1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/sock.h>
277
278 #include <linux/uaccess.h>
279 #include <asm/ioctls.h>
280 #include <net/busy_poll.h>
281
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284
285 long sysctl_tcp_mem[3] __read_mostly;
286 EXPORT_SYMBOL(sysctl_tcp_mem);
287
288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
289 EXPORT_SYMBOL(tcp_memory_allocated);
290
291 #if IS_ENABLED(CONFIG_SMC)
292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
293 EXPORT_SYMBOL(tcp_have_smc);
294 #endif
295
296 /*
297 * Current number of TCP sockets.
298 */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 unsigned long tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
319
320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
321 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
322
323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
324
tcp_enter_memory_pressure(struct sock * sk)325 void tcp_enter_memory_pressure(struct sock *sk)
326 {
327 unsigned long val;
328
329 if (READ_ONCE(tcp_memory_pressure))
330 return;
331 val = jiffies;
332
333 if (!val)
334 val--;
335 if (!cmpxchg(&tcp_memory_pressure, 0, val))
336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337 }
338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339
tcp_leave_memory_pressure(struct sock * sk)340 void tcp_leave_memory_pressure(struct sock *sk)
341 {
342 unsigned long val;
343
344 if (!READ_ONCE(tcp_memory_pressure))
345 return;
346 val = xchg(&tcp_memory_pressure, 0);
347 if (val)
348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
349 jiffies_to_msecs(jiffies - val));
350 }
351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352
353 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
355 {
356 u8 res = 0;
357
358 if (seconds > 0) {
359 int period = timeout;
360
361 res = 1;
362 while (seconds > period && res < 255) {
363 res++;
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return res;
371 }
372
373 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
375 {
376 int period = 0;
377
378 if (retrans > 0) {
379 period = timeout;
380 while (--retrans) {
381 timeout <<= 1;
382 if (timeout > rto_max)
383 timeout = rto_max;
384 period += timeout;
385 }
386 }
387 return period;
388 }
389
tcp_compute_delivery_rate(const struct tcp_sock * tp)390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391 {
392 u32 rate = READ_ONCE(tp->rate_delivered);
393 u32 intv = READ_ONCE(tp->rate_interval_us);
394 u64 rate64 = 0;
395
396 if (rate && intv) {
397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
398 do_div(rate64, intv);
399 }
400 return rate64;
401 }
402
403 /* Address-family independent initialization for a tcp_sock.
404 *
405 * NOTE: A lot of things set to zero explicitly by call to
406 * sk_alloc() so need not be done here.
407 */
tcp_init_sock(struct sock * sk)408 void tcp_init_sock(struct sock *sk)
409 {
410 struct inet_connection_sock *icsk = inet_csk(sk);
411 struct tcp_sock *tp = tcp_sk(sk);
412
413 tp->out_of_order_queue = RB_ROOT;
414 sk->tcp_rtx_queue = RB_ROOT;
415 tcp_init_xmit_timers(sk);
416 INIT_LIST_HEAD(&tp->tsq_node);
417 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418
419 icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422
423 /* So many TCP implementations out there (incorrectly) count the
424 * initial SYN frame in their delayed-ACK and congestion control
425 * algorithms that we must have the following bandaid to talk
426 * efficiently to them. -DaveM
427 */
428 tp->snd_cwnd = TCP_INIT_CWND;
429
430 /* There's a bubble in the pipe until at least the first ACK. */
431 tp->app_limited = ~0U;
432
433 /* See draft-stevens-tcpca-spec-01 for discussion of the
434 * initialization of these values.
435 */
436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 tp->snd_cwnd_clamp = ~0;
438 tp->mss_cache = TCP_MSS_DEFAULT;
439
440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 tcp_assign_congestion_control(sk);
442
443 tp->tsoffset = 0;
444 tp->rack.reo_wnd_steps = 1;
445
446 sk->sk_state = TCP_CLOSE;
447
448 sk->sk_write_space = sk_stream_write_space;
449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450
451 icsk->icsk_sync_mss = tcp_sync_mss;
452
453 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
454 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
455
456 sk_sockets_allocated_inc(sk);
457 sk->sk_route_forced_caps = NETIF_F_GSO;
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460
tcp_tx_timestamp(struct sock * sk,u16 tsflags)461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
462 {
463 struct sk_buff *skb = tcp_write_queue_tail(sk);
464
465 if (tsflags && skb) {
466 struct skb_shared_info *shinfo = skb_shinfo(skb);
467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
468
469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
470 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
471 tcb->txstamp_ack = 1;
472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
474 }
475 }
476
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
478 int target, struct sock *sk)
479 {
480 return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) ||
481 (sk->sk_prot->stream_memory_read ?
482 sk->sk_prot->stream_memory_read(sk) : false);
483 }
484
485 /*
486 * Wait for a TCP event.
487 *
488 * Note that we don't need to lock the socket, as the upper poll layers
489 * take care of normal races (between the test and the event) and we don't
490 * go look at any of the socket buffers directly.
491 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 __poll_t mask;
495 struct sock *sk = sock->sk;
496 const struct tcp_sock *tp = tcp_sk(sk);
497 int state;
498
499 sock_poll_wait(file, sock, wait);
500
501 state = inet_sk_state_load(sk);
502 if (state == TCP_LISTEN)
503 return inet_csk_listen_poll(sk);
504
505 /* Socket is not locked. We are protected from async events
506 * by poll logic and correct handling of state changes
507 * made by other threads is impossible in any case.
508 */
509
510 mask = 0;
511
512 /*
513 * EPOLLHUP is certainly not done right. But poll() doesn't
514 * have a notion of HUP in just one direction, and for a
515 * socket the read side is more interesting.
516 *
517 * Some poll() documentation says that EPOLLHUP is incompatible
518 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 * all. But careful, it tends to be safer to return too many
520 * bits than too few, and you can easily break real applications
521 * if you don't tell them that something has hung up!
522 *
523 * Check-me.
524 *
525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 * our fs/select.c). It means that after we received EOF,
527 * poll always returns immediately, making impossible poll() on write()
528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 * if and only if shutdown has been made in both directions.
530 * Actually, it is interesting to look how Solaris and DUX
531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 * then we could set it on SND_SHUTDOWN. BTW examples given
533 * in Stevens' books assume exactly this behaviour, it explains
534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
535 *
536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 * blocking on fresh not-connected or disconnected socket. --ANK
538 */
539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 mask |= EPOLLHUP;
541 if (sk->sk_shutdown & RCV_SHUTDOWN)
542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543
544 /* Connected or passive Fast Open socket? */
545 if (state != TCP_SYN_SENT &&
546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 int target = sock_rcvlowat(sk, 0, INT_MAX);
548
549 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
550 !sock_flag(sk, SOCK_URGINLINE) &&
551 tp->urg_data)
552 target++;
553
554 if (tcp_stream_is_readable(tp, target, sk))
555 mask |= EPOLLIN | EPOLLRDNORM;
556
557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
558 if (sk_stream_is_writeable(sk)) {
559 mask |= EPOLLOUT | EPOLLWRNORM;
560 } else { /* send SIGIO later */
561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
563
564 /* Race breaker. If space is freed after
565 * wspace test but before the flags are set,
566 * IO signal will be lost. Memory barrier
567 * pairs with the input side.
568 */
569 smp_mb__after_atomic();
570 if (sk_stream_is_writeable(sk))
571 mask |= EPOLLOUT | EPOLLWRNORM;
572 }
573 } else
574 mask |= EPOLLOUT | EPOLLWRNORM;
575
576 if (tp->urg_data & TCP_URG_VALID)
577 mask |= EPOLLPRI;
578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
579 /* Active TCP fastopen socket with defer_connect
580 * Return EPOLLOUT so application can call write()
581 * in order for kernel to generate SYN+data
582 */
583 mask |= EPOLLOUT | EPOLLWRNORM;
584 }
585 /* This barrier is coupled with smp_wmb() in tcp_reset() */
586 smp_rmb();
587 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
588 mask |= EPOLLERR;
589
590 return mask;
591 }
592 EXPORT_SYMBOL(tcp_poll);
593
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
595 {
596 struct tcp_sock *tp = tcp_sk(sk);
597 int answ;
598 bool slow;
599
600 switch (cmd) {
601 case SIOCINQ:
602 if (sk->sk_state == TCP_LISTEN)
603 return -EINVAL;
604
605 slow = lock_sock_fast(sk);
606 answ = tcp_inq(sk);
607 unlock_sock_fast(sk, slow);
608 break;
609 case SIOCATMARK:
610 answ = tp->urg_data &&
611 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
612 break;
613 case SIOCOUTQ:
614 if (sk->sk_state == TCP_LISTEN)
615 return -EINVAL;
616
617 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
618 answ = 0;
619 else
620 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
621 break;
622 case SIOCOUTQNSD:
623 if (sk->sk_state == TCP_LISTEN)
624 return -EINVAL;
625
626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
627 answ = 0;
628 else
629 answ = READ_ONCE(tp->write_seq) -
630 READ_ONCE(tp->snd_nxt);
631 break;
632 default:
633 return -ENOIOCTLCMD;
634 }
635
636 return put_user(answ, (int __user *)arg);
637 }
638 EXPORT_SYMBOL(tcp_ioctl);
639
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
641 {
642 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
643 tp->pushed_seq = tp->write_seq;
644 }
645
forced_push(const struct tcp_sock * tp)646 static inline bool forced_push(const struct tcp_sock *tp)
647 {
648 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
649 }
650
skb_entail(struct sock * sk,struct sk_buff * skb)651 static void skb_entail(struct sock *sk, struct sk_buff *skb)
652 {
653 struct tcp_sock *tp = tcp_sk(sk);
654 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
655
656 skb->csum = 0;
657 tcb->seq = tcb->end_seq = tp->write_seq;
658 tcb->tcp_flags = TCPHDR_ACK;
659 tcb->sacked = 0;
660 __skb_header_release(skb);
661 tcp_add_write_queue_tail(sk, skb);
662 sk_wmem_queued_add(sk, skb->truesize);
663 sk_mem_charge(sk, skb->truesize);
664 if (tp->nonagle & TCP_NAGLE_PUSH)
665 tp->nonagle &= ~TCP_NAGLE_PUSH;
666
667 tcp_slow_start_after_idle_check(sk);
668 }
669
tcp_mark_urg(struct tcp_sock * tp,int flags)670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671 {
672 if (flags & MSG_OOB)
673 tp->snd_up = tp->write_seq;
674 }
675
676 /* If a not yet filled skb is pushed, do not send it if
677 * we have data packets in Qdisc or NIC queues :
678 * Because TX completion will happen shortly, it gives a chance
679 * to coalesce future sendmsg() payload into this skb, without
680 * need for a timer, and with no latency trade off.
681 * As packets containing data payload have a bigger truesize
682 * than pure acks (dataless) packets, the last checks prevent
683 * autocorking if we only have an ACK in Qdisc/NIC queues,
684 * or if TX completion was delayed after we processed ACK packet.
685 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
687 int size_goal)
688 {
689 return skb->len < size_goal &&
690 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
691 !tcp_rtx_queue_empty(sk) &&
692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
693 }
694
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)695 static void tcp_push(struct sock *sk, int flags, int mss_now,
696 int nonagle, int size_goal)
697 {
698 struct tcp_sock *tp = tcp_sk(sk);
699 struct sk_buff *skb;
700
701 skb = tcp_write_queue_tail(sk);
702 if (!skb)
703 return;
704 if (!(flags & MSG_MORE) || forced_push(tp))
705 tcp_mark_push(tp, skb);
706
707 tcp_mark_urg(tp, flags);
708
709 if (tcp_should_autocork(sk, skb, size_goal)) {
710
711 /* avoid atomic op if TSQ_THROTTLED bit is already set */
712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 }
716 /* It is possible TX completion already happened
717 * before we set TSQ_THROTTLED.
718 */
719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 return;
721 }
722
723 if (flags & MSG_MORE)
724 nonagle = TCP_NAGLE_CORK;
725
726 __tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 unsigned int offset, size_t len)
731 {
732 struct tcp_splice_state *tss = rd_desc->arg.data;
733 int ret;
734
735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 min(rd_desc->count, len), tss->flags);
737 if (ret > 0)
738 rd_desc->count -= ret;
739 return ret;
740 }
741
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 /* Store TCP splice context information in read_descriptor_t. */
745 read_descriptor_t rd_desc = {
746 .arg.data = tss,
747 .count = tss->len,
748 };
749
750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752
753 /**
754 * tcp_splice_read - splice data from TCP socket to a pipe
755 * @sock: socket to splice from
756 * @ppos: position (not valid)
757 * @pipe: pipe to splice to
758 * @len: number of bytes to splice
759 * @flags: splice modifier flags
760 *
761 * Description:
762 * Will read pages from given socket and fill them into a pipe.
763 *
764 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 struct pipe_inode_info *pipe, size_t len,
767 unsigned int flags)
768 {
769 struct sock *sk = sock->sk;
770 struct tcp_splice_state tss = {
771 .pipe = pipe,
772 .len = len,
773 .flags = flags,
774 };
775 long timeo;
776 ssize_t spliced;
777 int ret;
778
779 sock_rps_record_flow(sk);
780 /*
781 * We can't seek on a socket input
782 */
783 if (unlikely(*ppos))
784 return -ESPIPE;
785
786 ret = spliced = 0;
787
788 lock_sock(sk);
789
790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 while (tss.len) {
792 ret = __tcp_splice_read(sk, &tss);
793 if (ret < 0)
794 break;
795 else if (!ret) {
796 if (spliced)
797 break;
798 if (sock_flag(sk, SOCK_DONE))
799 break;
800 if (sk->sk_err) {
801 ret = sock_error(sk);
802 break;
803 }
804 if (sk->sk_shutdown & RCV_SHUTDOWN)
805 break;
806 if (sk->sk_state == TCP_CLOSE) {
807 /*
808 * This occurs when user tries to read
809 * from never connected socket.
810 */
811 ret = -ENOTCONN;
812 break;
813 }
814 if (!timeo) {
815 ret = -EAGAIN;
816 break;
817 }
818 /* if __tcp_splice_read() got nothing while we have
819 * an skb in receive queue, we do not want to loop.
820 * This might happen with URG data.
821 */
822 if (!skb_queue_empty(&sk->sk_receive_queue))
823 break;
824 sk_wait_data(sk, &timeo, NULL);
825 if (signal_pending(current)) {
826 ret = sock_intr_errno(timeo);
827 break;
828 }
829 continue;
830 }
831 tss.len -= ret;
832 spliced += ret;
833
834 if (!timeo)
835 break;
836 release_sock(sk);
837 lock_sock(sk);
838
839 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
840 (sk->sk_shutdown & RCV_SHUTDOWN) ||
841 signal_pending(current))
842 break;
843 }
844
845 release_sock(sk);
846
847 if (spliced)
848 return spliced;
849
850 return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)854 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 bool force_schedule)
856 {
857 struct sk_buff *skb;
858
859 if (likely(!size)) {
860 skb = sk->sk_tx_skb_cache;
861 if (skb) {
862 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
863 sk->sk_tx_skb_cache = NULL;
864 pskb_trim(skb, 0);
865 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
866 skb_shinfo(skb)->tx_flags = 0;
867 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
868 return skb;
869 }
870 }
871 /* The TCP header must be at least 32-bit aligned. */
872 size = ALIGN(size, 4);
873
874 if (unlikely(tcp_under_memory_pressure(sk)))
875 sk_mem_reclaim_partial(sk);
876
877 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
878 if (likely(skb)) {
879 bool mem_scheduled;
880
881 if (force_schedule) {
882 mem_scheduled = true;
883 sk_forced_mem_schedule(sk, skb->truesize);
884 } else {
885 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
886 }
887 if (likely(mem_scheduled)) {
888 skb_reserve(skb, sk->sk_prot->max_header);
889 /*
890 * Make sure that we have exactly size bytes
891 * available to the caller, no more, no less.
892 */
893 skb->reserved_tailroom = skb->end - skb->tail - size;
894 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
895 return skb;
896 }
897 __kfree_skb(skb);
898 } else {
899 sk->sk_prot->enter_memory_pressure(sk);
900 sk_stream_moderate_sndbuf(sk);
901 }
902 return NULL;
903 }
904
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)905 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
906 int large_allowed)
907 {
908 struct tcp_sock *tp = tcp_sk(sk);
909 u32 new_size_goal, size_goal;
910
911 if (!large_allowed)
912 return mss_now;
913
914 /* Note : tcp_tso_autosize() will eventually split this later */
915 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
916 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
917
918 /* We try hard to avoid divides here */
919 size_goal = tp->gso_segs * mss_now;
920 if (unlikely(new_size_goal < size_goal ||
921 new_size_goal >= size_goal + mss_now)) {
922 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
923 sk->sk_gso_max_segs);
924 size_goal = tp->gso_segs * mss_now;
925 }
926
927 return max(size_goal, mss_now);
928 }
929
tcp_send_mss(struct sock * sk,int * size_goal,int flags)930 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
931 {
932 int mss_now;
933
934 mss_now = tcp_current_mss(sk);
935 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
936
937 return mss_now;
938 }
939
940 /* In some cases, both sendpage() and sendmsg() could have added
941 * an skb to the write queue, but failed adding payload on it.
942 * We need to remove it to consume less memory, but more
943 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
944 * users.
945 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)946 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
947 {
948 if (skb && !skb->len) {
949 tcp_unlink_write_queue(skb, sk);
950 if (tcp_write_queue_empty(sk))
951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
952 sk_wmem_free_skb(sk, skb);
953 }
954 }
955
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)956 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
957 size_t size, int flags)
958 {
959 struct tcp_sock *tp = tcp_sk(sk);
960 int mss_now, size_goal;
961 int err;
962 ssize_t copied;
963 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
964
965 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
966 WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
967 return -EINVAL;
968
969 /* Wait for a connection to finish. One exception is TCP Fast Open
970 * (passive side) where data is allowed to be sent before a connection
971 * is fully established.
972 */
973 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
974 !tcp_passive_fastopen(sk)) {
975 err = sk_stream_wait_connect(sk, &timeo);
976 if (err != 0)
977 goto out_err;
978 }
979
980 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
981
982 mss_now = tcp_send_mss(sk, &size_goal, flags);
983 copied = 0;
984
985 err = -EPIPE;
986 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
987 goto out_err;
988
989 while (size > 0) {
990 struct sk_buff *skb = tcp_write_queue_tail(sk);
991 int copy, i;
992 bool can_coalesce;
993
994 if (!skb || (copy = size_goal - skb->len) <= 0 ||
995 !tcp_skb_can_collapse_to(skb)) {
996 new_segment:
997 if (!sk_stream_memory_free(sk))
998 goto wait_for_sndbuf;
999
1000 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1001 tcp_rtx_and_write_queues_empty(sk));
1002 if (!skb)
1003 goto wait_for_memory;
1004
1005 #ifdef CONFIG_TLS_DEVICE
1006 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1007 #endif
1008 skb_entail(sk, skb);
1009 copy = size_goal;
1010 }
1011
1012 if (copy > size)
1013 copy = size;
1014
1015 i = skb_shinfo(skb)->nr_frags;
1016 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1017 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1018 tcp_mark_push(tp, skb);
1019 goto new_segment;
1020 }
1021 if (!sk_wmem_schedule(sk, copy))
1022 goto wait_for_memory;
1023
1024 if (can_coalesce) {
1025 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1026 } else {
1027 get_page(page);
1028 skb_fill_page_desc(skb, i, page, offset, copy);
1029 }
1030
1031 if (!(flags & MSG_NO_SHARED_FRAGS))
1032 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1033
1034 skb->len += copy;
1035 skb->data_len += copy;
1036 skb->truesize += copy;
1037 sk_wmem_queued_add(sk, copy);
1038 sk_mem_charge(sk, copy);
1039 skb->ip_summed = CHECKSUM_PARTIAL;
1040 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1041 TCP_SKB_CB(skb)->end_seq += copy;
1042 tcp_skb_pcount_set(skb, 0);
1043
1044 if (!copied)
1045 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1046
1047 copied += copy;
1048 offset += copy;
1049 size -= copy;
1050 if (!size)
1051 goto out;
1052
1053 if (skb->len < size_goal || (flags & MSG_OOB))
1054 continue;
1055
1056 if (forced_push(tp)) {
1057 tcp_mark_push(tp, skb);
1058 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1059 } else if (skb == tcp_send_head(sk))
1060 tcp_push_one(sk, mss_now);
1061 continue;
1062
1063 wait_for_sndbuf:
1064 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1065 wait_for_memory:
1066 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1067 TCP_NAGLE_PUSH, size_goal);
1068
1069 err = sk_stream_wait_memory(sk, &timeo);
1070 if (err != 0)
1071 goto do_error;
1072
1073 mss_now = tcp_send_mss(sk, &size_goal, flags);
1074 }
1075
1076 out:
1077 if (copied) {
1078 tcp_tx_timestamp(sk, sk->sk_tsflags);
1079 if (!(flags & MSG_SENDPAGE_NOTLAST))
1080 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1081 }
1082 return copied;
1083
1084 do_error:
1085 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1086 if (copied)
1087 goto out;
1088 out_err:
1089 /* make sure we wake any epoll edge trigger waiter */
1090 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1091 sk->sk_write_space(sk);
1092 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1093 }
1094 return sk_stream_error(sk, flags, err);
1095 }
1096 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1097
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1098 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1099 size_t size, int flags)
1100 {
1101 if (!(sk->sk_route_caps & NETIF_F_SG))
1102 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1103
1104 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1105
1106 return do_tcp_sendpages(sk, page, offset, size, flags);
1107 }
1108 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1109
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1110 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1111 size_t size, int flags)
1112 {
1113 int ret;
1114
1115 lock_sock(sk);
1116 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1117 release_sock(sk);
1118
1119 return ret;
1120 }
1121 EXPORT_SYMBOL(tcp_sendpage);
1122
tcp_free_fastopen_req(struct tcp_sock * tp)1123 void tcp_free_fastopen_req(struct tcp_sock *tp)
1124 {
1125 if (tp->fastopen_req) {
1126 kfree(tp->fastopen_req);
1127 tp->fastopen_req = NULL;
1128 }
1129 }
1130
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1131 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1132 int *copied, size_t size,
1133 struct ubuf_info *uarg)
1134 {
1135 struct tcp_sock *tp = tcp_sk(sk);
1136 struct inet_sock *inet = inet_sk(sk);
1137 struct sockaddr *uaddr = msg->msg_name;
1138 int err, flags;
1139
1140 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1141 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1142 uaddr->sa_family == AF_UNSPEC))
1143 return -EOPNOTSUPP;
1144 if (tp->fastopen_req)
1145 return -EALREADY; /* Another Fast Open is in progress */
1146
1147 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1148 sk->sk_allocation);
1149 if (unlikely(!tp->fastopen_req))
1150 return -ENOBUFS;
1151 tp->fastopen_req->data = msg;
1152 tp->fastopen_req->size = size;
1153 tp->fastopen_req->uarg = uarg;
1154
1155 if (inet->defer_connect) {
1156 err = tcp_connect(sk);
1157 /* Same failure procedure as in tcp_v4/6_connect */
1158 if (err) {
1159 tcp_set_state(sk, TCP_CLOSE);
1160 inet->inet_dport = 0;
1161 sk->sk_route_caps = 0;
1162 }
1163 }
1164 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1165 err = __inet_stream_connect(sk->sk_socket, uaddr,
1166 msg->msg_namelen, flags, 1);
1167 /* fastopen_req could already be freed in __inet_stream_connect
1168 * if the connection times out or gets rst
1169 */
1170 if (tp->fastopen_req) {
1171 *copied = tp->fastopen_req->copied;
1172 tcp_free_fastopen_req(tp);
1173 inet->defer_connect = 0;
1174 }
1175 return err;
1176 }
1177
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1178 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1179 {
1180 struct tcp_sock *tp = tcp_sk(sk);
1181 struct ubuf_info *uarg = NULL;
1182 struct sk_buff *skb;
1183 struct sockcm_cookie sockc;
1184 int flags, err, copied = 0;
1185 int mss_now = 0, size_goal, copied_syn = 0;
1186 int process_backlog = 0;
1187 bool zc = false;
1188 long timeo;
1189
1190 flags = msg->msg_flags;
1191
1192 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1193 skb = tcp_write_queue_tail(sk);
1194 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1195 if (!uarg) {
1196 err = -ENOBUFS;
1197 goto out_err;
1198 }
1199
1200 zc = sk->sk_route_caps & NETIF_F_SG;
1201 if (!zc)
1202 uarg->zerocopy = 0;
1203 }
1204
1205 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1206 !tp->repair) {
1207 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1208 if (err == -EINPROGRESS && copied_syn > 0)
1209 goto out;
1210 else if (err)
1211 goto out_err;
1212 }
1213
1214 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1215
1216 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1217
1218 /* Wait for a connection to finish. One exception is TCP Fast Open
1219 * (passive side) where data is allowed to be sent before a connection
1220 * is fully established.
1221 */
1222 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1223 !tcp_passive_fastopen(sk)) {
1224 err = sk_stream_wait_connect(sk, &timeo);
1225 if (err != 0)
1226 goto do_error;
1227 }
1228
1229 if (unlikely(tp->repair)) {
1230 if (tp->repair_queue == TCP_RECV_QUEUE) {
1231 copied = tcp_send_rcvq(sk, msg, size);
1232 goto out_nopush;
1233 }
1234
1235 err = -EINVAL;
1236 if (tp->repair_queue == TCP_NO_QUEUE)
1237 goto out_err;
1238
1239 /* 'common' sending to sendq */
1240 }
1241
1242 sockcm_init(&sockc, sk);
1243 if (msg->msg_controllen) {
1244 err = sock_cmsg_send(sk, msg, &sockc);
1245 if (unlikely(err)) {
1246 err = -EINVAL;
1247 goto out_err;
1248 }
1249 }
1250
1251 /* This should be in poll */
1252 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1253
1254 /* Ok commence sending. */
1255 copied = 0;
1256
1257 restart:
1258 mss_now = tcp_send_mss(sk, &size_goal, flags);
1259
1260 err = -EPIPE;
1261 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1262 goto do_error;
1263
1264 while (msg_data_left(msg)) {
1265 int copy = 0;
1266
1267 skb = tcp_write_queue_tail(sk);
1268 if (skb)
1269 copy = size_goal - skb->len;
1270
1271 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1272 bool first_skb;
1273
1274 new_segment:
1275 if (!sk_stream_memory_free(sk))
1276 goto wait_for_sndbuf;
1277
1278 if (unlikely(process_backlog >= 16)) {
1279 process_backlog = 0;
1280 if (sk_flush_backlog(sk))
1281 goto restart;
1282 }
1283 first_skb = tcp_rtx_and_write_queues_empty(sk);
1284 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1285 first_skb);
1286 if (!skb)
1287 goto wait_for_memory;
1288
1289 process_backlog++;
1290 skb->ip_summed = CHECKSUM_PARTIAL;
1291
1292 skb_entail(sk, skb);
1293 copy = size_goal;
1294
1295 /* All packets are restored as if they have
1296 * already been sent. skb_mstamp_ns isn't set to
1297 * avoid wrong rtt estimation.
1298 */
1299 if (tp->repair)
1300 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1301 }
1302
1303 /* Try to append data to the end of skb. */
1304 if (copy > msg_data_left(msg))
1305 copy = msg_data_left(msg);
1306
1307 /* Where to copy to? */
1308 if (skb_availroom(skb) > 0 && !zc) {
1309 /* We have some space in skb head. Superb! */
1310 copy = min_t(int, copy, skb_availroom(skb));
1311 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1312 if (err)
1313 goto do_fault;
1314 } else if (!zc) {
1315 bool merge = true;
1316 int i = skb_shinfo(skb)->nr_frags;
1317 struct page_frag *pfrag = sk_page_frag(sk);
1318
1319 if (!sk_page_frag_refill(sk, pfrag))
1320 goto wait_for_memory;
1321
1322 if (!skb_can_coalesce(skb, i, pfrag->page,
1323 pfrag->offset)) {
1324 if (i >= sysctl_max_skb_frags) {
1325 tcp_mark_push(tp, skb);
1326 goto new_segment;
1327 }
1328 merge = false;
1329 }
1330
1331 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1332
1333 if (!sk_wmem_schedule(sk, copy))
1334 goto wait_for_memory;
1335
1336 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1337 pfrag->page,
1338 pfrag->offset,
1339 copy);
1340 if (err)
1341 goto do_error;
1342
1343 /* Update the skb. */
1344 if (merge) {
1345 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1346 } else {
1347 skb_fill_page_desc(skb, i, pfrag->page,
1348 pfrag->offset, copy);
1349 page_ref_inc(pfrag->page);
1350 }
1351 pfrag->offset += copy;
1352 } else {
1353 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1354 if (err == -EMSGSIZE || err == -EEXIST) {
1355 tcp_mark_push(tp, skb);
1356 goto new_segment;
1357 }
1358 if (err < 0)
1359 goto do_error;
1360 copy = err;
1361 }
1362
1363 if (!copied)
1364 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1365
1366 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1367 TCP_SKB_CB(skb)->end_seq += copy;
1368 tcp_skb_pcount_set(skb, 0);
1369
1370 copied += copy;
1371 if (!msg_data_left(msg)) {
1372 if (unlikely(flags & MSG_EOR))
1373 TCP_SKB_CB(skb)->eor = 1;
1374 goto out;
1375 }
1376
1377 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1378 continue;
1379
1380 if (forced_push(tp)) {
1381 tcp_mark_push(tp, skb);
1382 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1383 } else if (skb == tcp_send_head(sk))
1384 tcp_push_one(sk, mss_now);
1385 continue;
1386
1387 wait_for_sndbuf:
1388 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1389 wait_for_memory:
1390 if (copied)
1391 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1392 TCP_NAGLE_PUSH, size_goal);
1393
1394 err = sk_stream_wait_memory(sk, &timeo);
1395 if (err != 0)
1396 goto do_error;
1397
1398 mss_now = tcp_send_mss(sk, &size_goal, flags);
1399 }
1400
1401 out:
1402 if (copied) {
1403 tcp_tx_timestamp(sk, sockc.tsflags);
1404 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1405 }
1406 out_nopush:
1407 sock_zerocopy_put(uarg);
1408 return copied + copied_syn;
1409
1410 do_error:
1411 skb = tcp_write_queue_tail(sk);
1412 do_fault:
1413 tcp_remove_empty_skb(sk, skb);
1414
1415 if (copied + copied_syn)
1416 goto out;
1417 out_err:
1418 sock_zerocopy_put_abort(uarg, true);
1419 err = sk_stream_error(sk, flags, err);
1420 /* make sure we wake any epoll edge trigger waiter */
1421 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1422 sk->sk_write_space(sk);
1423 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1424 }
1425 return err;
1426 }
1427 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1428
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1429 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1430 {
1431 int ret;
1432
1433 lock_sock(sk);
1434 ret = tcp_sendmsg_locked(sk, msg, size);
1435 release_sock(sk);
1436
1437 return ret;
1438 }
1439 EXPORT_SYMBOL(tcp_sendmsg);
1440
1441 /*
1442 * Handle reading urgent data. BSD has very simple semantics for
1443 * this, no blocking and very strange errors 8)
1444 */
1445
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1446 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1447 {
1448 struct tcp_sock *tp = tcp_sk(sk);
1449
1450 /* No URG data to read. */
1451 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1452 tp->urg_data == TCP_URG_READ)
1453 return -EINVAL; /* Yes this is right ! */
1454
1455 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1456 return -ENOTCONN;
1457
1458 if (tp->urg_data & TCP_URG_VALID) {
1459 int err = 0;
1460 char c = tp->urg_data;
1461
1462 if (!(flags & MSG_PEEK))
1463 tp->urg_data = TCP_URG_READ;
1464
1465 /* Read urgent data. */
1466 msg->msg_flags |= MSG_OOB;
1467
1468 if (len > 0) {
1469 if (!(flags & MSG_TRUNC))
1470 err = memcpy_to_msg(msg, &c, 1);
1471 len = 1;
1472 } else
1473 msg->msg_flags |= MSG_TRUNC;
1474
1475 return err ? -EFAULT : len;
1476 }
1477
1478 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1479 return 0;
1480
1481 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1482 * the available implementations agree in this case:
1483 * this call should never block, independent of the
1484 * blocking state of the socket.
1485 * Mike <pall@rz.uni-karlsruhe.de>
1486 */
1487 return -EAGAIN;
1488 }
1489
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1490 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1491 {
1492 struct sk_buff *skb;
1493 int copied = 0, err = 0;
1494
1495 /* XXX -- need to support SO_PEEK_OFF */
1496
1497 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1498 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1499 if (err)
1500 return err;
1501 copied += skb->len;
1502 }
1503
1504 skb_queue_walk(&sk->sk_write_queue, skb) {
1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1506 if (err)
1507 break;
1508
1509 copied += skb->len;
1510 }
1511
1512 return err ?: copied;
1513 }
1514
1515 /* Clean up the receive buffer for full frames taken by the user,
1516 * then send an ACK if necessary. COPIED is the number of bytes
1517 * tcp_recvmsg has given to the user so far, it speeds up the
1518 * calculation of whether or not we must ACK for the sake of
1519 * a window update.
1520 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1521 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1522 {
1523 struct tcp_sock *tp = tcp_sk(sk);
1524 bool time_to_ack = false;
1525
1526 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1527
1528 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1529 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1530 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1531
1532 if (inet_csk_ack_scheduled(sk)) {
1533 const struct inet_connection_sock *icsk = inet_csk(sk);
1534 /* Delayed ACKs frequently hit locked sockets during bulk
1535 * receive. */
1536 if (icsk->icsk_ack.blocked ||
1537 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1538 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1539 /*
1540 * If this read emptied read buffer, we send ACK, if
1541 * connection is not bidirectional, user drained
1542 * receive buffer and there was a small segment
1543 * in queue.
1544 */
1545 (copied > 0 &&
1546 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1547 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1548 !inet_csk_in_pingpong_mode(sk))) &&
1549 !atomic_read(&sk->sk_rmem_alloc)))
1550 time_to_ack = true;
1551 }
1552
1553 /* We send an ACK if we can now advertise a non-zero window
1554 * which has been raised "significantly".
1555 *
1556 * Even if window raised up to infinity, do not send window open ACK
1557 * in states, where we will not receive more. It is useless.
1558 */
1559 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1560 __u32 rcv_window_now = tcp_receive_window(tp);
1561
1562 /* Optimize, __tcp_select_window() is not cheap. */
1563 if (2*rcv_window_now <= tp->window_clamp) {
1564 __u32 new_window = __tcp_select_window(sk);
1565
1566 /* Send ACK now, if this read freed lots of space
1567 * in our buffer. Certainly, new_window is new window.
1568 * We can advertise it now, if it is not less than current one.
1569 * "Lots" means "at least twice" here.
1570 */
1571 if (new_window && new_window >= 2 * rcv_window_now)
1572 time_to_ack = true;
1573 }
1574 }
1575 if (time_to_ack)
1576 tcp_send_ack(sk);
1577 }
1578
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1579 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1580 {
1581 struct sk_buff *skb;
1582 u32 offset;
1583
1584 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1585 offset = seq - TCP_SKB_CB(skb)->seq;
1586 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1587 pr_err_once("%s: found a SYN, please report !\n", __func__);
1588 offset--;
1589 }
1590 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1591 *off = offset;
1592 return skb;
1593 }
1594 /* This looks weird, but this can happen if TCP collapsing
1595 * splitted a fat GRO packet, while we released socket lock
1596 * in skb_splice_bits()
1597 */
1598 sk_eat_skb(sk, skb);
1599 }
1600 return NULL;
1601 }
1602
1603 /*
1604 * This routine provides an alternative to tcp_recvmsg() for routines
1605 * that would like to handle copying from skbuffs directly in 'sendfile'
1606 * fashion.
1607 * Note:
1608 * - It is assumed that the socket was locked by the caller.
1609 * - The routine does not block.
1610 * - At present, there is no support for reading OOB data
1611 * or for 'peeking' the socket using this routine
1612 * (although both would be easy to implement).
1613 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1614 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1615 sk_read_actor_t recv_actor)
1616 {
1617 struct sk_buff *skb;
1618 struct tcp_sock *tp = tcp_sk(sk);
1619 u32 seq = tp->copied_seq;
1620 u32 offset;
1621 int copied = 0;
1622
1623 if (sk->sk_state == TCP_LISTEN)
1624 return -ENOTCONN;
1625 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1626 if (offset < skb->len) {
1627 int used;
1628 size_t len;
1629
1630 len = skb->len - offset;
1631 /* Stop reading if we hit a patch of urgent data */
1632 if (tp->urg_data) {
1633 u32 urg_offset = tp->urg_seq - seq;
1634 if (urg_offset < len)
1635 len = urg_offset;
1636 if (!len)
1637 break;
1638 }
1639 used = recv_actor(desc, skb, offset, len);
1640 if (used <= 0) {
1641 if (!copied)
1642 copied = used;
1643 break;
1644 } else if (used <= len) {
1645 seq += used;
1646 copied += used;
1647 offset += used;
1648 }
1649 /* If recv_actor drops the lock (e.g. TCP splice
1650 * receive) the skb pointer might be invalid when
1651 * getting here: tcp_collapse might have deleted it
1652 * while aggregating skbs from the socket queue.
1653 */
1654 skb = tcp_recv_skb(sk, seq - 1, &offset);
1655 if (!skb)
1656 break;
1657 /* TCP coalescing might have appended data to the skb.
1658 * Try to splice more frags
1659 */
1660 if (offset + 1 != skb->len)
1661 continue;
1662 }
1663 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1664 sk_eat_skb(sk, skb);
1665 ++seq;
1666 break;
1667 }
1668 sk_eat_skb(sk, skb);
1669 if (!desc->count)
1670 break;
1671 WRITE_ONCE(tp->copied_seq, seq);
1672 }
1673 WRITE_ONCE(tp->copied_seq, seq);
1674
1675 tcp_rcv_space_adjust(sk);
1676
1677 /* Clean up data we have read: This will do ACK frames. */
1678 if (copied > 0) {
1679 tcp_recv_skb(sk, seq, &offset);
1680 tcp_cleanup_rbuf(sk, copied);
1681 }
1682 return copied;
1683 }
1684 EXPORT_SYMBOL(tcp_read_sock);
1685
tcp_peek_len(struct socket * sock)1686 int tcp_peek_len(struct socket *sock)
1687 {
1688 return tcp_inq(sock->sk);
1689 }
1690 EXPORT_SYMBOL(tcp_peek_len);
1691
1692 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1693 int tcp_set_rcvlowat(struct sock *sk, int val)
1694 {
1695 int cap;
1696
1697 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1698 cap = sk->sk_rcvbuf >> 1;
1699 else
1700 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1701 val = min(val, cap);
1702 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1703
1704 /* Check if we need to signal EPOLLIN right now */
1705 tcp_data_ready(sk);
1706
1707 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1708 return 0;
1709
1710 val <<= 1;
1711 if (val > sk->sk_rcvbuf) {
1712 WRITE_ONCE(sk->sk_rcvbuf, val);
1713 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1714 }
1715 return 0;
1716 }
1717 EXPORT_SYMBOL(tcp_set_rcvlowat);
1718
1719 #ifdef CONFIG_MMU
1720 static const struct vm_operations_struct tcp_vm_ops = {
1721 };
1722
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1723 int tcp_mmap(struct file *file, struct socket *sock,
1724 struct vm_area_struct *vma)
1725 {
1726 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1727 return -EPERM;
1728 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1729
1730 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1731 vma->vm_flags |= VM_MIXEDMAP;
1732
1733 vma->vm_ops = &tcp_vm_ops;
1734 return 0;
1735 }
1736 EXPORT_SYMBOL(tcp_mmap);
1737
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1738 static int tcp_zerocopy_receive(struct sock *sk,
1739 struct tcp_zerocopy_receive *zc)
1740 {
1741 unsigned long address = (unsigned long)zc->address;
1742 const skb_frag_t *frags = NULL;
1743 u32 length = 0, seq, offset;
1744 struct vm_area_struct *vma;
1745 struct sk_buff *skb = NULL;
1746 struct tcp_sock *tp;
1747 int inq;
1748 int ret;
1749
1750 if (address & (PAGE_SIZE - 1) || address != zc->address)
1751 return -EINVAL;
1752
1753 if (sk->sk_state == TCP_LISTEN)
1754 return -ENOTCONN;
1755
1756 sock_rps_record_flow(sk);
1757
1758 down_read(¤t->mm->mmap_sem);
1759
1760 ret = -EINVAL;
1761 vma = find_vma(current->mm, address);
1762 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1763 goto out;
1764 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1765
1766 tp = tcp_sk(sk);
1767 seq = tp->copied_seq;
1768 inq = tcp_inq(sk);
1769 zc->length = min_t(u32, zc->length, inq);
1770 zc->length &= ~(PAGE_SIZE - 1);
1771 if (zc->length) {
1772 zap_page_range(vma, address, zc->length);
1773 zc->recv_skip_hint = 0;
1774 } else {
1775 zc->recv_skip_hint = inq;
1776 }
1777 ret = 0;
1778 while (length + PAGE_SIZE <= zc->length) {
1779 if (zc->recv_skip_hint < PAGE_SIZE) {
1780 if (skb) {
1781 skb = skb->next;
1782 offset = seq - TCP_SKB_CB(skb)->seq;
1783 } else {
1784 skb = tcp_recv_skb(sk, seq, &offset);
1785 }
1786
1787 zc->recv_skip_hint = skb->len - offset;
1788 offset -= skb_headlen(skb);
1789 if ((int)offset < 0 || skb_has_frag_list(skb))
1790 break;
1791 frags = skb_shinfo(skb)->frags;
1792 while (offset) {
1793 if (skb_frag_size(frags) > offset)
1794 goto out;
1795 offset -= skb_frag_size(frags);
1796 frags++;
1797 }
1798 }
1799 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1800 int remaining = zc->recv_skip_hint;
1801
1802 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1803 skb_frag_off(frags))) {
1804 remaining -= skb_frag_size(frags);
1805 frags++;
1806 }
1807 zc->recv_skip_hint -= remaining;
1808 break;
1809 }
1810 ret = vm_insert_page(vma, address + length,
1811 skb_frag_page(frags));
1812 if (ret)
1813 break;
1814 length += PAGE_SIZE;
1815 seq += PAGE_SIZE;
1816 zc->recv_skip_hint -= PAGE_SIZE;
1817 frags++;
1818 }
1819 out:
1820 up_read(¤t->mm->mmap_sem);
1821 if (length) {
1822 WRITE_ONCE(tp->copied_seq, seq);
1823 tcp_rcv_space_adjust(sk);
1824
1825 /* Clean up data we have read: This will do ACK frames. */
1826 tcp_recv_skb(sk, seq, &offset);
1827 tcp_cleanup_rbuf(sk, length);
1828 ret = 0;
1829 if (length == zc->length)
1830 zc->recv_skip_hint = 0;
1831 } else {
1832 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1833 ret = -EIO;
1834 }
1835 zc->length = length;
1836 return ret;
1837 }
1838 #endif
1839
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1840 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1841 struct scm_timestamping_internal *tss)
1842 {
1843 if (skb->tstamp)
1844 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1845 else
1846 tss->ts[0] = (struct timespec64) {0};
1847
1848 if (skb_hwtstamps(skb)->hwtstamp)
1849 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1850 else
1851 tss->ts[2] = (struct timespec64) {0};
1852 }
1853
1854 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)1855 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1856 struct scm_timestamping_internal *tss)
1857 {
1858 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1859 bool has_timestamping = false;
1860
1861 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1862 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1863 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1864 if (new_tstamp) {
1865 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec};
1866
1867 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1868 sizeof(kts), &kts);
1869 } else {
1870 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]);
1871
1872 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1873 sizeof(ts_old), &ts_old);
1874 }
1875 } else {
1876 if (new_tstamp) {
1877 struct __kernel_sock_timeval stv;
1878
1879 stv.tv_sec = tss->ts[0].tv_sec;
1880 stv.tv_usec = tss->ts[0].tv_nsec / 1000;
1881 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1882 sizeof(stv), &stv);
1883 } else {
1884 struct __kernel_old_timeval tv;
1885
1886 tv.tv_sec = tss->ts[0].tv_sec;
1887 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1889 sizeof(tv), &tv);
1890 }
1891 }
1892 }
1893
1894 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1895 has_timestamping = true;
1896 else
1897 tss->ts[0] = (struct timespec64) {0};
1898 }
1899
1900 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1901 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1902 has_timestamping = true;
1903 else
1904 tss->ts[2] = (struct timespec64) {0};
1905 }
1906
1907 if (has_timestamping) {
1908 tss->ts[1] = (struct timespec64) {0};
1909 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1910 put_cmsg_scm_timestamping64(msg, tss);
1911 else
1912 put_cmsg_scm_timestamping(msg, tss);
1913 }
1914 }
1915
tcp_inq_hint(struct sock * sk)1916 static int tcp_inq_hint(struct sock *sk)
1917 {
1918 const struct tcp_sock *tp = tcp_sk(sk);
1919 u32 copied_seq = READ_ONCE(tp->copied_seq);
1920 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1921 int inq;
1922
1923 inq = rcv_nxt - copied_seq;
1924 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1925 lock_sock(sk);
1926 inq = tp->rcv_nxt - tp->copied_seq;
1927 release_sock(sk);
1928 }
1929 /* After receiving a FIN, tell the user-space to continue reading
1930 * by returning a non-zero inq.
1931 */
1932 if (inq == 0 && sock_flag(sk, SOCK_DONE))
1933 inq = 1;
1934 return inq;
1935 }
1936
1937 /*
1938 * This routine copies from a sock struct into the user buffer.
1939 *
1940 * Technical note: in 2.3 we work on _locked_ socket, so that
1941 * tricks with *seq access order and skb->users are not required.
1942 * Probably, code can be easily improved even more.
1943 */
1944
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1945 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1946 int flags, int *addr_len)
1947 {
1948 struct tcp_sock *tp = tcp_sk(sk);
1949 int copied = 0;
1950 u32 peek_seq;
1951 u32 *seq;
1952 unsigned long used;
1953 int err, inq;
1954 int target; /* Read at least this many bytes */
1955 long timeo;
1956 struct sk_buff *skb, *last;
1957 u32 urg_hole = 0;
1958 struct scm_timestamping_internal tss;
1959 int cmsg_flags;
1960
1961 if (unlikely(flags & MSG_ERRQUEUE))
1962 return inet_recv_error(sk, msg, len, addr_len);
1963
1964 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1965 (sk->sk_state == TCP_ESTABLISHED))
1966 sk_busy_loop(sk, nonblock);
1967
1968 lock_sock(sk);
1969
1970 err = -ENOTCONN;
1971 if (sk->sk_state == TCP_LISTEN)
1972 goto out;
1973
1974 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
1975 timeo = sock_rcvtimeo(sk, nonblock);
1976
1977 /* Urgent data needs to be handled specially. */
1978 if (flags & MSG_OOB)
1979 goto recv_urg;
1980
1981 if (unlikely(tp->repair)) {
1982 err = -EPERM;
1983 if (!(flags & MSG_PEEK))
1984 goto out;
1985
1986 if (tp->repair_queue == TCP_SEND_QUEUE)
1987 goto recv_sndq;
1988
1989 err = -EINVAL;
1990 if (tp->repair_queue == TCP_NO_QUEUE)
1991 goto out;
1992
1993 /* 'common' recv queue MSG_PEEK-ing */
1994 }
1995
1996 seq = &tp->copied_seq;
1997 if (flags & MSG_PEEK) {
1998 peek_seq = tp->copied_seq;
1999 seq = &peek_seq;
2000 }
2001
2002 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2003
2004 do {
2005 u32 offset;
2006
2007 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2008 if (tp->urg_data && tp->urg_seq == *seq) {
2009 if (copied)
2010 break;
2011 if (signal_pending(current)) {
2012 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2013 break;
2014 }
2015 }
2016
2017 /* Next get a buffer. */
2018
2019 last = skb_peek_tail(&sk->sk_receive_queue);
2020 skb_queue_walk(&sk->sk_receive_queue, skb) {
2021 last = skb;
2022 /* Now that we have two receive queues this
2023 * shouldn't happen.
2024 */
2025 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2026 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2027 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2028 flags))
2029 break;
2030
2031 offset = *seq - TCP_SKB_CB(skb)->seq;
2032 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2033 pr_err_once("%s: found a SYN, please report !\n", __func__);
2034 offset--;
2035 }
2036 if (offset < skb->len)
2037 goto found_ok_skb;
2038 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2039 goto found_fin_ok;
2040 WARN(!(flags & MSG_PEEK),
2041 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2042 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2043 }
2044
2045 /* Well, if we have backlog, try to process it now yet. */
2046
2047 if (copied >= target && !sk->sk_backlog.tail)
2048 break;
2049
2050 if (copied) {
2051 if (sk->sk_err ||
2052 sk->sk_state == TCP_CLOSE ||
2053 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2054 !timeo ||
2055 signal_pending(current))
2056 break;
2057 } else {
2058 if (sock_flag(sk, SOCK_DONE))
2059 break;
2060
2061 if (sk->sk_err) {
2062 copied = sock_error(sk);
2063 break;
2064 }
2065
2066 if (sk->sk_shutdown & RCV_SHUTDOWN)
2067 break;
2068
2069 if (sk->sk_state == TCP_CLOSE) {
2070 /* This occurs when user tries to read
2071 * from never connected socket.
2072 */
2073 copied = -ENOTCONN;
2074 break;
2075 }
2076
2077 if (!timeo) {
2078 copied = -EAGAIN;
2079 break;
2080 }
2081
2082 if (signal_pending(current)) {
2083 copied = sock_intr_errno(timeo);
2084 break;
2085 }
2086 }
2087
2088 tcp_cleanup_rbuf(sk, copied);
2089
2090 if (copied >= target) {
2091 /* Do not sleep, just process backlog. */
2092 release_sock(sk);
2093 lock_sock(sk);
2094 } else {
2095 sk_wait_data(sk, &timeo, last);
2096 }
2097
2098 if ((flags & MSG_PEEK) &&
2099 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2100 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2101 current->comm,
2102 task_pid_nr(current));
2103 peek_seq = tp->copied_seq;
2104 }
2105 continue;
2106
2107 found_ok_skb:
2108 /* Ok so how much can we use? */
2109 used = skb->len - offset;
2110 if (len < used)
2111 used = len;
2112
2113 /* Do we have urgent data here? */
2114 if (tp->urg_data) {
2115 u32 urg_offset = tp->urg_seq - *seq;
2116 if (urg_offset < used) {
2117 if (!urg_offset) {
2118 if (!sock_flag(sk, SOCK_URGINLINE)) {
2119 WRITE_ONCE(*seq, *seq + 1);
2120 urg_hole++;
2121 offset++;
2122 used--;
2123 if (!used)
2124 goto skip_copy;
2125 }
2126 } else
2127 used = urg_offset;
2128 }
2129 }
2130
2131 if (!(flags & MSG_TRUNC)) {
2132 err = skb_copy_datagram_msg(skb, offset, msg, used);
2133 if (err) {
2134 /* Exception. Bailout! */
2135 if (!copied)
2136 copied = -EFAULT;
2137 break;
2138 }
2139 }
2140
2141 WRITE_ONCE(*seq, *seq + used);
2142 copied += used;
2143 len -= used;
2144
2145 tcp_rcv_space_adjust(sk);
2146
2147 skip_copy:
2148 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2149 tp->urg_data = 0;
2150 tcp_fast_path_check(sk);
2151 }
2152 if (used + offset < skb->len)
2153 continue;
2154
2155 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2156 tcp_update_recv_tstamps(skb, &tss);
2157 cmsg_flags |= 2;
2158 }
2159 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2160 goto found_fin_ok;
2161 if (!(flags & MSG_PEEK))
2162 sk_eat_skb(sk, skb);
2163 continue;
2164
2165 found_fin_ok:
2166 /* Process the FIN. */
2167 WRITE_ONCE(*seq, *seq + 1);
2168 if (!(flags & MSG_PEEK))
2169 sk_eat_skb(sk, skb);
2170 break;
2171 } while (len > 0);
2172
2173 /* According to UNIX98, msg_name/msg_namelen are ignored
2174 * on connected socket. I was just happy when found this 8) --ANK
2175 */
2176
2177 /* Clean up data we have read: This will do ACK frames. */
2178 tcp_cleanup_rbuf(sk, copied);
2179
2180 release_sock(sk);
2181
2182 if (cmsg_flags) {
2183 if (cmsg_flags & 2)
2184 tcp_recv_timestamp(msg, sk, &tss);
2185 if (cmsg_flags & 1) {
2186 inq = tcp_inq_hint(sk);
2187 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2188 }
2189 }
2190
2191 return copied;
2192
2193 out:
2194 release_sock(sk);
2195 return err;
2196
2197 recv_urg:
2198 err = tcp_recv_urg(sk, msg, len, flags);
2199 goto out;
2200
2201 recv_sndq:
2202 err = tcp_peek_sndq(sk, msg, len);
2203 goto out;
2204 }
2205 EXPORT_SYMBOL(tcp_recvmsg);
2206
tcp_set_state(struct sock * sk,int state)2207 void tcp_set_state(struct sock *sk, int state)
2208 {
2209 int oldstate = sk->sk_state;
2210
2211 /* We defined a new enum for TCP states that are exported in BPF
2212 * so as not force the internal TCP states to be frozen. The
2213 * following checks will detect if an internal state value ever
2214 * differs from the BPF value. If this ever happens, then we will
2215 * need to remap the internal value to the BPF value before calling
2216 * tcp_call_bpf_2arg.
2217 */
2218 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2219 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2220 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2221 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2222 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2223 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2224 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2225 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2226 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2227 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2228 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2229 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2230 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2231
2232 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2233 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2234
2235 switch (state) {
2236 case TCP_ESTABLISHED:
2237 if (oldstate != TCP_ESTABLISHED)
2238 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2239 break;
2240
2241 case TCP_CLOSE:
2242 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2243 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2244
2245 sk->sk_prot->unhash(sk);
2246 if (inet_csk(sk)->icsk_bind_hash &&
2247 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2248 inet_put_port(sk);
2249 /* fall through */
2250 default:
2251 if (oldstate == TCP_ESTABLISHED)
2252 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2253 }
2254
2255 /* Change state AFTER socket is unhashed to avoid closed
2256 * socket sitting in hash tables.
2257 */
2258 inet_sk_state_store(sk, state);
2259 }
2260 EXPORT_SYMBOL_GPL(tcp_set_state);
2261
2262 /*
2263 * State processing on a close. This implements the state shift for
2264 * sending our FIN frame. Note that we only send a FIN for some
2265 * states. A shutdown() may have already sent the FIN, or we may be
2266 * closed.
2267 */
2268
2269 static const unsigned char new_state[16] = {
2270 /* current state: new state: action: */
2271 [0 /* (Invalid) */] = TCP_CLOSE,
2272 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2273 [TCP_SYN_SENT] = TCP_CLOSE,
2274 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2275 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2276 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2277 [TCP_TIME_WAIT] = TCP_CLOSE,
2278 [TCP_CLOSE] = TCP_CLOSE,
2279 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2280 [TCP_LAST_ACK] = TCP_LAST_ACK,
2281 [TCP_LISTEN] = TCP_CLOSE,
2282 [TCP_CLOSING] = TCP_CLOSING,
2283 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2284 };
2285
tcp_close_state(struct sock * sk)2286 static int tcp_close_state(struct sock *sk)
2287 {
2288 int next = (int)new_state[sk->sk_state];
2289 int ns = next & TCP_STATE_MASK;
2290
2291 tcp_set_state(sk, ns);
2292
2293 return next & TCP_ACTION_FIN;
2294 }
2295
2296 /*
2297 * Shutdown the sending side of a connection. Much like close except
2298 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2299 */
2300
tcp_shutdown(struct sock * sk,int how)2301 void tcp_shutdown(struct sock *sk, int how)
2302 {
2303 /* We need to grab some memory, and put together a FIN,
2304 * and then put it into the queue to be sent.
2305 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2306 */
2307 if (!(how & SEND_SHUTDOWN))
2308 return;
2309
2310 /* If we've already sent a FIN, or it's a closed state, skip this. */
2311 if ((1 << sk->sk_state) &
2312 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2313 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2314 /* Clear out any half completed packets. FIN if needed. */
2315 if (tcp_close_state(sk))
2316 tcp_send_fin(sk);
2317 }
2318 }
2319 EXPORT_SYMBOL(tcp_shutdown);
2320
tcp_check_oom(struct sock * sk,int shift)2321 bool tcp_check_oom(struct sock *sk, int shift)
2322 {
2323 bool too_many_orphans, out_of_socket_memory;
2324
2325 too_many_orphans = tcp_too_many_orphans(sk, shift);
2326 out_of_socket_memory = tcp_out_of_memory(sk);
2327
2328 if (too_many_orphans)
2329 net_info_ratelimited("too many orphaned sockets\n");
2330 if (out_of_socket_memory)
2331 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2332 return too_many_orphans || out_of_socket_memory;
2333 }
2334
tcp_close(struct sock * sk,long timeout)2335 void tcp_close(struct sock *sk, long timeout)
2336 {
2337 struct sk_buff *skb;
2338 int data_was_unread = 0;
2339 int state;
2340
2341 lock_sock(sk);
2342 sk->sk_shutdown = SHUTDOWN_MASK;
2343
2344 if (sk->sk_state == TCP_LISTEN) {
2345 tcp_set_state(sk, TCP_CLOSE);
2346
2347 /* Special case. */
2348 inet_csk_listen_stop(sk);
2349
2350 goto adjudge_to_death;
2351 }
2352
2353 /* We need to flush the recv. buffs. We do this only on the
2354 * descriptor close, not protocol-sourced closes, because the
2355 * reader process may not have drained the data yet!
2356 */
2357 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2358 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2359
2360 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2361 len--;
2362 data_was_unread += len;
2363 __kfree_skb(skb);
2364 }
2365
2366 sk_mem_reclaim(sk);
2367
2368 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2369 if (sk->sk_state == TCP_CLOSE)
2370 goto adjudge_to_death;
2371
2372 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2373 * data was lost. To witness the awful effects of the old behavior of
2374 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2375 * GET in an FTP client, suspend the process, wait for the client to
2376 * advertise a zero window, then kill -9 the FTP client, wheee...
2377 * Note: timeout is always zero in such a case.
2378 */
2379 if (unlikely(tcp_sk(sk)->repair)) {
2380 sk->sk_prot->disconnect(sk, 0);
2381 } else if (data_was_unread) {
2382 /* Unread data was tossed, zap the connection. */
2383 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2384 tcp_set_state(sk, TCP_CLOSE);
2385 tcp_send_active_reset(sk, sk->sk_allocation);
2386 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2387 /* Check zero linger _after_ checking for unread data. */
2388 sk->sk_prot->disconnect(sk, 0);
2389 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2390 } else if (tcp_close_state(sk)) {
2391 /* We FIN if the application ate all the data before
2392 * zapping the connection.
2393 */
2394
2395 /* RED-PEN. Formally speaking, we have broken TCP state
2396 * machine. State transitions:
2397 *
2398 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2399 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2400 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2401 *
2402 * are legal only when FIN has been sent (i.e. in window),
2403 * rather than queued out of window. Purists blame.
2404 *
2405 * F.e. "RFC state" is ESTABLISHED,
2406 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2407 *
2408 * The visible declinations are that sometimes
2409 * we enter time-wait state, when it is not required really
2410 * (harmless), do not send active resets, when they are
2411 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2412 * they look as CLOSING or LAST_ACK for Linux)
2413 * Probably, I missed some more holelets.
2414 * --ANK
2415 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2416 * in a single packet! (May consider it later but will
2417 * probably need API support or TCP_CORK SYN-ACK until
2418 * data is written and socket is closed.)
2419 */
2420 tcp_send_fin(sk);
2421 }
2422
2423 sk_stream_wait_close(sk, timeout);
2424
2425 adjudge_to_death:
2426 state = sk->sk_state;
2427 sock_hold(sk);
2428 sock_orphan(sk);
2429
2430 local_bh_disable();
2431 bh_lock_sock(sk);
2432 /* remove backlog if any, without releasing ownership. */
2433 __release_sock(sk);
2434
2435 percpu_counter_inc(sk->sk_prot->orphan_count);
2436
2437 /* Have we already been destroyed by a softirq or backlog? */
2438 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2439 goto out;
2440
2441 /* This is a (useful) BSD violating of the RFC. There is a
2442 * problem with TCP as specified in that the other end could
2443 * keep a socket open forever with no application left this end.
2444 * We use a 1 minute timeout (about the same as BSD) then kill
2445 * our end. If they send after that then tough - BUT: long enough
2446 * that we won't make the old 4*rto = almost no time - whoops
2447 * reset mistake.
2448 *
2449 * Nope, it was not mistake. It is really desired behaviour
2450 * f.e. on http servers, when such sockets are useless, but
2451 * consume significant resources. Let's do it with special
2452 * linger2 option. --ANK
2453 */
2454
2455 if (sk->sk_state == TCP_FIN_WAIT2) {
2456 struct tcp_sock *tp = tcp_sk(sk);
2457 if (tp->linger2 < 0) {
2458 tcp_set_state(sk, TCP_CLOSE);
2459 tcp_send_active_reset(sk, GFP_ATOMIC);
2460 __NET_INC_STATS(sock_net(sk),
2461 LINUX_MIB_TCPABORTONLINGER);
2462 } else {
2463 const int tmo = tcp_fin_time(sk);
2464
2465 if (tmo > TCP_TIMEWAIT_LEN) {
2466 inet_csk_reset_keepalive_timer(sk,
2467 tmo - TCP_TIMEWAIT_LEN);
2468 } else {
2469 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2470 goto out;
2471 }
2472 }
2473 }
2474 if (sk->sk_state != TCP_CLOSE) {
2475 sk_mem_reclaim(sk);
2476 if (tcp_check_oom(sk, 0)) {
2477 tcp_set_state(sk, TCP_CLOSE);
2478 tcp_send_active_reset(sk, GFP_ATOMIC);
2479 __NET_INC_STATS(sock_net(sk),
2480 LINUX_MIB_TCPABORTONMEMORY);
2481 } else if (!check_net(sock_net(sk))) {
2482 /* Not possible to send reset; just close */
2483 tcp_set_state(sk, TCP_CLOSE);
2484 }
2485 }
2486
2487 if (sk->sk_state == TCP_CLOSE) {
2488 struct request_sock *req;
2489
2490 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2491 lockdep_sock_is_held(sk));
2492 /* We could get here with a non-NULL req if the socket is
2493 * aborted (e.g., closed with unread data) before 3WHS
2494 * finishes.
2495 */
2496 if (req)
2497 reqsk_fastopen_remove(sk, req, false);
2498 inet_csk_destroy_sock(sk);
2499 }
2500 /* Otherwise, socket is reprieved until protocol close. */
2501
2502 out:
2503 bh_unlock_sock(sk);
2504 local_bh_enable();
2505 release_sock(sk);
2506 sock_put(sk);
2507 }
2508 EXPORT_SYMBOL(tcp_close);
2509
2510 /* These states need RST on ABORT according to RFC793 */
2511
tcp_need_reset(int state)2512 static inline bool tcp_need_reset(int state)
2513 {
2514 return (1 << state) &
2515 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2516 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2517 }
2518
tcp_rtx_queue_purge(struct sock * sk)2519 static void tcp_rtx_queue_purge(struct sock *sk)
2520 {
2521 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2522
2523 tcp_sk(sk)->highest_sack = NULL;
2524 while (p) {
2525 struct sk_buff *skb = rb_to_skb(p);
2526
2527 p = rb_next(p);
2528 /* Since we are deleting whole queue, no need to
2529 * list_del(&skb->tcp_tsorted_anchor)
2530 */
2531 tcp_rtx_queue_unlink(skb, sk);
2532 sk_wmem_free_skb(sk, skb);
2533 }
2534 }
2535
tcp_write_queue_purge(struct sock * sk)2536 void tcp_write_queue_purge(struct sock *sk)
2537 {
2538 struct sk_buff *skb;
2539
2540 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2541 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2542 tcp_skb_tsorted_anchor_cleanup(skb);
2543 sk_wmem_free_skb(sk, skb);
2544 }
2545 tcp_rtx_queue_purge(sk);
2546 skb = sk->sk_tx_skb_cache;
2547 if (skb) {
2548 __kfree_skb(skb);
2549 sk->sk_tx_skb_cache = NULL;
2550 }
2551 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2552 sk_mem_reclaim(sk);
2553 tcp_clear_all_retrans_hints(tcp_sk(sk));
2554 tcp_sk(sk)->packets_out = 0;
2555 inet_csk(sk)->icsk_backoff = 0;
2556 }
2557
tcp_disconnect(struct sock * sk,int flags)2558 int tcp_disconnect(struct sock *sk, int flags)
2559 {
2560 struct inet_sock *inet = inet_sk(sk);
2561 struct inet_connection_sock *icsk = inet_csk(sk);
2562 struct tcp_sock *tp = tcp_sk(sk);
2563 int old_state = sk->sk_state;
2564 u32 seq;
2565
2566 if (old_state != TCP_CLOSE)
2567 tcp_set_state(sk, TCP_CLOSE);
2568
2569 /* ABORT function of RFC793 */
2570 if (old_state == TCP_LISTEN) {
2571 inet_csk_listen_stop(sk);
2572 } else if (unlikely(tp->repair)) {
2573 sk->sk_err = ECONNABORTED;
2574 } else if (tcp_need_reset(old_state) ||
2575 (tp->snd_nxt != tp->write_seq &&
2576 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2577 /* The last check adjusts for discrepancy of Linux wrt. RFC
2578 * states
2579 */
2580 tcp_send_active_reset(sk, gfp_any());
2581 sk->sk_err = ECONNRESET;
2582 } else if (old_state == TCP_SYN_SENT)
2583 sk->sk_err = ECONNRESET;
2584
2585 tcp_clear_xmit_timers(sk);
2586 __skb_queue_purge(&sk->sk_receive_queue);
2587 if (sk->sk_rx_skb_cache) {
2588 __kfree_skb(sk->sk_rx_skb_cache);
2589 sk->sk_rx_skb_cache = NULL;
2590 }
2591 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2592 tp->urg_data = 0;
2593 tcp_write_queue_purge(sk);
2594 tcp_fastopen_active_disable_ofo_check(sk);
2595 skb_rbtree_purge(&tp->out_of_order_queue);
2596
2597 inet->inet_dport = 0;
2598
2599 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2600 inet_reset_saddr(sk);
2601
2602 sk->sk_shutdown = 0;
2603 sock_reset_flag(sk, SOCK_DONE);
2604 tp->srtt_us = 0;
2605 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2606 tp->rcv_rtt_last_tsecr = 0;
2607
2608 seq = tp->write_seq + tp->max_window + 2;
2609 if (!seq)
2610 seq = 1;
2611 WRITE_ONCE(tp->write_seq, seq);
2612
2613 icsk->icsk_backoff = 0;
2614 tp->snd_cwnd = 2;
2615 icsk->icsk_probes_out = 0;
2616 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2617 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2618 tp->snd_cwnd = TCP_INIT_CWND;
2619 tp->snd_cwnd_cnt = 0;
2620 tp->window_clamp = 0;
2621 tp->delivered_ce = 0;
2622 tcp_set_ca_state(sk, TCP_CA_Open);
2623 tp->is_sack_reneg = 0;
2624 tcp_clear_retrans(tp);
2625 inet_csk_delack_init(sk);
2626 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2627 * issue in __tcp_select_window()
2628 */
2629 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2630 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2631 __sk_dst_reset(sk);
2632 dst_release(sk->sk_rx_dst);
2633 sk->sk_rx_dst = NULL;
2634 tcp_saved_syn_free(tp);
2635 tp->compressed_ack = 0;
2636 tp->bytes_sent = 0;
2637 tp->bytes_acked = 0;
2638 tp->bytes_received = 0;
2639 tp->bytes_retrans = 0;
2640 tp->duplicate_sack[0].start_seq = 0;
2641 tp->duplicate_sack[0].end_seq = 0;
2642 tp->dsack_dups = 0;
2643 tp->reord_seen = 0;
2644 tp->retrans_out = 0;
2645 tp->sacked_out = 0;
2646 tp->tlp_high_seq = 0;
2647 tp->last_oow_ack_time = 0;
2648 /* There's a bubble in the pipe until at least the first ACK. */
2649 tp->app_limited = ~0U;
2650 tp->rack.mstamp = 0;
2651 tp->rack.advanced = 0;
2652 tp->rack.reo_wnd_steps = 1;
2653 tp->rack.last_delivered = 0;
2654 tp->rack.reo_wnd_persist = 0;
2655 tp->rack.dsack_seen = 0;
2656 tp->syn_data_acked = 0;
2657 tp->rx_opt.saw_tstamp = 0;
2658 tp->rx_opt.dsack = 0;
2659 tp->rx_opt.num_sacks = 0;
2660 tp->rcv_ooopack = 0;
2661
2662
2663 /* Clean up fastopen related fields */
2664 tcp_free_fastopen_req(tp);
2665 inet->defer_connect = 0;
2666
2667 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2668
2669 if (sk->sk_frag.page) {
2670 put_page(sk->sk_frag.page);
2671 sk->sk_frag.page = NULL;
2672 sk->sk_frag.offset = 0;
2673 }
2674
2675 sk->sk_error_report(sk);
2676 return 0;
2677 }
2678 EXPORT_SYMBOL(tcp_disconnect);
2679
tcp_can_repair_sock(const struct sock * sk)2680 static inline bool tcp_can_repair_sock(const struct sock *sk)
2681 {
2682 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2683 (sk->sk_state != TCP_LISTEN);
2684 }
2685
tcp_repair_set_window(struct tcp_sock * tp,char __user * optbuf,int len)2686 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2687 {
2688 struct tcp_repair_window opt;
2689
2690 if (!tp->repair)
2691 return -EPERM;
2692
2693 if (len != sizeof(opt))
2694 return -EINVAL;
2695
2696 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2697 return -EFAULT;
2698
2699 if (opt.max_window < opt.snd_wnd)
2700 return -EINVAL;
2701
2702 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2703 return -EINVAL;
2704
2705 if (after(opt.rcv_wup, tp->rcv_nxt))
2706 return -EINVAL;
2707
2708 tp->snd_wl1 = opt.snd_wl1;
2709 tp->snd_wnd = opt.snd_wnd;
2710 tp->max_window = opt.max_window;
2711
2712 tp->rcv_wnd = opt.rcv_wnd;
2713 tp->rcv_wup = opt.rcv_wup;
2714
2715 return 0;
2716 }
2717
tcp_repair_options_est(struct sock * sk,struct tcp_repair_opt __user * optbuf,unsigned int len)2718 static int tcp_repair_options_est(struct sock *sk,
2719 struct tcp_repair_opt __user *optbuf, unsigned int len)
2720 {
2721 struct tcp_sock *tp = tcp_sk(sk);
2722 struct tcp_repair_opt opt;
2723
2724 while (len >= sizeof(opt)) {
2725 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2726 return -EFAULT;
2727
2728 optbuf++;
2729 len -= sizeof(opt);
2730
2731 switch (opt.opt_code) {
2732 case TCPOPT_MSS:
2733 tp->rx_opt.mss_clamp = opt.opt_val;
2734 tcp_mtup_init(sk);
2735 break;
2736 case TCPOPT_WINDOW:
2737 {
2738 u16 snd_wscale = opt.opt_val & 0xFFFF;
2739 u16 rcv_wscale = opt.opt_val >> 16;
2740
2741 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2742 return -EFBIG;
2743
2744 tp->rx_opt.snd_wscale = snd_wscale;
2745 tp->rx_opt.rcv_wscale = rcv_wscale;
2746 tp->rx_opt.wscale_ok = 1;
2747 }
2748 break;
2749 case TCPOPT_SACK_PERM:
2750 if (opt.opt_val != 0)
2751 return -EINVAL;
2752
2753 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2754 break;
2755 case TCPOPT_TIMESTAMP:
2756 if (opt.opt_val != 0)
2757 return -EINVAL;
2758
2759 tp->rx_opt.tstamp_ok = 1;
2760 break;
2761 }
2762 }
2763
2764 return 0;
2765 }
2766
2767 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2768 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2769
tcp_enable_tx_delay(void)2770 static void tcp_enable_tx_delay(void)
2771 {
2772 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2773 static int __tcp_tx_delay_enabled = 0;
2774
2775 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2776 static_branch_enable(&tcp_tx_delay_enabled);
2777 pr_info("TCP_TX_DELAY enabled\n");
2778 }
2779 }
2780 }
2781
2782 /*
2783 * Socket option code for TCP.
2784 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2785 static int do_tcp_setsockopt(struct sock *sk, int level,
2786 int optname, char __user *optval, unsigned int optlen)
2787 {
2788 struct tcp_sock *tp = tcp_sk(sk);
2789 struct inet_connection_sock *icsk = inet_csk(sk);
2790 struct net *net = sock_net(sk);
2791 int val;
2792 int err = 0;
2793
2794 /* These are data/string values, all the others are ints */
2795 switch (optname) {
2796 case TCP_CONGESTION: {
2797 char name[TCP_CA_NAME_MAX];
2798
2799 if (optlen < 1)
2800 return -EINVAL;
2801
2802 val = strncpy_from_user(name, optval,
2803 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2804 if (val < 0)
2805 return -EFAULT;
2806 name[val] = 0;
2807
2808 lock_sock(sk);
2809 err = tcp_set_congestion_control(sk, name, true, true,
2810 ns_capable(sock_net(sk)->user_ns,
2811 CAP_NET_ADMIN));
2812 release_sock(sk);
2813 return err;
2814 }
2815 case TCP_ULP: {
2816 char name[TCP_ULP_NAME_MAX];
2817
2818 if (optlen < 1)
2819 return -EINVAL;
2820
2821 val = strncpy_from_user(name, optval,
2822 min_t(long, TCP_ULP_NAME_MAX - 1,
2823 optlen));
2824 if (val < 0)
2825 return -EFAULT;
2826 name[val] = 0;
2827
2828 lock_sock(sk);
2829 err = tcp_set_ulp(sk, name);
2830 release_sock(sk);
2831 return err;
2832 }
2833 case TCP_FASTOPEN_KEY: {
2834 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
2835 __u8 *backup_key = NULL;
2836
2837 /* Allow a backup key as well to facilitate key rotation
2838 * First key is the active one.
2839 */
2840 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
2841 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
2842 return -EINVAL;
2843
2844 if (copy_from_user(key, optval, optlen))
2845 return -EFAULT;
2846
2847 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
2848 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
2849
2850 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
2851 }
2852 default:
2853 /* fallthru */
2854 break;
2855 }
2856
2857 if (optlen < sizeof(int))
2858 return -EINVAL;
2859
2860 if (get_user(val, (int __user *)optval))
2861 return -EFAULT;
2862
2863 lock_sock(sk);
2864
2865 switch (optname) {
2866 case TCP_MAXSEG:
2867 /* Values greater than interface MTU won't take effect. However
2868 * at the point when this call is done we typically don't yet
2869 * know which interface is going to be used
2870 */
2871 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2872 err = -EINVAL;
2873 break;
2874 }
2875 tp->rx_opt.user_mss = val;
2876 break;
2877
2878 case TCP_NODELAY:
2879 if (val) {
2880 /* TCP_NODELAY is weaker than TCP_CORK, so that
2881 * this option on corked socket is remembered, but
2882 * it is not activated until cork is cleared.
2883 *
2884 * However, when TCP_NODELAY is set we make
2885 * an explicit push, which overrides even TCP_CORK
2886 * for currently queued segments.
2887 */
2888 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2889 tcp_push_pending_frames(sk);
2890 } else {
2891 tp->nonagle &= ~TCP_NAGLE_OFF;
2892 }
2893 break;
2894
2895 case TCP_THIN_LINEAR_TIMEOUTS:
2896 if (val < 0 || val > 1)
2897 err = -EINVAL;
2898 else
2899 tp->thin_lto = val;
2900 break;
2901
2902 case TCP_THIN_DUPACK:
2903 if (val < 0 || val > 1)
2904 err = -EINVAL;
2905 break;
2906
2907 case TCP_REPAIR:
2908 if (!tcp_can_repair_sock(sk))
2909 err = -EPERM;
2910 else if (val == TCP_REPAIR_ON) {
2911 tp->repair = 1;
2912 sk->sk_reuse = SK_FORCE_REUSE;
2913 tp->repair_queue = TCP_NO_QUEUE;
2914 } else if (val == TCP_REPAIR_OFF) {
2915 tp->repair = 0;
2916 sk->sk_reuse = SK_NO_REUSE;
2917 tcp_send_window_probe(sk);
2918 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2919 tp->repair = 0;
2920 sk->sk_reuse = SK_NO_REUSE;
2921 } else
2922 err = -EINVAL;
2923
2924 break;
2925
2926 case TCP_REPAIR_QUEUE:
2927 if (!tp->repair)
2928 err = -EPERM;
2929 else if ((unsigned int)val < TCP_QUEUES_NR)
2930 tp->repair_queue = val;
2931 else
2932 err = -EINVAL;
2933 break;
2934
2935 case TCP_QUEUE_SEQ:
2936 if (sk->sk_state != TCP_CLOSE)
2937 err = -EPERM;
2938 else if (tp->repair_queue == TCP_SEND_QUEUE)
2939 WRITE_ONCE(tp->write_seq, val);
2940 else if (tp->repair_queue == TCP_RECV_QUEUE)
2941 WRITE_ONCE(tp->rcv_nxt, val);
2942 else
2943 err = -EINVAL;
2944 break;
2945
2946 case TCP_REPAIR_OPTIONS:
2947 if (!tp->repair)
2948 err = -EINVAL;
2949 else if (sk->sk_state == TCP_ESTABLISHED)
2950 err = tcp_repair_options_est(sk,
2951 (struct tcp_repair_opt __user *)optval,
2952 optlen);
2953 else
2954 err = -EPERM;
2955 break;
2956
2957 case TCP_CORK:
2958 /* When set indicates to always queue non-full frames.
2959 * Later the user clears this option and we transmit
2960 * any pending partial frames in the queue. This is
2961 * meant to be used alongside sendfile() to get properly
2962 * filled frames when the user (for example) must write
2963 * out headers with a write() call first and then use
2964 * sendfile to send out the data parts.
2965 *
2966 * TCP_CORK can be set together with TCP_NODELAY and it is
2967 * stronger than TCP_NODELAY.
2968 */
2969 if (val) {
2970 tp->nonagle |= TCP_NAGLE_CORK;
2971 } else {
2972 tp->nonagle &= ~TCP_NAGLE_CORK;
2973 if (tp->nonagle&TCP_NAGLE_OFF)
2974 tp->nonagle |= TCP_NAGLE_PUSH;
2975 tcp_push_pending_frames(sk);
2976 }
2977 break;
2978
2979 case TCP_KEEPIDLE:
2980 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2981 err = -EINVAL;
2982 else {
2983 tp->keepalive_time = val * HZ;
2984 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2985 !((1 << sk->sk_state) &
2986 (TCPF_CLOSE | TCPF_LISTEN))) {
2987 u32 elapsed = keepalive_time_elapsed(tp);
2988 if (tp->keepalive_time > elapsed)
2989 elapsed = tp->keepalive_time - elapsed;
2990 else
2991 elapsed = 0;
2992 inet_csk_reset_keepalive_timer(sk, elapsed);
2993 }
2994 }
2995 break;
2996 case TCP_KEEPINTVL:
2997 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2998 err = -EINVAL;
2999 else
3000 tp->keepalive_intvl = val * HZ;
3001 break;
3002 case TCP_KEEPCNT:
3003 if (val < 1 || val > MAX_TCP_KEEPCNT)
3004 err = -EINVAL;
3005 else
3006 tp->keepalive_probes = val;
3007 break;
3008 case TCP_SYNCNT:
3009 if (val < 1 || val > MAX_TCP_SYNCNT)
3010 err = -EINVAL;
3011 else
3012 icsk->icsk_syn_retries = val;
3013 break;
3014
3015 case TCP_SAVE_SYN:
3016 if (val < 0 || val > 1)
3017 err = -EINVAL;
3018 else
3019 tp->save_syn = val;
3020 break;
3021
3022 case TCP_LINGER2:
3023 if (val < 0)
3024 tp->linger2 = -1;
3025 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
3026 tp->linger2 = 0;
3027 else
3028 tp->linger2 = val * HZ;
3029 break;
3030
3031 case TCP_DEFER_ACCEPT:
3032 /* Translate value in seconds to number of retransmits */
3033 icsk->icsk_accept_queue.rskq_defer_accept =
3034 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3035 TCP_RTO_MAX / HZ);
3036 break;
3037
3038 case TCP_WINDOW_CLAMP:
3039 if (!val) {
3040 if (sk->sk_state != TCP_CLOSE) {
3041 err = -EINVAL;
3042 break;
3043 }
3044 tp->window_clamp = 0;
3045 } else
3046 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3047 SOCK_MIN_RCVBUF / 2 : val;
3048 break;
3049
3050 case TCP_QUICKACK:
3051 if (!val) {
3052 inet_csk_enter_pingpong_mode(sk);
3053 } else {
3054 inet_csk_exit_pingpong_mode(sk);
3055 if ((1 << sk->sk_state) &
3056 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3057 inet_csk_ack_scheduled(sk)) {
3058 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3059 tcp_cleanup_rbuf(sk, 1);
3060 if (!(val & 1))
3061 inet_csk_enter_pingpong_mode(sk);
3062 }
3063 }
3064 break;
3065
3066 #ifdef CONFIG_TCP_MD5SIG
3067 case TCP_MD5SIG:
3068 case TCP_MD5SIG_EXT:
3069 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3070 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3071 else
3072 err = -EINVAL;
3073 break;
3074 #endif
3075 case TCP_USER_TIMEOUT:
3076 /* Cap the max time in ms TCP will retry or probe the window
3077 * before giving up and aborting (ETIMEDOUT) a connection.
3078 */
3079 if (val < 0)
3080 err = -EINVAL;
3081 else
3082 icsk->icsk_user_timeout = val;
3083 break;
3084
3085 case TCP_FASTOPEN:
3086 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3087 TCPF_LISTEN))) {
3088 tcp_fastopen_init_key_once(net);
3089
3090 fastopen_queue_tune(sk, val);
3091 } else {
3092 err = -EINVAL;
3093 }
3094 break;
3095 case TCP_FASTOPEN_CONNECT:
3096 if (val > 1 || val < 0) {
3097 err = -EINVAL;
3098 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3099 if (sk->sk_state == TCP_CLOSE)
3100 tp->fastopen_connect = val;
3101 else
3102 err = -EINVAL;
3103 } else {
3104 err = -EOPNOTSUPP;
3105 }
3106 break;
3107 case TCP_FASTOPEN_NO_COOKIE:
3108 if (val > 1 || val < 0)
3109 err = -EINVAL;
3110 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3111 err = -EINVAL;
3112 else
3113 tp->fastopen_no_cookie = val;
3114 break;
3115 case TCP_TIMESTAMP:
3116 if (!tp->repair)
3117 err = -EPERM;
3118 else
3119 tp->tsoffset = val - tcp_time_stamp_raw();
3120 break;
3121 case TCP_REPAIR_WINDOW:
3122 err = tcp_repair_set_window(tp, optval, optlen);
3123 break;
3124 case TCP_NOTSENT_LOWAT:
3125 tp->notsent_lowat = val;
3126 sk->sk_write_space(sk);
3127 break;
3128 case TCP_INQ:
3129 if (val > 1 || val < 0)
3130 err = -EINVAL;
3131 else
3132 tp->recvmsg_inq = val;
3133 break;
3134 case TCP_TX_DELAY:
3135 if (val)
3136 tcp_enable_tx_delay();
3137 tp->tcp_tx_delay = val;
3138 break;
3139 default:
3140 err = -ENOPROTOOPT;
3141 break;
3142 }
3143
3144 release_sock(sk);
3145 return err;
3146 }
3147
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3148 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3149 unsigned int optlen)
3150 {
3151 const struct inet_connection_sock *icsk = inet_csk(sk);
3152
3153 if (level != SOL_TCP)
3154 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3155 optval, optlen);
3156 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3157 }
3158 EXPORT_SYMBOL(tcp_setsockopt);
3159
3160 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3161 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3162 char __user *optval, unsigned int optlen)
3163 {
3164 if (level != SOL_TCP)
3165 return inet_csk_compat_setsockopt(sk, level, optname,
3166 optval, optlen);
3167 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3168 }
3169 EXPORT_SYMBOL(compat_tcp_setsockopt);
3170 #endif
3171
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3172 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3173 struct tcp_info *info)
3174 {
3175 u64 stats[__TCP_CHRONO_MAX], total = 0;
3176 enum tcp_chrono i;
3177
3178 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3179 stats[i] = tp->chrono_stat[i - 1];
3180 if (i == tp->chrono_type)
3181 stats[i] += tcp_jiffies32 - tp->chrono_start;
3182 stats[i] *= USEC_PER_SEC / HZ;
3183 total += stats[i];
3184 }
3185
3186 info->tcpi_busy_time = total;
3187 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3188 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3189 }
3190
3191 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3192 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3193 {
3194 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3195 const struct inet_connection_sock *icsk = inet_csk(sk);
3196 unsigned long rate;
3197 u32 now;
3198 u64 rate64;
3199 bool slow;
3200
3201 memset(info, 0, sizeof(*info));
3202 if (sk->sk_type != SOCK_STREAM)
3203 return;
3204
3205 info->tcpi_state = inet_sk_state_load(sk);
3206
3207 /* Report meaningful fields for all TCP states, including listeners */
3208 rate = READ_ONCE(sk->sk_pacing_rate);
3209 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3210 info->tcpi_pacing_rate = rate64;
3211
3212 rate = READ_ONCE(sk->sk_max_pacing_rate);
3213 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3214 info->tcpi_max_pacing_rate = rate64;
3215
3216 info->tcpi_reordering = tp->reordering;
3217 info->tcpi_snd_cwnd = tp->snd_cwnd;
3218
3219 if (info->tcpi_state == TCP_LISTEN) {
3220 /* listeners aliased fields :
3221 * tcpi_unacked -> Number of children ready for accept()
3222 * tcpi_sacked -> max backlog
3223 */
3224 info->tcpi_unacked = sk->sk_ack_backlog;
3225 info->tcpi_sacked = sk->sk_max_ack_backlog;
3226 return;
3227 }
3228
3229 slow = lock_sock_fast(sk);
3230
3231 info->tcpi_ca_state = icsk->icsk_ca_state;
3232 info->tcpi_retransmits = icsk->icsk_retransmits;
3233 info->tcpi_probes = icsk->icsk_probes_out;
3234 info->tcpi_backoff = icsk->icsk_backoff;
3235
3236 if (tp->rx_opt.tstamp_ok)
3237 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3238 if (tcp_is_sack(tp))
3239 info->tcpi_options |= TCPI_OPT_SACK;
3240 if (tp->rx_opt.wscale_ok) {
3241 info->tcpi_options |= TCPI_OPT_WSCALE;
3242 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3243 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3244 }
3245
3246 if (tp->ecn_flags & TCP_ECN_OK)
3247 info->tcpi_options |= TCPI_OPT_ECN;
3248 if (tp->ecn_flags & TCP_ECN_SEEN)
3249 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3250 if (tp->syn_data_acked)
3251 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3252
3253 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3254 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3255 info->tcpi_snd_mss = tp->mss_cache;
3256 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3257
3258 info->tcpi_unacked = tp->packets_out;
3259 info->tcpi_sacked = tp->sacked_out;
3260
3261 info->tcpi_lost = tp->lost_out;
3262 info->tcpi_retrans = tp->retrans_out;
3263
3264 now = tcp_jiffies32;
3265 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3266 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3267 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3268
3269 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3270 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3271 info->tcpi_rtt = tp->srtt_us >> 3;
3272 info->tcpi_rttvar = tp->mdev_us >> 2;
3273 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3274 info->tcpi_advmss = tp->advmss;
3275
3276 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3277 info->tcpi_rcv_space = tp->rcvq_space.space;
3278
3279 info->tcpi_total_retrans = tp->total_retrans;
3280
3281 info->tcpi_bytes_acked = tp->bytes_acked;
3282 info->tcpi_bytes_received = tp->bytes_received;
3283 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3284 tcp_get_info_chrono_stats(tp, info);
3285
3286 info->tcpi_segs_out = tp->segs_out;
3287 info->tcpi_segs_in = tp->segs_in;
3288
3289 info->tcpi_min_rtt = tcp_min_rtt(tp);
3290 info->tcpi_data_segs_in = tp->data_segs_in;
3291 info->tcpi_data_segs_out = tp->data_segs_out;
3292
3293 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3294 rate64 = tcp_compute_delivery_rate(tp);
3295 if (rate64)
3296 info->tcpi_delivery_rate = rate64;
3297 info->tcpi_delivered = tp->delivered;
3298 info->tcpi_delivered_ce = tp->delivered_ce;
3299 info->tcpi_bytes_sent = tp->bytes_sent;
3300 info->tcpi_bytes_retrans = tp->bytes_retrans;
3301 info->tcpi_dsack_dups = tp->dsack_dups;
3302 info->tcpi_reord_seen = tp->reord_seen;
3303 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3304 info->tcpi_snd_wnd = tp->snd_wnd;
3305 unlock_sock_fast(sk, slow);
3306 }
3307 EXPORT_SYMBOL_GPL(tcp_get_info);
3308
tcp_opt_stats_get_size(void)3309 static size_t tcp_opt_stats_get_size(void)
3310 {
3311 return
3312 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3313 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3314 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3315 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3316 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3317 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3318 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3319 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3320 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3321 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3322 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3323 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3324 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3325 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3326 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3327 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3328 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3329 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3330 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3331 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3332 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3333 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3334 0;
3335 }
3336
tcp_get_timestamping_opt_stats(const struct sock * sk)3337 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3338 {
3339 const struct tcp_sock *tp = tcp_sk(sk);
3340 struct sk_buff *stats;
3341 struct tcp_info info;
3342 unsigned long rate;
3343 u64 rate64;
3344
3345 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3346 if (!stats)
3347 return NULL;
3348
3349 tcp_get_info_chrono_stats(tp, &info);
3350 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3351 info.tcpi_busy_time, TCP_NLA_PAD);
3352 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3353 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3354 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3355 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3356 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3357 tp->data_segs_out, TCP_NLA_PAD);
3358 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3359 tp->total_retrans, TCP_NLA_PAD);
3360
3361 rate = READ_ONCE(sk->sk_pacing_rate);
3362 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3363 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3364
3365 rate64 = tcp_compute_delivery_rate(tp);
3366 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3367
3368 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3369 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3370 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3371
3372 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3373 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3374 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3375 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3376 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3377
3378 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3379 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3380
3381 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3382 TCP_NLA_PAD);
3383 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3384 TCP_NLA_PAD);
3385 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3386 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3387 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3388
3389 return stats;
3390 }
3391
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3392 static int do_tcp_getsockopt(struct sock *sk, int level,
3393 int optname, char __user *optval, int __user *optlen)
3394 {
3395 struct inet_connection_sock *icsk = inet_csk(sk);
3396 struct tcp_sock *tp = tcp_sk(sk);
3397 struct net *net = sock_net(sk);
3398 int val, len;
3399
3400 if (get_user(len, optlen))
3401 return -EFAULT;
3402
3403 len = min_t(unsigned int, len, sizeof(int));
3404
3405 if (len < 0)
3406 return -EINVAL;
3407
3408 switch (optname) {
3409 case TCP_MAXSEG:
3410 val = tp->mss_cache;
3411 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3412 val = tp->rx_opt.user_mss;
3413 if (tp->repair)
3414 val = tp->rx_opt.mss_clamp;
3415 break;
3416 case TCP_NODELAY:
3417 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3418 break;
3419 case TCP_CORK:
3420 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3421 break;
3422 case TCP_KEEPIDLE:
3423 val = keepalive_time_when(tp) / HZ;
3424 break;
3425 case TCP_KEEPINTVL:
3426 val = keepalive_intvl_when(tp) / HZ;
3427 break;
3428 case TCP_KEEPCNT:
3429 val = keepalive_probes(tp);
3430 break;
3431 case TCP_SYNCNT:
3432 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3433 break;
3434 case TCP_LINGER2:
3435 val = tp->linger2;
3436 if (val >= 0)
3437 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3438 break;
3439 case TCP_DEFER_ACCEPT:
3440 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3441 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3442 break;
3443 case TCP_WINDOW_CLAMP:
3444 val = tp->window_clamp;
3445 break;
3446 case TCP_INFO: {
3447 struct tcp_info info;
3448
3449 if (get_user(len, optlen))
3450 return -EFAULT;
3451
3452 tcp_get_info(sk, &info);
3453
3454 len = min_t(unsigned int, len, sizeof(info));
3455 if (put_user(len, optlen))
3456 return -EFAULT;
3457 if (copy_to_user(optval, &info, len))
3458 return -EFAULT;
3459 return 0;
3460 }
3461 case TCP_CC_INFO: {
3462 const struct tcp_congestion_ops *ca_ops;
3463 union tcp_cc_info info;
3464 size_t sz = 0;
3465 int attr;
3466
3467 if (get_user(len, optlen))
3468 return -EFAULT;
3469
3470 ca_ops = icsk->icsk_ca_ops;
3471 if (ca_ops && ca_ops->get_info)
3472 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3473
3474 len = min_t(unsigned int, len, sz);
3475 if (put_user(len, optlen))
3476 return -EFAULT;
3477 if (copy_to_user(optval, &info, len))
3478 return -EFAULT;
3479 return 0;
3480 }
3481 case TCP_QUICKACK:
3482 val = !inet_csk_in_pingpong_mode(sk);
3483 break;
3484
3485 case TCP_CONGESTION:
3486 if (get_user(len, optlen))
3487 return -EFAULT;
3488 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3489 if (put_user(len, optlen))
3490 return -EFAULT;
3491 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3492 return -EFAULT;
3493 return 0;
3494
3495 case TCP_ULP:
3496 if (get_user(len, optlen))
3497 return -EFAULT;
3498 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3499 if (!icsk->icsk_ulp_ops) {
3500 if (put_user(0, optlen))
3501 return -EFAULT;
3502 return 0;
3503 }
3504 if (put_user(len, optlen))
3505 return -EFAULT;
3506 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3507 return -EFAULT;
3508 return 0;
3509
3510 case TCP_FASTOPEN_KEY: {
3511 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3512 struct tcp_fastopen_context *ctx;
3513 unsigned int key_len = 0;
3514
3515 if (get_user(len, optlen))
3516 return -EFAULT;
3517
3518 rcu_read_lock();
3519 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3520 if (ctx) {
3521 key_len = tcp_fastopen_context_len(ctx) *
3522 TCP_FASTOPEN_KEY_LENGTH;
3523 memcpy(&key[0], &ctx->key[0], key_len);
3524 }
3525 rcu_read_unlock();
3526
3527 len = min_t(unsigned int, len, key_len);
3528 if (put_user(len, optlen))
3529 return -EFAULT;
3530 if (copy_to_user(optval, key, len))
3531 return -EFAULT;
3532 return 0;
3533 }
3534 case TCP_THIN_LINEAR_TIMEOUTS:
3535 val = tp->thin_lto;
3536 break;
3537
3538 case TCP_THIN_DUPACK:
3539 val = 0;
3540 break;
3541
3542 case TCP_REPAIR:
3543 val = tp->repair;
3544 break;
3545
3546 case TCP_REPAIR_QUEUE:
3547 if (tp->repair)
3548 val = tp->repair_queue;
3549 else
3550 return -EINVAL;
3551 break;
3552
3553 case TCP_REPAIR_WINDOW: {
3554 struct tcp_repair_window opt;
3555
3556 if (get_user(len, optlen))
3557 return -EFAULT;
3558
3559 if (len != sizeof(opt))
3560 return -EINVAL;
3561
3562 if (!tp->repair)
3563 return -EPERM;
3564
3565 opt.snd_wl1 = tp->snd_wl1;
3566 opt.snd_wnd = tp->snd_wnd;
3567 opt.max_window = tp->max_window;
3568 opt.rcv_wnd = tp->rcv_wnd;
3569 opt.rcv_wup = tp->rcv_wup;
3570
3571 if (copy_to_user(optval, &opt, len))
3572 return -EFAULT;
3573 return 0;
3574 }
3575 case TCP_QUEUE_SEQ:
3576 if (tp->repair_queue == TCP_SEND_QUEUE)
3577 val = tp->write_seq;
3578 else if (tp->repair_queue == TCP_RECV_QUEUE)
3579 val = tp->rcv_nxt;
3580 else
3581 return -EINVAL;
3582 break;
3583
3584 case TCP_USER_TIMEOUT:
3585 val = icsk->icsk_user_timeout;
3586 break;
3587
3588 case TCP_FASTOPEN:
3589 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3590 break;
3591
3592 case TCP_FASTOPEN_CONNECT:
3593 val = tp->fastopen_connect;
3594 break;
3595
3596 case TCP_FASTOPEN_NO_COOKIE:
3597 val = tp->fastopen_no_cookie;
3598 break;
3599
3600 case TCP_TX_DELAY:
3601 val = tp->tcp_tx_delay;
3602 break;
3603
3604 case TCP_TIMESTAMP:
3605 val = tcp_time_stamp_raw() + tp->tsoffset;
3606 break;
3607 case TCP_NOTSENT_LOWAT:
3608 val = tp->notsent_lowat;
3609 break;
3610 case TCP_INQ:
3611 val = tp->recvmsg_inq;
3612 break;
3613 case TCP_SAVE_SYN:
3614 val = tp->save_syn;
3615 break;
3616 case TCP_SAVED_SYN: {
3617 if (get_user(len, optlen))
3618 return -EFAULT;
3619
3620 lock_sock(sk);
3621 if (tp->saved_syn) {
3622 if (len < tp->saved_syn[0]) {
3623 if (put_user(tp->saved_syn[0], optlen)) {
3624 release_sock(sk);
3625 return -EFAULT;
3626 }
3627 release_sock(sk);
3628 return -EINVAL;
3629 }
3630 len = tp->saved_syn[0];
3631 if (put_user(len, optlen)) {
3632 release_sock(sk);
3633 return -EFAULT;
3634 }
3635 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3636 release_sock(sk);
3637 return -EFAULT;
3638 }
3639 tcp_saved_syn_free(tp);
3640 release_sock(sk);
3641 } else {
3642 release_sock(sk);
3643 len = 0;
3644 if (put_user(len, optlen))
3645 return -EFAULT;
3646 }
3647 return 0;
3648 }
3649 #ifdef CONFIG_MMU
3650 case TCP_ZEROCOPY_RECEIVE: {
3651 struct tcp_zerocopy_receive zc;
3652 int err;
3653
3654 if (get_user(len, optlen))
3655 return -EFAULT;
3656 if (len != sizeof(zc))
3657 return -EINVAL;
3658 if (copy_from_user(&zc, optval, len))
3659 return -EFAULT;
3660 lock_sock(sk);
3661 err = tcp_zerocopy_receive(sk, &zc);
3662 release_sock(sk);
3663 if (!err && copy_to_user(optval, &zc, len))
3664 err = -EFAULT;
3665 return err;
3666 }
3667 #endif
3668 default:
3669 return -ENOPROTOOPT;
3670 }
3671
3672 if (put_user(len, optlen))
3673 return -EFAULT;
3674 if (copy_to_user(optval, &val, len))
3675 return -EFAULT;
3676 return 0;
3677 }
3678
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3679 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3680 int __user *optlen)
3681 {
3682 struct inet_connection_sock *icsk = inet_csk(sk);
3683
3684 if (level != SOL_TCP)
3685 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3686 optval, optlen);
3687 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3688 }
3689 EXPORT_SYMBOL(tcp_getsockopt);
3690
3691 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3692 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3693 char __user *optval, int __user *optlen)
3694 {
3695 if (level != SOL_TCP)
3696 return inet_csk_compat_getsockopt(sk, level, optname,
3697 optval, optlen);
3698 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3699 }
3700 EXPORT_SYMBOL(compat_tcp_getsockopt);
3701 #endif
3702
3703 #ifdef CONFIG_TCP_MD5SIG
3704 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3705 static DEFINE_MUTEX(tcp_md5sig_mutex);
3706 static bool tcp_md5sig_pool_populated = false;
3707
__tcp_alloc_md5sig_pool(void)3708 static void __tcp_alloc_md5sig_pool(void)
3709 {
3710 struct crypto_ahash *hash;
3711 int cpu;
3712
3713 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3714 if (IS_ERR(hash))
3715 return;
3716
3717 for_each_possible_cpu(cpu) {
3718 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3719 struct ahash_request *req;
3720
3721 if (!scratch) {
3722 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3723 sizeof(struct tcphdr),
3724 GFP_KERNEL,
3725 cpu_to_node(cpu));
3726 if (!scratch)
3727 return;
3728 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3729 }
3730 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3731 continue;
3732
3733 req = ahash_request_alloc(hash, GFP_KERNEL);
3734 if (!req)
3735 return;
3736
3737 ahash_request_set_callback(req, 0, NULL, NULL);
3738
3739 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3740 }
3741 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3742 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3743 */
3744 smp_wmb();
3745 tcp_md5sig_pool_populated = true;
3746 }
3747
tcp_alloc_md5sig_pool(void)3748 bool tcp_alloc_md5sig_pool(void)
3749 {
3750 if (unlikely(!tcp_md5sig_pool_populated)) {
3751 mutex_lock(&tcp_md5sig_mutex);
3752
3753 if (!tcp_md5sig_pool_populated) {
3754 __tcp_alloc_md5sig_pool();
3755 if (tcp_md5sig_pool_populated)
3756 static_branch_inc(&tcp_md5_needed);
3757 }
3758
3759 mutex_unlock(&tcp_md5sig_mutex);
3760 }
3761 return tcp_md5sig_pool_populated;
3762 }
3763 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3764
3765
3766 /**
3767 * tcp_get_md5sig_pool - get md5sig_pool for this user
3768 *
3769 * We use percpu structure, so if we succeed, we exit with preemption
3770 * and BH disabled, to make sure another thread or softirq handling
3771 * wont try to get same context.
3772 */
tcp_get_md5sig_pool(void)3773 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3774 {
3775 local_bh_disable();
3776
3777 if (tcp_md5sig_pool_populated) {
3778 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3779 smp_rmb();
3780 return this_cpu_ptr(&tcp_md5sig_pool);
3781 }
3782 local_bh_enable();
3783 return NULL;
3784 }
3785 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3786
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3787 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3788 const struct sk_buff *skb, unsigned int header_len)
3789 {
3790 struct scatterlist sg;
3791 const struct tcphdr *tp = tcp_hdr(skb);
3792 struct ahash_request *req = hp->md5_req;
3793 unsigned int i;
3794 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3795 skb_headlen(skb) - header_len : 0;
3796 const struct skb_shared_info *shi = skb_shinfo(skb);
3797 struct sk_buff *frag_iter;
3798
3799 sg_init_table(&sg, 1);
3800
3801 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3802 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3803 if (crypto_ahash_update(req))
3804 return 1;
3805
3806 for (i = 0; i < shi->nr_frags; ++i) {
3807 const skb_frag_t *f = &shi->frags[i];
3808 unsigned int offset = skb_frag_off(f);
3809 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3810
3811 sg_set_page(&sg, page, skb_frag_size(f),
3812 offset_in_page(offset));
3813 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3814 if (crypto_ahash_update(req))
3815 return 1;
3816 }
3817
3818 skb_walk_frags(skb, frag_iter)
3819 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3820 return 1;
3821
3822 return 0;
3823 }
3824 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3825
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3826 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3827 {
3828 struct scatterlist sg;
3829
3830 sg_init_one(&sg, key->key, key->keylen);
3831 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3832 return crypto_ahash_update(hp->md5_req);
3833 }
3834 EXPORT_SYMBOL(tcp_md5_hash_key);
3835
3836 #endif
3837
tcp_done(struct sock * sk)3838 void tcp_done(struct sock *sk)
3839 {
3840 struct request_sock *req;
3841
3842 /* We might be called with a new socket, after
3843 * inet_csk_prepare_forced_close() has been called
3844 * so we can not use lockdep_sock_is_held(sk)
3845 */
3846 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
3847
3848 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3849 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3850
3851 tcp_set_state(sk, TCP_CLOSE);
3852 tcp_clear_xmit_timers(sk);
3853 if (req)
3854 reqsk_fastopen_remove(sk, req, false);
3855
3856 sk->sk_shutdown = SHUTDOWN_MASK;
3857
3858 if (!sock_flag(sk, SOCK_DEAD))
3859 sk->sk_state_change(sk);
3860 else
3861 inet_csk_destroy_sock(sk);
3862 }
3863 EXPORT_SYMBOL_GPL(tcp_done);
3864
tcp_abort(struct sock * sk,int err)3865 int tcp_abort(struct sock *sk, int err)
3866 {
3867 if (!sk_fullsock(sk)) {
3868 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3869 struct request_sock *req = inet_reqsk(sk);
3870
3871 local_bh_disable();
3872 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3873 local_bh_enable();
3874 return 0;
3875 }
3876 return -EOPNOTSUPP;
3877 }
3878
3879 /* Don't race with userspace socket closes such as tcp_close. */
3880 lock_sock(sk);
3881
3882 if (sk->sk_state == TCP_LISTEN) {
3883 tcp_set_state(sk, TCP_CLOSE);
3884 inet_csk_listen_stop(sk);
3885 }
3886
3887 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3888 local_bh_disable();
3889 bh_lock_sock(sk);
3890
3891 if (!sock_flag(sk, SOCK_DEAD)) {
3892 sk->sk_err = err;
3893 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3894 smp_wmb();
3895 sk->sk_error_report(sk);
3896 if (tcp_need_reset(sk->sk_state))
3897 tcp_send_active_reset(sk, GFP_ATOMIC);
3898 tcp_done(sk);
3899 }
3900
3901 bh_unlock_sock(sk);
3902 local_bh_enable();
3903 tcp_write_queue_purge(sk);
3904 release_sock(sk);
3905 return 0;
3906 }
3907 EXPORT_SYMBOL_GPL(tcp_abort);
3908
3909 extern struct tcp_congestion_ops tcp_reno;
3910
3911 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3912 static int __init set_thash_entries(char *str)
3913 {
3914 ssize_t ret;
3915
3916 if (!str)
3917 return 0;
3918
3919 ret = kstrtoul(str, 0, &thash_entries);
3920 if (ret)
3921 return 0;
3922
3923 return 1;
3924 }
3925 __setup("thash_entries=", set_thash_entries);
3926
tcp_init_mem(void)3927 static void __init tcp_init_mem(void)
3928 {
3929 unsigned long limit = nr_free_buffer_pages() / 16;
3930
3931 limit = max(limit, 128UL);
3932 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3933 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3934 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3935 }
3936
tcp_init(void)3937 void __init tcp_init(void)
3938 {
3939 int max_rshare, max_wshare, cnt;
3940 unsigned long limit;
3941 unsigned int i;
3942
3943 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3944 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3945 FIELD_SIZEOF(struct sk_buff, cb));
3946
3947 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3948 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3949 inet_hashinfo_init(&tcp_hashinfo);
3950 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3951 thash_entries, 21, /* one slot per 2 MB*/
3952 0, 64 * 1024);
3953 tcp_hashinfo.bind_bucket_cachep =
3954 kmem_cache_create("tcp_bind_bucket",
3955 sizeof(struct inet_bind_bucket), 0,
3956 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3957
3958 /* Size and allocate the main established and bind bucket
3959 * hash tables.
3960 *
3961 * The methodology is similar to that of the buffer cache.
3962 */
3963 tcp_hashinfo.ehash =
3964 alloc_large_system_hash("TCP established",
3965 sizeof(struct inet_ehash_bucket),
3966 thash_entries,
3967 17, /* one slot per 128 KB of memory */
3968 0,
3969 NULL,
3970 &tcp_hashinfo.ehash_mask,
3971 0,
3972 thash_entries ? 0 : 512 * 1024);
3973 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3974 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3975
3976 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3977 panic("TCP: failed to alloc ehash_locks");
3978 tcp_hashinfo.bhash =
3979 alloc_large_system_hash("TCP bind",
3980 sizeof(struct inet_bind_hashbucket),
3981 tcp_hashinfo.ehash_mask + 1,
3982 17, /* one slot per 128 KB of memory */
3983 0,
3984 &tcp_hashinfo.bhash_size,
3985 NULL,
3986 0,
3987 64 * 1024);
3988 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3989 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3990 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3991 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3992 }
3993
3994
3995 cnt = tcp_hashinfo.ehash_mask + 1;
3996 sysctl_tcp_max_orphans = cnt / 2;
3997
3998 tcp_init_mem();
3999 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4000 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4001 max_wshare = min(4UL*1024*1024, limit);
4002 max_rshare = min(6UL*1024*1024, limit);
4003
4004 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4005 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4006 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4007
4008 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4009 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4010 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4011
4012 pr_info("Hash tables configured (established %u bind %u)\n",
4013 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4014
4015 tcp_v4_init();
4016 tcp_metrics_init();
4017 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4018 tcp_tasklet_init();
4019 }
4020