• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/uaccess.h>
13 
14 #include <clocksource/arm_arch_timer.h>
15 #include <asm/arch_timer.h>
16 #include <asm/kvm_emulate.h>
17 #include <asm/kvm_hyp.h>
18 
19 #include <kvm/arm_vgic.h>
20 #include <kvm/arm_arch_timer.h>
21 
22 #include "trace.h"
23 
24 static struct timecounter *timecounter;
25 static unsigned int host_vtimer_irq;
26 static unsigned int host_ptimer_irq;
27 static u32 host_vtimer_irq_flags;
28 static u32 host_ptimer_irq_flags;
29 
30 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
31 
32 static const struct kvm_irq_level default_ptimer_irq = {
33 	.irq	= 30,
34 	.level	= 1,
35 };
36 
37 static const struct kvm_irq_level default_vtimer_irq = {
38 	.irq	= 27,
39 	.level	= 1,
40 };
41 
42 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
43 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
44 				 struct arch_timer_context *timer_ctx);
45 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
46 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
47 				struct arch_timer_context *timer,
48 				enum kvm_arch_timer_regs treg,
49 				u64 val);
50 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
51 			      struct arch_timer_context *timer,
52 			      enum kvm_arch_timer_regs treg);
53 
kvm_phys_timer_read(void)54 u64 kvm_phys_timer_read(void)
55 {
56 	return timecounter->cc->read(timecounter->cc);
57 }
58 
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)59 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
60 {
61 	if (has_vhe()) {
62 		map->direct_vtimer = vcpu_vtimer(vcpu);
63 		map->direct_ptimer = vcpu_ptimer(vcpu);
64 		map->emul_ptimer = NULL;
65 	} else {
66 		map->direct_vtimer = vcpu_vtimer(vcpu);
67 		map->direct_ptimer = NULL;
68 		map->emul_ptimer = vcpu_ptimer(vcpu);
69 	}
70 
71 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
72 }
73 
userspace_irqchip(struct kvm * kvm)74 static inline bool userspace_irqchip(struct kvm *kvm)
75 {
76 	return static_branch_unlikely(&userspace_irqchip_in_use) &&
77 		unlikely(!irqchip_in_kernel(kvm));
78 }
79 
soft_timer_start(struct hrtimer * hrt,u64 ns)80 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
81 {
82 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
83 		      HRTIMER_MODE_ABS);
84 }
85 
soft_timer_cancel(struct hrtimer * hrt)86 static void soft_timer_cancel(struct hrtimer *hrt)
87 {
88 	hrtimer_cancel(hrt);
89 }
90 
kvm_arch_timer_handler(int irq,void * dev_id)91 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
92 {
93 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
94 	struct arch_timer_context *ctx;
95 	struct timer_map map;
96 
97 	/*
98 	 * We may see a timer interrupt after vcpu_put() has been called which
99 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
100 	 * has been disabled in timer_save_state(), the hardware interrupt
101 	 * signal may not have been retired from the interrupt controller yet.
102 	 */
103 	if (!vcpu)
104 		return IRQ_HANDLED;
105 
106 	get_timer_map(vcpu, &map);
107 
108 	if (irq == host_vtimer_irq)
109 		ctx = map.direct_vtimer;
110 	else
111 		ctx = map.direct_ptimer;
112 
113 	if (kvm_timer_should_fire(ctx))
114 		kvm_timer_update_irq(vcpu, true, ctx);
115 
116 	if (userspace_irqchip(vcpu->kvm) &&
117 	    !static_branch_unlikely(&has_gic_active_state))
118 		disable_percpu_irq(host_vtimer_irq);
119 
120 	return IRQ_HANDLED;
121 }
122 
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)123 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
124 {
125 	u64 cval, now;
126 
127 	cval = timer_ctx->cnt_cval;
128 	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
129 
130 	if (now < cval) {
131 		u64 ns;
132 
133 		ns = cyclecounter_cyc2ns(timecounter->cc,
134 					 cval - now,
135 					 timecounter->mask,
136 					 &timecounter->frac);
137 		return ns;
138 	}
139 
140 	return 0;
141 }
142 
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)143 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
144 {
145 	WARN_ON(timer_ctx && timer_ctx->loaded);
146 	return timer_ctx &&
147 	       !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
148 		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
149 }
150 
151 /*
152  * Returns the earliest expiration time in ns among guest timers.
153  * Note that it will return 0 if none of timers can fire.
154  */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)155 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
156 {
157 	u64 min_delta = ULLONG_MAX;
158 	int i;
159 
160 	for (i = 0; i < NR_KVM_TIMERS; i++) {
161 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
162 
163 		WARN(ctx->loaded, "timer %d loaded\n", i);
164 		if (kvm_timer_irq_can_fire(ctx))
165 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
166 	}
167 
168 	/* If none of timers can fire, then return 0 */
169 	if (min_delta == ULLONG_MAX)
170 		return 0;
171 
172 	return min_delta;
173 }
174 
kvm_bg_timer_expire(struct hrtimer * hrt)175 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
176 {
177 	struct arch_timer_cpu *timer;
178 	struct kvm_vcpu *vcpu;
179 	u64 ns;
180 
181 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
182 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
183 
184 	/*
185 	 * Check that the timer has really expired from the guest's
186 	 * PoV (NTP on the host may have forced it to expire
187 	 * early). If we should have slept longer, restart it.
188 	 */
189 	ns = kvm_timer_earliest_exp(vcpu);
190 	if (unlikely(ns)) {
191 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
192 		return HRTIMER_RESTART;
193 	}
194 
195 	kvm_vcpu_wake_up(vcpu);
196 	return HRTIMER_NORESTART;
197 }
198 
kvm_hrtimer_expire(struct hrtimer * hrt)199 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
200 {
201 	struct arch_timer_context *ctx;
202 	struct kvm_vcpu *vcpu;
203 	u64 ns;
204 
205 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
206 	vcpu = ctx->vcpu;
207 
208 	trace_kvm_timer_hrtimer_expire(ctx);
209 
210 	/*
211 	 * Check that the timer has really expired from the guest's
212 	 * PoV (NTP on the host may have forced it to expire
213 	 * early). If not ready, schedule for a later time.
214 	 */
215 	ns = kvm_timer_compute_delta(ctx);
216 	if (unlikely(ns)) {
217 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
218 		return HRTIMER_RESTART;
219 	}
220 
221 	kvm_timer_update_irq(vcpu, true, ctx);
222 	return HRTIMER_NORESTART;
223 }
224 
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)225 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
226 {
227 	enum kvm_arch_timers index;
228 	u64 cval, now;
229 
230 	if (!timer_ctx)
231 		return false;
232 
233 	index = arch_timer_ctx_index(timer_ctx);
234 
235 	if (timer_ctx->loaded) {
236 		u32 cnt_ctl = 0;
237 
238 		switch (index) {
239 		case TIMER_VTIMER:
240 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
241 			break;
242 		case TIMER_PTIMER:
243 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
244 			break;
245 		case NR_KVM_TIMERS:
246 			/* GCC is braindead */
247 			cnt_ctl = 0;
248 			break;
249 		}
250 
251 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
252 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
253 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
254 	}
255 
256 	if (!kvm_timer_irq_can_fire(timer_ctx))
257 		return false;
258 
259 	cval = timer_ctx->cnt_cval;
260 	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
261 
262 	return cval <= now;
263 }
264 
kvm_timer_is_pending(struct kvm_vcpu * vcpu)265 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
266 {
267 	struct timer_map map;
268 
269 	get_timer_map(vcpu, &map);
270 
271 	return kvm_timer_should_fire(map.direct_vtimer) ||
272 	       kvm_timer_should_fire(map.direct_ptimer) ||
273 	       kvm_timer_should_fire(map.emul_ptimer);
274 }
275 
276 /*
277  * Reflect the timer output level into the kvm_run structure
278  */
kvm_timer_update_run(struct kvm_vcpu * vcpu)279 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
280 {
281 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
282 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
283 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
284 
285 	/* Populate the device bitmap with the timer states */
286 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
287 				    KVM_ARM_DEV_EL1_PTIMER);
288 	if (kvm_timer_should_fire(vtimer))
289 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
290 	if (kvm_timer_should_fire(ptimer))
291 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
292 }
293 
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)294 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
295 				 struct arch_timer_context *timer_ctx)
296 {
297 	int ret;
298 
299 	timer_ctx->irq.level = new_level;
300 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
301 				   timer_ctx->irq.level);
302 
303 	if (!userspace_irqchip(vcpu->kvm)) {
304 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
305 					  timer_ctx->irq.irq,
306 					  timer_ctx->irq.level,
307 					  timer_ctx);
308 		WARN_ON(ret);
309 	}
310 }
311 
312 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)313 static void timer_emulate(struct arch_timer_context *ctx)
314 {
315 	bool should_fire = kvm_timer_should_fire(ctx);
316 
317 	trace_kvm_timer_emulate(ctx, should_fire);
318 
319 	if (should_fire != ctx->irq.level) {
320 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
321 		return;
322 	}
323 
324 	/*
325 	 * If the timer can fire now, we don't need to have a soft timer
326 	 * scheduled for the future.  If the timer cannot fire at all,
327 	 * then we also don't need a soft timer.
328 	 */
329 	if (!kvm_timer_irq_can_fire(ctx)) {
330 		soft_timer_cancel(&ctx->hrtimer);
331 		return;
332 	}
333 
334 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
335 }
336 
timer_save_state(struct arch_timer_context * ctx)337 static void timer_save_state(struct arch_timer_context *ctx)
338 {
339 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
340 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
341 	unsigned long flags;
342 
343 	if (!timer->enabled)
344 		return;
345 
346 	local_irq_save(flags);
347 
348 	if (!ctx->loaded)
349 		goto out;
350 
351 	switch (index) {
352 	case TIMER_VTIMER:
353 		ctx->cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
354 		ctx->cnt_cval = read_sysreg_el0(SYS_CNTV_CVAL);
355 
356 		/* Disable the timer */
357 		write_sysreg_el0(0, SYS_CNTV_CTL);
358 		isb();
359 
360 		break;
361 	case TIMER_PTIMER:
362 		ctx->cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
363 		ctx->cnt_cval = read_sysreg_el0(SYS_CNTP_CVAL);
364 
365 		/* Disable the timer */
366 		write_sysreg_el0(0, SYS_CNTP_CTL);
367 		isb();
368 
369 		break;
370 	case NR_KVM_TIMERS:
371 		BUG();
372 	}
373 
374 	trace_kvm_timer_save_state(ctx);
375 
376 	ctx->loaded = false;
377 out:
378 	local_irq_restore(flags);
379 }
380 
381 /*
382  * Schedule the background timer before calling kvm_vcpu_block, so that this
383  * thread is removed from its waitqueue and made runnable when there's a timer
384  * interrupt to handle.
385  */
kvm_timer_blocking(struct kvm_vcpu * vcpu)386 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
387 {
388 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
389 	struct timer_map map;
390 
391 	get_timer_map(vcpu, &map);
392 
393 	/*
394 	 * If no timers are capable of raising interrupts (disabled or
395 	 * masked), then there's no more work for us to do.
396 	 */
397 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
398 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
399 	    !kvm_timer_irq_can_fire(map.emul_ptimer))
400 		return;
401 
402 	/*
403 	 * At least one guest time will expire. Schedule a background timer.
404 	 * Set the earliest expiration time among the guest timers.
405 	 */
406 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
407 }
408 
kvm_timer_unblocking(struct kvm_vcpu * vcpu)409 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
410 {
411 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
412 
413 	soft_timer_cancel(&timer->bg_timer);
414 }
415 
timer_restore_state(struct arch_timer_context * ctx)416 static void timer_restore_state(struct arch_timer_context *ctx)
417 {
418 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
419 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
420 	unsigned long flags;
421 
422 	if (!timer->enabled)
423 		return;
424 
425 	local_irq_save(flags);
426 
427 	if (ctx->loaded)
428 		goto out;
429 
430 	switch (index) {
431 	case TIMER_VTIMER:
432 		write_sysreg_el0(ctx->cnt_cval, SYS_CNTV_CVAL);
433 		isb();
434 		write_sysreg_el0(ctx->cnt_ctl, SYS_CNTV_CTL);
435 		break;
436 	case TIMER_PTIMER:
437 		write_sysreg_el0(ctx->cnt_cval, SYS_CNTP_CVAL);
438 		isb();
439 		write_sysreg_el0(ctx->cnt_ctl, SYS_CNTP_CTL);
440 		break;
441 	case NR_KVM_TIMERS:
442 		BUG();
443 	}
444 
445 	trace_kvm_timer_restore_state(ctx);
446 
447 	ctx->loaded = true;
448 out:
449 	local_irq_restore(flags);
450 }
451 
set_cntvoff(u64 cntvoff)452 static void set_cntvoff(u64 cntvoff)
453 {
454 	u32 low = lower_32_bits(cntvoff);
455 	u32 high = upper_32_bits(cntvoff);
456 
457 	/*
458 	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
459 	 * 32-bit systems, but rather passes register by register shifted one
460 	 * place (we put the function address in r0/x0), we cannot simply pass
461 	 * a 64-bit value as an argument, but have to split the value in two
462 	 * 32-bit halves.
463 	 */
464 	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
465 }
466 
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)467 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
468 {
469 	int r;
470 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
471 	WARN_ON(r);
472 }
473 
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)474 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
475 {
476 	struct kvm_vcpu *vcpu = ctx->vcpu;
477 	bool phys_active = false;
478 
479 	/*
480 	 * Update the timer output so that it is likely to match the
481 	 * state we're about to restore. If the timer expires between
482 	 * this point and the register restoration, we'll take the
483 	 * interrupt anyway.
484 	 */
485 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
486 
487 	if (irqchip_in_kernel(vcpu->kvm))
488 		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
489 
490 	phys_active |= ctx->irq.level;
491 
492 	set_timer_irq_phys_active(ctx, phys_active);
493 }
494 
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)495 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
496 {
497 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
498 
499 	/*
500 	 * Update the timer output so that it is likely to match the
501 	 * state we're about to restore. If the timer expires between
502 	 * this point and the register restoration, we'll take the
503 	 * interrupt anyway.
504 	 */
505 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
506 
507 	/*
508 	 * When using a userspace irqchip with the architected timers and a
509 	 * host interrupt controller that doesn't support an active state, we
510 	 * must still prevent continuously exiting from the guest, and
511 	 * therefore mask the physical interrupt by disabling it on the host
512 	 * interrupt controller when the virtual level is high, such that the
513 	 * guest can make forward progress.  Once we detect the output level
514 	 * being de-asserted, we unmask the interrupt again so that we exit
515 	 * from the guest when the timer fires.
516 	 */
517 	if (vtimer->irq.level)
518 		disable_percpu_irq(host_vtimer_irq);
519 	else
520 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
521 }
522 
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)523 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
524 {
525 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
526 	struct timer_map map;
527 
528 	if (unlikely(!timer->enabled))
529 		return;
530 
531 	get_timer_map(vcpu, &map);
532 
533 	if (static_branch_likely(&has_gic_active_state)) {
534 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
535 		if (map.direct_ptimer)
536 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
537 	} else {
538 		kvm_timer_vcpu_load_nogic(vcpu);
539 	}
540 
541 	set_cntvoff(map.direct_vtimer->cntvoff);
542 
543 	kvm_timer_unblocking(vcpu);
544 
545 	timer_restore_state(map.direct_vtimer);
546 	if (map.direct_ptimer)
547 		timer_restore_state(map.direct_ptimer);
548 
549 	if (map.emul_ptimer)
550 		timer_emulate(map.emul_ptimer);
551 }
552 
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)553 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
554 {
555 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
556 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
557 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
558 	bool vlevel, plevel;
559 
560 	if (likely(irqchip_in_kernel(vcpu->kvm)))
561 		return false;
562 
563 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
564 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
565 
566 	return kvm_timer_should_fire(vtimer) != vlevel ||
567 	       kvm_timer_should_fire(ptimer) != plevel;
568 }
569 
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)570 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
571 {
572 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
573 	struct timer_map map;
574 
575 	if (unlikely(!timer->enabled))
576 		return;
577 
578 	get_timer_map(vcpu, &map);
579 
580 	timer_save_state(map.direct_vtimer);
581 	if (map.direct_ptimer)
582 		timer_save_state(map.direct_ptimer);
583 
584 	/*
585 	 * Cancel soft timer emulation, because the only case where we
586 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
587 	 * in that case we already factor in the deadline for the physical
588 	 * timer when scheduling the bg_timer.
589 	 *
590 	 * In any case, we re-schedule the hrtimer for the physical timer when
591 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
592 	 */
593 	if (map.emul_ptimer)
594 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
595 
596 	if (swait_active(kvm_arch_vcpu_wq(vcpu)))
597 		kvm_timer_blocking(vcpu);
598 
599 	/*
600 	 * The kernel may decide to run userspace after calling vcpu_put, so
601 	 * we reset cntvoff to 0 to ensure a consistent read between user
602 	 * accesses to the virtual counter and kernel access to the physical
603 	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
604 	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
605 	 */
606 	set_cntvoff(0);
607 }
608 
609 /*
610  * With a userspace irqchip we have to check if the guest de-asserted the
611  * timer and if so, unmask the timer irq signal on the host interrupt
612  * controller to ensure that we see future timer signals.
613  */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)614 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
615 {
616 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
617 
618 	if (!kvm_timer_should_fire(vtimer)) {
619 		kvm_timer_update_irq(vcpu, false, vtimer);
620 		if (static_branch_likely(&has_gic_active_state))
621 			set_timer_irq_phys_active(vtimer, false);
622 		else
623 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
624 	}
625 }
626 
kvm_timer_sync_hwstate(struct kvm_vcpu * vcpu)627 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
628 {
629 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
630 
631 	if (unlikely(!timer->enabled))
632 		return;
633 
634 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
635 		unmask_vtimer_irq_user(vcpu);
636 }
637 
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)638 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
639 {
640 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
641 	struct timer_map map;
642 
643 	get_timer_map(vcpu, &map);
644 
645 	/*
646 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
647 	 * and to 0 for ARMv7.  We provide an implementation that always
648 	 * resets the timer to be disabled and unmasked and is compliant with
649 	 * the ARMv7 architecture.
650 	 */
651 	vcpu_vtimer(vcpu)->cnt_ctl = 0;
652 	vcpu_ptimer(vcpu)->cnt_ctl = 0;
653 
654 	if (timer->enabled) {
655 		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
656 		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
657 
658 		if (irqchip_in_kernel(vcpu->kvm)) {
659 			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
660 			if (map.direct_ptimer)
661 				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
662 		}
663 	}
664 
665 	if (map.emul_ptimer)
666 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
667 
668 	return 0;
669 }
670 
671 /* Make the updates of cntvoff for all vtimer contexts atomic */
update_vtimer_cntvoff(struct kvm_vcpu * vcpu,u64 cntvoff)672 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
673 {
674 	int i;
675 	struct kvm *kvm = vcpu->kvm;
676 	struct kvm_vcpu *tmp;
677 
678 	mutex_lock(&kvm->lock);
679 	kvm_for_each_vcpu(i, tmp, kvm)
680 		vcpu_vtimer(tmp)->cntvoff = cntvoff;
681 
682 	/*
683 	 * When called from the vcpu create path, the CPU being created is not
684 	 * included in the loop above, so we just set it here as well.
685 	 */
686 	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
687 	mutex_unlock(&kvm->lock);
688 }
689 
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)690 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
691 {
692 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
693 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
694 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
695 
696 	/* Synchronize cntvoff across all vtimers of a VM. */
697 	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
698 	ptimer->cntvoff = 0;
699 
700 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
701 	timer->bg_timer.function = kvm_bg_timer_expire;
702 
703 	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
704 	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
705 	vtimer->hrtimer.function = kvm_hrtimer_expire;
706 	ptimer->hrtimer.function = kvm_hrtimer_expire;
707 
708 	vtimer->irq.irq = default_vtimer_irq.irq;
709 	ptimer->irq.irq = default_ptimer_irq.irq;
710 
711 	vtimer->host_timer_irq = host_vtimer_irq;
712 	ptimer->host_timer_irq = host_ptimer_irq;
713 
714 	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
715 	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
716 
717 	vtimer->vcpu = vcpu;
718 	ptimer->vcpu = vcpu;
719 }
720 
kvm_timer_init_interrupt(void * info)721 static void kvm_timer_init_interrupt(void *info)
722 {
723 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
724 	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
725 }
726 
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)727 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
728 {
729 	struct arch_timer_context *timer;
730 
731 	switch (regid) {
732 	case KVM_REG_ARM_TIMER_CTL:
733 		timer = vcpu_vtimer(vcpu);
734 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
735 		break;
736 	case KVM_REG_ARM_TIMER_CNT:
737 		timer = vcpu_vtimer(vcpu);
738 		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
739 		break;
740 	case KVM_REG_ARM_TIMER_CVAL:
741 		timer = vcpu_vtimer(vcpu);
742 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
743 		break;
744 	case KVM_REG_ARM_PTIMER_CTL:
745 		timer = vcpu_ptimer(vcpu);
746 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
747 		break;
748 	case KVM_REG_ARM_PTIMER_CVAL:
749 		timer = vcpu_ptimer(vcpu);
750 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
751 		break;
752 
753 	default:
754 		return -1;
755 	}
756 
757 	return 0;
758 }
759 
read_timer_ctl(struct arch_timer_context * timer)760 static u64 read_timer_ctl(struct arch_timer_context *timer)
761 {
762 	/*
763 	 * Set ISTATUS bit if it's expired.
764 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
765 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
766 	 * regardless of ENABLE bit for our implementation convenience.
767 	 */
768 	if (!kvm_timer_compute_delta(timer))
769 		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
770 	else
771 		return timer->cnt_ctl;
772 }
773 
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)774 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
775 {
776 	switch (regid) {
777 	case KVM_REG_ARM_TIMER_CTL:
778 		return kvm_arm_timer_read(vcpu,
779 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
780 	case KVM_REG_ARM_TIMER_CNT:
781 		return kvm_arm_timer_read(vcpu,
782 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
783 	case KVM_REG_ARM_TIMER_CVAL:
784 		return kvm_arm_timer_read(vcpu,
785 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
786 	case KVM_REG_ARM_PTIMER_CTL:
787 		return kvm_arm_timer_read(vcpu,
788 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
789 	case KVM_REG_ARM_PTIMER_CNT:
790 		return kvm_arm_timer_read(vcpu,
791 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
792 	case KVM_REG_ARM_PTIMER_CVAL:
793 		return kvm_arm_timer_read(vcpu,
794 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
795 	}
796 	return (u64)-1;
797 }
798 
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)799 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
800 			      struct arch_timer_context *timer,
801 			      enum kvm_arch_timer_regs treg)
802 {
803 	u64 val;
804 
805 	switch (treg) {
806 	case TIMER_REG_TVAL:
807 		val = timer->cnt_cval - kvm_phys_timer_read() + timer->cntvoff;
808 		break;
809 
810 	case TIMER_REG_CTL:
811 		val = read_timer_ctl(timer);
812 		break;
813 
814 	case TIMER_REG_CVAL:
815 		val = timer->cnt_cval;
816 		break;
817 
818 	case TIMER_REG_CNT:
819 		val = kvm_phys_timer_read() - timer->cntvoff;
820 		break;
821 
822 	default:
823 		BUG();
824 	}
825 
826 	return val;
827 }
828 
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)829 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
830 			      enum kvm_arch_timers tmr,
831 			      enum kvm_arch_timer_regs treg)
832 {
833 	u64 val;
834 
835 	preempt_disable();
836 	kvm_timer_vcpu_put(vcpu);
837 
838 	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
839 
840 	kvm_timer_vcpu_load(vcpu);
841 	preempt_enable();
842 
843 	return val;
844 }
845 
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)846 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
847 				struct arch_timer_context *timer,
848 				enum kvm_arch_timer_regs treg,
849 				u64 val)
850 {
851 	switch (treg) {
852 	case TIMER_REG_TVAL:
853 		timer->cnt_cval = kvm_phys_timer_read() - timer->cntvoff + val;
854 		break;
855 
856 	case TIMER_REG_CTL:
857 		timer->cnt_ctl = val & ~ARCH_TIMER_CTRL_IT_STAT;
858 		break;
859 
860 	case TIMER_REG_CVAL:
861 		timer->cnt_cval = val;
862 		break;
863 
864 	default:
865 		BUG();
866 	}
867 }
868 
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)869 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
870 				enum kvm_arch_timers tmr,
871 				enum kvm_arch_timer_regs treg,
872 				u64 val)
873 {
874 	preempt_disable();
875 	kvm_timer_vcpu_put(vcpu);
876 
877 	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
878 
879 	kvm_timer_vcpu_load(vcpu);
880 	preempt_enable();
881 }
882 
kvm_timer_starting_cpu(unsigned int cpu)883 static int kvm_timer_starting_cpu(unsigned int cpu)
884 {
885 	kvm_timer_init_interrupt(NULL);
886 	return 0;
887 }
888 
kvm_timer_dying_cpu(unsigned int cpu)889 static int kvm_timer_dying_cpu(unsigned int cpu)
890 {
891 	disable_percpu_irq(host_vtimer_irq);
892 	return 0;
893 }
894 
kvm_timer_hyp_init(bool has_gic)895 int kvm_timer_hyp_init(bool has_gic)
896 {
897 	struct arch_timer_kvm_info *info;
898 	int err;
899 
900 	info = arch_timer_get_kvm_info();
901 	timecounter = &info->timecounter;
902 
903 	if (!timecounter->cc) {
904 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
905 		return -ENODEV;
906 	}
907 
908 	/* First, do the virtual EL1 timer irq */
909 
910 	if (info->virtual_irq <= 0) {
911 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
912 			info->virtual_irq);
913 		return -ENODEV;
914 	}
915 	host_vtimer_irq = info->virtual_irq;
916 
917 	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
918 	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
919 	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
920 		kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n",
921 			host_vtimer_irq);
922 		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
923 	}
924 
925 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
926 				 "kvm guest vtimer", kvm_get_running_vcpus());
927 	if (err) {
928 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
929 			host_vtimer_irq, err);
930 		return err;
931 	}
932 
933 	if (has_gic) {
934 		err = irq_set_vcpu_affinity(host_vtimer_irq,
935 					    kvm_get_running_vcpus());
936 		if (err) {
937 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
938 			goto out_free_irq;
939 		}
940 
941 		static_branch_enable(&has_gic_active_state);
942 	}
943 
944 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
945 
946 	/* Now let's do the physical EL1 timer irq */
947 
948 	if (info->physical_irq > 0) {
949 		host_ptimer_irq = info->physical_irq;
950 		host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq);
951 		if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH &&
952 		    host_ptimer_irq_flags != IRQF_TRIGGER_LOW) {
953 			kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n",
954 				host_ptimer_irq);
955 			host_ptimer_irq_flags = IRQF_TRIGGER_LOW;
956 		}
957 
958 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
959 					 "kvm guest ptimer", kvm_get_running_vcpus());
960 		if (err) {
961 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
962 				host_ptimer_irq, err);
963 			return err;
964 		}
965 
966 		if (has_gic) {
967 			err = irq_set_vcpu_affinity(host_ptimer_irq,
968 						    kvm_get_running_vcpus());
969 			if (err) {
970 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
971 				goto out_free_irq;
972 			}
973 		}
974 
975 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
976 	} else if (has_vhe()) {
977 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
978 			info->physical_irq);
979 		err = -ENODEV;
980 		goto out_free_irq;
981 	}
982 
983 	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
984 			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
985 			  kvm_timer_dying_cpu);
986 	return 0;
987 out_free_irq:
988 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
989 	return err;
990 }
991 
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)992 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
993 {
994 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
995 
996 	soft_timer_cancel(&timer->bg_timer);
997 }
998 
timer_irqs_are_valid(struct kvm_vcpu * vcpu)999 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1000 {
1001 	int vtimer_irq, ptimer_irq;
1002 	int i, ret;
1003 
1004 	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1005 	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1006 	if (ret)
1007 		return false;
1008 
1009 	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1010 	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1011 	if (ret)
1012 		return false;
1013 
1014 	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1015 		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1016 		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1017 			return false;
1018 	}
1019 
1020 	return true;
1021 }
1022 
kvm_arch_timer_get_input_level(int vintid)1023 bool kvm_arch_timer_get_input_level(int vintid)
1024 {
1025 	struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
1026 	struct arch_timer_context *timer;
1027 
1028 	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1029 		timer = vcpu_vtimer(vcpu);
1030 	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1031 		timer = vcpu_ptimer(vcpu);
1032 	else
1033 		BUG();
1034 
1035 	return kvm_timer_should_fire(timer);
1036 }
1037 
kvm_timer_enable(struct kvm_vcpu * vcpu)1038 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1039 {
1040 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1041 	struct timer_map map;
1042 	int ret;
1043 
1044 	if (timer->enabled)
1045 		return 0;
1046 
1047 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1048 	if (!irqchip_in_kernel(vcpu->kvm))
1049 		goto no_vgic;
1050 
1051 	if (!vgic_initialized(vcpu->kvm))
1052 		return -ENODEV;
1053 
1054 	if (!timer_irqs_are_valid(vcpu)) {
1055 		kvm_debug("incorrectly configured timer irqs\n");
1056 		return -EINVAL;
1057 	}
1058 
1059 	get_timer_map(vcpu, &map);
1060 
1061 	ret = kvm_vgic_map_phys_irq(vcpu,
1062 				    map.direct_vtimer->host_timer_irq,
1063 				    map.direct_vtimer->irq.irq,
1064 				    kvm_arch_timer_get_input_level);
1065 	if (ret)
1066 		return ret;
1067 
1068 	if (map.direct_ptimer) {
1069 		ret = kvm_vgic_map_phys_irq(vcpu,
1070 					    map.direct_ptimer->host_timer_irq,
1071 					    map.direct_ptimer->irq.irq,
1072 					    kvm_arch_timer_get_input_level);
1073 	}
1074 
1075 	if (ret)
1076 		return ret;
1077 
1078 no_vgic:
1079 	timer->enabled = 1;
1080 	return 0;
1081 }
1082 
1083 /*
1084  * On VHE system, we only need to configure the EL2 timer trap register once,
1085  * not for every world switch.
1086  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1087  * and this makes those bits have no effect for the host kernel execution.
1088  */
kvm_timer_init_vhe(void)1089 void kvm_timer_init_vhe(void)
1090 {
1091 	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1092 	u32 cnthctl_shift = 10;
1093 	u64 val;
1094 
1095 	/*
1096 	 * VHE systems allow the guest direct access to the EL1 physical
1097 	 * timer/counter.
1098 	 */
1099 	val = read_sysreg(cnthctl_el2);
1100 	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1101 	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1102 	write_sysreg(val, cnthctl_el2);
1103 }
1104 
set_timer_irqs(struct kvm * kvm,int vtimer_irq,int ptimer_irq)1105 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1106 {
1107 	struct kvm_vcpu *vcpu;
1108 	int i;
1109 
1110 	kvm_for_each_vcpu(i, vcpu, kvm) {
1111 		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1112 		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1113 	}
1114 }
1115 
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1116 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1117 {
1118 	int __user *uaddr = (int __user *)(long)attr->addr;
1119 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1120 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1121 	int irq;
1122 
1123 	if (!irqchip_in_kernel(vcpu->kvm))
1124 		return -EINVAL;
1125 
1126 	if (get_user(irq, uaddr))
1127 		return -EFAULT;
1128 
1129 	if (!(irq_is_ppi(irq)))
1130 		return -EINVAL;
1131 
1132 	if (vcpu->arch.timer_cpu.enabled)
1133 		return -EBUSY;
1134 
1135 	switch (attr->attr) {
1136 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1137 		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1138 		break;
1139 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1140 		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1141 		break;
1142 	default:
1143 		return -ENXIO;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1149 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1150 {
1151 	int __user *uaddr = (int __user *)(long)attr->addr;
1152 	struct arch_timer_context *timer;
1153 	int irq;
1154 
1155 	switch (attr->attr) {
1156 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1157 		timer = vcpu_vtimer(vcpu);
1158 		break;
1159 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1160 		timer = vcpu_ptimer(vcpu);
1161 		break;
1162 	default:
1163 		return -ENXIO;
1164 	}
1165 
1166 	irq = timer->irq.irq;
1167 	return put_user(irq, uaddr);
1168 }
1169 
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1170 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1171 {
1172 	switch (attr->attr) {
1173 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1174 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1175 		return 0;
1176 	}
1177 
1178 	return -ENXIO;
1179 }
1180