1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
transparent_hugepage_enabled(struct vm_area_struct * vma)65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
76
77 return false;
78 }
79
get_huge_zero_page(void)80 static struct page *get_huge_zero_page(void)
81 {
82 struct page *zero_page;
83 retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 HPAGE_PMD_ORDER);
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 return NULL;
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 preempt_disable();
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 preempt_enable();
97 __free_pages(zero_page, compound_order(zero_page));
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
104 return READ_ONCE(huge_zero_page);
105 }
106
put_huge_zero_page(void)107 static void put_huge_zero_page(void)
108 {
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
mm_get_huge_zero_page(struct mm_struct * mm)116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128 }
129
mm_put_huge_zero_page(struct mm_struct * mm)130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134 }
135
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
138 {
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145 {
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
150 return HPAGE_PMD_NR;
151 }
152
153 return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165 {
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
172 }
173
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177 {
178 ssize_t ret = count;
179
180 if (!memcmp("always", buf,
181 min(sizeof("always")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("madvise", buf,
185 min(sizeof("madvise")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else if (!memcmp("never", buf,
189 min(sizeof("never")-1, count))) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 } else
193 ret = -EINVAL;
194
195 if (ret > 0) {
196 int err = start_stop_khugepaged();
197 if (err)
198 ret = err;
199 }
200 return ret;
201 }
202 static struct kobj_attribute enabled_attr =
203 __ATTR(enabled, 0644, enabled_show, enabled_store);
204
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf,
207 enum transparent_hugepage_flag flag)
208 {
209 return sprintf(buf, "%d\n",
210 !!test_bit(flag, &transparent_hugepage_flags));
211 }
212
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 const char *buf, size_t count,
216 enum transparent_hugepage_flag flag)
217 {
218 unsigned long value;
219 int ret;
220
221 ret = kstrtoul(buf, 10, &value);
222 if (ret < 0)
223 return ret;
224 if (value > 1)
225 return -EINVAL;
226
227 if (value)
228 set_bit(flag, &transparent_hugepage_flags);
229 else
230 clear_bit(flag, &transparent_hugepage_flags);
231
232 return count;
233 }
234
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)235 static ssize_t defrag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf)
237 {
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247 }
248
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)249 static ssize_t defrag_store(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 const char *buf, size_t count)
252 {
253 if (!memcmp("always", buf,
254 min(sizeof("always")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 } else if (!memcmp("defer+madvise", buf,
260 min(sizeof("defer+madvise")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 } else if (!memcmp("defer", buf,
266 min(sizeof("defer")-1, count))) {
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 } else if (!memcmp("madvise", buf,
272 min(sizeof("madvise")-1, count))) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
283 } else
284 return -EINVAL;
285
286 return count;
287 }
288 static struct kobj_attribute defrag_attr =
289 __ATTR(defrag, 0644, defrag_show, defrag_store);
290
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)291 static ssize_t use_zero_page_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293 {
294 return single_hugepage_flag_show(kobj, attr, buf,
295 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)297 static ssize_t use_zero_page_store(struct kobject *kobj,
298 struct kobj_attribute *attr, const char *buf, size_t count)
299 {
300 return single_hugepage_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static struct kobj_attribute use_zero_page_attr =
304 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)306 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
307 struct kobj_attribute *attr, char *buf)
308 {
309 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
310 }
311 static struct kobj_attribute hpage_pmd_size_attr =
312 __ATTR_RO(hpage_pmd_size);
313
314 #ifdef CONFIG_DEBUG_VM
debug_cow_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)315 static ssize_t debug_cow_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf)
317 {
318 return single_hugepage_flag_show(kobj, attr, buf,
319 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320 }
debug_cow_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)321 static ssize_t debug_cow_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324 {
325 return single_hugepage_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
327 }
328 static struct kobj_attribute debug_cow_attr =
329 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
330 #endif /* CONFIG_DEBUG_VM */
331
332 static struct attribute *hugepage_attr[] = {
333 &enabled_attr.attr,
334 &defrag_attr.attr,
335 &use_zero_page_attr.attr,
336 &hpage_pmd_size_attr.attr,
337 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 &shmem_enabled_attr.attr,
339 #endif
340 #ifdef CONFIG_DEBUG_VM
341 &debug_cow_attr.attr,
342 #endif
343 NULL,
344 };
345
346 static const struct attribute_group hugepage_attr_group = {
347 .attrs = hugepage_attr,
348 };
349
hugepage_init_sysfs(struct kobject ** hugepage_kobj)350 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
351 {
352 int err;
353
354 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
355 if (unlikely(!*hugepage_kobj)) {
356 pr_err("failed to create transparent hugepage kobject\n");
357 return -ENOMEM;
358 }
359
360 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
361 if (err) {
362 pr_err("failed to register transparent hugepage group\n");
363 goto delete_obj;
364 }
365
366 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
367 if (err) {
368 pr_err("failed to register transparent hugepage group\n");
369 goto remove_hp_group;
370 }
371
372 return 0;
373
374 remove_hp_group:
375 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
376 delete_obj:
377 kobject_put(*hugepage_kobj);
378 return err;
379 }
380
hugepage_exit_sysfs(struct kobject * hugepage_kobj)381 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
382 {
383 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
384 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
385 kobject_put(hugepage_kobj);
386 }
387 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)388 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
389 {
390 return 0;
391 }
392
hugepage_exit_sysfs(struct kobject * hugepage_kobj)393 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
394 {
395 }
396 #endif /* CONFIG_SYSFS */
397
hugepage_init(void)398 static int __init hugepage_init(void)
399 {
400 int err;
401 struct kobject *hugepage_kobj;
402
403 if (!has_transparent_hugepage()) {
404 transparent_hugepage_flags = 0;
405 return -EINVAL;
406 }
407
408 /*
409 * hugepages can't be allocated by the buddy allocator
410 */
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
412 /*
413 * we use page->mapping and page->index in second tail page
414 * as list_head: assuming THP order >= 2
415 */
416 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
417
418 err = hugepage_init_sysfs(&hugepage_kobj);
419 if (err)
420 goto err_sysfs;
421
422 err = khugepaged_init();
423 if (err)
424 goto err_slab;
425
426 err = register_shrinker(&huge_zero_page_shrinker);
427 if (err)
428 goto err_hzp_shrinker;
429 err = register_shrinker(&deferred_split_shrinker);
430 if (err)
431 goto err_split_shrinker;
432
433 /*
434 * By default disable transparent hugepages on smaller systems,
435 * where the extra memory used could hurt more than TLB overhead
436 * is likely to save. The admin can still enable it through /sys.
437 */
438 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 transparent_hugepage_flags = 0;
440 return 0;
441 }
442
443 err = start_stop_khugepaged();
444 if (err)
445 goto err_khugepaged;
446
447 return 0;
448 err_khugepaged:
449 unregister_shrinker(&deferred_split_shrinker);
450 err_split_shrinker:
451 unregister_shrinker(&huge_zero_page_shrinker);
452 err_hzp_shrinker:
453 khugepaged_destroy();
454 err_slab:
455 hugepage_exit_sysfs(hugepage_kobj);
456 err_sysfs:
457 return err;
458 }
459 subsys_initcall(hugepage_init);
460
setup_transparent_hugepage(char * str)461 static int __init setup_transparent_hugepage(char *str)
462 {
463 int ret = 0;
464 if (!str)
465 goto out;
466 if (!strcmp(str, "always")) {
467 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
471 ret = 1;
472 } else if (!strcmp(str, "madvise")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
477 ret = 1;
478 } else if (!strcmp(str, "never")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 &transparent_hugepage_flags);
481 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 &transparent_hugepage_flags);
483 ret = 1;
484 }
485 out:
486 if (!ret)
487 pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 return ret;
489 }
490 __setup("transparent_hugepage=", setup_transparent_hugepage);
491
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)492 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493 {
494 if (likely(vma->vm_flags & VM_WRITE))
495 pmd = pmd_mkwrite(pmd);
496 return pmd;
497 }
498
499 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501 {
502 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
503 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
504
505 if (memcg)
506 return &memcg->deferred_split_queue;
507 else
508 return &pgdat->deferred_split_queue;
509 }
510 #else
get_deferred_split_queue(struct page * page)511 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
512 {
513 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
514
515 return &pgdat->deferred_split_queue;
516 }
517 #endif
518
prep_transhuge_page(struct page * page)519 void prep_transhuge_page(struct page *page)
520 {
521 /*
522 * we use page->mapping and page->indexlru in second tail page
523 * as list_head: assuming THP order >= 2
524 */
525
526 INIT_LIST_HEAD(page_deferred_list(page));
527 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
528 }
529
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)530 static unsigned long __thp_get_unmapped_area(struct file *filp,
531 unsigned long addr, unsigned long len,
532 loff_t off, unsigned long flags, unsigned long size)
533 {
534 loff_t off_end = off + len;
535 loff_t off_align = round_up(off, size);
536 unsigned long len_pad, ret;
537
538 if (off_end <= off_align || (off_end - off_align) < size)
539 return 0;
540
541 len_pad = len + size;
542 if (len_pad < len || (off + len_pad) < off)
543 return 0;
544
545 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546 off >> PAGE_SHIFT, flags);
547
548 /*
549 * The failure might be due to length padding. The caller will retry
550 * without the padding.
551 */
552 if (IS_ERR_VALUE(ret))
553 return 0;
554
555 /*
556 * Do not try to align to THP boundary if allocation at the address
557 * hint succeeds.
558 */
559 if (ret == addr)
560 return addr;
561
562 ret += (off - ret) & (size - 1);
563 return ret;
564 }
565
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)566 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567 unsigned long len, unsigned long pgoff, unsigned long flags)
568 {
569 unsigned long ret;
570 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
571
572 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
573 goto out;
574
575 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
576 if (ret)
577 return ret;
578 out:
579 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
580 }
581 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
582
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)583 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584 struct page *page, gfp_t gfp)
585 {
586 struct vm_area_struct *vma = vmf->vma;
587 struct mem_cgroup *memcg;
588 pgtable_t pgtable;
589 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
590 vm_fault_t ret = 0;
591
592 VM_BUG_ON_PAGE(!PageCompound(page), page);
593
594 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
595 put_page(page);
596 count_vm_event(THP_FAULT_FALLBACK);
597 return VM_FAULT_FALLBACK;
598 }
599
600 pgtable = pte_alloc_one(vma->vm_mm);
601 if (unlikely(!pgtable)) {
602 ret = VM_FAULT_OOM;
603 goto release;
604 }
605
606 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
607 /*
608 * The memory barrier inside __SetPageUptodate makes sure that
609 * clear_huge_page writes become visible before the set_pmd_at()
610 * write.
611 */
612 __SetPageUptodate(page);
613
614 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
615 if (unlikely(!pmd_none(*vmf->pmd))) {
616 goto unlock_release;
617 } else {
618 pmd_t entry;
619
620 ret = check_stable_address_space(vma->vm_mm);
621 if (ret)
622 goto unlock_release;
623
624 /* Deliver the page fault to userland */
625 if (userfaultfd_missing(vma)) {
626 vm_fault_t ret2;
627
628 spin_unlock(vmf->ptl);
629 mem_cgroup_cancel_charge(page, memcg, true);
630 put_page(page);
631 pte_free(vma->vm_mm, pgtable);
632 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
633 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
634 return ret2;
635 }
636
637 entry = mk_huge_pmd(page, vma->vm_page_prot);
638 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639 page_add_new_anon_rmap(page, vma, haddr, true);
640 mem_cgroup_commit_charge(page, memcg, false, true);
641 lru_cache_add_active_or_unevictable(page, vma);
642 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
643 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
644 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 mm_inc_nr_ptes(vma->vm_mm);
646 spin_unlock(vmf->ptl);
647 count_vm_event(THP_FAULT_ALLOC);
648 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
649 }
650
651 return 0;
652 unlock_release:
653 spin_unlock(vmf->ptl);
654 release:
655 if (pgtable)
656 pte_free(vma->vm_mm, pgtable);
657 mem_cgroup_cancel_charge(page, memcg, true);
658 put_page(page);
659 return ret;
660
661 }
662
663 /*
664 * always: directly stall for all thp allocations
665 * defer: wake kswapd and fail if not immediately available
666 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
667 * fail if not immediately available
668 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
669 * available
670 * never: never stall for any thp allocation
671 */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)672 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
673 {
674 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
675
676 /* Always do synchronous compaction */
677 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
678 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
679
680 /* Kick kcompactd and fail quickly */
681 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
682 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
683
684 /* Synchronous compaction if madvised, otherwise kick kcompactd */
685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
686 return GFP_TRANSHUGE_LIGHT |
687 (vma_madvised ? __GFP_DIRECT_RECLAIM :
688 __GFP_KSWAPD_RECLAIM);
689
690 /* Only do synchronous compaction if madvised */
691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
692 return GFP_TRANSHUGE_LIGHT |
693 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
694
695 return GFP_TRANSHUGE_LIGHT;
696 }
697
698 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)699 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
700 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
701 struct page *zero_page)
702 {
703 pmd_t entry;
704 if (!pmd_none(*pmd))
705 return false;
706 entry = mk_pmd(zero_page, vma->vm_page_prot);
707 entry = pmd_mkhuge(entry);
708 if (pgtable)
709 pgtable_trans_huge_deposit(mm, pmd, pgtable);
710 set_pmd_at(mm, haddr, pmd, entry);
711 mm_inc_nr_ptes(mm);
712 return true;
713 }
714
do_huge_pmd_anonymous_page(struct vm_fault * vmf)715 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
716 {
717 struct vm_area_struct *vma = vmf->vma;
718 gfp_t gfp;
719 struct page *page;
720 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
721
722 if (!transhuge_vma_suitable(vma, haddr))
723 return VM_FAULT_FALLBACK;
724 if (unlikely(anon_vma_prepare(vma)))
725 return VM_FAULT_OOM;
726 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
727 return VM_FAULT_OOM;
728 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
729 !mm_forbids_zeropage(vma->vm_mm) &&
730 transparent_hugepage_use_zero_page()) {
731 pgtable_t pgtable;
732 struct page *zero_page;
733 bool set;
734 vm_fault_t ret;
735 pgtable = pte_alloc_one(vma->vm_mm);
736 if (unlikely(!pgtable))
737 return VM_FAULT_OOM;
738 zero_page = mm_get_huge_zero_page(vma->vm_mm);
739 if (unlikely(!zero_page)) {
740 pte_free(vma->vm_mm, pgtable);
741 count_vm_event(THP_FAULT_FALLBACK);
742 return VM_FAULT_FALLBACK;
743 }
744 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
745 ret = 0;
746 set = false;
747 if (pmd_none(*vmf->pmd)) {
748 ret = check_stable_address_space(vma->vm_mm);
749 if (ret) {
750 spin_unlock(vmf->ptl);
751 } else if (userfaultfd_missing(vma)) {
752 spin_unlock(vmf->ptl);
753 ret = handle_userfault(vmf, VM_UFFD_MISSING);
754 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
755 } else {
756 set_huge_zero_page(pgtable, vma->vm_mm, vma,
757 haddr, vmf->pmd, zero_page);
758 spin_unlock(vmf->ptl);
759 set = true;
760 }
761 } else
762 spin_unlock(vmf->ptl);
763 if (!set)
764 pte_free(vma->vm_mm, pgtable);
765 return ret;
766 }
767 gfp = alloc_hugepage_direct_gfpmask(vma);
768 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
769 if (unlikely(!page)) {
770 count_vm_event(THP_FAULT_FALLBACK);
771 return VM_FAULT_FALLBACK;
772 }
773 prep_transhuge_page(page);
774 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
775 }
776
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)777 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
778 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
779 pgtable_t pgtable)
780 {
781 struct mm_struct *mm = vma->vm_mm;
782 pmd_t entry;
783 spinlock_t *ptl;
784
785 ptl = pmd_lock(mm, pmd);
786 if (!pmd_none(*pmd)) {
787 if (write) {
788 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
789 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
790 goto out_unlock;
791 }
792 entry = pmd_mkyoung(*pmd);
793 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
794 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
795 update_mmu_cache_pmd(vma, addr, pmd);
796 }
797
798 goto out_unlock;
799 }
800
801 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
802 if (pfn_t_devmap(pfn))
803 entry = pmd_mkdevmap(entry);
804 if (write) {
805 entry = pmd_mkyoung(pmd_mkdirty(entry));
806 entry = maybe_pmd_mkwrite(entry, vma);
807 }
808
809 if (pgtable) {
810 pgtable_trans_huge_deposit(mm, pmd, pgtable);
811 mm_inc_nr_ptes(mm);
812 pgtable = NULL;
813 }
814
815 set_pmd_at(mm, addr, pmd, entry);
816 update_mmu_cache_pmd(vma, addr, pmd);
817
818 out_unlock:
819 spin_unlock(ptl);
820 if (pgtable)
821 pte_free(mm, pgtable);
822 }
823
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)824 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
825 {
826 unsigned long addr = vmf->address & PMD_MASK;
827 struct vm_area_struct *vma = vmf->vma;
828 pgprot_t pgprot = vma->vm_page_prot;
829 pgtable_t pgtable = NULL;
830
831 /*
832 * If we had pmd_special, we could avoid all these restrictions,
833 * but we need to be consistent with PTEs and architectures that
834 * can't support a 'special' bit.
835 */
836 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
837 !pfn_t_devmap(pfn));
838 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
839 (VM_PFNMAP|VM_MIXEDMAP));
840 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
841
842 if (addr < vma->vm_start || addr >= vma->vm_end)
843 return VM_FAULT_SIGBUS;
844
845 if (arch_needs_pgtable_deposit()) {
846 pgtable = pte_alloc_one(vma->vm_mm);
847 if (!pgtable)
848 return VM_FAULT_OOM;
849 }
850
851 track_pfn_insert(vma, &pgprot, pfn);
852
853 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
854 return VM_FAULT_NOPAGE;
855 }
856 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
857
858 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)859 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
860 {
861 if (likely(vma->vm_flags & VM_WRITE))
862 pud = pud_mkwrite(pud);
863 return pud;
864 }
865
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)866 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
867 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
868 {
869 struct mm_struct *mm = vma->vm_mm;
870 pud_t entry;
871 spinlock_t *ptl;
872
873 ptl = pud_lock(mm, pud);
874 if (!pud_none(*pud)) {
875 if (write) {
876 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
877 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
878 goto out_unlock;
879 }
880 entry = pud_mkyoung(*pud);
881 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
882 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
883 update_mmu_cache_pud(vma, addr, pud);
884 }
885 goto out_unlock;
886 }
887
888 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
889 if (pfn_t_devmap(pfn))
890 entry = pud_mkdevmap(entry);
891 if (write) {
892 entry = pud_mkyoung(pud_mkdirty(entry));
893 entry = maybe_pud_mkwrite(entry, vma);
894 }
895 set_pud_at(mm, addr, pud, entry);
896 update_mmu_cache_pud(vma, addr, pud);
897
898 out_unlock:
899 spin_unlock(ptl);
900 }
901
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)902 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
903 {
904 unsigned long addr = vmf->address & PUD_MASK;
905 struct vm_area_struct *vma = vmf->vma;
906 pgprot_t pgprot = vma->vm_page_prot;
907
908 /*
909 * If we had pud_special, we could avoid all these restrictions,
910 * but we need to be consistent with PTEs and architectures that
911 * can't support a 'special' bit.
912 */
913 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
914 !pfn_t_devmap(pfn));
915 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
916 (VM_PFNMAP|VM_MIXEDMAP));
917 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
918
919 if (addr < vma->vm_start || addr >= vma->vm_end)
920 return VM_FAULT_SIGBUS;
921
922 track_pfn_insert(vma, &pgprot, pfn);
923
924 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
925 return VM_FAULT_NOPAGE;
926 }
927 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
928 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
929
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)930 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
931 pmd_t *pmd, int flags)
932 {
933 pmd_t _pmd;
934
935 _pmd = pmd_mkyoung(*pmd);
936 if (flags & FOLL_WRITE)
937 _pmd = pmd_mkdirty(_pmd);
938 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
939 pmd, _pmd, flags & FOLL_WRITE))
940 update_mmu_cache_pmd(vma, addr, pmd);
941 }
942
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)943 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
944 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
945 {
946 unsigned long pfn = pmd_pfn(*pmd);
947 struct mm_struct *mm = vma->vm_mm;
948 struct page *page;
949
950 assert_spin_locked(pmd_lockptr(mm, pmd));
951
952 /*
953 * When we COW a devmap PMD entry, we split it into PTEs, so we should
954 * not be in this function with `flags & FOLL_COW` set.
955 */
956 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
957
958 if (flags & FOLL_WRITE && !pmd_write(*pmd))
959 return NULL;
960
961 if (pmd_present(*pmd) && pmd_devmap(*pmd))
962 /* pass */;
963 else
964 return NULL;
965
966 if (flags & FOLL_TOUCH)
967 touch_pmd(vma, addr, pmd, flags);
968
969 /*
970 * device mapped pages can only be returned if the
971 * caller will manage the page reference count.
972 */
973 if (!(flags & FOLL_GET))
974 return ERR_PTR(-EEXIST);
975
976 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
977 *pgmap = get_dev_pagemap(pfn, *pgmap);
978 if (!*pgmap)
979 return ERR_PTR(-EFAULT);
980 page = pfn_to_page(pfn);
981 get_page(page);
982
983 return page;
984 }
985
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)986 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
987 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
988 struct vm_area_struct *vma)
989 {
990 spinlock_t *dst_ptl, *src_ptl;
991 struct page *src_page;
992 pmd_t pmd;
993 pgtable_t pgtable = NULL;
994 int ret = -ENOMEM;
995
996 /* Skip if can be re-fill on fault */
997 if (!vma_is_anonymous(vma))
998 return 0;
999
1000 pgtable = pte_alloc_one(dst_mm);
1001 if (unlikely(!pgtable))
1002 goto out;
1003
1004 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1005 src_ptl = pmd_lockptr(src_mm, src_pmd);
1006 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1007
1008 ret = -EAGAIN;
1009 pmd = *src_pmd;
1010
1011 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1012 if (unlikely(is_swap_pmd(pmd))) {
1013 swp_entry_t entry = pmd_to_swp_entry(pmd);
1014
1015 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1016 if (is_write_migration_entry(entry)) {
1017 make_migration_entry_read(&entry);
1018 pmd = swp_entry_to_pmd(entry);
1019 if (pmd_swp_soft_dirty(*src_pmd))
1020 pmd = pmd_swp_mksoft_dirty(pmd);
1021 set_pmd_at(src_mm, addr, src_pmd, pmd);
1022 }
1023 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1024 mm_inc_nr_ptes(dst_mm);
1025 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1026 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1027 ret = 0;
1028 goto out_unlock;
1029 }
1030 #endif
1031
1032 if (unlikely(!pmd_trans_huge(pmd))) {
1033 pte_free(dst_mm, pgtable);
1034 goto out_unlock;
1035 }
1036 /*
1037 * When page table lock is held, the huge zero pmd should not be
1038 * under splitting since we don't split the page itself, only pmd to
1039 * a page table.
1040 */
1041 if (is_huge_zero_pmd(pmd)) {
1042 struct page *zero_page;
1043 /*
1044 * get_huge_zero_page() will never allocate a new page here,
1045 * since we already have a zero page to copy. It just takes a
1046 * reference.
1047 */
1048 zero_page = mm_get_huge_zero_page(dst_mm);
1049 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1050 zero_page);
1051 ret = 0;
1052 goto out_unlock;
1053 }
1054
1055 src_page = pmd_page(pmd);
1056 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1057 get_page(src_page);
1058 page_dup_rmap(src_page, true);
1059 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1060 mm_inc_nr_ptes(dst_mm);
1061 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1062
1063 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1064 pmd = pmd_mkold(pmd_wrprotect(pmd));
1065 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1066
1067 ret = 0;
1068 out_unlock:
1069 spin_unlock(src_ptl);
1070 spin_unlock(dst_ptl);
1071 out:
1072 return ret;
1073 }
1074
1075 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1076 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1077 pud_t *pud, int flags)
1078 {
1079 pud_t _pud;
1080
1081 _pud = pud_mkyoung(*pud);
1082 if (flags & FOLL_WRITE)
1083 _pud = pud_mkdirty(_pud);
1084 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1085 pud, _pud, flags & FOLL_WRITE))
1086 update_mmu_cache_pud(vma, addr, pud);
1087 }
1088
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1089 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1090 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1091 {
1092 unsigned long pfn = pud_pfn(*pud);
1093 struct mm_struct *mm = vma->vm_mm;
1094 struct page *page;
1095
1096 assert_spin_locked(pud_lockptr(mm, pud));
1097
1098 if (flags & FOLL_WRITE && !pud_write(*pud))
1099 return NULL;
1100
1101 if (pud_present(*pud) && pud_devmap(*pud))
1102 /* pass */;
1103 else
1104 return NULL;
1105
1106 if (flags & FOLL_TOUCH)
1107 touch_pud(vma, addr, pud, flags);
1108
1109 /*
1110 * device mapped pages can only be returned if the
1111 * caller will manage the page reference count.
1112 */
1113 if (!(flags & FOLL_GET))
1114 return ERR_PTR(-EEXIST);
1115
1116 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1117 *pgmap = get_dev_pagemap(pfn, *pgmap);
1118 if (!*pgmap)
1119 return ERR_PTR(-EFAULT);
1120 page = pfn_to_page(pfn);
1121 get_page(page);
1122
1123 return page;
1124 }
1125
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1126 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1127 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1128 struct vm_area_struct *vma)
1129 {
1130 spinlock_t *dst_ptl, *src_ptl;
1131 pud_t pud;
1132 int ret;
1133
1134 dst_ptl = pud_lock(dst_mm, dst_pud);
1135 src_ptl = pud_lockptr(src_mm, src_pud);
1136 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1137
1138 ret = -EAGAIN;
1139 pud = *src_pud;
1140 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1141 goto out_unlock;
1142
1143 /*
1144 * When page table lock is held, the huge zero pud should not be
1145 * under splitting since we don't split the page itself, only pud to
1146 * a page table.
1147 */
1148 if (is_huge_zero_pud(pud)) {
1149 /* No huge zero pud yet */
1150 }
1151
1152 pudp_set_wrprotect(src_mm, addr, src_pud);
1153 pud = pud_mkold(pud_wrprotect(pud));
1154 set_pud_at(dst_mm, addr, dst_pud, pud);
1155
1156 ret = 0;
1157 out_unlock:
1158 spin_unlock(src_ptl);
1159 spin_unlock(dst_ptl);
1160 return ret;
1161 }
1162
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1163 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1164 {
1165 pud_t entry;
1166 unsigned long haddr;
1167 bool write = vmf->flags & FAULT_FLAG_WRITE;
1168
1169 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1170 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1171 goto unlock;
1172
1173 entry = pud_mkyoung(orig_pud);
1174 if (write)
1175 entry = pud_mkdirty(entry);
1176 haddr = vmf->address & HPAGE_PUD_MASK;
1177 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1178 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1179
1180 unlock:
1181 spin_unlock(vmf->ptl);
1182 }
1183 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1184
huge_pmd_set_accessed(struct vm_fault * vmf,pmd_t orig_pmd)1185 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1186 {
1187 pmd_t entry;
1188 unsigned long haddr;
1189 bool write = vmf->flags & FAULT_FLAG_WRITE;
1190
1191 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1192 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1193 goto unlock;
1194
1195 entry = pmd_mkyoung(orig_pmd);
1196 if (write)
1197 entry = pmd_mkdirty(entry);
1198 haddr = vmf->address & HPAGE_PMD_MASK;
1199 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1200 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1201
1202 unlock:
1203 spin_unlock(vmf->ptl);
1204 }
1205
do_huge_pmd_wp_page_fallback(struct vm_fault * vmf,pmd_t orig_pmd,struct page * page)1206 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1207 pmd_t orig_pmd, struct page *page)
1208 {
1209 struct vm_area_struct *vma = vmf->vma;
1210 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1211 struct mem_cgroup *memcg;
1212 pgtable_t pgtable;
1213 pmd_t _pmd;
1214 int i;
1215 vm_fault_t ret = 0;
1216 struct page **pages;
1217 struct mmu_notifier_range range;
1218
1219 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1220 GFP_KERNEL);
1221 if (unlikely(!pages)) {
1222 ret |= VM_FAULT_OOM;
1223 goto out;
1224 }
1225
1226 for (i = 0; i < HPAGE_PMD_NR; i++) {
1227 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1228 vmf->address, page_to_nid(page));
1229 if (unlikely(!pages[i] ||
1230 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1231 GFP_KERNEL, &memcg, false))) {
1232 if (pages[i])
1233 put_page(pages[i]);
1234 while (--i >= 0) {
1235 memcg = (void *)page_private(pages[i]);
1236 set_page_private(pages[i], 0);
1237 mem_cgroup_cancel_charge(pages[i], memcg,
1238 false);
1239 put_page(pages[i]);
1240 }
1241 kfree(pages);
1242 ret |= VM_FAULT_OOM;
1243 goto out;
1244 }
1245 set_page_private(pages[i], (unsigned long)memcg);
1246 }
1247
1248 for (i = 0; i < HPAGE_PMD_NR; i++) {
1249 copy_user_highpage(pages[i], page + i,
1250 haddr + PAGE_SIZE * i, vma);
1251 __SetPageUptodate(pages[i]);
1252 cond_resched();
1253 }
1254
1255 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1256 haddr, haddr + HPAGE_PMD_SIZE);
1257 mmu_notifier_invalidate_range_start(&range);
1258
1259 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1260 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1261 goto out_free_pages;
1262 VM_BUG_ON_PAGE(!PageHead(page), page);
1263
1264 /*
1265 * Leave pmd empty until pte is filled note we must notify here as
1266 * concurrent CPU thread might write to new page before the call to
1267 * mmu_notifier_invalidate_range_end() happens which can lead to a
1268 * device seeing memory write in different order than CPU.
1269 *
1270 * See Documentation/vm/mmu_notifier.rst
1271 */
1272 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1273
1274 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1275 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1276
1277 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1278 pte_t entry;
1279 entry = mk_pte(pages[i], vma->vm_page_prot);
1280 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1281 memcg = (void *)page_private(pages[i]);
1282 set_page_private(pages[i], 0);
1283 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1284 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1285 lru_cache_add_active_or_unevictable(pages[i], vma);
1286 vmf->pte = pte_offset_map(&_pmd, haddr);
1287 VM_BUG_ON(!pte_none(*vmf->pte));
1288 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1289 pte_unmap(vmf->pte);
1290 }
1291 kfree(pages);
1292
1293 smp_wmb(); /* make pte visible before pmd */
1294 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1295 page_remove_rmap(page, true);
1296 spin_unlock(vmf->ptl);
1297
1298 /*
1299 * No need to double call mmu_notifier->invalidate_range() callback as
1300 * the above pmdp_huge_clear_flush_notify() did already call it.
1301 */
1302 mmu_notifier_invalidate_range_only_end(&range);
1303
1304 ret |= VM_FAULT_WRITE;
1305 put_page(page);
1306
1307 out:
1308 return ret;
1309
1310 out_free_pages:
1311 spin_unlock(vmf->ptl);
1312 mmu_notifier_invalidate_range_end(&range);
1313 for (i = 0; i < HPAGE_PMD_NR; i++) {
1314 memcg = (void *)page_private(pages[i]);
1315 set_page_private(pages[i], 0);
1316 mem_cgroup_cancel_charge(pages[i], memcg, false);
1317 put_page(pages[i]);
1318 }
1319 kfree(pages);
1320 goto out;
1321 }
1322
do_huge_pmd_wp_page(struct vm_fault * vmf,pmd_t orig_pmd)1323 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1324 {
1325 struct vm_area_struct *vma = vmf->vma;
1326 struct page *page = NULL, *new_page;
1327 struct mem_cgroup *memcg;
1328 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1329 struct mmu_notifier_range range;
1330 gfp_t huge_gfp; /* for allocation and charge */
1331 vm_fault_t ret = 0;
1332
1333 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1334 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1335 if (is_huge_zero_pmd(orig_pmd))
1336 goto alloc;
1337 spin_lock(vmf->ptl);
1338 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1339 goto out_unlock;
1340
1341 page = pmd_page(orig_pmd);
1342 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1343 /*
1344 * We can only reuse the page if nobody else maps the huge page or it's
1345 * part.
1346 */
1347 if (!trylock_page(page)) {
1348 get_page(page);
1349 spin_unlock(vmf->ptl);
1350 lock_page(page);
1351 spin_lock(vmf->ptl);
1352 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1353 unlock_page(page);
1354 put_page(page);
1355 goto out_unlock;
1356 }
1357 put_page(page);
1358 }
1359 if (reuse_swap_page(page, NULL)) {
1360 pmd_t entry;
1361 entry = pmd_mkyoung(orig_pmd);
1362 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1363 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1364 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1365 ret |= VM_FAULT_WRITE;
1366 unlock_page(page);
1367 goto out_unlock;
1368 }
1369 unlock_page(page);
1370 get_page(page);
1371 spin_unlock(vmf->ptl);
1372 alloc:
1373 if (__transparent_hugepage_enabled(vma) &&
1374 !transparent_hugepage_debug_cow()) {
1375 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1376 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1377 } else
1378 new_page = NULL;
1379
1380 if (likely(new_page)) {
1381 prep_transhuge_page(new_page);
1382 } else {
1383 if (!page) {
1384 split_huge_pmd(vma, vmf->pmd, vmf->address);
1385 ret |= VM_FAULT_FALLBACK;
1386 } else {
1387 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1388 if (ret & VM_FAULT_OOM) {
1389 split_huge_pmd(vma, vmf->pmd, vmf->address);
1390 ret |= VM_FAULT_FALLBACK;
1391 }
1392 put_page(page);
1393 }
1394 count_vm_event(THP_FAULT_FALLBACK);
1395 goto out;
1396 }
1397
1398 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1399 huge_gfp, &memcg, true))) {
1400 put_page(new_page);
1401 split_huge_pmd(vma, vmf->pmd, vmf->address);
1402 if (page)
1403 put_page(page);
1404 ret |= VM_FAULT_FALLBACK;
1405 count_vm_event(THP_FAULT_FALLBACK);
1406 goto out;
1407 }
1408
1409 count_vm_event(THP_FAULT_ALLOC);
1410 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1411
1412 if (!page)
1413 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1414 else
1415 copy_user_huge_page(new_page, page, vmf->address,
1416 vma, HPAGE_PMD_NR);
1417 __SetPageUptodate(new_page);
1418
1419 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1420 haddr, haddr + HPAGE_PMD_SIZE);
1421 mmu_notifier_invalidate_range_start(&range);
1422
1423 spin_lock(vmf->ptl);
1424 if (page)
1425 put_page(page);
1426 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1427 spin_unlock(vmf->ptl);
1428 mem_cgroup_cancel_charge(new_page, memcg, true);
1429 put_page(new_page);
1430 goto out_mn;
1431 } else {
1432 pmd_t entry;
1433 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1434 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1435 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1436 page_add_new_anon_rmap(new_page, vma, haddr, true);
1437 mem_cgroup_commit_charge(new_page, memcg, false, true);
1438 lru_cache_add_active_or_unevictable(new_page, vma);
1439 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1440 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1441 if (!page) {
1442 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1443 } else {
1444 VM_BUG_ON_PAGE(!PageHead(page), page);
1445 page_remove_rmap(page, true);
1446 put_page(page);
1447 }
1448 ret |= VM_FAULT_WRITE;
1449 }
1450 spin_unlock(vmf->ptl);
1451 out_mn:
1452 /*
1453 * No need to double call mmu_notifier->invalidate_range() callback as
1454 * the above pmdp_huge_clear_flush_notify() did already call it.
1455 */
1456 mmu_notifier_invalidate_range_only_end(&range);
1457 out:
1458 return ret;
1459 out_unlock:
1460 spin_unlock(vmf->ptl);
1461 return ret;
1462 }
1463
1464 /*
1465 * FOLL_FORCE can write to even unwritable pmd's, but only
1466 * after we've gone through a COW cycle and they are dirty.
1467 */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1468 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1469 {
1470 return pmd_write(pmd) ||
1471 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1472 }
1473
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1474 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1475 unsigned long addr,
1476 pmd_t *pmd,
1477 unsigned int flags)
1478 {
1479 struct mm_struct *mm = vma->vm_mm;
1480 struct page *page = NULL;
1481
1482 assert_spin_locked(pmd_lockptr(mm, pmd));
1483
1484 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1485 goto out;
1486
1487 /* Avoid dumping huge zero page */
1488 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1489 return ERR_PTR(-EFAULT);
1490
1491 /* Full NUMA hinting faults to serialise migration in fault paths */
1492 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1493 goto out;
1494
1495 page = pmd_page(*pmd);
1496 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1497 if (flags & FOLL_TOUCH)
1498 touch_pmd(vma, addr, pmd, flags);
1499 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1500 /*
1501 * We don't mlock() pte-mapped THPs. This way we can avoid
1502 * leaking mlocked pages into non-VM_LOCKED VMAs.
1503 *
1504 * For anon THP:
1505 *
1506 * In most cases the pmd is the only mapping of the page as we
1507 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1508 * writable private mappings in populate_vma_page_range().
1509 *
1510 * The only scenario when we have the page shared here is if we
1511 * mlocking read-only mapping shared over fork(). We skip
1512 * mlocking such pages.
1513 *
1514 * For file THP:
1515 *
1516 * We can expect PageDoubleMap() to be stable under page lock:
1517 * for file pages we set it in page_add_file_rmap(), which
1518 * requires page to be locked.
1519 */
1520
1521 if (PageAnon(page) && compound_mapcount(page) != 1)
1522 goto skip_mlock;
1523 if (PageDoubleMap(page) || !page->mapping)
1524 goto skip_mlock;
1525 if (!trylock_page(page))
1526 goto skip_mlock;
1527 lru_add_drain();
1528 if (page->mapping && !PageDoubleMap(page))
1529 mlock_vma_page(page);
1530 unlock_page(page);
1531 }
1532 skip_mlock:
1533 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1534 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1535 if (flags & FOLL_GET)
1536 get_page(page);
1537
1538 out:
1539 return page;
1540 }
1541
1542 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf,pmd_t pmd)1543 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1544 {
1545 struct vm_area_struct *vma = vmf->vma;
1546 struct anon_vma *anon_vma = NULL;
1547 struct page *page;
1548 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1549 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1550 int target_nid, last_cpupid = -1;
1551 bool page_locked;
1552 bool migrated = false;
1553 bool was_writable;
1554 int flags = 0;
1555
1556 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1557 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1558 goto out_unlock;
1559
1560 /*
1561 * If there are potential migrations, wait for completion and retry
1562 * without disrupting NUMA hinting information. Do not relock and
1563 * check_same as the page may no longer be mapped.
1564 */
1565 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1566 page = pmd_page(*vmf->pmd);
1567 if (!get_page_unless_zero(page))
1568 goto out_unlock;
1569 spin_unlock(vmf->ptl);
1570 put_and_wait_on_page_locked(page);
1571 goto out;
1572 }
1573
1574 page = pmd_page(pmd);
1575 BUG_ON(is_huge_zero_page(page));
1576 page_nid = page_to_nid(page);
1577 last_cpupid = page_cpupid_last(page);
1578 count_vm_numa_event(NUMA_HINT_FAULTS);
1579 if (page_nid == this_nid) {
1580 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1581 flags |= TNF_FAULT_LOCAL;
1582 }
1583
1584 /* See similar comment in do_numa_page for explanation */
1585 if (!pmd_savedwrite(pmd))
1586 flags |= TNF_NO_GROUP;
1587
1588 /*
1589 * Acquire the page lock to serialise THP migrations but avoid dropping
1590 * page_table_lock if at all possible
1591 */
1592 page_locked = trylock_page(page);
1593 target_nid = mpol_misplaced(page, vma, haddr);
1594 if (target_nid == NUMA_NO_NODE) {
1595 /* If the page was locked, there are no parallel migrations */
1596 if (page_locked)
1597 goto clear_pmdnuma;
1598 }
1599
1600 /* Migration could have started since the pmd_trans_migrating check */
1601 if (!page_locked) {
1602 page_nid = NUMA_NO_NODE;
1603 if (!get_page_unless_zero(page))
1604 goto out_unlock;
1605 spin_unlock(vmf->ptl);
1606 put_and_wait_on_page_locked(page);
1607 goto out;
1608 }
1609
1610 /*
1611 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1612 * to serialises splits
1613 */
1614 get_page(page);
1615 spin_unlock(vmf->ptl);
1616 anon_vma = page_lock_anon_vma_read(page);
1617
1618 /* Confirm the PMD did not change while page_table_lock was released */
1619 spin_lock(vmf->ptl);
1620 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1621 unlock_page(page);
1622 put_page(page);
1623 page_nid = NUMA_NO_NODE;
1624 goto out_unlock;
1625 }
1626
1627 /* Bail if we fail to protect against THP splits for any reason */
1628 if (unlikely(!anon_vma)) {
1629 put_page(page);
1630 page_nid = NUMA_NO_NODE;
1631 goto clear_pmdnuma;
1632 }
1633
1634 /*
1635 * Since we took the NUMA fault, we must have observed the !accessible
1636 * bit. Make sure all other CPUs agree with that, to avoid them
1637 * modifying the page we're about to migrate.
1638 *
1639 * Must be done under PTL such that we'll observe the relevant
1640 * inc_tlb_flush_pending().
1641 *
1642 * We are not sure a pending tlb flush here is for a huge page
1643 * mapping or not. Hence use the tlb range variant
1644 */
1645 if (mm_tlb_flush_pending(vma->vm_mm)) {
1646 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1647 /*
1648 * change_huge_pmd() released the pmd lock before
1649 * invalidating the secondary MMUs sharing the primary
1650 * MMU pagetables (with ->invalidate_range()). The
1651 * mmu_notifier_invalidate_range_end() (which
1652 * internally calls ->invalidate_range()) in
1653 * change_pmd_range() will run after us, so we can't
1654 * rely on it here and we need an explicit invalidate.
1655 */
1656 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1657 haddr + HPAGE_PMD_SIZE);
1658 }
1659
1660 /*
1661 * Migrate the THP to the requested node, returns with page unlocked
1662 * and access rights restored.
1663 */
1664 spin_unlock(vmf->ptl);
1665
1666 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1667 vmf->pmd, pmd, vmf->address, page, target_nid);
1668 if (migrated) {
1669 flags |= TNF_MIGRATED;
1670 page_nid = target_nid;
1671 } else
1672 flags |= TNF_MIGRATE_FAIL;
1673
1674 goto out;
1675 clear_pmdnuma:
1676 BUG_ON(!PageLocked(page));
1677 was_writable = pmd_savedwrite(pmd);
1678 pmd = pmd_modify(pmd, vma->vm_page_prot);
1679 pmd = pmd_mkyoung(pmd);
1680 if (was_writable)
1681 pmd = pmd_mkwrite(pmd);
1682 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1683 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1684 unlock_page(page);
1685 out_unlock:
1686 spin_unlock(vmf->ptl);
1687
1688 out:
1689 if (anon_vma)
1690 page_unlock_anon_vma_read(anon_vma);
1691
1692 if (page_nid != NUMA_NO_NODE)
1693 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1694 flags);
1695
1696 return 0;
1697 }
1698
1699 /*
1700 * Return true if we do MADV_FREE successfully on entire pmd page.
1701 * Otherwise, return false.
1702 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1703 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1704 pmd_t *pmd, unsigned long addr, unsigned long next)
1705 {
1706 spinlock_t *ptl;
1707 pmd_t orig_pmd;
1708 struct page *page;
1709 struct mm_struct *mm = tlb->mm;
1710 bool ret = false;
1711
1712 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1713
1714 ptl = pmd_trans_huge_lock(pmd, vma);
1715 if (!ptl)
1716 goto out_unlocked;
1717
1718 orig_pmd = *pmd;
1719 if (is_huge_zero_pmd(orig_pmd))
1720 goto out;
1721
1722 if (unlikely(!pmd_present(orig_pmd))) {
1723 VM_BUG_ON(thp_migration_supported() &&
1724 !is_pmd_migration_entry(orig_pmd));
1725 goto out;
1726 }
1727
1728 page = pmd_page(orig_pmd);
1729 /*
1730 * If other processes are mapping this page, we couldn't discard
1731 * the page unless they all do MADV_FREE so let's skip the page.
1732 */
1733 if (page_mapcount(page) != 1)
1734 goto out;
1735
1736 if (!trylock_page(page))
1737 goto out;
1738
1739 /*
1740 * If user want to discard part-pages of THP, split it so MADV_FREE
1741 * will deactivate only them.
1742 */
1743 if (next - addr != HPAGE_PMD_SIZE) {
1744 get_page(page);
1745 spin_unlock(ptl);
1746 split_huge_page(page);
1747 unlock_page(page);
1748 put_page(page);
1749 goto out_unlocked;
1750 }
1751
1752 if (PageDirty(page))
1753 ClearPageDirty(page);
1754 unlock_page(page);
1755
1756 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1757 pmdp_invalidate(vma, addr, pmd);
1758 orig_pmd = pmd_mkold(orig_pmd);
1759 orig_pmd = pmd_mkclean(orig_pmd);
1760
1761 set_pmd_at(mm, addr, pmd, orig_pmd);
1762 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1763 }
1764
1765 mark_page_lazyfree(page);
1766 ret = true;
1767 out:
1768 spin_unlock(ptl);
1769 out_unlocked:
1770 return ret;
1771 }
1772
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1773 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1774 {
1775 pgtable_t pgtable;
1776
1777 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1778 pte_free(mm, pgtable);
1779 mm_dec_nr_ptes(mm);
1780 }
1781
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1782 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1783 pmd_t *pmd, unsigned long addr)
1784 {
1785 pmd_t orig_pmd;
1786 spinlock_t *ptl;
1787
1788 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1789
1790 ptl = __pmd_trans_huge_lock(pmd, vma);
1791 if (!ptl)
1792 return 0;
1793 /*
1794 * For architectures like ppc64 we look at deposited pgtable
1795 * when calling pmdp_huge_get_and_clear. So do the
1796 * pgtable_trans_huge_withdraw after finishing pmdp related
1797 * operations.
1798 */
1799 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1800 tlb->fullmm);
1801 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1802 if (vma_is_dax(vma)) {
1803 if (arch_needs_pgtable_deposit())
1804 zap_deposited_table(tlb->mm, pmd);
1805 spin_unlock(ptl);
1806 if (is_huge_zero_pmd(orig_pmd))
1807 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1808 } else if (is_huge_zero_pmd(orig_pmd)) {
1809 zap_deposited_table(tlb->mm, pmd);
1810 spin_unlock(ptl);
1811 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1812 } else {
1813 struct page *page = NULL;
1814 int flush_needed = 1;
1815
1816 if (pmd_present(orig_pmd)) {
1817 page = pmd_page(orig_pmd);
1818 page_remove_rmap(page, true);
1819 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1820 VM_BUG_ON_PAGE(!PageHead(page), page);
1821 } else if (thp_migration_supported()) {
1822 swp_entry_t entry;
1823
1824 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1825 entry = pmd_to_swp_entry(orig_pmd);
1826 page = pfn_to_page(swp_offset(entry));
1827 flush_needed = 0;
1828 } else
1829 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1830
1831 if (PageAnon(page)) {
1832 zap_deposited_table(tlb->mm, pmd);
1833 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1834 } else {
1835 if (arch_needs_pgtable_deposit())
1836 zap_deposited_table(tlb->mm, pmd);
1837 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1838 }
1839
1840 spin_unlock(ptl);
1841 if (flush_needed)
1842 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1843 }
1844 return 1;
1845 }
1846
1847 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1848 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1849 spinlock_t *old_pmd_ptl,
1850 struct vm_area_struct *vma)
1851 {
1852 /*
1853 * With split pmd lock we also need to move preallocated
1854 * PTE page table if new_pmd is on different PMD page table.
1855 *
1856 * We also don't deposit and withdraw tables for file pages.
1857 */
1858 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1859 }
1860 #endif
1861
move_soft_dirty_pmd(pmd_t pmd)1862 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1863 {
1864 #ifdef CONFIG_MEM_SOFT_DIRTY
1865 if (unlikely(is_pmd_migration_entry(pmd)))
1866 pmd = pmd_swp_mksoft_dirty(pmd);
1867 else if (pmd_present(pmd))
1868 pmd = pmd_mksoft_dirty(pmd);
1869 #endif
1870 return pmd;
1871 }
1872
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,unsigned long old_end,pmd_t * old_pmd,pmd_t * new_pmd)1873 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1874 unsigned long new_addr, unsigned long old_end,
1875 pmd_t *old_pmd, pmd_t *new_pmd)
1876 {
1877 spinlock_t *old_ptl, *new_ptl;
1878 pmd_t pmd;
1879 struct mm_struct *mm = vma->vm_mm;
1880 bool force_flush = false;
1881
1882 if ((old_addr & ~HPAGE_PMD_MASK) ||
1883 (new_addr & ~HPAGE_PMD_MASK) ||
1884 old_end - old_addr < HPAGE_PMD_SIZE)
1885 return false;
1886
1887 /*
1888 * The destination pmd shouldn't be established, free_pgtables()
1889 * should have release it.
1890 */
1891 if (WARN_ON(!pmd_none(*new_pmd))) {
1892 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1893 return false;
1894 }
1895
1896 /*
1897 * We don't have to worry about the ordering of src and dst
1898 * ptlocks because exclusive mmap_sem prevents deadlock.
1899 */
1900 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1901 if (old_ptl) {
1902 new_ptl = pmd_lockptr(mm, new_pmd);
1903 if (new_ptl != old_ptl)
1904 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1905 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1906 if (pmd_present(pmd))
1907 force_flush = true;
1908 VM_BUG_ON(!pmd_none(*new_pmd));
1909
1910 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1911 pgtable_t pgtable;
1912 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1913 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1914 }
1915 pmd = move_soft_dirty_pmd(pmd);
1916 set_pmd_at(mm, new_addr, new_pmd, pmd);
1917 if (force_flush)
1918 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1919 if (new_ptl != old_ptl)
1920 spin_unlock(new_ptl);
1921 spin_unlock(old_ptl);
1922 return true;
1923 }
1924 return false;
1925 }
1926
1927 /*
1928 * Returns
1929 * - 0 if PMD could not be locked
1930 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1931 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1932 */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,int prot_numa)1933 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1934 unsigned long addr, pgprot_t newprot, int prot_numa)
1935 {
1936 struct mm_struct *mm = vma->vm_mm;
1937 spinlock_t *ptl;
1938 pmd_t entry;
1939 bool preserve_write;
1940 int ret;
1941
1942 ptl = __pmd_trans_huge_lock(pmd, vma);
1943 if (!ptl)
1944 return 0;
1945
1946 preserve_write = prot_numa && pmd_write(*pmd);
1947 ret = 1;
1948
1949 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1950 if (is_swap_pmd(*pmd)) {
1951 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1952
1953 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1954 if (is_write_migration_entry(entry)) {
1955 pmd_t newpmd;
1956 /*
1957 * A protection check is difficult so
1958 * just be safe and disable write
1959 */
1960 make_migration_entry_read(&entry);
1961 newpmd = swp_entry_to_pmd(entry);
1962 if (pmd_swp_soft_dirty(*pmd))
1963 newpmd = pmd_swp_mksoft_dirty(newpmd);
1964 set_pmd_at(mm, addr, pmd, newpmd);
1965 }
1966 goto unlock;
1967 }
1968 #endif
1969
1970 /*
1971 * Avoid trapping faults against the zero page. The read-only
1972 * data is likely to be read-cached on the local CPU and
1973 * local/remote hits to the zero page are not interesting.
1974 */
1975 if (prot_numa && is_huge_zero_pmd(*pmd))
1976 goto unlock;
1977
1978 if (prot_numa && pmd_protnone(*pmd))
1979 goto unlock;
1980
1981 /*
1982 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1983 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1984 * which is also under down_read(mmap_sem):
1985 *
1986 * CPU0: CPU1:
1987 * change_huge_pmd(prot_numa=1)
1988 * pmdp_huge_get_and_clear_notify()
1989 * madvise_dontneed()
1990 * zap_pmd_range()
1991 * pmd_trans_huge(*pmd) == 0 (without ptl)
1992 * // skip the pmd
1993 * set_pmd_at();
1994 * // pmd is re-established
1995 *
1996 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1997 * which may break userspace.
1998 *
1999 * pmdp_invalidate() is required to make sure we don't miss
2000 * dirty/young flags set by hardware.
2001 */
2002 entry = pmdp_invalidate(vma, addr, pmd);
2003
2004 entry = pmd_modify(entry, newprot);
2005 if (preserve_write)
2006 entry = pmd_mk_savedwrite(entry);
2007 ret = HPAGE_PMD_NR;
2008 set_pmd_at(mm, addr, pmd, entry);
2009 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2010 unlock:
2011 spin_unlock(ptl);
2012 return ret;
2013 }
2014
2015 /*
2016 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2017 *
2018 * Note that if it returns page table lock pointer, this routine returns without
2019 * unlocking page table lock. So callers must unlock it.
2020 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2021 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2022 {
2023 spinlock_t *ptl;
2024 ptl = pmd_lock(vma->vm_mm, pmd);
2025 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2026 pmd_devmap(*pmd)))
2027 return ptl;
2028 spin_unlock(ptl);
2029 return NULL;
2030 }
2031
2032 /*
2033 * Returns true if a given pud maps a thp, false otherwise.
2034 *
2035 * Note that if it returns true, this routine returns without unlocking page
2036 * table lock. So callers must unlock it.
2037 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2038 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2039 {
2040 spinlock_t *ptl;
2041
2042 ptl = pud_lock(vma->vm_mm, pud);
2043 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2044 return ptl;
2045 spin_unlock(ptl);
2046 return NULL;
2047 }
2048
2049 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2050 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2051 pud_t *pud, unsigned long addr)
2052 {
2053 spinlock_t *ptl;
2054
2055 ptl = __pud_trans_huge_lock(pud, vma);
2056 if (!ptl)
2057 return 0;
2058 /*
2059 * For architectures like ppc64 we look at deposited pgtable
2060 * when calling pudp_huge_get_and_clear. So do the
2061 * pgtable_trans_huge_withdraw after finishing pudp related
2062 * operations.
2063 */
2064 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2065 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2066 if (vma_is_dax(vma)) {
2067 spin_unlock(ptl);
2068 /* No zero page support yet */
2069 } else {
2070 /* No support for anonymous PUD pages yet */
2071 BUG();
2072 }
2073 return 1;
2074 }
2075
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2076 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2077 unsigned long haddr)
2078 {
2079 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2080 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2081 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2082 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2083
2084 count_vm_event(THP_SPLIT_PUD);
2085
2086 pudp_huge_clear_flush_notify(vma, haddr, pud);
2087 }
2088
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2089 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2090 unsigned long address)
2091 {
2092 spinlock_t *ptl;
2093 struct mmu_notifier_range range;
2094
2095 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2096 address & HPAGE_PUD_MASK,
2097 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2098 mmu_notifier_invalidate_range_start(&range);
2099 ptl = pud_lock(vma->vm_mm, pud);
2100 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2101 goto out;
2102 __split_huge_pud_locked(vma, pud, range.start);
2103
2104 out:
2105 spin_unlock(ptl);
2106 /*
2107 * No need to double call mmu_notifier->invalidate_range() callback as
2108 * the above pudp_huge_clear_flush_notify() did already call it.
2109 */
2110 mmu_notifier_invalidate_range_only_end(&range);
2111 }
2112 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2113
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2114 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2115 unsigned long haddr, pmd_t *pmd)
2116 {
2117 struct mm_struct *mm = vma->vm_mm;
2118 pgtable_t pgtable;
2119 pmd_t _pmd;
2120 int i;
2121
2122 /*
2123 * Leave pmd empty until pte is filled note that it is fine to delay
2124 * notification until mmu_notifier_invalidate_range_end() as we are
2125 * replacing a zero pmd write protected page with a zero pte write
2126 * protected page.
2127 *
2128 * See Documentation/vm/mmu_notifier.rst
2129 */
2130 pmdp_huge_clear_flush(vma, haddr, pmd);
2131
2132 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2133 pmd_populate(mm, &_pmd, pgtable);
2134
2135 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2136 pte_t *pte, entry;
2137 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2138 entry = pte_mkspecial(entry);
2139 pte = pte_offset_map(&_pmd, haddr);
2140 VM_BUG_ON(!pte_none(*pte));
2141 set_pte_at(mm, haddr, pte, entry);
2142 pte_unmap(pte);
2143 }
2144 smp_wmb(); /* make pte visible before pmd */
2145 pmd_populate(mm, pmd, pgtable);
2146 }
2147
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2148 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2149 unsigned long haddr, bool freeze)
2150 {
2151 struct mm_struct *mm = vma->vm_mm;
2152 struct page *page;
2153 pgtable_t pgtable;
2154 pmd_t old_pmd, _pmd;
2155 bool young, write, soft_dirty, pmd_migration = false;
2156 unsigned long addr;
2157 int i;
2158
2159 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2160 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2161 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2162 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2163 && !pmd_devmap(*pmd));
2164
2165 count_vm_event(THP_SPLIT_PMD);
2166
2167 if (!vma_is_anonymous(vma)) {
2168 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2169 /*
2170 * We are going to unmap this huge page. So
2171 * just go ahead and zap it
2172 */
2173 if (arch_needs_pgtable_deposit())
2174 zap_deposited_table(mm, pmd);
2175 if (vma_is_dax(vma))
2176 return;
2177 page = pmd_page(_pmd);
2178 if (!PageDirty(page) && pmd_dirty(_pmd))
2179 set_page_dirty(page);
2180 if (!PageReferenced(page) && pmd_young(_pmd))
2181 SetPageReferenced(page);
2182 page_remove_rmap(page, true);
2183 put_page(page);
2184 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2185 return;
2186 } else if (is_huge_zero_pmd(*pmd)) {
2187 /*
2188 * FIXME: Do we want to invalidate secondary mmu by calling
2189 * mmu_notifier_invalidate_range() see comments below inside
2190 * __split_huge_pmd() ?
2191 *
2192 * We are going from a zero huge page write protected to zero
2193 * small page also write protected so it does not seems useful
2194 * to invalidate secondary mmu at this time.
2195 */
2196 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2197 }
2198
2199 /*
2200 * Up to this point the pmd is present and huge and userland has the
2201 * whole access to the hugepage during the split (which happens in
2202 * place). If we overwrite the pmd with the not-huge version pointing
2203 * to the pte here (which of course we could if all CPUs were bug
2204 * free), userland could trigger a small page size TLB miss on the
2205 * small sized TLB while the hugepage TLB entry is still established in
2206 * the huge TLB. Some CPU doesn't like that.
2207 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2208 * 383 on page 93. Intel should be safe but is also warns that it's
2209 * only safe if the permission and cache attributes of the two entries
2210 * loaded in the two TLB is identical (which should be the case here).
2211 * But it is generally safer to never allow small and huge TLB entries
2212 * for the same virtual address to be loaded simultaneously. So instead
2213 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2214 * current pmd notpresent (atomically because here the pmd_trans_huge
2215 * must remain set at all times on the pmd until the split is complete
2216 * for this pmd), then we flush the SMP TLB and finally we write the
2217 * non-huge version of the pmd entry with pmd_populate.
2218 */
2219 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2220
2221 pmd_migration = is_pmd_migration_entry(old_pmd);
2222 if (unlikely(pmd_migration)) {
2223 swp_entry_t entry;
2224
2225 entry = pmd_to_swp_entry(old_pmd);
2226 page = pfn_to_page(swp_offset(entry));
2227 write = is_write_migration_entry(entry);
2228 young = false;
2229 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2230 } else {
2231 page = pmd_page(old_pmd);
2232 if (pmd_dirty(old_pmd))
2233 SetPageDirty(page);
2234 write = pmd_write(old_pmd);
2235 young = pmd_young(old_pmd);
2236 soft_dirty = pmd_soft_dirty(old_pmd);
2237 }
2238 VM_BUG_ON_PAGE(!page_count(page), page);
2239 page_ref_add(page, HPAGE_PMD_NR - 1);
2240
2241 /*
2242 * Withdraw the table only after we mark the pmd entry invalid.
2243 * This's critical for some architectures (Power).
2244 */
2245 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2246 pmd_populate(mm, &_pmd, pgtable);
2247
2248 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2249 pte_t entry, *pte;
2250 /*
2251 * Note that NUMA hinting access restrictions are not
2252 * transferred to avoid any possibility of altering
2253 * permissions across VMAs.
2254 */
2255 if (freeze || pmd_migration) {
2256 swp_entry_t swp_entry;
2257 swp_entry = make_migration_entry(page + i, write);
2258 entry = swp_entry_to_pte(swp_entry);
2259 if (soft_dirty)
2260 entry = pte_swp_mksoft_dirty(entry);
2261 } else {
2262 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2263 entry = maybe_mkwrite(entry, vma);
2264 if (!write)
2265 entry = pte_wrprotect(entry);
2266 if (!young)
2267 entry = pte_mkold(entry);
2268 if (soft_dirty)
2269 entry = pte_mksoft_dirty(entry);
2270 }
2271 pte = pte_offset_map(&_pmd, addr);
2272 BUG_ON(!pte_none(*pte));
2273 set_pte_at(mm, addr, pte, entry);
2274 atomic_inc(&page[i]._mapcount);
2275 pte_unmap(pte);
2276 }
2277
2278 /*
2279 * Set PG_double_map before dropping compound_mapcount to avoid
2280 * false-negative page_mapped().
2281 */
2282 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2283 for (i = 0; i < HPAGE_PMD_NR; i++)
2284 atomic_inc(&page[i]._mapcount);
2285 }
2286
2287 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2288 /* Last compound_mapcount is gone. */
2289 __dec_node_page_state(page, NR_ANON_THPS);
2290 if (TestClearPageDoubleMap(page)) {
2291 /* No need in mapcount reference anymore */
2292 for (i = 0; i < HPAGE_PMD_NR; i++)
2293 atomic_dec(&page[i]._mapcount);
2294 }
2295 }
2296
2297 smp_wmb(); /* make pte visible before pmd */
2298 pmd_populate(mm, pmd, pgtable);
2299
2300 if (freeze) {
2301 for (i = 0; i < HPAGE_PMD_NR; i++) {
2302 page_remove_rmap(page + i, false);
2303 put_page(page + i);
2304 }
2305 }
2306 }
2307
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2308 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2309 unsigned long address, bool freeze, struct page *page)
2310 {
2311 spinlock_t *ptl;
2312 struct mmu_notifier_range range;
2313
2314 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2315 address & HPAGE_PMD_MASK,
2316 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2317 mmu_notifier_invalidate_range_start(&range);
2318 ptl = pmd_lock(vma->vm_mm, pmd);
2319
2320 /*
2321 * If caller asks to setup a migration entries, we need a page to check
2322 * pmd against. Otherwise we can end up replacing wrong page.
2323 */
2324 VM_BUG_ON(freeze && !page);
2325 if (page && page != pmd_page(*pmd))
2326 goto out;
2327
2328 if (pmd_trans_huge(*pmd)) {
2329 page = pmd_page(*pmd);
2330 if (PageMlocked(page))
2331 clear_page_mlock(page);
2332 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2333 goto out;
2334 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2335 out:
2336 spin_unlock(ptl);
2337 /*
2338 * No need to double call mmu_notifier->invalidate_range() callback.
2339 * They are 3 cases to consider inside __split_huge_pmd_locked():
2340 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2341 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2342 * fault will trigger a flush_notify before pointing to a new page
2343 * (it is fine if the secondary mmu keeps pointing to the old zero
2344 * page in the meantime)
2345 * 3) Split a huge pmd into pte pointing to the same page. No need
2346 * to invalidate secondary tlb entry they are all still valid.
2347 * any further changes to individual pte will notify. So no need
2348 * to call mmu_notifier->invalidate_range()
2349 */
2350 mmu_notifier_invalidate_range_only_end(&range);
2351 }
2352
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2353 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2354 bool freeze, struct page *page)
2355 {
2356 pgd_t *pgd;
2357 p4d_t *p4d;
2358 pud_t *pud;
2359 pmd_t *pmd;
2360
2361 pgd = pgd_offset(vma->vm_mm, address);
2362 if (!pgd_present(*pgd))
2363 return;
2364
2365 p4d = p4d_offset(pgd, address);
2366 if (!p4d_present(*p4d))
2367 return;
2368
2369 pud = pud_offset(p4d, address);
2370 if (!pud_present(*pud))
2371 return;
2372
2373 pmd = pmd_offset(pud, address);
2374
2375 __split_huge_pmd(vma, pmd, address, freeze, page);
2376 }
2377
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2378 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2379 unsigned long start,
2380 unsigned long end,
2381 long adjust_next)
2382 {
2383 /*
2384 * If the new start address isn't hpage aligned and it could
2385 * previously contain an hugepage: check if we need to split
2386 * an huge pmd.
2387 */
2388 if (start & ~HPAGE_PMD_MASK &&
2389 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2390 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2391 split_huge_pmd_address(vma, start, false, NULL);
2392
2393 /*
2394 * If the new end address isn't hpage aligned and it could
2395 * previously contain an hugepage: check if we need to split
2396 * an huge pmd.
2397 */
2398 if (end & ~HPAGE_PMD_MASK &&
2399 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2400 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2401 split_huge_pmd_address(vma, end, false, NULL);
2402
2403 /*
2404 * If we're also updating the vma->vm_next->vm_start, if the new
2405 * vm_next->vm_start isn't page aligned and it could previously
2406 * contain an hugepage: check if we need to split an huge pmd.
2407 */
2408 if (adjust_next > 0) {
2409 struct vm_area_struct *next = vma->vm_next;
2410 unsigned long nstart = next->vm_start;
2411 nstart += adjust_next << PAGE_SHIFT;
2412 if (nstart & ~HPAGE_PMD_MASK &&
2413 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2414 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2415 split_huge_pmd_address(next, nstart, false, NULL);
2416 }
2417 }
2418
unmap_page(struct page * page)2419 static void unmap_page(struct page *page)
2420 {
2421 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2422 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2423 bool unmap_success;
2424
2425 VM_BUG_ON_PAGE(!PageHead(page), page);
2426
2427 if (PageAnon(page))
2428 ttu_flags |= TTU_SPLIT_FREEZE;
2429
2430 unmap_success = try_to_unmap(page, ttu_flags);
2431 VM_BUG_ON_PAGE(!unmap_success, page);
2432 }
2433
remap_page(struct page * page)2434 static void remap_page(struct page *page)
2435 {
2436 int i;
2437 if (PageTransHuge(page)) {
2438 remove_migration_ptes(page, page, true);
2439 } else {
2440 for (i = 0; i < HPAGE_PMD_NR; i++)
2441 remove_migration_ptes(page + i, page + i, true);
2442 }
2443 }
2444
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2445 static void __split_huge_page_tail(struct page *head, int tail,
2446 struct lruvec *lruvec, struct list_head *list)
2447 {
2448 struct page *page_tail = head + tail;
2449
2450 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2451
2452 /*
2453 * Clone page flags before unfreezing refcount.
2454 *
2455 * After successful get_page_unless_zero() might follow flags change,
2456 * for exmaple lock_page() which set PG_waiters.
2457 */
2458 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2459 page_tail->flags |= (head->flags &
2460 ((1L << PG_referenced) |
2461 (1L << PG_swapbacked) |
2462 (1L << PG_swapcache) |
2463 (1L << PG_mlocked) |
2464 (1L << PG_uptodate) |
2465 (1L << PG_active) |
2466 (1L << PG_workingset) |
2467 (1L << PG_locked) |
2468 (1L << PG_unevictable) |
2469 (1L << PG_dirty)));
2470
2471 /* ->mapping in first tail page is compound_mapcount */
2472 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2473 page_tail);
2474 page_tail->mapping = head->mapping;
2475 page_tail->index = head->index + tail;
2476
2477 /* Page flags must be visible before we make the page non-compound. */
2478 smp_wmb();
2479
2480 /*
2481 * Clear PageTail before unfreezing page refcount.
2482 *
2483 * After successful get_page_unless_zero() might follow put_page()
2484 * which needs correct compound_head().
2485 */
2486 clear_compound_head(page_tail);
2487
2488 /* Finally unfreeze refcount. Additional reference from page cache. */
2489 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2490 PageSwapCache(head)));
2491
2492 if (page_is_young(head))
2493 set_page_young(page_tail);
2494 if (page_is_idle(head))
2495 set_page_idle(page_tail);
2496
2497 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2498
2499 /*
2500 * always add to the tail because some iterators expect new
2501 * pages to show after the currently processed elements - e.g.
2502 * migrate_pages
2503 */
2504 lru_add_page_tail(head, page_tail, lruvec, list);
2505 }
2506
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned long flags)2507 static void __split_huge_page(struct page *page, struct list_head *list,
2508 pgoff_t end, unsigned long flags)
2509 {
2510 struct page *head = compound_head(page);
2511 pg_data_t *pgdat = page_pgdat(head);
2512 struct lruvec *lruvec;
2513 struct address_space *swap_cache = NULL;
2514 unsigned long offset = 0;
2515 int i;
2516
2517 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2518
2519 /* complete memcg works before add pages to LRU */
2520 mem_cgroup_split_huge_fixup(head);
2521
2522 if (PageAnon(head) && PageSwapCache(head)) {
2523 swp_entry_t entry = { .val = page_private(head) };
2524
2525 offset = swp_offset(entry);
2526 swap_cache = swap_address_space(entry);
2527 xa_lock(&swap_cache->i_pages);
2528 }
2529
2530 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2531 __split_huge_page_tail(head, i, lruvec, list);
2532 /* Some pages can be beyond i_size: drop them from page cache */
2533 if (head[i].index >= end) {
2534 ClearPageDirty(head + i);
2535 __delete_from_page_cache(head + i, NULL);
2536 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2537 shmem_uncharge(head->mapping->host, 1);
2538 put_page(head + i);
2539 } else if (!PageAnon(page)) {
2540 __xa_store(&head->mapping->i_pages, head[i].index,
2541 head + i, 0);
2542 } else if (swap_cache) {
2543 __xa_store(&swap_cache->i_pages, offset + i,
2544 head + i, 0);
2545 }
2546 }
2547
2548 ClearPageCompound(head);
2549
2550 split_page_owner(head, HPAGE_PMD_ORDER);
2551
2552 /* See comment in __split_huge_page_tail() */
2553 if (PageAnon(head)) {
2554 /* Additional pin to swap cache */
2555 if (PageSwapCache(head)) {
2556 page_ref_add(head, 2);
2557 xa_unlock(&swap_cache->i_pages);
2558 } else {
2559 page_ref_inc(head);
2560 }
2561 } else {
2562 /* Additional pin to page cache */
2563 page_ref_add(head, 2);
2564 xa_unlock(&head->mapping->i_pages);
2565 }
2566
2567 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2568
2569 remap_page(head);
2570
2571 for (i = 0; i < HPAGE_PMD_NR; i++) {
2572 struct page *subpage = head + i;
2573 if (subpage == page)
2574 continue;
2575 unlock_page(subpage);
2576
2577 /*
2578 * Subpages may be freed if there wasn't any mapping
2579 * like if add_to_swap() is running on a lru page that
2580 * had its mapping zapped. And freeing these pages
2581 * requires taking the lru_lock so we do the put_page
2582 * of the tail pages after the split is complete.
2583 */
2584 put_page(subpage);
2585 }
2586 }
2587
total_mapcount(struct page * page)2588 int total_mapcount(struct page *page)
2589 {
2590 int i, compound, ret;
2591
2592 VM_BUG_ON_PAGE(PageTail(page), page);
2593
2594 if (likely(!PageCompound(page)))
2595 return atomic_read(&page->_mapcount) + 1;
2596
2597 compound = compound_mapcount(page);
2598 if (PageHuge(page))
2599 return compound;
2600 ret = compound;
2601 for (i = 0; i < HPAGE_PMD_NR; i++)
2602 ret += atomic_read(&page[i]._mapcount) + 1;
2603 /* File pages has compound_mapcount included in _mapcount */
2604 if (!PageAnon(page))
2605 return ret - compound * HPAGE_PMD_NR;
2606 if (PageDoubleMap(page))
2607 ret -= HPAGE_PMD_NR;
2608 return ret;
2609 }
2610
2611 /*
2612 * This calculates accurately how many mappings a transparent hugepage
2613 * has (unlike page_mapcount() which isn't fully accurate). This full
2614 * accuracy is primarily needed to know if copy-on-write faults can
2615 * reuse the page and change the mapping to read-write instead of
2616 * copying them. At the same time this returns the total_mapcount too.
2617 *
2618 * The function returns the highest mapcount any one of the subpages
2619 * has. If the return value is one, even if different processes are
2620 * mapping different subpages of the transparent hugepage, they can
2621 * all reuse it, because each process is reusing a different subpage.
2622 *
2623 * The total_mapcount is instead counting all virtual mappings of the
2624 * subpages. If the total_mapcount is equal to "one", it tells the
2625 * caller all mappings belong to the same "mm" and in turn the
2626 * anon_vma of the transparent hugepage can become the vma->anon_vma
2627 * local one as no other process may be mapping any of the subpages.
2628 *
2629 * It would be more accurate to replace page_mapcount() with
2630 * page_trans_huge_mapcount(), however we only use
2631 * page_trans_huge_mapcount() in the copy-on-write faults where we
2632 * need full accuracy to avoid breaking page pinning, because
2633 * page_trans_huge_mapcount() is slower than page_mapcount().
2634 */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2635 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2636 {
2637 int i, ret, _total_mapcount, mapcount;
2638
2639 /* hugetlbfs shouldn't call it */
2640 VM_BUG_ON_PAGE(PageHuge(page), page);
2641
2642 if (likely(!PageTransCompound(page))) {
2643 mapcount = atomic_read(&page->_mapcount) + 1;
2644 if (total_mapcount)
2645 *total_mapcount = mapcount;
2646 return mapcount;
2647 }
2648
2649 page = compound_head(page);
2650
2651 _total_mapcount = ret = 0;
2652 for (i = 0; i < HPAGE_PMD_NR; i++) {
2653 mapcount = atomic_read(&page[i]._mapcount) + 1;
2654 ret = max(ret, mapcount);
2655 _total_mapcount += mapcount;
2656 }
2657 if (PageDoubleMap(page)) {
2658 ret -= 1;
2659 _total_mapcount -= HPAGE_PMD_NR;
2660 }
2661 mapcount = compound_mapcount(page);
2662 ret += mapcount;
2663 _total_mapcount += mapcount;
2664 if (total_mapcount)
2665 *total_mapcount = _total_mapcount;
2666 return ret;
2667 }
2668
2669 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2670 bool can_split_huge_page(struct page *page, int *pextra_pins)
2671 {
2672 int extra_pins;
2673
2674 /* Additional pins from page cache */
2675 if (PageAnon(page))
2676 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2677 else
2678 extra_pins = HPAGE_PMD_NR;
2679 if (pextra_pins)
2680 *pextra_pins = extra_pins;
2681 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2682 }
2683
2684 /*
2685 * This function splits huge page into normal pages. @page can point to any
2686 * subpage of huge page to split. Split doesn't change the position of @page.
2687 *
2688 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2689 * The huge page must be locked.
2690 *
2691 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2692 *
2693 * Both head page and tail pages will inherit mapping, flags, and so on from
2694 * the hugepage.
2695 *
2696 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2697 * they are not mapped.
2698 *
2699 * Returns 0 if the hugepage is split successfully.
2700 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2701 * us.
2702 */
split_huge_page_to_list(struct page * page,struct list_head * list)2703 int split_huge_page_to_list(struct page *page, struct list_head *list)
2704 {
2705 struct page *head = compound_head(page);
2706 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2707 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2708 struct anon_vma *anon_vma = NULL;
2709 struct address_space *mapping = NULL;
2710 int count, mapcount, extra_pins, ret;
2711 bool mlocked;
2712 unsigned long flags;
2713 pgoff_t end;
2714
2715 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2716 VM_BUG_ON_PAGE(!PageLocked(page), page);
2717 VM_BUG_ON_PAGE(!PageCompound(page), page);
2718
2719 if (PageWriteback(page))
2720 return -EBUSY;
2721
2722 if (PageAnon(head)) {
2723 /*
2724 * The caller does not necessarily hold an mmap_sem that would
2725 * prevent the anon_vma disappearing so we first we take a
2726 * reference to it and then lock the anon_vma for write. This
2727 * is similar to page_lock_anon_vma_read except the write lock
2728 * is taken to serialise against parallel split or collapse
2729 * operations.
2730 */
2731 anon_vma = page_get_anon_vma(head);
2732 if (!anon_vma) {
2733 ret = -EBUSY;
2734 goto out;
2735 }
2736 end = -1;
2737 mapping = NULL;
2738 anon_vma_lock_write(anon_vma);
2739 } else {
2740 mapping = head->mapping;
2741
2742 /* Truncated ? */
2743 if (!mapping) {
2744 ret = -EBUSY;
2745 goto out;
2746 }
2747
2748 anon_vma = NULL;
2749 i_mmap_lock_read(mapping);
2750
2751 /*
2752 *__split_huge_page() may need to trim off pages beyond EOF:
2753 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2754 * which cannot be nested inside the page tree lock. So note
2755 * end now: i_size itself may be changed at any moment, but
2756 * head page lock is good enough to serialize the trimming.
2757 */
2758 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2759 }
2760
2761 /*
2762 * Racy check if we can split the page, before unmap_page() will
2763 * split PMDs
2764 */
2765 if (!can_split_huge_page(head, &extra_pins)) {
2766 ret = -EBUSY;
2767 goto out_unlock;
2768 }
2769
2770 mlocked = PageMlocked(page);
2771 unmap_page(head);
2772 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2773
2774 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2775 if (mlocked)
2776 lru_add_drain();
2777
2778 /* prevent PageLRU to go away from under us, and freeze lru stats */
2779 spin_lock_irqsave(&pgdata->lru_lock, flags);
2780
2781 if (mapping) {
2782 XA_STATE(xas, &mapping->i_pages, page_index(head));
2783
2784 /*
2785 * Check if the head page is present in page cache.
2786 * We assume all tail are present too, if head is there.
2787 */
2788 xa_lock(&mapping->i_pages);
2789 if (xas_load(&xas) != head)
2790 goto fail;
2791 }
2792
2793 /* Prevent deferred_split_scan() touching ->_refcount */
2794 spin_lock(&ds_queue->split_queue_lock);
2795 count = page_count(head);
2796 mapcount = total_mapcount(head);
2797 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2798 if (!list_empty(page_deferred_list(head))) {
2799 ds_queue->split_queue_len--;
2800 list_del(page_deferred_list(head));
2801 }
2802 if (mapping) {
2803 if (PageSwapBacked(page))
2804 __dec_node_page_state(page, NR_SHMEM_THPS);
2805 else
2806 __dec_node_page_state(page, NR_FILE_THPS);
2807 }
2808
2809 spin_unlock(&ds_queue->split_queue_lock);
2810 __split_huge_page(page, list, end, flags);
2811 if (PageSwapCache(head)) {
2812 swp_entry_t entry = { .val = page_private(head) };
2813
2814 ret = split_swap_cluster(entry);
2815 } else
2816 ret = 0;
2817 } else {
2818 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2819 pr_alert("total_mapcount: %u, page_count(): %u\n",
2820 mapcount, count);
2821 if (PageTail(page))
2822 dump_page(head, NULL);
2823 dump_page(page, "total_mapcount(head) > 0");
2824 BUG();
2825 }
2826 spin_unlock(&ds_queue->split_queue_lock);
2827 fail: if (mapping)
2828 xa_unlock(&mapping->i_pages);
2829 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2830 remap_page(head);
2831 ret = -EBUSY;
2832 }
2833
2834 out_unlock:
2835 if (anon_vma) {
2836 anon_vma_unlock_write(anon_vma);
2837 put_anon_vma(anon_vma);
2838 }
2839 if (mapping)
2840 i_mmap_unlock_read(mapping);
2841 out:
2842 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2843 return ret;
2844 }
2845
free_transhuge_page(struct page * page)2846 void free_transhuge_page(struct page *page)
2847 {
2848 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2849 unsigned long flags;
2850
2851 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2852 if (!list_empty(page_deferred_list(page))) {
2853 ds_queue->split_queue_len--;
2854 list_del(page_deferred_list(page));
2855 }
2856 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2857 free_compound_page(page);
2858 }
2859
deferred_split_huge_page(struct page * page)2860 void deferred_split_huge_page(struct page *page)
2861 {
2862 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2863 #ifdef CONFIG_MEMCG
2864 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2865 #endif
2866 unsigned long flags;
2867
2868 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2869
2870 /*
2871 * The try_to_unmap() in page reclaim path might reach here too,
2872 * this may cause a race condition to corrupt deferred split queue.
2873 * And, if page reclaim is already handling the same page, it is
2874 * unnecessary to handle it again in shrinker.
2875 *
2876 * Check PageSwapCache to determine if the page is being
2877 * handled by page reclaim since THP swap would add the page into
2878 * swap cache before calling try_to_unmap().
2879 */
2880 if (PageSwapCache(page))
2881 return;
2882
2883 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2884 if (list_empty(page_deferred_list(page))) {
2885 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2886 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2887 ds_queue->split_queue_len++;
2888 #ifdef CONFIG_MEMCG
2889 if (memcg)
2890 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2891 deferred_split_shrinker.id);
2892 #endif
2893 }
2894 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2895 }
2896
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2897 static unsigned long deferred_split_count(struct shrinker *shrink,
2898 struct shrink_control *sc)
2899 {
2900 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2901 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2902
2903 #ifdef CONFIG_MEMCG
2904 if (sc->memcg)
2905 ds_queue = &sc->memcg->deferred_split_queue;
2906 #endif
2907 return READ_ONCE(ds_queue->split_queue_len);
2908 }
2909
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2910 static unsigned long deferred_split_scan(struct shrinker *shrink,
2911 struct shrink_control *sc)
2912 {
2913 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2914 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2915 unsigned long flags;
2916 LIST_HEAD(list), *pos, *next;
2917 struct page *page;
2918 int split = 0;
2919
2920 #ifdef CONFIG_MEMCG
2921 if (sc->memcg)
2922 ds_queue = &sc->memcg->deferred_split_queue;
2923 #endif
2924
2925 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2926 /* Take pin on all head pages to avoid freeing them under us */
2927 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2928 page = list_entry((void *)pos, struct page, mapping);
2929 page = compound_head(page);
2930 if (get_page_unless_zero(page)) {
2931 list_move(page_deferred_list(page), &list);
2932 } else {
2933 /* We lost race with put_compound_page() */
2934 list_del_init(page_deferred_list(page));
2935 ds_queue->split_queue_len--;
2936 }
2937 if (!--sc->nr_to_scan)
2938 break;
2939 }
2940 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2941
2942 list_for_each_safe(pos, next, &list) {
2943 page = list_entry((void *)pos, struct page, mapping);
2944 if (!trylock_page(page))
2945 goto next;
2946 /* split_huge_page() removes page from list on success */
2947 if (!split_huge_page(page))
2948 split++;
2949 unlock_page(page);
2950 next:
2951 put_page(page);
2952 }
2953
2954 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2955 list_splice_tail(&list, &ds_queue->split_queue);
2956 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2957
2958 /*
2959 * Stop shrinker if we didn't split any page, but the queue is empty.
2960 * This can happen if pages were freed under us.
2961 */
2962 if (!split && list_empty(&ds_queue->split_queue))
2963 return SHRINK_STOP;
2964 return split;
2965 }
2966
2967 static struct shrinker deferred_split_shrinker = {
2968 .count_objects = deferred_split_count,
2969 .scan_objects = deferred_split_scan,
2970 .seeks = DEFAULT_SEEKS,
2971 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2972 SHRINKER_NONSLAB,
2973 };
2974
2975 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)2976 static int split_huge_pages_set(void *data, u64 val)
2977 {
2978 struct zone *zone;
2979 struct page *page;
2980 unsigned long pfn, max_zone_pfn;
2981 unsigned long total = 0, split = 0;
2982
2983 if (val != 1)
2984 return -EINVAL;
2985
2986 for_each_populated_zone(zone) {
2987 max_zone_pfn = zone_end_pfn(zone);
2988 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2989 if (!pfn_valid(pfn))
2990 continue;
2991
2992 page = pfn_to_page(pfn);
2993 if (!get_page_unless_zero(page))
2994 continue;
2995
2996 if (zone != page_zone(page))
2997 goto next;
2998
2999 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3000 goto next;
3001
3002 total++;
3003 lock_page(page);
3004 if (!split_huge_page(page))
3005 split++;
3006 unlock_page(page);
3007 next:
3008 put_page(page);
3009 }
3010 }
3011
3012 pr_info("%lu of %lu THP split\n", split, total);
3013
3014 return 0;
3015 }
3016 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3017 "%llu\n");
3018
split_huge_pages_debugfs(void)3019 static int __init split_huge_pages_debugfs(void)
3020 {
3021 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3022 &split_huge_pages_fops);
3023 return 0;
3024 }
3025 late_initcall(split_huge_pages_debugfs);
3026 #endif
3027
3028 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3029 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3030 struct page *page)
3031 {
3032 struct vm_area_struct *vma = pvmw->vma;
3033 struct mm_struct *mm = vma->vm_mm;
3034 unsigned long address = pvmw->address;
3035 pmd_t pmdval;
3036 swp_entry_t entry;
3037 pmd_t pmdswp;
3038
3039 if (!(pvmw->pmd && !pvmw->pte))
3040 return;
3041
3042 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3043 pmdval = *pvmw->pmd;
3044 pmdp_invalidate(vma, address, pvmw->pmd);
3045 if (pmd_dirty(pmdval))
3046 set_page_dirty(page);
3047 entry = make_migration_entry(page, pmd_write(pmdval));
3048 pmdswp = swp_entry_to_pmd(entry);
3049 if (pmd_soft_dirty(pmdval))
3050 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3051 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3052 page_remove_rmap(page, true);
3053 put_page(page);
3054 }
3055
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3056 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3057 {
3058 struct vm_area_struct *vma = pvmw->vma;
3059 struct mm_struct *mm = vma->vm_mm;
3060 unsigned long address = pvmw->address;
3061 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3062 pmd_t pmde;
3063 swp_entry_t entry;
3064
3065 if (!(pvmw->pmd && !pvmw->pte))
3066 return;
3067
3068 entry = pmd_to_swp_entry(*pvmw->pmd);
3069 get_page(new);
3070 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3071 if (pmd_swp_soft_dirty(*pvmw->pmd))
3072 pmde = pmd_mksoft_dirty(pmde);
3073 if (is_write_migration_entry(entry))
3074 pmde = maybe_pmd_mkwrite(pmde, vma);
3075
3076 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3077 if (PageAnon(new))
3078 page_add_anon_rmap(new, vma, mmun_start, true);
3079 else
3080 page_add_file_rmap(new, true);
3081 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3082 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3083 mlock_vma_page(new);
3084 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3085 }
3086 #endif
3087