1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
22
23 /*
24 * pidlists linger the following amount before being destroyed. The goal
25 * is avoiding frequent destruction in the middle of consecutive read calls
26 * Expiring in the middle is a performance problem not a correctness one.
27 * 1 sec should be enough.
28 */
29 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
30
31 /* Controllers blocked by the commandline in v1 */
32 static u16 cgroup_no_v1_mask;
33
34 /* disable named v1 mounts */
35 static bool cgroup_no_v1_named;
36
37 /*
38 * pidlist destructions need to be flushed on cgroup destruction. Use a
39 * separate workqueue as flush domain.
40 */
41 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
42
43 /*
44 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
45 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
46 */
47 static DEFINE_SPINLOCK(release_agent_path_lock);
48
cgroup1_ssid_disabled(int ssid)49 bool cgroup1_ssid_disabled(int ssid)
50 {
51 return cgroup_no_v1_mask & (1 << ssid);
52 }
53
54 /**
55 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
56 * @from: attach to all cgroups of a given task
57 * @tsk: the task to be attached
58 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)59 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
60 {
61 struct cgroup_root *root;
62 int retval = 0;
63
64 mutex_lock(&cgroup_mutex);
65 percpu_down_write(&cgroup_threadgroup_rwsem);
66 for_each_root(root) {
67 struct cgroup *from_cgrp;
68
69 if (root == &cgrp_dfl_root)
70 continue;
71
72 spin_lock_irq(&css_set_lock);
73 from_cgrp = task_cgroup_from_root(from, root);
74 spin_unlock_irq(&css_set_lock);
75
76 retval = cgroup_attach_task(from_cgrp, tsk, false);
77 if (retval)
78 break;
79 }
80 percpu_up_write(&cgroup_threadgroup_rwsem);
81 mutex_unlock(&cgroup_mutex);
82
83 return retval;
84 }
85 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
86
87 /**
88 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
89 * @to: cgroup to which the tasks will be moved
90 * @from: cgroup in which the tasks currently reside
91 *
92 * Locking rules between cgroup_post_fork() and the migration path
93 * guarantee that, if a task is forking while being migrated, the new child
94 * is guaranteed to be either visible in the source cgroup after the
95 * parent's migration is complete or put into the target cgroup. No task
96 * can slip out of migration through forking.
97 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)98 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
99 {
100 DEFINE_CGROUP_MGCTX(mgctx);
101 struct cgrp_cset_link *link;
102 struct css_task_iter it;
103 struct task_struct *task;
104 int ret;
105
106 if (cgroup_on_dfl(to))
107 return -EINVAL;
108
109 ret = cgroup_migrate_vet_dst(to);
110 if (ret)
111 return ret;
112
113 mutex_lock(&cgroup_mutex);
114
115 percpu_down_write(&cgroup_threadgroup_rwsem);
116
117 /* all tasks in @from are being moved, all csets are source */
118 spin_lock_irq(&css_set_lock);
119 list_for_each_entry(link, &from->cset_links, cset_link)
120 cgroup_migrate_add_src(link->cset, to, &mgctx);
121 spin_unlock_irq(&css_set_lock);
122
123 ret = cgroup_migrate_prepare_dst(&mgctx);
124 if (ret)
125 goto out_err;
126
127 /*
128 * Migrate tasks one-by-one until @from is empty. This fails iff
129 * ->can_attach() fails.
130 */
131 do {
132 css_task_iter_start(&from->self, 0, &it);
133
134 do {
135 task = css_task_iter_next(&it);
136 } while (task && (task->flags & PF_EXITING));
137
138 if (task)
139 get_task_struct(task);
140 css_task_iter_end(&it);
141
142 if (task) {
143 ret = cgroup_migrate(task, false, &mgctx);
144 if (!ret)
145 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
146 put_task_struct(task);
147 }
148 } while (task && !ret);
149 out_err:
150 cgroup_migrate_finish(&mgctx);
151 percpu_up_write(&cgroup_threadgroup_rwsem);
152 mutex_unlock(&cgroup_mutex);
153 return ret;
154 }
155
156 /*
157 * Stuff for reading the 'tasks'/'procs' files.
158 *
159 * Reading this file can return large amounts of data if a cgroup has
160 * *lots* of attached tasks. So it may need several calls to read(),
161 * but we cannot guarantee that the information we produce is correct
162 * unless we produce it entirely atomically.
163 *
164 */
165
166 /* which pidlist file are we talking about? */
167 enum cgroup_filetype {
168 CGROUP_FILE_PROCS,
169 CGROUP_FILE_TASKS,
170 };
171
172 /*
173 * A pidlist is a list of pids that virtually represents the contents of one
174 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
175 * a pair (one each for procs, tasks) for each pid namespace that's relevant
176 * to the cgroup.
177 */
178 struct cgroup_pidlist {
179 /*
180 * used to find which pidlist is wanted. doesn't change as long as
181 * this particular list stays in the list.
182 */
183 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
184 /* array of xids */
185 pid_t *list;
186 /* how many elements the above list has */
187 int length;
188 /* each of these stored in a list by its cgroup */
189 struct list_head links;
190 /* pointer to the cgroup we belong to, for list removal purposes */
191 struct cgroup *owner;
192 /* for delayed destruction */
193 struct delayed_work destroy_dwork;
194 };
195
196 /*
197 * Used to destroy all pidlists lingering waiting for destroy timer. None
198 * should be left afterwards.
199 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)200 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
201 {
202 struct cgroup_pidlist *l, *tmp_l;
203
204 mutex_lock(&cgrp->pidlist_mutex);
205 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
206 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
207 mutex_unlock(&cgrp->pidlist_mutex);
208
209 flush_workqueue(cgroup_pidlist_destroy_wq);
210 BUG_ON(!list_empty(&cgrp->pidlists));
211 }
212
cgroup_pidlist_destroy_work_fn(struct work_struct * work)213 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
214 {
215 struct delayed_work *dwork = to_delayed_work(work);
216 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
217 destroy_dwork);
218 struct cgroup_pidlist *tofree = NULL;
219
220 mutex_lock(&l->owner->pidlist_mutex);
221
222 /*
223 * Destroy iff we didn't get queued again. The state won't change
224 * as destroy_dwork can only be queued while locked.
225 */
226 if (!delayed_work_pending(dwork)) {
227 list_del(&l->links);
228 kvfree(l->list);
229 put_pid_ns(l->key.ns);
230 tofree = l;
231 }
232
233 mutex_unlock(&l->owner->pidlist_mutex);
234 kfree(tofree);
235 }
236
237 /*
238 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
239 * Returns the number of unique elements.
240 */
pidlist_uniq(pid_t * list,int length)241 static int pidlist_uniq(pid_t *list, int length)
242 {
243 int src, dest = 1;
244
245 /*
246 * we presume the 0th element is unique, so i starts at 1. trivial
247 * edge cases first; no work needs to be done for either
248 */
249 if (length == 0 || length == 1)
250 return length;
251 /* src and dest walk down the list; dest counts unique elements */
252 for (src = 1; src < length; src++) {
253 /* find next unique element */
254 while (list[src] == list[src-1]) {
255 src++;
256 if (src == length)
257 goto after;
258 }
259 /* dest always points to where the next unique element goes */
260 list[dest] = list[src];
261 dest++;
262 }
263 after:
264 return dest;
265 }
266
267 /*
268 * The two pid files - task and cgroup.procs - guaranteed that the result
269 * is sorted, which forced this whole pidlist fiasco. As pid order is
270 * different per namespace, each namespace needs differently sorted list,
271 * making it impossible to use, for example, single rbtree of member tasks
272 * sorted by task pointer. As pidlists can be fairly large, allocating one
273 * per open file is dangerous, so cgroup had to implement shared pool of
274 * pidlists keyed by cgroup and namespace.
275 */
cmppid(const void * a,const void * b)276 static int cmppid(const void *a, const void *b)
277 {
278 return *(pid_t *)a - *(pid_t *)b;
279 }
280
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)281 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
282 enum cgroup_filetype type)
283 {
284 struct cgroup_pidlist *l;
285 /* don't need task_nsproxy() if we're looking at ourself */
286 struct pid_namespace *ns = task_active_pid_ns(current);
287
288 lockdep_assert_held(&cgrp->pidlist_mutex);
289
290 list_for_each_entry(l, &cgrp->pidlists, links)
291 if (l->key.type == type && l->key.ns == ns)
292 return l;
293 return NULL;
294 }
295
296 /*
297 * find the appropriate pidlist for our purpose (given procs vs tasks)
298 * returns with the lock on that pidlist already held, and takes care
299 * of the use count, or returns NULL with no locks held if we're out of
300 * memory.
301 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)302 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
303 enum cgroup_filetype type)
304 {
305 struct cgroup_pidlist *l;
306
307 lockdep_assert_held(&cgrp->pidlist_mutex);
308
309 l = cgroup_pidlist_find(cgrp, type);
310 if (l)
311 return l;
312
313 /* entry not found; create a new one */
314 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
315 if (!l)
316 return l;
317
318 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
319 l->key.type = type;
320 /* don't need task_nsproxy() if we're looking at ourself */
321 l->key.ns = get_pid_ns(task_active_pid_ns(current));
322 l->owner = cgrp;
323 list_add(&l->links, &cgrp->pidlists);
324 return l;
325 }
326
327 /*
328 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
329 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)330 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
331 struct cgroup_pidlist **lp)
332 {
333 pid_t *array;
334 int length;
335 int pid, n = 0; /* used for populating the array */
336 struct css_task_iter it;
337 struct task_struct *tsk;
338 struct cgroup_pidlist *l;
339
340 lockdep_assert_held(&cgrp->pidlist_mutex);
341
342 /*
343 * If cgroup gets more users after we read count, we won't have
344 * enough space - tough. This race is indistinguishable to the
345 * caller from the case that the additional cgroup users didn't
346 * show up until sometime later on.
347 */
348 length = cgroup_task_count(cgrp);
349 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
350 if (!array)
351 return -ENOMEM;
352 /* now, populate the array */
353 css_task_iter_start(&cgrp->self, 0, &it);
354 while ((tsk = css_task_iter_next(&it))) {
355 if (unlikely(n == length))
356 break;
357 /* get tgid or pid for procs or tasks file respectively */
358 if (type == CGROUP_FILE_PROCS)
359 pid = task_tgid_vnr(tsk);
360 else
361 pid = task_pid_vnr(tsk);
362 if (pid > 0) /* make sure to only use valid results */
363 array[n++] = pid;
364 }
365 css_task_iter_end(&it);
366 length = n;
367 /* now sort & (if procs) strip out duplicates */
368 sort(array, length, sizeof(pid_t), cmppid, NULL);
369 if (type == CGROUP_FILE_PROCS)
370 length = pidlist_uniq(array, length);
371
372 l = cgroup_pidlist_find_create(cgrp, type);
373 if (!l) {
374 kvfree(array);
375 return -ENOMEM;
376 }
377
378 /* store array, freeing old if necessary */
379 kvfree(l->list);
380 l->list = array;
381 l->length = length;
382 *lp = l;
383 return 0;
384 }
385
386 /*
387 * seq_file methods for the tasks/procs files. The seq_file position is the
388 * next pid to display; the seq_file iterator is a pointer to the pid
389 * in the cgroup->l->list array.
390 */
391
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)392 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
393 {
394 /*
395 * Initially we receive a position value that corresponds to
396 * one more than the last pid shown (or 0 on the first call or
397 * after a seek to the start). Use a binary-search to find the
398 * next pid to display, if any
399 */
400 struct kernfs_open_file *of = s->private;
401 struct cgroup *cgrp = seq_css(s)->cgroup;
402 struct cgroup_pidlist *l;
403 enum cgroup_filetype type = seq_cft(s)->private;
404 int index = 0, pid = *pos;
405 int *iter, ret;
406
407 mutex_lock(&cgrp->pidlist_mutex);
408
409 /*
410 * !NULL @of->priv indicates that this isn't the first start()
411 * after open. If the matching pidlist is around, we can use that.
412 * Look for it. Note that @of->priv can't be used directly. It
413 * could already have been destroyed.
414 */
415 if (of->priv)
416 of->priv = cgroup_pidlist_find(cgrp, type);
417
418 /*
419 * Either this is the first start() after open or the matching
420 * pidlist has been destroyed inbetween. Create a new one.
421 */
422 if (!of->priv) {
423 ret = pidlist_array_load(cgrp, type,
424 (struct cgroup_pidlist **)&of->priv);
425 if (ret)
426 return ERR_PTR(ret);
427 }
428 l = of->priv;
429
430 if (pid) {
431 int end = l->length;
432
433 while (index < end) {
434 int mid = (index + end) / 2;
435 if (l->list[mid] == pid) {
436 index = mid;
437 break;
438 } else if (l->list[mid] <= pid)
439 index = mid + 1;
440 else
441 end = mid;
442 }
443 }
444 /* If we're off the end of the array, we're done */
445 if (index >= l->length)
446 return NULL;
447 /* Update the abstract position to be the actual pid that we found */
448 iter = l->list + index;
449 *pos = *iter;
450 return iter;
451 }
452
cgroup_pidlist_stop(struct seq_file * s,void * v)453 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
454 {
455 struct kernfs_open_file *of = s->private;
456 struct cgroup_pidlist *l = of->priv;
457
458 if (l)
459 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
460 CGROUP_PIDLIST_DESTROY_DELAY);
461 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
462 }
463
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)464 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
465 {
466 struct kernfs_open_file *of = s->private;
467 struct cgroup_pidlist *l = of->priv;
468 pid_t *p = v;
469 pid_t *end = l->list + l->length;
470 /*
471 * Advance to the next pid in the array. If this goes off the
472 * end, we're done
473 */
474 p++;
475 if (p >= end) {
476 return NULL;
477 } else {
478 *pos = *p;
479 return p;
480 }
481 }
482
cgroup_pidlist_show(struct seq_file * s,void * v)483 static int cgroup_pidlist_show(struct seq_file *s, void *v)
484 {
485 seq_printf(s, "%d\n", *(int *)v);
486
487 return 0;
488 }
489
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
491 char *buf, size_t nbytes, loff_t off,
492 bool threadgroup)
493 {
494 struct cgroup *cgrp;
495 struct task_struct *task;
496 const struct cred *cred, *tcred;
497 ssize_t ret;
498
499 cgrp = cgroup_kn_lock_live(of->kn, false);
500 if (!cgrp)
501 return -ENODEV;
502
503 task = cgroup_procs_write_start(buf, threadgroup);
504 ret = PTR_ERR_OR_ZERO(task);
505 if (ret)
506 goto out_unlock;
507
508 /*
509 * Even if we're attaching all tasks in the thread group, we only
510 * need to check permissions on one of them.
511 */
512 cred = current_cred();
513 tcred = get_task_cred(task);
514 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
515 !uid_eq(cred->euid, tcred->uid) &&
516 !uid_eq(cred->euid, tcred->suid) &&
517 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
518 ret = -EACCES;
519 put_cred(tcred);
520 if (ret)
521 goto out_finish;
522
523 ret = cgroup_attach_task(cgrp, task, threadgroup);
524
525 out_finish:
526 cgroup_procs_write_finish(task);
527 out_unlock:
528 cgroup_kn_unlock(of->kn);
529
530 return ret ?: nbytes;
531 }
532
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
534 char *buf, size_t nbytes, loff_t off)
535 {
536 return __cgroup1_procs_write(of, buf, nbytes, off, true);
537 }
538
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
540 char *buf, size_t nbytes, loff_t off)
541 {
542 return __cgroup1_procs_write(of, buf, nbytes, off, false);
543 }
544
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
546 char *buf, size_t nbytes, loff_t off)
547 {
548 struct cgroup *cgrp;
549
550 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
551
552 cgrp = cgroup_kn_lock_live(of->kn, false);
553 if (!cgrp)
554 return -ENODEV;
555 spin_lock(&release_agent_path_lock);
556 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
557 sizeof(cgrp->root->release_agent_path));
558 spin_unlock(&release_agent_path_lock);
559 cgroup_kn_unlock(of->kn);
560 return nbytes;
561 }
562
cgroup_release_agent_show(struct seq_file * seq,void * v)563 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
564 {
565 struct cgroup *cgrp = seq_css(seq)->cgroup;
566
567 spin_lock(&release_agent_path_lock);
568 seq_puts(seq, cgrp->root->release_agent_path);
569 spin_unlock(&release_agent_path_lock);
570 seq_putc(seq, '\n');
571 return 0;
572 }
573
cgroup_sane_behavior_show(struct seq_file * seq,void * v)574 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
575 {
576 seq_puts(seq, "0\n");
577 return 0;
578 }
579
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)580 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
581 struct cftype *cft)
582 {
583 return notify_on_release(css->cgroup);
584 }
585
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)586 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
587 struct cftype *cft, u64 val)
588 {
589 if (val)
590 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
591 else
592 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
593 return 0;
594 }
595
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)596 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
597 struct cftype *cft)
598 {
599 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
600 }
601
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)602 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
603 struct cftype *cft, u64 val)
604 {
605 if (val)
606 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
607 else
608 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
609 return 0;
610 }
611
612 /* cgroup core interface files for the legacy hierarchies */
613 struct cftype cgroup1_base_files[] = {
614 {
615 .name = "cgroup.procs",
616 .seq_start = cgroup_pidlist_start,
617 .seq_next = cgroup_pidlist_next,
618 .seq_stop = cgroup_pidlist_stop,
619 .seq_show = cgroup_pidlist_show,
620 .private = CGROUP_FILE_PROCS,
621 .write = cgroup1_procs_write,
622 },
623 {
624 .name = "cgroup.clone_children",
625 .read_u64 = cgroup_clone_children_read,
626 .write_u64 = cgroup_clone_children_write,
627 },
628 {
629 .name = "cgroup.sane_behavior",
630 .flags = CFTYPE_ONLY_ON_ROOT,
631 .seq_show = cgroup_sane_behavior_show,
632 },
633 {
634 .name = "tasks",
635 .seq_start = cgroup_pidlist_start,
636 .seq_next = cgroup_pidlist_next,
637 .seq_stop = cgroup_pidlist_stop,
638 .seq_show = cgroup_pidlist_show,
639 .private = CGROUP_FILE_TASKS,
640 .write = cgroup1_tasks_write,
641 },
642 {
643 .name = "notify_on_release",
644 .read_u64 = cgroup_read_notify_on_release,
645 .write_u64 = cgroup_write_notify_on_release,
646 },
647 {
648 .name = "release_agent",
649 .flags = CFTYPE_ONLY_ON_ROOT,
650 .seq_show = cgroup_release_agent_show,
651 .write = cgroup_release_agent_write,
652 .max_write_len = PATH_MAX - 1,
653 },
654 { } /* terminate */
655 };
656
657 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)658 int proc_cgroupstats_show(struct seq_file *m, void *v)
659 {
660 struct cgroup_subsys *ss;
661 int i;
662
663 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
664 /*
665 * ideally we don't want subsystems moving around while we do this.
666 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
667 * subsys/hierarchy state.
668 */
669 mutex_lock(&cgroup_mutex);
670
671 for_each_subsys(ss, i)
672 seq_printf(m, "%s\t%d\t%d\t%d\n",
673 ss->legacy_name, ss->root->hierarchy_id,
674 atomic_read(&ss->root->nr_cgrps),
675 cgroup_ssid_enabled(i));
676
677 mutex_unlock(&cgroup_mutex);
678 return 0;
679 }
680
681 /**
682 * cgroupstats_build - build and fill cgroupstats
683 * @stats: cgroupstats to fill information into
684 * @dentry: A dentry entry belonging to the cgroup for which stats have
685 * been requested.
686 *
687 * Build and fill cgroupstats so that taskstats can export it to user
688 * space.
689 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)690 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
691 {
692 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
693 struct cgroup *cgrp;
694 struct css_task_iter it;
695 struct task_struct *tsk;
696
697 /* it should be kernfs_node belonging to cgroupfs and is a directory */
698 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
699 kernfs_type(kn) != KERNFS_DIR)
700 return -EINVAL;
701
702 mutex_lock(&cgroup_mutex);
703
704 /*
705 * We aren't being called from kernfs and there's no guarantee on
706 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
707 * @kn->priv is RCU safe. Let's do the RCU dancing.
708 */
709 rcu_read_lock();
710 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
711 if (!cgrp || cgroup_is_dead(cgrp)) {
712 rcu_read_unlock();
713 mutex_unlock(&cgroup_mutex);
714 return -ENOENT;
715 }
716 rcu_read_unlock();
717
718 css_task_iter_start(&cgrp->self, 0, &it);
719 while ((tsk = css_task_iter_next(&it))) {
720 switch (tsk->state) {
721 case TASK_RUNNING:
722 stats->nr_running++;
723 break;
724 case TASK_INTERRUPTIBLE:
725 stats->nr_sleeping++;
726 break;
727 case TASK_UNINTERRUPTIBLE:
728 stats->nr_uninterruptible++;
729 break;
730 case TASK_STOPPED:
731 stats->nr_stopped++;
732 break;
733 default:
734 if (delayacct_is_task_waiting_on_io(tsk))
735 stats->nr_io_wait++;
736 break;
737 }
738 }
739 css_task_iter_end(&it);
740
741 mutex_unlock(&cgroup_mutex);
742 return 0;
743 }
744
cgroup1_check_for_release(struct cgroup * cgrp)745 void cgroup1_check_for_release(struct cgroup *cgrp)
746 {
747 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
748 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
749 schedule_work(&cgrp->release_agent_work);
750 }
751
752 /*
753 * Notify userspace when a cgroup is released, by running the
754 * configured release agent with the name of the cgroup (path
755 * relative to the root of cgroup file system) as the argument.
756 *
757 * Most likely, this user command will try to rmdir this cgroup.
758 *
759 * This races with the possibility that some other task will be
760 * attached to this cgroup before it is removed, or that some other
761 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
762 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
763 * unused, and this cgroup will be reprieved from its death sentence,
764 * to continue to serve a useful existence. Next time it's released,
765 * we will get notified again, if it still has 'notify_on_release' set.
766 *
767 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
768 * means only wait until the task is successfully execve()'d. The
769 * separate release agent task is forked by call_usermodehelper(),
770 * then control in this thread returns here, without waiting for the
771 * release agent task. We don't bother to wait because the caller of
772 * this routine has no use for the exit status of the release agent
773 * task, so no sense holding our caller up for that.
774 */
cgroup1_release_agent(struct work_struct * work)775 void cgroup1_release_agent(struct work_struct *work)
776 {
777 struct cgroup *cgrp =
778 container_of(work, struct cgroup, release_agent_work);
779 char *pathbuf = NULL, *agentbuf = NULL;
780 char *argv[3], *envp[3];
781 int ret;
782
783 mutex_lock(&cgroup_mutex);
784
785 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
786 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
787 if (!pathbuf || !agentbuf)
788 goto out;
789
790 spin_lock_irq(&css_set_lock);
791 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
792 spin_unlock_irq(&css_set_lock);
793 if (ret < 0 || ret >= PATH_MAX)
794 goto out;
795
796 argv[0] = agentbuf;
797 argv[1] = pathbuf;
798 argv[2] = NULL;
799
800 /* minimal command environment */
801 envp[0] = "HOME=/";
802 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
803 envp[2] = NULL;
804
805 mutex_unlock(&cgroup_mutex);
806 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
807 goto out_free;
808 out:
809 mutex_unlock(&cgroup_mutex);
810 out_free:
811 kfree(agentbuf);
812 kfree(pathbuf);
813 }
814
815 /*
816 * cgroup_rename - Only allow simple rename of directories in place.
817 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)818 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
819 const char *new_name_str)
820 {
821 struct cgroup *cgrp = kn->priv;
822 int ret;
823
824 if (kernfs_type(kn) != KERNFS_DIR)
825 return -ENOTDIR;
826 if (kn->parent != new_parent)
827 return -EIO;
828
829 /*
830 * We're gonna grab cgroup_mutex which nests outside kernfs
831 * active_ref. kernfs_rename() doesn't require active_ref
832 * protection. Break them before grabbing cgroup_mutex.
833 */
834 kernfs_break_active_protection(new_parent);
835 kernfs_break_active_protection(kn);
836
837 mutex_lock(&cgroup_mutex);
838
839 ret = kernfs_rename(kn, new_parent, new_name_str);
840 if (!ret)
841 TRACE_CGROUP_PATH(rename, cgrp);
842
843 mutex_unlock(&cgroup_mutex);
844
845 kernfs_unbreak_active_protection(kn);
846 kernfs_unbreak_active_protection(new_parent);
847 return ret;
848 }
849
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)850 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
851 {
852 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
853 struct cgroup_subsys *ss;
854 int ssid;
855
856 for_each_subsys(ss, ssid)
857 if (root->subsys_mask & (1 << ssid))
858 seq_show_option(seq, ss->legacy_name, NULL);
859 if (root->flags & CGRP_ROOT_NOPREFIX)
860 seq_puts(seq, ",noprefix");
861 if (root->flags & CGRP_ROOT_XATTR)
862 seq_puts(seq, ",xattr");
863 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
864 seq_puts(seq, ",cpuset_v2_mode");
865
866 spin_lock(&release_agent_path_lock);
867 if (strlen(root->release_agent_path))
868 seq_show_option(seq, "release_agent",
869 root->release_agent_path);
870 spin_unlock(&release_agent_path_lock);
871
872 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
873 seq_puts(seq, ",clone_children");
874 if (strlen(root->name))
875 seq_show_option(seq, "name", root->name);
876 return 0;
877 }
878
879 enum cgroup1_param {
880 Opt_all,
881 Opt_clone_children,
882 Opt_cpuset_v2_mode,
883 Opt_name,
884 Opt_none,
885 Opt_noprefix,
886 Opt_release_agent,
887 Opt_xattr,
888 };
889
890 static const struct fs_parameter_spec cgroup1_param_specs[] = {
891 fsparam_flag ("all", Opt_all),
892 fsparam_flag ("clone_children", Opt_clone_children),
893 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
894 fsparam_string("name", Opt_name),
895 fsparam_flag ("none", Opt_none),
896 fsparam_flag ("noprefix", Opt_noprefix),
897 fsparam_string("release_agent", Opt_release_agent),
898 fsparam_flag ("xattr", Opt_xattr),
899 {}
900 };
901
902 const struct fs_parameter_description cgroup1_fs_parameters = {
903 .name = "cgroup1",
904 .specs = cgroup1_param_specs,
905 };
906
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)907 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
908 {
909 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
910 struct cgroup_subsys *ss;
911 struct fs_parse_result result;
912 int opt, i;
913
914 opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
915 if (opt == -ENOPARAM) {
916 if (strcmp(param->key, "source") == 0) {
917 fc->source = param->string;
918 param->string = NULL;
919 return 0;
920 }
921 for_each_subsys(ss, i) {
922 if (strcmp(param->key, ss->legacy_name))
923 continue;
924 ctx->subsys_mask |= (1 << i);
925 return 0;
926 }
927 return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
928 }
929 if (opt < 0)
930 return opt;
931
932 switch (opt) {
933 case Opt_none:
934 /* Explicitly have no subsystems */
935 ctx->none = true;
936 break;
937 case Opt_all:
938 ctx->all_ss = true;
939 break;
940 case Opt_noprefix:
941 ctx->flags |= CGRP_ROOT_NOPREFIX;
942 break;
943 case Opt_clone_children:
944 ctx->cpuset_clone_children = true;
945 break;
946 case Opt_cpuset_v2_mode:
947 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
948 break;
949 case Opt_xattr:
950 ctx->flags |= CGRP_ROOT_XATTR;
951 break;
952 case Opt_release_agent:
953 /* Specifying two release agents is forbidden */
954 if (ctx->release_agent)
955 return cg_invalf(fc, "cgroup1: release_agent respecified");
956 ctx->release_agent = param->string;
957 param->string = NULL;
958 break;
959 case Opt_name:
960 /* blocked by boot param? */
961 if (cgroup_no_v1_named)
962 return -ENOENT;
963 /* Can't specify an empty name */
964 if (!param->size)
965 return cg_invalf(fc, "cgroup1: Empty name");
966 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
967 return cg_invalf(fc, "cgroup1: Name too long");
968 /* Must match [\w.-]+ */
969 for (i = 0; i < param->size; i++) {
970 char c = param->string[i];
971 if (isalnum(c))
972 continue;
973 if ((c == '.') || (c == '-') || (c == '_'))
974 continue;
975 return cg_invalf(fc, "cgroup1: Invalid name");
976 }
977 /* Specifying two names is forbidden */
978 if (ctx->name)
979 return cg_invalf(fc, "cgroup1: name respecified");
980 ctx->name = param->string;
981 param->string = NULL;
982 break;
983 }
984 return 0;
985 }
986
check_cgroupfs_options(struct fs_context * fc)987 static int check_cgroupfs_options(struct fs_context *fc)
988 {
989 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
990 u16 mask = U16_MAX;
991 u16 enabled = 0;
992 struct cgroup_subsys *ss;
993 int i;
994
995 #ifdef CONFIG_CPUSETS
996 mask = ~((u16)1 << cpuset_cgrp_id);
997 #endif
998 for_each_subsys(ss, i)
999 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1000 enabled |= 1 << i;
1001
1002 ctx->subsys_mask &= enabled;
1003
1004 /*
1005 * In absense of 'none', 'name=' or subsystem name options,
1006 * let's default to 'all'.
1007 */
1008 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1009 ctx->all_ss = true;
1010
1011 if (ctx->all_ss) {
1012 /* Mutually exclusive option 'all' + subsystem name */
1013 if (ctx->subsys_mask)
1014 return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1015 /* 'all' => select all the subsystems */
1016 ctx->subsys_mask = enabled;
1017 }
1018
1019 /*
1020 * We either have to specify by name or by subsystems. (So all
1021 * empty hierarchies must have a name).
1022 */
1023 if (!ctx->subsys_mask && !ctx->name)
1024 return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1025
1026 /*
1027 * Option noprefix was introduced just for backward compatibility
1028 * with the old cpuset, so we allow noprefix only if mounting just
1029 * the cpuset subsystem.
1030 */
1031 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1032 return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1033
1034 /* Can't specify "none" and some subsystems */
1035 if (ctx->subsys_mask && ctx->none)
1036 return cg_invalf(fc, "cgroup1: none used incorrectly");
1037
1038 return 0;
1039 }
1040
cgroup1_reconfigure(struct fs_context * fc)1041 int cgroup1_reconfigure(struct fs_context *fc)
1042 {
1043 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1044 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1045 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1046 int ret = 0;
1047 u16 added_mask, removed_mask;
1048
1049 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1050
1051 /* See what subsystems are wanted */
1052 ret = check_cgroupfs_options(fc);
1053 if (ret)
1054 goto out_unlock;
1055
1056 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1057 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1058 task_tgid_nr(current), current->comm);
1059
1060 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1061 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1062
1063 /* Don't allow flags or name to change at remount */
1064 if ((ctx->flags ^ root->flags) ||
1065 (ctx->name && strcmp(ctx->name, root->name))) {
1066 cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1067 ctx->flags, ctx->name ?: "", root->flags, root->name);
1068 ret = -EINVAL;
1069 goto out_unlock;
1070 }
1071
1072 /* remounting is not allowed for populated hierarchies */
1073 if (!list_empty(&root->cgrp.self.children)) {
1074 ret = -EBUSY;
1075 goto out_unlock;
1076 }
1077
1078 ret = rebind_subsystems(root, added_mask);
1079 if (ret)
1080 goto out_unlock;
1081
1082 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1083
1084 if (ctx->release_agent) {
1085 spin_lock(&release_agent_path_lock);
1086 strcpy(root->release_agent_path, ctx->release_agent);
1087 spin_unlock(&release_agent_path_lock);
1088 }
1089
1090 trace_cgroup_remount(root);
1091
1092 out_unlock:
1093 mutex_unlock(&cgroup_mutex);
1094 return ret;
1095 }
1096
1097 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1098 .rename = cgroup1_rename,
1099 .show_options = cgroup1_show_options,
1100 .mkdir = cgroup_mkdir,
1101 .rmdir = cgroup_rmdir,
1102 .show_path = cgroup_show_path,
1103 };
1104
1105 /*
1106 * The guts of cgroup1 mount - find or create cgroup_root to use.
1107 * Called with cgroup_mutex held; returns 0 on success, -E... on
1108 * error and positive - in case when the candidate is busy dying.
1109 * On success it stashes a reference to cgroup_root into given
1110 * cgroup_fs_context; that reference is *NOT* counting towards the
1111 * cgroup_root refcount.
1112 */
cgroup1_root_to_use(struct fs_context * fc)1113 static int cgroup1_root_to_use(struct fs_context *fc)
1114 {
1115 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1116 struct cgroup_root *root;
1117 struct cgroup_subsys *ss;
1118 int i, ret;
1119
1120 /* First find the desired set of subsystems */
1121 ret = check_cgroupfs_options(fc);
1122 if (ret)
1123 return ret;
1124
1125 /*
1126 * Destruction of cgroup root is asynchronous, so subsystems may
1127 * still be dying after the previous unmount. Let's drain the
1128 * dying subsystems. We just need to ensure that the ones
1129 * unmounted previously finish dying and don't care about new ones
1130 * starting. Testing ref liveliness is good enough.
1131 */
1132 for_each_subsys(ss, i) {
1133 if (!(ctx->subsys_mask & (1 << i)) ||
1134 ss->root == &cgrp_dfl_root)
1135 continue;
1136
1137 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1138 return 1; /* restart */
1139 cgroup_put(&ss->root->cgrp);
1140 }
1141
1142 for_each_root(root) {
1143 bool name_match = false;
1144
1145 if (root == &cgrp_dfl_root)
1146 continue;
1147
1148 /*
1149 * If we asked for a name then it must match. Also, if
1150 * name matches but sybsys_mask doesn't, we should fail.
1151 * Remember whether name matched.
1152 */
1153 if (ctx->name) {
1154 if (strcmp(ctx->name, root->name))
1155 continue;
1156 name_match = true;
1157 }
1158
1159 /*
1160 * If we asked for subsystems (or explicitly for no
1161 * subsystems) then they must match.
1162 */
1163 if ((ctx->subsys_mask || ctx->none) &&
1164 (ctx->subsys_mask != root->subsys_mask)) {
1165 if (!name_match)
1166 continue;
1167 return -EBUSY;
1168 }
1169
1170 if (root->flags ^ ctx->flags)
1171 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1172
1173 ctx->root = root;
1174 return 0;
1175 }
1176
1177 /*
1178 * No such thing, create a new one. name= matching without subsys
1179 * specification is allowed for already existing hierarchies but we
1180 * can't create new one without subsys specification.
1181 */
1182 if (!ctx->subsys_mask && !ctx->none)
1183 return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1184
1185 /* Hierarchies may only be created in the initial cgroup namespace. */
1186 if (ctx->ns != &init_cgroup_ns)
1187 return -EPERM;
1188
1189 root = kzalloc(sizeof(*root), GFP_KERNEL);
1190 if (!root)
1191 return -ENOMEM;
1192
1193 ctx->root = root;
1194 init_cgroup_root(ctx);
1195
1196 ret = cgroup_setup_root(root, ctx->subsys_mask);
1197 if (ret)
1198 cgroup_free_root(root);
1199 return ret;
1200 }
1201
cgroup1_get_tree(struct fs_context * fc)1202 int cgroup1_get_tree(struct fs_context *fc)
1203 {
1204 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1205 int ret;
1206
1207 /* Check if the caller has permission to mount. */
1208 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1209 return -EPERM;
1210
1211 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1212
1213 ret = cgroup1_root_to_use(fc);
1214 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1215 ret = 1; /* restart */
1216
1217 mutex_unlock(&cgroup_mutex);
1218
1219 if (!ret)
1220 ret = cgroup_do_get_tree(fc);
1221
1222 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1223 struct super_block *sb = fc->root->d_sb;
1224 dput(fc->root);
1225 deactivate_locked_super(sb);
1226 ret = 1;
1227 }
1228
1229 if (unlikely(ret > 0)) {
1230 msleep(10);
1231 return restart_syscall();
1232 }
1233 return ret;
1234 }
1235
cgroup1_wq_init(void)1236 static int __init cgroup1_wq_init(void)
1237 {
1238 /*
1239 * Used to destroy pidlists and separate to serve as flush domain.
1240 * Cap @max_active to 1 too.
1241 */
1242 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1243 0, 1);
1244 BUG_ON(!cgroup_pidlist_destroy_wq);
1245 return 0;
1246 }
1247 core_initcall(cgroup1_wq_init);
1248
cgroup_no_v1(char * str)1249 static int __init cgroup_no_v1(char *str)
1250 {
1251 struct cgroup_subsys *ss;
1252 char *token;
1253 int i;
1254
1255 while ((token = strsep(&str, ",")) != NULL) {
1256 if (!*token)
1257 continue;
1258
1259 if (!strcmp(token, "all")) {
1260 cgroup_no_v1_mask = U16_MAX;
1261 continue;
1262 }
1263
1264 if (!strcmp(token, "named")) {
1265 cgroup_no_v1_named = true;
1266 continue;
1267 }
1268
1269 for_each_subsys(ss, i) {
1270 if (strcmp(token, ss->name) &&
1271 strcmp(token, ss->legacy_name))
1272 continue;
1273
1274 cgroup_no_v1_mask |= 1 << i;
1275 }
1276 }
1277 return 1;
1278 }
1279 __setup("cgroup_no_v1=", cgroup_no_v1);
1280