• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21 
22 #define MOD_DESC "CAN device driver interface"
23 
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27 
28 /* CAN DLC to real data length conversion helpers */
29 
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31 			     8, 12, 16, 20, 24, 32, 48, 64};
32 
33 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)34 u8 can_dlc2len(u8 can_dlc)
35 {
36 	return dlc2len[can_dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_dlc2len);
39 
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
41 			     9, 9, 9, 9,			/* 9 - 12 */
42 			     10, 10, 10, 10,			/* 13 - 16 */
43 			     11, 11, 11, 11,			/* 17 - 20 */
44 			     12, 12, 12, 12,			/* 21 - 24 */
45 			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
46 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
47 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
48 			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
49 			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
50 
51 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)52 u8 can_len2dlc(u8 len)
53 {
54 	if (unlikely(len > 64))
55 		return 0xF;
56 
57 	return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_len2dlc);
60 
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63 #define CAN_CALC_SYNC_SEG 1
64 
65 /* Bit-timing calculation derived from:
66  *
67  * Code based on LinCAN sources and H8S2638 project
68  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
69  * Copyright 2005      Stanislav Marek
70  * email: pisa@cmp.felk.cvut.cz
71  *
72  * Calculates proper bit-timing parameters for a specified bit-rate
73  * and sample-point, which can then be used to set the bit-timing
74  * registers of the CAN controller. You can find more information
75  * in the header file linux/can/netlink.h.
76  */
77 static int
can_update_sample_point(const struct can_bittiming_const * btc,unsigned int sample_point_nominal,unsigned int tseg,unsigned int * tseg1_ptr,unsigned int * tseg2_ptr,unsigned int * sample_point_error_ptr)78 can_update_sample_point(const struct can_bittiming_const *btc,
79 			unsigned int sample_point_nominal, unsigned int tseg,
80 			unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
81 			unsigned int *sample_point_error_ptr)
82 {
83 	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
84 	unsigned int sample_point, best_sample_point = 0;
85 	unsigned int tseg1, tseg2;
86 	int i;
87 
88 	for (i = 0; i <= 1; i++) {
89 		tseg2 = tseg + CAN_CALC_SYNC_SEG -
90 			(sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) /
91 			1000 - i;
92 		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
93 		tseg1 = tseg - tseg2;
94 		if (tseg1 > btc->tseg1_max) {
95 			tseg1 = btc->tseg1_max;
96 			tseg2 = tseg - tseg1;
97 		}
98 
99 		sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) /
100 			(tseg + CAN_CALC_SYNC_SEG);
101 		sample_point_error = abs(sample_point_nominal - sample_point);
102 
103 		if (sample_point <= sample_point_nominal &&
104 		    sample_point_error < best_sample_point_error) {
105 			best_sample_point = sample_point;
106 			best_sample_point_error = sample_point_error;
107 			*tseg1_ptr = tseg1;
108 			*tseg2_ptr = tseg2;
109 		}
110 	}
111 
112 	if (sample_point_error_ptr)
113 		*sample_point_error_ptr = best_sample_point_error;
114 
115 	return best_sample_point;
116 }
117 
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)118 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
119 			      const struct can_bittiming_const *btc)
120 {
121 	struct can_priv *priv = netdev_priv(dev);
122 	unsigned int bitrate;			/* current bitrate */
123 	unsigned int bitrate_error;		/* difference between current and nominal value */
124 	unsigned int best_bitrate_error = UINT_MAX;
125 	unsigned int sample_point_error;	/* difference between current and nominal value */
126 	unsigned int best_sample_point_error = UINT_MAX;
127 	unsigned int sample_point_nominal;	/* nominal sample point */
128 	unsigned int best_tseg = 0;		/* current best value for tseg */
129 	unsigned int best_brp = 0;		/* current best value for brp */
130 	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
131 	u64 v64;
132 
133 	/* Use CiA recommended sample points */
134 	if (bt->sample_point) {
135 		sample_point_nominal = bt->sample_point;
136 	} else {
137 		if (bt->bitrate > 800000)
138 			sample_point_nominal = 750;
139 		else if (bt->bitrate > 500000)
140 			sample_point_nominal = 800;
141 		else
142 			sample_point_nominal = 875;
143 	}
144 
145 	/* tseg even = round down, odd = round up */
146 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
147 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
148 		tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
149 
150 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
151 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
152 
153 		/* choose brp step which is possible in system */
154 		brp = (brp / btc->brp_inc) * btc->brp_inc;
155 		if (brp < btc->brp_min || brp > btc->brp_max)
156 			continue;
157 
158 		bitrate = priv->clock.freq / (brp * tsegall);
159 		bitrate_error = abs(bt->bitrate - bitrate);
160 
161 		/* tseg brp biterror */
162 		if (bitrate_error > best_bitrate_error)
163 			continue;
164 
165 		/* reset sample point error if we have a better bitrate */
166 		if (bitrate_error < best_bitrate_error)
167 			best_sample_point_error = UINT_MAX;
168 
169 		can_update_sample_point(btc, sample_point_nominal, tseg / 2,
170 					&tseg1, &tseg2, &sample_point_error);
171 		if (sample_point_error > best_sample_point_error)
172 			continue;
173 
174 		best_sample_point_error = sample_point_error;
175 		best_bitrate_error = bitrate_error;
176 		best_tseg = tseg / 2;
177 		best_brp = brp;
178 
179 		if (bitrate_error == 0 && sample_point_error == 0)
180 			break;
181 	}
182 
183 	if (best_bitrate_error) {
184 		/* Error in one-tenth of a percent */
185 		v64 = (u64)best_bitrate_error * 1000;
186 		do_div(v64, bt->bitrate);
187 		bitrate_error = (u32)v64;
188 		if (bitrate_error > CAN_CALC_MAX_ERROR) {
189 			netdev_err(dev,
190 				   "bitrate error %d.%d%% too high\n",
191 				   bitrate_error / 10, bitrate_error % 10);
192 			return -EDOM;
193 		}
194 		netdev_warn(dev, "bitrate error %d.%d%%\n",
195 			    bitrate_error / 10, bitrate_error % 10);
196 	}
197 
198 	/* real sample point */
199 	bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
200 						   best_tseg, &tseg1, &tseg2,
201 						   NULL);
202 
203 	v64 = (u64)best_brp * 1000 * 1000 * 1000;
204 	do_div(v64, priv->clock.freq);
205 	bt->tq = (u32)v64;
206 	bt->prop_seg = tseg1 / 2;
207 	bt->phase_seg1 = tseg1 - bt->prop_seg;
208 	bt->phase_seg2 = tseg2;
209 
210 	/* check for sjw user settings */
211 	if (!bt->sjw || !btc->sjw_max) {
212 		bt->sjw = 1;
213 	} else {
214 		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
215 		if (bt->sjw > btc->sjw_max)
216 			bt->sjw = btc->sjw_max;
217 		/* bt->sjw must not be higher than tseg2 */
218 		if (tseg2 < bt->sjw)
219 			bt->sjw = tseg2;
220 	}
221 
222 	bt->brp = best_brp;
223 
224 	/* real bitrate */
225 	bt->bitrate = priv->clock.freq /
226 		(bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
227 
228 	return 0;
229 }
230 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)231 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
232 			      const struct can_bittiming_const *btc)
233 {
234 	netdev_err(dev, "bit-timing calculation not available\n");
235 	return -EINVAL;
236 }
237 #endif /* CONFIG_CAN_CALC_BITTIMING */
238 
239 /* Checks the validity of the specified bit-timing parameters prop_seg,
240  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
241  * prescaler value brp. You can find more information in the header
242  * file linux/can/netlink.h.
243  */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)244 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
245 			       const struct can_bittiming_const *btc)
246 {
247 	struct can_priv *priv = netdev_priv(dev);
248 	int tseg1, alltseg;
249 	u64 brp64;
250 
251 	tseg1 = bt->prop_seg + bt->phase_seg1;
252 	if (!bt->sjw)
253 		bt->sjw = 1;
254 	if (bt->sjw > btc->sjw_max ||
255 	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
256 	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
257 		return -ERANGE;
258 
259 	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
260 	if (btc->brp_inc > 1)
261 		do_div(brp64, btc->brp_inc);
262 	brp64 += 500000000UL - 1;
263 	do_div(brp64, 1000000000UL); /* the practicable BRP */
264 	if (btc->brp_inc > 1)
265 		brp64 *= btc->brp_inc;
266 	bt->brp = (u32)brp64;
267 
268 	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
269 		return -EINVAL;
270 
271 	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
272 	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
273 	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
274 
275 	return 0;
276 }
277 
278 /* Checks the validity of predefined bitrate settings */
279 static int
can_validate_bitrate(struct net_device * dev,struct can_bittiming * bt,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)280 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
281 		     const u32 *bitrate_const,
282 		     const unsigned int bitrate_const_cnt)
283 {
284 	struct can_priv *priv = netdev_priv(dev);
285 	unsigned int i;
286 
287 	for (i = 0; i < bitrate_const_cnt; i++) {
288 		if (bt->bitrate == bitrate_const[i])
289 			break;
290 	}
291 
292 	if (i >= priv->bitrate_const_cnt)
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)298 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
299 			     const struct can_bittiming_const *btc,
300 			     const u32 *bitrate_const,
301 			     const unsigned int bitrate_const_cnt)
302 {
303 	int err;
304 
305 	/* Depending on the given can_bittiming parameter structure the CAN
306 	 * timing parameters are calculated based on the provided bitrate OR
307 	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
308 	 * provided directly which are then checked and fixed up.
309 	 */
310 	if (!bt->tq && bt->bitrate && btc)
311 		err = can_calc_bittiming(dev, bt, btc);
312 	else if (bt->tq && !bt->bitrate && btc)
313 		err = can_fixup_bittiming(dev, bt, btc);
314 	else if (!bt->tq && bt->bitrate && bitrate_const)
315 		err = can_validate_bitrate(dev, bt, bitrate_const,
316 					   bitrate_const_cnt);
317 	else
318 		err = -EINVAL;
319 
320 	return err;
321 }
322 
can_update_state_error_stats(struct net_device * dev,enum can_state new_state)323 static void can_update_state_error_stats(struct net_device *dev,
324 					 enum can_state new_state)
325 {
326 	struct can_priv *priv = netdev_priv(dev);
327 
328 	if (new_state <= priv->state)
329 		return;
330 
331 	switch (new_state) {
332 	case CAN_STATE_ERROR_WARNING:
333 		priv->can_stats.error_warning++;
334 		break;
335 	case CAN_STATE_ERROR_PASSIVE:
336 		priv->can_stats.error_passive++;
337 		break;
338 	case CAN_STATE_BUS_OFF:
339 		priv->can_stats.bus_off++;
340 		break;
341 	default:
342 		break;
343 	}
344 }
345 
can_tx_state_to_frame(struct net_device * dev,enum can_state state)346 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
347 {
348 	switch (state) {
349 	case CAN_STATE_ERROR_ACTIVE:
350 		return CAN_ERR_CRTL_ACTIVE;
351 	case CAN_STATE_ERROR_WARNING:
352 		return CAN_ERR_CRTL_TX_WARNING;
353 	case CAN_STATE_ERROR_PASSIVE:
354 		return CAN_ERR_CRTL_TX_PASSIVE;
355 	default:
356 		return 0;
357 	}
358 }
359 
can_rx_state_to_frame(struct net_device * dev,enum can_state state)360 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
361 {
362 	switch (state) {
363 	case CAN_STATE_ERROR_ACTIVE:
364 		return CAN_ERR_CRTL_ACTIVE;
365 	case CAN_STATE_ERROR_WARNING:
366 		return CAN_ERR_CRTL_RX_WARNING;
367 	case CAN_STATE_ERROR_PASSIVE:
368 		return CAN_ERR_CRTL_RX_PASSIVE;
369 	default:
370 		return 0;
371 	}
372 }
373 
can_change_state(struct net_device * dev,struct can_frame * cf,enum can_state tx_state,enum can_state rx_state)374 void can_change_state(struct net_device *dev, struct can_frame *cf,
375 		      enum can_state tx_state, enum can_state rx_state)
376 {
377 	struct can_priv *priv = netdev_priv(dev);
378 	enum can_state new_state = max(tx_state, rx_state);
379 
380 	if (unlikely(new_state == priv->state)) {
381 		netdev_warn(dev, "%s: oops, state did not change", __func__);
382 		return;
383 	}
384 
385 	netdev_dbg(dev, "New error state: %d\n", new_state);
386 
387 	can_update_state_error_stats(dev, new_state);
388 	priv->state = new_state;
389 
390 	if (!cf)
391 		return;
392 
393 	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
394 		cf->can_id |= CAN_ERR_BUSOFF;
395 		return;
396 	}
397 
398 	cf->can_id |= CAN_ERR_CRTL;
399 	cf->data[1] |= tx_state >= rx_state ?
400 		       can_tx_state_to_frame(dev, tx_state) : 0;
401 	cf->data[1] |= tx_state <= rx_state ?
402 		       can_rx_state_to_frame(dev, rx_state) : 0;
403 }
404 EXPORT_SYMBOL_GPL(can_change_state);
405 
406 /* Local echo of CAN messages
407  *
408  * CAN network devices *should* support a local echo functionality
409  * (see Documentation/networking/can.rst). To test the handling of CAN
410  * interfaces that do not support the local echo both driver types are
411  * implemented. In the case that the driver does not support the echo
412  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
413  * to perform the echo as a fallback solution.
414  */
can_flush_echo_skb(struct net_device * dev)415 static void can_flush_echo_skb(struct net_device *dev)
416 {
417 	struct can_priv *priv = netdev_priv(dev);
418 	struct net_device_stats *stats = &dev->stats;
419 	int i;
420 
421 	for (i = 0; i < priv->echo_skb_max; i++) {
422 		if (priv->echo_skb[i]) {
423 			kfree_skb(priv->echo_skb[i]);
424 			priv->echo_skb[i] = NULL;
425 			stats->tx_dropped++;
426 			stats->tx_aborted_errors++;
427 		}
428 	}
429 }
430 
431 /* Put the skb on the stack to be looped backed locally lateron
432  *
433  * The function is typically called in the start_xmit function
434  * of the device driver. The driver must protect access to
435  * priv->echo_skb, if necessary.
436  */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)437 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
438 		      unsigned int idx)
439 {
440 	struct can_priv *priv = netdev_priv(dev);
441 
442 	BUG_ON(idx >= priv->echo_skb_max);
443 
444 	/* check flag whether this packet has to be looped back */
445 	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
446 	    (skb->protocol != htons(ETH_P_CAN) &&
447 	     skb->protocol != htons(ETH_P_CANFD))) {
448 		kfree_skb(skb);
449 		return;
450 	}
451 
452 	if (!priv->echo_skb[idx]) {
453 		skb = can_create_echo_skb(skb);
454 		if (!skb)
455 			return;
456 
457 		/* make settings for echo to reduce code in irq context */
458 		skb->pkt_type = PACKET_BROADCAST;
459 		skb->ip_summed = CHECKSUM_UNNECESSARY;
460 		skb->dev = dev;
461 
462 		/* save this skb for tx interrupt echo handling */
463 		priv->echo_skb[idx] = skb;
464 	} else {
465 		/* locking problem with netif_stop_queue() ?? */
466 		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
467 		kfree_skb(skb);
468 	}
469 }
470 EXPORT_SYMBOL_GPL(can_put_echo_skb);
471 
472 struct sk_buff *
__can_get_echo_skb(struct net_device * dev,unsigned int idx,u8 * len_ptr)473 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
474 {
475 	struct can_priv *priv = netdev_priv(dev);
476 
477 	if (idx >= priv->echo_skb_max) {
478 		netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
479 			   __func__, idx, priv->echo_skb_max);
480 		return NULL;
481 	}
482 
483 	if (priv->echo_skb[idx]) {
484 		/* Using "struct canfd_frame::len" for the frame
485 		 * length is supported on both CAN and CANFD frames.
486 		 */
487 		struct sk_buff *skb = priv->echo_skb[idx];
488 		struct canfd_frame *cf = (struct canfd_frame *)skb->data;
489 		u8 len = cf->len;
490 
491 		*len_ptr = len;
492 		priv->echo_skb[idx] = NULL;
493 
494 		return skb;
495 	}
496 
497 	return NULL;
498 }
499 
500 /* Get the skb from the stack and loop it back locally
501  *
502  * The function is typically called when the TX done interrupt
503  * is handled in the device driver. The driver must protect
504  * access to priv->echo_skb, if necessary.
505  */
can_get_echo_skb(struct net_device * dev,unsigned int idx)506 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
507 {
508 	struct sk_buff *skb;
509 	u8 len;
510 
511 	skb = __can_get_echo_skb(dev, idx, &len);
512 	if (!skb)
513 		return 0;
514 
515 	netif_rx(skb);
516 
517 	return len;
518 }
519 EXPORT_SYMBOL_GPL(can_get_echo_skb);
520 
521 /* Remove the skb from the stack and free it.
522  *
523  * The function is typically called when TX failed.
524  */
can_free_echo_skb(struct net_device * dev,unsigned int idx)525 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
526 {
527 	struct can_priv *priv = netdev_priv(dev);
528 
529 	BUG_ON(idx >= priv->echo_skb_max);
530 
531 	if (priv->echo_skb[idx]) {
532 		dev_kfree_skb_any(priv->echo_skb[idx]);
533 		priv->echo_skb[idx] = NULL;
534 	}
535 }
536 EXPORT_SYMBOL_GPL(can_free_echo_skb);
537 
538 /* CAN device restart for bus-off recovery */
can_restart(struct net_device * dev)539 static void can_restart(struct net_device *dev)
540 {
541 	struct can_priv *priv = netdev_priv(dev);
542 	struct net_device_stats *stats = &dev->stats;
543 	struct sk_buff *skb;
544 	struct can_frame *cf;
545 	int err;
546 
547 	BUG_ON(netif_carrier_ok(dev));
548 
549 	/* No synchronization needed because the device is bus-off and
550 	 * no messages can come in or go out.
551 	 */
552 	can_flush_echo_skb(dev);
553 
554 	/* send restart message upstream */
555 	skb = alloc_can_err_skb(dev, &cf);
556 	if (!skb) {
557 		err = -ENOMEM;
558 		goto restart;
559 	}
560 	cf->can_id |= CAN_ERR_RESTARTED;
561 
562 	netif_rx(skb);
563 
564 	stats->rx_packets++;
565 	stats->rx_bytes += cf->can_dlc;
566 
567 restart:
568 	netdev_dbg(dev, "restarted\n");
569 	priv->can_stats.restarts++;
570 
571 	/* Now restart the device */
572 	err = priv->do_set_mode(dev, CAN_MODE_START);
573 
574 	netif_carrier_on(dev);
575 	if (err)
576 		netdev_err(dev, "Error %d during restart", err);
577 }
578 
can_restart_work(struct work_struct * work)579 static void can_restart_work(struct work_struct *work)
580 {
581 	struct delayed_work *dwork = to_delayed_work(work);
582 	struct can_priv *priv = container_of(dwork, struct can_priv,
583 					     restart_work);
584 
585 	can_restart(priv->dev);
586 }
587 
can_restart_now(struct net_device * dev)588 int can_restart_now(struct net_device *dev)
589 {
590 	struct can_priv *priv = netdev_priv(dev);
591 
592 	/* A manual restart is only permitted if automatic restart is
593 	 * disabled and the device is in the bus-off state
594 	 */
595 	if (priv->restart_ms)
596 		return -EINVAL;
597 	if (priv->state != CAN_STATE_BUS_OFF)
598 		return -EBUSY;
599 
600 	cancel_delayed_work_sync(&priv->restart_work);
601 	can_restart(dev);
602 
603 	return 0;
604 }
605 
606 /* CAN bus-off
607  *
608  * This functions should be called when the device goes bus-off to
609  * tell the netif layer that no more packets can be sent or received.
610  * If enabled, a timer is started to trigger bus-off recovery.
611  */
can_bus_off(struct net_device * dev)612 void can_bus_off(struct net_device *dev)
613 {
614 	struct can_priv *priv = netdev_priv(dev);
615 
616 	netdev_info(dev, "bus-off\n");
617 
618 	netif_carrier_off(dev);
619 
620 	if (priv->restart_ms)
621 		schedule_delayed_work(&priv->restart_work,
622 				      msecs_to_jiffies(priv->restart_ms));
623 }
624 EXPORT_SYMBOL_GPL(can_bus_off);
625 
can_setup(struct net_device * dev)626 static void can_setup(struct net_device *dev)
627 {
628 	dev->type = ARPHRD_CAN;
629 	dev->mtu = CAN_MTU;
630 	dev->hard_header_len = 0;
631 	dev->addr_len = 0;
632 	dev->tx_queue_len = 10;
633 
634 	/* New-style flags. */
635 	dev->flags = IFF_NOARP;
636 	dev->features = NETIF_F_HW_CSUM;
637 }
638 
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)639 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
640 {
641 	struct sk_buff *skb;
642 
643 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
644 			       sizeof(struct can_frame));
645 	if (unlikely(!skb))
646 		return NULL;
647 
648 	skb->protocol = htons(ETH_P_CAN);
649 	skb->pkt_type = PACKET_BROADCAST;
650 	skb->ip_summed = CHECKSUM_UNNECESSARY;
651 
652 	skb_reset_mac_header(skb);
653 	skb_reset_network_header(skb);
654 	skb_reset_transport_header(skb);
655 
656 	can_skb_reserve(skb);
657 	can_skb_prv(skb)->ifindex = dev->ifindex;
658 	can_skb_prv(skb)->skbcnt = 0;
659 
660 	*cf = skb_put_zero(skb, sizeof(struct can_frame));
661 
662 	return skb;
663 }
664 EXPORT_SYMBOL_GPL(alloc_can_skb);
665 
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)666 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
667 				struct canfd_frame **cfd)
668 {
669 	struct sk_buff *skb;
670 
671 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
672 			       sizeof(struct canfd_frame));
673 	if (unlikely(!skb))
674 		return NULL;
675 
676 	skb->protocol = htons(ETH_P_CANFD);
677 	skb->pkt_type = PACKET_BROADCAST;
678 	skb->ip_summed = CHECKSUM_UNNECESSARY;
679 
680 	skb_reset_mac_header(skb);
681 	skb_reset_network_header(skb);
682 	skb_reset_transport_header(skb);
683 
684 	can_skb_reserve(skb);
685 	can_skb_prv(skb)->ifindex = dev->ifindex;
686 	can_skb_prv(skb)->skbcnt = 0;
687 
688 	*cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
689 
690 	return skb;
691 }
692 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
693 
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)694 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
695 {
696 	struct sk_buff *skb;
697 
698 	skb = alloc_can_skb(dev, cf);
699 	if (unlikely(!skb))
700 		return NULL;
701 
702 	(*cf)->can_id = CAN_ERR_FLAG;
703 	(*cf)->can_dlc = CAN_ERR_DLC;
704 
705 	return skb;
706 }
707 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
708 
709 /* Allocate and setup space for the CAN network device */
alloc_candev_mqs(int sizeof_priv,unsigned int echo_skb_max,unsigned int txqs,unsigned int rxqs)710 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
711 				    unsigned int txqs, unsigned int rxqs)
712 {
713 	struct net_device *dev;
714 	struct can_priv *priv;
715 	int size;
716 
717 	/* We put the driver's priv, the CAN mid layer priv and the
718 	 * echo skb into the netdevice's priv. The memory layout for
719 	 * the netdev_priv is like this:
720 	 *
721 	 * +-------------------------+
722 	 * | driver's priv           |
723 	 * +-------------------------+
724 	 * | struct can_ml_priv      |
725 	 * +-------------------------+
726 	 * | array of struct sk_buff |
727 	 * +-------------------------+
728 	 */
729 
730 	size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
731 
732 	if (echo_skb_max)
733 		size = ALIGN(size, sizeof(struct sk_buff *)) +
734 			echo_skb_max * sizeof(struct sk_buff *);
735 
736 	dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
737 			       txqs, rxqs);
738 	if (!dev)
739 		return NULL;
740 
741 	priv = netdev_priv(dev);
742 	priv->dev = dev;
743 
744 	dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
745 
746 	if (echo_skb_max) {
747 		priv->echo_skb_max = echo_skb_max;
748 		priv->echo_skb = (void *)priv +
749 			(size - echo_skb_max * sizeof(struct sk_buff *));
750 	}
751 
752 	priv->state = CAN_STATE_STOPPED;
753 
754 	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
755 
756 	return dev;
757 }
758 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
759 
760 /* Free space of the CAN network device */
free_candev(struct net_device * dev)761 void free_candev(struct net_device *dev)
762 {
763 	free_netdev(dev);
764 }
765 EXPORT_SYMBOL_GPL(free_candev);
766 
767 /* changing MTU and control mode for CAN/CANFD devices */
can_change_mtu(struct net_device * dev,int new_mtu)768 int can_change_mtu(struct net_device *dev, int new_mtu)
769 {
770 	struct can_priv *priv = netdev_priv(dev);
771 
772 	/* Do not allow changing the MTU while running */
773 	if (dev->flags & IFF_UP)
774 		return -EBUSY;
775 
776 	/* allow change of MTU according to the CANFD ability of the device */
777 	switch (new_mtu) {
778 	case CAN_MTU:
779 		/* 'CANFD-only' controllers can not switch to CAN_MTU */
780 		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
781 			return -EINVAL;
782 
783 		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
784 		break;
785 
786 	case CANFD_MTU:
787 		/* check for potential CANFD ability */
788 		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
789 		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
790 			return -EINVAL;
791 
792 		priv->ctrlmode |= CAN_CTRLMODE_FD;
793 		break;
794 
795 	default:
796 		return -EINVAL;
797 	}
798 
799 	dev->mtu = new_mtu;
800 	return 0;
801 }
802 EXPORT_SYMBOL_GPL(can_change_mtu);
803 
804 /* Common open function when the device gets opened.
805  *
806  * This function should be called in the open function of the device
807  * driver.
808  */
open_candev(struct net_device * dev)809 int open_candev(struct net_device *dev)
810 {
811 	struct can_priv *priv = netdev_priv(dev);
812 
813 	if (!priv->bittiming.bitrate) {
814 		netdev_err(dev, "bit-timing not yet defined\n");
815 		return -EINVAL;
816 	}
817 
818 	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
819 	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
820 	    (!priv->data_bittiming.bitrate ||
821 	     priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
822 		netdev_err(dev, "incorrect/missing data bit-timing\n");
823 		return -EINVAL;
824 	}
825 
826 	/* Switch carrier on if device was stopped while in bus-off state */
827 	if (!netif_carrier_ok(dev))
828 		netif_carrier_on(dev);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(open_candev);
833 
834 #ifdef CONFIG_OF
835 /* Common function that can be used to understand the limitation of
836  * a transceiver when it provides no means to determine these limitations
837  * at runtime.
838  */
of_can_transceiver(struct net_device * dev)839 void of_can_transceiver(struct net_device *dev)
840 {
841 	struct device_node *dn;
842 	struct can_priv *priv = netdev_priv(dev);
843 	struct device_node *np = dev->dev.parent->of_node;
844 	int ret;
845 
846 	dn = of_get_child_by_name(np, "can-transceiver");
847 	if (!dn)
848 		return;
849 
850 	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
851 	of_node_put(dn);
852 	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
853 		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
854 }
855 EXPORT_SYMBOL_GPL(of_can_transceiver);
856 #endif
857 
858 /* Common close function for cleanup before the device gets closed.
859  *
860  * This function should be called in the close function of the device
861  * driver.
862  */
close_candev(struct net_device * dev)863 void close_candev(struct net_device *dev)
864 {
865 	struct can_priv *priv = netdev_priv(dev);
866 
867 	cancel_delayed_work_sync(&priv->restart_work);
868 	can_flush_echo_skb(dev);
869 }
870 EXPORT_SYMBOL_GPL(close_candev);
871 
872 /* CAN netlink interface */
873 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
874 	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
875 	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
876 	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
877 	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
878 	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
879 	[IFLA_CAN_BITTIMING_CONST]
880 				= { .len = sizeof(struct can_bittiming_const) },
881 	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
882 	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
883 	[IFLA_CAN_DATA_BITTIMING]
884 				= { .len = sizeof(struct can_bittiming) },
885 	[IFLA_CAN_DATA_BITTIMING_CONST]
886 				= { .len = sizeof(struct can_bittiming_const) },
887 };
888 
can_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)889 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
890 			struct netlink_ext_ack *extack)
891 {
892 	bool is_can_fd = false;
893 
894 	/* Make sure that valid CAN FD configurations always consist of
895 	 * - nominal/arbitration bittiming
896 	 * - data bittiming
897 	 * - control mode with CAN_CTRLMODE_FD set
898 	 */
899 
900 	if (!data)
901 		return 0;
902 
903 	if (data[IFLA_CAN_CTRLMODE]) {
904 		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
905 
906 		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
907 	}
908 
909 	if (is_can_fd) {
910 		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
911 			return -EOPNOTSUPP;
912 	}
913 
914 	if (data[IFLA_CAN_DATA_BITTIMING]) {
915 		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
916 			return -EOPNOTSUPP;
917 	}
918 
919 	return 0;
920 }
921 
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)922 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
923 			  struct nlattr *data[],
924 			  struct netlink_ext_ack *extack)
925 {
926 	struct can_priv *priv = netdev_priv(dev);
927 	int err;
928 
929 	/* We need synchronization with dev->stop() */
930 	ASSERT_RTNL();
931 
932 	if (data[IFLA_CAN_BITTIMING]) {
933 		struct can_bittiming bt;
934 
935 		/* Do not allow changing bittiming while running */
936 		if (dev->flags & IFF_UP)
937 			return -EBUSY;
938 
939 		/* Calculate bittiming parameters based on
940 		 * bittiming_const if set, otherwise pass bitrate
941 		 * directly via do_set_bitrate(). Bail out if neither
942 		 * is given.
943 		 */
944 		if (!priv->bittiming_const && !priv->do_set_bittiming)
945 			return -EOPNOTSUPP;
946 
947 		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
948 		err = can_get_bittiming(dev, &bt,
949 					priv->bittiming_const,
950 					priv->bitrate_const,
951 					priv->bitrate_const_cnt);
952 		if (err)
953 			return err;
954 
955 		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
956 			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
957 				   priv->bitrate_max);
958 			return -EINVAL;
959 		}
960 
961 		memcpy(&priv->bittiming, &bt, sizeof(bt));
962 
963 		if (priv->do_set_bittiming) {
964 			/* Finally, set the bit-timing registers */
965 			err = priv->do_set_bittiming(dev);
966 			if (err)
967 				return err;
968 		}
969 	}
970 
971 	if (data[IFLA_CAN_CTRLMODE]) {
972 		struct can_ctrlmode *cm;
973 		u32 ctrlstatic;
974 		u32 maskedflags;
975 
976 		/* Do not allow changing controller mode while running */
977 		if (dev->flags & IFF_UP)
978 			return -EBUSY;
979 		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
980 		ctrlstatic = priv->ctrlmode_static;
981 		maskedflags = cm->flags & cm->mask;
982 
983 		/* check whether provided bits are allowed to be passed */
984 		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
985 			return -EOPNOTSUPP;
986 
987 		/* do not check for static fd-non-iso if 'fd' is disabled */
988 		if (!(maskedflags & CAN_CTRLMODE_FD))
989 			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
990 
991 		/* make sure static options are provided by configuration */
992 		if ((maskedflags & ctrlstatic) != ctrlstatic)
993 			return -EOPNOTSUPP;
994 
995 		/* clear bits to be modified and copy the flag values */
996 		priv->ctrlmode &= ~cm->mask;
997 		priv->ctrlmode |= maskedflags;
998 
999 		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
1000 		if (priv->ctrlmode & CAN_CTRLMODE_FD)
1001 			dev->mtu = CANFD_MTU;
1002 		else
1003 			dev->mtu = CAN_MTU;
1004 	}
1005 
1006 	if (data[IFLA_CAN_RESTART_MS]) {
1007 		/* Do not allow changing restart delay while running */
1008 		if (dev->flags & IFF_UP)
1009 			return -EBUSY;
1010 		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1011 	}
1012 
1013 	if (data[IFLA_CAN_RESTART]) {
1014 		/* Do not allow a restart while not running */
1015 		if (!(dev->flags & IFF_UP))
1016 			return -EINVAL;
1017 		err = can_restart_now(dev);
1018 		if (err)
1019 			return err;
1020 	}
1021 
1022 	if (data[IFLA_CAN_DATA_BITTIMING]) {
1023 		struct can_bittiming dbt;
1024 
1025 		/* Do not allow changing bittiming while running */
1026 		if (dev->flags & IFF_UP)
1027 			return -EBUSY;
1028 
1029 		/* Calculate bittiming parameters based on
1030 		 * data_bittiming_const if set, otherwise pass bitrate
1031 		 * directly via do_set_bitrate(). Bail out if neither
1032 		 * is given.
1033 		 */
1034 		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1035 			return -EOPNOTSUPP;
1036 
1037 		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1038 		       sizeof(dbt));
1039 		err = can_get_bittiming(dev, &dbt,
1040 					priv->data_bittiming_const,
1041 					priv->data_bitrate_const,
1042 					priv->data_bitrate_const_cnt);
1043 		if (err)
1044 			return err;
1045 
1046 		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1047 			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1048 				   priv->bitrate_max);
1049 			return -EINVAL;
1050 		}
1051 
1052 		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1053 
1054 		if (priv->do_set_data_bittiming) {
1055 			/* Finally, set the bit-timing registers */
1056 			err = priv->do_set_data_bittiming(dev);
1057 			if (err)
1058 				return err;
1059 		}
1060 	}
1061 
1062 	if (data[IFLA_CAN_TERMINATION]) {
1063 		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1064 		const unsigned int num_term = priv->termination_const_cnt;
1065 		unsigned int i;
1066 
1067 		if (!priv->do_set_termination)
1068 			return -EOPNOTSUPP;
1069 
1070 		/* check whether given value is supported by the interface */
1071 		for (i = 0; i < num_term; i++) {
1072 			if (termval == priv->termination_const[i])
1073 				break;
1074 		}
1075 		if (i >= num_term)
1076 			return -EINVAL;
1077 
1078 		/* Finally, set the termination value */
1079 		err = priv->do_set_termination(dev, termval);
1080 		if (err)
1081 			return err;
1082 
1083 		priv->termination = termval;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
can_get_size(const struct net_device * dev)1089 static size_t can_get_size(const struct net_device *dev)
1090 {
1091 	struct can_priv *priv = netdev_priv(dev);
1092 	size_t size = 0;
1093 
1094 	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1095 		size += nla_total_size(sizeof(struct can_bittiming));
1096 	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1097 		size += nla_total_size(sizeof(struct can_bittiming_const));
1098 	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1099 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1100 	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1101 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1102 	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1103 		size += nla_total_size(sizeof(struct can_berr_counter));
1104 	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1105 		size += nla_total_size(sizeof(struct can_bittiming));
1106 	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1107 		size += nla_total_size(sizeof(struct can_bittiming_const));
1108 	if (priv->termination_const) {
1109 		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1110 		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1111 				       priv->termination_const_cnt);
1112 	}
1113 	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1114 		size += nla_total_size(sizeof(*priv->bitrate_const) *
1115 				       priv->bitrate_const_cnt);
1116 	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1117 		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1118 				       priv->data_bitrate_const_cnt);
1119 	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1120 
1121 	return size;
1122 }
1123 
can_fill_info(struct sk_buff * skb,const struct net_device * dev)1124 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1125 {
1126 	struct can_priv *priv = netdev_priv(dev);
1127 	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1128 	struct can_berr_counter bec;
1129 	enum can_state state = priv->state;
1130 
1131 	if (priv->do_get_state)
1132 		priv->do_get_state(dev, &state);
1133 
1134 	if ((priv->bittiming.bitrate &&
1135 	     nla_put(skb, IFLA_CAN_BITTIMING,
1136 		     sizeof(priv->bittiming), &priv->bittiming)) ||
1137 
1138 	    (priv->bittiming_const &&
1139 	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1140 		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1141 
1142 	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1143 	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1144 	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1145 	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1146 
1147 	    (priv->do_get_berr_counter &&
1148 	     !priv->do_get_berr_counter(dev, &bec) &&
1149 	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1150 
1151 	    (priv->data_bittiming.bitrate &&
1152 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1153 		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1154 
1155 	    (priv->data_bittiming_const &&
1156 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1157 		     sizeof(*priv->data_bittiming_const),
1158 		     priv->data_bittiming_const)) ||
1159 
1160 	    (priv->termination_const &&
1161 	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1162 	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1163 		      sizeof(*priv->termination_const) *
1164 		      priv->termination_const_cnt,
1165 		      priv->termination_const))) ||
1166 
1167 	    (priv->bitrate_const &&
1168 	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1169 		     sizeof(*priv->bitrate_const) *
1170 		     priv->bitrate_const_cnt,
1171 		     priv->bitrate_const)) ||
1172 
1173 	    (priv->data_bitrate_const &&
1174 	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1175 		     sizeof(*priv->data_bitrate_const) *
1176 		     priv->data_bitrate_const_cnt,
1177 		     priv->data_bitrate_const)) ||
1178 
1179 	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1180 		     sizeof(priv->bitrate_max),
1181 		     &priv->bitrate_max))
1182 	    )
1183 
1184 		return -EMSGSIZE;
1185 
1186 	return 0;
1187 }
1188 
can_get_xstats_size(const struct net_device * dev)1189 static size_t can_get_xstats_size(const struct net_device *dev)
1190 {
1191 	return sizeof(struct can_device_stats);
1192 }
1193 
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)1194 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1195 {
1196 	struct can_priv *priv = netdev_priv(dev);
1197 
1198 	if (nla_put(skb, IFLA_INFO_XSTATS,
1199 		    sizeof(priv->can_stats), &priv->can_stats))
1200 		goto nla_put_failure;
1201 	return 0;
1202 
1203 nla_put_failure:
1204 	return -EMSGSIZE;
1205 }
1206 
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1207 static int can_newlink(struct net *src_net, struct net_device *dev,
1208 		       struct nlattr *tb[], struct nlattr *data[],
1209 		       struct netlink_ext_ack *extack)
1210 {
1211 	return -EOPNOTSUPP;
1212 }
1213 
can_dellink(struct net_device * dev,struct list_head * head)1214 static void can_dellink(struct net_device *dev, struct list_head *head)
1215 {
1216 }
1217 
1218 static struct rtnl_link_ops can_link_ops __read_mostly = {
1219 	.kind		= "can",
1220 	.maxtype	= IFLA_CAN_MAX,
1221 	.policy		= can_policy,
1222 	.setup		= can_setup,
1223 	.validate	= can_validate,
1224 	.newlink	= can_newlink,
1225 	.changelink	= can_changelink,
1226 	.dellink	= can_dellink,
1227 	.get_size	= can_get_size,
1228 	.fill_info	= can_fill_info,
1229 	.get_xstats_size = can_get_xstats_size,
1230 	.fill_xstats	= can_fill_xstats,
1231 };
1232 
1233 /* Register the CAN network device */
register_candev(struct net_device * dev)1234 int register_candev(struct net_device *dev)
1235 {
1236 	struct can_priv *priv = netdev_priv(dev);
1237 
1238 	/* Ensure termination_const, termination_const_cnt and
1239 	 * do_set_termination consistency. All must be either set or
1240 	 * unset.
1241 	 */
1242 	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1243 	    (!priv->termination_const != !priv->do_set_termination))
1244 		return -EINVAL;
1245 
1246 	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1247 		return -EINVAL;
1248 
1249 	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1250 		return -EINVAL;
1251 
1252 	dev->rtnl_link_ops = &can_link_ops;
1253 	netif_carrier_off(dev);
1254 
1255 	return register_netdev(dev);
1256 }
1257 EXPORT_SYMBOL_GPL(register_candev);
1258 
1259 /* Unregister the CAN network device */
unregister_candev(struct net_device * dev)1260 void unregister_candev(struct net_device *dev)
1261 {
1262 	unregister_netdev(dev);
1263 }
1264 EXPORT_SYMBOL_GPL(unregister_candev);
1265 
1266 /* Test if a network device is a candev based device
1267  * and return the can_priv* if so.
1268  */
safe_candev_priv(struct net_device * dev)1269 struct can_priv *safe_candev_priv(struct net_device *dev)
1270 {
1271 	if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1272 		return NULL;
1273 
1274 	return netdev_priv(dev);
1275 }
1276 EXPORT_SYMBOL_GPL(safe_candev_priv);
1277 
can_dev_init(void)1278 static __init int can_dev_init(void)
1279 {
1280 	int err;
1281 
1282 	can_led_notifier_init();
1283 
1284 	err = rtnl_link_register(&can_link_ops);
1285 	if (!err)
1286 		pr_info(MOD_DESC "\n");
1287 
1288 	return err;
1289 }
1290 module_init(can_dev_init);
1291 
can_dev_exit(void)1292 static __exit void can_dev_exit(void)
1293 {
1294 	rtnl_link_unregister(&can_link_ops);
1295 
1296 	can_led_notifier_exit();
1297 }
1298 module_exit(can_dev_exit);
1299 
1300 MODULE_ALIAS_RTNL_LINK("can");
1301