struct async_extent *async_extent;
758 u64 alloc_hint = 0;
759 struct btrfs_key ins;
760 struct extent_map *em;
761 struct btrfs_root *root = BTRFS_I(inode)->root;
762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
763 int ret = 0;
764
765 again:
766 while (!list_empty(&async_chunk->extents)) {
767 async_extent = list_entry(async_chunk->extents.next,
768 struct async_extent, list);
769 list_del(&async_extent->list);
770
771 retry:
772 lock_extent(io_tree, async_extent->start,
773 async_extent->start + async_extent->ram_size - 1);
774 /* did the compression code fall back to uncompressed IO? */
775 if (!async_extent->pages) {
776 int page_started = 0;
777 unsigned long nr_written = 0;
778
779 /* allocate blocks */
780 ret = cow_file_range(inode, async_chunk->locked_page,
781 async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1,
784 &page_started, &nr_written, 0);
785
786 /* JDM XXX */
787
788 /*
789 * if page_started, cow_file_range inserted an
790 * inline extent and took care of all the unlocking
791 * and IO for us. Otherwise, we need to submit
792 * all those pages down to the drive.
793 */
794 if (!page_started && !ret)
795 extent_write_locked_range(inode,
796 async_extent->start,
797 async_extent->start +
798 async_extent->ram_size - 1,
799 WB_SYNC_ALL);
800 else if (ret && async_chunk->locked_page)
801 unlock_page(async_chunk->locked_page);
802 kfree(async_extent);
803 cond_resched();
804 continue;
805 }
806
807 ret = btrfs_reserve_extent(root, async_extent->ram_size,
808 async_extent->compressed_size,
809 async_extent->compressed_size,
810 0, alloc_hint, &ins, 1, 1);
811 if (ret) {
812 free_async_extent_pages(async_extent);
813
814 if (ret == -ENOSPC) {
815 unlock_extent(io_tree, async_extent->start,
816 async_extent->start +
817 async_extent->ram_size - 1);
818
819 /*
820 * we need to redirty the pages if we decide to
821 * fallback to uncompressed IO, otherwise we
822 * will not submit these pages down to lower
823 * layers.
824 */
825 extent_range_redirty_for_io(inode,
826 async_extent->start,
827 async_extent->start +
828 async_extent->ram_size - 1);
829
830 goto retry;
831 }
832 goto out_free;
833 }
834 /*
835 * here we're doing allocation and writeback of the
836 * compressed pages
837 */
838 em = create_io_em(inode, async_extent->start,
839 async_extent->ram_size, /* len */
840 async_extent->start, /* orig_start */
841 ins.objectid, /* block_start */
842 ins.offset, /* block_len */
843 ins.offset, /* orig_block_len */
844 async_extent->ram_size, /* ram_bytes */
845 async_extent->compress_type,
846 BTRFS_ORDERED_COMPRESSED);
847 if (IS_ERR(em))
848 /* ret value is not necessary due to void function */
849 goto out_free_reserve;
850 free_extent_map(em);
851
852 ret = btrfs_add_ordered_extent_compress(inode,
853 async_extent->start,
854 ins.objectid,
855 async_extent->ram_size,
856 ins.offset,
857 BTRFS_ORDERED_COMPRESSED,
858 async_extent->compress_type);
859 if (ret) {
860 btrfs_drop_extent_cache(BTRFS_I(inode),
861 async_extent->start,
862 async_extent->start +
863 async_extent->ram_size - 1, 0);
864 goto out_free_reserve;
865 }
866 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
867
868 /*
869 * clear dirty, set writeback and unlock the pages.
870 */
871 extent_clear_unlock_delalloc(inode, async_extent->start,
872 async_extent->start +
873 async_extent->ram_size - 1,
874 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
875 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
876 PAGE_SET_WRITEBACK);
877 if (btrfs_submit_compressed_write(inode,
878 async_extent->start,
879 async_extent->ram_size,
880 ins.objectid,
881 ins.offset, async_extent->pages,
882 async_extent->nr_pages,
883 async_chunk->write_flags)) {
884 struct page *p = async_extent->pages[0];
885 const u64 start = async_extent->start;
886 const u64 end = start + async_extent->ram_size - 1;
887
888 p->mapping = inode->i_mapping;
889 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
890
891 p->mapping = NULL;
892 extent_clear_unlock_delalloc(inode, start, end,
893 NULL, 0,
894 PAGE_END_WRITEBACK |
895 PAGE_SET_ERROR);
896 free_async_extent_pages(async_extent);
897 }
898 alloc_hint = ins.objectid + ins.offset;
899 kfree(async_extent);
900 cond_resched();
901 }
902 return;
903 out_free_reserve:
904 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
905 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
906 out_free:
907 extent_clear_unlock_delalloc(inode, async_extent->start,
908 async_extent->start +
909 async_extent->ram_size - 1,
910 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
911 EXTENT_DELALLOC_NEW |
912 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
913 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
914 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
915 PAGE_SET_ERROR);
916 free_async_extent_pages(async_extent);
917 kfree(async_extent);
918 goto again;
919 }
920
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)921 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
922 u64 num_bytes)
923 {
924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
925 struct extent_map *em;
926 u64 alloc_hint = 0;
927
928 read_lock(&em_tree->lock);
929 em = search_extent_mapping(em_tree, start, num_bytes);
930 if (em) {
931 /*
932 * if block start isn't an actual block number then find the
933 * first block in this inode and use that as a hint. If that
934 * block is also bogus then just don't worry about it.
935 */
936 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
937 free_extent_map(em);
938 em = search_extent_mapping(em_tree, 0, 0);
939 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
940 alloc_hint = em->block_start;
941 if (em)
942 free_extent_map(em);
943 } else {
944 alloc_hint = em->block_start;
945 free_extent_map(em);
946 }
947 }
948 read_unlock(&em_tree->lock);
949
950 return alloc_hint;
951 }
952
953 /*
954 * when extent_io.c finds a delayed allocation range in the file,
955 * the call backs end up in this code. The basic idea is to
956 * allocate extents on disk for the range, and create ordered data structs
957 * in ram to track those extents.
958 *
959 * locked_page is the page that writepage had locked already. We use
960 * it to make sure we don't do extra locks or unlocks.
961 *
962 * *page_started is set to one if we unlock locked_page and do everything
963 * required to start IO on it. It may be clean and already done with
964 * IO when we return.
965 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)966 static noinline int cow_file_range(struct inode *inode,
967 struct page *locked_page,
968 u64 start, u64 end, int *page_started,
969 unsigned long *nr_written, int unlock)
970 {
971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
972 struct btrfs_root *root = BTRFS_I(inode)->root;
973 u64 alloc_hint = 0;
974 u64 num_bytes;
975 unsigned long ram_size;
976 u64 cur_alloc_size = 0;
977 u64 blocksize = fs_info->sectorsize;
978 struct btrfs_key ins;
979 struct extent_map *em;
980 unsigned clear_bits;
981 unsigned long page_ops;
982 bool extent_reserved = false;
983 int ret = 0;
984
985 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
986 WARN_ON_ONCE(1);
987 ret = -EINVAL;
988 goto out_unlock;
989 }
990
991 num_bytes = ALIGN(end - start + 1, blocksize);
992 num_bytes = max(blocksize, num_bytes);
993 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
994
995 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
996
997 if (start == 0) {
998 /* lets try to make an inline extent */
999 ret = cow_file_range_inline(inode, start, end, 0,
1000 BTRFS_COMPRESS_NONE, NULL);
1001 if (ret == 0) {
1002 /*
1003 * We use DO_ACCOUNTING here because we need the
1004 * delalloc_release_metadata to be run _after_ we drop
1005 * our outstanding extent for clearing delalloc for this
1006 * range.
1007 */
1008 extent_clear_unlock_delalloc(inode, start, end, NULL,
1009 EXTENT_LOCKED | EXTENT_DELALLOC |
1010 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1011 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1012 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1013 PAGE_END_WRITEBACK);
1014 *nr_written = *nr_written +
1015 (end - start + PAGE_SIZE) / PAGE_SIZE;
1016 *page_started = 1;
1017 goto out;
1018 } else if (ret < 0) {
1019 goto out_unlock;
1020 }
1021 }
1022
1023 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1024 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1025 start + num_bytes - 1, 0);
1026
1027 while (num_bytes > 0) {
1028 cur_alloc_size = num_bytes;
1029 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1030 fs_info->sectorsize, 0, alloc_hint,
1031 &ins, 1, 1);
1032 if (ret < 0)
1033 goto out_unlock;
1034 cur_alloc_size = ins.offset;
1035 extent_reserved = true;
1036
1037 ram_size = ins.offset;
1038 em = create_io_em(inode, start, ins.offset, /* len */
1039 start, /* orig_start */
1040 ins.objectid, /* block_start */
1041 ins.offset, /* block_len */
1042 ins.offset, /* orig_block_len */
1043 ram_size, /* ram_bytes */
1044 BTRFS_COMPRESS_NONE, /* compress_type */
1045 BTRFS_ORDERED_REGULAR /* type */);
1046 if (IS_ERR(em)) {
1047 ret = PTR_ERR(em);
1048 goto out_reserve;
1049 }
1050 free_extent_map(em);
1051
1052 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1053 ram_size, cur_alloc_size, 0);
1054 if (ret)
1055 goto out_drop_extent_cache;
1056
1057 if (root->root_key.objectid ==
1058 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1059 ret = btrfs_reloc_clone_csums(inode, start,
1060 cur_alloc_size);
1061 /*
1062 * Only drop cache here, and process as normal.
1063 *
1064 * We must not allow extent_clear_unlock_delalloc()
1065 * at out_unlock label to free meta of this ordered
1066 * extent, as its meta should be freed by
1067 * btrfs_finish_ordered_io().
1068 *
1069 * So we must continue until @start is increased to
1070 * skip current ordered extent.
1071 */
1072 if (ret)
1073 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1074 start + ram_size - 1, 0);
1075 }
1076
1077 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1078
1079 /* we're not doing compressed IO, don't unlock the first
1080 * page (which the caller expects to stay locked), don't
1081 * clear any dirty bits and don't set any writeback bits
1082 *
1083 * Do set the Private2 bit so we know this page was properly
1084 * setup for writepage
1085 */
1086 page_ops = unlock ? PAGE_UNLOCK : 0;
1087 page_ops |= PAGE_SET_PRIVATE2;
1088
1089 extent_clear_unlock_delalloc(inode, start,
1090 start + ram_size - 1,
1091 locked_page,
1092 EXTENT_LOCKED | EXTENT_DELALLOC,
1093 page_ops);
1094 if (num_bytes < cur_alloc_size)
1095 num_bytes = 0;
1096 else
1097 num_bytes -= cur_alloc_size;
1098 alloc_hint = ins.objectid + ins.offset;
1099 start += cur_alloc_size;
1100 extent_reserved = false;
1101
1102 /*
1103 * btrfs_reloc_clone_csums() error, since start is increased
1104 * extent_clear_unlock_delalloc() at out_unlock label won't
1105 * free metadata of current ordered extent, we're OK to exit.
1106 */
1107 if (ret)
1108 goto out_unlock;
1109 }
1110 out:
1111 return ret;
1112
1113 out_drop_extent_cache:
1114 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1115 out_reserve:
1116 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1117 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1118 out_unlock:
1119 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1120 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1121 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1122 PAGE_END_WRITEBACK;
1123 /*
1124 * If we reserved an extent for our delalloc range (or a subrange) and
1125 * failed to create the respective ordered extent, then it means that
1126 * when we reserved the extent we decremented the extent's size from
1127 * the data space_info's bytes_may_use counter and incremented the
1128 * space_info's bytes_reserved counter by the same amount. We must make
1129 * sure extent_clear_unlock_delalloc() does not try to decrement again
1130 * the data space_info's bytes_may_use counter, therefore we do not pass
1131 * it the flag EXTENT_CLEAR_DATA_RESV.
1132 */
1133 if (extent_reserved) {
1134 extent_clear_unlock_delalloc(inode, start,
1135 start + cur_alloc_size,
1136 locked_page,
1137 clear_bits,
1138 page_ops);
1139 start += cur_alloc_size;
1140 if (start >= end)
1141 goto out;
1142 }
1143 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1144 clear_bits | EXTENT_CLEAR_DATA_RESV,
1145 page_ops);
1146 goto out;
1147 }
1148
1149 /*
1150 * work queue call back to started compression on a file and pages
1151 */
async_cow_start(struct btrfs_work * work)1152 static noinline void async_cow_start(struct btrfs_work *work)
1153 {
1154 struct async_chunk *async_chunk;
1155 int compressed_extents;
1156
1157 async_chunk = container_of(work, struct async_chunk, work);
1158
1159 compressed_extents = compress_file_range(async_chunk);
1160 if (compressed_extents == 0) {
1161 btrfs_add_delayed_iput(async_chunk->inode);
1162 async_chunk->inode = NULL;
1163 }
1164 }
1165
1166 /*
1167 * work queue call back to submit previously compressed pages
1168 */
async_cow_submit(struct btrfs_work * work)1169 static noinline void async_cow_submit(struct btrfs_work *work)
1170 {
1171 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1172 work);
1173 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1174 unsigned long nr_pages;
1175
1176 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1177 PAGE_SHIFT;
1178
1179 /* atomic_sub_return implies a barrier */
1180 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1181 5 * SZ_1M)
1182 cond_wake_up_nomb(&fs_info->async_submit_wait);
1183
1184 /*
1185 * ->inode could be NULL if async_chunk_start has failed to compress,
1186 * in which case we don't have anything to submit, yet we need to
1187 * always adjust ->async_delalloc_pages as its paired with the init
1188 * happening in cow_file_range_async
1189 */
1190 if (async_chunk->inode)
1191 submit_compressed_extents(async_chunk);
1192 }
1193
async_cow_free(struct btrfs_work * work)1194 static noinline void async_cow_free(struct btrfs_work *work)
1195 {
1196 struct async_chunk *async_chunk;
1197
1198 async_chunk = container_of(work, struct async_chunk, work);
1199 if (async_chunk->inode)
1200 btrfs_add_delayed_iput(async_chunk->inode);
1201 /*
1202 * Since the pointer to 'pending' is at the beginning of the array of
1203 * async_chunk's, freeing it ensures the whole array has been freed.
1204 */
1205 if (atomic_dec_and_test(async_chunk->pending))
1206 kvfree(async_chunk->pending);
1207 }
1208
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1209 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1210 u64 start, u64 end, int *page_started,
1211 unsigned long *nr_written,
1212 unsigned int write_flags)
1213 {
1214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1215 struct async_cow *ctx;
1216 struct async_chunk *async_chunk;
1217 unsigned long nr_pages;
1218 u64 cur_end;
1219 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1220 int i;
1221 bool should_compress;
1222 unsigned nofs_flag;
1223
1224 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1225
1226 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1227 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1228 num_chunks = 1;
1229 should_compress = false;
1230 } else {
1231 should_compress = true;
1232 }
1233
1234 nofs_flag = memalloc_nofs_save();
1235 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1236 memalloc_nofs_restore(nofs_flag);
1237
1238 if (!ctx) {
1239 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1240 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1241 EXTENT_DO_ACCOUNTING;
1242 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1243 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1244 PAGE_SET_ERROR;
1245
1246 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1247 clear_bits, page_ops);
1248 return -ENOMEM;
1249 }
1250
1251 async_chunk = ctx->chunks;
1252 atomic_set(&ctx->num_chunks, num_chunks);
1253
1254 for (i = 0; i < num_chunks; i++) {
1255 if (should_compress)
1256 cur_end = min(end, start + SZ_512K - 1);
1257 else
1258 cur_end = end;
1259
1260 /*
1261 * igrab is called higher up in the call chain, take only the
1262 * lightweight reference for the callback lifetime
1263 */
1264 ihold(inode);
1265 async_chunk[i].pending = &ctx->num_chunks;
1266 async_chunk[i].inode = inode;
1267 async_chunk[i].start = start;
1268 async_chunk[i].end = cur_end;
1269 async_chunk[i].write_flags = write_flags;
1270 INIT_LIST_HEAD(&async_chunk[i].extents);
1271
1272 /*
1273 * The locked_page comes all the way from writepage and its
1274 * the original page we were actually given. As we spread
1275 * this large delalloc region across multiple async_chunk
1276 * structs, only the first struct needs a pointer to locked_page
1277 *
1278 * This way we don't need racey decisions about who is supposed
1279 * to unlock it.
1280 */
1281 if (locked_page) {
1282 async_chunk[i].locked_page = locked_page;
1283 locked_page = NULL;
1284 } else {
1285 async_chunk[i].locked_page = NULL;
1286 }
1287
1288 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1289 async_cow_submit, async_cow_free);
1290
1291 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1292 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1293
1294 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1295
1296 *nr_written += nr_pages;
1297 start = cur_end + 1;
1298 }
1299 *page_started = 1;
1300 return 0;
1301 }
1302
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1303 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1304 u64 bytenr, u64 num_bytes)
1305 {
1306 int ret;
1307 struct btrfs_ordered_sum *sums;
1308 LIST_HEAD(list);
1309
1310 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1311 bytenr + num_bytes - 1, &list, 0);
1312 if (ret == 0 && list_empty(&list))
1313 return 0;
1314
1315 while (!list_empty(&list)) {
1316 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1317 list_del(&sums->list);
1318 kfree(sums);
1319 }
1320 if (ret < 0)
1321 return ret;
1322 return 1;
1323 }
1324
1325 /*
1326 * when nowcow writeback call back. This checks for snapshots or COW copies
1327 * of the extents that exist in the file, and COWs the file as required.
1328 *
1329 * If no cow copies or snapshots exist, we write directly to the existing
1330 * blocks on disk
1331 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1332 static noinline int run_delalloc_nocow(struct inode *inode,
1333 struct page *locked_page,
1334 const u64 start, const u64 end,
1335 int *page_started, int force,
1336 unsigned long *nr_written)
1337 {
1338 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1339 struct btrfs_root *root = BTRFS_I(inode)->root;
1340 struct btrfs_path *path;
1341 u64 cow_start = (u64)-1;
1342 u64 cur_offset = start;
1343 int ret;
1344 bool check_prev = true;
1345 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1346 u64 ino = btrfs_ino(BTRFS_I(inode));
1347 bool nocow = false;
1348 u64 disk_bytenr = 0;
1349
1350 path = btrfs_alloc_path();
1351 if (!path) {
1352 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1353 EXTENT_LOCKED | EXTENT_DELALLOC |
1354 EXTENT_DO_ACCOUNTING |
1355 EXTENT_DEFRAG, PAGE_UNLOCK |
1356 PAGE_CLEAR_DIRTY |
1357 PAGE_SET_WRITEBACK |
1358 PAGE_END_WRITEBACK);
1359 return -ENOMEM;
1360 }
1361
1362 while (1) {
1363 struct btrfs_key found_key;
1364 struct btrfs_file_extent_item *fi;
1365 struct extent_buffer *leaf;
1366 u64 extent_end;
1367 u64 extent_offset;
1368 u64 num_bytes = 0;
1369 u64 disk_num_bytes;
1370 u64 ram_bytes;
1371 int extent_type;
1372
1373 nocow = false;
1374
1375 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1376 cur_offset, 0);
1377 if (ret < 0)
1378 goto error;
1379
1380 /*
1381 * If there is no extent for our range when doing the initial
1382 * search, then go back to the previous slot as it will be the
1383 * one containing the search offset
1384 */
1385 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1386 leaf = path->nodes[0];
1387 btrfs_item_key_to_cpu(leaf, &found_key,
1388 path->slots[0] - 1);
1389 if (found_key.objectid == ino &&
1390 found_key.type == BTRFS_EXTENT_DATA_KEY)
1391 path->slots[0]--;
1392 }
1393 check_prev = false;
1394 next_slot:
1395 /* Go to next leaf if we have exhausted the current one */
1396 leaf = path->nodes[0];
1397 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1398 ret = btrfs_next_leaf(root, path);
1399 if (ret < 0) {
1400 if (cow_start != (u64)-1)
1401 cur_offset = cow_start;
1402 goto error;
1403 }
1404 if (ret > 0)
1405 break;
1406 leaf = path->nodes[0];
1407 }
1408
1409 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1410
1411 /* Didn't find anything for our INO */
1412 if (found_key.objectid > ino)
1413 break;
1414 /*
1415 * Keep searching until we find an EXTENT_ITEM or there are no
1416 * more extents for this inode
1417 */
1418 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1419 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1420 path->slots[0]++;
1421 goto next_slot;
1422 }
1423
1424 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1425 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1426 found_key.offset > end)
1427 break;
1428
1429 /*
1430 * If the found extent starts after requested offset, then
1431 * adjust extent_end to be right before this extent begins
1432 */
1433 if (found_key.offset > cur_offset) {
1434 extent_end = found_key.offset;
1435 extent_type = 0;
1436 goto out_check;
1437 }
1438
1439 /*
1440 * Found extent which begins before our range and potentially
1441 * intersect it
1442 */
1443 fi = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_file_extent_item);
1445 extent_type = btrfs_file_extent_type(leaf, fi);
1446
1447 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1448 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1449 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1450 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1451 extent_offset = btrfs_file_extent_offset(leaf, fi);
1452 extent_end = found_key.offset +
1453 btrfs_file_extent_num_bytes(leaf, fi);
1454 disk_num_bytes =
1455 btrfs_file_extent_disk_num_bytes(leaf, fi);
1456 /*
1457 * If the extent we got ends before our current offset,
1458 * skip to the next extent.
1459 */
1460 if (extent_end <= cur_offset) {
1461 path->slots[0]++;
1462 goto next_slot;
1463 }
1464 /* Skip holes */
1465 if (disk_bytenr == 0)
1466 goto out_check;
1467 /* Skip compressed/encrypted/encoded extents */
1468 if (btrfs_file_extent_compression(leaf, fi) ||
1469 btrfs_file_extent_encryption(leaf, fi) ||
1470 btrfs_file_extent_other_encoding(leaf, fi))
1471 goto out_check;
1472 /*
1473 * If extent is created before the last volume's snapshot
1474 * this implies the extent is shared, hence we can't do
1475 * nocow. This is the same check as in
1476 * btrfs_cross_ref_exist but without calling
1477 * btrfs_search_slot.
1478 */
1479 if (!freespace_inode &&
1480 btrfs_file_extent_generation(leaf, fi) <=
1481 btrfs_root_last_snapshot(&root->root_item))
1482 goto out_check;
1483 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1484 goto out_check;
1485 /* If extent is RO, we must COW it */
1486 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1487 goto out_check;
1488 ret = btrfs_cross_ref_exist(root, ino,
1489 found_key.offset -
1490 extent_offset, disk_bytenr);
1491 if (ret) {
1492 /*
1493 * ret could be -EIO if the above fails to read
1494 * metadata.
1495 */
1496 if (ret < 0) {
1497 if (cow_start != (u64)-1)
1498 cur_offset = cow_start;
1499 goto error;
1500 }
1501
1502 WARN_ON_ONCE(freespace_inode);
1503 goto out_check;
1504 }
1505 disk_bytenr += extent_offset;
1506 disk_bytenr += cur_offset - found_key.offset;
1507 num_bytes = min(end + 1, extent_end) - cur_offset;
1508 /*
1509 * If there are pending snapshots for this root, we
1510 * fall into common COW way
1511 */
1512 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1513 goto out_check;
1514 /*
1515 * force cow if csum exists in the range.
1516 * this ensure that csum for a given extent are
1517 * either valid or do not exist.
1518 */
1519 ret = csum_exist_in_range(fs_info, disk_bytenr,
1520 num_bytes);
1521 if (ret) {
1522 /*
1523 * ret could be -EIO if the above fails to read
1524 * metadata.
1525 */
1526 if (ret < 0) {
1527 if (cow_start != (u64)-1)
1528 cur_offset = cow_start;
1529 goto error;
1530 }
1531 WARN_ON_ONCE(freespace_inode);
1532 goto out_check;
1533 }
1534 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1535 goto out_check;
1536 nocow = true;
1537 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1538 extent_end = found_key.offset + ram_bytes;
1539 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1540 /* Skip extents outside of our requested range */
1541 if (extent_end <= start) {
1542 path->slots[0]++;
1543 goto next_slot;
1544 }
1545 } else {
1546 /* If this triggers then we have a memory corruption */
1547 BUG();
1548 }
1549 out_check:
1550 /*
1551 * If nocow is false then record the beginning of the range
1552 * that needs to be COWed
1553 */
1554 if (!nocow) {
1555 if (cow_start == (u64)-1)
1556 cow_start = cur_offset;
1557 cur_offset = extent_end;
1558 if (cur_offset > end)
1559 break;
1560 path->slots[0]++;
1561 goto next_slot;
1562 }
1563
1564 btrfs_release_path(path);
1565
1566 /*
1567 * COW range from cow_start to found_key.offset - 1. As the key
1568 * will contain the beginning of the first extent that can be
1569 * NOCOW, following one which needs to be COW'ed
1570 */
1571 if (cow_start != (u64)-1) {
1572 ret = cow_file_range(inode, locked_page,
1573 cow_start, found_key.offset - 1,
1574 page_started, nr_written, 1);
1575 if (ret) {
1576 if (nocow)
1577 btrfs_dec_nocow_writers(fs_info,
1578 disk_bytenr);
1579 goto error;
1580 }
1581 cow_start = (u64)-1;
1582 }
1583
1584 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1585 u64 orig_start = found_key.offset - extent_offset;
1586 struct extent_map *em;
1587
1588 em = create_io_em(inode, cur_offset, num_bytes,
1589 orig_start,
1590 disk_bytenr, /* block_start */
1591 num_bytes, /* block_len */
1592 disk_num_bytes, /* orig_block_len */
1593 ram_bytes, BTRFS_COMPRESS_NONE,
1594 BTRFS_ORDERED_PREALLOC);
1595 if (IS_ERR(em)) {
1596 if (nocow)
1597 btrfs_dec_nocow_writers(fs_info,
1598 disk_bytenr);
1599 ret = PTR_ERR(em);
1600 goto error;
1601 }
1602 free_extent_map(em);
1603 ret = btrfs_add_ordered_extent(inode, cur_offset,
1604 disk_bytenr, num_bytes,
1605 num_bytes,
1606 BTRFS_ORDERED_PREALLOC);
1607 if (ret) {
1608 btrfs_drop_extent_cache(BTRFS_I(inode),
1609 cur_offset,
1610 cur_offset + num_bytes - 1,
1611 0);
1612 goto error;
1613 }
1614 } else {
1615 ret = btrfs_add_ordered_extent(inode, cur_offset,
1616 disk_bytenr, num_bytes,
1617 num_bytes,
1618 BTRFS_ORDERED_NOCOW);
1619 if (ret)
1620 goto error;
1621 }
1622
1623 if (nocow)
1624 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1625 nocow = false;
1626
1627 if (root->root_key.objectid ==
1628 BTRFS_DATA_RELOC_TREE_OBJECTID)
1629 /*
1630 * Error handled later, as we must prevent
1631 * extent_clear_unlock_delalloc() in error handler
1632 * from freeing metadata of created ordered extent.
1633 */
1634 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1635 num_bytes);
1636
1637 extent_clear_unlock_delalloc(inode, cur_offset,
1638 cur_offset + num_bytes - 1,
1639 locked_page, EXTENT_LOCKED |
1640 EXTENT_DELALLOC |
1641 EXTENT_CLEAR_DATA_RESV,
1642 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1643
1644 cur_offset = extent_end;
1645
1646 /*
1647 * btrfs_reloc_clone_csums() error, now we're OK to call error
1648 * handler, as metadata for created ordered extent will only
1649 * be freed by btrfs_finish_ordered_io().
1650 */
1651 if (ret)
1652 goto error;
1653 if (cur_offset > end)
1654 break;
1655 }
1656 btrfs_release_path(path);
1657
1658 if (cur_offset <= end && cow_start == (u64)-1)
1659 cow_start = cur_offset;
1660
1661 if (cow_start != (u64)-1) {
1662 cur_offset = end;
1663 ret = cow_file_range(inode, locked_page, cow_start, end,
1664 page_started, nr_written, 1);
1665 if (ret)
1666 goto error;
1667 }
1668
1669 error:
1670 if (nocow)
1671 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1672
1673 if (ret && cur_offset < end)
1674 extent_clear_unlock_delalloc(inode, cur_offset, end,
1675 locked_page, EXTENT_LOCKED |
1676 EXTENT_DELALLOC | EXTENT_DEFRAG |
1677 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1678 PAGE_CLEAR_DIRTY |
1679 PAGE_SET_WRITEBACK |
1680 PAGE_END_WRITEBACK);
1681 btrfs_free_path(path);
1682 return ret;
1683 }
1684
need_force_cow(struct inode * inode,u64 start,u64 end)1685 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1686 {
1687
1688 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1689 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1690 return 0;
1691
1692 /*
1693 * @defrag_bytes is a hint value, no spinlock held here,
1694 * if is not zero, it means the file is defragging.
1695 * Force cow if given extent needs to be defragged.
1696 */
1697 if (BTRFS_I(inode)->defrag_bytes &&
1698 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1699 EXTENT_DEFRAG, 0, NULL))
1700 return 1;
1701
1702 return 0;
1703 }
1704
1705 /*
1706 * Function to process delayed allocation (create CoW) for ranges which are
1707 * being touched for the first time.
1708 */
btrfs_run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1709 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1710 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1711 struct writeback_control *wbc)
1712 {
1713 int ret;
1714 int force_cow = need_force_cow(inode, start, end);
1715 unsigned int write_flags = wbc_to_write_flags(wbc);
1716
1717 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1718 ret = run_delalloc_nocow(inode, locked_page, start, end,
1719 page_started, 1, nr_written);
1720 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1721 ret = run_delalloc_nocow(inode, locked_page, start, end,
1722 page_started, 0, nr_written);
1723 } else if (!inode_can_compress(inode) ||
1724 !inode_need_compress(inode, start, end)) {
1725 ret = cow_file_range(inode, locked_page, start, end,
1726 page_started, nr_written, 1);
1727 } else {
1728 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1729 &BTRFS_I(inode)->runtime_flags);
1730 ret = cow_file_range_async(inode, locked_page, start, end,
1731 page_started, nr_written,
1732 write_flags);
1733 }
1734 if (ret)
1735 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1736 end - start + 1);
1737 return ret;
1738 }
1739
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1740 void btrfs_split_delalloc_extent(struct inode *inode,
1741 struct extent_state *orig, u64 split)
1742 {
1743 u64 size;
1744
1745 /* not delalloc, ignore it */
1746 if (!(orig->state & EXTENT_DELALLOC))
1747 return;
1748
1749 size = orig->end - orig->start + 1;
1750 if (size > BTRFS_MAX_EXTENT_SIZE) {
1751 u32 num_extents;
1752 u64 new_size;
1753
1754 /*
1755 * See the explanation in btrfs_merge_delalloc_extent, the same
1756 * applies here, just in reverse.
1757 */
1758 new_size = orig->end - split + 1;
1759 num_extents = count_max_extents(new_size);
1760 new_size = split - orig->start;
1761 num_extents += count_max_extents(new_size);
1762 if (count_max_extents(size) >= num_extents)
1763 return;
1764 }
1765
1766 spin_lock(&BTRFS_I(inode)->lock);
1767 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1768 spin_unlock(&BTRFS_I(inode)->lock);
1769 }
1770
1771 /*
1772 * Handle merged delayed allocation extents so we can keep track of new extents
1773 * that are just merged onto old extents, such as when we are doing sequential
1774 * writes, so we can properly account for the metadata space we'll need.
1775 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1776 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1777 struct extent_state *other)
1778 {
1779 u64 new_size, old_size;
1780 u32 num_extents;
1781
1782 /* not delalloc, ignore it */
1783 if (!(other->state & EXTENT_DELALLOC))
1784 return;
1785
1786 if (new->start > other->start)
1787 new_size = new->end - other->start + 1;
1788 else
1789 new_size = other->end - new->start + 1;
1790
1791 /* we're not bigger than the max, unreserve the space and go */
1792 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1793 spin_lock(&BTRFS_I(inode)->lock);
1794 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1795 spin_unlock(&BTRFS_I(inode)->lock);
1796 return;
1797 }
1798
1799 /*
1800 * We have to add up either side to figure out how many extents were
1801 * accounted for before we merged into one big extent. If the number of
1802 * extents we accounted for is <= the amount we need for the new range
1803 * then we can return, otherwise drop. Think of it like this
1804 *
1805 * [ 4k][MAX_SIZE]
1806 *
1807 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1808 * need 2 outstanding extents, on one side we have 1 and the other side
1809 * we have 1 so they are == and we can return. But in this case
1810 *
1811 * [MAX_SIZE+4k][MAX_SIZE+4k]
1812 *
1813 * Each range on their own accounts for 2 extents, but merged together
1814 * they are only 3 extents worth of accounting, so we need to drop in
1815 * this case.
1816 */
1817 old_size = other->end - other->start + 1;
1818 num_extents = count_max_extents(old_size);
1819 old_size = new->end - new->start + 1;
1820 num_extents += count_max_extents(old_size);
1821 if (count_max_extents(new_size) >= num_extents)
1822 return;
1823
1824 spin_lock(&BTRFS_I(inode)->lock);
1825 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1826 spin_unlock(&BTRFS_I(inode)->lock);
1827 }
1828
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1829 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1830 struct inode *inode)
1831 {
1832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1833
1834 spin_lock(&root->delalloc_lock);
1835 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1836 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1837 &root->delalloc_inodes);
1838 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1839 &BTRFS_I(inode)->runtime_flags);
1840 root->nr_delalloc_inodes++;
1841 if (root->nr_delalloc_inodes == 1) {
1842 spin_lock(&fs_info->delalloc_root_lock);
1843 BUG_ON(!list_empty(&root->delalloc_root));
1844 list_add_tail(&root->delalloc_root,
1845 &fs_info->delalloc_roots);
1846 spin_unlock(&fs_info->delalloc_root_lock);
1847 }
1848 }
1849 spin_unlock(&root->delalloc_lock);
1850 }
1851
1852
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1853 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1854 struct btrfs_inode *inode)
1855 {
1856 struct btrfs_fs_info *fs_info = root->fs_info;
1857
1858 if (!list_empty(&inode->delalloc_inodes)) {
1859 list_del_init(&inode->delalloc_inodes);
1860 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1861 &inode->runtime_flags);
1862 root->nr_delalloc_inodes--;
1863 if (!root->nr_delalloc_inodes) {
1864 ASSERT(list_empty(&root->delalloc_inodes));
1865 spin_lock(&fs_info->delalloc_root_lock);
1866 BUG_ON(list_empty(&root->delalloc_root));
1867 list_del_init(&root->delalloc_root);
1868 spin_unlock(&fs_info->delalloc_root_lock);
1869 }
1870 }
1871 }
1872
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1873 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1874 struct btrfs_inode *inode)
1875 {
1876 spin_lock(&root->delalloc_lock);
1877 __btrfs_del_delalloc_inode(root, inode);
1878 spin_unlock(&root->delalloc_lock);
1879 }
1880
1881 /*
1882 * Properly track delayed allocation bytes in the inode and to maintain the
1883 * list of inodes that have pending delalloc work to be done.
1884 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1885 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1886 unsigned *bits)
1887 {
1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889
1890 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1891 WARN_ON(1);
1892 /*
1893 * set_bit and clear bit hooks normally require _irqsave/restore
1894 * but in this case, we are only testing for the DELALLOC
1895 * bit, which is only set or cleared with irqs on
1896 */
1897 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1898 struct btrfs_root *root = BTRFS_I(inode)->root;
1899 u64 len = state->end + 1 - state->start;
1900 u32 num_extents = count_max_extents(len);
1901 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1902
1903 spin_lock(&BTRFS_I(inode)->lock);
1904 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1905 spin_unlock(&BTRFS_I(inode)->lock);
1906
1907 /* For sanity tests */
1908 if (btrfs_is_testing(fs_info))
1909 return;
1910
1911 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1912 fs_info->delalloc_batch);
1913 spin_lock(&BTRFS_I(inode)->lock);
1914 BTRFS_I(inode)->delalloc_bytes += len;
1915 if (*bits & EXTENT_DEFRAG)
1916 BTRFS_I(inode)->defrag_bytes += len;
1917 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1918 &BTRFS_I(inode)->runtime_flags))
1919 btrfs_add_delalloc_inodes(root, inode);
1920 spin_unlock(&BTRFS_I(inode)->lock);
1921 }
1922
1923 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1924 (*bits & EXTENT_DELALLOC_NEW)) {
1925 spin_lock(&BTRFS_I(inode)->lock);
1926 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1927 state->start;
1928 spin_unlock(&BTRFS_I(inode)->lock);
1929 }
1930 }
1931
1932 /*
1933 * Once a range is no longer delalloc this function ensures that proper
1934 * accounting happens.
1935 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)1936 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1937 struct extent_state *state, unsigned *bits)
1938 {
1939 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1940 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1941 u64 len = state->end + 1 - state->start;
1942 u32 num_extents = count_max_extents(len);
1943
1944 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1945 spin_lock(&inode->lock);
1946 inode->defrag_bytes -= len;
1947 spin_unlock(&inode->lock);
1948 }
1949
1950 /*
1951 * set_bit and clear bit hooks normally require _irqsave/restore
1952 * but in this case, we are only testing for the DELALLOC
1953 * bit, which is only set or cleared with irqs on
1954 */
1955 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1956 struct btrfs_root *root = inode->root;
1957 bool do_list = !btrfs_is_free_space_inode(inode);
1958
1959 spin_lock(&inode->lock);
1960 btrfs_mod_outstanding_extents(inode, -num_extents);
1961 spin_unlock(&inode->lock);
1962
1963 /*
1964 * We don't reserve metadata space for space cache inodes so we
1965 * don't need to call delalloc_release_metadata if there is an
1966 * error.
1967 */
1968 if (*bits & EXTENT_CLEAR_META_RESV &&
1969 root != fs_info->tree_root)
1970 btrfs_delalloc_release_metadata(inode, len, false);
1971
1972 /* For sanity tests. */
1973 if (btrfs_is_testing(fs_info))
1974 return;
1975
1976 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1977 do_list && !(state->state & EXTENT_NORESERVE) &&
1978 (*bits & EXTENT_CLEAR_DATA_RESV))
1979 btrfs_free_reserved_data_space_noquota(
1980 &inode->vfs_inode,
1981 state->start, len);
1982
1983 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1984 fs_info->delalloc_batch);
1985 spin_lock(&inode->lock);
1986 inode->delalloc_bytes -= len;
1987 if (do_list && inode->delalloc_bytes == 0 &&
1988 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1989 &inode->runtime_flags))
1990 btrfs_del_delalloc_inode(root, inode);
1991 spin_unlock(&inode->lock);
1992 }
1993
1994 if ((state->state & EXTENT_DELALLOC_NEW) &&
1995 (*bits & EXTENT_DELALLOC_NEW)) {
1996 spin_lock(&inode->lock);
1997 ASSERT(inode->new_delalloc_bytes >= len);
1998 inode->new_delalloc_bytes -= len;
1999 spin_unlock(&inode->lock);
2000 }
2001 }
2002
2003 /*
2004 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2005 * in a chunk's stripe. This function ensures that bios do not span a
2006 * stripe/chunk
2007 *
2008 * @page - The page we are about to add to the bio
2009 * @size - size we want to add to the bio
2010 * @bio - bio we want to ensure is smaller than a stripe
2011 * @bio_flags - flags of the bio
2012 *
2013 * return 1 if page cannot be added to the bio
2014 * return 0 if page can be added to the bio
2015 * return error otherwise
2016 */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2017 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2018 unsigned long bio_flags)
2019 {
2020 struct inode *inode = page->mapping->host;
2021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2022 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2023 u64 length = 0;
2024 u64 map_length;
2025 int ret;
2026 struct btrfs_io_geometry geom;
2027
2028 if (bio_flags & EXTENT_BIO_COMPRESSED)
2029 return 0;
2030
2031 length = bio->bi_iter.bi_size;
2032 map_length = length;
2033 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2034 &geom);
2035 if (ret < 0)
2036 return ret;
2037
2038 if (geom.len < length + size)
2039 return 1;
2040 return 0;
2041 }
2042
2043 /*
2044 * in order to insert checksums into the metadata in large chunks,
2045 * we wait until bio submission time. All the pages in the bio are
2046 * checksummed and sums are attached onto the ordered extent record.
2047 *
2048 * At IO completion time the cums attached on the ordered extent record
2049 * are inserted into the btree
2050 */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2051 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2052 u64 bio_offset)
2053 {
2054 struct inode *inode = private_data;
2055 blk_status_t ret = 0;
2056
2057 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2058 BUG_ON(ret); /* -ENOMEM */
2059 return 0;
2060 }
2061
2062 /*
2063 * extent_io.c submission hook. This does the right thing for csum calculation
2064 * on write, or reading the csums from the tree before a read.
2065 *
2066 * Rules about async/sync submit,
2067 * a) read: sync submit
2068 *
2069 * b) write without checksum: sync submit
2070 *
2071 * c) write with checksum:
2072 * c-1) if bio is issued by fsync: sync submit
2073 * (sync_writers != 0)
2074 *
2075 * c-2) if root is reloc root: sync submit
2076 * (only in case of buffered IO)
2077 *
2078 * c-3) otherwise: async submit
2079 */
btrfs_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2080 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2081 int mirror_num,
2082 unsigned long bio_flags)
2083
2084 {
2085 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2086 struct btrfs_root *root = BTRFS_I(inode)->root;
2087 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2088 blk_status_t ret = 0;
2089 int skip_sum;
2090 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2091
2092 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2093
2094 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2095 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2096
2097 if (bio_op(bio) != REQ_OP_WRITE) {
2098 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2099 if (ret)
2100 goto out;
2101
2102 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2103 ret = btrfs_submit_compressed_read(inode, bio,
2104 mirror_num,
2105 bio_flags);
2106 goto out;
2107 } else if (!skip_sum) {
2108 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2109 if (ret)
2110 goto out;
2111 }
2112 goto mapit;
2113 } else if (async && !skip_sum) {
2114 /* csum items have already been cloned */
2115 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2116 goto mapit;
2117 /* we're doing a write, do the async checksumming */
2118 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2119 0, inode, btrfs_submit_bio_start);
2120 goto out;
2121 } else if (!skip_sum) {
2122 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2123 if (ret)
2124 goto out;
2125 }
2126
2127 mapit:
2128 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2129
2130 out:
2131 if (ret) {
2132 bio->bi_status = ret;
2133 bio_endio(bio);
2134 }
2135 return ret;
2136 }
2137
2138 /*
2139 * given a list of ordered sums record them in the inode. This happens
2140 * at IO completion time based on sums calculated at bio submission time.
2141 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2142 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2143 struct inode *inode, struct list_head *list)
2144 {
2145 struct btrfs_ordered_sum *sum;
2146 int ret;
2147
2148 list_for_each_entry(sum, list, list) {
2149 trans->adding_csums = true;
2150 ret = btrfs_csum_file_blocks(trans,
2151 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2152 trans->adding_csums = false;
2153 if (ret)
2154 return ret;
2155 }
2156 return 0;
2157 }
2158
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2159 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2160 unsigned int extra_bits,
2161 struct extent_state **cached_state)
2162 {
2163 WARN_ON(PAGE_ALIGNED(end));
2164 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2165 extra_bits, cached_state);
2166 }
2167
2168 /* see btrfs_writepage_start_hook for details on why this is required */
2169 struct btrfs_writepage_fixup {
2170 struct page *page;
2171 struct btrfs_work work;
2172 };
2173
btrfs_writepage_fixup_worker(struct btrfs_work * work)2174 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2175 {
2176 struct btrfs_writepage_fixup *fixup;
2177 struct btrfs_ordered_extent *ordered;
2178 struct extent_state *cached_state = NULL;
2179 struct extent_changeset *data_reserved = NULL;
2180 struct page *page;
2181 struct inode *inode;
2182 u64 page_start;
2183 u64 page_end;
2184 int ret;
2185
2186 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2187 page = fixup->page;
2188 again:
2189 lock_page(page);
2190 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2191 ClearPageChecked(page);
2192 goto out_page;
2193 }
2194
2195 inode = page->mapping->host;
2196 page_start = page_offset(page);
2197 page_end = page_offset(page) + PAGE_SIZE - 1;
2198
2199 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2200 &cached_state);
2201
2202 /* already ordered? We're done */
2203 if (PagePrivate2(page))
2204 goto out;
2205
2206 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2207 PAGE_SIZE);
2208 if (ordered) {
2209 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2210 page_end, &cached_state);
2211 unlock_page(page);
2212 btrfs_start_ordered_extent(inode, ordered, 1);
2213 btrfs_put_ordered_extent(ordered);
2214 goto again;
2215 }
2216
2217 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2218 PAGE_SIZE);
2219 if (ret) {
2220 mapping_set_error(page->mapping, ret);
2221 end_extent_writepage(page, ret, page_start, page_end);
2222 ClearPageChecked(page);
2223 goto out;
2224 }
2225
2226 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2227 &cached_state);
2228 if (ret) {
2229 mapping_set_error(page->mapping, ret);
2230 end_extent_writepage(page, ret, page_start, page_end);
2231 ClearPageChecked(page);
2232 goto out_reserved;
2233 }
2234
2235 ClearPageChecked(page);
2236 set_page_dirty(page);
2237 out_reserved:
2238 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2239 if (ret)
2240 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2241 PAGE_SIZE, true);
2242 out:
2243 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2244 &cached_state);
2245 out_page:
2246 unlock_page(page);
2247 put_page(page);
2248 kfree(fixup);
2249 extent_changeset_free(data_reserved);
2250 }
2251
2252 /*
2253 * There are a few paths in the higher layers of the kernel that directly
2254 * set the page dirty bit without asking the filesystem if it is a
2255 * good idea. This causes problems because we want to make sure COW
2256 * properly happens and the data=ordered rules are followed.
2257 *
2258 * In our case any range that doesn't have the ORDERED bit set
2259 * hasn't been properly setup for IO. We kick off an async process
2260 * to fix it up. The async helper will wait for ordered extents, set
2261 * the delalloc bit and make it safe to write the page.
2262 */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2263 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2264 {
2265 struct inode *inode = page->mapping->host;
2266 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2267 struct btrfs_writepage_fixup *fixup;
2268
2269 /* this page is properly in the ordered list */
2270 if (TestClearPagePrivate2(page))
2271 return 0;
2272
2273 if (PageChecked(page))
2274 return -EAGAIN;
2275
2276 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2277 if (!fixup)
2278 return -EAGAIN;
2279
2280 SetPageChecked(page);
2281 get_page(page);
2282 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2283 fixup->page = page;
2284 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2285 return -EBUSY;
2286 }
2287
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2288 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2289 struct inode *inode, u64 file_pos,
2290 u64 disk_bytenr, u64 disk_num_bytes,
2291 u64 num_bytes, u64 ram_bytes,
2292 u8 compression, u8 encryption,
2293 u16 other_encoding, int extent_type)
2294 {
2295 struct btrfs_root *root = BTRFS_I(inode)->root;
2296 struct btrfs_file_extent_item *fi;
2297 struct btrfs_path *path;
2298 struct extent_buffer *leaf;
2299 struct btrfs_key ins;
2300 u64 qg_released;
2301 int extent_inserted = 0;
2302 int ret;
2303
2304 path = btrfs_alloc_path();
2305 if (!path)
2306 return -ENOMEM;
2307
2308 /*
2309 * we may be replacing one extent in the tree with another.
2310 * The new extent is pinned in the extent map, and we don't want
2311 * to drop it from the cache until it is completely in the btree.
2312 *
2313 * So, tell btrfs_drop_extents to leave this extent in the cache.
2314 * the caller is expected to unpin it and allow it to be merged
2315 * with the others.
2316 */
2317 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2318 file_pos + num_bytes, NULL, 0,
2319 1, sizeof(*fi), &extent_inserted);
2320 if (ret)
2321 goto out;
2322
2323 if (!extent_inserted) {
2324 ins.objectid = btrfs_ino(BTRFS_I(inode));
2325 ins.offset = file_pos;
2326 ins.type = BTRFS_EXTENT_DATA_KEY;
2327
2328 path->leave_spinning = 1;
2329 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2330 sizeof(*fi));
2331 if (ret)
2332 goto out;
2333 }
2334 leaf = path->nodes[0];
2335 fi = btrfs_item_ptr(leaf, path->slots[0],
2336 struct btrfs_file_extent_item);
2337 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2338 btrfs_set_file_extent_type(leaf, fi, extent_type);
2339 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2340 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2341 btrfs_set_file_extent_offset(leaf, fi, 0);
2342 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2343 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2344 btrfs_set_file_extent_compression(leaf, fi, compression);
2345 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2346 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2347
2348 btrfs_mark_buffer_dirty(leaf);
2349 btrfs_release_path(path);
2350
2351 inode_add_bytes(inode, num_bytes);
2352
2353 ins.objectid = disk_bytenr;
2354 ins.offset = disk_num_bytes;
2355 ins.type = BTRFS_EXTENT_ITEM_KEY;
2356
2357 /*
2358 * Release the reserved range from inode dirty range map, as it is
2359 * already moved into delayed_ref_head
2360 */
2361 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2362 if (ret < 0)
2363 goto out;
2364 qg_released = ret;
2365 ret = btrfs_alloc_reserved_file_extent(trans, root,
2366 btrfs_ino(BTRFS_I(inode)),
2367 file_pos, qg_released, &ins);
2368 out:
2369 btrfs_free_path(path);
2370
2371 return ret;
2372 }
2373
2374 /* snapshot-aware defrag */
2375 struct sa_defrag_extent_backref {
2376 struct rb_node node;
2377 struct old_sa_defrag_extent *old;
2378 u64 root_id;
2379 u64 inum;
2380 u64 file_pos;
2381 u64 extent_offset;
2382 u64 num_bytes;
2383 u64 generation;
2384 };
2385
2386 struct old_sa_defrag_extent {
2387 struct list_head list;
2388 struct new_sa_defrag_extent *new;
2389
2390 u64 extent_offset;
2391 u64 bytenr;
2392 u64 offset;
2393 u64 len;
2394 int count;
2395 };
2396
2397 struct new_sa_defrag_extent {
2398 struct rb_root root;
2399 struct list_head head;
2400 struct btrfs_path *path;
2401 struct inode *inode;
2402 u64 file_pos;
2403 u64 len;
2404 u64 bytenr;
2405 u64 disk_len;
2406 u8 compress_type;
2407 };
2408
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2409 static int backref_comp(struct sa_defrag_extent_backref *b1,
2410 struct sa_defrag_extent_backref *b2)
2411 {
2412 if (b1->root_id < b2->root_id)
2413 return -1;
2414 else if (b1->root_id > b2->root_id)
2415 return 1;
2416
2417 if (b1->inum < b2->inum)
2418 return -1;
2419 else if (b1->inum > b2->inum)
2420 return 1;
2421
2422 if (b1->file_pos < b2->file_pos)
2423 return -1;
2424 else if (b1->file_pos > b2->file_pos)
2425 return 1;
2426
2427 /*
2428 * [------------------------------] ===> (a range of space)
2429 * |<--->| |<---->| =============> (fs/file tree A)
2430 * |<---------------------------->| ===> (fs/file tree B)
2431 *
2432 * A range of space can refer to two file extents in one tree while
2433 * refer to only one file extent in another tree.
2434 *
2435 * So we may process a disk offset more than one time(two extents in A)
2436 * and locate at the same extent(one extent in B), then insert two same
2437 * backrefs(both refer to the extent in B).
2438 */
2439 return 0;
2440 }
2441
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2442 static void backref_insert(struct rb_root *root,
2443 struct sa_defrag_extent_backref *backref)
2444 {
2445 struct rb_node **p = &root->rb_node;
2446 struct rb_node *parent = NULL;
2447 struct sa_defrag_extent_backref *entry;
2448 int ret;
2449
2450 while (*p) {
2451 parent = *p;
2452 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2453
2454 ret = backref_comp(backref, entry);
2455 if (ret < 0)
2456 p = &(*p)->rb_left;
2457 else
2458 p = &(*p)->rb_right;
2459 }
2460
2461 rb_link_node(&backref->node, parent, p);
2462 rb_insert_color(&backref->node, root);
2463 }
2464
2465 /*
2466 * Note the backref might has changed, and in this case we just return 0.
2467 */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2468 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2469 void *ctx)
2470 {
2471 struct btrfs_file_extent_item *extent;
2472 struct old_sa_defrag_extent *old = ctx;
2473 struct new_sa_defrag_extent *new = old->new;
2474 struct btrfs_path *path = new->path;
2475 struct btrfs_key key;
2476 struct btrfs_root *root;
2477 struct sa_defrag_extent_backref *backref;
2478 struct extent_buffer *leaf;
2479 struct inode *inode = new->inode;
2480 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2481 int slot;
2482 int ret;
2483 u64 extent_offset;
2484 u64 num_bytes;
2485
2486 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2487 inum == btrfs_ino(BTRFS_I(inode)))
2488 return 0;
2489
2490 key.objectid = root_id;
2491 key.type = BTRFS_ROOT_ITEM_KEY;
2492 key.offset = (u64)-1;
2493
2494 root = btrfs_read_fs_root_no_name(fs_info, &key);
2495 if (IS_ERR(root)) {
2496 if (PTR_ERR(root) == -ENOENT)
2497 return 0;
2498 WARN_ON(1);
2499 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2500 inum, offset, root_id);
2501 return PTR_ERR(root);
2502 }
2503
2504 key.objectid = inum;
2505 key.type = BTRFS_EXTENT_DATA_KEY;
2506 if (offset > (u64)-1 << 32)
2507 key.offset = 0;
2508 else
2509 key.offset = offset;
2510
2511 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2512 if (WARN_ON(ret < 0))
2513 return ret;
2514 ret = 0;
2515
2516 while (1) {
2517 cond_resched();
2518
2519 leaf = path->nodes[0];
2520 slot = path->slots[0];
2521
2522 if (slot >= btrfs_header_nritems(leaf)) {
2523 ret = btrfs_next_leaf(root, path);
2524 if (ret < 0) {
2525 goto out;
2526 } else if (ret > 0) {
2527 ret = 0;
2528 goto out;
2529 }
2530 continue;
2531 }
2532
2533 path->slots[0]++;
2534
2535 btrfs_item_key_to_cpu(leaf, &key, slot);
2536
2537 if (key.objectid > inum)
2538 goto out;
2539
2540 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2541 continue;
2542
2543 extent = btrfs_item_ptr(leaf, slot,
2544 struct btrfs_file_extent_item);
2545
2546 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2547 continue;
2548
2549 /*
2550 * 'offset' refers to the exact key.offset,
2551 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2552 * (key.offset - extent_offset).
2553 */
2554 if (key.offset != offset)
2555 continue;
2556
2557 extent_offset = btrfs_file_extent_offset(leaf, extent);
2558 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2559
2560 if (extent_offset >= old->extent_offset + old->offset +
2561 old->len || extent_offset + num_bytes <=
2562 old->extent_offset + old->offset)
2563 continue;
2564 break;
2565 }
2566
2567 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2568 if (!backref) {
2569 ret = -ENOENT;
2570 goto out;
2571 }
2572
2573 backref->root_id = root_id;
2574 backref->inum = inum;
2575 backref->file_pos = offset;
2576 backref->num_bytes = num_bytes;
2577 backref->extent_offset = extent_offset;
2578 backref->generation = btrfs_file_extent_generation(leaf, extent);
2579 backref->old = old;
2580 backref_insert(&new->root, backref);
2581 old->count++;
2582 out:
2583 btrfs_release_path(path);
2584 WARN_ON(ret);
2585 return ret;
2586 }
2587
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2588 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2589 struct new_sa_defrag_extent *new)
2590 {
2591 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2592 struct old_sa_defrag_extent *old, *tmp;
2593 int ret;
2594
2595 new->path = path;
2596
2597 list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 ret = iterate_inodes_from_logical(old->bytenr +
2599 old->extent_offset, fs_info,
2600 path, record_one_backref,
2601 old, false);
2602 if (ret < 0 && ret != -ENOENT)
2603 return false;
2604
2605 /* no backref to be processed for this extent */
2606 if (!old->count) {
2607 list_del(&old->list);
2608 kfree(old);
2609 }
2610 }
2611
2612 if (list_empty(&new->head))
2613 return false;
2614
2615 return true;
2616 }
2617
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2618 static int relink_is_mergable(struct extent_buffer *leaf,
2619 struct btrfs_file_extent_item *fi,
2620 struct new_sa_defrag_extent *new)
2621 {
2622 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2623 return 0;
2624
2625 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2626 return 0;
2627
2628 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2629 return 0;
2630
2631 if (btrfs_file_extent_encryption(leaf, fi) ||
2632 btrfs_file_extent_other_encoding(leaf, fi))
2633 return 0;
2634
2635 return 1;
2636 }
2637
2638 /*
2639 * Note the backref might has changed, and in this case we just return 0.
2640 */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2641 static noinline int relink_extent_backref(struct btrfs_path *path,
2642 struct sa_defrag_extent_backref *prev,
2643 struct sa_defrag_extent_backref *backref)
2644 {
2645 struct btrfs_file_extent_item *extent;
2646 struct btrfs_file_extent_item *item;
2647 struct btrfs_ordered_extent *ordered;
2648 struct btrfs_trans_handle *trans;
2649 struct btrfs_ref ref = { 0 };
2650 struct btrfs_root *root;
2651 struct btrfs_key key;
2652 struct extent_buffer *leaf;
2653 struct old_sa_defrag_extent *old = backref->old;
2654 struct new_sa_defrag_extent *new = old->new;
2655 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2656 struct inode *inode;
2657 struct extent_state *cached = NULL;
2658 int ret = 0;
2659 u64 start;
2660 u64 len;
2661 u64 lock_start;
2662 u64 lock_end;
2663 bool merge = false;
2664 int index;
2665
2666 if (prev && prev->root_id == backref->root_id &&
2667 prev->inum == backref->inum &&
2668 prev->file_pos + prev->num_bytes == backref->file_pos)
2669 merge = true;
2670
2671 /* step 1: get root */
2672 key.objectid = backref->root_id;
2673 key.type = BTRFS_ROOT_ITEM_KEY;
2674 key.offset = (u64)-1;
2675
2676 index = srcu_read_lock(&fs_info->subvol_srcu);
2677
2678 root = btrfs_read_fs_root_no_name(fs_info, &key);
2679 if (IS_ERR(root)) {
2680 srcu_read_unlock(&fs_info->subvol_srcu, index);
2681 if (PTR_ERR(root) == -ENOENT)
2682 return 0;
2683 return PTR_ERR(root);
2684 }
2685
2686 if (btrfs_root_readonly(root)) {
2687 srcu_read_unlock(&fs_info->subvol_srcu, index);
2688 return 0;
2689 }
2690
2691 /* step 2: get inode */
2692 key.objectid = backref->inum;
2693 key.type = BTRFS_INODE_ITEM_KEY;
2694 key.offset = 0;
2695
2696 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2697 if (IS_ERR(inode)) {
2698 srcu_read_unlock(&fs_info->subvol_srcu, index);
2699 return 0;
2700 }
2701
2702 srcu_read_unlock(&fs_info->subvol_srcu, index);
2703
2704 /* step 3: relink backref */
2705 lock_start = backref->file_pos;
2706 lock_end = backref->file_pos + backref->num_bytes - 1;
2707 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2708 &cached);
2709
2710 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2711 if (ordered) {
2712 btrfs_put_ordered_extent(ordered);
2713 goto out_unlock;
2714 }
2715
2716 trans = btrfs_join_transaction(root);
2717 if (IS_ERR(trans)) {
2718 ret = PTR_ERR(trans);
2719 goto out_unlock;
2720 }
2721
2722 key.objectid = backref->inum;
2723 key.type = BTRFS_EXTENT_DATA_KEY;
2724 key.offset = backref->file_pos;
2725
2726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2727 if (ret < 0) {
2728 goto out_free_path;
2729 } else if (ret > 0) {
2730 ret = 0;
2731 goto out_free_path;
2732 }
2733
2734 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2735 struct btrfs_file_extent_item);
2736
2737 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2738 backref->generation)
2739 goto out_free_path;
2740
2741 btrfs_release_path(path);
2742
2743 start = backref->file_pos;
2744 if (backref->extent_offset < old->extent_offset + old->offset)
2745 start += old->extent_offset + old->offset -
2746 backref->extent_offset;
2747
2748 len = min(backref->extent_offset + backref->num_bytes,
2749 old->extent_offset + old->offset + old->len);
2750 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2751
2752 ret = btrfs_drop_extents(trans, root, inode, start,
2753 start + len, 1);
2754 if (ret)
2755 goto out_free_path;
2756 again:
2757 key.objectid = btrfs_ino(BTRFS_I(inode));
2758 key.type = BTRFS_EXTENT_DATA_KEY;
2759 key.offset = start;
2760
2761 path->leave_spinning = 1;
2762 if (merge) {
2763 struct btrfs_file_extent_item *fi;
2764 u64 extent_len;
2765 struct btrfs_key found_key;
2766
2767 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2768 if (ret < 0)
2769 goto out_free_path;
2770
2771 path->slots[0]--;
2772 leaf = path->nodes[0];
2773 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2774
2775 fi = btrfs_item_ptr(leaf, path->slots[0],
2776 struct btrfs_file_extent_item);
2777 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2778
2779 if (extent_len + found_key.offset == start &&
2780 relink_is_mergable(leaf, fi, new)) {
2781 btrfs_set_file_extent_num_bytes(leaf, fi,
2782 extent_len + len);
2783 btrfs_mark_buffer_dirty(leaf);
2784 inode_add_bytes(inode, len);
2785
2786 ret = 1;
2787 goto out_free_path;
2788 } else {
2789 merge = false;
2790 btrfs_release_path(path);
2791 goto again;
2792 }
2793 }
2794
2795 ret = btrfs_insert_empty_item(trans, root, path, &key,
2796 sizeof(*extent));
2797 if (ret) {
2798 btrfs_abort_transaction(trans, ret);
2799 goto out_free_path;
2800 }
2801
2802 leaf = path->nodes[0];
2803 item = btrfs_item_ptr(leaf, path->slots[0],
2804 struct btrfs_file_extent_item);
2805 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2806 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2807 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2808 btrfs_set_file_extent_num_bytes(leaf, item, len);
2809 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2810 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2811 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2812 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2813 btrfs_set_file_extent_encryption(leaf, item, 0);
2814 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2815
2816 btrfs_mark_buffer_dirty(leaf);
2817 inode_add_bytes(inode, len);
2818 btrfs_release_path(path);
2819
2820 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2821 new->disk_len, 0);
2822 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2823 new->file_pos); /* start - extent_offset */
2824 ret = btrfs_inc_extent_ref(trans, &ref);
2825 if (ret) {
2826 btrfs_abort_transaction(trans, ret);
2827 goto out_free_path;
2828 }
2829
2830 ret = 1;
2831 out_free_path:
2832 btrfs_release_path(path);
2833 path->leave_spinning = 0;
2834 btrfs_end_transaction(trans);
2835 out_unlock:
2836 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2837 &cached);
2838 iput(inode);
2839 return ret;
2840 }
2841
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2842 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2843 {
2844 struct old_sa_defrag_extent *old, *tmp;
2845
2846 if (!new)
2847 return;
2848
2849 list_for_each_entry_safe(old, tmp, &new->head, list) {
2850 kfree(old);
2851 }
2852 kfree(new);
2853 }
2854
relink_file_extents(struct new_sa_defrag_extent * new)2855 static void relink_file_extents(struct new_sa_defrag_extent *new)
2856 {
2857 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2858 struct btrfs_path *path;
2859 struct sa_defrag_extent_backref *backref;
2860 struct sa_defrag_extent_backref *prev = NULL;
2861 struct rb_node *node;
2862 int ret;
2863
2864 path = btrfs_alloc_path();
2865 if (!path)
2866 return;
2867
2868 if (!record_extent_backrefs(path, new)) {
2869 btrfs_free_path(path);
2870 goto out;
2871 }
2872 btrfs_release_path(path);
2873
2874 while (1) {
2875 node = rb_first(&new->root);
2876 if (!node)
2877 break;
2878 rb_erase(node, &new->root);
2879
2880 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2881
2882 ret = relink_extent_backref(path, prev, backref);
2883 WARN_ON(ret < 0);
2884
2885 kfree(prev);
2886
2887 if (ret == 1)
2888 prev = backref;
2889 else
2890 prev = NULL;
2891 cond_resched();
2892 }
2893 kfree(prev);
2894
2895 btrfs_free_path(path);
2896 out:
2897 free_sa_defrag_extent(new);
2898
2899 atomic_dec(&fs_info->defrag_running);
2900 wake_up(&fs_info->transaction_wait);
2901 }
2902
2903 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2904 record_old_file_extents(struct inode *inode,
2905 struct btrfs_ordered_extent *ordered)
2906 {
2907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2908 struct btrfs_root *root = BTRFS_I(inode)->root;
2909 struct btrfs_path *path;
2910 struct btrfs_key key;
2911 struct old_sa_defrag_extent *old;
2912 struct new_sa_defrag_extent *new;
2913 int ret;
2914
2915 new = kmalloc(sizeof(*new), GFP_NOFS);
2916 if (!new)
2917 return NULL;
2918
2919 new->inode = inode;
2920 new->file_pos = ordered->file_offset;
2921 new->len = ordered->len;
2922 new->bytenr = ordered->start;
2923 new->disk_len = ordered->disk_len;
2924 new->compress_type = ordered->compress_type;
2925 new->root = RB_ROOT;
2926 INIT_LIST_HEAD(&new->head);
2927
2928 path = btrfs_alloc_path();
2929 if (!path)
2930 goto out_kfree;
2931
2932 key.objectid = btrfs_ino(BTRFS_I(inode));
2933 key.type = BTRFS_EXTENT_DATA_KEY;
2934 key.offset = new->file_pos;
2935
2936 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2937 if (ret < 0)
2938 goto out_free_path;
2939 if (ret > 0 && path->slots[0] > 0)
2940 path->slots[0]--;
2941
2942 /* find out all the old extents for the file range */
2943 while (1) {
2944 struct btrfs_file_extent_item *extent;
2945 struct extent_buffer *l;
2946 int slot;
2947 u64 num_bytes;
2948 u64 offset;
2949 u64 end;
2950 u64 disk_bytenr;
2951 u64 extent_offset;
2952
2953 l = path->nodes[0];
2954 slot = path->slots[0];
2955
2956 if (slot >= btrfs_header_nritems(l)) {
2957 ret = btrfs_next_leaf(root, path);
2958 if (ret < 0)
2959 goto out_free_path;
2960 else if (ret > 0)
2961 break;
2962 continue;
2963 }
2964
2965 btrfs_item_key_to_cpu(l, &key, slot);
2966
2967 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2968 break;
2969 if (key.type != BTRFS_EXTENT_DATA_KEY)
2970 break;
2971 if (key.offset >= new->file_pos + new->len)
2972 break;
2973
2974 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2975
2976 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2977 if (key.offset + num_bytes < new->file_pos)
2978 goto next;
2979
2980 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2981 if (!disk_bytenr)
2982 goto next;
2983
2984 extent_offset = btrfs_file_extent_offset(l, extent);
2985
2986 old = kmalloc(sizeof(*old), GFP_NOFS);
2987 if (!old)
2988 goto out_free_path;
2989
2990 offset = max(new->file_pos, key.offset);
2991 end = min(new->file_pos + new->len, key.offset + num_bytes);
2992
2993 old->bytenr = disk_bytenr;
2994 old->extent_offset = extent_offset;
2995 old->offset = offset - key.offset;
2996 old->len = end - offset;
2997 old->new = new;
2998 old->count = 0;
2999 list_add_tail(&old->list, &new->head);
3000 next:
3001 path->slots[0]++;
3002 cond_resched();
3003 }
3004
3005 btrfs_free_path(path);
3006 atomic_inc(&fs_info->defrag_running);
3007
3008 return new;
3009
3010 out_free_path:
3011 btrfs_free_path(path);
3012 out_kfree:
3013 free_sa_defrag_extent(new);
3014 return NULL;
3015 }
3016
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3017 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3018 u64 start, u64 len)
3019 {
3020 struct btrfs_block_group_cache *cache;
3021
3022 cache = btrfs_lookup_block_group(fs_info, start);
3023 ASSERT(cache);
3024
3025 spin_lock(&cache->lock);
3026 cache->delalloc_bytes -= len;
3027 spin_unlock(&cache->lock);
3028
3029 btrfs_put_block_group(cache);
3030 }
3031
3032 /* as ordered data IO finishes, this gets called so we can finish
3033 * an ordered extent if the range of bytes in the file it covers are
3034 * fully written.
3035 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)3036 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3037 {
3038 struct inode *inode = ordered_extent->inode;
3039 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3040 struct btrfs_root *root = BTRFS_I(inode)->root;
3041 struct btrfs_trans_handle *trans = NULL;
3042 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3043 struct extent_state *cached_state = NULL;
3044 struct new_sa_defrag_extent *new = NULL;
3045 int compress_type = 0;
3046 int ret = 0;
3047 u64 logical_len = ordered_extent->len;
3048 bool nolock;
3049 bool truncated = false;
3050 bool range_locked = false;
3051 bool clear_new_delalloc_bytes = false;
3052 bool clear_reserved_extent = true;
3053
3054 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3055 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3056 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3057 clear_new_delalloc_bytes = true;
3058
3059 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3060
3061 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3062 ret = -EIO;
3063 goto out;
3064 }
3065
3066 btrfs_free_io_failure_record(BTRFS_I(inode),
3067 ordered_extent->file_offset,
3068 ordered_extent->file_offset +
3069 ordered_extent->len - 1);
3070
3071 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3072 truncated = true;
3073 logical_len = ordered_extent->truncated_len;
3074 /* Truncated the entire extent, don't bother adding */
3075 if (!logical_len)
3076 goto out;
3077 }
3078
3079 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3080 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3081
3082 /*
3083 * For mwrite(mmap + memset to write) case, we still reserve
3084 * space for NOCOW range.
3085 * As NOCOW won't cause a new delayed ref, just free the space
3086 */
3087 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3088 ordered_extent->len);
3089 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3090 if (nolock)
3091 trans = btrfs_join_transaction_nolock(root);
3092 else
3093 trans = btrfs_join_transaction(root);
3094 if (IS_ERR(trans)) {
3095 ret = PTR_ERR(trans);
3096 trans = NULL;
3097 goto out;
3098 }
3099 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3100 ret = btrfs_update_inode_fallback(trans, root, inode);
3101 if (ret) /* -ENOMEM or corruption */
3102 btrfs_abort_transaction(trans, ret);
3103 goto out;
3104 }
3105
3106 range_locked = true;
3107 lock_extent_bits(io_tree, ordered_extent->file_offset,
3108 ordered_extent->file_offset + ordered_extent->len - 1,
3109 &cached_state);
3110
3111 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3112 ordered_extent->file_offset + ordered_extent->len - 1,
3113 EXTENT_DEFRAG, 0, cached_state);
3114 if (ret) {
3115 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3116 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3117 /* the inode is shared */
3118 new = record_old_file_extents(inode, ordered_extent);
3119
3120 clear_extent_bit(io_tree, ordered_extent->file_offset,
3121 ordered_extent->file_offset + ordered_extent->len - 1,
3122 EXTENT_DEFRAG, 0, 0, &cached_state);
3123 }
3124
3125 if (nolock)
3126 trans = btrfs_join_transaction_nolock(root);
3127 else
3128 trans = btrfs_join_transaction(root);
3129 if (IS_ERR(trans)) {
3130 ret = PTR_ERR(trans);
3131 trans = NULL;
3132 goto out;
3133 }
3134
3135 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3136
3137 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3138 compress_type = ordered_extent->compress_type;
3139 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3140 BUG_ON(compress_type);
3141 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3142 ordered_extent->len);
3143 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3144 ordered_extent->file_offset,
3145 ordered_extent->file_offset +
3146 logical_len);
3147 } else {
3148 BUG_ON(root == fs_info->tree_root);
3149 ret = insert_reserved_file_extent(trans, inode,
3150 ordered_extent->file_offset,
3151 ordered_extent->start,
3152 ordered_extent->disk_len,
3153 logical_len, logical_len,
3154 compress_type, 0, 0,
3155 BTRFS_FILE_EXTENT_REG);
3156 if (!ret) {
3157 clear_reserved_extent = false;
3158 btrfs_release_delalloc_bytes(fs_info,
3159 ordered_extent->start,
3160 ordered_extent->disk_len);
3161 }
3162 }
3163 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3164 ordered_extent->file_offset, ordered_extent->len,
3165 trans->transid);
3166 if (ret < 0) {
3167 btrfs_abort_transaction(trans, ret);
3168 goto out;
3169 }
3170
3171 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3172 if (ret) {
3173 btrfs_abort_transaction(trans, ret);
3174 goto out;
3175 }
3176
3177 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3178 ret = btrfs_update_inode_fallback(trans, root, inode);
3179 if (ret) { /* -ENOMEM or corruption */
3180 btrfs_abort_transaction(trans, ret);
3181 goto out;
3182 }
3183 ret = 0;
3184 out:
3185 if (range_locked || clear_new_delalloc_bytes) {
3186 unsigned int clear_bits = 0;
3187
3188 if (range_locked)
3189 clear_bits |= EXTENT_LOCKED;
3190 if (clear_new_delalloc_bytes)
3191 clear_bits |= EXTENT_DELALLOC_NEW;
3192 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3193 ordered_extent->file_offset,
3194 ordered_extent->file_offset +
3195 ordered_extent->len - 1,
3196 clear_bits,
3197 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3198 0, &cached_state);
3199 }
3200
3201 if (trans)
3202 btrfs_end_transaction(trans);
3203
3204 if (ret || truncated) {
3205 u64 start, end;
3206
3207 if (truncated)
3208 start = ordered_extent->file_offset + logical_len;
3209 else
3210 start = ordered_extent->file_offset;
3211 end = ordered_extent->file_offset + ordered_extent->len - 1;
3212 clear_extent_uptodate(io_tree, start, end, NULL);
3213
3214 /* Drop the cache for the part of the extent we didn't write. */
3215 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3216
3217 /*
3218 * If the ordered extent had an IOERR or something else went
3219 * wrong we need to return the space for this ordered extent
3220 * back to the allocator. We only free the extent in the
3221 * truncated case if we didn't write out the extent at all.
3222 *
3223 * If we made it past insert_reserved_file_extent before we
3224 * errored out then we don't need to do this as the accounting
3225 * has already been done.
3226 */
3227 if ((ret || !logical_len) &&
3228 clear_reserved_extent &&
3229 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3230 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3231 btrfs_free_reserved_extent(fs_info,
3232 ordered_extent->start,
3233 ordered_extent->disk_len, 1);
3234 }
3235
3236
3237 /*
3238 * This needs to be done to make sure anybody waiting knows we are done
3239 * updating everything for this ordered extent.
3240 */
3241 btrfs_remove_ordered_extent(inode, ordered_extent);
3242
3243 /* for snapshot-aware defrag */
3244 if (new) {
3245 if (ret) {
3246 free_sa_defrag_extent(new);
3247 atomic_dec(&fs_info->defrag_running);
3248 } else {
3249 relink_file_extents(new);
3250 }
3251 }
3252
3253 /* once for us */
3254 btrfs_put_ordered_extent(ordered_extent);
3255 /* once for the tree */
3256 btrfs_put_ordered_extent(ordered_extent);
3257
3258 return ret;
3259 }
3260
finish_ordered_fn(struct btrfs_work * work)3261 static void finish_ordered_fn(struct btrfs_work *work)
3262 {
3263 struct btrfs_ordered_extent *ordered_extent;
3264 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3265 btrfs_finish_ordered_io(ordered_extent);
3266 }
3267
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)3268 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3269 u64 end, int uptodate)
3270 {
3271 struct inode *inode = page->mapping->host;
3272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3273 struct btrfs_ordered_extent *ordered_extent = NULL;
3274 struct btrfs_workqueue *wq;
3275
3276 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3277
3278 ClearPagePrivate2(page);
3279 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3280 end - start + 1, uptodate))
3281 return;
3282
3283 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
3284 wq = fs_info->endio_freespace_worker;
3285 else
3286 wq = fs_info->endio_write_workers;
3287
3288 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3289 btrfs_queue_work(wq, &ordered_extent->work);
3290 }
3291
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3292 static int __readpage_endio_check(struct inode *inode,
3293 struct btrfs_io_bio *io_bio,
3294 int icsum, struct page *page,
3295 int pgoff, u64 start, size_t len)
3296 {
3297 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3298 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3299 char *kaddr;
3300 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3301 u8 *csum_expected;
3302 u8 csum[BTRFS_CSUM_SIZE];
3303
3304 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3305
3306 kaddr = kmap_atomic(page);
3307 shash->tfm = fs_info->csum_shash;
3308
3309 crypto_shash_init(shash);
3310 crypto_shash_update(shash, kaddr + pgoff, len);
3311 crypto_shash_final(shash, csum);
3312
3313 if (memcmp(csum, csum_expected, csum_size))
3314 goto zeroit;
3315
3316 kunmap_atomic(kaddr);
3317 return 0;
3318 zeroit:
3319 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3320 io_bio->mirror_num);
3321 memset(kaddr + pgoff, 1, len);
3322 flush_dcache_page(page);
3323 kunmap_atomic(kaddr);
3324 return -EIO;
3325 }
3326
3327 /*
3328 * when reads are done, we need to check csums to verify the data is correct
3329 * if there's a match, we allow the bio to finish. If not, the code in
3330 * extent_io.c will try to find good copies for us.
3331 */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3332 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3333 u64 phy_offset, struct page *page,
3334 u64 start, u64 end, int mirror)
3335 {
3336 size_t offset = start - page_offset(page);
3337 struct inode *inode = page->mapping->host;
3338 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3339 struct btrfs_root *root = BTRFS_I(inode)->root;
3340
3341 if (PageChecked(page)) {
3342 ClearPageChecked(page);
3343 return 0;
3344 }
3345
3346 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3347 return 0;
3348
3349 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3350 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3351 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3352 return 0;
3353 }
3354
3355 phy_offset >>= inode->i_sb->s_blocksize_bits;
3356 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3357 start, (size_t)(end - start + 1));
3358 }
3359
3360 /*
3361 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3362 *
3363 * @inode: The inode we want to perform iput on
3364 *
3365 * This function uses the generic vfs_inode::i_count to track whether we should
3366 * just decrement it (in case it's > 1) or if this is the last iput then link
3367 * the inode to the delayed iput machinery. Delayed iputs are processed at
3368 * transaction commit time/superblock commit/cleaner kthread.
3369 */
btrfs_add_delayed_iput(struct inode * inode)3370 void btrfs_add_delayed_iput(struct inode *inode)
3371 {
3372 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3373 struct btrfs_inode *binode = BTRFS_I(inode);
3374
3375 if (atomic_add_unless(&inode->i_count, -1, 1))
3376 return;
3377
3378 atomic_inc(&fs_info->nr_delayed_iputs);
3379 spin_lock(&fs_info->delayed_iput_lock);
3380 ASSERT(list_empty(&binode->delayed_iput));
3381 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3382 spin_unlock(&fs_info->delayed_iput_lock);
3383 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3384 wake_up_process(fs_info->cleaner_kthread);
3385 }
3386
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3387 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3388 struct btrfs_inode *inode)
3389 {
3390 list_del_init(&inode->delayed_iput);
3391 spin_unlock(&fs_info->delayed_iput_lock);
3392 iput(&inode->vfs_inode);
3393 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3394 wake_up(&fs_info->delayed_iputs_wait);
3395 spin_lock(&fs_info->delayed_iput_lock);
3396 }
3397
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3398 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3399 struct btrfs_inode *inode)
3400 {
3401 if (!list_empty(&inode->delayed_iput)) {
3402 spin_lock(&fs_info->delayed_iput_lock);
3403 if (!list_empty(&inode->delayed_iput))
3404 run_delayed_iput_locked(fs_info, inode);
3405 spin_unlock(&fs_info->delayed_iput_lock);
3406 }
3407 }
3408
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3409 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3410 {
3411
3412 spin_lock(&fs_info->delayed_iput_lock);
3413 while (!list_empty(&fs_info->delayed_iputs)) {
3414 struct btrfs_inode *inode;
3415
3416 inode = list_first_entry(&fs_info->delayed_iputs,
3417 struct btrfs_inode, delayed_iput);
3418 run_delayed_iput_locked(fs_info, inode);
3419 }
3420 spin_unlock(&fs_info->delayed_iput_lock);
3421 }
3422
3423 /**
3424 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3425 * @fs_info - the fs_info for this fs
3426 * @return - EINTR if we were killed, 0 if nothing's pending
3427 *
3428 * This will wait on any delayed iputs that are currently running with KILLABLE
3429 * set. Once they are all done running we will return, unless we are killed in
3430 * which case we return EINTR. This helps in user operations like fallocate etc
3431 * that might get blocked on the iputs.
3432 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3433 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3434 {
3435 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3436 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3437 if (ret)
3438 return -EINTR;
3439 return 0;
3440 }
3441
3442 /*
3443 * This creates an orphan entry for the given inode in case something goes wrong
3444 * in the middle of an unlink.
3445 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3446 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3447 struct btrfs_inode *inode)
3448 {
3449 int ret;
3450
3451 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3452 if (ret && ret != -EEXIST) {
3453 btrfs_abort_transaction(trans, ret);
3454 return ret;
3455 }
3456
3457 return 0;
3458 }
3459
3460 /*
3461 * We have done the delete so we can go ahead and remove the orphan item for
3462 * this particular inode.
3463 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3464 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3465 struct btrfs_inode *inode)
3466 {
3467 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3468 }
3469
3470 /*
3471 * this cleans up any orphans that may be left on the list from the last use
3472 * of this root.
3473 */
btrfs_orphan_cleanup(struct btrfs_root * root)3474 int btrfs_orphan_cleanup(struct btrfs_root *root)
3475 {
3476 struct btrfs_fs_info *fs_info = root->fs_info;
3477 struct btrfs_path *path;
3478 struct extent_buffer *leaf;
3479 struct btrfs_key key, found_key;
3480 struct btrfs_trans_handle *trans;
3481 struct inode *inode;
3482 u64 last_objectid = 0;
3483 int ret = 0, nr_unlink = 0;
3484
3485 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3486 return 0;
3487
3488 path = btrfs_alloc_path();
3489 if (!path) {
3490 ret = -ENOMEM;
3491 goto out;
3492 }
3493 path->reada = READA_BACK;
3494
3495 key.objectid = BTRFS_ORPHAN_OBJECTID;
3496 key.type = BTRFS_ORPHAN_ITEM_KEY;
3497 key.offset = (u64)-1;
3498
3499 while (1) {
3500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3501 if (ret < 0)
3502 goto out;
3503
3504 /*
3505 * if ret == 0 means we found what we were searching for, which
3506 * is weird, but possible, so only screw with path if we didn't
3507 * find the key and see if we have stuff that matches
3508 */
3509 if (ret > 0) {
3510 ret = 0;
3511 if (path->slots[0] == 0)
3512 break;
3513 path->slots[0]--;
3514 }
3515
3516 /* pull out the item */
3517 leaf = path->nodes[0];
3518 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3519
3520 /* make sure the item matches what we want */
3521 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3522 break;
3523 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3524 break;
3525
3526 /* release the path since we're done with it */
3527 btrfs_release_path(path);
3528
3529 /*
3530 * this is where we are basically btrfs_lookup, without the
3531 * crossing root thing. we store the inode number in the
3532 * offset of the orphan item.
3533 */
3534
3535 if (found_key.offset == last_objectid) {
3536 btrfs_err(fs_info,
3537 "Error removing orphan entry, stopping orphan cleanup");
3538 ret = -EINVAL;
3539 goto out;
3540 }
3541
3542 last_objectid = found_key.offset;
3543
3544 found_key.objectid = found_key.offset;
3545 found_key.type = BTRFS_INODE_ITEM_KEY;
3546 found_key.offset = 0;
3547 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3548 ret = PTR_ERR_OR_ZERO(inode);
3549 if (ret && ret != -ENOENT)
3550 goto out;
3551
3552 if (ret == -ENOENT && root == fs_info->tree_root) {
3553 struct btrfs_root *dead_root;
3554 struct btrfs_fs_info *fs_info = root->fs_info;
3555 int is_dead_root = 0;
3556
3557 /*
3558 * this is an orphan in the tree root. Currently these
3559 * could come from 2 sources:
3560 * a) a snapshot deletion in progress
3561 * b) a free space cache inode
3562 * We need to distinguish those two, as the snapshot
3563 * orphan must not get deleted.
3564 * find_dead_roots already ran before us, so if this
3565 * is a snapshot deletion, we should find the root
3566 * in the dead_roots list
3567 */
3568 spin_lock(&fs_info->trans_lock);
3569 list_for_each_entry(dead_root, &fs_info->dead_roots,
3570 root_list) {
3571 if (dead_root->root_key.objectid ==
3572 found_key.objectid) {
3573 is_dead_root = 1;
3574 break;
3575 }
3576 }
3577 spin_unlock(&fs_info->trans_lock);
3578 if (is_dead_root) {
3579 /* prevent this orphan from being found again */
3580 key.offset = found_key.objectid - 1;
3581 continue;
3582 }
3583
3584 }
3585
3586 /*
3587 * If we have an inode with links, there are a couple of
3588 * possibilities. Old kernels (before v3.12) used to create an
3589 * orphan item for truncate indicating that there were possibly
3590 * extent items past i_size that needed to be deleted. In v3.12,
3591 * truncate was changed to update i_size in sync with the extent
3592 * items, but the (useless) orphan item was still created. Since
3593 * v4.18, we don't create the orphan item for truncate at all.
3594 *
3595 * So, this item could mean that we need to do a truncate, but
3596 * only if this filesystem was last used on a pre-v3.12 kernel
3597 * and was not cleanly unmounted. The odds of that are quite
3598 * slim, and it's a pain to do the truncate now, so just delete
3599 * the orphan item.
3600 *
3601 * It's also possible that this orphan item was supposed to be
3602 * deleted but wasn't. The inode number may have been reused,
3603 * but either way, we can delete the orphan item.
3604 */
3605 if (ret == -ENOENT || inode->i_nlink) {
3606 if (!ret)
3607 iput(inode);
3608 trans = btrfs_start_transaction(root, 1);
3609 if (IS_ERR(trans)) {
3610 ret = PTR_ERR(trans);
3611 goto out;
3612 }
3613 btrfs_debug(fs_info, "auto deleting %Lu",
3614 found_key.objectid);
3615 ret = btrfs_del_orphan_item(trans, root,
3616 found_key.objectid);
3617 btrfs_end_transaction(trans);
3618 if (ret)
3619 goto out;
3620 continue;
3621 }
3622
3623 nr_unlink++;
3624
3625 /* this will do delete_inode and everything for us */
3626 iput(inode);
3627 }
3628 /* release the path since we're done with it */
3629 btrfs_release_path(path);
3630
3631 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3632
3633 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3634 trans = btrfs_join_transaction(root);
3635 if (!IS_ERR(trans))
3636 btrfs_end_transaction(trans);
3637 }
3638
3639 if (nr_unlink)
3640 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3641
3642 out:
3643 if (ret)
3644 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3645 btrfs_free_path(path);
3646 return ret;
3647 }
3648
3649 /*
3650 * very simple check to peek ahead in the leaf looking for xattrs. If we
3651 * don't find any xattrs, we know there can't be any acls.
3652 *
3653 * slot is the slot the inode is in, objectid is the objectid of the inode
3654 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3655 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3656 int slot, u64 objectid,
3657 int *first_xattr_slot)
3658 {
3659 u32 nritems = btrfs_header_nritems(leaf);
3660 struct btrfs_key found_key;
3661 static u64 xattr_access = 0;
3662 static u64 xattr_default = 0;
3663 int scanned = 0;
3664
3665 if (!xattr_access) {
3666 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3667 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3668 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3669 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3670 }
3671
3672 slot++;
3673 *first_xattr_slot = -1;
3674 while (slot < nritems) {
3675 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3676
3677 /* we found a different objectid, there must not be acls */
3678 if (found_key.objectid != objectid)
3679 return 0;
3680
3681 /* we found an xattr, assume we've got an acl */
3682 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3683 if (*first_xattr_slot == -1)
3684 *first_xattr_slot = slot;
3685 if (found_key.offset == xattr_access ||
3686 found_key.offset == xattr_default)
3687 return 1;
3688 }
3689
3690 /*
3691 * we found a key greater than an xattr key, there can't
3692 * be any acls later on
3693 */
3694 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3695 return 0;
3696
3697 slot++;
3698 scanned++;
3699
3700 /*
3701 * it goes inode, inode backrefs, xattrs, extents,
3702 * so if there are a ton of hard links to an inode there can
3703 * be a lot of backrefs. Don't waste time searching too hard,
3704 * this is just an optimization
3705 */
3706 if (scanned >= 8)
3707 break;
3708 }
3709 /* we hit the end of the leaf before we found an xattr or
3710 * something larger than an xattr. We have to assume the inode
3711 * has acls
3712 */
3713 if (*first_xattr_slot == -1)
3714 *first_xattr_slot = slot;
3715 return 1;
3716 }
3717
3718 /*
3719 * read an inode from the btree into the in-memory inode
3720 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3721 static int btrfs_read_locked_inode(struct inode *inode,
3722 struct btrfs_path *in_path)
3723 {
3724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3725 struct btrfs_path *path = in_path;
3726 struct extent_buffer *leaf;
3727 struct btrfs_inode_item *inode_item;
3728 struct btrfs_root *root = BTRFS_I(inode)->root;
3729 struct btrfs_key location;
3730 unsigned long ptr;
3731 int maybe_acls;
3732 u32 rdev;
3733 int ret;
3734 bool filled = false;
3735 int first_xattr_slot;
3736
3737 ret = btrfs_fill_inode(inode, &rdev);
3738 if (!ret)
3739 filled = true;
3740
3741 if (!path) {
3742 path = btrfs_alloc_path();
3743 if (!path)
3744 return -ENOMEM;
3745 }
3746
3747 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3748
3749 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3750 if (ret) {
3751 if (path != in_path)
3752 btrfs_free_path(path);
3753 return ret;
3754 }
3755
3756 leaf = path->nodes[0];
3757
3758 if (filled)
3759 goto cache_index;
3760
3761 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3762 struct btrfs_inode_item);
3763 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3764 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3765 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3766 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3767 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3768
3769 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3770 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3771
3772 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3773 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3774
3775 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3776 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3777
3778 BTRFS_I(inode)->i_otime.tv_sec =
3779 btrfs_timespec_sec(leaf, &inode_item->otime);
3780 BTRFS_I(inode)->i_otime.tv_nsec =
3781 btrfs_timespec_nsec(leaf, &inode_item->otime);
3782
3783 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3784 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3785 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3786
3787 inode_set_iversion_queried(inode,
3788 btrfs_inode_sequence(leaf, inode_item));
3789 inode->i_generation = BTRFS_I(inode)->generation;
3790 inode->i_rdev = 0;
3791 rdev = btrfs_inode_rdev(leaf, inode_item);
3792
3793 BTRFS_I(inode)->index_cnt = (u64)-1;
3794 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3795
3796 cache_index:
3797 /*
3798 * If we were modified in the current generation and evicted from memory
3799 * and then re-read we need to do a full sync since we don't have any
3800 * idea about which extents were modified before we were evicted from
3801 * cache.
3802 *
3803 * This is required for both inode re-read from disk and delayed inode
3804 * in delayed_nodes_tree.
3805 */
3806 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3807 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3808 &BTRFS_I(inode)->runtime_flags);
3809
3810 /*
3811 * We don't persist the id of the transaction where an unlink operation
3812 * against the inode was last made. So here we assume the inode might
3813 * have been evicted, and therefore the exact value of last_unlink_trans
3814 * lost, and set it to last_trans to avoid metadata inconsistencies
3815 * between the inode and its parent if the inode is fsync'ed and the log
3816 * replayed. For example, in the scenario:
3817 *
3818 * touch mydir/foo
3819 * ln mydir/foo mydir/bar
3820 * sync
3821 * unlink mydir/bar
3822 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3823 * xfs_io -c fsync mydir/foo
3824 * <power failure>
3825 * mount fs, triggers fsync log replay
3826 *
3827 * We must make sure that when we fsync our inode foo we also log its
3828 * parent inode, otherwise after log replay the parent still has the
3829 * dentry with the "bar" name but our inode foo has a link count of 1
3830 * and doesn't have an inode ref with the name "bar" anymore.
3831 *
3832 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3833 * but it guarantees correctness at the expense of occasional full
3834 * transaction commits on fsync if our inode is a directory, or if our
3835 * inode is not a directory, logging its parent unnecessarily.
3836 */
3837 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3838
3839 path->slots[0]++;
3840 if (inode->i_nlink != 1 ||
3841 path->slots[0] >= btrfs_header_nritems(leaf))
3842 goto cache_acl;
3843
3844 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3845 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3846 goto cache_acl;
3847
3848 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3849 if (location.type == BTRFS_INODE_REF_KEY) {
3850 struct btrfs_inode_ref *ref;
3851
3852 ref = (struct btrfs_inode_ref *)ptr;
3853 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3854 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3855 struct btrfs_inode_extref *extref;
3856
3857 extref = (struct btrfs_inode_extref *)ptr;
3858 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3859 extref);
3860 }
3861 cache_acl:
3862 /*
3863 * try to precache a NULL acl entry for files that don't have
3864 * any xattrs or acls
3865 */
3866 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3867 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3868 if (first_xattr_slot != -1) {
3869 path->slots[0] = first_xattr_slot;
3870 ret = btrfs_load_inode_props(inode, path);
3871 if (ret)
3872 btrfs_err(fs_info,
3873 "error loading props for ino %llu (root %llu): %d",
3874 btrfs_ino(BTRFS_I(inode)),
3875 root->root_key.objectid, ret);
3876 }
3877 if (path != in_path)
3878 btrfs_free_path(path);
3879
3880 if (!maybe_acls)
3881 cache_no_acl(inode);
3882
3883 switch (inode->i_mode & S_IFMT) {
3884 case S_IFREG:
3885 inode->i_mapping->a_ops = &btrfs_aops;
3886 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3887 inode->i_fop = &btrfs_file_operations;
3888 inode->i_op = &btrfs_file_inode_operations;
3889 break;
3890 case S_IFDIR:
3891 inode->i_fop = &btrfs_dir_file_operations;
3892 inode->i_op = &btrfs_dir_inode_operations;
3893 break;
3894 case S_IFLNK:
3895 inode->i_op = &btrfs_symlink_inode_operations;
3896 inode_nohighmem(inode);
3897 inode->i_mapping->a_ops = &btrfs_aops;
3898 break;
3899 default:
3900 inode->i_op = &btrfs_special_inode_operations;
3901 init_special_inode(inode, inode->i_mode, rdev);
3902 break;
3903 }
3904
3905 btrfs_sync_inode_flags_to_i_flags(inode);
3906 return 0;
3907 }
3908
3909 /*
3910 * given a leaf and an inode, copy the inode fields into the leaf
3911 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3912 static void fill_inode_item(struct btrfs_trans_handle *trans,
3913 struct extent_buffer *leaf,
3914 struct btrfs_inode_item *item,
3915 struct inode *inode)
3916 {
3917 struct btrfs_map_token token;
3918
3919 btrfs_init_map_token(&token, leaf);
3920
3921 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3922 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3923 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3924 &token);
3925 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3926 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3927
3928 btrfs_set_token_timespec_sec(leaf, &item->atime,
3929 inode->i_atime.tv_sec, &token);
3930 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3931 inode->i_atime.tv_nsec, &token);
3932
3933 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3934 inode->i_mtime.tv_sec, &token);
3935 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3936 inode->i_mtime.tv_nsec, &token);
3937
3938 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3939 inode->i_ctime.tv_sec, &token);
3940 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3941 inode->i_ctime.tv_nsec, &token);
3942
3943 btrfs_set_token_timespec_sec(leaf, &item->otime,
3944 BTRFS_I(inode)->i_otime.tv_sec, &token);
3945 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3946 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3947
3948 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3949 &token);
3950 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3951 &token);
3952 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3953 &token);
3954 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3955 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3956 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3957 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3958 }
3959
3960 /*
3961 * copy everything in the in-memory inode into the btree.
3962 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3963 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root, struct inode *inode)
3965 {
3966 struct btrfs_inode_item *inode_item;
3967 struct btrfs_path *path;
3968 struct extent_buffer *leaf;
3969 int ret;
3970
3971 path = btrfs_alloc_path();
3972 if (!path)
3973 return -ENOMEM;
3974
3975 path->leave_spinning = 1;
3976 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3977 1);
3978 if (ret) {
3979 if (ret > 0)
3980 ret = -ENOENT;
3981 goto failed;
3982 }
3983
3984 leaf = path->nodes[0];
3985 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3986 struct btrfs_inode_item);
3987
3988 fill_inode_item(trans, leaf, inode_item, inode);
3989 btrfs_mark_buffer_dirty(leaf);
3990 btrfs_set_inode_last_trans(trans, inode);
3991 ret = 0;
3992 failed:
3993 btrfs_free_path(path);
3994 return ret;
3995 }
3996
3997 /*
3998 * copy everything in the in-memory inode into the btree.
3999 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4000 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4001 struct btrfs_root *root, struct inode *inode)
4002 {
4003 struct btrfs_fs_info *fs_info = root->fs_info;
4004 int ret;
4005
4006 /*
4007 * If the inode is a free space inode, we can deadlock during commit
4008 * if we put it into the delayed code.
4009 *
4010 * The data relocation inode should also be directly updated
4011 * without delay
4012 */
4013 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4014 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4015 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4016 btrfs_update_root_times(trans, root);
4017
4018 ret = btrfs_delayed_update_inode(trans, root, inode);
4019 if (!ret)
4020 btrfs_set_inode_last_trans(trans, inode);
4021 return ret;
4022 }
4023
4024 return btrfs_update_inode_item(trans, root, inode);
4025 }
4026
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4027 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4028 struct btrfs_root *root,
4029 struct inode *inode)
4030 {
4031 int ret;
4032
4033 ret = btrfs_update_inode(trans, root, inode);
4034 if (ret == -ENOSPC)
4035 return btrfs_update_inode_item(trans, root, inode);
4036 return ret;
4037 }
4038
4039 /*
4040 * unlink helper that gets used here in inode.c and in the tree logging
4041 * recovery code. It remove a link in a directory with a given name, and
4042 * also drops the back refs in the inode to the directory
4043 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4044 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4045 struct btrfs_root *root,
4046 struct btrfs_inode *dir,
4047 struct btrfs_inode *inode,
4048 const char *name, int name_len)
4049 {
4050 struct btrfs_fs_info *fs_info = root->fs_info;
4051 struct btrfs_path *path;
4052 int ret = 0;
4053 struct btrfs_dir_item *di;
4054 u64 index;
4055 u64 ino = btrfs_ino(inode);
4056 u64 dir_ino = btrfs_ino(dir);
4057
4058 path = btrfs_alloc_path();
4059 if (!path) {
4060 ret = -ENOMEM;
4061 goto out;
4062 }
4063
4064 path->leave_spinning = 1;
4065 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4066 name, name_len, -1);
4067 if (IS_ERR_OR_NULL(di)) {
4068 ret = di ? PTR_ERR(di) : -ENOENT;
4069 goto err;
4070 }
4071 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4072 if (ret)
4073 goto err;
4074 btrfs_release_path(path);
4075
4076 /*
4077 * If we don't have dir index, we have to get it by looking up
4078 * the inode ref, since we get the inode ref, remove it directly,
4079 * it is unnecessary to do delayed deletion.
4080 *
4081 * But if we have dir index, needn't search inode ref to get it.
4082 * Since the inode ref is close to the inode item, it is better
4083 * that we delay to delete it, and just do this deletion when
4084 * we update the inode item.
4085 */
4086 if (inode->dir_index) {
4087 ret = btrfs_delayed_delete_inode_ref(inode);
4088 if (!ret) {
4089 index = inode->dir_index;
4090 goto skip_backref;
4091 }
4092 }
4093
4094 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4095 dir_ino, &index);
4096 if (ret) {
4097 btrfs_info(fs_info,
4098 "failed to delete reference to %.*s, inode %llu parent %llu",
4099 name_len, name, ino, dir_ino);
4100 btrfs_abort_transaction(trans, ret);
4101 goto err;
4102 }
4103 skip_backref:
4104 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4105 if (ret) {
4106 btrfs_abort_transaction(trans, ret);
4107 goto err;
4108 }
4109
4110 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4111 dir_ino);
4112 if (ret != 0 && ret != -ENOENT) {
4113 btrfs_abort_transaction(trans, ret);
4114 goto err;
4115 }
4116
4117 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4118 index);
4119 if (ret == -ENOENT)
4120 ret = 0;
4121 else if (ret)
4122 btrfs_abort_transaction(trans, ret);
4123
4124 /*
4125 * If we have a pending delayed iput we could end up with the final iput
4126 * being run in btrfs-cleaner context. If we have enough of these built
4127 * up we can end up burning a lot of time in btrfs-cleaner without any
4128 * way to throttle the unlinks. Since we're currently holding a ref on
4129 * the inode we can run the delayed iput here without any issues as the
4130 * final iput won't be done until after we drop the ref we're currently
4131 * holding.
4132 */
4133 btrfs_run_delayed_iput(fs_info, inode);
4134 err:
4135 btrfs_free_path(path);
4136 if (ret)
4137 goto out;
4138
4139 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4140 inode_inc_iversion(&inode->vfs_inode);
4141 inode_inc_iversion(&dir->vfs_inode);
4142 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4143 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4144 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4145 out:
4146 return ret;
4147 }
4148
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4149 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4150 struct btrfs_root *root,
4151 struct btrfs_inode *dir, struct btrfs_inode *inode,
4152 const char *name, int name_len)
4153 {
4154 int ret;
4155 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4156 if (!ret) {
4157 drop_nlink(&inode->vfs_inode);
4158 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4159 }
4160 return ret;
4161 }
4162
4163 /*
4164 * helper to start transaction for unlink and rmdir.
4165 *
4166 * unlink and rmdir are special in btrfs, they do not always free space, so
4167 * if we cannot make our reservations the normal way try and see if there is
4168 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4169 * allow the unlink to occur.
4170 */
__unlink_start_trans(struct inode * dir)4171 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4172 {
4173 struct btrfs_root *root = BTRFS_I(dir)->root;
4174
4175 /*
4176 * 1 for the possible orphan item
4177 * 1 for the dir item
4178 * 1 for the dir index
4179 * 1 for the inode ref
4180 * 1 for the inode
4181 */
4182 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4183 }
4184
btrfs_unlink(struct inode * dir,struct dentry * dentry)4185 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4186 {
4187 struct btrfs_root *root = BTRFS_I(dir)->root;
4188 struct btrfs_trans_handle *trans;
4189 struct inode *inode = d_inode(dentry);
4190 int ret;
4191
4192 trans = __unlink_start_trans(dir);
4193 if (IS_ERR(trans))
4194 return PTR_ERR(trans);
4195
4196 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4197 0);
4198
4199 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4200 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4201 dentry->d_name.len);
4202 if (ret)
4203 goto out;
4204
4205 if (inode->i_nlink == 0) {
4206 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4207 if (ret)
4208 goto out;
4209 }
4210
4211 out:
4212 btrfs_end_transaction(trans);
4213 btrfs_btree_balance_dirty(root->fs_info);
4214 return ret;
4215 }
4216
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4217 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4218 struct inode *dir, struct dentry *dentry)
4219 {
4220 struct btrfs_root *root = BTRFS_I(dir)->root;
4221 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4222 struct btrfs_path *path;
4223 struct extent_buffer *leaf;
4224 struct btrfs_dir_item *di;
4225 struct btrfs_key key;
4226 const char *name = dentry->d_name.name;
4227 int name_len = dentry->d_name.len;
4228 u64 index;
4229 int ret;
4230 u64 objectid;
4231 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4232
4233 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4234 objectid = inode->root->root_key.objectid;
4235 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4236 objectid = inode->location.objectid;
4237 } else {
4238 WARN_ON(1);
4239 return -EINVAL;
4240 }
4241
4242 path = btrfs_alloc_path();
4243 if (!path)
4244 return -ENOMEM;
4245
4246 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4247 name, name_len, -1);
4248 if (IS_ERR_OR_NULL(di)) {
4249 ret = di ? PTR_ERR(di) : -ENOENT;
4250 goto out;
4251 }
4252
4253 leaf = path->nodes[0];
4254 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4255 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4256 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4257 if (ret) {
4258 btrfs_abort_transaction(trans, ret);
4259 goto out;
4260 }
4261 btrfs_release_path(path);
4262
4263 /*
4264 * This is a placeholder inode for a subvolume we didn't have a
4265 * reference to at the time of the snapshot creation. In the meantime
4266 * we could have renamed the real subvol link into our snapshot, so
4267 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4268 * Instead simply lookup the dir_index_item for this entry so we can
4269 * remove it. Otherwise we know we have a ref to the root and we can
4270 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4271 */
4272 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4273 di = btrfs_search_dir_index_item(root, path, dir_ino,
4274 name, name_len);
4275 if (IS_ERR_OR_NULL(di)) {
4276 if (!di)
4277 ret = -ENOENT;
4278 else
4279 ret = PTR_ERR(di);
4280 btrfs_abort_transaction(trans, ret);
4281 goto out;
4282 }
4283
4284 leaf = path->nodes[0];
4285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4286 index = key.offset;
4287 btrfs_release_path(path);
4288 } else {
4289 ret = btrfs_del_root_ref(trans, objectid,
4290 root->root_key.objectid, dir_ino,
4291 &index, name, name_len);
4292 if (ret) {
4293 btrfs_abort_transaction(trans, ret);
4294 goto out;
4295 }
4296 }
4297
4298 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4299 if (ret) {
4300 btrfs_abort_transaction(trans, ret);
4301 goto out;
4302 }
4303
4304 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4305 inode_inc_iversion(dir);
4306 dir->i_mtime = dir->i_ctime = current_time(dir);
4307 ret = btrfs_update_inode_fallback(trans, root, dir);
4308 if (ret)
4309 btrfs_abort_transaction(trans, ret);
4310 out:
4311 btrfs_free_path(path);
4312 return ret;
4313 }
4314
4315 /*
4316 * Helper to check if the subvolume references other subvolumes or if it's
4317 * default.
4318 */
may_destroy_subvol(struct btrfs_root * root)4319 static noinline int may_destroy_subvol(struct btrfs_root *root)
4320 {
4321 struct btrfs_fs_info *fs_info = root->fs_info;
4322 struct btrfs_path *path;
4323 struct btrfs_dir_item *di;
4324 struct btrfs_key key;
4325 u64 dir_id;
4326 int ret;
4327
4328 path = btrfs_alloc_path();
4329 if (!path)
4330 return -ENOMEM;
4331
4332 /* Make sure this root isn't set as the default subvol */
4333 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4334 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4335 dir_id, "default", 7, 0);
4336 if (di && !IS_ERR(di)) {
4337 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4338 if (key.objectid == root->root_key.objectid) {
4339 ret = -EPERM;
4340 btrfs_err(fs_info,
4341 "deleting default subvolume %llu is not allowed",
4342 key.objectid);
4343 goto out;
4344 }
4345 btrfs_release_path(path);
4346 }
4347
4348 key.objectid = root->root_key.objectid;
4349 key.type = BTRFS_ROOT_REF_KEY;
4350 key.offset = (u64)-1;
4351
4352 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4353 if (ret < 0)
4354 goto out;
4355 BUG_ON(ret == 0);
4356
4357 ret = 0;
4358 if (path->slots[0] > 0) {
4359 path->slots[0]--;
4360 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4361 if (key.objectid == root->root_key.objectid &&
4362 key.type == BTRFS_ROOT_REF_KEY)
4363 ret = -ENOTEMPTY;
4364 }
4365 out:
4366 btrfs_free_path(path);
4367 return ret;
4368 }
4369
4370 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4371 static void btrfs_prune_dentries(struct btrfs_root *root)
4372 {
4373 struct btrfs_fs_info *fs_info = root->fs_info;
4374 struct rb_node *node;
4375 struct rb_node *prev;
4376 struct btrfs_inode *entry;
4377 struct inode *inode;
4378 u64 objectid = 0;
4379
4380 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4381 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4382
4383 spin_lock(&root->inode_lock);
4384 again:
4385 node = root->inode_tree.rb_node;
4386 prev = NULL;
4387 while (node) {
4388 prev = node;
4389 entry = rb_entry(node, struct btrfs_inode, rb_node);
4390
4391 if (objectid < btrfs_ino(entry))
4392 node = node->rb_left;
4393 else if (objectid > btrfs_ino(entry))
4394 node = node->rb_right;
4395 else
4396 break;
4397 }
4398 if (!node) {
4399 while (prev) {
4400 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4401 if (objectid <= btrfs_ino(entry)) {
4402 node = prev;
4403 break;
4404 }
4405 prev = rb_next(prev);
4406 }
4407 }
4408 while (node) {
4409 entry = rb_entry(node, struct btrfs_inode, rb_node);
4410 objectid = btrfs_ino(entry) + 1;
4411 inode = igrab(&entry->vfs_inode);
4412 if (inode) {
4413 spin_unlock(&root->inode_lock);
4414 if (atomic_read(&inode->i_count) > 1)
4415 d_prune_aliases(inode);
4416 /*
4417 * btrfs_drop_inode will have it removed from the inode
4418 * cache when its usage count hits zero.
4419 */
4420 iput(inode);
4421 cond_resched();
4422 spin_lock(&root->inode_lock);
4423 goto again;
4424 }
4425
4426 if (cond_resched_lock(&root->inode_lock))
4427 goto again;
4428
4429 node = rb_next(node);
4430 }
4431 spin_unlock(&root->inode_lock);
4432 }
4433
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4434 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4435 {
4436 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4437 struct btrfs_root *root = BTRFS_I(dir)->root;
4438 struct inode *inode = d_inode(dentry);
4439 struct btrfs_root *dest = BTRFS_I(inode)->root;
4440 struct btrfs_trans_handle *trans;
4441 struct btrfs_block_rsv block_rsv;
4442 u64 root_flags;
4443 int ret;
4444 int err;
4445
4446 /*
4447 * Don't allow to delete a subvolume with send in progress. This is
4448 * inside the inode lock so the error handling that has to drop the bit
4449 * again is not run concurrently.
4450 */
4451 spin_lock(&dest->root_item_lock);
4452 if (dest->send_in_progress) {
4453 spin_unlock(&dest->root_item_lock);
4454 btrfs_warn(fs_info,
4455 "attempt to delete subvolume %llu during send",
4456 dest->root_key.objectid);
4457 return -EPERM;
4458 }
4459 root_flags = btrfs_root_flags(&dest->root_item);
4460 btrfs_set_root_flags(&dest->root_item,
4461 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4462 spin_unlock(&dest->root_item_lock);
4463
4464 down_write(&fs_info->subvol_sem);
4465
4466 err = may_destroy_subvol(dest);
4467 if (err)
4468 goto out_up_write;
4469
4470 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4471 /*
4472 * One for dir inode,
4473 * two for dir entries,
4474 * two for root ref/backref.
4475 */
4476 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4477 if (err)
4478 goto out_up_write;
4479
4480 trans = btrfs_start_transaction(root, 0);
4481 if (IS_ERR(trans)) {
4482 err = PTR_ERR(trans);
4483 goto out_release;
4484 }
4485 trans->block_rsv = &block_rsv;
4486 trans->bytes_reserved = block_rsv.size;
4487
4488 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4489
4490 ret = btrfs_unlink_subvol(trans, dir, dentry);
4491 if (ret) {
4492 err = ret;
4493 btrfs_abort_transaction(trans, ret);
4494 goto out_end_trans;
4495 }
4496
4497 btrfs_record_root_in_trans(trans, dest);
4498
4499 memset(&dest->root_item.drop_progress, 0,
4500 sizeof(dest->root_item.drop_progress));
4501 dest->root_item.drop_level = 0;
4502 btrfs_set_root_refs(&dest->root_item, 0);
4503
4504 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4505 ret = btrfs_insert_orphan_item(trans,
4506 fs_info->tree_root,
4507 dest->root_key.objectid);
4508 if (ret) {
4509 btrfs_abort_transaction(trans, ret);
4510 err = ret;
4511 goto out_end_trans;
4512 }
4513 }
4514
4515 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4516 BTRFS_UUID_KEY_SUBVOL,
4517 dest->root_key.objectid);
4518 if (ret && ret != -ENOENT) {
4519 btrfs_abort_transaction(trans, ret);
4520 err = ret;
4521 goto out_end_trans;
4522 }
4523 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4524 ret = btrfs_uuid_tree_remove(trans,
4525 dest->root_item.received_uuid,
4526 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4527 dest->root_key.objectid);
4528 if (ret && ret != -ENOENT) {
4529 btrfs_abort_transaction(trans, ret);
4530 err = ret;
4531 goto out_end_trans;
4532 }
4533 }
4534
4535 out_end_trans:
4536 trans->block_rsv = NULL;
4537 trans->bytes_reserved = 0;
4538 ret = btrfs_end_transaction(trans);
4539 if (ret && !err)
4540 err = ret;
4541 inode->i_flags |= S_DEAD;
4542 out_release:
4543 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4544 out_up_write:
4545 up_write(&fs_info->subvol_sem);
4546 if (err) {
4547 spin_lock(&dest->root_item_lock);
4548 root_flags = btrfs_root_flags(&dest->root_item);
4549 btrfs_set_root_flags(&dest->root_item,
4550 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4551 spin_unlock(&dest->root_item_lock);
4552 } else {
4553 d_invalidate(dentry);
4554 btrfs_prune_dentries(dest);
4555 ASSERT(dest->send_in_progress == 0);
4556
4557 /* the last ref */
4558 if (dest->ino_cache_inode) {
4559 iput(dest->ino_cache_inode);
4560 dest->ino_cache_inode = NULL;
4561 }
4562 }
4563
4564 return err;
4565 }
4566
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4567 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4568 {
4569 struct inode *inode = d_inode(dentry);
4570 int err = 0;
4571 struct btrfs_root *root = BTRFS_I(dir)->root;
4572 struct btrfs_trans_handle *trans;
4573 u64 last_unlink_trans;
4574
4575 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4576 return -ENOTEMPTY;
4577 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4578 return btrfs_delete_subvolume(dir, dentry);
4579
4580 trans = __unlink_start_trans(dir);
4581 if (IS_ERR(trans))
4582 return PTR_ERR(trans);
4583
4584 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4585 err = btrfs_unlink_subvol(trans, dir, dentry);
4586 goto out;
4587 }
4588
4589 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4590 if (err)
4591 goto out;
4592
4593 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4594
4595 /* now the directory is empty */
4596 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4597 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4598 dentry->d_name.len);
4599 if (!err) {
4600 btrfs_i_size_write(BTRFS_I(inode), 0);
4601 /*
4602 * Propagate the last_unlink_trans value of the deleted dir to
4603 * its parent directory. This is to prevent an unrecoverable
4604 * log tree in the case we do something like this:
4605 * 1) create dir foo
4606 * 2) create snapshot under dir foo
4607 * 3) delete the snapshot
4608 * 4) rmdir foo
4609 * 5) mkdir foo
4610 * 6) fsync foo or some file inside foo
4611 */
4612 if (last_unlink_trans >= trans->transid)
4613 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4614 }
4615 out:
4616 btrfs_end_transaction(trans);
4617 btrfs_btree_balance_dirty(root->fs_info);
4618
4619 return err;
4620 }
4621
4622 /*
4623 * Return this if we need to call truncate_block for the last bit of the
4624 * truncate.
4625 */
4626 #define NEED_TRUNCATE_BLOCK 1
4627
4628 /*
4629 * this can truncate away extent items, csum items and directory items.
4630 * It starts at a high offset and removes keys until it can't find
4631 * any higher than new_size
4632 *
4633 * csum items that cross the new i_size are truncated to the new size
4634 * as well.
4635 *
4636 * min_type is the minimum key type to truncate down to. If set to 0, this
4637 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4638 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4639 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4640 struct btrfs_root *root,
4641 struct inode *inode,
4642 u64 new_size, u32 min_type)
4643 {
4644 struct btrfs_fs_info *fs_info = root->fs_info;
4645 struct btrfs_path *path;
4646 struct extent_buffer *leaf;
4647 struct btrfs_file_extent_item *fi;
4648 struct btrfs_key key;
4649 struct btrfs_key found_key;
4650 u64 extent_start = 0;
4651 u64 extent_num_bytes = 0;
4652 u64 extent_offset = 0;
4653 u64 item_end = 0;
4654 u64 last_size = new_size;
4655 u32 found_type = (u8)-1;
4656 int found_extent;
4657 int del_item;
4658 int pending_del_nr = 0;
4659 int pending_del_slot = 0;
4660 int extent_type = -1;
4661 int ret;
4662 u64 ino = btrfs_ino(BTRFS_I(inode));
4663 u64 bytes_deleted = 0;
4664 bool be_nice = false;
4665 bool should_throttle = false;
4666
4667 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4668
4669 /*
4670 * for non-free space inodes and ref cows, we want to back off from
4671 * time to time
4672 */
4673 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4674 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4675 be_nice = true;
4676
4677 path = btrfs_alloc_path();
4678 if (!path)
4679 return -ENOMEM;
4680 path->reada = READA_BACK;
4681
4682 /*
4683 * We want to drop from the next block forward in case this new size is
4684 * not block aligned since we will be keeping the last block of the
4685 * extent just the way it is.
4686 */
4687 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4688 root == fs_info->tree_root)
4689 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4690 fs_info->sectorsize),
4691 (u64)-1, 0);
4692
4693 /*
4694 * This function is also used to drop the items in the log tree before
4695 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4696 * it is used to drop the logged items. So we shouldn't kill the delayed
4697 * items.
4698 */
4699 if (min_type == 0 && root == BTRFS_I(inode)->root)
4700 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4701
4702 key.objectid = ino;
4703 key.offset = (u64)-1;
4704 key.type = (u8)-1;
4705
4706 search_again:
4707 /*
4708 * with a 16K leaf size and 128MB extents, you can actually queue
4709 * up a huge file in a single leaf. Most of the time that
4710 * bytes_deleted is > 0, it will be huge by the time we get here
4711 */
4712 if (be_nice && bytes_deleted > SZ_32M &&
4713 btrfs_should_end_transaction(trans)) {
4714 ret = -EAGAIN;
4715 goto out;
4716 }
4717
4718 path->leave_spinning = 1;
4719 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4720 if (ret < 0)
4721 goto out;
4722
4723 if (ret > 0) {
4724 ret = 0;
4725 /* there are no items in the tree for us to truncate, we're
4726 * done
4727 */
4728 if (path->slots[0] == 0)
4729 goto out;
4730 path->slots[0]--;
4731 }
4732
4733 while (1) {
4734 fi = NULL;
4735 leaf = path->nodes[0];
4736 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4737 found_type = found_key.type;
4738
4739 if (found_key.objectid != ino)
4740 break;
4741
4742 if (found_type < min_type)
4743 break;
4744
4745 item_end = found_key.offset;
4746 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4747 fi = btrfs_item_ptr(leaf, path->slots[0],
4748 struct btrfs_file_extent_item);
4749 extent_type = btrfs_file_extent_type(leaf, fi);
4750 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4751 item_end +=
4752 btrfs_file_extent_num_bytes(leaf, fi);
4753
4754 trace_btrfs_truncate_show_fi_regular(
4755 BTRFS_I(inode), leaf, fi,
4756 found_key.offset);
4757 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4758 item_end += btrfs_file_extent_ram_bytes(leaf,
4759 fi);
4760
4761 trace_btrfs_truncate_show_fi_inline(
4762 BTRFS_I(inode), leaf, fi, path->slots[0],
4763 found_key.offset);
4764 }
4765 item_end--;
4766 }
4767 if (found_type > min_type) {
4768 del_item = 1;
4769 } else {
4770 if (item_end < new_size)
4771 break;
4772 if (found_key.offset >= new_size)
4773 del_item = 1;
4774 else
4775 del_item = 0;
4776 }
4777 found_extent = 0;
4778 /* FIXME, shrink the extent if the ref count is only 1 */
4779 if (found_type != BTRFS_EXTENT_DATA_KEY)
4780 goto delete;
4781
4782 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4783 u64 num_dec;
4784 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4785 if (!del_item) {
4786 u64 orig_num_bytes =
4787 btrfs_file_extent_num_bytes(leaf, fi);
4788 extent_num_bytes = ALIGN(new_size -
4789 found_key.offset,
4790 fs_info->sectorsize);
4791 btrfs_set_file_extent_num_bytes(leaf, fi,
4792 extent_num_bytes);
4793 num_dec = (orig_num_bytes -
4794 extent_num_bytes);
4795 if (test_bit(BTRFS_ROOT_REF_COWS,
4796 &root->state) &&
4797 extent_start != 0)
4798 inode_sub_bytes(inode, num_dec);
4799 btrfs_mark_buffer_dirty(leaf);
4800 } else {
4801 extent_num_bytes =
4802 btrfs_file_extent_disk_num_bytes(leaf,
4803 fi);
4804 extent_offset = found_key.offset -
4805 btrfs_file_extent_offset(leaf, fi);
4806
4807 /* FIXME blocksize != 4096 */
4808 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4809 if (extent_start != 0) {
4810 found_extent = 1;
4811 if (test_bit(BTRFS_ROOT_REF_COWS,
4812 &root->state))
4813 inode_sub_bytes(inode, num_dec);
4814 }
4815 }
4816 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4817 /*
4818 * we can't truncate inline items that have had
4819 * special encodings
4820 */
4821 if (!del_item &&
4822 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4823 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4824 btrfs_file_extent_compression(leaf, fi) == 0) {
4825 u32 size = (u32)(new_size - found_key.offset);
4826
4827 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4828 size = btrfs_file_extent_calc_inline_size(size);
4829 btrfs_truncate_item(path, size, 1);
4830 } else if (!del_item) {
4831 /*
4832 * We have to bail so the last_size is set to
4833 * just before this extent.
4834 */
4835 ret = NEED_TRUNCATE_BLOCK;
4836 break;
4837 }
4838
4839 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4840 inode_sub_bytes(inode, item_end + 1 - new_size);
4841 }
4842 delete:
4843 if (del_item)
4844 last_size = found_key.offset;
4845 else
4846 last_size = new_size;
4847 if (del_item) {
4848 if (!pending_del_nr) {
4849 /* no pending yet, add ourselves */
4850 pending_del_slot = path->slots[0];
4851 pending_del_nr = 1;
4852 } else if (pending_del_nr &&
4853 path->slots[0] + 1 == pending_del_slot) {
4854 /* hop on the pending chunk */
4855 pending_del_nr++;
4856 pending_del_slot = path->slots[0];
4857 } else {
4858 BUG();
4859 }
4860 } else {
4861 break;
4862 }
4863 should_throttle = false;
4864
4865 if (found_extent &&
4866 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4867 root == fs_info->tree_root)) {
4868 struct btrfs_ref ref = { 0 };
4869
4870 btrfs_set_path_blocking(path);
4871 bytes_deleted += extent_num_bytes;
4872
4873 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4874 extent_start, extent_num_bytes, 0);
4875 ref.real_root = root->root_key.objectid;
4876 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4877 ino, extent_offset);
4878 ret = btrfs_free_extent(trans, &ref);
4879 if (ret) {
4880 btrfs_abort_transaction(trans, ret);
4881 break;
4882 }
4883 if (be_nice) {
4884 if (btrfs_should_throttle_delayed_refs(trans))
4885 should_throttle = true;
4886 }
4887 }
4888
4889 if (found_type == BTRFS_INODE_ITEM_KEY)
4890 break;
4891
4892 if (path->slots[0] == 0 ||
4893 path->slots[0] != pending_del_slot ||
4894 should_throttle) {
4895 if (pending_del_nr) {
4896 ret = btrfs_del_items(trans, root, path,
4897 pending_del_slot,
4898 pending_del_nr);
4899 if (ret) {
4900 btrfs_abort_transaction(trans, ret);
4901 break;
4902 }
4903 pending_del_nr = 0;
4904 }
4905 btrfs_release_path(path);
4906
4907 /*
4908 * We can generate a lot of delayed refs, so we need to
4909 * throttle every once and a while and make sure we're
4910 * adding enough space to keep up with the work we are
4911 * generating. Since we hold a transaction here we
4912 * can't flush, and we don't want to FLUSH_LIMIT because
4913 * we could have generated too many delayed refs to
4914 * actually allocate, so just bail if we're short and
4915 * let the normal reservation dance happen higher up.
4916 */
4917 if (should_throttle) {
4918 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4919 BTRFS_RESERVE_NO_FLUSH);
4920 if (ret) {
4921 ret = -EAGAIN;
4922 break;
4923 }
4924 }
4925 goto search_again;
4926 } else {
4927 path->slots[0]--;
4928 }
4929 }
4930 out:
4931 if (ret >= 0 && pending_del_nr) {
4932 int err;
4933
4934 err = btrfs_del_items(trans, root, path, pending_del_slot,
4935 pending_del_nr);
4936 if (err) {
4937 btrfs_abort_transaction(trans, err);
4938 ret = err;
4939 }
4940 }
4941 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4942 ASSERT(last_size >= new_size);
4943 if (!ret && last_size > new_size)
4944 last_size = new_size;
4945 btrfs_ordered_update_i_size(inode, last_size, NULL);
4946 }
4947
4948 btrfs_free_path(path);
4949 return ret;
4950 }
4951
4952 /*
4953 * btrfs_truncate_block - read, zero a chunk and write a block
4954 * @inode - inode that we're zeroing
4955 * @from - the offset to start zeroing
4956 * @len - the length to zero, 0 to zero the entire range respective to the
4957 * offset
4958 * @front - zero up to the offset instead of from the offset on
4959 *
4960 * This will find the block for the "from" offset and cow the block and zero the
4961 * part we want to zero. This is used with truncate and hole punching.
4962 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4963 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4964 int front)
4965 {
4966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4967 struct address_space *mapping = inode->i_mapping;
4968 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4969 struct btrfs_ordered_extent *ordered;
4970 struct extent_state *cached_state = NULL;
4971 struct extent_changeset *data_reserved = NULL;
4972 char *kaddr;
4973 u32 blocksize = fs_info->sectorsize;
4974 pgoff_t index = from >> PAGE_SHIFT;
4975 unsigned offset = from & (blocksize - 1);
4976 struct page *page;
4977 gfp_t mask = btrfs_alloc_write_mask(mapping);
4978 int ret = 0;
4979 u64 block_start;
4980 u64 block_end;
4981
4982 if (IS_ALIGNED(offset, blocksize) &&
4983 (!len || IS_ALIGNED(len, blocksize)))
4984 goto out;
4985
4986 block_start = round_down(from, blocksize);
4987 block_end = block_start + blocksize - 1;
4988
4989 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4990 block_start, blocksize);
4991 if (ret)
4992 goto out;
4993
4994 again:
4995 page = find_or_create_page(mapping, index, mask);
4996 if (!page) {
4997 btrfs_delalloc_release_space(inode, data_reserved,
4998 block_start, blocksize, true);
4999 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5000 ret = -ENOMEM;
5001 goto out;
5002 }
5003
5004 if (!PageUptodate(page)) {
5005 ret = btrfs_readpage(NULL, page);
5006 lock_page(page);
5007 if (page->mapping != mapping) {
5008 unlock_page(page);
5009 put_page(page);
5010 goto again;
5011 }
5012 if (!PageUptodate(page)) {
5013 ret = -EIO;
5014 goto out_unlock;
5015 }
5016 }
5017 wait_on_page_writeback(page);
5018
5019 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5020 set_page_extent_mapped(page);
5021
5022 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5023 if (ordered) {
5024 unlock_extent_cached(io_tree, block_start, block_end,
5025 &cached_state);
5026 unlock_page(page);
5027 put_page(page);
5028 btrfs_start_ordered_extent(inode, ordered, 1);
5029 btrfs_put_ordered_extent(ordered);
5030 goto again;
5031 }
5032
5033 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5034 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5035 0, 0, &cached_state);
5036
5037 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5038 &cached_state);
5039 if (ret) {
5040 unlock_extent_cached(io_tree, block_start, block_end,
5041 &cached_state);
5042 goto out_unlock;
5043 }
5044
5045 if (offset != blocksize) {
5046 if (!len)
5047 len = blocksize - offset;
5048 kaddr = kmap(page);
5049 if (front)
5050 memset(kaddr + (block_start - page_offset(page)),
5051 0, offset);
5052 else
5053 memset(kaddr + (block_start - page_offset(page)) + offset,
5054 0, len);
5055 flush_dcache_page(page);
5056 kunmap(page);
5057 }
5058 ClearPageChecked(page);
5059 set_page_dirty(page);
5060 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5061
5062 out_unlock:
5063 if (ret)
5064 btrfs_delalloc_release_space(inode, data_reserved, block_start,
5065 blocksize, true);
5066 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5067 unlock_page(page);
5068 put_page(page);
5069 out:
5070 extent_changeset_free(data_reserved);
5071 return ret;
5072 }
5073
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)5074 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5075 u64 offset, u64 len)
5076 {
5077 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5078 struct btrfs_trans_handle *trans;
5079 int ret;
5080
5081 /*
5082 * Still need to make sure the inode looks like it's been updated so
5083 * that any holes get logged if we fsync.
5084 */
5085 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5086 BTRFS_I(inode)->last_trans = fs_info->generation;
5087 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5088 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5089 return 0;
5090 }
5091
5092 /*
5093 * 1 - for the one we're dropping
5094 * 1 - for the one we're adding
5095 * 1 - for updating the inode.
5096 */
5097 trans = btrfs_start_transaction(root, 3);
5098 if (IS_ERR(trans))
5099 return PTR_ERR(trans);
5100
5101 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5102 if (ret) {
5103 btrfs_abort_transaction(trans, ret);
5104 btrfs_end_transaction(trans);
5105 return ret;
5106 }
5107
5108 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5109 offset, 0, 0, len, 0, len, 0, 0, 0);
5110 if (ret)
5111 btrfs_abort_transaction(trans, ret);
5112 else
5113 btrfs_update_inode(trans, root, inode);
5114 btrfs_end_transaction(trans);
5115 return ret;
5116 }
5117
5118 /*
5119 * This function puts in dummy file extents for the area we're creating a hole
5120 * for. So if we are truncating this file to a larger size we need to insert
5121 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5122 * the range between oldsize and size
5123 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5124 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5125 {
5126 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5127 struct btrfs_root *root = BTRFS_I(inode)->root;
5128 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5129 struct extent_map *em = NULL;
5130 struct extent_state *cached_state = NULL;
5131 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5132 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5133 u64 block_end = ALIGN(size, fs_info->sectorsize);
5134 u64 last_byte;
5135 u64 cur_offset;
5136 u64 hole_size;
5137 int err = 0;
5138
5139 /*
5140 * If our size started in the middle of a block we need to zero out the
5141 * rest of the block before we expand the i_size, otherwise we could
5142 * expose stale data.
5143 */
5144 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5145 if (err)
5146 return err;
5147
5148 if (size <= hole_start)
5149 return 0;
5150
5151 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5152 block_end - 1, &cached_state);
5153 cur_offset = hole_start;
5154 while (1) {
5155 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5156 block_end - cur_offset, 0);
5157 if (IS_ERR(em)) {
5158 err = PTR_ERR(em);
5159 em = NULL;
5160 break;
5161 }
5162 last_byte = min(extent_map_end(em), block_end);
5163 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5164 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5165 struct extent_map *hole_em;
5166 hole_size = last_byte - cur_offset;
5167
5168 err = maybe_insert_hole(root, inode, cur_offset,
5169 hole_size);
5170 if (err)
5171 break;
5172 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5173 cur_offset + hole_size - 1, 0);
5174 hole_em = alloc_extent_map();
5175 if (!hole_em) {
5176 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5177 &BTRFS_I(inode)->runtime_flags);
5178 goto next;
5179 }
5180 hole_em->start = cur_offset;
5181 hole_em->len = hole_size;
5182 hole_em->orig_start = cur_offset;
5183
5184 hole_em->block_start = EXTENT_MAP_HOLE;
5185 hole_em->block_len = 0;
5186 hole_em->orig_block_len = 0;
5187 hole_em->ram_bytes = hole_size;
5188 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5189 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5190 hole_em->generation = fs_info->generation;
5191
5192 while (1) {
5193 write_lock(&em_tree->lock);
5194 err = add_extent_mapping(em_tree, hole_em, 1);
5195 write_unlock(&em_tree->lock);
5196 if (err != -EEXIST)
5197 break;
5198 btrfs_drop_extent_cache(BTRFS_I(inode),
5199 cur_offset,
5200 cur_offset +
5201 hole_size - 1, 0);
5202 }
5203 free_extent_map(hole_em);
5204 }
5205 next:
5206 free_extent_map(em);
5207 em = NULL;
5208 cur_offset = last_byte;
5209 if (cur_offset >= block_end)
5210 break;
5211 }
5212 free_extent_map(em);
5213 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5214 return err;
5215 }
5216
btrfs_setsize(struct inode * inode,struct iattr * attr)5217 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5218 {
5219 struct btrfs_root *root = BTRFS_I(inode)->root;
5220 struct btrfs_trans_handle *trans;
5221 loff_t oldsize = i_size_read(inode);
5222 loff_t newsize = attr->ia_size;
5223 int mask = attr->ia_valid;
5224 int ret;
5225
5226 /*
5227 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5228 * special case where we need to update the times despite not having
5229 * these flags set. For all other operations the VFS set these flags
5230 * explicitly if it wants a timestamp update.
5231 */
5232 if (newsize != oldsize) {
5233 inode_inc_iversion(inode);
5234 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5235 inode->i_ctime = inode->i_mtime =
5236 current_time(inode);
5237 }
5238
5239 if (newsize > oldsize) {
5240 /*
5241 * Don't do an expanding truncate while snapshotting is ongoing.
5242 * This is to ensure the snapshot captures a fully consistent
5243 * state of this file - if the snapshot captures this expanding
5244 * truncation, it must capture all writes that happened before
5245 * this truncation.
5246 */
5247 btrfs_wait_for_snapshot_creation(root);
5248 ret = btrfs_cont_expand(inode, oldsize, newsize);
5249 if (ret) {
5250 btrfs_end_write_no_snapshotting(root);
5251 return ret;
5252 }
5253
5254 trans = btrfs_start_transaction(root, 1);
5255 if (IS_ERR(trans)) {
5256 btrfs_end_write_no_snapshotting(root);
5257 return PTR_ERR(trans);
5258 }
5259
5260 i_size_write(inode, newsize);
5261 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5262 pagecache_isize_extended(inode, oldsize, newsize);
5263 ret = btrfs_update_inode(trans, root, inode);
5264 btrfs_end_write_no_snapshotting(root);
5265 btrfs_end_transaction(trans);
5266 } else {
5267
5268 /*
5269 * We're truncating a file that used to have good data down to
5270 * zero. Make sure it gets into the ordered flush list so that
5271 * any new writes get down to disk quickly.
5272 */
5273 if (newsize == 0)
5274 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5275 &BTRFS_I(inode)->runtime_flags);
5276
5277 truncate_setsize(inode, newsize);
5278
5279 /* Disable nonlocked read DIO to avoid the endless truncate */
5280 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5281 inode_dio_wait(inode);
5282 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5283
5284 ret = btrfs_truncate(inode, newsize == oldsize);
5285 if (ret && inode->i_nlink) {
5286 int err;
5287
5288 /*
5289 * Truncate failed, so fix up the in-memory size. We
5290 * adjusted disk_i_size down as we removed extents, so
5291 * wait for disk_i_size to be stable and then update the
5292 * in-memory size to match.
5293 */
5294 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5295 if (err)
5296 return err;
5297 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5298 }
5299 }
5300
5301 return ret;
5302 }
5303
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5304 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5305 {
5306 struct inode *inode = d_inode(dentry);
5307 struct btrfs_root *root = BTRFS_I(inode)->root;
5308 int err;
5309
5310 if (btrfs_root_readonly(root))
5311 return -EROFS;
5312
5313 err = setattr_prepare(dentry, attr);
5314 if (err)
5315 return err;
5316
5317 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5318 err = btrfs_setsize(inode, attr);
5319 if (err)
5320 return err;
5321 }
5322
5323 if (attr->ia_valid) {
5324 setattr_copy(inode, attr);
5325 inode_inc_iversion(inode);
5326 err = btrfs_dirty_inode(inode);
5327
5328 if (!err && attr->ia_valid & ATTR_MODE)
5329 err = posix_acl_chmod(inode, inode->i_mode);
5330 }
5331
5332 return err;
5333 }
5334
5335 /*
5336 * While truncating the inode pages during eviction, we get the VFS calling
5337 * btrfs_invalidatepage() against each page of the inode. This is slow because
5338 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5339 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5340 * extent_state structures over and over, wasting lots of time.
5341 *
5342 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5343 * those expensive operations on a per page basis and do only the ordered io
5344 * finishing, while we release here the extent_map and extent_state structures,
5345 * without the excessive merging and splitting.
5346 */
evict_inode_truncate_pages(struct inode * inode)5347 static void evict_inode_truncate_pages(struct inode *inode)
5348 {
5349 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5350 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5351 struct rb_node *node;
5352
5353 ASSERT(inode->i_state & I_FREEING);
5354 truncate_inode_pages_final(&inode->i_data);
5355
5356 write_lock(&map_tree->lock);
5357 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5358 struct extent_map *em;
5359
5360 node = rb_first_cached(&map_tree->map);
5361 em = rb_entry(node, struct extent_map, rb_node);
5362 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5363 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5364 remove_extent_mapping(map_tree, em);
5365 free_extent_map(em);
5366 if (need_resched()) {
5367 write_unlock(&map_tree->lock);
5368 cond_resched();
5369 write_lock(&map_tree->lock);
5370 }
5371 }
5372 write_unlock(&map_tree->lock);
5373
5374 /*
5375 * Keep looping until we have no more ranges in the io tree.
5376 * We can have ongoing bios started by readpages (called from readahead)
5377 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5378 * still in progress (unlocked the pages in the bio but did not yet
5379 * unlocked the ranges in the io tree). Therefore this means some
5380 * ranges can still be locked and eviction started because before
5381 * submitting those bios, which are executed by a separate task (work
5382 * queue kthread), inode references (inode->i_count) were not taken
5383 * (which would be dropped in the end io callback of each bio).
5384 * Therefore here we effectively end up waiting for those bios and
5385 * anyone else holding locked ranges without having bumped the inode's
5386 * reference count - if we don't do it, when they access the inode's
5387 * io_tree to unlock a range it may be too late, leading to an
5388 * use-after-free issue.
5389 */
5390 spin_lock(&io_tree->lock);
5391 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5392 struct extent_state *state;
5393 struct extent_state *cached_state = NULL;
5394 u64 start;
5395 u64 end;
5396 unsigned state_flags;
5397
5398 node = rb_first(&io_tree->state);
5399 state = rb_entry(node, struct extent_state, rb_node);
5400 start = state->start;
5401 end = state->end;
5402 state_flags = state->state;
5403 spin_unlock(&io_tree->lock);
5404
5405 lock_extent_bits(io_tree, start, end, &cached_state);
5406
5407 /*
5408 * If still has DELALLOC flag, the extent didn't reach disk,
5409 * and its reserved space won't be freed by delayed_ref.
5410 * So we need to free its reserved space here.
5411 * (Refer to comment in btrfs_invalidatepage, case 2)
5412 *
5413 * Note, end is the bytenr of last byte, so we need + 1 here.
5414 */
5415 if (state_flags & EXTENT_DELALLOC)
5416 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5417
5418 clear_extent_bit(io_tree, start, end,
5419 EXTENT_LOCKED | EXTENT_DELALLOC |
5420 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5421 &cached_state);
5422
5423 cond_resched();
5424 spin_lock(&io_tree->lock);
5425 }
5426 spin_unlock(&io_tree->lock);
5427 }
5428
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5429 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5430 struct btrfs_block_rsv *rsv)
5431 {
5432 struct btrfs_fs_info *fs_info = root->fs_info;
5433 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5434 struct btrfs_trans_handle *trans;
5435 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5436 int ret;
5437
5438 /*
5439 * Eviction should be taking place at some place safe because of our
5440 * delayed iputs. However the normal flushing code will run delayed
5441 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5442 *
5443 * We reserve the delayed_refs_extra here again because we can't use
5444 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5445 * above. We reserve our extra bit here because we generate a ton of
5446 * delayed refs activity by truncating.
5447 *
5448 * If we cannot make our reservation we'll attempt to steal from the
5449 * global reserve, because we really want to be able to free up space.
5450 */
5451 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5452 BTRFS_RESERVE_FLUSH_EVICT);
5453 if (ret) {
5454 /*
5455 * Try to steal from the global reserve if there is space for
5456 * it.
5457 */
5458 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5459 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5460 btrfs_warn(fs_info,
5461 "could not allocate space for delete; will truncate on mount");
5462 return ERR_PTR(-ENOSPC);
5463 }
5464 delayed_refs_extra = 0;
5465 }
5466
5467 trans = btrfs_join_transaction(root);
5468 if (IS_ERR(trans))
5469 return trans;
5470
5471 if (delayed_refs_extra) {
5472 trans->block_rsv = &fs_info->trans_block_rsv;
5473 trans->bytes_reserved = delayed_refs_extra;
5474 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5475 delayed_refs_extra, 1);
5476 }
5477 return trans;
5478 }
5479
btrfs_evict_inode(struct inode * inode)5480 void btrfs_evict_inode(struct inode *inode)
5481 {
5482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5483 struct btrfs_trans_handle *trans;
5484 struct btrfs_root *root = BTRFS_I(inode)->root;
5485 struct btrfs_block_rsv *rsv;
5486 int ret;
5487
5488 trace_btrfs_inode_evict(inode);
5489
5490 if (!root) {
5491 clear_inode(inode);
5492 return;
5493 }
5494
5495 evict_inode_truncate_pages(inode);
5496
5497 if (inode->i_nlink &&
5498 ((btrfs_root_refs(&root->root_item) != 0 &&
5499 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5500 btrfs_is_free_space_inode(BTRFS_I(inode))))
5501 goto no_delete;
5502
5503 if (is_bad_inode(inode))
5504 goto no_delete;
5505
5506 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5507
5508 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5509 goto no_delete;
5510
5511 if (inode->i_nlink > 0) {
5512 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5513 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5514 goto no_delete;
5515 }
5516
5517 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5518 if (ret)
5519 goto no_delete;
5520
5521 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5522 if (!rsv)
5523 goto no_delete;
5524 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5525 rsv->failfast = 1;
5526
5527 btrfs_i_size_write(BTRFS_I(inode), 0);
5528
5529 while (1) {
5530 trans = evict_refill_and_join(root, rsv);
5531 if (IS_ERR(trans))
5532 goto free_rsv;
5533
5534 trans->block_rsv = rsv;
5535
5536 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5537 trans->block_rsv = &fs_info->trans_block_rsv;
5538 btrfs_end_transaction(trans);
5539 btrfs_btree_balance_dirty(fs_info);
5540 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5541 goto free_rsv;
5542 else if (!ret)
5543 break;
5544 }
5545
5546 /*
5547 * Errors here aren't a big deal, it just means we leave orphan items in
5548 * the tree. They will be cleaned up on the next mount. If the inode
5549 * number gets reused, cleanup deletes the orphan item without doing
5550 * anything, and unlink reuses the existing orphan item.
5551 *
5552 * If it turns out that we are dropping too many of these, we might want
5553 * to add a mechanism for retrying these after a commit.
5554 */
5555 trans = evict_refill_and_join(root, rsv);
5556 if (!IS_ERR(trans)) {
5557 trans->block_rsv = rsv;
5558 btrfs_orphan_del(trans, BTRFS_I(inode));
5559 trans->block_rsv = &fs_info->trans_block_rsv;
5560 btrfs_end_transaction(trans);
5561 }
5562
5563 if (!(root == fs_info->tree_root ||
5564 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5565 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5566
5567 free_rsv:
5568 btrfs_free_block_rsv(fs_info, rsv);
5569 no_delete:
5570 /*
5571 * If we didn't successfully delete, the orphan item will still be in
5572 * the tree and we'll retry on the next mount. Again, we might also want
5573 * to retry these periodically in the future.
5574 */
5575 btrfs_remove_delayed_node(BTRFS_I(inode));
5576 clear_inode(inode);
5577 }
5578
5579 /*
5580 * Return the key found in the dir entry in the location pointer, fill @type
5581 * with BTRFS_FT_*, and return 0.
5582 *
5583 * If no dir entries were found, returns -ENOENT.
5584 * If found a corrupted location in dir entry, returns -EUCLEAN.
5585 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5586 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5587 struct btrfs_key *location, u8 *type)
5588 {
5589 const char *name = dentry->d_name.name;
5590 int namelen = dentry->d_name.len;
5591 struct btrfs_dir_item *di;
5592 struct btrfs_path *path;
5593 struct btrfs_root *root = BTRFS_I(dir)->root;
5594 int ret = 0;
5595
5596 path = btrfs_alloc_path();
5597 if (!path)
5598 return -ENOMEM;
5599
5600 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5601 name, namelen, 0);
5602 if (IS_ERR_OR_NULL(di)) {
5603 ret = di ? PTR_ERR(di) : -ENOENT;
5604 goto out;
5605 }
5606
5607 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5608 if (location->type != BTRFS_INODE_ITEM_KEY &&
5609 location->type != BTRFS_ROOT_ITEM_KEY) {
5610 ret = -EUCLEAN;
5611 btrfs_warn(root->fs_info,
5612 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5613 __func__, name, btrfs_ino(BTRFS_I(dir)),
5614 location->objectid, location->type, location->offset);
5615 }
5616 if (!ret)
5617 *type = btrfs_dir_type(path->nodes[0], di);
5618 out:
5619 btrfs_free_path(path);
5620 return ret;
5621 }
5622
5623 /*
5624 * when we hit a tree root in a directory, the btrfs part of the inode
5625 * needs to be changed to reflect the root directory of the tree root. This
5626 * is kind of like crossing a mount point.
5627 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5628 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5629 struct inode *dir,
5630 struct dentry *dentry,
5631 struct btrfs_key *location,
5632 struct btrfs_root **sub_root)
5633 {
5634 struct btrfs_path *path;
5635 struct btrfs_root *new_root;
5636 struct btrfs_root_ref *ref;
5637 struct extent_buffer *leaf;
5638 struct btrfs_key key;
5639 int ret;
5640 int err = 0;
5641
5642 path = btrfs_alloc_path();
5643 if (!path) {
5644 err = -ENOMEM;
5645 goto out;
5646 }
5647
5648 err = -ENOENT;
5649 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5650 key.type = BTRFS_ROOT_REF_KEY;
5651 key.offset = location->objectid;
5652
5653 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5654 if (ret) {
5655 if (ret < 0)
5656 err = ret;
5657 goto out;
5658 }
5659
5660 leaf = path->nodes[0];
5661 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5662 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5663 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5664 goto out;
5665
5666 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5667 (unsigned long)(ref + 1),
5668 dentry->d_name.len);
5669 if (ret)
5670 goto out;
5671
5672 btrfs_release_path(path);
5673
5674 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5675 if (IS_ERR(new_root)) {
5676 err = PTR_ERR(new_root);
5677 goto out;
5678 }
5679
5680 *sub_root = new_root;
5681 location->objectid = btrfs_root_dirid(&new_root->root_item);
5682 location->type = BTRFS_INODE_ITEM_KEY;
5683 location->offset = 0;
5684 err = 0;
5685 out:
5686 btrfs_free_path(path);
5687 return err;
5688 }
5689
inode_tree_add(struct inode * inode)5690 static void inode_tree_add(struct inode *inode)
5691 {
5692 struct btrfs_root *root = BTRFS_I(inode)->root;
5693 struct btrfs_inode *entry;
5694 struct rb_node **p;
5695 struct rb_node *parent;
5696 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5697 u64 ino = btrfs_ino(BTRFS_I(inode));
5698
5699 if (inode_unhashed(inode))
5700 return;
5701 parent = NULL;
5702 spin_lock(&root->inode_lock);
5703 p = &root->inode_tree.rb_node;
5704 while (*p) {
5705 parent = *p;
5706 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5707
5708 if (ino < btrfs_ino(entry))
5709 p = &parent->rb_left;
5710 else if (ino > btrfs_ino(entry))
5711 p = &parent->rb_right;
5712 else {
5713 WARN_ON(!(entry->vfs_inode.i_state &
5714 (I_WILL_FREE | I_FREEING)));
5715 rb_replace_node(parent, new, &root->inode_tree);
5716 RB_CLEAR_NODE(parent);
5717 spin_unlock(&root->inode_lock);
5718 return;
5719 }
5720 }
5721 rb_link_node(new, parent, p);
5722 rb_insert_color(new, &root->inode_tree);
5723 spin_unlock(&root->inode_lock);
5724 }
5725
inode_tree_del(struct inode * inode)5726 static void inode_tree_del(struct inode *inode)
5727 {
5728 struct btrfs_root *root = BTRFS_I(inode)->root;
5729 int empty = 0;
5730
5731 spin_lock(&root->inode_lock);
5732 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5733 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5734 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5735 empty = RB_EMPTY_ROOT(&root->inode_tree);
5736 }
5737 spin_unlock(&root->inode_lock);
5738
5739 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5740 spin_lock(&root->inode_lock);
5741 empty = RB_EMPTY_ROOT(&root->inode_tree);
5742 spin_unlock(&root->inode_lock);
5743 if (empty)
5744 btrfs_add_dead_root(root);
5745 }
5746 }
5747
5748
btrfs_init_locked_inode(struct inode * inode,void * p)5749 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5750 {
5751 struct btrfs_iget_args *args = p;
5752 inode->i_ino = args->location->objectid;
5753 memcpy(&BTRFS_I(inode)->location, args->location,
5754 sizeof(*args->location));
5755 BTRFS_I(inode)->root = args->root;
5756 return 0;
5757 }
5758
btrfs_find_actor(struct inode * inode,void * opaque)5759 static int btrfs_find_actor(struct inode *inode, void *opaque)
5760 {
5761 struct btrfs_iget_args *args = opaque;
5762 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5763 args->root == BTRFS_I(inode)->root;
5764 }
5765
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5766 static struct inode *btrfs_iget_locked(struct super_block *s,
5767 struct btrfs_key *location,
5768 struct btrfs_root *root)
5769 {
5770 struct inode *inode;
5771 struct btrfs_iget_args args;
5772 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5773
5774 args.location = location;
5775 args.root = root;
5776
5777 inode = iget5_locked(s, hashval, btrfs_find_actor,
5778 btrfs_init_locked_inode,
5779 (void *)&args);
5780 return inode;
5781 }
5782
5783 /* Get an inode object given its location and corresponding root.
5784 * Returns in *is_new if the inode was read from disk
5785 */
btrfs_iget_path(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new,struct btrfs_path * path)5786 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5787 struct btrfs_root *root, int *new,
5788 struct btrfs_path *path)
5789 {
5790 struct inode *inode;
5791
5792 inode = btrfs_iget_locked(s, location, root);
5793 if (!inode)
5794 return ERR_PTR(-ENOMEM);
5795
5796 if (inode->i_state & I_NEW) {
5797 int ret;
5798
5799 ret = btrfs_read_locked_inode(inode, path);
5800 if (!ret) {
5801 inode_tree_add(inode);
5802 unlock_new_inode(inode);
5803 if (new)
5804 *new = 1;
5805 } else {
5806 iget_failed(inode);
5807 /*
5808 * ret > 0 can come from btrfs_search_slot called by
5809 * btrfs_read_locked_inode, this means the inode item
5810 * was not found.
5811 */
5812 if (ret > 0)
5813 ret = -ENOENT;
5814 inode = ERR_PTR(ret);
5815 }
5816 }
5817
5818 return inode;
5819 }
5820
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5821 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5822 struct btrfs_root *root, int *new)
5823 {
5824 return btrfs_iget_path(s, location, root, new, NULL);
5825 }
5826
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5827 static struct inode *new_simple_dir(struct super_block *s,
5828 struct btrfs_key *key,
5829 struct btrfs_root *root)
5830 {
5831 struct inode *inode = new_inode(s);
5832
5833 if (!inode)
5834 return ERR_PTR(-ENOMEM);
5835
5836 BTRFS_I(inode)->root = root;
5837 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5838 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5839
5840 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5841 inode->i_op = &btrfs_dir_ro_inode_operations;
5842 inode->i_opflags &= ~IOP_XATTR;
5843 inode->i_fop = &simple_dir_operations;
5844 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5845 inode->i_mtime = current_time(inode);
5846 inode->i_atime = inode->i_mtime;
5847 inode->i_ctime = inode->i_mtime;
5848 BTRFS_I(inode)->i_otime = inode->i_mtime;
5849
5850 return inode;
5851 }
5852
btrfs_inode_type(struct inode * inode)5853 static inline u8 btrfs_inode_type(struct inode *inode)
5854 {
5855 /*
5856 * Compile-time asserts that generic FT_* types still match
5857 * BTRFS_FT_* types
5858 */
5859 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5860 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5861 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5862 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5863 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5864 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5865 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5866 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5867
5868 return fs_umode_to_ftype(inode->i_mode);
5869 }
5870
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5871 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5872 {
5873 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5874 struct inode *inode;
5875 struct btrfs_root *root = BTRFS_I(dir)->root;
5876 struct btrfs_root *sub_root = root;
5877 struct btrfs_key location;
5878 u8 di_type = 0;
5879 int index;
5880 int ret = 0;
5881
5882 if (dentry->d_name.len > BTRFS_NAME_LEN)
5883 return ERR_PTR(-ENAMETOOLONG);
5884
5885 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5886 if (ret < 0)
5887 return ERR_PTR(ret);
5888
5889 if (location.type == BTRFS_INODE_ITEM_KEY) {
5890 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5891 if (IS_ERR(inode))
5892 return inode;
5893
5894 /* Do extra check against inode mode with di_type */
5895 if (btrfs_inode_type(inode) != di_type) {
5896 btrfs_crit(fs_info,
5897 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5898 inode->i_mode, btrfs_inode_type(inode),
5899 di_type);
5900 iput(inode);
5901 return ERR_PTR(-EUCLEAN);
5902 }
5903 return inode;
5904 }
5905
5906 index = srcu_read_lock(&fs_info->subvol_srcu);
5907 ret = fixup_tree_root_location(fs_info, dir, dentry,
5908 &location, &sub_root);
5909 if (ret < 0) {
5910 if (ret != -ENOENT)
5911 inode = ERR_PTR(ret);
5912 else
5913 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5914 } else {
5915 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5916 }
5917 srcu_read_unlock(&fs_info->subvol_srcu, index);
5918
5919 if (!IS_ERR(inode) && root != sub_root) {
5920 down_read(&fs_info->cleanup_work_sem);
5921 if (!sb_rdonly(inode->i_sb))
5922 ret = btrfs_orphan_cleanup(sub_root);
5923 up_read(&fs_info->cleanup_work_sem);
5924 if (ret) {
5925 iput(inode);
5926 inode = ERR_PTR(ret);
5927 }
5928 }
5929
5930 return inode;
5931 }
5932
btrfs_dentry_delete(const struct dentry * dentry)5933 static int btrfs_dentry_delete(const struct dentry *dentry)
5934 {
5935 struct btrfs_root *root;
5936 struct inode *inode = d_inode(dentry);
5937
5938 if (!inode && !IS_ROOT(dentry))
5939 inode = d_inode(dentry->d_parent);
5940
5941 if (inode) {
5942 root = BTRFS_I(inode)->root;
5943 if (btrfs_root_refs(&root->root_item) == 0)
5944 return 1;
5945
5946 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5947 return 1;
5948 }
5949 return 0;
5950 }
5951
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5952 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5953 unsigned int flags)
5954 {
5955 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5956
5957 if (inode == ERR_PTR(-ENOENT))
5958 inode = NULL;
5959 return d_splice_alias(inode, dentry);
5960 }
5961
5962 /*
5963 * All this infrastructure exists because dir_emit can fault, and we are holding
5964 * the tree lock when doing readdir. For now just allocate a buffer and copy
5965 * our information into that, and then dir_emit from the buffer. This is
5966 * similar to what NFS does, only we don't keep the buffer around in pagecache
5967 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5968 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5969 * tree lock.
5970 */
btrfs_opendir(struct inode * inode,struct file * file)5971 static int btrfs_opendir(struct inode *inode, struct file *file)
5972 {
5973 struct btrfs_file_private *private;
5974
5975 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5976 if (!private)
5977 return -ENOMEM;
5978 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5979 if (!private->filldir_buf) {
5980 kfree(private);
5981 return -ENOMEM;
5982 }
5983 file->private_data = private;
5984 return 0;
5985 }
5986
5987 struct dir_entry {
5988 u64 ino;
5989 u64 offset;
5990 unsigned type;
5991 int name_len;
5992 };
5993
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5994 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5995 {
5996 while (entries--) {
5997 struct dir_entry *entry = addr;
5998 char *name = (char *)(entry + 1);
5999
6000 ctx->pos = get_unaligned(&entry->offset);
6001 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6002 get_unaligned(&entry->ino),
6003 get_unaligned(&entry->type)))
6004 return 1;
6005 addr += sizeof(struct dir_entry) +
6006 get_unaligned(&entry->name_len);
6007 ctx->pos++;
6008 }
6009 return 0;
6010 }
6011
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6012 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6013 {
6014 struct inode *inode = file_inode(file);
6015 struct btrfs_root *root = BTRFS_I(inode)->root;
6016 struct btrfs_file_private *private = file->private_data;
6017 struct btrfs_dir_item *di;
6018 struct btrfs_key key;
6019 struct btrfs_key found_key;
6020 struct btrfs_path *path;
6021 void *addr;
6022 struct list_head ins_list;
6023 struct list_head del_list;
6024 int ret;
6025 struct extent_buffer *leaf;
6026 int slot;
6027 char *name_ptr;
6028 int name_len;
6029 int entries = 0;
6030 int total_len = 0;
6031 bool put = false;
6032 struct btrfs_key location;
6033
6034 if (!dir_emit_dots(file, ctx))
6035 return 0;
6036
6037 path = btrfs_alloc_path();
6038 if (!path)
6039 return -ENOMEM;
6040
6041 addr = private->filldir_buf;
6042 path->reada = READA_FORWARD;
6043
6044 INIT_LIST_HEAD(&ins_list);
6045 INIT_LIST_HEAD(&del_list);
6046 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6047
6048 again:
6049 key.type = BTRFS_DIR_INDEX_KEY;
6050 key.offset = ctx->pos;
6051 key.objectid = btrfs_ino(BTRFS_I(inode));
6052
6053 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6054 if (ret < 0)
6055 goto err;
6056
6057 while (1) {
6058 struct dir_entry *entry;
6059
6060 leaf = path->nodes[0];
6061 slot = path->slots[0];
6062 if (slot >= btrfs_header_nritems(leaf)) {
6063 ret = btrfs_next_leaf(root, path);
6064 if (ret < 0)
6065 goto err;
6066 else if (ret > 0)
6067 break;
6068 continue;
6069 }
6070
6071 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6072
6073 if (found_key.objectid != key.objectid)
6074 break;
6075 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6076 break;
6077 if (found_key.offset < ctx->pos)
6078 goto next;
6079 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6080 goto next;
6081 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6082 name_len = btrfs_dir_name_len(leaf, di);
6083 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6084 PAGE_SIZE) {
6085 btrfs_release_path(path);
6086 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6087 if (ret)
6088 goto nopos;
6089 addr = private->filldir_buf;
6090 entries = 0;
6091 total_len = 0;
6092 goto again;
6093 }
6094
6095 entry = addr;
6096 put_unaligned(name_len, &entry->name_len);
6097 name_ptr = (char *)(entry + 1);
6098 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6099 name_len);
6100 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6101 &entry->type);
6102 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6103 put_unaligned(location.objectid, &entry->ino);
6104 put_unaligned(found_key.offset, &entry->offset);
6105 entries++;
6106 addr += sizeof(struct dir_entry) + name_len;
6107 total_len += sizeof(struct dir_entry) + name_len;
6108 next:
6109 path->slots[0]++;
6110 }
6111 btrfs_release_path(path);
6112
6113 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6114 if (ret)
6115 goto nopos;
6116
6117 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6118 if (ret)
6119 goto nopos;
6120
6121 /*
6122 * Stop new entries from being returned after we return the last
6123 * entry.
6124 *
6125 * New directory entries are assigned a strictly increasing
6126 * offset. This means that new entries created during readdir
6127 * are *guaranteed* to be seen in the future by that readdir.
6128 * This has broken buggy programs which operate on names as
6129 * they're returned by readdir. Until we re-use freed offsets
6130 * we have this hack to stop new entries from being returned
6131 * under the assumption that they'll never reach this huge
6132 * offset.
6133 *
6134 * This is being careful not to overflow 32bit loff_t unless the
6135 * last entry requires it because doing so has broken 32bit apps
6136 * in the past.
6137 */
6138 if (ctx->pos >= INT_MAX)
6139 ctx->pos = LLONG_MAX;
6140 else
6141 ctx->pos = INT_MAX;
6142 nopos:
6143 ret = 0;
6144 err:
6145 if (put)
6146 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6147 btrfs_free_path(path);
6148 return ret;
6149 }
6150
6151 /*
6152 * This is somewhat expensive, updating the tree every time the
6153 * inode changes. But, it is most likely to find the inode in cache.
6154 * FIXME, needs more benchmarking...there are no reasons other than performance
6155 * to keep or drop this code.
6156 */
btrfs_dirty_inode(struct inode * inode)6157 static int btrfs_dirty_inode(struct inode *inode)
6158 {
6159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6160 struct btrfs_root *root = BTRFS_I(inode)->root;
6161 struct btrfs_trans_handle *trans;
6162 int ret;
6163
6164 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6165 return 0;
6166
6167 trans = btrfs_join_transaction(root);
6168 if (IS_ERR(trans))
6169 return PTR_ERR(trans);
6170
6171 ret = btrfs_update_inode(trans, root, inode);
6172 if (ret && ret == -ENOSPC) {
6173 /* whoops, lets try again with the full transaction */
6174 btrfs_end_transaction(trans);
6175 trans = btrfs_start_transaction(root, 1);
6176 if (IS_ERR(trans))
6177 return PTR_ERR(trans);
6178
6179 ret = btrfs_update_inode(trans, root, inode);
6180 }
6181 btrfs_end_transaction(trans);
6182 if (BTRFS_I(inode)->delayed_node)
6183 btrfs_balance_delayed_items(fs_info);
6184
6185 return ret;
6186 }
6187
6188 /*
6189 * This is a copy of file_update_time. We need this so we can return error on
6190 * ENOSPC for updating the inode in the case of file write and mmap writes.
6191 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6192 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6193 int flags)
6194 {
6195 struct btrfs_root *root = BTRFS_I(inode)->root;
6196 bool dirty = flags & ~S_VERSION;
6197
6198 if (btrfs_root_readonly(root))
6199 return -EROFS;
6200
6201 if (flags & S_VERSION)
6202 dirty |= inode_maybe_inc_iversion(inode, dirty);
6203 if (flags & S_CTIME)
6204 inode->i_ctime = *now;
6205 if (flags & S_MTIME)
6206 inode->i_mtime = *now;
6207 if (flags & S_ATIME)
6208 inode->i_atime = *now;
6209 return dirty ? btrfs_dirty_inode(inode) : 0;
6210 }
6211
6212 /*
6213 * find the highest existing sequence number in a directory
6214 * and then set the in-memory index_cnt variable to reflect
6215 * free sequence numbers
6216 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6217 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6218 {
6219 struct btrfs_root *root = inode->root;
6220 struct btrfs_key key, found_key;
6221 struct btrfs_path *path;
6222 struct extent_buffer *leaf;
6223 int ret;
6224
6225 key.objectid = btrfs_ino(inode);
6226 key.type = BTRFS_DIR_INDEX_KEY;
6227 key.offset = (u64)-1;
6228
6229 path = btrfs_alloc_path();
6230 if (!path)
6231 return -ENOMEM;
6232
6233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6234 if (ret < 0)
6235 goto out;
6236 /* FIXME: we should be able to handle this */
6237 if (ret == 0)
6238 goto out;
6239 ret = 0;
6240
6241 /*
6242 * MAGIC NUMBER EXPLANATION:
6243 * since we search a directory based on f_pos we have to start at 2
6244 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6245 * else has to start at 2
6246 */
6247 if (path->slots[0] == 0) {
6248 inode->index_cnt = 2;
6249 goto out;
6250 }
6251
6252 path->slots[0]--;
6253
6254 leaf = path->nodes[0];
6255 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6256
6257 if (found_key.objectid != btrfs_ino(inode) ||
6258 found_key.type != BTRFS_DIR_INDEX_KEY) {
6259 inode->index_cnt = 2;
6260 goto out;
6261 }
6262
6263 inode->index_cnt = found_key.offset + 1;
6264 out:
6265 btrfs_free_path(path);
6266 return ret;
6267 }
6268
6269 /*
6270 * helper to find a free sequence number in a given directory. This current
6271 * code is very simple, later versions will do smarter things in the btree
6272 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6273 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6274 {
6275 int ret = 0;
6276
6277 if (dir->index_cnt == (u64)-1) {
6278 ret = btrfs_inode_delayed_dir_index_count(dir);
6279 if (ret) {
6280 ret = btrfs_set_inode_index_count(dir);
6281 if (ret)
6282 return ret;
6283 }
6284 }
6285
6286 *index = dir->index_cnt;
6287 dir->index_cnt++;
6288
6289 return ret;
6290 }
6291
btrfs_insert_inode_locked(struct inode * inode)6292 static int btrfs_insert_inode_locked(struct inode *inode)
6293 {
6294 struct btrfs_iget_args args;
6295 args.location = &BTRFS_I(inode)->location;
6296 args.root = BTRFS_I(inode)->root;
6297
6298 return insert_inode_locked4(inode,
6299 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6300 btrfs_find_actor, &args);
6301 }
6302
6303 /*
6304 * Inherit flags from the parent inode.
6305 *
6306 * Currently only the compression flags and the cow flags are inherited.
6307 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6308 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6309 {
6310 unsigned int flags;
6311
6312 if (!dir)
6313 return;
6314
6315 flags = BTRFS_I(dir)->flags;
6316
6317 if (flags & BTRFS_INODE_NOCOMPRESS) {
6318 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6319 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6320 } else if (flags & BTRFS_INODE_COMPRESS) {
6321 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6322 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6323 }
6324
6325 if (flags & BTRFS_INODE_NODATACOW) {
6326 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6327 if (S_ISREG(inode->i_mode))
6328 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6329 }
6330
6331 btrfs_sync_inode_flags_to_i_flags(inode);
6332 }
6333
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6334 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6335 struct btrfs_root *root,
6336 struct inode *dir,
6337 const char *name, int name_len,
6338 u64 ref_objectid, u64 objectid,
6339 umode_t mode, u64 *index)
6340 {
6341 struct btrfs_fs_info *fs_info = root->fs_info;
6342 struct inode *inode;
6343 struct btrfs_inode_item *inode_item;
6344 struct btrfs_key *location;
6345 struct btrfs_path *path;
6346 struct btrfs_inode_ref *ref;
6347 struct btrfs_key key[2];
6348 u32 sizes[2];
6349 int nitems = name ? 2 : 1;
6350 unsigned long ptr;
6351 unsigned int nofs_flag;
6352 int ret;
6353
6354 path = btrfs_alloc_path();
6355 if (!path)
6356 return ERR_PTR(-ENOMEM);
6357
6358 nofs_flag = memalloc_nofs_save();
6359 inode = new_inode(fs_info->sb);
6360 memalloc_nofs_restore(nofs_flag);
6361 if (!inode) {
6362 btrfs_free_path(path);
6363 return ERR_PTR(-ENOMEM);
6364 }
6365
6366 /*
6367 * O_TMPFILE, set link count to 0, so that after this point,
6368 * we fill in an inode item with the correct link count.
6369 */
6370 if (!name)
6371 set_nlink(inode, 0);
6372
6373 /*
6374 * we have to initialize this early, so we can reclaim the inode
6375 * number if we fail afterwards in this function.
6376 */
6377 inode->i_ino = objectid;
6378
6379 if (dir && name) {
6380 trace_btrfs_inode_request(dir);
6381
6382 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6383 if (ret) {
6384 btrfs_free_path(path);
6385 iput(inode);
6386 return ERR_PTR(ret);
6387 }
6388 } else if (dir) {
6389 *index = 0;
6390 }
6391 /*
6392 * index_cnt is ignored for everything but a dir,
6393 * btrfs_set_inode_index_count has an explanation for the magic
6394 * number
6395 */
6396 BTRFS_I(inode)->index_cnt = 2;
6397 BTRFS_I(inode)->dir_index = *index;
6398 BTRFS_I(inode)->root = root;
6399 BTRFS_I(inode)->generation = trans->transid;
6400 inode->i_generation = BTRFS_I(inode)->generation;
6401
6402 /*
6403 * We could have gotten an inode number from somebody who was fsynced
6404 * and then removed in this same transaction, so let's just set full
6405 * sync since it will be a full sync anyway and this will blow away the
6406 * old info in the log.
6407 */
6408 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6409
6410 key[0].objectid = objectid;
6411 key[0].type = BTRFS_INODE_ITEM_KEY;
6412 key[0].offset = 0;
6413
6414 sizes[0] = sizeof(struct btrfs_inode_item);
6415
6416 if (name) {
6417 /*
6418 * Start new inodes with an inode_ref. This is slightly more
6419 * efficient for small numbers of hard links since they will
6420 * be packed into one item. Extended refs will kick in if we
6421 * add more hard links than can fit in the ref item.
6422 */
6423 key[1].objectid = objectid;
6424 key[1].type = BTRFS_INODE_REF_KEY;
6425 key[1].offset = ref_objectid;
6426
6427 sizes[1] = name_len + sizeof(*ref);
6428 }
6429
6430 location = &BTRFS_I(inode)->location;
6431 location->objectid = objectid;
6432 location->offset = 0;
6433 location->type = BTRFS_INODE_ITEM_KEY;
6434
6435 ret = btrfs_insert_inode_locked(inode);
6436 if (ret < 0) {
6437 iput(inode);
6438 goto fail;
6439 }
6440
6441 path->leave_spinning = 1;
6442 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6443 if (ret != 0)
6444 goto fail_unlock;
6445
6446 inode_init_owner(inode, dir, mode);
6447 inode_set_bytes(inode, 0);
6448
6449 inode->i_mtime = current_time(inode);
6450 inode->i_atime = inode->i_mtime;
6451 inode->i_ctime = inode->i_mtime;
6452 BTRFS_I(inode)->i_otime = inode->i_mtime;
6453
6454 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6455 struct btrfs_inode_item);
6456 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6457 sizeof(*inode_item));
6458 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6459
6460 if (name) {
6461 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6462 struct btrfs_inode_ref);
6463 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6464 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6465 ptr = (unsigned long)(ref + 1);
6466 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6467 }
6468
6469 btrfs_mark_buffer_dirty(path->nodes[0]);
6470 btrfs_free_path(path);
6471
6472 btrfs_inherit_iflags(inode, dir);
6473
6474 if (S_ISREG(mode)) {
6475 if (btrfs_test_opt(fs_info, NODATASUM))
6476 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6477 if (btrfs_test_opt(fs_info, NODATACOW))
6478 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6479 BTRFS_INODE_NODATASUM;
6480 }
6481
6482 inode_tree_add(inode);
6483
6484 trace_btrfs_inode_new(inode);
6485 btrfs_set_inode_last_trans(trans, inode);
6486
6487 btrfs_update_root_times(trans, root);
6488
6489 ret = btrfs_inode_inherit_props(trans, inode, dir);
6490 if (ret)
6491 btrfs_err(fs_info,
6492 "error inheriting props for ino %llu (root %llu): %d",
6493 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6494
6495 return inode;
6496
6497 fail_unlock:
6498 discard_new_inode(inode);
6499 fail:
6500 if (dir && name)
6501 BTRFS_I(dir)->index_cnt--;
6502 btrfs_free_path(path);
6503 return ERR_PTR(ret);
6504 }
6505
6506 /*
6507 * utility function to add 'inode' into 'parent_inode' with
6508 * a give name and a given sequence number.
6509 * if 'add_backref' is true, also insert a backref from the
6510 * inode to the parent directory.
6511 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6512 int btrfs_add_link(struct btrfs_trans_handle *trans,
6513 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6514 const char *name, int name_len, int add_backref, u64 index)
6515 {
6516 int ret = 0;
6517 struct btrfs_key key;
6518 struct btrfs_root *root = parent_inode->root;
6519 u64 ino = btrfs_ino(inode);
6520 u64 parent_ino = btrfs_ino(parent_inode);
6521
6522 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6523 memcpy(&key, &inode->root->root_key, sizeof(key));
6524 } else {
6525 key.objectid = ino;
6526 key.type = BTRFS_INODE_ITEM_KEY;
6527 key.offset = 0;
6528 }
6529
6530 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6531 ret = btrfs_add_root_ref(trans, key.objectid,
6532 root->root_key.objectid, parent_ino,
6533 index, name, name_len);
6534 } else if (add_backref) {
6535 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6536 parent_ino, index);
6537 }
6538
6539 /* Nothing to clean up yet */
6540 if (ret)
6541 return ret;
6542
6543 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6544 btrfs_inode_type(&inode->vfs_inode), index);
6545 if (ret == -EEXIST || ret == -EOVERFLOW)
6546 goto fail_dir_item;
6547 else if (ret) {
6548 btrfs_abort_transaction(trans, ret);
6549 return ret;
6550 }
6551
6552 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6553 name_len * 2);
6554 inode_inc_iversion(&parent_inode->vfs_inode);
6555 /*
6556 * If we are replaying a log tree, we do not want to update the mtime
6557 * and ctime of the parent directory with the current time, since the
6558 * log replay procedure is responsible for setting them to their correct
6559 * values (the ones it had when the fsync was done).
6560 */
6561 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6562 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6563
6564 parent_inode->vfs_inode.i_mtime = now;
6565 parent_inode->vfs_inode.i_ctime = now;
6566 }
6567 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6568 if (ret)
6569 btrfs_abort_transaction(trans, ret);
6570 return ret;
6571
6572 fail_dir_item:
6573 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6574 u64 local_index;
6575 int err;
6576 err = btrfs_del_root_ref(trans, key.objectid,
6577 root->root_key.objectid, parent_ino,
6578 &local_index, name, name_len);
6579 if (err)
6580 btrfs_abort_transaction(trans, err);
6581 } else if (add_backref) {
6582 u64 local_index;
6583 int err;
6584
6585 err = btrfs_del_inode_ref(trans, root, name, name_len,
6586 ino, parent_ino, &local_index);
6587 if (err)
6588 btrfs_abort_transaction(trans, err);
6589 }
6590
6591 /* Return the original error code */
6592 return ret;
6593 }
6594
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6595 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6596 struct btrfs_inode *dir, struct dentry *dentry,
6597 struct btrfs_inode *inode, int backref, u64 index)
6598 {
6599 int err = btrfs_add_link(trans, dir, inode,
6600 dentry->d_name.name, dentry->d_name.len,
6601 backref, index);
6602 if (err > 0)
6603 err = -EEXIST;
6604 return err;
6605 }
6606
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6607 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6608 umode_t mode, dev_t rdev)
6609 {
6610 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6611 struct btrfs_trans_handle *trans;
6612 struct btrfs_root *root = BTRFS_I(dir)->root;
6613 struct inode *inode = NULL;
6614 int err;
6615 u64 objectid;
6616 u64 index = 0;
6617
6618 /*
6619 * 2 for inode item and ref
6620 * 2 for dir items
6621 * 1 for xattr if selinux is on
6622 */
6623 trans = btrfs_start_transaction(root, 5);
6624 if (IS_ERR(trans))
6625 return PTR_ERR(trans);
6626
6627 err = btrfs_find_free_ino(root, &objectid);
6628 if (err)
6629 goto out_unlock;
6630
6631 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6632 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6633 mode, &index);
6634 if (IS_ERR(inode)) {
6635 err = PTR_ERR(inode);
6636 inode = NULL;
6637 goto out_unlock;
6638 }
6639
6640 /*
6641 * If the active LSM wants to access the inode during
6642 * d_instantiate it needs these. Smack checks to see
6643 * if the filesystem supports xattrs by looking at the
6644 * ops vector.
6645 */
6646 inode->i_op = &btrfs_special_inode_operations;
6647 init_special_inode(inode, inode->i_mode, rdev);
6648
6649 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6650 if (err)
6651 goto out_unlock;
6652
6653 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6654 0, index);
6655 if (err)
6656 goto out_unlock;
6657
6658 btrfs_update_inode(trans, root, inode);
6659 d_instantiate_new(dentry, inode);
6660
6661 out_unlock:
6662 btrfs_end_transaction(trans);
6663 btrfs_btree_balance_dirty(fs_info);
6664 if (err && inode) {
6665 inode_dec_link_count(inode);
6666 discard_new_inode(inode);
6667 }
6668 return err;
6669 }
6670
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6671 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6672 umode_t mode, bool excl)
6673 {
6674 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6675 struct btrfs_trans_handle *trans;
6676 struct btrfs_root *root = BTRFS_I(dir)->root;
6677 struct inode *inode = NULL;
6678 int err;
6679 u64 objectid;
6680 u64 index = 0;
6681
6682 /*
6683 * 2 for inode item and ref
6684 * 2 for dir items
6685 * 1 for xattr if selinux is on
6686 */
6687 trans = btrfs_start_transaction(root, 5);
6688 if (IS_ERR(trans))
6689 return PTR_ERR(trans);
6690
6691 err = btrfs_find_free_ino(root, &objectid);
6692 if (err)
6693 goto out_unlock;
6694
6695 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6696 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6697 mode, &index);
6698 if (IS_ERR(inode)) {
6699 err = PTR_ERR(inode);
6700 inode = NULL;
6701 goto out_unlock;
6702 }
6703 /*
6704 * If the active LSM wants to access the inode during
6705 * d_instantiate it needs these. Smack checks to see
6706 * if the filesystem supports xattrs by looking at the
6707 * ops vector.
6708 */
6709 inode->i_fop = &btrfs_file_operations;
6710 inode->i_op = &btrfs_file_inode_operations;
6711 inode->i_mapping->a_ops = &btrfs_aops;
6712
6713 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6714 if (err)
6715 goto out_unlock;
6716
6717 err = btrfs_update_inode(trans, root, inode);
6718 if (err)
6719 goto out_unlock;
6720
6721 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6722 0, index);
6723 if (err)
6724 goto out_unlock;
6725
6726 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6727 d_instantiate_new(dentry, inode);
6728
6729 out_unlock:
6730 btrfs_end_transaction(trans);
6731 if (err && inode) {
6732 inode_dec_link_count(inode);
6733 discard_new_inode(inode);
6734 }
6735 btrfs_btree_balance_dirty(fs_info);
6736 return err;
6737 }
6738
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6739 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6740 struct dentry *dentry)
6741 {
6742 struct btrfs_trans_handle *trans = NULL;
6743 struct btrfs_root *root = BTRFS_I(dir)->root;
6744 struct inode *inode = d_inode(old_dentry);
6745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6746 u64 index;
6747 int err;
6748 int drop_inode = 0;
6749
6750 /* do not allow sys_link's with other subvols of the same device */
6751 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6752 return -EXDEV;
6753
6754 if (inode->i_nlink >= BTRFS_LINK_MAX)
6755 return -EMLINK;
6756
6757 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6758 if (err)
6759 goto fail;
6760
6761 /*
6762 * 2 items for inode and inode ref
6763 * 2 items for dir items
6764 * 1 item for parent inode
6765 * 1 item for orphan item deletion if O_TMPFILE
6766 */
6767 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6768 if (IS_ERR(trans)) {
6769 err = PTR_ERR(trans);
6770 trans = NULL;
6771 goto fail;
6772 }
6773
6774 /* There are several dir indexes for this inode, clear the cache. */
6775 BTRFS_I(inode)->dir_index = 0ULL;
6776 inc_nlink(inode);
6777 inode_inc_iversion(inode);
6778 inode->i_ctime = current_time(inode);
6779 ihold(inode);
6780 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6781
6782 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6783 1, index);
6784
6785 if (err) {
6786 drop_inode = 1;
6787 } else {
6788 struct dentry *parent = dentry->d_parent;
6789 int ret;
6790
6791 err = btrfs_update_inode(trans, root, inode);
6792 if (err)
6793 goto fail;
6794 if (inode->i_nlink == 1) {
6795 /*
6796 * If new hard link count is 1, it's a file created
6797 * with open(2) O_TMPFILE flag.
6798 */
6799 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6800 if (err)
6801 goto fail;
6802 }
6803 d_instantiate(dentry, inode);
6804 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6805 true, NULL);
6806 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6807 err = btrfs_commit_transaction(trans);
6808 trans = NULL;
6809 }
6810 }
6811
6812 fail:
6813 if (trans)
6814 btrfs_end_transaction(trans);
6815 if (drop_inode) {
6816 inode_dec_link_count(inode);
6817 iput(inode);
6818 }
6819 btrfs_btree_balance_dirty(fs_info);
6820 return err;
6821 }
6822
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6823 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6824 {
6825 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6826 struct inode *inode = NULL;
6827 struct btrfs_trans_handle *trans;
6828 struct btrfs_root *root = BTRFS_I(dir)->root;
6829 int err = 0;
6830 u64 objectid = 0;
6831 u64 index = 0;
6832
6833 /*
6834 * 2 items for inode and ref
6835 * 2 items for dir items
6836 * 1 for xattr if selinux is on
6837 */
6838 trans = btrfs_start_transaction(root, 5);
6839 if (IS_ERR(trans))
6840 return PTR_ERR(trans);
6841
6842 err = btrfs_find_free_ino(root, &objectid);
6843 if (err)
6844 goto out_fail;
6845
6846 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6847 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6848 S_IFDIR | mode, &index);
6849 if (IS_ERR(inode)) {
6850 err = PTR_ERR(inode);
6851 inode = NULL;
6852 goto out_fail;
6853 }
6854
6855 /* these must be set before we unlock the inode */
6856 inode->i_op = &btrfs_dir_inode_operations;
6857 inode->i_fop = &btrfs_dir_file_operations;
6858
6859 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6860 if (err)
6861 goto out_fail;
6862
6863 btrfs_i_size_write(BTRFS_I(inode), 0);
6864 err = btrfs_update_inode(trans, root, inode);
6865 if (err)
6866 goto out_fail;
6867
6868 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6869 dentry->d_name.name,
6870 dentry->d_name.len, 0, index);
6871 if (err)
6872 goto out_fail;
6873
6874 d_instantiate_new(dentry, inode);
6875
6876 out_fail:
6877 btrfs_end_transaction(trans);
6878 if (err && inode) {
6879 inode_dec_link_count(inode);
6880 discard_new_inode(inode);
6881 }
6882 btrfs_btree_balance_dirty(fs_info);
6883 return err;
6884 }
6885
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6886 static noinline int uncompress_inline(struct btrfs_path *path,
6887 struct page *page,
6888 size_t pg_offset, u64 extent_offset,
6889 struct btrfs_file_extent_item *item)
6890 {
6891 int ret;
6892 struct extent_buffer *leaf = path->nodes[0];
6893 char *tmp;
6894 size_t max_size;
6895 unsigned long inline_size;
6896 unsigned long ptr;
6897 int compress_type;
6898
6899 WARN_ON(pg_offset != 0);
6900 compress_type = btrfs_file_extent_compression(leaf, item);
6901 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6902 inline_size = btrfs_file_extent_inline_item_len(leaf,
6903 btrfs_item_nr(path->slots[0]));
6904 tmp = kmalloc(inline_size, GFP_NOFS);
6905 if (!tmp)
6906 return -ENOMEM;
6907 ptr = btrfs_file_extent_inline_start(item);
6908
6909 read_extent_buffer(leaf, tmp, ptr, inline_size);
6910
6911 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6912 ret = btrfs_decompress(compress_type, tmp, page,
6913 extent_offset, inline_size, max_size);
6914
6915 /*
6916 * decompression code contains a memset to fill in any space between the end
6917 * of the uncompressed data and the end of max_size in case the decompressed
6918 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6919 * the end of an inline extent and the beginning of the next block, so we
6920 * cover that region here.
6921 */
6922
6923 if (max_size + pg_offset < PAGE_SIZE) {
6924 char *map = kmap(page);
6925 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6926 kunmap(page);
6927 }
6928 kfree(tmp);
6929 return ret;
6930 }
6931
6932 /*
6933 * a bit scary, this does extent mapping from logical file offset to the disk.
6934 * the ugly parts come from merging extents from the disk with the in-ram
6935 * representation. This gets more complex because of the data=ordered code,
6936 * where the in-ram extents might be locked pending data=ordered completion.
6937 *
6938 * This also copies inline extents directly into the page.
6939 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6940 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6941 struct page *page,
6942 size_t pg_offset, u64 start, u64 len,
6943 int create)
6944 {
6945 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6946 int ret;
6947 int err = 0;
6948 u64 extent_start = 0;
6949 u64 extent_end = 0;
6950 u64 objectid = btrfs_ino(inode);
6951 int extent_type = -1;
6952 struct btrfs_path *path = NULL;
6953 struct btrfs_root *root = inode->root;
6954 struct btrfs_file_extent_item *item;
6955 struct extent_buffer *leaf;
6956 struct btrfs_key found_key;
6957 struct extent_map *em = NULL;
6958 struct extent_map_tree *em_tree = &inode->extent_tree;
6959 struct extent_io_tree *io_tree = &inode->io_tree;
6960 const bool new_inline = !page || create;
6961
6962 read_lock(&em_tree->lock);
6963 em = lookup_extent_mapping(em_tree, start, len);
6964 if (em)
6965 em->bdev = fs_info->fs_devices->latest_bdev;
6966 read_unlock(&em_tree->lock);
6967
6968 if (em) {
6969 if (em->start > start || em->start + em->len <= start)
6970 free_extent_map(em);
6971 else if (em->block_start == EXTENT_MAP_INLINE && page)
6972 free_extent_map(em);
6973 else
6974 goto out;
6975 }
6976 em = alloc_extent_map();
6977 if (!em) {
6978 err = -ENOMEM;
6979 goto out;
6980 }
6981 em->bdev = fs_info->fs_devices->latest_bdev;
6982 em->start = EXTENT_MAP_HOLE;
6983 em->orig_start = EXTENT_MAP_HOLE;
6984 em->len = (u64)-1;
6985 em->block_len = (u64)-1;
6986
6987 path = btrfs_alloc_path();
6988 if (!path) {
6989 err = -ENOMEM;
6990 goto out;
6991 }
6992
6993 /* Chances are we'll be called again, so go ahead and do readahead */
6994 path->reada = READA_FORWARD;
6995
6996 /*
6997 * Unless we're going to uncompress the inline extent, no sleep would
6998 * happen.
6999 */
7000 path->leave_spinning = 1;
7001
7002 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7003 if (ret < 0) {
7004 err = ret;
7005 goto out;
7006 } else if (ret > 0) {
7007 if (path->slots[0] == 0)
7008 goto not_found;
7009 path->slots[0]--;
7010 }
7011
7012 leaf = path->nodes[0];
7013 item = btrfs_item_ptr(leaf, path->slots[0],
7014 struct btrfs_file_extent_item);
7015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7016 if (found_key.objectid != objectid ||
7017 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7018 /*
7019 * If we backup past the first extent we want to move forward
7020 * and see if there is an extent in front of us, otherwise we'll
7021 * say there is a hole for our whole search range which can
7022 * cause problems.
7023 */
7024 extent_end = start;
7025 goto next;
7026 }
7027
7028 extent_type = btrfs_file_extent_type(leaf, item);
7029 extent_start = found_key.offset;
7030 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7031 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7032 /* Only regular file could have regular/prealloc extent */
7033 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7034 ret = -EUCLEAN;
7035 btrfs_crit(fs_info,
7036 "regular/prealloc extent found for non-regular inode %llu",
7037 btrfs_ino(inode));
7038 goto out;
7039 }
7040 extent_end = extent_start +
7041 btrfs_file_extent_num_bytes(leaf, item);
7042
7043 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7044 extent_start);
7045 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7046 size_t size;
7047
7048 size = btrfs_file_extent_ram_bytes(leaf, item);
7049 extent_end = ALIGN(extent_start + size,
7050 fs_info->sectorsize);
7051
7052 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7053 path->slots[0],
7054 extent_start);
7055 }
7056 next:
7057 if (start >= extent_end) {
7058 path->slots[0]++;
7059 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7060 ret = btrfs_next_leaf(root, path);
7061 if (ret < 0) {
7062 err = ret;
7063 goto out;
7064 } else if (ret > 0) {
7065 goto not_found;
7066 }
7067 leaf = path->nodes[0];
7068 }
7069 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7070 if (found_key.objectid != objectid ||
7071 found_key.type != BTRFS_EXTENT_DATA_KEY)
7072 goto not_found;
7073 if (start + len <= found_key.offset)
7074 goto not_found;
7075 if (start > found_key.offset)
7076 goto next;
7077
7078 /* New extent overlaps with existing one */
7079 em->start = start;
7080 em->orig_start = start;
7081 em->len = found_key.offset - start;
7082 em->block_start = EXTENT_MAP_HOLE;
7083 goto insert;
7084 }
7085
7086 btrfs_extent_item_to_extent_map(inode, path, item,
7087 new_inline, em);
7088
7089 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7090 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7091 goto insert;
7092 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7093 unsigned long ptr;
7094 char *map;
7095 size_t size;
7096 size_t extent_offset;
7097 size_t copy_size;
7098
7099 if (new_inline)
7100 goto out;
7101
7102 size = btrfs_file_extent_ram_bytes(leaf, item);
7103 extent_offset = page_offset(page) + pg_offset - extent_start;
7104 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7105 size - extent_offset);
7106 em->start = extent_start + extent_offset;
7107 em->len = ALIGN(copy_size, fs_info->sectorsize);
7108 em->orig_block_len = em->len;
7109 em->orig_start = em->start;
7110 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7111
7112 btrfs_set_path_blocking(path);
7113 if (!PageUptodate(page)) {
7114 if (btrfs_file_extent_compression(leaf, item) !=
7115 BTRFS_COMPRESS_NONE) {
7116 ret = uncompress_inline(path, page, pg_offset,
7117 extent_offset, item);
7118 if (ret) {
7119 err = ret;
7120 goto out;
7121 }
7122 } else {
7123 map = kmap(page);
7124 read_extent_buffer(leaf, map + pg_offset, ptr,
7125 copy_size);
7126 if (pg_offset + copy_size < PAGE_SIZE) {
7127 memset(map + pg_offset + copy_size, 0,
7128 PAGE_SIZE - pg_offset -
7129 copy_size);
7130 }
7131 kunmap(page);
7132 }
7133 flush_dcache_page(page);
7134 }
7135 set_extent_uptodate(io_tree, em->start,
7136 extent_map_end(em) - 1, NULL, GFP_NOFS);
7137 goto insert;
7138 }
7139 not_found:
7140 em->start = start;
7141 em->orig_start = start;
7142 em->len = len;
7143 em->block_start = EXTENT_MAP_HOLE;
7144 insert:
7145 btrfs_release_path(path);
7146 if (em->start > start || extent_map_end(em) <= start) {
7147 btrfs_err(fs_info,
7148 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7149 em->start, em->len, start, len);
7150 err = -EIO;
7151 goto out;
7152 }
7153
7154 err = 0;
7155 write_lock(&em_tree->lock);
7156 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7157 write_unlock(&em_tree->lock);
7158 out:
7159 btrfs_free_path(path);
7160
7161 trace_btrfs_get_extent(root, inode, em);
7162
7163 if (err) {
7164 free_extent_map(em);
7165 return ERR_PTR(err);
7166 }
7167 BUG_ON(!em); /* Error is always set */
7168 return em;
7169 }
7170
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)7171 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7172 u64 start, u64 len)
7173 {
7174 struct extent_map *em;
7175 struct extent_map *hole_em = NULL;
7176 u64 delalloc_start = start;
7177 u64 end;
7178 u64 delalloc_len;
7179 u64 delalloc_end;
7180 int err = 0;
7181
7182 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7183 if (IS_ERR(em))
7184 return em;
7185 /*
7186 * If our em maps to:
7187 * - a hole or
7188 * - a pre-alloc extent,
7189 * there might actually be delalloc bytes behind it.
7190 */
7191 if (em->block_start != EXTENT_MAP_HOLE &&
7192 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7193 return em;
7194 else
7195 hole_em = em;
7196
7197 /* check to see if we've wrapped (len == -1 or similar) */
7198 end = start + len;
7199 if (end < start)
7200 end = (u64)-1;
7201 else
7202 end -= 1;
7203
7204 em = NULL;
7205
7206 /* ok, we didn't find anything, lets look for delalloc */
7207 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7208 end, len, EXTENT_DELALLOC, 1);
7209 delalloc_end = delalloc_start + delalloc_len;
7210 if (delalloc_end < delalloc_start)
7211 delalloc_end = (u64)-1;
7212
7213 /*
7214 * We didn't find anything useful, return the original results from
7215 * get_extent()
7216 */
7217 if (delalloc_start > end || delalloc_end <= start) {
7218 em = hole_em;
7219 hole_em = NULL;
7220 goto out;
7221 }
7222
7223 /*
7224 * Adjust the delalloc_start to make sure it doesn't go backwards from
7225 * the start they passed in
7226 */
7227 delalloc_start = max(start, delalloc_start);
7228 delalloc_len = delalloc_end - delalloc_start;
7229
7230 if (delalloc_len > 0) {
7231 u64 hole_start;
7232 u64 hole_len;
7233 const u64 hole_end = extent_map_end(hole_em);
7234
7235 em = alloc_extent_map();
7236 if (!em) {
7237 err = -ENOMEM;
7238 goto out;
7239 }
7240 em->bdev = NULL;
7241
7242 ASSERT(hole_em);
7243 /*
7244 * When btrfs_get_extent can't find anything it returns one
7245 * huge hole
7246 *
7247 * Make sure what it found really fits our range, and adjust to
7248 * make sure it is based on the start from the caller
7249 */
7250 if (hole_end <= start || hole_em->start > end) {
7251 free_extent_map(hole_em);
7252 hole_em = NULL;
7253 } else {
7254 hole_start = max(hole_em->start, start);
7255 hole_len = hole_end - hole_start;
7256 }
7257
7258 if (hole_em && delalloc_start > hole_start) {
7259 /*
7260 * Our hole starts before our delalloc, so we have to
7261 * return just the parts of the hole that go until the
7262 * delalloc starts
7263 */
7264 em->len = min(hole_len, delalloc_start - hole_start);
7265 em->start = hole_start;
7266 em->orig_start = hole_start;
7267 /*
7268 * Don't adjust block start at all, it is fixed at
7269 * EXTENT_MAP_HOLE
7270 */
7271 em->block_start = hole_em->block_start;
7272 em->block_len = hole_len;
7273 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7274 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7275 } else {
7276 /*
7277 * Hole is out of passed range or it starts after
7278 * delalloc range
7279 */
7280 em->start = delalloc_start;
7281 em->len = delalloc_len;
7282 em->orig_start = delalloc_start;
7283 em->block_start = EXTENT_MAP_DELALLOC;
7284 em->block_len = delalloc_len;
7285 }
7286 } else {
7287 return hole_em;
7288 }
7289 out:
7290
7291 free_extent_map(hole_em);
7292 if (err) {
7293 free_extent_map(em);
7294 return ERR_PTR(err);
7295 }
7296 return em;
7297 }
7298
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7299 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7300 const u64 start,
7301 const u64 len,
7302 const u64 orig_start,
7303 const u64 block_start,
7304 const u64 block_len,
7305 const u64 orig_block_len,
7306 const u64 ram_bytes,
7307 const int type)
7308 {
7309 struct extent_map *em = NULL;
7310 int ret;
7311
7312 if (type != BTRFS_ORDERED_NOCOW) {
7313 em = create_io_em(inode, start, len, orig_start,
7314 block_start, block_len, orig_block_len,
7315 ram_bytes,
7316 BTRFS_COMPRESS_NONE, /* compress_type */
7317 type);
7318 if (IS_ERR(em))
7319 goto out;
7320 }
7321 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7322 len, block_len, type);
7323 if (ret) {
7324 if (em) {
7325 free_extent_map(em);
7326 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7327 start + len - 1, 0);
7328 }
7329 em = ERR_PTR(ret);
7330 }
7331 out:
7332
7333 return em;
7334 }
7335
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7336 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7337 u64 start, u64 len)
7338 {
7339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7340 struct btrfs_root *root = BTRFS_I(inode)->root;
7341 struct extent_map *em;
7342 struct btrfs_key ins;
7343 u64 alloc_hint;
7344 int ret;
7345
7346 alloc_hint = get_extent_allocation_hint(inode, start, len);
7347 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7348 0, alloc_hint, &ins, 1, 1);
7349 if (ret)
7350 return ERR_PTR(ret);
7351
7352 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7353 ins.objectid, ins.offset, ins.offset,
7354 ins.offset, BTRFS_ORDERED_REGULAR);
7355 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7356 if (IS_ERR(em))
7357 btrfs_free_reserved_extent(fs_info, ins.objectid,
7358 ins.offset, 1);
7359
7360 return em;
7361 }
7362
7363 /*
7364 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7365 * block must be cow'd
7366 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7367 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7368 u64 *orig_start, u64 *orig_block_len,
7369 u64 *ram_bytes)
7370 {
7371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7372 struct btrfs_path *path;
7373 int ret;
7374 struct extent_buffer *leaf;
7375 struct btrfs_root *root = BTRFS_I(inode)->root;
7376 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7377 struct btrfs_file_extent_item *fi;
7378 struct btrfs_key key;
7379 u64 disk_bytenr;
7380 u64 backref_offset;
7381 u64 extent_end;
7382 u64 num_bytes;
7383 int slot;
7384 int found_type;
7385 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7386
7387 path = btrfs_alloc_path();
7388 if (!path)
7389 return -ENOMEM;
7390
7391 ret = btrfs_lookup_file_extent(NULL, root, path,
7392 btrfs_ino(BTRFS_I(inode)), offset, 0);
7393 if (ret < 0)
7394 goto out;
7395
7396 slot = path->slots[0];
7397 if (ret == 1) {
7398 if (slot == 0) {
7399 /* can't find the item, must cow */
7400 ret = 0;
7401 goto out;
7402 }
7403 slot--;
7404 }
7405 ret = 0;
7406 leaf = path->nodes[0];
7407 btrfs_item_key_to_cpu(leaf, &key, slot);
7408 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7409 key.type != BTRFS_EXTENT_DATA_KEY) {
7410 /* not our file or wrong item type, must cow */
7411 goto out;
7412 }
7413
7414 if (key.offset > offset) {
7415 /* Wrong offset, must cow */
7416 goto out;
7417 }
7418
7419 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7420 found_type = btrfs_file_extent_type(leaf, fi);
7421 if (found_type != BTRFS_FILE_EXTENT_REG &&
7422 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7423 /* not a regular extent, must cow */
7424 goto out;
7425 }
7426
7427 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7428 goto out;
7429
7430 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7431 if (extent_end <= offset)
7432 goto out;
7433
7434 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7435 if (disk_bytenr == 0)
7436 goto out;
7437
7438 if (btrfs_file_extent_compression(leaf, fi) ||
7439 btrfs_file_extent_encryption(leaf, fi) ||
7440 btrfs_file_extent_other_encoding(leaf, fi))
7441 goto out;
7442
7443 /*
7444 * Do the same check as in btrfs_cross_ref_exist but without the
7445 * unnecessary search.
7446 */
7447 if (btrfs_file_extent_generation(leaf, fi) <=
7448 btrfs_root_last_snapshot(&root->root_item))
7449 goto out;
7450
7451 backref_offset = btrfs_file_extent_offset(leaf, fi);
7452
7453 if (orig_start) {
7454 *orig_start = key.offset - backref_offset;
7455 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7456 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7457 }
7458
7459 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7460 goto out;
7461
7462 num_bytes = min(offset + *len, extent_end) - offset;
7463 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7464 u64 range_end;
7465
7466 range_end = round_up(offset + num_bytes,
7467 root->fs_info->sectorsize) - 1;
7468 ret = test_range_bit(io_tree, offset, range_end,
7469 EXTENT_DELALLOC, 0, NULL);
7470 if (ret) {
7471 ret = -EAGAIN;
7472 goto out;
7473 }
7474 }
7475
7476 btrfs_release_path(path);
7477
7478 /*
7479 * look for other files referencing this extent, if we
7480 * find any we must cow
7481 */
7482
7483 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7484 key.offset - backref_offset, disk_bytenr);
7485 if (ret) {
7486 ret = 0;
7487 goto out;
7488 }
7489
7490 /*
7491 * adjust disk_bytenr and num_bytes to cover just the bytes
7492 * in this extent we are about to write. If there
7493 * are any csums in that range we have to cow in order
7494 * to keep the csums correct
7495 */
7496 disk_bytenr += backref_offset;
7497 disk_bytenr += offset - key.offset;
7498 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7499 goto out;
7500 /*
7501 * all of the above have passed, it is safe to overwrite this extent
7502 * without cow
7503 */
7504 *len = num_bytes;
7505 ret = 1;
7506 out:
7507 btrfs_free_path(path);
7508 return ret;
7509 }
7510
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7511 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7512 struct extent_state **cached_state, int writing)
7513 {
7514 struct btrfs_ordered_extent *ordered;
7515 int ret = 0;
7516
7517 while (1) {
7518 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7519 cached_state);
7520 /*
7521 * We're concerned with the entire range that we're going to be
7522 * doing DIO to, so we need to make sure there's no ordered
7523 * extents in this range.
7524 */
7525 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7526 lockend - lockstart + 1);
7527
7528 /*
7529 * We need to make sure there are no buffered pages in this
7530 * range either, we could have raced between the invalidate in
7531 * generic_file_direct_write and locking the extent. The
7532 * invalidate needs to happen so that reads after a write do not
7533 * get stale data.
7534 */
7535 if (!ordered &&
7536 (!writing || !filemap_range_has_page(inode->i_mapping,
7537 lockstart, lockend)))
7538 break;
7539
7540 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7541 cached_state);
7542
7543 if (ordered) {
7544 /*
7545 * If we are doing a DIO read and the ordered extent we
7546 * found is for a buffered write, we can not wait for it
7547 * to complete and retry, because if we do so we can
7548 * deadlock with concurrent buffered writes on page
7549 * locks. This happens only if our DIO read covers more
7550 * than one extent map, if at this point has already
7551 * created an ordered extent for a previous extent map
7552 * and locked its range in the inode's io tree, and a
7553 * concurrent write against that previous extent map's
7554 * range and this range started (we unlock the ranges
7555 * in the io tree only when the bios complete and
7556 * buffered writes always lock pages before attempting
7557 * to lock range in the io tree).
7558 */
7559 if (writing ||
7560 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7561 btrfs_start_ordered_extent(inode, ordered, 1);
7562 else
7563 ret = -ENOTBLK;
7564 btrfs_put_ordered_extent(ordered);
7565 } else {
7566 /*
7567 * We could trigger writeback for this range (and wait
7568 * for it to complete) and then invalidate the pages for
7569 * this range (through invalidate_inode_pages2_range()),
7570 * but that can lead us to a deadlock with a concurrent
7571 * call to readpages() (a buffered read or a defrag call
7572 * triggered a readahead) on a page lock due to an
7573 * ordered dio extent we created before but did not have
7574 * yet a corresponding bio submitted (whence it can not
7575 * complete), which makes readpages() wait for that
7576 * ordered extent to complete while holding a lock on
7577 * that page.
7578 */
7579 ret = -ENOTBLK;
7580 }
7581
7582 if (ret)
7583 break;
7584
7585 cond_resched();
7586 }
7587
7588 return ret;
7589 }
7590
7591 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7592 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7593 u64 orig_start, u64 block_start,
7594 u64 block_len, u64 orig_block_len,
7595 u64 ram_bytes, int compress_type,
7596 int type)
7597 {
7598 struct extent_map_tree *em_tree;
7599 struct extent_map *em;
7600 struct btrfs_root *root = BTRFS_I(inode)->root;
7601 int ret;
7602
7603 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7604 type == BTRFS_ORDERED_COMPRESSED ||
7605 type == BTRFS_ORDERED_NOCOW ||
7606 type == BTRFS_ORDERED_REGULAR);
7607
7608 em_tree = &BTRFS_I(inode)->extent_tree;
7609 em = alloc_extent_map();
7610 if (!em)
7611 return ERR_PTR(-ENOMEM);
7612
7613 em->start = start;
7614 em->orig_start = orig_start;
7615 em->len = len;
7616 em->block_len = block_len;
7617 em->block_start = block_start;
7618 em->bdev = root->fs_info->fs_devices->latest_bdev;
7619 em->orig_block_len = orig_block_len;
7620 em->ram_bytes = ram_bytes;
7621 em->generation = -1;
7622 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7623 if (type == BTRFS_ORDERED_PREALLOC) {
7624 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7625 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7626 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7627 em->compress_type = compress_type;
7628 }
7629
7630 do {
7631 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7632 em->start + em->len - 1, 0);
7633 write_lock(&em_tree->lock);
7634 ret = add_extent_mapping(em_tree, em, 1);
7635 write_unlock(&em_tree->lock);
7636 /*
7637 * The caller has taken lock_extent(), who could race with us
7638 * to add em?
7639 */
7640 } while (ret == -EEXIST);
7641
7642 if (ret) {
7643 free_extent_map(em);
7644 return ERR_PTR(ret);
7645 }
7646
7647 /* em got 2 refs now, callers needs to do free_extent_map once. */
7648 return em;
7649 }
7650
7651
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7652 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7653 struct buffer_head *bh_result,
7654 struct inode *inode,
7655 u64 start, u64 len)
7656 {
7657 if (em->block_start == EXTENT_MAP_HOLE ||
7658 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7659 return -ENOENT;
7660
7661 len = min(len, em->len - (start - em->start));
7662
7663 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7664 inode->i_blkbits;
7665 bh_result->b_size = len;
7666 bh_result->b_bdev = em->bdev;
7667 set_buffer_mapped(bh_result);
7668
7669 return 0;
7670 }
7671
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7672 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7673 struct buffer_head *bh_result,
7674 struct inode *inode,
7675 struct btrfs_dio_data *dio_data,
7676 u64 start, u64 len)
7677 {
7678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7679 struct extent_map *em = *map;
7680 int ret = 0;
7681
7682 /*
7683 * We don't allocate a new extent in the following cases
7684 *
7685 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7686 * existing extent.
7687 * 2) The extent is marked as PREALLOC. We're good to go here and can
7688 * just use the extent.
7689 *
7690 */
7691 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7692 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7693 em->block_start != EXTENT_MAP_HOLE)) {
7694 int type;
7695 u64 block_start, orig_start, orig_block_len, ram_bytes;
7696
7697 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7698 type = BTRFS_ORDERED_PREALLOC;
7699 else
7700 type = BTRFS_ORDERED_NOCOW;
7701 len = min(len, em->len - (start - em->start));
7702 block_start = em->block_start + (start - em->start);
7703
7704 if (can_nocow_extent(inode, start, &len, &orig_start,
7705 &orig_block_len, &ram_bytes) == 1 &&
7706 btrfs_inc_nocow_writers(fs_info, block_start)) {
7707 struct extent_map *em2;
7708
7709 em2 = btrfs_create_dio_extent(inode, start, len,
7710 orig_start, block_start,
7711 len, orig_block_len,
7712 ram_bytes, type);
7713 btrfs_dec_nocow_writers(fs_info, block_start);
7714 if (type == BTRFS_ORDERED_PREALLOC) {
7715 free_extent_map(em);
7716 *map = em = em2;
7717 }
7718
7719 if (em2 && IS_ERR(em2)) {
7720 ret = PTR_ERR(em2);
7721 goto out;
7722 }
7723 /*
7724 * For inode marked NODATACOW or extent marked PREALLOC,
7725 * use the existing or preallocated extent, so does not
7726 * need to adjust btrfs_space_info's bytes_may_use.
7727 */
7728 btrfs_free_reserved_data_space_noquota(inode, start,
7729 len);
7730 goto skip_cow;
7731 }
7732 }
7733
7734 /* this will cow the extent */
7735 len = bh_result->b_size;
7736 free_extent_map(em);
7737 *map = em = btrfs_new_extent_direct(inode, start, len);
7738 if (IS_ERR(em)) {
7739 ret = PTR_ERR(em);
7740 goto out;
7741 }
7742
7743 len = min(len, em->len - (start - em->start));
7744
7745 skip_cow:
7746 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7747 inode->i_blkbits;
7748 bh_result->b_size = len;
7749 bh_result->b_bdev = em->bdev;
7750 set_buffer_mapped(bh_result);
7751
7752 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7753 set_buffer_new(bh_result);
7754
7755 /*
7756 * Need to update the i_size under the extent lock so buffered
7757 * readers will get the updated i_size when we unlock.
7758 */
7759 if (!dio_data->overwrite && start + len > i_size_read(inode))
7760 i_size_write(inode, start + len);
7761
7762 WARN_ON(dio_data->reserve < len);
7763 dio_data->reserve -= len;
7764 dio_data->unsubmitted_oe_range_end = start + len;
7765 current->journal_info = dio_data;
7766 out:
7767 return ret;
7768 }
7769
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7770 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7771 struct buffer_head *bh_result, int create)
7772 {
7773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7774 struct extent_map *em;
7775 struct extent_state *cached_state = NULL;
7776 struct btrfs_dio_data *dio_data = NULL;
7777 u64 start = iblock << inode->i_blkbits;
7778 u64 lockstart, lockend;
7779 u64 len = bh_result->b_size;
7780 int ret = 0;
7781
7782 if (!create)
7783 len = min_t(u64, len, fs_info->sectorsize);
7784
7785 lockstart = start;
7786 lockend = start + len - 1;
7787
7788 if (current->journal_info) {
7789 /*
7790 * Need to pull our outstanding extents and set journal_info to NULL so
7791 * that anything that needs to check if there's a transaction doesn't get
7792 * confused.
7793 */
7794 dio_data = current->journal_info;
7795 current->journal_info = NULL;
7796 }
7797
7798 /*
7799 * If this errors out it's because we couldn't invalidate pagecache for
7800 * this range and we need to fallback to buffered.
7801 */
7802 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7803 create)) {
7804 ret = -ENOTBLK;
7805 goto err;
7806 }
7807
7808 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7809 if (IS_ERR(em)) {
7810 ret = PTR_ERR(em);
7811 goto unlock_err;
7812 }
7813
7814 /*
7815 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7816 * io. INLINE is special, and we could probably kludge it in here, but
7817 * it's still buffered so for safety lets just fall back to the generic
7818 * buffered path.
7819 *
7820 * For COMPRESSED we _have_ to read the entire extent in so we can
7821 * decompress it, so there will be buffering required no matter what we
7822 * do, so go ahead and fallback to buffered.
7823 *
7824 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7825 * to buffered IO. Don't blame me, this is the price we pay for using
7826 * the generic code.
7827 */
7828 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7829 em->block_start == EXTENT_MAP_INLINE) {
7830 free_extent_map(em);
7831 ret = -ENOTBLK;
7832 goto unlock_err;
7833 }
7834
7835 if (create) {
7836 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7837 dio_data, start, len);
7838 if (ret < 0)
7839 goto unlock_err;
7840
7841 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7842 lockend, &cached_state);
7843 } else {
7844 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7845 start, len);
7846 /* Can be negative only if we read from a hole */
7847 if (ret < 0) {
7848 ret = 0;
7849 free_extent_map(em);
7850 goto unlock_err;
7851 }
7852 /*
7853 * We need to unlock only the end area that we aren't using.
7854 * The rest is going to be unlocked by the endio routine.
7855 */
7856 lockstart = start + bh_result->b_size;
7857 if (lockstart < lockend) {
7858 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7859 lockstart, lockend, &cached_state);
7860 } else {
7861 free_extent_state(cached_state);
7862 }
7863 }
7864
7865 free_extent_map(em);
7866
7867 return 0;
7868
7869 unlock_err:
7870 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7871 &cached_state);
7872 err:
7873 if (dio_data)
7874 current->journal_info = dio_data;
7875 return ret;
7876 }
7877
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7878 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7879 struct bio *bio,
7880 int mirror_num)
7881 {
7882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7883 blk_status_t ret;
7884
7885 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7886
7887 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7888 if (ret)
7889 return ret;
7890
7891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7892
7893 return ret;
7894 }
7895
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7896 static int btrfs_check_dio_repairable(struct inode *inode,
7897 struct bio *failed_bio,
7898 struct io_failure_record *failrec,
7899 int failed_mirror)
7900 {
7901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7902 int num_copies;
7903
7904 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7905 if (num_copies == 1) {
7906 /*
7907 * we only have a single copy of the data, so don't bother with
7908 * all the retry and error correction code that follows. no
7909 * matter what the error is, it is very likely to persist.
7910 */
7911 btrfs_debug(fs_info,
7912 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7913 num_copies, failrec->this_mirror, failed_mirror);
7914 return 0;
7915 }
7916
7917 failrec->failed_mirror = failed_mirror;
7918 failrec->this_mirror++;
7919 if (failrec->this_mirror == failed_mirror)
7920 failrec->this_mirror++;
7921
7922 if (failrec->this_mirror > num_copies) {
7923 btrfs_debug(fs_info,
7924 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7925 num_copies, failrec->this_mirror, failed_mirror);
7926 return 0;
7927 }
7928
7929 return 1;
7930 }
7931
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7932 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7933 struct page *page, unsigned int pgoff,
7934 u64 start, u64 end, int failed_mirror,
7935 bio_end_io_t *repair_endio, void *repair_arg)
7936 {
7937 struct io_failure_record *failrec;
7938 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7939 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7940 struct bio *bio;
7941 int isector;
7942 unsigned int read_mode = 0;
7943 int segs;
7944 int ret;
7945 blk_status_t status;
7946 struct bio_vec bvec;
7947
7948 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7949
7950 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7951 if (ret)
7952 return errno_to_blk_status(ret);
7953
7954 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7955 failed_mirror);
7956 if (!ret) {
7957 free_io_failure(failure_tree, io_tree, failrec);
7958 return BLK_STS_IOERR;
7959 }
7960
7961 segs = bio_segments(failed_bio);
7962 bio_get_first_bvec(failed_bio, &bvec);
7963 if (segs > 1 ||
7964 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7965 read_mode |= REQ_FAILFAST_DEV;
7966
7967 isector = start - btrfs_io_bio(failed_bio)->logical;
7968 isector >>= inode->i_sb->s_blocksize_bits;
7969 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7970 pgoff, isector, repair_endio, repair_arg);
7971 bio->bi_opf = REQ_OP_READ | read_mode;
7972
7973 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7974 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7975 read_mode, failrec->this_mirror, failrec->in_validation);
7976
7977 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7978 if (status) {
7979 free_io_failure(failure_tree, io_tree, failrec);
7980 bio_put(bio);
7981 }
7982
7983 return status;
7984 }
7985
7986 struct btrfs_retry_complete {
7987 struct completion done;
7988 struct inode *inode;
7989 u64 start;
7990 int uptodate;
7991 };
7992
btrfs_retry_endio_nocsum(struct bio * bio)7993 static void btrfs_retry_endio_nocsum(struct bio *bio)
7994 {
7995 struct btrfs_retry_complete *done = bio->bi_private;
7996 struct inode *inode = done->inode;
7997 struct bio_vec *bvec;
7998 struct extent_io_tree *io_tree, *failure_tree;
7999 struct bvec_iter_all iter_all;
8000
8001 if (bio->bi_status)
8002 goto end;
8003
8004 ASSERT(bio->bi_vcnt == 1);
8005 io_tree = &BTRFS_I(inode)->io_tree;
8006 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8007 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
8008
8009 done->uptodate = 1;
8010 ASSERT(!bio_flagged(bio, BIO_CLONED));
8011 bio_for_each_segment_all(bvec, bio, iter_all)
8012 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8013 io_tree, done->start, bvec->bv_page,
8014 btrfs_ino(BTRFS_I(inode)), 0);
8015 end:
8016 complete(&done->done);
8017 bio_put(bio);
8018 }
8019
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8020 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8021 struct btrfs_io_bio *io_bio)
8022 {
8023 struct btrfs_fs_info *fs_info;
8024 struct bio_vec bvec;
8025 struct bvec_iter iter;
8026 struct btrfs_retry_complete done;
8027 u64 start;
8028 unsigned int pgoff;
8029 u32 sectorsize;
8030 int nr_sectors;
8031 blk_status_t ret;
8032 blk_status_t err = BLK_STS_OK;
8033
8034 fs_info = BTRFS_I(inode)->root->fs_info;
8035 sectorsize = fs_info->sectorsize;
8036
8037 start = io_bio->logical;
8038 done.inode = inode;
8039 io_bio->bio.bi_iter = io_bio->iter;
8040
8041 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8042 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8043 pgoff = bvec.bv_offset;
8044
8045 next_block_or_try_again:
8046 done.uptodate = 0;
8047 done.start = start;
8048 init_completion(&done.done);
8049
8050 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8051 pgoff, start, start + sectorsize - 1,
8052 io_bio->mirror_num,
8053 btrfs_retry_endio_nocsum, &done);
8054 if (ret) {
8055 err = ret;
8056 goto next;
8057 }
8058
8059 wait_for_completion_io(&done.done);
8060
8061 if (!done.uptodate) {
8062 /* We might have another mirror, so try again */
8063 goto next_block_or_try_again;
8064 }
8065
8066 next:
8067 start += sectorsize;
8068
8069 nr_sectors--;
8070 if (nr_sectors) {
8071 pgoff += sectorsize;
8072 ASSERT(pgoff < PAGE_SIZE);
8073 goto next_block_or_try_again;
8074 }
8075 }
8076
8077 return err;
8078 }
8079
btrfs_retry_endio(struct bio * bio)8080 static void btrfs_retry_endio(struct bio *bio)
8081 {
8082 struct btrfs_retry_complete *done = bio->bi_private;
8083 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8084 struct extent_io_tree *io_tree, *failure_tree;
8085 struct inode *inode = done->inode;
8086 struct bio_vec *bvec;
8087 int uptodate;
8088 int ret;
8089 int i = 0;
8090 struct bvec_iter_all iter_all;
8091
8092 if (bio->bi_status)
8093 goto end;
8094
8095 uptodate = 1;
8096
8097 ASSERT(bio->bi_vcnt == 1);
8098 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8099
8100 io_tree = &BTRFS_I(inode)->io_tree;
8101 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8102
8103 ASSERT(!bio_flagged(bio, BIO_CLONED));
8104 bio_for_each_segment_all(bvec, bio, iter_all) {
8105 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8106 bvec->bv_offset, done->start,
8107 bvec->bv_len);
8108 if (!ret)
8109 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8110 failure_tree, io_tree, done->start,
8111 bvec->bv_page,
8112 btrfs_ino(BTRFS_I(inode)),
8113 bvec->bv_offset);
8114 else
8115 uptodate = 0;
8116 i++;
8117 }
8118
8119 done->uptodate = uptodate;
8120 end:
8121 complete(&done->done);
8122 bio_put(bio);
8123 }
8124
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8125 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8126 struct btrfs_io_bio *io_bio, blk_status_t err)
8127 {
8128 struct btrfs_fs_info *fs_info;
8129 struct bio_vec bvec;
8130 struct bvec_iter iter;
8131 struct btrfs_retry_complete done;
8132 u64 start;
8133 u64 offset = 0;
8134 u32 sectorsize;
8135 int nr_sectors;
8136 unsigned int pgoff;
8137 int csum_pos;
8138 bool uptodate = (err == 0);
8139 int ret;
8140 blk_status_t status;
8141
8142 fs_info = BTRFS_I(inode)->root->fs_info;
8143 sectorsize = fs_info->sectorsize;
8144
8145 err = BLK_STS_OK;
8146 start = io_bio->logical;
8147 done.inode = inode;
8148 io_bio->bio.bi_iter = io_bio->iter;
8149
8150 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8151 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8152
8153 pgoff = bvec.bv_offset;
8154 next_block:
8155 if (uptodate) {
8156 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8157 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8158 bvec.bv_page, pgoff, start, sectorsize);
8159 if (likely(!ret))
8160 goto next;
8161 }
8162 try_again:
8163 done.uptodate = 0;
8164 done.start = start;
8165 init_completion(&done.done);
8166
8167 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8168 pgoff, start, start + sectorsize - 1,
8169 io_bio->mirror_num, btrfs_retry_endio,
8170 &done);
8171 if (status) {
8172 err = status;
8173 goto next;
8174 }
8175
8176 wait_for_completion_io(&done.done);
8177
8178 if (!done.uptodate) {
8179 /* We might have another mirror, so try again */
8180 goto try_again;
8181 }
8182 next:
8183 offset += sectorsize;
8184 start += sectorsize;
8185
8186 ASSERT(nr_sectors);
8187
8188 nr_sectors--;
8189 if (nr_sectors) {
8190 pgoff += sectorsize;
8191 ASSERT(pgoff < PAGE_SIZE);
8192 goto next_block;
8193 }
8194 }
8195
8196 return err;
8197 }
8198
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8199 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8200 struct btrfs_io_bio *io_bio, blk_status_t err)
8201 {
8202 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8203
8204 if (skip_csum) {
8205 if (unlikely(err))
8206 return __btrfs_correct_data_nocsum(inode, io_bio);
8207 else
8208 return BLK_STS_OK;
8209 } else {
8210 return __btrfs_subio_endio_read(inode, io_bio, err);
8211 }
8212 }
8213
btrfs_endio_direct_read(struct bio * bio)8214 static void btrfs_endio_direct_read(struct bio *bio)
8215 {
8216 struct btrfs_dio_private *dip = bio->bi_private;
8217 struct inode *inode = dip->inode;
8218 struct bio *dio_bio;
8219 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8220 blk_status_t err = bio->bi_status;
8221
8222 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8223 err = btrfs_subio_endio_read(inode, io_bio, err);
8224
8225 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8226 dip->logical_offset + dip->bytes - 1);
8227 dio_bio = dip->dio_bio;
8228
8229 kfree(dip);
8230
8231 dio_bio->bi_status = err;
8232 dio_end_io(dio_bio);
8233 btrfs_io_bio_free_csum(io_bio);
8234 bio_put(bio);
8235 }
8236
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8237 static void __endio_write_update_ordered(struct inode *inode,
8238 const u64 offset, const u64 bytes,
8239 const bool uptodate)
8240 {
8241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8242 struct btrfs_ordered_extent *ordered = NULL;
8243 struct btrfs_workqueue *wq;
8244 u64 ordered_offset = offset;
8245 u64 ordered_bytes = bytes;
8246 u64 last_offset;
8247
8248 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
8249 wq = fs_info->endio_freespace_worker;
8250 else
8251 wq = fs_info->endio_write_workers;
8252
8253 while (ordered_offset < offset + bytes) {
8254 last_offset = ordered_offset;
8255 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8256 &ordered_offset,
8257 ordered_bytes,
8258 uptodate)) {
8259 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
8260 NULL);
8261 btrfs_queue_work(wq, &ordered->work);
8262 }
8263 /*
8264 * If btrfs_dec_test_ordered_pending does not find any ordered
8265 * extent in the range, we can exit.
8266 */
8267 if (ordered_offset == last_offset)
8268 return;
8269 /*
8270 * Our bio might span multiple ordered extents. In this case
8271 * we keep going until we have accounted the whole dio.
8272 */
8273 if (ordered_offset < offset + bytes) {
8274 ordered_bytes = offset + bytes - ordered_offset;
8275 ordered = NULL;
8276 }
8277 }
8278 }
8279
btrfs_endio_direct_write(struct bio * bio)8280 static void btrfs_endio_direct_write(struct bio *bio)
8281 {
8282 struct btrfs_dio_private *dip = bio->bi_private;
8283 struct bio *dio_bio = dip->dio_bio;
8284
8285 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8286 dip->bytes, !bio->bi_status);
8287
8288 kfree(dip);
8289
8290 dio_bio->bi_status = bio->bi_status;
8291 dio_end_io(dio_bio);
8292 bio_put(bio);
8293 }
8294
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8295 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8296 struct bio *bio, u64 offset)
8297 {
8298 struct inode *inode = private_data;
8299 blk_status_t ret;
8300 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8301 BUG_ON(ret); /* -ENOMEM */
8302 return 0;
8303 }
8304
btrfs_end_dio_bio(struct bio * bio)8305 static void btrfs_end_dio_bio(struct bio *bio)
8306 {
8307 struct btrfs_dio_private *dip = bio->bi_private;
8308 blk_status_t err = bio->bi_status;
8309
8310 if (err)
8311 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8312 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8313 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8314 bio->bi_opf,
8315 (unsigned long long)bio->bi_iter.bi_sector,
8316 bio->bi_iter.bi_size, err);
8317
8318 if (dip->subio_endio)
8319 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8320
8321 if (err) {
8322 /*
8323 * We want to perceive the errors flag being set before
8324 * decrementing the reference count. We don't need a barrier
8325 * since atomic operations with a return value are fully
8326 * ordered as per atomic_t.txt
8327 */
8328 dip->errors = 1;
8329 }
8330
8331 /* if there are more bios still pending for this dio, just exit */
8332 if (!atomic_dec_and_test(&dip->pending_bios))
8333 goto out;
8334
8335 if (dip->errors) {
8336 bio_io_error(dip->orig_bio);
8337 } else {
8338 dip->dio_bio->bi_status = BLK_STS_OK;
8339 bio_endio(dip->orig_bio);
8340 }
8341 out:
8342 bio_put(bio);
8343 }
8344
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8345 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8346 struct btrfs_dio_private *dip,
8347 struct bio *bio,
8348 u64 file_offset)
8349 {
8350 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8351 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8352 blk_status_t ret;
8353
8354 /*
8355 * We load all the csum data we need when we submit
8356 * the first bio to reduce the csum tree search and
8357 * contention.
8358 */
8359 if (dip->logical_offset == file_offset) {
8360 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8361 file_offset);
8362 if (ret)
8363 return ret;
8364 }
8365
8366 if (bio == dip->orig_bio)
8367 return 0;
8368
8369 file_offset -= dip->logical_offset;
8370 file_offset >>= inode->i_sb->s_blocksize_bits;
8371 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8372
8373 return 0;
8374 }
8375
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8376 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8377 struct inode *inode, u64 file_offset, int async_submit)
8378 {
8379 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8380 struct btrfs_dio_private *dip = bio->bi_private;
8381 bool write = bio_op(bio) == REQ_OP_WRITE;
8382 blk_status_t ret;
8383
8384 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8385 if (async_submit)
8386 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8387
8388 if (!write) {
8389 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8390 if (ret)
8391 goto err;
8392 }
8393
8394 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8395 goto map;
8396
8397 if (write && async_submit) {
8398 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8399 file_offset, inode,
8400 btrfs_submit_bio_start_direct_io);
8401 goto err;
8402 } else if (write) {
8403 /*
8404 * If we aren't doing async submit, calculate the csum of the
8405 * bio now.
8406 */
8407 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8408 if (ret)
8409 goto err;
8410 } else {
8411 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8412 file_offset);
8413 if (ret)
8414 goto err;
8415 }
8416 map:
8417 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8418 err:
8419 return ret;
8420 }
8421
btrfs_submit_direct_hook(struct btrfs_dio_private * dip)8422 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8423 {
8424 struct inode *inode = dip->inode;
8425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8426 struct bio *bio;
8427 struct bio *orig_bio = dip->orig_bio;
8428 u64 start_sector = orig_bio->bi_iter.bi_sector;
8429 u64 file_offset = dip->logical_offset;
8430 int async_submit = 0;
8431 u64 submit_len;
8432 int clone_offset = 0;
8433 int clone_len;
8434 int ret;
8435 blk_status_t status;
8436 struct btrfs_io_geometry geom;
8437
8438 submit_len = orig_bio->bi_iter.bi_size;
8439 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8440 start_sector << 9, submit_len, &geom);
8441 if (ret)
8442 return -EIO;
8443
8444 if (geom.len >= submit_len) {
8445 bio = orig_bio;
8446 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8447 goto submit;
8448 }
8449
8450 /* async crcs make it difficult to collect full stripe writes. */
8451 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8452 async_submit = 0;
8453 else
8454 async_submit = 1;
8455
8456 /* bio split */
8457 ASSERT(geom.len <= INT_MAX);
8458 atomic_inc(&dip->pending_bios);
8459 do {
8460 clone_len = min_t(int, submit_len, geom.len);
8461
8462 /*
8463 * This will never fail as it's passing GPF_NOFS and
8464 * the allocation is backed by btrfs_bioset.
8465 */
8466 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8467 clone_len);
8468 bio->bi_private = dip;
8469 bio->bi_end_io = btrfs_end_dio_bio;
8470 btrfs_io_bio(bio)->logical = file_offset;
8471
8472 ASSERT(submit_len >= clone_len);
8473 submit_len -= clone_len;
8474 if (submit_len == 0)
8475 break;
8476
8477 /*
8478 * Increase the count before we submit the bio so we know
8479 * the end IO handler won't happen before we increase the
8480 * count. Otherwise, the dip might get freed before we're
8481 * done setting it up.
8482 */
8483 atomic_inc(&dip->pending_bios);
8484
8485 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8486 async_submit);
8487 if (status) {
8488 bio_put(bio);
8489 atomic_dec(&dip->pending_bios);
8490 goto out_err;
8491 }
8492
8493 clone_offset += clone_len;
8494 start_sector += clone_len >> 9;
8495 file_offset += clone_len;
8496
8497 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8498 start_sector << 9, submit_len, &geom);
8499 if (ret)
8500 goto out_err;
8501 } while (submit_len > 0);
8502
8503 submit:
8504 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8505 if (!status)
8506 return 0;
8507
8508 bio_put(bio);
8509 out_err:
8510 dip->errors = 1;
8511 /*
8512 * Before atomic variable goto zero, we must make sure dip->errors is
8513 * perceived to be set. This ordering is ensured by the fact that an
8514 * atomic operations with a return value are fully ordered as per
8515 * atomic_t.txt
8516 */
8517 if (atomic_dec_and_test(&dip->pending_bios))
8518 bio_io_error(dip->orig_bio);
8519
8520 /* bio_end_io() will handle error, so we needn't return it */
8521 return 0;
8522 }
8523
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8524 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8525 loff_t file_offset)
8526 {
8527 struct btrfs_dio_private *dip = NULL;
8528 struct bio *bio = NULL;
8529 struct btrfs_io_bio *io_bio;
8530 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8531 int ret = 0;
8532
8533 bio = btrfs_bio_clone(dio_bio);
8534
8535 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8536 if (!dip) {
8537 ret = -ENOMEM;
8538 goto free_ordered;
8539 }
8540
8541 dip->private = dio_bio->bi_private;
8542 dip->inode = inode;
8543 dip->logical_offset = file_offset;
8544 dip->bytes = dio_bio->bi_iter.bi_size;
8545 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8546 bio->bi_private = dip;
8547 dip->orig_bio = bio;
8548 dip->dio_bio = dio_bio;
8549 atomic_set(&dip->pending_bios, 0);
8550 io_bio = btrfs_io_bio(bio);
8551 io_bio->logical = file_offset;
8552
8553 if (write) {
8554 bio->bi_end_io = btrfs_endio_direct_write;
8555 } else {
8556 bio->bi_end_io = btrfs_endio_direct_read;
8557 dip->subio_endio = btrfs_subio_endio_read;
8558 }
8559
8560 /*
8561 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8562 * even if we fail to submit a bio, because in such case we do the
8563 * corresponding error handling below and it must not be done a second
8564 * time by btrfs_direct_IO().
8565 */
8566 if (write) {
8567 struct btrfs_dio_data *dio_data = current->journal_info;
8568
8569 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8570 dip->bytes;
8571 dio_data->unsubmitted_oe_range_start =
8572 dio_data->unsubmitted_oe_range_end;
8573 }
8574
8575 ret = btrfs_submit_direct_hook(dip);
8576 if (!ret)
8577 return;
8578
8579 btrfs_io_bio_free_csum(io_bio);
8580
8581 free_ordered:
8582 /*
8583 * If we arrived here it means either we failed to submit the dip
8584 * or we either failed to clone the dio_bio or failed to allocate the
8585 * dip. If we cloned the dio_bio and allocated the dip, we can just
8586 * call bio_endio against our io_bio so that we get proper resource
8587 * cleanup if we fail to submit the dip, otherwise, we must do the
8588 * same as btrfs_endio_direct_[write|read] because we can't call these
8589 * callbacks - they require an allocated dip and a clone of dio_bio.
8590 */
8591 if (bio && dip) {
8592 bio_io_error(bio);
8593 /*
8594 * The end io callbacks free our dip, do the final put on bio
8595 * and all the cleanup and final put for dio_bio (through
8596 * dio_end_io()).
8597 */
8598 dip = NULL;
8599 bio = NULL;
8600 } else {
8601 if (write)
8602 __endio_write_update_ordered(inode,
8603 file_offset,
8604 dio_bio->bi_iter.bi_size,
8605 false);
8606 else
8607 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8608 file_offset + dio_bio->bi_iter.bi_size - 1);
8609
8610 dio_bio->bi_status = BLK_STS_IOERR;
8611 /*
8612 * Releases and cleans up our dio_bio, no need to bio_put()
8613 * nor bio_endio()/bio_io_error() against dio_bio.
8614 */
8615 dio_end_io(dio_bio);
8616 }
8617 if (bio)
8618 bio_put(bio);
8619 kfree(dip);
8620 }
8621
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8622 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8623 const struct iov_iter *iter, loff_t offset)
8624 {
8625 int seg;
8626 int i;
8627 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8628 ssize_t retval = -EINVAL;
8629
8630 if (offset & blocksize_mask)
8631 goto out;
8632
8633 if (iov_iter_alignment(iter) & blocksize_mask)
8634 goto out;
8635
8636 /* If this is a write we don't need to check anymore */
8637 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8638 return 0;
8639 /*
8640 * Check to make sure we don't have duplicate iov_base's in this
8641 * iovec, if so return EINVAL, otherwise we'll get csum errors
8642 * when reading back.
8643 */
8644 for (seg = 0; seg < iter->nr_segs; seg++) {
8645 for (i = seg + 1; i < iter->nr_segs; i++) {
8646 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8647 goto out;
8648 }
8649 }
8650 retval = 0;
8651 out:
8652 return retval;
8653 }
8654
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8655 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8656 {
8657 struct file *file = iocb->ki_filp;
8658 struct inode *inode = file->f_mapping->host;
8659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8660 struct btrfs_dio_data dio_data = { 0 };
8661 struct extent_changeset *data_reserved = NULL;
8662 loff_t offset = iocb->ki_pos;
8663 size_t count = 0;
8664 int flags = 0;
8665 bool wakeup = true;
8666 bool relock = false;
8667 ssize_t ret;
8668
8669 if (check_direct_IO(fs_info, iter, offset))
8670 return 0;
8671
8672 inode_dio_begin(inode);
8673
8674 /*
8675 * The generic stuff only does filemap_write_and_wait_range, which
8676 * isn't enough if we've written compressed pages to this area, so
8677 * we need to flush the dirty pages again to make absolutely sure
8678 * that any outstanding dirty pages are on disk.
8679 */
8680 count = iov_iter_count(iter);
8681 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8682 &BTRFS_I(inode)->runtime_flags))
8683 filemap_fdatawrite_range(inode->i_mapping, offset,
8684 offset + count - 1);
8685
8686 if (iov_iter_rw(iter) == WRITE) {
8687 /*
8688 * If the write DIO is beyond the EOF, we need update
8689 * the isize, but it is protected by i_mutex. So we can
8690 * not unlock the i_mutex at this case.
8691 */
8692 if (offset + count <= inode->i_size) {
8693 dio_data.overwrite = 1;
8694 inode_unlock(inode);
8695 relock = true;
8696 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8697 ret = -EAGAIN;
8698 goto out;
8699 }
8700 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8701 offset, count);
8702 if (ret)
8703 goto out;
8704
8705 /*
8706 * We need to know how many extents we reserved so that we can
8707 * do the accounting properly if we go over the number we
8708 * originally calculated. Abuse current->journal_info for this.
8709 */
8710 dio_data.reserve = round_up(count,
8711 fs_info->sectorsize);
8712 dio_data.unsubmitted_oe_range_start = (u64)offset;
8713 dio_data.unsubmitted_oe_range_end = (u64)offset;
8714 current->journal_info = &dio_data;
8715 down_read(&BTRFS_I(inode)->dio_sem);
8716 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8717 &BTRFS_I(inode)->runtime_flags)) {
8718 inode_dio_end(inode);
8719 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8720 wakeup = false;
8721 }
8722
8723 ret = __blockdev_direct_IO(iocb, inode,
8724 fs_info->fs_devices->latest_bdev,
8725 iter, btrfs_get_blocks_direct, NULL,
8726 btrfs_submit_direct, flags);
8727 if (iov_iter_rw(iter) == WRITE) {
8728 up_read(&BTRFS_I(inode)->dio_sem);
8729 current->journal_info = NULL;
8730 if (ret < 0 && ret != -EIOCBQUEUED) {
8731 if (dio_data.reserve)
8732 btrfs_delalloc_release_space(inode, data_reserved,
8733 offset, dio_data.reserve, true);
8734 /*
8735 * On error we might have left some ordered extents
8736 * without submitting corresponding bios for them, so
8737 * cleanup them up to avoid other tasks getting them
8738 * and waiting for them to complete forever.
8739 */
8740 if (dio_data.unsubmitted_oe_range_start <
8741 dio_data.unsubmitted_oe_range_end)
8742 __endio_write_update_ordered(inode,
8743 dio_data.unsubmitted_oe_range_start,
8744 dio_data.unsubmitted_oe_range_end -
8745 dio_data.unsubmitted_oe_range_start,
8746 false);
8747 } else if (ret >= 0 && (size_t)ret < count)
8748 btrfs_delalloc_release_space(inode, data_reserved,
8749 offset, count - (size_t)ret, true);
8750 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8751 }
8752 out:
8753 if (wakeup)
8754 inode_dio_end(inode);
8755 if (relock)
8756 inode_lock(inode);
8757
8758 extent_changeset_free(data_reserved);
8759 return ret;
8760 }
8761
8762 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8763
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8764 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8765 __u64 start, __u64 len)
8766 {
8767 int ret;
8768
8769 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8770 if (ret)
8771 return ret;
8772
8773 return extent_fiemap(inode, fieinfo, start, len);
8774 }
8775
btrfs_readpage(struct file * file,struct page * page)8776 int btrfs_readpage(struct file *file, struct page *page)
8777 {
8778 struct extent_io_tree *tree;
8779 tree = &BTRFS_I(page->mapping->host)->io_tree;
8780 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8781 }
8782
btrfs_writepage(struct page * page,struct writeback_control * wbc)8783 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8784 {
8785 struct inode *inode = page->mapping->host;
8786 int ret;
8787
8788 if (current->flags & PF_MEMALLOC) {
8789 redirty_page_for_writepage(wbc, page);
8790 unlock_page(page);
8791 return 0;
8792 }
8793
8794 /*
8795 * If we are under memory pressure we will call this directly from the
8796 * VM, we need to make sure we have the inode referenced for the ordered
8797 * extent. If not just return like we didn't do anything.
8798 */
8799 if (!igrab(inode)) {
8800 redirty_page_for_writepage(wbc, page);
8801 return AOP_WRITEPAGE_ACTIVATE;
8802 }
8803 ret = extent_write_full_page(page, wbc);
8804 btrfs_add_delayed_iput(inode);
8805 return ret;
8806 }
8807
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8808 static int btrfs_writepages(struct address_space *mapping,
8809 struct writeback_control *wbc)
8810 {
8811 return extent_writepages(mapping, wbc);
8812 }
8813
8814 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8815 btrfs_readpages(struct file *file, struct address_space *mapping,
8816 struct list_head *pages, unsigned nr_pages)
8817 {
8818 return extent_readpages(mapping, pages, nr_pages);
8819 }
8820
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8821 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8822 {
8823 int ret = try_release_extent_mapping(page, gfp_flags);
8824 if (ret == 1) {
8825 ClearPagePrivate(page);
8826 set_page_private(page, 0);
8827 put_page(page);
8828 }
8829 return ret;
8830 }
8831
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8832 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8833 {
8834 if (PageWriteback(page) || PageDirty(page))
8835 return 0;
8836 return __btrfs_releasepage(page, gfp_flags);
8837 }
8838
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8839 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8840 unsigned int length)
8841 {
8842 struct inode *inode = page->mapping->host;
8843 struct extent_io_tree *tree;
8844 struct btrfs_ordered_extent *ordered;
8845 struct extent_state *cached_state = NULL;
8846 u64 page_start = page_offset(page);
8847 u64 page_end = page_start + PAGE_SIZE - 1;
8848 u64 start;
8849 u64 end;
8850 int inode_evicting = inode->i_state & I_FREEING;
8851
8852 /*
8853 * we have the page locked, so new writeback can't start,
8854 * and the dirty bit won't be cleared while we are here.
8855 *
8856 * Wait for IO on this page so that we can safely clear
8857 * the PagePrivate2 bit and do ordered accounting
8858 */
8859 wait_on_page_writeback(page);
8860
8861 tree = &BTRFS_I(inode)->io_tree;
8862 if (offset) {
8863 btrfs_releasepage(page, GFP_NOFS);
8864 return;
8865 }
8866
8867 if (!inode_evicting)
8868 lock_extent_bits(tree, page_start, page_end, &cached_state);
8869 again:
8870 start = page_start;
8871 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8872 page_end - start + 1);
8873 if (ordered) {
8874 end = min(page_end, ordered->file_offset + ordered->len - 1);
8875 /*
8876 * IO on this page will never be started, so we need
8877 * to account for any ordered extents now
8878 */
8879 if (!inode_evicting)
8880 clear_extent_bit(tree, start, end,
8881 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8882 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8883 EXTENT_DEFRAG, 1, 0, &cached_state);
8884 /*
8885 * whoever cleared the private bit is responsible
8886 * for the finish_ordered_io
8887 */
8888 if (TestClearPagePrivate2(page)) {
8889 struct btrfs_ordered_inode_tree *tree;
8890 u64 new_len;
8891
8892 tree = &BTRFS_I(inode)->ordered_tree;
8893
8894 spin_lock_irq(&tree->lock);
8895 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8896 new_len = start - ordered->file_offset;
8897 if (new_len < ordered->truncated_len)
8898 ordered->truncated_len = new_len;
8899 spin_unlock_irq(&tree->lock);
8900
8901 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8902 start,
8903 end - start + 1, 1))
8904 btrfs_finish_ordered_io(ordered);
8905 }
8906 btrfs_put_ordered_extent(ordered);
8907 if (!inode_evicting) {
8908 cached_state = NULL;
8909 lock_extent_bits(tree, start, end,
8910 &cached_state);
8911 }
8912
8913 start = end + 1;
8914 if (start < page_end)
8915 goto again;
8916 }
8917
8918 /*
8919 * Qgroup reserved space handler
8920 * Page here will be either
8921 * 1) Already written to disk
8922 * In this case, its reserved space is released from data rsv map
8923 * and will be freed by delayed_ref handler finally.
8924 * So even we call qgroup_free_data(), it won't decrease reserved
8925 * space.
8926 * 2) Not written to disk
8927 * This means the reserved space should be freed here. However,
8928 * if a truncate invalidates the page (by clearing PageDirty)
8929 * and the page is accounted for while allocating extent
8930 * in btrfs_check_data_free_space() we let delayed_ref to
8931 * free the entire extent.
8932 */
8933 if (PageDirty(page))
8934 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8935 if (!inode_evicting) {
8936 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8937 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8938 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8939 &cached_state);
8940
8941 __btrfs_releasepage(page, GFP_NOFS);
8942 }
8943
8944 ClearPageChecked(page);
8945 if (PagePrivate(page)) {
8946 ClearPagePrivate(page);
8947 set_page_private(page, 0);
8948 put_page(page);
8949 }
8950 }
8951
8952 /*
8953 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8954 * called from a page fault handler when a page is first dirtied. Hence we must
8955 * be careful to check for EOF conditions here. We set the page up correctly
8956 * for a written page which means we get ENOSPC checking when writing into
8957 * holes and correct delalloc and unwritten extent mapping on filesystems that
8958 * support these features.
8959 *
8960 * We are not allowed to take the i_mutex here so we have to play games to
8961 * protect against truncate races as the page could now be beyond EOF. Because
8962 * truncate_setsize() writes the inode size before removing pages, once we have
8963 * the page lock we can determine safely if the page is beyond EOF. If it is not
8964 * beyond EOF, then the page is guaranteed safe against truncation until we
8965 * unlock the page.
8966 */
btrfs_page_mkwrite(struct vm_fault * vmf)8967 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8968 {
8969 struct page *page = vmf->page;
8970 struct inode *inode = file_inode(vmf->vma->vm_file);
8971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8972 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8973 struct btrfs_ordered_extent *ordered;
8974 struct extent_state *cached_state = NULL;
8975 struct extent_changeset *data_reserved = NULL;
8976 char *kaddr;
8977 unsigned long zero_start;
8978 loff_t size;
8979 vm_fault_t ret;
8980 int ret2;
8981 int reserved = 0;
8982 u64 reserved_space;
8983 u64 page_start;
8984 u64 page_end;
8985 u64 end;
8986
8987 reserved_space = PAGE_SIZE;
8988
8989 sb_start_pagefault(inode->i_sb);
8990 page_start = page_offset(page);
8991 page_end = page_start + PAGE_SIZE - 1;
8992 end = page_end;
8993
8994 /*
8995 * Reserving delalloc space after obtaining the page lock can lead to
8996 * deadlock. For example, if a dirty page is locked by this function
8997 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8998 * dirty page write out, then the btrfs_writepage() function could
8999 * end up waiting indefinitely to get a lock on the page currently
9000 * being processed by btrfs_page_mkwrite() function.
9001 */
9002 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9003 reserved_space);
9004 if (!ret2) {
9005 ret2 = file_update_time(vmf->vma->vm_file);
9006 reserved = 1;
9007 }
9008 if (ret2) {
9009 ret = vmf_error(ret2);
9010 if (reserved)
9011 goto out;
9012 goto out_noreserve;
9013 }
9014
9015 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9016 again:
9017 lock_page(page);
9018 size = i_size_read(inode);
9019
9020 if ((page->mapping != inode->i_mapping) ||
9021 (page_start >= size)) {
9022 /* page got truncated out from underneath us */
9023 goto out_unlock;
9024 }
9025 wait_on_page_writeback(page);
9026
9027 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9028 set_page_extent_mapped(page);
9029
9030 /*
9031 * we can't set the delalloc bits if there are pending ordered
9032 * extents. Drop our locks and wait for them to finish
9033 */
9034 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9035 PAGE_SIZE);
9036 if (ordered) {
9037 unlock_extent_cached(io_tree, page_start, page_end,
9038 &cached_state);
9039 unlock_page(page);
9040 btrfs_start_ordered_extent(inode, ordered, 1);
9041 btrfs_put_ordered_extent(ordered);
9042 goto again;
9043 }
9044
9045 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9046 reserved_space = round_up(size - page_start,
9047 fs_info->sectorsize);
9048 if (reserved_space < PAGE_SIZE) {
9049 end = page_start + reserved_space - 1;
9050 btrfs_delalloc_release_space(inode, data_reserved,
9051 page_start, PAGE_SIZE - reserved_space,
9052 true);
9053 }
9054 }
9055
9056 /*
9057 * page_mkwrite gets called when the page is firstly dirtied after it's
9058 * faulted in, but write(2) could also dirty a page and set delalloc
9059 * bits, thus in this case for space account reason, we still need to
9060 * clear any delalloc bits within this page range since we have to
9061 * reserve data&meta space before lock_page() (see above comments).
9062 */
9063 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9064 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9065 EXTENT_DEFRAG, 0, 0, &cached_state);
9066
9067 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9068 &cached_state);
9069 if (ret2) {
9070 unlock_extent_cached(io_tree, page_start, page_end,
9071 &cached_state);
9072 ret = VM_FAULT_SIGBUS;
9073 goto out_unlock;
9074 }
9075 ret2 = 0;
9076
9077 /* page is wholly or partially inside EOF */
9078 if (page_start + PAGE_SIZE > size)
9079 zero_start = offset_in_page(size);
9080 else
9081 zero_start = PAGE_SIZE;
9082
9083 if (zero_start != PAGE_SIZE) {
9084 kaddr = kmap(page);
9085 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9086 flush_dcache_page(page);
9087 kunmap(page);
9088 }
9089 ClearPageChecked(page);
9090 set_page_dirty(page);
9091 SetPageUptodate(page);
9092
9093 BTRFS_I(inode)->last_trans = fs_info->generation;
9094 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9095 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9096
9097 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9098
9099 if (!ret2) {
9100 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9101 sb_end_pagefault(inode->i_sb);
9102 extent_changeset_free(data_reserved);
9103 return VM_FAULT_LOCKED;
9104 }
9105
9106 out_unlock:
9107 unlock_page(page);
9108 out:
9109 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9110 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9111 reserved_space, (ret != 0));
9112 out_noreserve:
9113 sb_end_pagefault(inode->i_sb);
9114 extent_changeset_free(data_reserved);
9115 return ret;
9116 }
9117
btrfs_truncate(struct inode * inode,bool skip_writeback)9118 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9119 {
9120 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9121 struct btrfs_root *root = BTRFS_I(inode)->root;
9122 struct btrfs_block_rsv *rsv;
9123 int ret;
9124 struct btrfs_trans_handle *trans;
9125 u64 mask = fs_info->sectorsize - 1;
9126 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9127
9128 if (!skip_writeback) {
9129 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9130 (u64)-1);
9131 if (ret)
9132 return ret;
9133 }
9134
9135 /*
9136 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9137 * things going on here:
9138 *
9139 * 1) We need to reserve space to update our inode.
9140 *
9141 * 2) We need to have something to cache all the space that is going to
9142 * be free'd up by the truncate operation, but also have some slack
9143 * space reserved in case it uses space during the truncate (thank you
9144 * very much snapshotting).
9145 *
9146 * And we need these to be separate. The fact is we can use a lot of
9147 * space doing the truncate, and we have no earthly idea how much space
9148 * we will use, so we need the truncate reservation to be separate so it
9149 * doesn't end up using space reserved for updating the inode. We also
9150 * need to be able to stop the transaction and start a new one, which
9151 * means we need to be able to update the inode several times, and we
9152 * have no idea of knowing how many times that will be, so we can't just
9153 * reserve 1 item for the entirety of the operation, so that has to be
9154 * done separately as well.
9155 *
9156 * So that leaves us with
9157 *
9158 * 1) rsv - for the truncate reservation, which we will steal from the
9159 * transaction reservation.
9160 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9161 * updating the inode.
9162 */
9163 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9164 if (!rsv)
9165 return -ENOMEM;
9166 rsv->size = min_size;
9167 rsv->failfast = 1;
9168
9169 /*
9170 * 1 for the truncate slack space
9171 * 1 for updating the inode.
9172 */
9173 trans = btrfs_start_transaction(root, 2);
9174 if (IS_ERR(trans)) {
9175 ret = PTR_ERR(trans);
9176 goto out;
9177 }
9178
9179 /* Migrate the slack space for the truncate to our reserve */
9180 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9181 min_size, false);
9182 BUG_ON(ret);
9183
9184 /*
9185 * So if we truncate and then write and fsync we normally would just
9186 * write the extents that changed, which is a problem if we need to
9187 * first truncate that entire inode. So set this flag so we write out
9188 * all of the extents in the inode to the sync log so we're completely
9189 * safe.
9190 */
9191 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9192 trans->block_rsv = rsv;
9193
9194 while (1) {
9195 ret = btrfs_truncate_inode_items(trans, root, inode,
9196 inode->i_size,
9197 BTRFS_EXTENT_DATA_KEY);
9198 trans->block_rsv = &fs_info->trans_block_rsv;
9199 if (ret != -ENOSPC && ret != -EAGAIN)
9200 break;
9201
9202 ret = btrfs_update_inode(trans, root, inode);
9203 if (ret)
9204 break;
9205
9206 btrfs_end_transaction(trans);
9207 btrfs_btree_balance_dirty(fs_info);
9208
9209 trans = btrfs_start_transaction(root, 2);
9210 if (IS_ERR(trans)) {
9211 ret = PTR_ERR(trans);
9212 trans = NULL;
9213 break;
9214 }
9215
9216 btrfs_block_rsv_release(fs_info, rsv, -1);
9217 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9218 rsv, min_size, false);
9219 BUG_ON(ret); /* shouldn't happen */
9220 trans->block_rsv = rsv;
9221 }
9222
9223 /*
9224 * We can't call btrfs_truncate_block inside a trans handle as we could
9225 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9226 * we've truncated everything except the last little bit, and can do
9227 * btrfs_truncate_block and then update the disk_i_size.
9228 */
9229 if (ret == NEED_TRUNCATE_BLOCK) {
9230 btrfs_end_transaction(trans);
9231 btrfs_btree_balance_dirty(fs_info);
9232
9233 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9234 if (ret)
9235 goto out;
9236 trans = btrfs_start_transaction(root, 1);
9237 if (IS_ERR(trans)) {
9238 ret = PTR_ERR(trans);
9239 goto out;
9240 }
9241 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9242 }
9243
9244 if (trans) {
9245 int ret2;
9246
9247 trans->block_rsv = &fs_info->trans_block_rsv;
9248 ret2 = btrfs_update_inode(trans, root, inode);
9249 if (ret2 && !ret)
9250 ret = ret2;
9251
9252 ret2 = btrfs_end_transaction(trans);
9253 if (ret2 && !ret)
9254 ret = ret2;
9255 btrfs_btree_balance_dirty(fs_info);
9256 }
9257 out:
9258 btrfs_free_block_rsv(fs_info, rsv);
9259
9260 return ret;
9261 }
9262
9263 /*
9264 * create a new subvolume directory/inode (helper for the ioctl).
9265 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9266 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9267 struct btrfs_root *new_root,
9268 struct btrfs_root *parent_root,
9269 u64 new_dirid)
9270 {
9271 struct inode *inode;
9272 int err;
9273 u64 index = 0;
9274
9275 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9276 new_dirid, new_dirid,
9277 S_IFDIR | (~current_umask() & S_IRWXUGO),
9278 &index);
9279 if (IS_ERR(inode))
9280 return PTR_ERR(inode);
9281 inode->i_op = &btrfs_dir_inode_operations;
9282 inode->i_fop = &btrfs_dir_file_operations;
9283
9284 set_nlink(inode, 1);
9285 btrfs_i_size_write(BTRFS_I(inode), 0);
9286 unlock_new_inode(inode);
9287
9288 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9289 if (err)
9290 btrfs_err(new_root->fs_info,
9291 "error inheriting subvolume %llu properties: %d",
9292 new_root->root_key.objectid, err);
9293
9294 err = btrfs_update_inode(trans, new_root, inode);
9295
9296 iput(inode);
9297 return err;
9298 }
9299
btrfs_alloc_inode(struct super_block * sb)9300 struct inode *btrfs_alloc_inode(struct super_block *sb)
9301 {
9302 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9303 struct btrfs_inode *ei;
9304 struct inode *inode;
9305
9306 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9307 if (!ei)
9308 return NULL;
9309
9310 ei->root = NULL;
9311 ei->generation = 0;
9312 ei->last_trans = 0;
9313 ei->last_sub_trans = 0;
9314 ei->logged_trans = 0;
9315 ei->delalloc_bytes = 0;
9316 ei->new_delalloc_bytes = 0;
9317 ei->defrag_bytes = 0;
9318 ei->disk_i_size = 0;
9319 ei->flags = 0;
9320 ei->csum_bytes = 0;
9321 ei->index_cnt = (u64)-1;
9322 ei->dir_index = 0;
9323 ei->last_unlink_trans = 0;
9324 ei->last_log_commit = 0;
9325
9326 spin_lock_init(&ei->lock);
9327 ei->outstanding_extents = 0;
9328 if (sb->s_magic != BTRFS_TEST_MAGIC)
9329 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9330 BTRFS_BLOCK_RSV_DELALLOC);
9331 ei->runtime_flags = 0;
9332 ei->prop_compress = BTRFS_COMPRESS_NONE;
9333 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9334
9335 ei->delayed_node = NULL;
9336
9337 ei->i_otime.tv_sec = 0;
9338 ei->i_otime.tv_nsec = 0;
9339
9340 inode = &ei->vfs_inode;
9341 extent_map_tree_init(&ei->extent_tree);
9342 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9343 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9344 IO_TREE_INODE_IO_FAILURE, inode);
9345 ei->io_tree.track_uptodate = true;
9346 ei->io_failure_tree.track_uptodate = true;
9347 atomic_set(&ei->sync_writers, 0);
9348 mutex_init(&ei->log_mutex);
9349 mutex_init(&ei->delalloc_mutex);
9350 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9351 INIT_LIST_HEAD(&ei->delalloc_inodes);
9352 INIT_LIST_HEAD(&ei->delayed_iput);
9353 RB_CLEAR_NODE(&ei->rb_node);
9354 init_rwsem(&ei->dio_sem);
9355
9356 return inode;
9357 }
9358
9359 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9360 void btrfs_test_destroy_inode(struct inode *inode)
9361 {
9362 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9363 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9364 }
9365 #endif
9366
btrfs_free_inode(struct inode * inode)9367 void btrfs_free_inode(struct inode *inode)
9368 {
9369 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9370 }
9371
btrfs_destroy_inode(struct inode * inode)9372 void btrfs_destroy_inode(struct inode *inode)
9373 {
9374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9375 struct btrfs_ordered_extent *ordered;
9376 struct btrfs_root *root = BTRFS_I(inode)->root;
9377
9378 WARN_ON(!hlist_empty(&inode->i_dentry));
9379 WARN_ON(inode->i_data.nrpages);
9380 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9381 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9382 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9383 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9384 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9385 WARN_ON(BTRFS_I(inode)->csum_bytes);
9386 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9387
9388 /*
9389 * This can happen where we create an inode, but somebody else also
9390 * created the same inode and we need to destroy the one we already
9391 * created.
9392 */
9393 if (!root)
9394 return;
9395
9396 while (1) {
9397 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9398 if (!ordered)
9399 break;
9400 else {
9401 btrfs_err(fs_info,
9402 "found ordered extent %llu %llu on inode cleanup",
9403 ordered->file_offset, ordered->len);
9404 btrfs_remove_ordered_extent(inode, ordered);
9405 btrfs_put_ordered_extent(ordered);
9406 btrfs_put_ordered_extent(ordered);
9407 }
9408 }
9409 btrfs_qgroup_check_reserved_leak(inode);
9410 inode_tree_del(inode);
9411 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9412 }
9413
btrfs_drop_inode(struct inode * inode)9414 int btrfs_drop_inode(struct inode *inode)
9415 {
9416 struct btrfs_root *root = BTRFS_I(inode)->root;
9417
9418 if (root == NULL)
9419 return 1;
9420
9421 /* the snap/subvol tree is on deleting */
9422 if (btrfs_root_refs(&root->root_item) == 0)
9423 return 1;
9424 else
9425 return generic_drop_inode(inode);
9426 }
9427
init_once(void * foo)9428 static void init_once(void *foo)
9429 {
9430 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9431
9432 inode_init_once(&ei->vfs_inode);
9433 }
9434
btrfs_destroy_cachep(void)9435 void __cold btrfs_destroy_cachep(void)
9436 {
9437 /*
9438 * Make sure all delayed rcu free inodes are flushed before we
9439 * destroy cache.
9440 */
9441 rcu_barrier();
9442 kmem_cache_destroy(btrfs_inode_cachep);
9443 kmem_cache_destroy(btrfs_trans_handle_cachep);
9444 kmem_cache_destroy(btrfs_path_cachep);
9445 kmem_cache_destroy(btrfs_free_space_cachep);
9446 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9447 }
9448
btrfs_init_cachep(void)9449 int __init btrfs_init_cachep(void)
9450 {
9451 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9452 sizeof(struct btrfs_inode), 0,
9453 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9454 init_once);
9455 if (!btrfs_inode_cachep)
9456 goto fail;
9457
9458 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9459 sizeof(struct btrfs_trans_handle), 0,
9460 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9461 if (!btrfs_trans_handle_cachep)
9462 goto fail;
9463
9464 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9465 sizeof(struct btrfs_path), 0,
9466 SLAB_MEM_SPREAD, NULL);
9467 if (!btrfs_path_cachep)
9468 goto fail;
9469
9470 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9471 sizeof(struct btrfs_free_space), 0,
9472 SLAB_MEM_SPREAD, NULL);
9473 if (!btrfs_free_space_cachep)
9474 goto fail;
9475
9476 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9477 PAGE_SIZE, PAGE_SIZE,
9478 SLAB_RED_ZONE, NULL);
9479 if (!btrfs_free_space_bitmap_cachep)
9480 goto fail;
9481
9482 return 0;
9483 fail:
9484 btrfs_destroy_cachep();
9485 return -ENOMEM;
9486 }
9487
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9488 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9489 u32 request_mask, unsigned int flags)
9490 {
9491 u64 delalloc_bytes;
9492 struct inode *inode = d_inode(path->dentry);
9493 u32 blocksize = inode->i_sb->s_blocksize;
9494 u32 bi_flags = BTRFS_I(inode)->flags;
9495
9496 stat->result_mask |= STATX_BTIME;
9497 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9498 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9499 if (bi_flags & BTRFS_INODE_APPEND)
9500 stat->attributes |= STATX_ATTR_APPEND;
9501 if (bi_flags & BTRFS_INODE_COMPRESS)
9502 stat->attributes |= STATX_ATTR_COMPRESSED;
9503 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9504 stat->attributes |= STATX_ATTR_IMMUTABLE;
9505 if (bi_flags & BTRFS_INODE_NODUMP)
9506 stat->attributes |= STATX_ATTR_NODUMP;
9507
9508 stat->attributes_mask |= (STATX_ATTR_APPEND |
9509 STATX_ATTR_COMPRESSED |
9510 STATX_ATTR_IMMUTABLE |
9511 STATX_ATTR_NODUMP);
9512
9513 generic_fillattr(inode, stat);
9514 stat->dev = BTRFS_I(inode)->root->anon_dev;
9515
9516 spin_lock(&BTRFS_I(inode)->lock);
9517 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9518 spin_unlock(&BTRFS_I(inode)->lock);
9519 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9520 ALIGN(delalloc_bytes, blocksize)) >> 9;
9521 return 0;
9522 }
9523
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9524 static int btrfs_rename_exchange(struct inode *old_dir,
9525 struct dentry *old_dentry,
9526 struct inode *new_dir,
9527 struct dentry *new_dentry)
9528 {
9529 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9530 struct btrfs_trans_handle *trans;
9531 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9532 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9533 struct inode *new_inode = new_dentry->d_inode;
9534 struct inode *old_inode = old_dentry->d_inode;
9535 struct timespec64 ctime = current_time(old_inode);
9536 struct dentry *parent;
9537 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9538 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9539 u64 old_idx = 0;
9540 u64 new_idx = 0;
9541 int ret;
9542 bool root_log_pinned = false;
9543 bool dest_log_pinned = false;
9544 struct btrfs_log_ctx ctx_root;
9545 struct btrfs_log_ctx ctx_dest;
9546 bool sync_log_root = false;
9547 bool sync_log_dest = false;
9548 bool commit_transaction = false;
9549
9550 /* we only allow rename subvolume link between subvolumes */
9551 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9552 return -EXDEV;
9553
9554 btrfs_init_log_ctx(&ctx_root, old_inode);
9555 btrfs_init_log_ctx(&ctx_dest, new_inode);
9556
9557 /* close the race window with snapshot create/destroy ioctl */
9558 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9559 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9560 down_read(&fs_info->subvol_sem);
9561
9562 /*
9563 * We want to reserve the absolute worst case amount of items. So if
9564 * both inodes are subvols and we need to unlink them then that would
9565 * require 4 item modifications, but if they are both normal inodes it
9566 * would require 5 item modifications, so we'll assume their normal
9567 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9568 * should cover the worst case number of items we'll modify.
9569 */
9570 trans = btrfs_start_transaction(root, 12);
9571 if (IS_ERR(trans)) {
9572 ret = PTR_ERR(trans);
9573 goto out_notrans;
9574 }
9575
9576 if (dest != root)
9577 btrfs_record_root_in_trans(trans, dest);
9578
9579 /*
9580 * We need to find a free sequence number both in the source and
9581 * in the destination directory for the exchange.
9582 */
9583 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9584 if (ret)
9585 goto out_fail;
9586 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9587 if (ret)
9588 goto out_fail;
9589
9590 BTRFS_I(old_inode)->dir_index = 0ULL;
9591 BTRFS_I(new_inode)->dir_index = 0ULL;
9592
9593 /* Reference for the source. */
9594 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9595 /* force full log commit if subvolume involved. */
9596 btrfs_set_log_full_commit(trans);
9597 } else {
9598 btrfs_pin_log_trans(root);
9599 root_log_pinned = true;
9600 ret = btrfs_insert_inode_ref(trans, dest,
9601 new_dentry->d_name.name,
9602 new_dentry->d_name.len,
9603 old_ino,
9604 btrfs_ino(BTRFS_I(new_dir)),
9605 old_idx);
9606 if (ret)
9607 goto out_fail;
9608 }
9609
9610 /* And now for the dest. */
9611 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9612 /* force full log commit if subvolume involved. */
9613 btrfs_set_log_full_commit(trans);
9614 } else {
9615 btrfs_pin_log_trans(dest);
9616 dest_log_pinned = true;
9617 ret = btrfs_insert_inode_ref(trans, root,
9618 old_dentry->d_name.name,
9619 old_dentry->d_name.len,
9620 new_ino,
9621 btrfs_ino(BTRFS_I(old_dir)),
9622 new_idx);
9623 if (ret)
9624 goto out_fail;
9625 }
9626
9627 /* Update inode version and ctime/mtime. */
9628 inode_inc_iversion(old_dir);
9629 inode_inc_iversion(new_dir);
9630 inode_inc_iversion(old_inode);
9631 inode_inc_iversion(new_inode);
9632 old_dir->i_ctime = old_dir->i_mtime = ctime;
9633 new_dir->i_ctime = new_dir->i_mtime = ctime;
9634 old_inode->i_ctime = ctime;
9635 new_inode->i_ctime = ctime;
9636
9637 if (old_dentry->d_parent != new_dentry->d_parent) {
9638 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9639 BTRFS_I(old_inode), 1);
9640 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9641 BTRFS_I(new_inode), 1);
9642 }
9643
9644 /* src is a subvolume */
9645 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9646 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9647 } else { /* src is an inode */
9648 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9649 BTRFS_I(old_dentry->d_inode),
9650 old_dentry->d_name.name,
9651 old_dentry->d_name.len);
9652 if (!ret)
9653 ret = btrfs_update_inode(trans, root, old_inode);
9654 }
9655 if (ret) {
9656 btrfs_abort_transaction(trans, ret);
9657 goto out_fail;
9658 }
9659
9660 /* dest is a subvolume */
9661 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9662 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9663 } else { /* dest is an inode */
9664 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9665 BTRFS_I(new_dentry->d_inode),
9666 new_dentry->d_name.name,
9667 new_dentry->d_name.len);
9668 if (!ret)
9669 ret = btrfs_update_inode(trans, dest, new_inode);
9670 }
9671 if (ret) {
9672 btrfs_abort_transaction(trans, ret);
9673 goto out_fail;
9674 }
9675
9676 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9677 new_dentry->d_name.name,
9678 new_dentry->d_name.len, 0, old_idx);
9679 if (ret) {
9680 btrfs_abort_transaction(trans, ret);
9681 goto out_fail;
9682 }
9683
9684 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9685 old_dentry->d_name.name,
9686 old_dentry->d_name.len, 0, new_idx);
9687 if (ret) {
9688 btrfs_abort_transaction(trans, ret);
9689 goto out_fail;
9690 }
9691
9692 if (old_inode->i_nlink == 1)
9693 BTRFS_I(old_inode)->dir_index = old_idx;
9694 if (new_inode->i_nlink == 1)
9695 BTRFS_I(new_inode)->dir_index = new_idx;
9696
9697 if (root_log_pinned) {
9698 parent = new_dentry->d_parent;
9699 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9700 BTRFS_I(old_dir), parent,
9701 false, &ctx_root);
9702 if (ret == BTRFS_NEED_LOG_SYNC)
9703 sync_log_root = true;
9704 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9705 commit_transaction = true;
9706 ret = 0;
9707 btrfs_end_log_trans(root);
9708 root_log_pinned = false;
9709 }
9710 if (dest_log_pinned) {
9711 if (!commit_transaction) {
9712 parent = old_dentry->d_parent;
9713 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9714 BTRFS_I(new_dir), parent,
9715 false, &ctx_dest);
9716 if (ret == BTRFS_NEED_LOG_SYNC)
9717 sync_log_dest = true;
9718 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9719 commit_transaction = true;
9720 ret = 0;
9721 }
9722 btrfs_end_log_trans(dest);
9723 dest_log_pinned = false;
9724 }
9725 out_fail:
9726 /*
9727 * If we have pinned a log and an error happened, we unpin tasks
9728 * trying to sync the log and force them to fallback to a transaction
9729 * commit if the log currently contains any of the inodes involved in
9730 * this rename operation (to ensure we do not persist a log with an
9731 * inconsistent state for any of these inodes or leading to any
9732 * inconsistencies when replayed). If the transaction was aborted, the
9733 * abortion reason is propagated to userspace when attempting to commit
9734 * the transaction. If the log does not contain any of these inodes, we
9735 * allow the tasks to sync it.
9736 */
9737 if (ret && (root_log_pinned || dest_log_pinned)) {
9738 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9739 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9740 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9741 (new_inode &&
9742 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9743 btrfs_set_log_full_commit(trans);
9744
9745 if (root_log_pinned) {
9746 btrfs_end_log_trans(root);
9747 root_log_pinned = false;
9748 }
9749 if (dest_log_pinned) {
9750 btrfs_end_log_trans(dest);
9751 dest_log_pinned = false;
9752 }
9753 }
9754 if (!ret && sync_log_root && !commit_transaction) {
9755 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9756 &ctx_root);
9757 if (ret)
9758 commit_transaction = true;
9759 }
9760 if (!ret && sync_log_dest && !commit_transaction) {
9761 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9762 &ctx_dest);
9763 if (ret)
9764 commit_transaction = true;
9765 }
9766 if (commit_transaction) {
9767 /*
9768 * We may have set commit_transaction when logging the new name
9769 * in the destination root, in which case we left the source
9770 * root context in the list of log contextes. So make sure we
9771 * remove it to avoid invalid memory accesses, since the context
9772 * was allocated in our stack frame.
9773 */
9774 if (sync_log_root) {
9775 mutex_lock(&root->log_mutex);
9776 list_del_init(&ctx_root.list);
9777 mutex_unlock(&root->log_mutex);
9778 }
9779 ret = btrfs_commit_transaction(trans);
9780 } else {
9781 int ret2;
9782
9783 ret2 = btrfs_end_transaction(trans);
9784 ret = ret ? ret : ret2;
9785 }
9786 out_notrans:
9787 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9788 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9789 up_read(&fs_info->subvol_sem);
9790
9791 ASSERT(list_empty(&ctx_root.list));
9792 ASSERT(list_empty(&ctx_dest.list));
9793
9794 return ret;
9795 }
9796
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9797 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9798 struct btrfs_root *root,
9799 struct inode *dir,
9800 struct dentry *dentry)
9801 {
9802 int ret;
9803 struct inode *inode;
9804 u64 objectid;
9805 u64 index;
9806
9807 ret = btrfs_find_free_ino(root, &objectid);
9808 if (ret)
9809 return ret;
9810
9811 inode = btrfs_new_inode(trans, root, dir,
9812 dentry->d_name.name,
9813 dentry->d_name.len,
9814 btrfs_ino(BTRFS_I(dir)),
9815 objectid,
9816 S_IFCHR | WHITEOUT_MODE,
9817 &index);
9818
9819 if (IS_ERR(inode)) {
9820 ret = PTR_ERR(inode);
9821 return ret;
9822 }
9823
9824 inode->i_op = &btrfs_special_inode_operations;
9825 init_special_inode(inode, inode->i_mode,
9826 WHITEOUT_DEV);
9827
9828 ret = btrfs_init_inode_security(trans, inode, dir,
9829 &dentry->d_name);
9830 if (ret)
9831 goto out;
9832
9833 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9834 BTRFS_I(inode), 0, index);
9835 if (ret)
9836 goto out;
9837
9838 ret = btrfs_update_inode(trans, root, inode);
9839 out:
9840 unlock_new_inode(inode);
9841 if (ret)
9842 inode_dec_link_count(inode);
9843 iput(inode);
9844
9845 return ret;
9846 }
9847
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9848 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9849 struct inode *new_dir, struct dentry *new_dentry,
9850 unsigned int flags)
9851 {
9852 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9853 struct btrfs_trans_handle *trans;
9854 unsigned int trans_num_items;
9855 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9856 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9857 struct inode *new_inode = d_inode(new_dentry);
9858 struct inode *old_inode = d_inode(old_dentry);
9859 u64 index = 0;
9860 int ret;
9861 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9862 bool log_pinned = false;
9863 struct btrfs_log_ctx ctx;
9864 bool sync_log = false;
9865 bool commit_transaction = false;
9866
9867 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9868 return -EPERM;
9869
9870 /* we only allow rename subvolume link between subvolumes */
9871 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9872 return -EXDEV;
9873
9874 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9875 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9876 return -ENOTEMPTY;
9877
9878 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9879 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9880 return -ENOTEMPTY;
9881
9882
9883 /* check for collisions, even if the name isn't there */
9884 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9885 new_dentry->d_name.name,
9886 new_dentry->d_name.len);
9887
9888 if (ret) {
9889 if (ret == -EEXIST) {
9890 /* we shouldn't get
9891 * eexist without a new_inode */
9892 if (WARN_ON(!new_inode)) {
9893 return ret;
9894 }
9895 } else {
9896 /* maybe -EOVERFLOW */
9897 return ret;
9898 }
9899 }
9900 ret = 0;
9901
9902 /*
9903 * we're using rename to replace one file with another. Start IO on it
9904 * now so we don't add too much work to the end of the transaction
9905 */
9906 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9907 filemap_flush(old_inode->i_mapping);
9908
9909 /* close the racy window with snapshot create/destroy ioctl */
9910 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9911 down_read(&fs_info->subvol_sem);
9912 /*
9913 * We want to reserve the absolute worst case amount of items. So if
9914 * both inodes are subvols and we need to unlink them then that would
9915 * require 4 item modifications, but if they are both normal inodes it
9916 * would require 5 item modifications, so we'll assume they are normal
9917 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9918 * should cover the worst case number of items we'll modify.
9919 * If our rename has the whiteout flag, we need more 5 units for the
9920 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9921 * when selinux is enabled).
9922 */
9923 trans_num_items = 11;
9924 if (flags & RENAME_WHITEOUT)
9925 trans_num_items += 5;
9926 trans = btrfs_start_transaction(root, trans_num_items);
9927 if (IS_ERR(trans)) {
9928 ret = PTR_ERR(trans);
9929 goto out_notrans;
9930 }
9931
9932 if (dest != root)
9933 btrfs_record_root_in_trans(trans, dest);
9934
9935 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9936 if (ret)
9937 goto out_fail;
9938
9939 BTRFS_I(old_inode)->dir_index = 0ULL;
9940 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9941 /* force full log commit if subvolume involved. */
9942 btrfs_set_log_full_commit(trans);
9943 } else {
9944 btrfs_pin_log_trans(root);
9945 log_pinned = true;
9946 ret = btrfs_insert_inode_ref(trans, dest,
9947 new_dentry->d_name.name,
9948 new_dentry->d_name.len,
9949 old_ino,
9950 btrfs_ino(BTRFS_I(new_dir)), index);
9951 if (ret)
9952 goto out_fail;
9953 }
9954
9955 inode_inc_iversion(old_dir);
9956 inode_inc_iversion(new_dir);
9957 inode_inc_iversion(old_inode);
9958 old_dir->i_ctime = old_dir->i_mtime =
9959 new_dir->i_ctime = new_dir->i_mtime =
9960 old_inode->i_ctime = current_time(old_dir);
9961
9962 if (old_dentry->d_parent != new_dentry->d_parent)
9963 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9964 BTRFS_I(old_inode), 1);
9965
9966 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9967 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9968 } else {
9969 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9970 BTRFS_I(d_inode(old_dentry)),
9971 old_dentry->d_name.name,
9972 old_dentry->d_name.len);
9973 if (!ret)
9974 ret = btrfs_update_inode(trans, root, old_inode);
9975 }
9976 if (ret) {
9977 btrfs_abort_transaction(trans, ret);
9978 goto out_fail;
9979 }
9980
9981 if (new_inode) {
9982 inode_inc_iversion(new_inode);
9983 new_inode->i_ctime = current_time(new_inode);
9984 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9985 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9986 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9987 BUG_ON(new_inode->i_nlink == 0);
9988 } else {
9989 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9990 BTRFS_I(d_inode(new_dentry)),
9991 new_dentry->d_name.name,
9992 new_dentry->d_name.len);
9993 }
9994 if (!ret && new_inode->i_nlink == 0)
9995 ret = btrfs_orphan_add(trans,
9996 BTRFS_I(d_inode(new_dentry)));
9997 if (ret) {
9998 btrfs_abort_transaction(trans, ret);
9999 goto out_fail;
10000 }
10001 }
10002
10003 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10004 new_dentry->d_name.name,
10005 new_dentry->d_name.len, 0, index);
10006 if (ret) {
10007 btrfs_abort_transaction(trans, ret);
10008 goto out_fail;
10009 }
10010
10011 if (old_inode->i_nlink == 1)
10012 BTRFS_I(old_inode)->dir_index = index;
10013
10014 if (log_pinned) {
10015 struct dentry *parent = new_dentry->d_parent;
10016
10017 btrfs_init_log_ctx(&ctx, old_inode);
10018 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10019 BTRFS_I(old_dir), parent,
10020 false, &ctx);
10021 if (ret == BTRFS_NEED_LOG_SYNC)
10022 sync_log = true;
10023 else if (ret == BTRFS_NEED_TRANS_COMMIT)
10024 commit_transaction = true;
10025 ret = 0;
10026 btrfs_end_log_trans(root);
10027 log_pinned = false;
10028 }
10029
10030 if (flags & RENAME_WHITEOUT) {
10031 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10032 old_dentry);
10033
10034 if (ret) {
10035 btrfs_abort_transaction(trans, ret);
10036 goto out_fail;
10037 }
10038 }
10039 out_fail:
10040 /*
10041 * If we have pinned the log and an error happened, we unpin tasks
10042 * trying to sync the log and force them to fallback to a transaction
10043 * commit if the log currently contains any of the inodes involved in
10044 * this rename operation (to ensure we do not persist a log with an
10045 * inconsistent state for any of these inodes or leading to any
10046 * inconsistencies when replayed). If the transaction was aborted, the
10047 * abortion reason is propagated to userspace when attempting to commit
10048 * the transaction. If the log does not contain any of these inodes, we
10049 * allow the tasks to sync it.
10050 */
10051 if (ret && log_pinned) {
10052 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10053 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10054 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10055 (new_inode &&
10056 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10057 btrfs_set_log_full_commit(trans);
10058
10059 btrfs_end_log_trans(root);
10060 log_pinned = false;
10061 }
10062 if (!ret && sync_log) {
10063 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10064 if (ret)
10065 commit_transaction = true;
10066 }
10067 if (commit_transaction) {
10068 ret = btrfs_commit_transaction(trans);
10069 } else {
10070 int ret2;
10071
10072 ret2 = btrfs_end_transaction(trans);
10073 ret = ret ? ret : ret2;
10074 }
10075 out_notrans:
10076 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10077 up_read(&fs_info->subvol_sem);
10078
10079 return ret;
10080 }
10081
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10082 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10083 struct inode *new_dir, struct dentry *new_dentry,
10084 unsigned int flags)
10085 {
10086 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10087 return -EINVAL;
10088
10089 if (flags & RENAME_EXCHANGE)
10090 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10091 new_dentry);
10092
10093 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10094 }
10095
10096 struct btrfs_delalloc_work {
10097 struct inode *inode;
10098 struct completion completion;
10099 struct list_head list;
10100 struct btrfs_work work;
10101 };
10102
btrfs_run_delalloc_work(struct btrfs_work * work)10103 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10104 {
10105 struct btrfs_delalloc_work *delalloc_work;
10106 struct inode *inode;
10107
10108 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10109 work);
10110 inode = delalloc_work->inode;
10111 filemap_flush(inode->i_mapping);
10112 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10113 &BTRFS_I(inode)->runtime_flags))
10114 filemap_flush(inode->i_mapping);
10115
10116 iput(inode);
10117 complete(&delalloc_work->completion);
10118 }
10119
btrfs_alloc_delalloc_work(struct inode * inode)10120 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10121 {
10122 struct btrfs_delalloc_work *work;
10123
10124 work = kmalloc(sizeof(*work), GFP_NOFS);
10125 if (!work)
10126 return NULL;
10127
10128 init_completion(&work->completion);
10129 INIT_LIST_HEAD(&work->list);
10130 work->inode = inode;
10131 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
10132
10133 return work;
10134 }
10135
10136 /*
10137 * some fairly slow code that needs optimization. This walks the list
10138 * of all the inodes with pending delalloc and forces them to disk.
10139 */
start_delalloc_inodes(struct btrfs_root * root,int nr,bool snapshot)10140 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10141 {
10142 struct btrfs_inode *binode;
10143 struct inode *inode;
10144 struct btrfs_delalloc_work *work, *next;
10145 struct list_head works;
10146 struct list_head splice;
10147 int ret = 0;
10148
10149 INIT_LIST_HEAD(&works);
10150 INIT_LIST_HEAD(&splice);
10151
10152 mutex_lock(&root->delalloc_mutex);
10153 spin_lock(&root->delalloc_lock);
10154 list_splice_init(&root->delalloc_inodes, &splice);
10155 while (!list_empty(&splice)) {
10156 binode = list_entry(splice.next, struct btrfs_inode,
10157 delalloc_inodes);
10158
10159 list_move_tail(&binode->delalloc_inodes,
10160 &root->delalloc_inodes);
10161 inode = igrab(&binode->vfs_inode);
10162 if (!inode) {
10163 cond_resched_lock(&root->delalloc_lock);
10164 continue;
10165 }
10166 spin_unlock(&root->delalloc_lock);
10167
10168 if (snapshot)
10169 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10170 &binode->runtime_flags);
10171 work = btrfs_alloc_delalloc_work(inode);
10172 if (!work) {
10173 iput(inode);
10174 ret = -ENOMEM;
10175 goto out;
10176 }
10177 list_add_tail(&work->list, &works);
10178 btrfs_queue_work(root->fs_info->flush_workers,
10179 &work->work);
10180 ret++;
10181 if (nr != -1 && ret >= nr)
10182 goto out;
10183 cond_resched();
10184 spin_lock(&root->delalloc_lock);
10185 }
10186 spin_unlock(&root->delalloc_lock);
10187
10188 out:
10189 list_for_each_entry_safe(work, next, &works, list) {
10190 list_del_init(&work->list);
10191 wait_for_completion(&work->completion);
10192 kfree(work);
10193 }
10194
10195 if (!list_empty(&splice)) {
10196 spin_lock(&root->delalloc_lock);
10197 list_splice_tail(&splice, &root->delalloc_inodes);
10198 spin_unlock(&root->delalloc_lock);
10199 }
10200 mutex_unlock(&root->delalloc_mutex);
10201 return ret;
10202 }
10203
btrfs_start_delalloc_snapshot(struct btrfs_root * root)10204 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10205 {
10206 struct btrfs_fs_info *fs_info = root->fs_info;
10207 int ret;
10208
10209 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10210 return -EROFS;
10211
10212 ret = start_delalloc_inodes(root, -1, true);
10213 if (ret > 0)
10214 ret = 0;
10215 return ret;
10216 }
10217
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10218 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10219 {
10220 struct btrfs_root *root;
10221 struct list_head splice;
10222 int ret;
10223
10224 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10225 return -EROFS;
10226
10227 INIT_LIST_HEAD(&splice);
10228
10229 mutex_lock(&fs_info->delalloc_root_mutex);
10230 spin_lock(&fs_info->delalloc_root_lock);
10231 list_splice_init(&fs_info->delalloc_roots, &splice);
10232 while (!list_empty(&splice) && nr) {
10233 root = list_first_entry(&splice, struct btrfs_root,
10234 delalloc_root);
10235 root = btrfs_grab_fs_root(root);
10236 BUG_ON(!root);
10237 list_move_tail(&root->delalloc_root,
10238 &fs_info->delalloc_roots);
10239 spin_unlock(&fs_info->delalloc_root_lock);
10240
10241 ret = start_delalloc_inodes(root, nr, false);
10242 btrfs_put_fs_root(root);
10243 if (ret < 0)
10244 goto out;
10245
10246 if (nr != -1) {
10247 nr -= ret;
10248 WARN_ON(nr < 0);
10249 }
10250 spin_lock(&fs_info->delalloc_root_lock);
10251 }
10252 spin_unlock(&fs_info->delalloc_root_lock);
10253
10254 ret = 0;
10255 out:
10256 if (!list_empty(&splice)) {
10257 spin_lock(&fs_info->delalloc_root_lock);
10258 list_splice_tail(&splice, &fs_info->delalloc_roots);
10259 spin_unlock(&fs_info->delalloc_root_lock);
10260 }
10261 mutex_unlock(&fs_info->delalloc_root_mutex);
10262 return ret;
10263 }
10264
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10265 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10266 const char *symname)
10267 {
10268 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10269 struct btrfs_trans_handle *trans;
10270 struct btrfs_root *root = BTRFS_I(dir)->root;
10271 struct btrfs_path *path;
10272 struct btrfs_key key;
10273 struct inode *inode = NULL;
10274 int err;
10275 u64 objectid;
10276 u64 index = 0;
10277 int name_len;
10278 int datasize;
10279 unsigned long ptr;
10280 struct btrfs_file_extent_item *ei;
10281 struct extent_buffer *leaf;
10282
10283 name_len = strlen(symname);
10284 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10285 return -ENAMETOOLONG;
10286
10287 /*
10288 * 2 items for inode item and ref
10289 * 2 items for dir items
10290 * 1 item for updating parent inode item
10291 * 1 item for the inline extent item
10292 * 1 item for xattr if selinux is on
10293 */
10294 trans = btrfs_start_transaction(root, 7);
10295 if (IS_ERR(trans))
10296 return PTR_ERR(trans);
10297
10298 err = btrfs_find_free_ino(root, &objectid);
10299 if (err)
10300 goto out_unlock;
10301
10302 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10303 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10304 objectid, S_IFLNK|S_IRWXUGO, &index);
10305 if (IS_ERR(inode)) {
10306 err = PTR_ERR(inode);
10307 inode = NULL;
10308 goto out_unlock;
10309 }
10310
10311 /*
10312 * If the active LSM wants to access the inode during
10313 * d_instantiate it needs these. Smack checks to see
10314 * if the filesystem supports xattrs by looking at the
10315 * ops vector.
10316 */
10317 inode->i_fop = &btrfs_file_operations;
10318 inode->i_op = &btrfs_file_inode_operations;
10319 inode->i_mapping->a_ops = &btrfs_aops;
10320 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10321
10322 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10323 if (err)
10324 goto out_unlock;
10325
10326 path = btrfs_alloc_path();
10327 if (!path) {
10328 err = -ENOMEM;
10329 goto out_unlock;
10330 }
10331 key.objectid = btrfs_ino(BTRFS_I(inode));
10332 key.offset = 0;
10333 key.type = BTRFS_EXTENT_DATA_KEY;
10334 datasize = btrfs_file_extent_calc_inline_size(name_len);
10335 err = btrfs_insert_empty_item(trans, root, path, &key,
10336 datasize);
10337 if (err) {
10338 btrfs_free_path(path);
10339 goto out_unlock;
10340 }
10341 leaf = path->nodes[0];
10342 ei = btrfs_item_ptr(leaf, path->slots[0],
10343 struct btrfs_file_extent_item);
10344 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10345 btrfs_set_file_extent_type(leaf, ei,
10346 BTRFS_FILE_EXTENT_INLINE);
10347 btrfs_set_file_extent_encryption(leaf, ei, 0);
10348 btrfs_set_file_extent_compression(leaf, ei, 0);
10349 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10350 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10351
10352 ptr = btrfs_file_extent_inline_start(ei);
10353 write_extent_buffer(leaf, symname, ptr, name_len);
10354 btrfs_mark_buffer_dirty(leaf);
10355 btrfs_free_path(path);
10356
10357 inode->i_op = &btrfs_symlink_inode_operations;
10358 inode_nohighmem(inode);
10359 inode_set_bytes(inode, name_len);
10360 btrfs_i_size_write(BTRFS_I(inode), name_len);
10361 err = btrfs_update_inode(trans, root, inode);
10362 /*
10363 * Last step, add directory indexes for our symlink inode. This is the
10364 * last step to avoid extra cleanup of these indexes if an error happens
10365 * elsewhere above.
10366 */
10367 if (!err)
10368 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10369 BTRFS_I(inode), 0, index);
10370 if (err)
10371 goto out_unlock;
10372
10373 d_instantiate_new(dentry, inode);
10374
10375 out_unlock:
10376 btrfs_end_transaction(trans);
10377 if (err && inode) {
10378 inode_dec_link_count(inode);
10379 discard_new_inode(inode);
10380 }
10381 btrfs_btree_balance_dirty(fs_info);
10382 return err;
10383 }
10384
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10385 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10386 u64 start, u64 num_bytes, u64 min_size,
10387 loff_t actual_len, u64 *alloc_hint,
10388 struct btrfs_trans_handle *trans)
10389 {
10390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10391 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10392 struct extent_map *em;
10393 struct btrfs_root *root = BTRFS_I(inode)->root;
10394 struct btrfs_key ins;
10395 u64 cur_offset = start;
10396 u64 i_size;
10397 u64 cur_bytes;
10398 u64 last_alloc = (u64)-1;
10399 int ret = 0;
10400 bool own_trans = true;
10401 u64 end = start + num_bytes - 1;
10402
10403 if (trans)
10404 own_trans = false;
10405 while (num_bytes > 0) {
10406 if (own_trans) {
10407 trans = btrfs_start_transaction(root, 3);
10408 if (IS_ERR(trans)) {
10409 ret = PTR_ERR(trans);
10410 break;
10411 }
10412 }
10413
10414 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10415 cur_bytes = max(cur_bytes, min_size);
10416 /*
10417 * If we are severely fragmented we could end up with really
10418 * small allocations, so if the allocator is returning small
10419 * chunks lets make its job easier by only searching for those
10420 * sized chunks.
10421 */
10422 cur_bytes = min(cur_bytes, last_alloc);
10423 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10424 min_size, 0, *alloc_hint, &ins, 1, 0);
10425 if (ret) {
10426 if (own_trans)
10427 btrfs_end_transaction(trans);
10428 break;
10429 }
10430 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10431
10432 last_alloc = ins.offset;
10433 ret = insert_reserved_file_extent(trans, inode,
10434 cur_offset, ins.objectid,
10435 ins.offset, ins.offset,
10436 ins.offset, 0, 0, 0,
10437 BTRFS_FILE_EXTENT_PREALLOC);
10438 if (ret) {
10439 btrfs_free_reserved_extent(fs_info, ins.objectid,
10440 ins.offset, 0);
10441 btrfs_abort_transaction(trans, ret);
10442 if (own_trans)
10443 btrfs_end_transaction(trans);
10444 break;
10445 }
10446
10447 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10448 cur_offset + ins.offset -1, 0);
10449
10450 em = alloc_extent_map();
10451 if (!em) {
10452 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10453 &BTRFS_I(inode)->runtime_flags);
10454 goto next;
10455 }
10456
10457 em->start = cur_offset;
10458 em->orig_start = cur_offset;
10459 em->len = ins.offset;
10460 em->block_start = ins.objectid;
10461 em->block_len = ins.offset;
10462 em->orig_block_len = ins.offset;
10463 em->ram_bytes = ins.offset;
10464 em->bdev = fs_info->fs_devices->latest_bdev;
10465 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10466 em->generation = trans->transid;
10467
10468 while (1) {
10469 write_lock(&em_tree->lock);
10470 ret = add_extent_mapping(em_tree, em, 1);
10471 write_unlock(&em_tree->lock);
10472 if (ret != -EEXIST)
10473 break;
10474 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10475 cur_offset + ins.offset - 1,
10476 0);
10477 }
10478 free_extent_map(em);
10479 next:
10480 num_bytes -= ins.offset;
10481 cur_offset += ins.offset;
10482 *alloc_hint = ins.objectid + ins.offset;
10483
10484 inode_inc_iversion(inode);
10485 inode->i_ctime = current_time(inode);
10486 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10487 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10488 (actual_len > inode->i_size) &&
10489 (cur_offset > inode->i_size)) {
10490 if (cur_offset > actual_len)
10491 i_size = actual_len;
10492 else
10493 i_size = cur_offset;
10494 i_size_write(inode, i_size);
10495 btrfs_ordered_update_i_size(inode, i_size, NULL);
10496 }
10497
10498 ret = btrfs_update_inode(trans, root, inode);
10499
10500 if (ret) {
10501 btrfs_abort_transaction(trans, ret);
10502 if (own_trans)
10503 btrfs_end_transaction(trans);
10504 break;
10505 }
10506
10507 if (own_trans)
10508 btrfs_end_transaction(trans);
10509 }
10510 if (cur_offset < end)
10511 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10512 end - cur_offset + 1);
10513 return ret;
10514 }
10515
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10516 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10517 u64 start, u64 num_bytes, u64 min_size,
10518 loff_t actual_len, u64 *alloc_hint)
10519 {
10520 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10521 min_size, actual_len, alloc_hint,
10522 NULL);
10523 }
10524
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10525 int btrfs_prealloc_file_range_trans(struct inode *inode,
10526 struct btrfs_trans_handle *trans, int mode,
10527 u64 start, u64 num_bytes, u64 min_size,
10528 loff_t actual_len, u64 *alloc_hint)
10529 {
10530 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10531 min_size, actual_len, alloc_hint, trans);
10532 }
10533
btrfs_set_page_dirty(struct page * page)10534 static int btrfs_set_page_dirty(struct page *page)
10535 {
10536 return __set_page_dirty_nobuffers(page);
10537 }
10538
btrfs_permission(struct inode * inode,int mask)10539 static int btrfs_permission(struct inode *inode, int mask)
10540 {
10541 struct btrfs_root *root = BTRFS_I(inode)->root;
10542 umode_t mode = inode->i_mode;
10543
10544 if (mask & MAY_WRITE &&
10545 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10546 if (btrfs_root_readonly(root))
10547 return -EROFS;
10548 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10549 return -EACCES;
10550 }
10551 return generic_permission(inode, mask);
10552 }
10553
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10554 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10555 {
10556 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10557 struct btrfs_trans_handle *trans;
10558 struct btrfs_root *root = BTRFS_I(dir)->root;
10559 struct inode *inode = NULL;
10560 u64 objectid;
10561 u64 index;
10562 int ret = 0;
10563
10564 /*
10565 * 5 units required for adding orphan entry
10566 */
10567 trans = btrfs_start_transaction(root, 5);
10568 if (IS_ERR(trans))
10569 return PTR_ERR(trans);
10570
10571 ret = btrfs_find_free_ino(root, &objectid);
10572 if (ret)
10573 goto out;
10574
10575 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10576 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10577 if (IS_ERR(inode)) {
10578 ret = PTR_ERR(inode);
10579 inode = NULL;
10580 goto out;
10581 }
10582
10583 inode->i_fop = &btrfs_file_operations;
10584 inode->i_op = &btrfs_file_inode_operations;
10585
10586 inode->i_mapping->a_ops = &btrfs_aops;
10587 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10588
10589 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10590 if (ret)
10591 goto out;
10592
10593 ret = btrfs_update_inode(trans, root, inode);
10594 if (ret)
10595 goto out;
10596 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10597 if (ret)
10598 goto out;
10599
10600 /*
10601 * We set number of links to 0 in btrfs_new_inode(), and here we set
10602 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10603 * through:
10604 *
10605 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10606 */
10607 set_nlink(inode, 1);
10608 d_tmpfile(dentry, inode);
10609 unlock_new_inode(inode);
10610 mark_inode_dirty(inode);
10611 out:
10612 btrfs_end_transaction(trans);
10613 if (ret && inode)
10614 discard_new_inode(inode);
10615 btrfs_btree_balance_dirty(fs_info);
10616 return ret;
10617 }
10618
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10619 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10620 {
10621 struct inode *inode = tree->private_data;
10622 unsigned long index = start >> PAGE_SHIFT;
10623 unsigned long end_index = end >> PAGE_SHIFT;
10624 struct page *page;
10625
10626 while (index <= end_index) {
10627 page = find_get_page(inode->i_mapping, index);
10628 ASSERT(page); /* Pages should be in the extent_io_tree */
10629 set_page_writeback(page);
10630 put_page(page);
10631 index++;
10632 }
10633 }
10634
10635 #ifdef CONFIG_SWAP
10636 /*
10637 * Add an entry indicating a block group or device which is pinned by a
10638 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10639 * negative errno on failure.
10640 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10641 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10642 bool is_block_group)
10643 {
10644 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10645 struct btrfs_swapfile_pin *sp, *entry;
10646 struct rb_node **p;
10647 struct rb_node *parent = NULL;
10648
10649 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10650 if (!sp)
10651 return -ENOMEM;
10652 sp->ptr = ptr;
10653 sp->inode = inode;
10654 sp->is_block_group = is_block_group;
10655
10656 spin_lock(&fs_info->swapfile_pins_lock);
10657 p = &fs_info->swapfile_pins.rb_node;
10658 while (*p) {
10659 parent = *p;
10660 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10661 if (sp->ptr < entry->ptr ||
10662 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10663 p = &(*p)->rb_left;
10664 } else if (sp->ptr > entry->ptr ||
10665 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10666 p = &(*p)->rb_right;
10667 } else {
10668 spin_unlock(&fs_info->swapfile_pins_lock);
10669 kfree(sp);
10670 return 1;
10671 }
10672 }
10673 rb_link_node(&sp->node, parent, p);
10674 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10675 spin_unlock(&fs_info->swapfile_pins_lock);
10676 return 0;
10677 }
10678
10679 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10680 static void btrfs_free_swapfile_pins(struct inode *inode)
10681 {
10682 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10683 struct btrfs_swapfile_pin *sp;
10684 struct rb_node *node, *next;
10685
10686 spin_lock(&fs_info->swapfile_pins_lock);
10687 node = rb_first(&fs_info->swapfile_pins);
10688 while (node) {
10689 next = rb_next(node);
10690 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10691 if (sp->inode == inode) {
10692 rb_erase(&sp->node, &fs_info->swapfile_pins);
10693 if (sp->is_block_group)
10694 btrfs_put_block_group(sp->ptr);
10695 kfree(sp);
10696 }
10697 node = next;
10698 }
10699 spin_unlock(&fs_info->swapfile_pins_lock);
10700 }
10701
10702 struct btrfs_swap_info {
10703 u64 start;
10704 u64 block_start;
10705 u64 block_len;
10706 u64 lowest_ppage;
10707 u64 highest_ppage;
10708 unsigned long nr_pages;
10709 int nr_extents;
10710 };
10711
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10712 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10713 struct btrfs_swap_info *bsi)
10714 {
10715 unsigned long nr_pages;
10716 u64 first_ppage, first_ppage_reported, next_ppage;
10717 int ret;
10718
10719 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10720 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10721 PAGE_SIZE) >> PAGE_SHIFT;
10722
10723 if (first_ppage >= next_ppage)
10724 return 0;
10725 nr_pages = next_ppage - first_ppage;
10726
10727 first_ppage_reported = first_ppage;
10728 if (bsi->start == 0)
10729 first_ppage_reported++;
10730 if (bsi->lowest_ppage > first_ppage_reported)
10731 bsi->lowest_ppage = first_ppage_reported;
10732 if (bsi->highest_ppage < (next_ppage - 1))
10733 bsi->highest_ppage = next_ppage - 1;
10734
10735 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10736 if (ret < 0)
10737 return ret;
10738 bsi->nr_extents += ret;
10739 bsi->nr_pages += nr_pages;
10740 return 0;
10741 }
10742
btrfs_swap_deactivate(struct file * file)10743 static void btrfs_swap_deactivate(struct file *file)
10744 {
10745 struct inode *inode = file_inode(file);
10746
10747 btrfs_free_swapfile_pins(inode);
10748 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10749 }
10750
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10751 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10752 sector_t *span)
10753 {
10754 struct inode *inode = file_inode(file);
10755 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10756 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10757 struct extent_state *cached_state = NULL;
10758 struct extent_map *em = NULL;
10759 struct btrfs_device *device = NULL;
10760 struct btrfs_swap_info bsi = {
10761 .lowest_ppage = (sector_t)-1ULL,
10762 };
10763 int ret = 0;
10764 u64 isize;
10765 u64 start;
10766
10767 /*
10768 * If the swap file was just created, make sure delalloc is done. If the
10769 * file changes again after this, the user is doing something stupid and
10770 * we don't really care.
10771 */
10772 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10773 if (ret)
10774 return ret;
10775
10776 /*
10777 * The inode is locked, so these flags won't change after we check them.
10778 */
10779 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10780 btrfs_warn(fs_info, "swapfile must not be compressed");
10781 return -EINVAL;
10782 }
10783 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10784 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10785 return -EINVAL;
10786 }
10787 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10788 btrfs_warn(fs_info, "swapfile must not be checksummed");
10789 return -EINVAL;
10790 }
10791
10792 /*
10793 * Balance or device remove/replace/resize can move stuff around from
10794 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10795 * concurrently while we are mapping the swap extents, and
10796 * fs_info->swapfile_pins prevents them from running while the swap file
10797 * is active and moving the extents. Note that this also prevents a
10798 * concurrent device add which isn't actually necessary, but it's not
10799 * really worth the trouble to allow it.
10800 */
10801 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10802 btrfs_warn(fs_info,
10803 "cannot activate swapfile while exclusive operation is running");
10804 return -EBUSY;
10805 }
10806 /*
10807 * Snapshots can create extents which require COW even if NODATACOW is
10808 * set. We use this counter to prevent snapshots. We must increment it
10809 * before walking the extents because we don't want a concurrent
10810 * snapshot to run after we've already checked the extents.
10811 */
10812 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10813
10814 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10815
10816 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10817 start = 0;
10818 while (start < isize) {
10819 u64 logical_block_start, physical_block_start;
10820 struct btrfs_block_group_cache *bg;
10821 u64 len = isize - start;
10822
10823 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10824 if (IS_ERR(em)) {
10825 ret = PTR_ERR(em);
10826 goto out;
10827 }
10828
10829 if (em->block_start == EXTENT_MAP_HOLE) {
10830 btrfs_warn(fs_info, "swapfile must not have holes");
10831 ret = -EINVAL;
10832 goto out;
10833 }
10834 if (em->block_start == EXTENT_MAP_INLINE) {
10835 /*
10836 * It's unlikely we'll ever actually find ourselves
10837 * here, as a file small enough to fit inline won't be
10838 * big enough to store more than the swap header, but in
10839 * case something changes in the future, let's catch it
10840 * here rather than later.
10841 */
10842 btrfs_warn(fs_info, "swapfile must not be inline");
10843 ret = -EINVAL;
10844 goto out;
10845 }
10846 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10847 btrfs_warn(fs_info, "swapfile must not be compressed");
10848 ret = -EINVAL;
10849 goto out;
10850 }
10851
10852 logical_block_start = em->block_start + (start - em->start);
10853 len = min(len, em->len - (start - em->start));
10854 free_extent_map(em);
10855 em = NULL;
10856
10857 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10858 if (ret < 0) {
10859 goto out;
10860 } else if (ret) {
10861 ret = 0;
10862 } else {
10863 btrfs_warn(fs_info,
10864 "swapfile must not be copy-on-write");
10865 ret = -EINVAL;
10866 goto out;
10867 }
10868
10869 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10870 if (IS_ERR(em)) {
10871 ret = PTR_ERR(em);
10872 goto out;
10873 }
10874
10875 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10876 btrfs_warn(fs_info,
10877 "swapfile must have single data profile");
10878 ret = -EINVAL;
10879 goto out;
10880 }
10881
10882 if (device == NULL) {
10883 device = em->map_lookup->stripes[0].dev;
10884 ret = btrfs_add_swapfile_pin(inode, device, false);
10885 if (ret == 1)
10886 ret = 0;
10887 else if (ret)
10888 goto out;
10889 } else if (device != em->map_lookup->stripes[0].dev) {
10890 btrfs_warn(fs_info, "swapfile must be on one device");
10891 ret = -EINVAL;
10892 goto out;
10893 }
10894
10895 physical_block_start = (em->map_lookup->stripes[0].physical +
10896 (logical_block_start - em->start));
10897 len = min(len, em->len - (logical_block_start - em->start));
10898 free_extent_map(em);
10899 em = NULL;
10900
10901 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10902 if (!bg) {
10903 btrfs_warn(fs_info,
10904 "could not find block group containing swapfile");
10905 ret = -EINVAL;
10906 goto out;
10907 }
10908
10909 ret = btrfs_add_swapfile_pin(inode, bg, true);
10910 if (ret) {
10911 btrfs_put_block_group(bg);
10912 if (ret == 1)
10913 ret = 0;
10914 else
10915 goto out;
10916 }
10917
10918 if (bsi.block_len &&
10919 bsi.block_start + bsi.block_len == physical_block_start) {
10920 bsi.block_len += len;
10921 } else {
10922 if (bsi.block_len) {
10923 ret = btrfs_add_swap_extent(sis, &bsi);
10924 if (ret)
10925 goto out;
10926 }
10927 bsi.start = start;
10928 bsi.block_start = physical_block_start;
10929 bsi.block_len = len;
10930 }
10931
10932 start += len;
10933 }
10934
10935 if (bsi.block_len)
10936 ret = btrfs_add_swap_extent(sis, &bsi);
10937
10938 out:
10939 if (!IS_ERR_OR_NULL(em))
10940 free_extent_map(em);
10941
10942 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10943
10944 if (ret)
10945 btrfs_swap_deactivate(file);
10946
10947 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10948
10949 if (ret)
10950 return ret;
10951
10952 if (device)
10953 sis->bdev = device->bdev;
10954 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10955 sis->max = bsi.nr_pages;
10956 sis->pages = bsi.nr_pages - 1;
10957 sis->highest_bit = bsi.nr_pages - 1;
10958 return bsi.nr_extents;
10959 }
10960 #else
btrfs_swap_deactivate(struct file * file)10961 static void btrfs_swap_deactivate(struct file *file)
10962 {
10963 }
10964
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10965 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10966 sector_t *span)
10967 {
10968 return -EOPNOTSUPP;
10969 }
10970 #endif
10971
10972 static const struct inode_operations btrfs_dir_inode_operations = {
10973 .getattr = btrfs_getattr,
10974 .lookup = btrfs_lookup,
10975 .create = btrfs_create,
10976 .unlink = btrfs_unlink,
10977 .link = btrfs_link,
10978 .mkdir = btrfs_mkdir,
10979 .rmdir = btrfs_rmdir,
10980 .rename = btrfs_rename2,
10981 .symlink = btrfs_symlink,
10982 .setattr = btrfs_setattr,
10983 .mknod = btrfs_mknod,
10984 .listxattr = btrfs_listxattr,
10985 .permission = btrfs_permission,
10986 .get_acl = btrfs_get_acl,
10987 .set_acl = btrfs_set_acl,
10988 .update_time = btrfs_update_time,
10989 .tmpfile = btrfs_tmpfile,
10990 };
10991 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10992 .lookup = btrfs_lookup,
10993 .permission = btrfs_permission,
10994 .update_time = btrfs_update_time,
10995 };
10996
10997 static const struct file_operations btrfs_dir_file_operations = {
10998 .llseek = generic_file_llseek,
10999 .read = generic_read_dir,
11000 .iterate_shared = btrfs_real_readdir,
11001 .open = btrfs_opendir,
11002 .unlocked_ioctl = btrfs_ioctl,
11003 #ifdef CONFIG_COMPAT
11004 .compat_ioctl = btrfs_compat_ioctl,
11005 #endif
11006 .release = btrfs_release_file,
11007 .fsync = btrfs_sync_file,
11008 };
11009
11010 static const struct extent_io_ops btrfs_extent_io_ops = {
11011 /* mandatory callbacks */
11012 .submit_bio_hook = btrfs_submit_bio_hook,
11013 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
11014 };
11015
11016 /*
11017 * btrfs doesn't support the bmap operation because swapfiles
11018 * use bmap to make a mapping of extents in the file. They assume
11019 * these extents won't change over the life of the file and they
11020 * use the bmap result to do IO directly to the drive.
11021 *
11022 * the btrfs bmap call would return logical addresses that aren't
11023 * suitable for IO and they also will change frequently as COW
11024 * operations happen. So, swapfile + btrfs == corruption.
11025 *
11026 * For now we're avoiding this by dropping bmap.
11027 */
11028 static const struct address_space_operations btrfs_aops = {
11029 .readpage = btrfs_readpage,
11030 .writepage = btrfs_writepage,
11031 .writepages = btrfs_writepages,
11032 .readpages = btrfs_readpages,
11033 .direct_IO = btrfs_direct_IO,
11034 .invalidatepage = btrfs_invalidatepage,
11035 .releasepage = btrfs_releasepage,
11036 .set_page_dirty = btrfs_set_page_dirty,
11037 .error_remove_page = generic_error_remove_page,
11038 .swap_activate = btrfs_swap_activate,
11039 .swap_deactivate = btrfs_swap_deactivate,
11040 };
11041
11042 static const struct inode_operations btrfs_file_inode_operations = {
11043 .getattr = btrfs_getattr,
11044 .setattr = btrfs_setattr,
11045 .listxattr = btrfs_listxattr,
11046 .permission = btrfs_permission,
11047 .fiemap = btrfs_fiemap,
11048 .get_acl = btrfs_get_acl,
11049 .set_acl = btrfs_set_acl,
11050 .update_time = btrfs_update_time,
11051 };
11052 static const struct inode_operations btrfs_special_inode_operations = {
11053 .getattr = btrfs_getattr,
11054 .setattr = btrfs_setattr,
11055 .permission = btrfs_permission,
11056 .listxattr = btrfs_listxattr,
11057 .get_acl = btrfs_get_acl,
11058 .set_acl = btrfs_set_acl,
11059 .update_time = btrfs_update_time,
11060 };
11061 static const struct inode_operations btrfs_symlink_inode_operations = {
11062 .get_link = page_get_link,
11063 .getattr = btrfs_getattr,
11064 .setattr = btrfs_setattr,
11065 .permission = btrfs_permission,
11066 .listxattr = btrfs_listxattr,
11067 .update_time = btrfs_update_time,
11068 };
11069
11070 const struct dentry_operations btrfs_dentry_operations = {
11071 .d_delete = btrfs_dentry_delete,
11072 };
11073