1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Front panel driver for Linux
4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5 * Copyright (C) 2016-2017 Glider bvba
6 *
7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
8 * connected to a parallel printer port.
9 *
10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
11 * serial module compatible with Samsung's KS0074. The pins may be connected in
12 * any combination, everything is programmable.
13 *
14 * The keypad consists in a matrix of push buttons connecting input pins to
15 * data output pins or to the ground. The combinations have to be hard-coded
16 * in the driver, though several profiles exist and adding new ones is easy.
17 *
18 * Several profiles are provided for commonly found LCD+keypad modules on the
19 * market, such as those found in Nexcom's appliances.
20 *
21 * FIXME:
22 * - the initialization/deinitialization process is very dirty and should
23 * be rewritten. It may even be buggy.
24 *
25 * TODO:
26 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
27 * - make the LCD a part of a virtual screen of Vx*Vy
28 * - make the inputs list smp-safe
29 * - change the keyboard to a double mapping : signals -> key_id -> values
30 * so that applications can change values without knowing signals
31 *
32 */
33
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36 #include <linux/module.h>
37
38 #include <linux/types.h>
39 #include <linux/errno.h>
40 #include <linux/signal.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/miscdevice.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/fcntl.h>
48 #include <linux/init.h>
49 #include <linux/delay.h>
50 #include <linux/kernel.h>
51 #include <linux/ctype.h>
52 #include <linux/parport.h>
53 #include <linux/list.h>
54
55 #include <linux/io.h>
56 #include <linux/uaccess.h>
57
58 #include "charlcd.h"
59
60 #define KEYPAD_MINOR 185
61
62 #define LCD_MAXBYTES 256 /* max burst write */
63
64 #define KEYPAD_BUFFER 64
65
66 /* poll the keyboard this every second */
67 #define INPUT_POLL_TIME (HZ / 50)
68 /* a key starts to repeat after this times INPUT_POLL_TIME */
69 #define KEYPAD_REP_START (10)
70 /* a key repeats this times INPUT_POLL_TIME */
71 #define KEYPAD_REP_DELAY (2)
72
73 /* converts an r_str() input to an active high, bits string : 000BAOSE */
74 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
75
76 #define PNL_PBUSY 0x80 /* inverted input, active low */
77 #define PNL_PACK 0x40 /* direct input, active low */
78 #define PNL_POUTPA 0x20 /* direct input, active high */
79 #define PNL_PSELECD 0x10 /* direct input, active high */
80 #define PNL_PERRORP 0x08 /* direct input, active low */
81
82 #define PNL_PBIDIR 0x20 /* bi-directional ports */
83 /* high to read data in or-ed with data out */
84 #define PNL_PINTEN 0x10
85 #define PNL_PSELECP 0x08 /* inverted output, active low */
86 #define PNL_PINITP 0x04 /* direct output, active low */
87 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
88 #define PNL_PSTROBE 0x01 /* inverted output */
89
90 #define PNL_PD0 0x01
91 #define PNL_PD1 0x02
92 #define PNL_PD2 0x04
93 #define PNL_PD3 0x08
94 #define PNL_PD4 0x10
95 #define PNL_PD5 0x20
96 #define PNL_PD6 0x40
97 #define PNL_PD7 0x80
98
99 #define PIN_NONE 0
100 #define PIN_STROBE 1
101 #define PIN_D0 2
102 #define PIN_D1 3
103 #define PIN_D2 4
104 #define PIN_D3 5
105 #define PIN_D4 6
106 #define PIN_D5 7
107 #define PIN_D6 8
108 #define PIN_D7 9
109 #define PIN_AUTOLF 14
110 #define PIN_INITP 16
111 #define PIN_SELECP 17
112 #define PIN_NOT_SET 127
113
114 #define NOT_SET -1
115
116 /* macros to simplify use of the parallel port */
117 #define r_ctr(x) (parport_read_control((x)->port))
118 #define r_dtr(x) (parport_read_data((x)->port))
119 #define r_str(x) (parport_read_status((x)->port))
120 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
121 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
122
123 /* this defines which bits are to be used and which ones to be ignored */
124 /* logical or of the output bits involved in the scan matrix */
125 static __u8 scan_mask_o;
126 /* logical or of the input bits involved in the scan matrix */
127 static __u8 scan_mask_i;
128
129 enum input_type {
130 INPUT_TYPE_STD,
131 INPUT_TYPE_KBD,
132 };
133
134 enum input_state {
135 INPUT_ST_LOW,
136 INPUT_ST_RISING,
137 INPUT_ST_HIGH,
138 INPUT_ST_FALLING,
139 };
140
141 struct logical_input {
142 struct list_head list;
143 __u64 mask;
144 __u64 value;
145 enum input_type type;
146 enum input_state state;
147 __u8 rise_time, fall_time;
148 __u8 rise_timer, fall_timer, high_timer;
149
150 union {
151 struct { /* valid when type == INPUT_TYPE_STD */
152 void (*press_fct)(int);
153 void (*release_fct)(int);
154 int press_data;
155 int release_data;
156 } std;
157 struct { /* valid when type == INPUT_TYPE_KBD */
158 char press_str[sizeof(void *) + sizeof(int)] __nonstring;
159 char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
160 char release_str[sizeof(void *) + sizeof(int)] __nonstring;
161 } kbd;
162 } u;
163 };
164
165 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
166
167 /* physical contacts history
168 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
169 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
170 * corresponds to the ground.
171 * Within each group, bits are stored in the same order as read on the port :
172 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
173 * So, each __u64 is represented like this :
174 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
175 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
176 */
177
178 /* what has just been read from the I/O ports */
179 static __u64 phys_read;
180 /* previous phys_read */
181 static __u64 phys_read_prev;
182 /* stabilized phys_read (phys_read|phys_read_prev) */
183 static __u64 phys_curr;
184 /* previous phys_curr */
185 static __u64 phys_prev;
186 /* 0 means that at least one logical signal needs be computed */
187 static char inputs_stable;
188
189 /* these variables are specific to the keypad */
190 static struct {
191 bool enabled;
192 } keypad;
193
194 static char keypad_buffer[KEYPAD_BUFFER];
195 static int keypad_buflen;
196 static int keypad_start;
197 static char keypressed;
198 static wait_queue_head_t keypad_read_wait;
199
200 /* lcd-specific variables */
201 static struct {
202 bool enabled;
203 bool initialized;
204
205 int charset;
206 int proto;
207
208 /* TODO: use union here? */
209 struct {
210 int e;
211 int rs;
212 int rw;
213 int cl;
214 int da;
215 int bl;
216 } pins;
217
218 struct charlcd *charlcd;
219 } lcd;
220
221 /* Needed only for init */
222 static int selected_lcd_type = NOT_SET;
223
224 /*
225 * Bit masks to convert LCD signals to parallel port outputs.
226 * _d_ are values for data port, _c_ are for control port.
227 * [0] = signal OFF, [1] = signal ON, [2] = mask
228 */
229 #define BIT_CLR 0
230 #define BIT_SET 1
231 #define BIT_MSK 2
232 #define BIT_STATES 3
233 /*
234 * one entry for each bit on the LCD
235 */
236 #define LCD_BIT_E 0
237 #define LCD_BIT_RS 1
238 #define LCD_BIT_RW 2
239 #define LCD_BIT_BL 3
240 #define LCD_BIT_CL 4
241 #define LCD_BIT_DA 5
242 #define LCD_BITS 6
243
244 /*
245 * each bit can be either connected to a DATA or CTRL port
246 */
247 #define LCD_PORT_C 0
248 #define LCD_PORT_D 1
249 #define LCD_PORTS 2
250
251 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
252
253 /*
254 * LCD protocols
255 */
256 #define LCD_PROTO_PARALLEL 0
257 #define LCD_PROTO_SERIAL 1
258 #define LCD_PROTO_TI_DA8XX_LCD 2
259
260 /*
261 * LCD character sets
262 */
263 #define LCD_CHARSET_NORMAL 0
264 #define LCD_CHARSET_KS0074 1
265
266 /*
267 * LCD types
268 */
269 #define LCD_TYPE_NONE 0
270 #define LCD_TYPE_CUSTOM 1
271 #define LCD_TYPE_OLD 2
272 #define LCD_TYPE_KS0074 3
273 #define LCD_TYPE_HANTRONIX 4
274 #define LCD_TYPE_NEXCOM 5
275
276 /*
277 * keypad types
278 */
279 #define KEYPAD_TYPE_NONE 0
280 #define KEYPAD_TYPE_OLD 1
281 #define KEYPAD_TYPE_NEW 2
282 #define KEYPAD_TYPE_NEXCOM 3
283
284 /*
285 * panel profiles
286 */
287 #define PANEL_PROFILE_CUSTOM 0
288 #define PANEL_PROFILE_OLD 1
289 #define PANEL_PROFILE_NEW 2
290 #define PANEL_PROFILE_HANTRONIX 3
291 #define PANEL_PROFILE_NEXCOM 4
292 #define PANEL_PROFILE_LARGE 5
293
294 /*
295 * Construct custom config from the kernel's configuration
296 */
297 #define DEFAULT_PARPORT 0
298 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
299 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
300 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
301 #define DEFAULT_LCD_HEIGHT 2
302 #define DEFAULT_LCD_WIDTH 40
303 #define DEFAULT_LCD_BWIDTH 40
304 #define DEFAULT_LCD_HWIDTH 64
305 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
306 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
307
308 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
309 #define DEFAULT_LCD_PIN_RS PIN_SELECP
310 #define DEFAULT_LCD_PIN_RW PIN_INITP
311 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
312 #define DEFAULT_LCD_PIN_SDA PIN_D0
313 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
314
315 #ifdef CONFIG_PANEL_PARPORT
316 #undef DEFAULT_PARPORT
317 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
318 #endif
319
320 #ifdef CONFIG_PANEL_PROFILE
321 #undef DEFAULT_PROFILE
322 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
323 #endif
324
325 #if DEFAULT_PROFILE == 0 /* custom */
326 #ifdef CONFIG_PANEL_KEYPAD
327 #undef DEFAULT_KEYPAD_TYPE
328 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
329 #endif
330
331 #ifdef CONFIG_PANEL_LCD
332 #undef DEFAULT_LCD_TYPE
333 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
334 #endif
335
336 #ifdef CONFIG_PANEL_LCD_HEIGHT
337 #undef DEFAULT_LCD_HEIGHT
338 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
339 #endif
340
341 #ifdef CONFIG_PANEL_LCD_WIDTH
342 #undef DEFAULT_LCD_WIDTH
343 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
344 #endif
345
346 #ifdef CONFIG_PANEL_LCD_BWIDTH
347 #undef DEFAULT_LCD_BWIDTH
348 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
349 #endif
350
351 #ifdef CONFIG_PANEL_LCD_HWIDTH
352 #undef DEFAULT_LCD_HWIDTH
353 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
354 #endif
355
356 #ifdef CONFIG_PANEL_LCD_CHARSET
357 #undef DEFAULT_LCD_CHARSET
358 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
359 #endif
360
361 #ifdef CONFIG_PANEL_LCD_PROTO
362 #undef DEFAULT_LCD_PROTO
363 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
364 #endif
365
366 #ifdef CONFIG_PANEL_LCD_PIN_E
367 #undef DEFAULT_LCD_PIN_E
368 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
369 #endif
370
371 #ifdef CONFIG_PANEL_LCD_PIN_RS
372 #undef DEFAULT_LCD_PIN_RS
373 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
374 #endif
375
376 #ifdef CONFIG_PANEL_LCD_PIN_RW
377 #undef DEFAULT_LCD_PIN_RW
378 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
379 #endif
380
381 #ifdef CONFIG_PANEL_LCD_PIN_SCL
382 #undef DEFAULT_LCD_PIN_SCL
383 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
384 #endif
385
386 #ifdef CONFIG_PANEL_LCD_PIN_SDA
387 #undef DEFAULT_LCD_PIN_SDA
388 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
389 #endif
390
391 #ifdef CONFIG_PANEL_LCD_PIN_BL
392 #undef DEFAULT_LCD_PIN_BL
393 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
394 #endif
395
396 #endif /* DEFAULT_PROFILE == 0 */
397
398 /* global variables */
399
400 /* Device single-open policy control */
401 static atomic_t keypad_available = ATOMIC_INIT(1);
402
403 static struct pardevice *pprt;
404
405 static int keypad_initialized;
406
407 static DEFINE_SPINLOCK(pprt_lock);
408 static struct timer_list scan_timer;
409
410 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
411
412 static int parport = DEFAULT_PARPORT;
413 module_param(parport, int, 0000);
414 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
415
416 static int profile = DEFAULT_PROFILE;
417 module_param(profile, int, 0000);
418 MODULE_PARM_DESC(profile,
419 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
420 "4=16x2 nexcom; default=40x2, old kp");
421
422 static int keypad_type = NOT_SET;
423 module_param(keypad_type, int, 0000);
424 MODULE_PARM_DESC(keypad_type,
425 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
426
427 static int lcd_type = NOT_SET;
428 module_param(lcd_type, int, 0000);
429 MODULE_PARM_DESC(lcd_type,
430 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
431
432 static int lcd_height = NOT_SET;
433 module_param(lcd_height, int, 0000);
434 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
435
436 static int lcd_width = NOT_SET;
437 module_param(lcd_width, int, 0000);
438 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
439
440 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
441 module_param(lcd_bwidth, int, 0000);
442 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
443
444 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
445 module_param(lcd_hwidth, int, 0000);
446 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
447
448 static int lcd_charset = NOT_SET;
449 module_param(lcd_charset, int, 0000);
450 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
451
452 static int lcd_proto = NOT_SET;
453 module_param(lcd_proto, int, 0000);
454 MODULE_PARM_DESC(lcd_proto,
455 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
456
457 /*
458 * These are the parallel port pins the LCD control signals are connected to.
459 * Set this to 0 if the signal is not used. Set it to its opposite value
460 * (negative) if the signal is negated. -MAXINT is used to indicate that the
461 * pin has not been explicitly specified.
462 *
463 * WARNING! no check will be performed about collisions with keypad !
464 */
465
466 static int lcd_e_pin = PIN_NOT_SET;
467 module_param(lcd_e_pin, int, 0000);
468 MODULE_PARM_DESC(lcd_e_pin,
469 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
470
471 static int lcd_rs_pin = PIN_NOT_SET;
472 module_param(lcd_rs_pin, int, 0000);
473 MODULE_PARM_DESC(lcd_rs_pin,
474 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
475
476 static int lcd_rw_pin = PIN_NOT_SET;
477 module_param(lcd_rw_pin, int, 0000);
478 MODULE_PARM_DESC(lcd_rw_pin,
479 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
480
481 static int lcd_cl_pin = PIN_NOT_SET;
482 module_param(lcd_cl_pin, int, 0000);
483 MODULE_PARM_DESC(lcd_cl_pin,
484 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
485
486 static int lcd_da_pin = PIN_NOT_SET;
487 module_param(lcd_da_pin, int, 0000);
488 MODULE_PARM_DESC(lcd_da_pin,
489 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
490
491 static int lcd_bl_pin = PIN_NOT_SET;
492 module_param(lcd_bl_pin, int, 0000);
493 MODULE_PARM_DESC(lcd_bl_pin,
494 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
495
496 /* Deprecated module parameters - consider not using them anymore */
497
498 static int lcd_enabled = NOT_SET;
499 module_param(lcd_enabled, int, 0000);
500 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
501
502 static int keypad_enabled = NOT_SET;
503 module_param(keypad_enabled, int, 0000);
504 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
505
506 /* for some LCD drivers (ks0074) we need a charset conversion table. */
507 static const unsigned char lcd_char_conv_ks0074[256] = {
508 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
509 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
510 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
511 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
512 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
513 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
514 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
515 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
516 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
517 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
518 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
519 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
520 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
521 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
522 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
523 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
524 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
525 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
526 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
527 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
528 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
529 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
530 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
531 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
532 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
533 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
534 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
535 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
536 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
537 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
538 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
539 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
540 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
541 };
542
543 static const char old_keypad_profile[][4][9] = {
544 {"S0", "Left\n", "Left\n", ""},
545 {"S1", "Down\n", "Down\n", ""},
546 {"S2", "Up\n", "Up\n", ""},
547 {"S3", "Right\n", "Right\n", ""},
548 {"S4", "Esc\n", "Esc\n", ""},
549 {"S5", "Ret\n", "Ret\n", ""},
550 {"", "", "", ""}
551 };
552
553 /* signals, press, repeat, release */
554 static const char new_keypad_profile[][4][9] = {
555 {"S0", "Left\n", "Left\n", ""},
556 {"S1", "Down\n", "Down\n", ""},
557 {"S2", "Up\n", "Up\n", ""},
558 {"S3", "Right\n", "Right\n", ""},
559 {"S4s5", "", "Esc\n", "Esc\n"},
560 {"s4S5", "", "Ret\n", "Ret\n"},
561 {"S4S5", "Help\n", "", ""},
562 /* add new signals above this line */
563 {"", "", "", ""}
564 };
565
566 /* signals, press, repeat, release */
567 static const char nexcom_keypad_profile[][4][9] = {
568 {"a-p-e-", "Down\n", "Down\n", ""},
569 {"a-p-E-", "Ret\n", "Ret\n", ""},
570 {"a-P-E-", "Esc\n", "Esc\n", ""},
571 {"a-P-e-", "Up\n", "Up\n", ""},
572 /* add new signals above this line */
573 {"", "", "", ""}
574 };
575
576 static const char (*keypad_profile)[4][9] = old_keypad_profile;
577
578 static DECLARE_BITMAP(bits, LCD_BITS);
579
lcd_get_bits(unsigned int port,int * val)580 static void lcd_get_bits(unsigned int port, int *val)
581 {
582 unsigned int bit, state;
583
584 for (bit = 0; bit < LCD_BITS; bit++) {
585 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
586 *val &= lcd_bits[port][bit][BIT_MSK];
587 *val |= lcd_bits[port][bit][state];
588 }
589 }
590
591 /* sets data port bits according to current signals values */
set_data_bits(void)592 static int set_data_bits(void)
593 {
594 int val;
595
596 val = r_dtr(pprt);
597 lcd_get_bits(LCD_PORT_D, &val);
598 w_dtr(pprt, val);
599 return val;
600 }
601
602 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)603 static int set_ctrl_bits(void)
604 {
605 int val;
606
607 val = r_ctr(pprt);
608 lcd_get_bits(LCD_PORT_C, &val);
609 w_ctr(pprt, val);
610 return val;
611 }
612
613 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)614 static void panel_set_bits(void)
615 {
616 set_data_bits();
617 set_ctrl_bits();
618 }
619
620 /*
621 * Converts a parallel port pin (from -25 to 25) to data and control ports
622 * masks, and data and control port bits. The signal will be considered
623 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
624 *
625 * Result will be used this way :
626 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
627 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
628 */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)629 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
630 {
631 int d_bit, c_bit, inv;
632
633 d_val[0] = 0;
634 c_val[0] = 0;
635 d_val[1] = 0;
636 c_val[1] = 0;
637 d_val[2] = 0xFF;
638 c_val[2] = 0xFF;
639
640 if (pin == 0)
641 return;
642
643 inv = (pin < 0);
644 if (inv)
645 pin = -pin;
646
647 d_bit = 0;
648 c_bit = 0;
649
650 switch (pin) {
651 case PIN_STROBE: /* strobe, inverted */
652 c_bit = PNL_PSTROBE;
653 inv = !inv;
654 break;
655 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
656 d_bit = 1 << (pin - 2);
657 break;
658 case PIN_AUTOLF: /* autofeed, inverted */
659 c_bit = PNL_PAUTOLF;
660 inv = !inv;
661 break;
662 case PIN_INITP: /* init, direct */
663 c_bit = PNL_PINITP;
664 break;
665 case PIN_SELECP: /* select_in, inverted */
666 c_bit = PNL_PSELECP;
667 inv = !inv;
668 break;
669 default: /* unknown pin, ignore */
670 break;
671 }
672
673 if (c_bit) {
674 c_val[2] &= ~c_bit;
675 c_val[!inv] = c_bit;
676 } else if (d_bit) {
677 d_val[2] &= ~d_bit;
678 d_val[!inv] = d_bit;
679 }
680 }
681
682 /*
683 * send a serial byte to the LCD panel. The caller is responsible for locking
684 * if needed.
685 */
lcd_send_serial(int byte)686 static void lcd_send_serial(int byte)
687 {
688 int bit;
689
690 /*
691 * the data bit is set on D0, and the clock on STROBE.
692 * LCD reads D0 on STROBE's rising edge.
693 */
694 for (bit = 0; bit < 8; bit++) {
695 clear_bit(LCD_BIT_CL, bits); /* CLK low */
696 panel_set_bits();
697 if (byte & 1) {
698 set_bit(LCD_BIT_DA, bits);
699 } else {
700 clear_bit(LCD_BIT_DA, bits);
701 }
702
703 panel_set_bits();
704 udelay(2); /* maintain the data during 2 us before CLK up */
705 set_bit(LCD_BIT_CL, bits); /* CLK high */
706 panel_set_bits();
707 udelay(1); /* maintain the strobe during 1 us */
708 byte >>= 1;
709 }
710 }
711
712 /* turn the backlight on or off */
lcd_backlight(struct charlcd * charlcd,int on)713 static void lcd_backlight(struct charlcd *charlcd, int on)
714 {
715 if (lcd.pins.bl == PIN_NONE)
716 return;
717
718 /* The backlight is activated by setting the AUTOFEED line to +5V */
719 spin_lock_irq(&pprt_lock);
720 if (on)
721 set_bit(LCD_BIT_BL, bits);
722 else
723 clear_bit(LCD_BIT_BL, bits);
724 panel_set_bits();
725 spin_unlock_irq(&pprt_lock);
726 }
727
728 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(struct charlcd * charlcd,int cmd)729 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
730 {
731 spin_lock_irq(&pprt_lock);
732 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
733 lcd_send_serial(cmd & 0x0F);
734 lcd_send_serial((cmd >> 4) & 0x0F);
735 udelay(40); /* the shortest command takes at least 40 us */
736 spin_unlock_irq(&pprt_lock);
737 }
738
739 /* send data to the LCD panel in serial mode */
lcd_write_data_s(struct charlcd * charlcd,int data)740 static void lcd_write_data_s(struct charlcd *charlcd, int data)
741 {
742 spin_lock_irq(&pprt_lock);
743 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
744 lcd_send_serial(data & 0x0F);
745 lcd_send_serial((data >> 4) & 0x0F);
746 udelay(40); /* the shortest data takes at least 40 us */
747 spin_unlock_irq(&pprt_lock);
748 }
749
750 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(struct charlcd * charlcd,int cmd)751 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
752 {
753 spin_lock_irq(&pprt_lock);
754 /* present the data to the data port */
755 w_dtr(pprt, cmd);
756 udelay(20); /* maintain the data during 20 us before the strobe */
757
758 set_bit(LCD_BIT_E, bits);
759 clear_bit(LCD_BIT_RS, bits);
760 clear_bit(LCD_BIT_RW, bits);
761 set_ctrl_bits();
762
763 udelay(40); /* maintain the strobe during 40 us */
764
765 clear_bit(LCD_BIT_E, bits);
766 set_ctrl_bits();
767
768 udelay(120); /* the shortest command takes at least 120 us */
769 spin_unlock_irq(&pprt_lock);
770 }
771
772 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(struct charlcd * charlcd,int data)773 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
774 {
775 spin_lock_irq(&pprt_lock);
776 /* present the data to the data port */
777 w_dtr(pprt, data);
778 udelay(20); /* maintain the data during 20 us before the strobe */
779
780 set_bit(LCD_BIT_E, bits);
781 set_bit(LCD_BIT_RS, bits);
782 clear_bit(LCD_BIT_RW, bits);
783 set_ctrl_bits();
784
785 udelay(40); /* maintain the strobe during 40 us */
786
787 clear_bit(LCD_BIT_E, bits);
788 set_ctrl_bits();
789
790 udelay(45); /* the shortest data takes at least 45 us */
791 spin_unlock_irq(&pprt_lock);
792 }
793
794 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(struct charlcd * charlcd,int cmd)795 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
796 {
797 spin_lock_irq(&pprt_lock);
798 /* present the data to the control port */
799 w_ctr(pprt, cmd);
800 udelay(60);
801 spin_unlock_irq(&pprt_lock);
802 }
803
804 /* send data to the TI LCD panel */
lcd_write_data_tilcd(struct charlcd * charlcd,int data)805 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
806 {
807 spin_lock_irq(&pprt_lock);
808 /* present the data to the data port */
809 w_dtr(pprt, data);
810 udelay(60);
811 spin_unlock_irq(&pprt_lock);
812 }
813
814 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(struct charlcd * charlcd)815 static void lcd_clear_fast_s(struct charlcd *charlcd)
816 {
817 int pos;
818
819 spin_lock_irq(&pprt_lock);
820 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
821 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
822 lcd_send_serial(' ' & 0x0F);
823 lcd_send_serial((' ' >> 4) & 0x0F);
824 /* the shortest data takes at least 40 us */
825 udelay(40);
826 }
827 spin_unlock_irq(&pprt_lock);
828 }
829
830 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(struct charlcd * charlcd)831 static void lcd_clear_fast_p8(struct charlcd *charlcd)
832 {
833 int pos;
834
835 spin_lock_irq(&pprt_lock);
836 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
837 /* present the data to the data port */
838 w_dtr(pprt, ' ');
839
840 /* maintain the data during 20 us before the strobe */
841 udelay(20);
842
843 set_bit(LCD_BIT_E, bits);
844 set_bit(LCD_BIT_RS, bits);
845 clear_bit(LCD_BIT_RW, bits);
846 set_ctrl_bits();
847
848 /* maintain the strobe during 40 us */
849 udelay(40);
850
851 clear_bit(LCD_BIT_E, bits);
852 set_ctrl_bits();
853
854 /* the shortest data takes at least 45 us */
855 udelay(45);
856 }
857 spin_unlock_irq(&pprt_lock);
858 }
859
860 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(struct charlcd * charlcd)861 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
862 {
863 int pos;
864
865 spin_lock_irq(&pprt_lock);
866 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
867 /* present the data to the data port */
868 w_dtr(pprt, ' ');
869 udelay(60);
870 }
871
872 spin_unlock_irq(&pprt_lock);
873 }
874
875 static const struct charlcd_ops charlcd_serial_ops = {
876 .write_cmd = lcd_write_cmd_s,
877 .write_data = lcd_write_data_s,
878 .clear_fast = lcd_clear_fast_s,
879 .backlight = lcd_backlight,
880 };
881
882 static const struct charlcd_ops charlcd_parallel_ops = {
883 .write_cmd = lcd_write_cmd_p8,
884 .write_data = lcd_write_data_p8,
885 .clear_fast = lcd_clear_fast_p8,
886 .backlight = lcd_backlight,
887 };
888
889 static const struct charlcd_ops charlcd_tilcd_ops = {
890 .write_cmd = lcd_write_cmd_tilcd,
891 .write_data = lcd_write_data_tilcd,
892 .clear_fast = lcd_clear_fast_tilcd,
893 .backlight = lcd_backlight,
894 };
895
896 /* initialize the LCD driver */
lcd_init(void)897 static void lcd_init(void)
898 {
899 struct charlcd *charlcd;
900
901 charlcd = charlcd_alloc(0);
902 if (!charlcd)
903 return;
904
905 /*
906 * Init lcd struct with load-time values to preserve exact
907 * current functionality (at least for now).
908 */
909 charlcd->height = lcd_height;
910 charlcd->width = lcd_width;
911 charlcd->bwidth = lcd_bwidth;
912 charlcd->hwidth = lcd_hwidth;
913
914 switch (selected_lcd_type) {
915 case LCD_TYPE_OLD:
916 /* parallel mode, 8 bits */
917 lcd.proto = LCD_PROTO_PARALLEL;
918 lcd.charset = LCD_CHARSET_NORMAL;
919 lcd.pins.e = PIN_STROBE;
920 lcd.pins.rs = PIN_AUTOLF;
921
922 charlcd->width = 40;
923 charlcd->bwidth = 40;
924 charlcd->hwidth = 64;
925 charlcd->height = 2;
926 break;
927 case LCD_TYPE_KS0074:
928 /* serial mode, ks0074 */
929 lcd.proto = LCD_PROTO_SERIAL;
930 lcd.charset = LCD_CHARSET_KS0074;
931 lcd.pins.bl = PIN_AUTOLF;
932 lcd.pins.cl = PIN_STROBE;
933 lcd.pins.da = PIN_D0;
934
935 charlcd->width = 16;
936 charlcd->bwidth = 40;
937 charlcd->hwidth = 16;
938 charlcd->height = 2;
939 break;
940 case LCD_TYPE_NEXCOM:
941 /* parallel mode, 8 bits, generic */
942 lcd.proto = LCD_PROTO_PARALLEL;
943 lcd.charset = LCD_CHARSET_NORMAL;
944 lcd.pins.e = PIN_AUTOLF;
945 lcd.pins.rs = PIN_SELECP;
946 lcd.pins.rw = PIN_INITP;
947
948 charlcd->width = 16;
949 charlcd->bwidth = 40;
950 charlcd->hwidth = 64;
951 charlcd->height = 2;
952 break;
953 case LCD_TYPE_CUSTOM:
954 /* customer-defined */
955 lcd.proto = DEFAULT_LCD_PROTO;
956 lcd.charset = DEFAULT_LCD_CHARSET;
957 /* default geometry will be set later */
958 break;
959 case LCD_TYPE_HANTRONIX:
960 /* parallel mode, 8 bits, hantronix-like */
961 default:
962 lcd.proto = LCD_PROTO_PARALLEL;
963 lcd.charset = LCD_CHARSET_NORMAL;
964 lcd.pins.e = PIN_STROBE;
965 lcd.pins.rs = PIN_SELECP;
966
967 charlcd->width = 16;
968 charlcd->bwidth = 40;
969 charlcd->hwidth = 64;
970 charlcd->height = 2;
971 break;
972 }
973
974 /* Overwrite with module params set on loading */
975 if (lcd_height != NOT_SET)
976 charlcd->height = lcd_height;
977 if (lcd_width != NOT_SET)
978 charlcd->width = lcd_width;
979 if (lcd_bwidth != NOT_SET)
980 charlcd->bwidth = lcd_bwidth;
981 if (lcd_hwidth != NOT_SET)
982 charlcd->hwidth = lcd_hwidth;
983 if (lcd_charset != NOT_SET)
984 lcd.charset = lcd_charset;
985 if (lcd_proto != NOT_SET)
986 lcd.proto = lcd_proto;
987 if (lcd_e_pin != PIN_NOT_SET)
988 lcd.pins.e = lcd_e_pin;
989 if (lcd_rs_pin != PIN_NOT_SET)
990 lcd.pins.rs = lcd_rs_pin;
991 if (lcd_rw_pin != PIN_NOT_SET)
992 lcd.pins.rw = lcd_rw_pin;
993 if (lcd_cl_pin != PIN_NOT_SET)
994 lcd.pins.cl = lcd_cl_pin;
995 if (lcd_da_pin != PIN_NOT_SET)
996 lcd.pins.da = lcd_da_pin;
997 if (lcd_bl_pin != PIN_NOT_SET)
998 lcd.pins.bl = lcd_bl_pin;
999
1000 /* this is used to catch wrong and default values */
1001 if (charlcd->width <= 0)
1002 charlcd->width = DEFAULT_LCD_WIDTH;
1003 if (charlcd->bwidth <= 0)
1004 charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1005 if (charlcd->hwidth <= 0)
1006 charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1007 if (charlcd->height <= 0)
1008 charlcd->height = DEFAULT_LCD_HEIGHT;
1009
1010 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1011 charlcd->ops = &charlcd_serial_ops;
1012
1013 if (lcd.pins.cl == PIN_NOT_SET)
1014 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1015 if (lcd.pins.da == PIN_NOT_SET)
1016 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1017
1018 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1019 charlcd->ops = &charlcd_parallel_ops;
1020
1021 if (lcd.pins.e == PIN_NOT_SET)
1022 lcd.pins.e = DEFAULT_LCD_PIN_E;
1023 if (lcd.pins.rs == PIN_NOT_SET)
1024 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1025 if (lcd.pins.rw == PIN_NOT_SET)
1026 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1027 } else {
1028 charlcd->ops = &charlcd_tilcd_ops;
1029 }
1030
1031 if (lcd.pins.bl == PIN_NOT_SET)
1032 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1033
1034 if (lcd.pins.e == PIN_NOT_SET)
1035 lcd.pins.e = PIN_NONE;
1036 if (lcd.pins.rs == PIN_NOT_SET)
1037 lcd.pins.rs = PIN_NONE;
1038 if (lcd.pins.rw == PIN_NOT_SET)
1039 lcd.pins.rw = PIN_NONE;
1040 if (lcd.pins.bl == PIN_NOT_SET)
1041 lcd.pins.bl = PIN_NONE;
1042 if (lcd.pins.cl == PIN_NOT_SET)
1043 lcd.pins.cl = PIN_NONE;
1044 if (lcd.pins.da == PIN_NOT_SET)
1045 lcd.pins.da = PIN_NONE;
1046
1047 if (lcd.charset == NOT_SET)
1048 lcd.charset = DEFAULT_LCD_CHARSET;
1049
1050 if (lcd.charset == LCD_CHARSET_KS0074)
1051 charlcd->char_conv = lcd_char_conv_ks0074;
1052 else
1053 charlcd->char_conv = NULL;
1054
1055 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1056 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1057 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1058 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1059 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1060 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1061 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1062 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1063 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1064 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1065 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1066 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1067
1068 lcd.charlcd = charlcd;
1069 lcd.initialized = true;
1070 }
1071
1072 /*
1073 * These are the file operation function for user access to /dev/keypad
1074 */
1075
keypad_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1076 static ssize_t keypad_read(struct file *file,
1077 char __user *buf, size_t count, loff_t *ppos)
1078 {
1079 unsigned i = *ppos;
1080 char __user *tmp = buf;
1081
1082 if (keypad_buflen == 0) {
1083 if (file->f_flags & O_NONBLOCK)
1084 return -EAGAIN;
1085
1086 if (wait_event_interruptible(keypad_read_wait,
1087 keypad_buflen != 0))
1088 return -EINTR;
1089 }
1090
1091 for (; count-- > 0 && (keypad_buflen > 0);
1092 ++i, ++tmp, --keypad_buflen) {
1093 put_user(keypad_buffer[keypad_start], tmp);
1094 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1095 }
1096 *ppos = i;
1097
1098 return tmp - buf;
1099 }
1100
keypad_open(struct inode * inode,struct file * file)1101 static int keypad_open(struct inode *inode, struct file *file)
1102 {
1103 int ret;
1104
1105 ret = -EBUSY;
1106 if (!atomic_dec_and_test(&keypad_available))
1107 goto fail; /* open only once at a time */
1108
1109 ret = -EPERM;
1110 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1111 goto fail;
1112
1113 keypad_buflen = 0; /* flush the buffer on opening */
1114 return 0;
1115 fail:
1116 atomic_inc(&keypad_available);
1117 return ret;
1118 }
1119
keypad_release(struct inode * inode,struct file * file)1120 static int keypad_release(struct inode *inode, struct file *file)
1121 {
1122 atomic_inc(&keypad_available);
1123 return 0;
1124 }
1125
1126 static const struct file_operations keypad_fops = {
1127 .read = keypad_read, /* read */
1128 .open = keypad_open, /* open */
1129 .release = keypad_release, /* close */
1130 .llseek = default_llseek,
1131 };
1132
1133 static struct miscdevice keypad_dev = {
1134 .minor = KEYPAD_MINOR,
1135 .name = "keypad",
1136 .fops = &keypad_fops,
1137 };
1138
keypad_send_key(const char * string,int max_len)1139 static void keypad_send_key(const char *string, int max_len)
1140 {
1141 /* send the key to the device only if a process is attached to it. */
1142 if (!atomic_read(&keypad_available)) {
1143 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1144 keypad_buffer[(keypad_start + keypad_buflen++) %
1145 KEYPAD_BUFFER] = *string++;
1146 }
1147 wake_up_interruptible(&keypad_read_wait);
1148 }
1149 }
1150
1151 /* this function scans all the bits involving at least one logical signal,
1152 * and puts the results in the bitfield "phys_read" (one bit per established
1153 * contact), and sets "phys_read_prev" to "phys_read".
1154 *
1155 * Note: to debounce input signals, we will only consider as switched a signal
1156 * which is stable across 2 measures. Signals which are different between two
1157 * reads will be kept as they previously were in their logical form (phys_prev).
1158 * A signal which has just switched will have a 1 in
1159 * (phys_read ^ phys_read_prev).
1160 */
phys_scan_contacts(void)1161 static void phys_scan_contacts(void)
1162 {
1163 int bit, bitval;
1164 char oldval;
1165 char bitmask;
1166 char gndmask;
1167
1168 phys_prev = phys_curr;
1169 phys_read_prev = phys_read;
1170 phys_read = 0; /* flush all signals */
1171
1172 /* keep track of old value, with all outputs disabled */
1173 oldval = r_dtr(pprt) | scan_mask_o;
1174 /* activate all keyboard outputs (active low) */
1175 w_dtr(pprt, oldval & ~scan_mask_o);
1176
1177 /* will have a 1 for each bit set to gnd */
1178 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1179 /* disable all matrix signals */
1180 w_dtr(pprt, oldval);
1181
1182 /* now that all outputs are cleared, the only active input bits are
1183 * directly connected to the ground
1184 */
1185
1186 /* 1 for each grounded input */
1187 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1188
1189 /* grounded inputs are signals 40-44 */
1190 phys_read |= (__u64)gndmask << 40;
1191
1192 if (bitmask != gndmask) {
1193 /*
1194 * since clearing the outputs changed some inputs, we know
1195 * that some input signals are currently tied to some outputs.
1196 * So we'll scan them.
1197 */
1198 for (bit = 0; bit < 8; bit++) {
1199 bitval = BIT(bit);
1200
1201 if (!(scan_mask_o & bitval)) /* skip unused bits */
1202 continue;
1203
1204 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1205 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1206 phys_read |= (__u64)bitmask << (5 * bit);
1207 }
1208 w_dtr(pprt, oldval); /* disable all outputs */
1209 }
1210 /*
1211 * this is easy: use old bits when they are flapping,
1212 * use new ones when stable
1213 */
1214 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1215 (phys_read & ~(phys_read ^ phys_read_prev));
1216 }
1217
input_state_high(struct logical_input * input)1218 static inline int input_state_high(struct logical_input *input)
1219 {
1220 #if 0
1221 /* FIXME:
1222 * this is an invalid test. It tries to catch
1223 * transitions from single-key to multiple-key, but
1224 * doesn't take into account the contacts polarity.
1225 * The only solution to the problem is to parse keys
1226 * from the most complex to the simplest combinations,
1227 * and mark them as 'caught' once a combination
1228 * matches, then unmatch it for all other ones.
1229 */
1230
1231 /* try to catch dangerous transitions cases :
1232 * someone adds a bit, so this signal was a false
1233 * positive resulting from a transition. We should
1234 * invalidate the signal immediately and not call the
1235 * release function.
1236 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1237 */
1238 if (((phys_prev & input->mask) == input->value) &&
1239 ((phys_curr & input->mask) > input->value)) {
1240 input->state = INPUT_ST_LOW; /* invalidate */
1241 return 1;
1242 }
1243 #endif
1244
1245 if ((phys_curr & input->mask) == input->value) {
1246 if ((input->type == INPUT_TYPE_STD) &&
1247 (input->high_timer == 0)) {
1248 input->high_timer++;
1249 if (input->u.std.press_fct)
1250 input->u.std.press_fct(input->u.std.press_data);
1251 } else if (input->type == INPUT_TYPE_KBD) {
1252 /* will turn on the light */
1253 keypressed = 1;
1254
1255 if (input->high_timer == 0) {
1256 char *press_str = input->u.kbd.press_str;
1257
1258 if (press_str[0]) {
1259 int s = sizeof(input->u.kbd.press_str);
1260
1261 keypad_send_key(press_str, s);
1262 }
1263 }
1264
1265 if (input->u.kbd.repeat_str[0]) {
1266 char *repeat_str = input->u.kbd.repeat_str;
1267
1268 if (input->high_timer >= KEYPAD_REP_START) {
1269 int s = sizeof(input->u.kbd.repeat_str);
1270
1271 input->high_timer -= KEYPAD_REP_DELAY;
1272 keypad_send_key(repeat_str, s);
1273 }
1274 /* we will need to come back here soon */
1275 inputs_stable = 0;
1276 }
1277
1278 if (input->high_timer < 255)
1279 input->high_timer++;
1280 }
1281 return 1;
1282 }
1283
1284 /* else signal falling down. Let's fall through. */
1285 input->state = INPUT_ST_FALLING;
1286 input->fall_timer = 0;
1287
1288 return 0;
1289 }
1290
input_state_falling(struct logical_input * input)1291 static inline void input_state_falling(struct logical_input *input)
1292 {
1293 #if 0
1294 /* FIXME !!! same comment as in input_state_high */
1295 if (((phys_prev & input->mask) == input->value) &&
1296 ((phys_curr & input->mask) > input->value)) {
1297 input->state = INPUT_ST_LOW; /* invalidate */
1298 return;
1299 }
1300 #endif
1301
1302 if ((phys_curr & input->mask) == input->value) {
1303 if (input->type == INPUT_TYPE_KBD) {
1304 /* will turn on the light */
1305 keypressed = 1;
1306
1307 if (input->u.kbd.repeat_str[0]) {
1308 char *repeat_str = input->u.kbd.repeat_str;
1309
1310 if (input->high_timer >= KEYPAD_REP_START) {
1311 int s = sizeof(input->u.kbd.repeat_str);
1312
1313 input->high_timer -= KEYPAD_REP_DELAY;
1314 keypad_send_key(repeat_str, s);
1315 }
1316 /* we will need to come back here soon */
1317 inputs_stable = 0;
1318 }
1319
1320 if (input->high_timer < 255)
1321 input->high_timer++;
1322 }
1323 input->state = INPUT_ST_HIGH;
1324 } else if (input->fall_timer >= input->fall_time) {
1325 /* call release event */
1326 if (input->type == INPUT_TYPE_STD) {
1327 void (*release_fct)(int) = input->u.std.release_fct;
1328
1329 if (release_fct)
1330 release_fct(input->u.std.release_data);
1331 } else if (input->type == INPUT_TYPE_KBD) {
1332 char *release_str = input->u.kbd.release_str;
1333
1334 if (release_str[0]) {
1335 int s = sizeof(input->u.kbd.release_str);
1336
1337 keypad_send_key(release_str, s);
1338 }
1339 }
1340
1341 input->state = INPUT_ST_LOW;
1342 } else {
1343 input->fall_timer++;
1344 inputs_stable = 0;
1345 }
1346 }
1347
panel_process_inputs(void)1348 static void panel_process_inputs(void)
1349 {
1350 struct logical_input *input;
1351
1352 keypressed = 0;
1353 inputs_stable = 1;
1354 list_for_each_entry(input, &logical_inputs, list) {
1355 switch (input->state) {
1356 case INPUT_ST_LOW:
1357 if ((phys_curr & input->mask) != input->value)
1358 break;
1359 /* if all needed ones were already set previously,
1360 * this means that this logical signal has been
1361 * activated by the releasing of another combined
1362 * signal, so we don't want to match.
1363 * eg: AB -(release B)-> A -(release A)-> 0 :
1364 * don't match A.
1365 */
1366 if ((phys_prev & input->mask) == input->value)
1367 break;
1368 input->rise_timer = 0;
1369 input->state = INPUT_ST_RISING;
1370 /* fall through */
1371 case INPUT_ST_RISING:
1372 if ((phys_curr & input->mask) != input->value) {
1373 input->state = INPUT_ST_LOW;
1374 break;
1375 }
1376 if (input->rise_timer < input->rise_time) {
1377 inputs_stable = 0;
1378 input->rise_timer++;
1379 break;
1380 }
1381 input->high_timer = 0;
1382 input->state = INPUT_ST_HIGH;
1383 /* fall through */
1384 case INPUT_ST_HIGH:
1385 if (input_state_high(input))
1386 break;
1387 /* fall through */
1388 case INPUT_ST_FALLING:
1389 input_state_falling(input);
1390 }
1391 }
1392 }
1393
panel_scan_timer(struct timer_list * unused)1394 static void panel_scan_timer(struct timer_list *unused)
1395 {
1396 if (keypad.enabled && keypad_initialized) {
1397 if (spin_trylock_irq(&pprt_lock)) {
1398 phys_scan_contacts();
1399
1400 /* no need for the parport anymore */
1401 spin_unlock_irq(&pprt_lock);
1402 }
1403
1404 if (!inputs_stable || phys_curr != phys_prev)
1405 panel_process_inputs();
1406 }
1407
1408 if (keypressed && lcd.enabled && lcd.initialized)
1409 charlcd_poke(lcd.charlcd);
1410
1411 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1412 }
1413
init_scan_timer(void)1414 static void init_scan_timer(void)
1415 {
1416 if (scan_timer.function)
1417 return; /* already started */
1418
1419 timer_setup(&scan_timer, panel_scan_timer, 0);
1420 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1421 add_timer(&scan_timer);
1422 }
1423
1424 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1425 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1426 * corresponding to out and in bits respectively.
1427 * returns 1 if ok, 0 if error (in which case, nothing is written).
1428 */
input_name2mask(const char * name,__u64 * mask,__u64 * value,u8 * imask,u8 * omask)1429 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1430 u8 *imask, u8 *omask)
1431 {
1432 const char sigtab[] = "EeSsPpAaBb";
1433 u8 im, om;
1434 __u64 m, v;
1435
1436 om = 0;
1437 im = 0;
1438 m = 0ULL;
1439 v = 0ULL;
1440 while (*name) {
1441 int in, out, bit, neg;
1442 const char *idx;
1443
1444 idx = strchr(sigtab, *name);
1445 if (!idx)
1446 return 0; /* input name not found */
1447
1448 in = idx - sigtab;
1449 neg = (in & 1); /* odd (lower) names are negated */
1450 in >>= 1;
1451 im |= BIT(in);
1452
1453 name++;
1454 if (*name >= '0' && *name <= '7') {
1455 out = *name - '0';
1456 om |= BIT(out);
1457 } else if (*name == '-') {
1458 out = 8;
1459 } else {
1460 return 0; /* unknown bit name */
1461 }
1462
1463 bit = (out * 5) + in;
1464
1465 m |= 1ULL << bit;
1466 if (!neg)
1467 v |= 1ULL << bit;
1468 name++;
1469 }
1470 *mask = m;
1471 *value = v;
1472 if (imask)
1473 *imask |= im;
1474 if (omask)
1475 *omask |= om;
1476 return 1;
1477 }
1478
1479 /* tries to bind a key to the signal name <name>. The key will send the
1480 * strings <press>, <repeat>, <release> for these respective events.
1481 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1482 */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)1483 static struct logical_input *panel_bind_key(const char *name, const char *press,
1484 const char *repeat,
1485 const char *release)
1486 {
1487 struct logical_input *key;
1488
1489 key = kzalloc(sizeof(*key), GFP_KERNEL);
1490 if (!key)
1491 return NULL;
1492
1493 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1494 &scan_mask_o)) {
1495 kfree(key);
1496 return NULL;
1497 }
1498
1499 key->type = INPUT_TYPE_KBD;
1500 key->state = INPUT_ST_LOW;
1501 key->rise_time = 1;
1502 key->fall_time = 1;
1503
1504 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1505 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1506 strncpy(key->u.kbd.release_str, release,
1507 sizeof(key->u.kbd.release_str));
1508 list_add(&key->list, &logical_inputs);
1509 return key;
1510 }
1511
1512 #if 0
1513 /* tries to bind a callback function to the signal name <name>. The function
1514 * <press_fct> will be called with the <press_data> arg when the signal is
1515 * activated, and so on for <release_fct>/<release_data>
1516 * Returns the pointer to the new signal if ok, NULL if the signal could not
1517 * be bound.
1518 */
1519 static struct logical_input *panel_bind_callback(char *name,
1520 void (*press_fct)(int),
1521 int press_data,
1522 void (*release_fct)(int),
1523 int release_data)
1524 {
1525 struct logical_input *callback;
1526
1527 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1528 if (!callback)
1529 return NULL;
1530
1531 memset(callback, 0, sizeof(struct logical_input));
1532 if (!input_name2mask(name, &callback->mask, &callback->value,
1533 &scan_mask_i, &scan_mask_o))
1534 return NULL;
1535
1536 callback->type = INPUT_TYPE_STD;
1537 callback->state = INPUT_ST_LOW;
1538 callback->rise_time = 1;
1539 callback->fall_time = 1;
1540 callback->u.std.press_fct = press_fct;
1541 callback->u.std.press_data = press_data;
1542 callback->u.std.release_fct = release_fct;
1543 callback->u.std.release_data = release_data;
1544 list_add(&callback->list, &logical_inputs);
1545 return callback;
1546 }
1547 #endif
1548
keypad_init(void)1549 static void keypad_init(void)
1550 {
1551 int keynum;
1552
1553 init_waitqueue_head(&keypad_read_wait);
1554 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
1555
1556 /* Let's create all known keys */
1557
1558 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1559 panel_bind_key(keypad_profile[keynum][0],
1560 keypad_profile[keynum][1],
1561 keypad_profile[keynum][2],
1562 keypad_profile[keynum][3]);
1563 }
1564
1565 init_scan_timer();
1566 keypad_initialized = 1;
1567 }
1568
1569 /**************************************************/
1570 /* device initialization */
1571 /**************************************************/
1572
panel_attach(struct parport * port)1573 static void panel_attach(struct parport *port)
1574 {
1575 struct pardev_cb panel_cb;
1576
1577 if (port->number != parport)
1578 return;
1579
1580 if (pprt) {
1581 pr_err("%s: port->number=%d parport=%d, already registered!\n",
1582 __func__, port->number, parport);
1583 return;
1584 }
1585
1586 memset(&panel_cb, 0, sizeof(panel_cb));
1587 panel_cb.private = &pprt;
1588 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1589
1590 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1591 if (!pprt) {
1592 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1593 __func__, port->number, parport);
1594 return;
1595 }
1596
1597 if (parport_claim(pprt)) {
1598 pr_err("could not claim access to parport%d. Aborting.\n",
1599 parport);
1600 goto err_unreg_device;
1601 }
1602
1603 /* must init LCD first, just in case an IRQ from the keypad is
1604 * generated at keypad init
1605 */
1606 if (lcd.enabled) {
1607 lcd_init();
1608 if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1609 goto err_unreg_device;
1610 }
1611
1612 if (keypad.enabled) {
1613 keypad_init();
1614 if (misc_register(&keypad_dev))
1615 goto err_lcd_unreg;
1616 }
1617 return;
1618
1619 err_lcd_unreg:
1620 if (scan_timer.function)
1621 del_timer_sync(&scan_timer);
1622 if (lcd.enabled)
1623 charlcd_unregister(lcd.charlcd);
1624 err_unreg_device:
1625 charlcd_free(lcd.charlcd);
1626 lcd.charlcd = NULL;
1627 parport_unregister_device(pprt);
1628 pprt = NULL;
1629 }
1630
panel_detach(struct parport * port)1631 static void panel_detach(struct parport *port)
1632 {
1633 if (port->number != parport)
1634 return;
1635
1636 if (!pprt) {
1637 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1638 __func__, port->number, parport);
1639 return;
1640 }
1641 if (scan_timer.function)
1642 del_timer_sync(&scan_timer);
1643
1644 if (keypad.enabled) {
1645 misc_deregister(&keypad_dev);
1646 keypad_initialized = 0;
1647 }
1648
1649 if (lcd.enabled) {
1650 charlcd_unregister(lcd.charlcd);
1651 lcd.initialized = false;
1652 charlcd_free(lcd.charlcd);
1653 lcd.charlcd = NULL;
1654 }
1655
1656 /* TODO: free all input signals */
1657 parport_release(pprt);
1658 parport_unregister_device(pprt);
1659 pprt = NULL;
1660 }
1661
1662 static struct parport_driver panel_driver = {
1663 .name = "panel",
1664 .match_port = panel_attach,
1665 .detach = panel_detach,
1666 .devmodel = true,
1667 };
1668
1669 /* init function */
panel_init_module(void)1670 static int __init panel_init_module(void)
1671 {
1672 int selected_keypad_type = NOT_SET, err;
1673
1674 /* take care of an eventual profile */
1675 switch (profile) {
1676 case PANEL_PROFILE_CUSTOM:
1677 /* custom profile */
1678 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1679 selected_lcd_type = DEFAULT_LCD_TYPE;
1680 break;
1681 case PANEL_PROFILE_OLD:
1682 /* 8 bits, 2*16, old keypad */
1683 selected_keypad_type = KEYPAD_TYPE_OLD;
1684 selected_lcd_type = LCD_TYPE_OLD;
1685
1686 /* TODO: This two are a little hacky, sort it out later */
1687 if (lcd_width == NOT_SET)
1688 lcd_width = 16;
1689 if (lcd_hwidth == NOT_SET)
1690 lcd_hwidth = 16;
1691 break;
1692 case PANEL_PROFILE_NEW:
1693 /* serial, 2*16, new keypad */
1694 selected_keypad_type = KEYPAD_TYPE_NEW;
1695 selected_lcd_type = LCD_TYPE_KS0074;
1696 break;
1697 case PANEL_PROFILE_HANTRONIX:
1698 /* 8 bits, 2*16 hantronix-like, no keypad */
1699 selected_keypad_type = KEYPAD_TYPE_NONE;
1700 selected_lcd_type = LCD_TYPE_HANTRONIX;
1701 break;
1702 case PANEL_PROFILE_NEXCOM:
1703 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1704 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1705 selected_lcd_type = LCD_TYPE_NEXCOM;
1706 break;
1707 case PANEL_PROFILE_LARGE:
1708 /* 8 bits, 2*40, old keypad */
1709 selected_keypad_type = KEYPAD_TYPE_OLD;
1710 selected_lcd_type = LCD_TYPE_OLD;
1711 break;
1712 }
1713
1714 /*
1715 * Overwrite selection with module param values (both keypad and lcd),
1716 * where the deprecated params have lower prio.
1717 */
1718 if (keypad_enabled != NOT_SET)
1719 selected_keypad_type = keypad_enabled;
1720 if (keypad_type != NOT_SET)
1721 selected_keypad_type = keypad_type;
1722
1723 keypad.enabled = (selected_keypad_type > 0);
1724
1725 if (lcd_enabled != NOT_SET)
1726 selected_lcd_type = lcd_enabled;
1727 if (lcd_type != NOT_SET)
1728 selected_lcd_type = lcd_type;
1729
1730 lcd.enabled = (selected_lcd_type > 0);
1731
1732 if (lcd.enabled) {
1733 /*
1734 * Init lcd struct with load-time values to preserve exact
1735 * current functionality (at least for now).
1736 */
1737 lcd.charset = lcd_charset;
1738 lcd.proto = lcd_proto;
1739 lcd.pins.e = lcd_e_pin;
1740 lcd.pins.rs = lcd_rs_pin;
1741 lcd.pins.rw = lcd_rw_pin;
1742 lcd.pins.cl = lcd_cl_pin;
1743 lcd.pins.da = lcd_da_pin;
1744 lcd.pins.bl = lcd_bl_pin;
1745 }
1746
1747 switch (selected_keypad_type) {
1748 case KEYPAD_TYPE_OLD:
1749 keypad_profile = old_keypad_profile;
1750 break;
1751 case KEYPAD_TYPE_NEW:
1752 keypad_profile = new_keypad_profile;
1753 break;
1754 case KEYPAD_TYPE_NEXCOM:
1755 keypad_profile = nexcom_keypad_profile;
1756 break;
1757 default:
1758 keypad_profile = NULL;
1759 break;
1760 }
1761
1762 if (!lcd.enabled && !keypad.enabled) {
1763 /* no device enabled, let's exit */
1764 pr_err("panel driver disabled.\n");
1765 return -ENODEV;
1766 }
1767
1768 err = parport_register_driver(&panel_driver);
1769 if (err) {
1770 pr_err("could not register with parport. Aborting.\n");
1771 return err;
1772 }
1773
1774 if (pprt)
1775 pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1776 parport, pprt->port->base);
1777 else
1778 pr_info("panel driver not yet registered\n");
1779 return 0;
1780 }
1781
panel_cleanup_module(void)1782 static void __exit panel_cleanup_module(void)
1783 {
1784 parport_unregister_driver(&panel_driver);
1785 }
1786
1787 module_init(panel_init_module);
1788 module_exit(panel_cleanup_module);
1789 MODULE_AUTHOR("Willy Tarreau");
1790 MODULE_LICENSE("GPL");
1791
1792 /*
1793 * Local variables:
1794 * c-indent-level: 4
1795 * tab-width: 8
1796 * End:
1797 */
1798