1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 /*
80 * lockdep_lock: protects the lockdep graph, the hashes and the
81 * class/list/hash allocators.
82 *
83 * This is one of the rare exceptions where it's justified
84 * to use a raw spinlock - we really dont want the spinlock
85 * code to recurse back into the lockdep code...
86 */
87 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 static struct task_struct *lockdep_selftest_task_struct;
89
graph_lock(void)90 static int graph_lock(void)
91 {
92 arch_spin_lock(&lockdep_lock);
93 /*
94 * Make sure that if another CPU detected a bug while
95 * walking the graph we dont change it (while the other
96 * CPU is busy printing out stuff with the graph lock
97 * dropped already)
98 */
99 if (!debug_locks) {
100 arch_spin_unlock(&lockdep_lock);
101 return 0;
102 }
103 /* prevent any recursions within lockdep from causing deadlocks */
104 current->lockdep_recursion++;
105 return 1;
106 }
107
graph_unlock(void)108 static inline int graph_unlock(void)
109 {
110 if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
111 /*
112 * The lockdep graph lock isn't locked while we expect it to
113 * be, we're confused now, bye!
114 */
115 return DEBUG_LOCKS_WARN_ON(1);
116 }
117
118 current->lockdep_recursion--;
119 arch_spin_unlock(&lockdep_lock);
120 return 0;
121 }
122
123 /*
124 * Turn lock debugging off and return with 0 if it was off already,
125 * and also release the graph lock:
126 */
debug_locks_off_graph_unlock(void)127 static inline int debug_locks_off_graph_unlock(void)
128 {
129 int ret = debug_locks_off();
130
131 arch_spin_unlock(&lockdep_lock);
132
133 return ret;
134 }
135
136 unsigned long nr_list_entries;
137 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
138 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
139
140 /*
141 * All data structures here are protected by the global debug_lock.
142 *
143 * nr_lock_classes is the number of elements of lock_classes[] that is
144 * in use.
145 */
146 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
147 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
148 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
149 unsigned long nr_lock_classes;
150 #ifndef CONFIG_DEBUG_LOCKDEP
151 static
152 #endif
153 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
154 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
155
hlock_class(struct held_lock * hlock)156 static inline struct lock_class *hlock_class(struct held_lock *hlock)
157 {
158 unsigned int class_idx = hlock->class_idx;
159
160 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
161 barrier();
162
163 if (!test_bit(class_idx, lock_classes_in_use)) {
164 /*
165 * Someone passed in garbage, we give up.
166 */
167 DEBUG_LOCKS_WARN_ON(1);
168 return NULL;
169 }
170
171 /*
172 * At this point, if the passed hlock->class_idx is still garbage,
173 * we just have to live with it
174 */
175 return lock_classes + class_idx;
176 }
177
178 #ifdef CONFIG_LOCK_STAT
179 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
180
lockstat_clock(void)181 static inline u64 lockstat_clock(void)
182 {
183 return local_clock();
184 }
185
lock_point(unsigned long points[],unsigned long ip)186 static int lock_point(unsigned long points[], unsigned long ip)
187 {
188 int i;
189
190 for (i = 0; i < LOCKSTAT_POINTS; i++) {
191 if (points[i] == 0) {
192 points[i] = ip;
193 break;
194 }
195 if (points[i] == ip)
196 break;
197 }
198
199 return i;
200 }
201
lock_time_inc(struct lock_time * lt,u64 time)202 static void lock_time_inc(struct lock_time *lt, u64 time)
203 {
204 if (time > lt->max)
205 lt->max = time;
206
207 if (time < lt->min || !lt->nr)
208 lt->min = time;
209
210 lt->total += time;
211 lt->nr++;
212 }
213
lock_time_add(struct lock_time * src,struct lock_time * dst)214 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
215 {
216 if (!src->nr)
217 return;
218
219 if (src->max > dst->max)
220 dst->max = src->max;
221
222 if (src->min < dst->min || !dst->nr)
223 dst->min = src->min;
224
225 dst->total += src->total;
226 dst->nr += src->nr;
227 }
228
lock_stats(struct lock_class * class)229 struct lock_class_stats lock_stats(struct lock_class *class)
230 {
231 struct lock_class_stats stats;
232 int cpu, i;
233
234 memset(&stats, 0, sizeof(struct lock_class_stats));
235 for_each_possible_cpu(cpu) {
236 struct lock_class_stats *pcs =
237 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
238
239 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
240 stats.contention_point[i] += pcs->contention_point[i];
241
242 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
243 stats.contending_point[i] += pcs->contending_point[i];
244
245 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
246 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
247
248 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
249 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
250
251 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
252 stats.bounces[i] += pcs->bounces[i];
253 }
254
255 return stats;
256 }
257
clear_lock_stats(struct lock_class * class)258 void clear_lock_stats(struct lock_class *class)
259 {
260 int cpu;
261
262 for_each_possible_cpu(cpu) {
263 struct lock_class_stats *cpu_stats =
264 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
265
266 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
267 }
268 memset(class->contention_point, 0, sizeof(class->contention_point));
269 memset(class->contending_point, 0, sizeof(class->contending_point));
270 }
271
get_lock_stats(struct lock_class * class)272 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
273 {
274 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
275 }
276
lock_release_holdtime(struct held_lock * hlock)277 static void lock_release_holdtime(struct held_lock *hlock)
278 {
279 struct lock_class_stats *stats;
280 u64 holdtime;
281
282 if (!lock_stat)
283 return;
284
285 holdtime = lockstat_clock() - hlock->holdtime_stamp;
286
287 stats = get_lock_stats(hlock_class(hlock));
288 if (hlock->read)
289 lock_time_inc(&stats->read_holdtime, holdtime);
290 else
291 lock_time_inc(&stats->write_holdtime, holdtime);
292 }
293 #else
lock_release_holdtime(struct held_lock * hlock)294 static inline void lock_release_holdtime(struct held_lock *hlock)
295 {
296 }
297 #endif
298
299 /*
300 * We keep a global list of all lock classes. The list is only accessed with
301 * the lockdep spinlock lock held. free_lock_classes is a list with free
302 * elements. These elements are linked together by the lock_entry member in
303 * struct lock_class.
304 */
305 LIST_HEAD(all_lock_classes);
306 static LIST_HEAD(free_lock_classes);
307
308 /**
309 * struct pending_free - information about data structures about to be freed
310 * @zapped: Head of a list with struct lock_class elements.
311 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
312 * are about to be freed.
313 */
314 struct pending_free {
315 struct list_head zapped;
316 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
317 };
318
319 /**
320 * struct delayed_free - data structures used for delayed freeing
321 *
322 * A data structure for delayed freeing of data structures that may be
323 * accessed by RCU readers at the time these were freed.
324 *
325 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
326 * @index: Index of @pf to which freed data structures are added.
327 * @scheduled: Whether or not an RCU callback has been scheduled.
328 * @pf: Array with information about data structures about to be freed.
329 */
330 static struct delayed_free {
331 struct rcu_head rcu_head;
332 int index;
333 int scheduled;
334 struct pending_free pf[2];
335 } delayed_free;
336
337 /*
338 * The lockdep classes are in a hash-table as well, for fast lookup:
339 */
340 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
341 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
342 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
343 #define classhashentry(key) (classhash_table + __classhashfn((key)))
344
345 static struct hlist_head classhash_table[CLASSHASH_SIZE];
346
347 /*
348 * We put the lock dependency chains into a hash-table as well, to cache
349 * their existence:
350 */
351 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
352 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
353 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
354 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
355
356 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
357
358 /*
359 * The hash key of the lock dependency chains is a hash itself too:
360 * it's a hash of all locks taken up to that lock, including that lock.
361 * It's a 64-bit hash, because it's important for the keys to be
362 * unique.
363 */
iterate_chain_key(u64 key,u32 idx)364 static inline u64 iterate_chain_key(u64 key, u32 idx)
365 {
366 u32 k0 = key, k1 = key >> 32;
367
368 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
369
370 return k0 | (u64)k1 << 32;
371 }
372
lockdep_init_task(struct task_struct * task)373 void lockdep_init_task(struct task_struct *task)
374 {
375 task->lockdep_depth = 0; /* no locks held yet */
376 task->curr_chain_key = INITIAL_CHAIN_KEY;
377 task->lockdep_recursion = 0;
378 }
379
lockdep_off(void)380 void lockdep_off(void)
381 {
382 current->lockdep_recursion++;
383 }
384 EXPORT_SYMBOL(lockdep_off);
385
lockdep_on(void)386 void lockdep_on(void)
387 {
388 current->lockdep_recursion--;
389 }
390 EXPORT_SYMBOL(lockdep_on);
391
lockdep_set_selftest_task(struct task_struct * task)392 void lockdep_set_selftest_task(struct task_struct *task)
393 {
394 lockdep_selftest_task_struct = task;
395 }
396
397 /*
398 * Debugging switches:
399 */
400
401 #define VERBOSE 0
402 #define VERY_VERBOSE 0
403
404 #if VERBOSE
405 # define HARDIRQ_VERBOSE 1
406 # define SOFTIRQ_VERBOSE 1
407 #else
408 # define HARDIRQ_VERBOSE 0
409 # define SOFTIRQ_VERBOSE 0
410 #endif
411
412 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
413 /*
414 * Quick filtering for interesting events:
415 */
class_filter(struct lock_class * class)416 static int class_filter(struct lock_class *class)
417 {
418 #if 0
419 /* Example */
420 if (class->name_version == 1 &&
421 !strcmp(class->name, "lockname"))
422 return 1;
423 if (class->name_version == 1 &&
424 !strcmp(class->name, "&struct->lockfield"))
425 return 1;
426 #endif
427 /* Filter everything else. 1 would be to allow everything else */
428 return 0;
429 }
430 #endif
431
verbose(struct lock_class * class)432 static int verbose(struct lock_class *class)
433 {
434 #if VERBOSE
435 return class_filter(class);
436 #endif
437 return 0;
438 }
439
print_lockdep_off(const char * bug_msg)440 static void print_lockdep_off(const char *bug_msg)
441 {
442 printk(KERN_DEBUG "%s\n", bug_msg);
443 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
444 #ifdef CONFIG_LOCK_STAT
445 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
446 #endif
447 }
448
449 unsigned long nr_stack_trace_entries;
450
451 #ifdef CONFIG_PROVE_LOCKING
452 /**
453 * struct lock_trace - single stack backtrace
454 * @hash_entry: Entry in a stack_trace_hash[] list.
455 * @hash: jhash() of @entries.
456 * @nr_entries: Number of entries in @entries.
457 * @entries: Actual stack backtrace.
458 */
459 struct lock_trace {
460 struct hlist_node hash_entry;
461 u32 hash;
462 u32 nr_entries;
463 unsigned long entries[0] __aligned(sizeof(unsigned long));
464 };
465 #define LOCK_TRACE_SIZE_IN_LONGS \
466 (sizeof(struct lock_trace) / sizeof(unsigned long))
467 /*
468 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
469 */
470 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
471 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
472
traces_identical(struct lock_trace * t1,struct lock_trace * t2)473 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
474 {
475 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
476 memcmp(t1->entries, t2->entries,
477 t1->nr_entries * sizeof(t1->entries[0])) == 0;
478 }
479
save_trace(void)480 static struct lock_trace *save_trace(void)
481 {
482 struct lock_trace *trace, *t2;
483 struct hlist_head *hash_head;
484 u32 hash;
485 int max_entries;
486
487 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
488 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
489
490 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
491 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
492 LOCK_TRACE_SIZE_IN_LONGS;
493
494 if (max_entries <= 0) {
495 if (!debug_locks_off_graph_unlock())
496 return NULL;
497
498 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
499 dump_stack();
500
501 return NULL;
502 }
503 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
504
505 hash = jhash(trace->entries, trace->nr_entries *
506 sizeof(trace->entries[0]), 0);
507 trace->hash = hash;
508 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
509 hlist_for_each_entry(t2, hash_head, hash_entry) {
510 if (traces_identical(trace, t2))
511 return t2;
512 }
513 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
514 hlist_add_head(&trace->hash_entry, hash_head);
515
516 return trace;
517 }
518
519 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)520 u64 lockdep_stack_trace_count(void)
521 {
522 struct lock_trace *trace;
523 u64 c = 0;
524 int i;
525
526 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
527 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
528 c++;
529 }
530 }
531
532 return c;
533 }
534
535 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)536 u64 lockdep_stack_hash_count(void)
537 {
538 u64 c = 0;
539 int i;
540
541 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
542 if (!hlist_empty(&stack_trace_hash[i]))
543 c++;
544
545 return c;
546 }
547 #endif
548
549 unsigned int nr_hardirq_chains;
550 unsigned int nr_softirq_chains;
551 unsigned int nr_process_chains;
552 unsigned int max_lockdep_depth;
553
554 #ifdef CONFIG_DEBUG_LOCKDEP
555 /*
556 * Various lockdep statistics:
557 */
558 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
559 #endif
560
561 #ifdef CONFIG_PROVE_LOCKING
562 /*
563 * Locking printouts:
564 */
565
566 #define __USAGE(__STATE) \
567 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
568 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
569 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
570 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
571
572 static const char *usage_str[] =
573 {
574 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
575 #include "lockdep_states.h"
576 #undef LOCKDEP_STATE
577 [LOCK_USED] = "INITIAL USE",
578 };
579 #endif
580
__get_key_name(const struct lockdep_subclass_key * key,char * str)581 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
582 {
583 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
584 }
585
lock_flag(enum lock_usage_bit bit)586 static inline unsigned long lock_flag(enum lock_usage_bit bit)
587 {
588 return 1UL << bit;
589 }
590
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)591 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
592 {
593 /*
594 * The usage character defaults to '.' (i.e., irqs disabled and not in
595 * irq context), which is the safest usage category.
596 */
597 char c = '.';
598
599 /*
600 * The order of the following usage checks matters, which will
601 * result in the outcome character as follows:
602 *
603 * - '+': irq is enabled and not in irq context
604 * - '-': in irq context and irq is disabled
605 * - '?': in irq context and irq is enabled
606 */
607 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
608 c = '+';
609 if (class->usage_mask & lock_flag(bit))
610 c = '?';
611 } else if (class->usage_mask & lock_flag(bit))
612 c = '-';
613
614 return c;
615 }
616
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])617 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
618 {
619 int i = 0;
620
621 #define LOCKDEP_STATE(__STATE) \
622 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
623 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626
627 usage[i] = '\0';
628 }
629
__print_lock_name(struct lock_class * class)630 static void __print_lock_name(struct lock_class *class)
631 {
632 char str[KSYM_NAME_LEN];
633 const char *name;
634
635 name = class->name;
636 if (!name) {
637 name = __get_key_name(class->key, str);
638 printk(KERN_CONT "%s", name);
639 } else {
640 printk(KERN_CONT "%s", name);
641 if (class->name_version > 1)
642 printk(KERN_CONT "#%d", class->name_version);
643 if (class->subclass)
644 printk(KERN_CONT "/%d", class->subclass);
645 }
646 }
647
print_lock_name(struct lock_class * class)648 static void print_lock_name(struct lock_class *class)
649 {
650 char usage[LOCK_USAGE_CHARS];
651
652 get_usage_chars(class, usage);
653
654 printk(KERN_CONT " (");
655 __print_lock_name(class);
656 printk(KERN_CONT "){%s}", usage);
657 }
658
print_lockdep_cache(struct lockdep_map * lock)659 static void print_lockdep_cache(struct lockdep_map *lock)
660 {
661 const char *name;
662 char str[KSYM_NAME_LEN];
663
664 name = lock->name;
665 if (!name)
666 name = __get_key_name(lock->key->subkeys, str);
667
668 printk(KERN_CONT "%s", name);
669 }
670
print_lock(struct held_lock * hlock)671 static void print_lock(struct held_lock *hlock)
672 {
673 /*
674 * We can be called locklessly through debug_show_all_locks() so be
675 * extra careful, the hlock might have been released and cleared.
676 *
677 * If this indeed happens, lets pretend it does not hurt to continue
678 * to print the lock unless the hlock class_idx does not point to a
679 * registered class. The rationale here is: since we don't attempt
680 * to distinguish whether we are in this situation, if it just
681 * happened we can't count on class_idx to tell either.
682 */
683 struct lock_class *lock = hlock_class(hlock);
684
685 if (!lock) {
686 printk(KERN_CONT "<RELEASED>\n");
687 return;
688 }
689
690 printk(KERN_CONT "%px", hlock->instance);
691 print_lock_name(lock);
692 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
693 }
694
lockdep_print_held_locks(struct task_struct * p)695 static void lockdep_print_held_locks(struct task_struct *p)
696 {
697 int i, depth = READ_ONCE(p->lockdep_depth);
698
699 if (!depth)
700 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
701 else
702 printk("%d lock%s held by %s/%d:\n", depth,
703 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
704 /*
705 * It's not reliable to print a task's held locks if it's not sleeping
706 * and it's not the current task.
707 */
708 if (p->state == TASK_RUNNING && p != current)
709 return;
710 for (i = 0; i < depth; i++) {
711 printk(" #%d: ", i);
712 print_lock(p->held_locks + i);
713 }
714 }
715
print_kernel_ident(void)716 static void print_kernel_ident(void)
717 {
718 printk("%s %.*s %s\n", init_utsname()->release,
719 (int)strcspn(init_utsname()->version, " "),
720 init_utsname()->version,
721 print_tainted());
722 }
723
very_verbose(struct lock_class * class)724 static int very_verbose(struct lock_class *class)
725 {
726 #if VERY_VERBOSE
727 return class_filter(class);
728 #endif
729 return 0;
730 }
731
732 /*
733 * Is this the address of a static object:
734 */
735 #ifdef __KERNEL__
static_obj(const void * obj)736 static int static_obj(const void *obj)
737 {
738 unsigned long start = (unsigned long) &_stext,
739 end = (unsigned long) &_end,
740 addr = (unsigned long) obj;
741
742 if (arch_is_kernel_initmem_freed(addr))
743 return 0;
744
745 /*
746 * static variable?
747 */
748 if ((addr >= start) && (addr < end))
749 return 1;
750
751 if (arch_is_kernel_data(addr))
752 return 1;
753
754 /*
755 * in-kernel percpu var?
756 */
757 if (is_kernel_percpu_address(addr))
758 return 1;
759
760 /*
761 * module static or percpu var?
762 */
763 return is_module_address(addr) || is_module_percpu_address(addr);
764 }
765 #endif
766
767 /*
768 * To make lock name printouts unique, we calculate a unique
769 * class->name_version generation counter. The caller must hold the graph
770 * lock.
771 */
count_matching_names(struct lock_class * new_class)772 static int count_matching_names(struct lock_class *new_class)
773 {
774 struct lock_class *class;
775 int count = 0;
776
777 if (!new_class->name)
778 return 0;
779
780 list_for_each_entry(class, &all_lock_classes, lock_entry) {
781 if (new_class->key - new_class->subclass == class->key)
782 return class->name_version;
783 if (class->name && !strcmp(class->name, new_class->name))
784 count = max(count, class->name_version);
785 }
786
787 return count + 1;
788 }
789
790 static inline struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)791 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
792 {
793 struct lockdep_subclass_key *key;
794 struct hlist_head *hash_head;
795 struct lock_class *class;
796
797 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
798 debug_locks_off();
799 printk(KERN_ERR
800 "BUG: looking up invalid subclass: %u\n", subclass);
801 printk(KERN_ERR
802 "turning off the locking correctness validator.\n");
803 dump_stack();
804 return NULL;
805 }
806
807 /*
808 * If it is not initialised then it has never been locked,
809 * so it won't be present in the hash table.
810 */
811 if (unlikely(!lock->key))
812 return NULL;
813
814 /*
815 * NOTE: the class-key must be unique. For dynamic locks, a static
816 * lock_class_key variable is passed in through the mutex_init()
817 * (or spin_lock_init()) call - which acts as the key. For static
818 * locks we use the lock object itself as the key.
819 */
820 BUILD_BUG_ON(sizeof(struct lock_class_key) >
821 sizeof(struct lockdep_map));
822
823 key = lock->key->subkeys + subclass;
824
825 hash_head = classhashentry(key);
826
827 /*
828 * We do an RCU walk of the hash, see lockdep_free_key_range().
829 */
830 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
831 return NULL;
832
833 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
834 if (class->key == key) {
835 /*
836 * Huh! same key, different name? Did someone trample
837 * on some memory? We're most confused.
838 */
839 WARN_ON_ONCE(class->name != lock->name &&
840 lock->key != &__lockdep_no_validate__);
841 return class;
842 }
843 }
844
845 return NULL;
846 }
847
848 /*
849 * Static locks do not have their class-keys yet - for them the key is
850 * the lock object itself. If the lock is in the per cpu area, the
851 * canonical address of the lock (per cpu offset removed) is used.
852 */
assign_lock_key(struct lockdep_map * lock)853 static bool assign_lock_key(struct lockdep_map *lock)
854 {
855 unsigned long can_addr, addr = (unsigned long)lock;
856
857 #ifdef __KERNEL__
858 /*
859 * lockdep_free_key_range() assumes that struct lock_class_key
860 * objects do not overlap. Since we use the address of lock
861 * objects as class key for static objects, check whether the
862 * size of lock_class_key objects does not exceed the size of
863 * the smallest lock object.
864 */
865 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
866 #endif
867
868 if (__is_kernel_percpu_address(addr, &can_addr))
869 lock->key = (void *)can_addr;
870 else if (__is_module_percpu_address(addr, &can_addr))
871 lock->key = (void *)can_addr;
872 else if (static_obj(lock))
873 lock->key = (void *)lock;
874 else {
875 /* Debug-check: all keys must be persistent! */
876 debug_locks_off();
877 pr_err("INFO: trying to register non-static key.\n");
878 pr_err("the code is fine but needs lockdep annotation.\n");
879 pr_err("turning off the locking correctness validator.\n");
880 dump_stack();
881 return false;
882 }
883
884 return true;
885 }
886
887 #ifdef CONFIG_DEBUG_LOCKDEP
888
889 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)890 static bool in_list(struct list_head *e, struct list_head *h)
891 {
892 struct list_head *f;
893
894 list_for_each(f, h) {
895 if (e == f)
896 return true;
897 }
898
899 return false;
900 }
901
902 /*
903 * Check whether entry @e occurs in any of the locks_after or locks_before
904 * lists.
905 */
in_any_class_list(struct list_head * e)906 static bool in_any_class_list(struct list_head *e)
907 {
908 struct lock_class *class;
909 int i;
910
911 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
912 class = &lock_classes[i];
913 if (in_list(e, &class->locks_after) ||
914 in_list(e, &class->locks_before))
915 return true;
916 }
917 return false;
918 }
919
class_lock_list_valid(struct lock_class * c,struct list_head * h)920 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
921 {
922 struct lock_list *e;
923
924 list_for_each_entry(e, h, entry) {
925 if (e->links_to != c) {
926 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
927 c->name ? : "(?)",
928 (unsigned long)(e - list_entries),
929 e->links_to && e->links_to->name ?
930 e->links_to->name : "(?)",
931 e->class && e->class->name ? e->class->name :
932 "(?)");
933 return false;
934 }
935 }
936 return true;
937 }
938
939 #ifdef CONFIG_PROVE_LOCKING
940 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
941 #endif
942
check_lock_chain_key(struct lock_chain * chain)943 static bool check_lock_chain_key(struct lock_chain *chain)
944 {
945 #ifdef CONFIG_PROVE_LOCKING
946 u64 chain_key = INITIAL_CHAIN_KEY;
947 int i;
948
949 for (i = chain->base; i < chain->base + chain->depth; i++)
950 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
951 /*
952 * The 'unsigned long long' casts avoid that a compiler warning
953 * is reported when building tools/lib/lockdep.
954 */
955 if (chain->chain_key != chain_key) {
956 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
957 (unsigned long long)(chain - lock_chains),
958 (unsigned long long)chain->chain_key,
959 (unsigned long long)chain_key);
960 return false;
961 }
962 #endif
963 return true;
964 }
965
in_any_zapped_class_list(struct lock_class * class)966 static bool in_any_zapped_class_list(struct lock_class *class)
967 {
968 struct pending_free *pf;
969 int i;
970
971 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
972 if (in_list(&class->lock_entry, &pf->zapped))
973 return true;
974 }
975
976 return false;
977 }
978
__check_data_structures(void)979 static bool __check_data_structures(void)
980 {
981 struct lock_class *class;
982 struct lock_chain *chain;
983 struct hlist_head *head;
984 struct lock_list *e;
985 int i;
986
987 /* Check whether all classes occur in a lock list. */
988 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
989 class = &lock_classes[i];
990 if (!in_list(&class->lock_entry, &all_lock_classes) &&
991 !in_list(&class->lock_entry, &free_lock_classes) &&
992 !in_any_zapped_class_list(class)) {
993 printk(KERN_INFO "class %px/%s is not in any class list\n",
994 class, class->name ? : "(?)");
995 return false;
996 }
997 }
998
999 /* Check whether all classes have valid lock lists. */
1000 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1001 class = &lock_classes[i];
1002 if (!class_lock_list_valid(class, &class->locks_before))
1003 return false;
1004 if (!class_lock_list_valid(class, &class->locks_after))
1005 return false;
1006 }
1007
1008 /* Check the chain_key of all lock chains. */
1009 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1010 head = chainhash_table + i;
1011 hlist_for_each_entry_rcu(chain, head, entry) {
1012 if (!check_lock_chain_key(chain))
1013 return false;
1014 }
1015 }
1016
1017 /*
1018 * Check whether all list entries that are in use occur in a class
1019 * lock list.
1020 */
1021 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1022 e = list_entries + i;
1023 if (!in_any_class_list(&e->entry)) {
1024 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1025 (unsigned int)(e - list_entries),
1026 e->class->name ? : "(?)",
1027 e->links_to->name ? : "(?)");
1028 return false;
1029 }
1030 }
1031
1032 /*
1033 * Check whether all list entries that are not in use do not occur in
1034 * a class lock list.
1035 */
1036 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1037 e = list_entries + i;
1038 if (in_any_class_list(&e->entry)) {
1039 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1040 (unsigned int)(e - list_entries),
1041 e->class && e->class->name ? e->class->name :
1042 "(?)",
1043 e->links_to && e->links_to->name ?
1044 e->links_to->name : "(?)");
1045 return false;
1046 }
1047 }
1048
1049 return true;
1050 }
1051
1052 int check_consistency = 0;
1053 module_param(check_consistency, int, 0644);
1054
check_data_structures(void)1055 static void check_data_structures(void)
1056 {
1057 static bool once = false;
1058
1059 if (check_consistency && !once) {
1060 if (!__check_data_structures()) {
1061 once = true;
1062 WARN_ON(once);
1063 }
1064 }
1065 }
1066
1067 #else /* CONFIG_DEBUG_LOCKDEP */
1068
check_data_structures(void)1069 static inline void check_data_structures(void) { }
1070
1071 #endif /* CONFIG_DEBUG_LOCKDEP */
1072
1073 /*
1074 * Initialize the lock_classes[] array elements, the free_lock_classes list
1075 * and also the delayed_free structure.
1076 */
init_data_structures_once(void)1077 static void init_data_structures_once(void)
1078 {
1079 static bool ds_initialized, rcu_head_initialized;
1080 int i;
1081
1082 if (likely(rcu_head_initialized))
1083 return;
1084
1085 if (system_state >= SYSTEM_SCHEDULING) {
1086 init_rcu_head(&delayed_free.rcu_head);
1087 rcu_head_initialized = true;
1088 }
1089
1090 if (ds_initialized)
1091 return;
1092
1093 ds_initialized = true;
1094
1095 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1096 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1097
1098 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1099 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1100 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1101 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1102 }
1103 }
1104
keyhashentry(const struct lock_class_key * key)1105 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1106 {
1107 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1108
1109 return lock_keys_hash + hash;
1110 }
1111
1112 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1113 void lockdep_register_key(struct lock_class_key *key)
1114 {
1115 struct hlist_head *hash_head;
1116 struct lock_class_key *k;
1117 unsigned long flags;
1118
1119 if (WARN_ON_ONCE(static_obj(key)))
1120 return;
1121 hash_head = keyhashentry(key);
1122
1123 raw_local_irq_save(flags);
1124 if (!graph_lock())
1125 goto restore_irqs;
1126 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1127 if (WARN_ON_ONCE(k == key))
1128 goto out_unlock;
1129 }
1130 hlist_add_head_rcu(&key->hash_entry, hash_head);
1131 out_unlock:
1132 graph_unlock();
1133 restore_irqs:
1134 raw_local_irq_restore(flags);
1135 }
1136 EXPORT_SYMBOL_GPL(lockdep_register_key);
1137
1138 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1139 static bool is_dynamic_key(const struct lock_class_key *key)
1140 {
1141 struct hlist_head *hash_head;
1142 struct lock_class_key *k;
1143 bool found = false;
1144
1145 if (WARN_ON_ONCE(static_obj(key)))
1146 return false;
1147
1148 /*
1149 * If lock debugging is disabled lock_keys_hash[] may contain
1150 * pointers to memory that has already been freed. Avoid triggering
1151 * a use-after-free in that case by returning early.
1152 */
1153 if (!debug_locks)
1154 return true;
1155
1156 hash_head = keyhashentry(key);
1157
1158 rcu_read_lock();
1159 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1160 if (k == key) {
1161 found = true;
1162 break;
1163 }
1164 }
1165 rcu_read_unlock();
1166
1167 return found;
1168 }
1169
1170 /*
1171 * Register a lock's class in the hash-table, if the class is not present
1172 * yet. Otherwise we look it up. We cache the result in the lock object
1173 * itself, so actual lookup of the hash should be once per lock object.
1174 */
1175 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1176 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1177 {
1178 struct lockdep_subclass_key *key;
1179 struct hlist_head *hash_head;
1180 struct lock_class *class;
1181
1182 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1183
1184 class = look_up_lock_class(lock, subclass);
1185 if (likely(class))
1186 goto out_set_class_cache;
1187
1188 if (!lock->key) {
1189 if (!assign_lock_key(lock))
1190 return NULL;
1191 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1192 return NULL;
1193 }
1194
1195 key = lock->key->subkeys + subclass;
1196 hash_head = classhashentry(key);
1197
1198 if (!graph_lock()) {
1199 return NULL;
1200 }
1201 /*
1202 * We have to do the hash-walk again, to avoid races
1203 * with another CPU:
1204 */
1205 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1206 if (class->key == key)
1207 goto out_unlock_set;
1208 }
1209
1210 init_data_structures_once();
1211
1212 /* Allocate a new lock class and add it to the hash. */
1213 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1214 lock_entry);
1215 if (!class) {
1216 if (!debug_locks_off_graph_unlock()) {
1217 return NULL;
1218 }
1219
1220 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1221 dump_stack();
1222 return NULL;
1223 }
1224 nr_lock_classes++;
1225 __set_bit(class - lock_classes, lock_classes_in_use);
1226 debug_atomic_inc(nr_unused_locks);
1227 class->key = key;
1228 class->name = lock->name;
1229 class->subclass = subclass;
1230 WARN_ON_ONCE(!list_empty(&class->locks_before));
1231 WARN_ON_ONCE(!list_empty(&class->locks_after));
1232 class->name_version = count_matching_names(class);
1233 /*
1234 * We use RCU's safe list-add method to make
1235 * parallel walking of the hash-list safe:
1236 */
1237 hlist_add_head_rcu(&class->hash_entry, hash_head);
1238 /*
1239 * Remove the class from the free list and add it to the global list
1240 * of classes.
1241 */
1242 list_move_tail(&class->lock_entry, &all_lock_classes);
1243
1244 if (verbose(class)) {
1245 graph_unlock();
1246
1247 printk("\nnew class %px: %s", class->key, class->name);
1248 if (class->name_version > 1)
1249 printk(KERN_CONT "#%d", class->name_version);
1250 printk(KERN_CONT "\n");
1251 dump_stack();
1252
1253 if (!graph_lock()) {
1254 return NULL;
1255 }
1256 }
1257 out_unlock_set:
1258 graph_unlock();
1259
1260 out_set_class_cache:
1261 if (!subclass || force)
1262 lock->class_cache[0] = class;
1263 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1264 lock->class_cache[subclass] = class;
1265
1266 /*
1267 * Hash collision, did we smoke some? We found a class with a matching
1268 * hash but the subclass -- which is hashed in -- didn't match.
1269 */
1270 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1271 return NULL;
1272
1273 return class;
1274 }
1275
1276 #ifdef CONFIG_PROVE_LOCKING
1277 /*
1278 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1279 * with NULL on failure)
1280 */
alloc_list_entry(void)1281 static struct lock_list *alloc_list_entry(void)
1282 {
1283 int idx = find_first_zero_bit(list_entries_in_use,
1284 ARRAY_SIZE(list_entries));
1285
1286 if (idx >= ARRAY_SIZE(list_entries)) {
1287 if (!debug_locks_off_graph_unlock())
1288 return NULL;
1289
1290 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1291 dump_stack();
1292 return NULL;
1293 }
1294 nr_list_entries++;
1295 __set_bit(idx, list_entries_in_use);
1296 return list_entries + idx;
1297 }
1298
1299 /*
1300 * Add a new dependency to the head of the list:
1301 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,unsigned long ip,int distance,const struct lock_trace * trace)1302 static int add_lock_to_list(struct lock_class *this,
1303 struct lock_class *links_to, struct list_head *head,
1304 unsigned long ip, int distance,
1305 const struct lock_trace *trace)
1306 {
1307 struct lock_list *entry;
1308 /*
1309 * Lock not present yet - get a new dependency struct and
1310 * add it to the list:
1311 */
1312 entry = alloc_list_entry();
1313 if (!entry)
1314 return 0;
1315
1316 entry->class = this;
1317 entry->links_to = links_to;
1318 entry->distance = distance;
1319 entry->trace = trace;
1320 /*
1321 * Both allocation and removal are done under the graph lock; but
1322 * iteration is under RCU-sched; see look_up_lock_class() and
1323 * lockdep_free_key_range().
1324 */
1325 list_add_tail_rcu(&entry->entry, head);
1326
1327 return 1;
1328 }
1329
1330 /*
1331 * For good efficiency of modular, we use power of 2
1332 */
1333 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL
1334 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1335
1336 /*
1337 * The circular_queue and helpers are used to implement graph
1338 * breadth-first search (BFS) algorithm, by which we can determine
1339 * whether there is a path from a lock to another. In deadlock checks,
1340 * a path from the next lock to be acquired to a previous held lock
1341 * indicates that adding the <prev> -> <next> lock dependency will
1342 * produce a circle in the graph. Breadth-first search instead of
1343 * depth-first search is used in order to find the shortest (circular)
1344 * path.
1345 */
1346 struct circular_queue {
1347 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1348 unsigned int front, rear;
1349 };
1350
1351 static struct circular_queue lock_cq;
1352
1353 unsigned int max_bfs_queue_depth;
1354
1355 static unsigned int lockdep_dependency_gen_id;
1356
__cq_init(struct circular_queue * cq)1357 static inline void __cq_init(struct circular_queue *cq)
1358 {
1359 cq->front = cq->rear = 0;
1360 lockdep_dependency_gen_id++;
1361 }
1362
__cq_empty(struct circular_queue * cq)1363 static inline int __cq_empty(struct circular_queue *cq)
1364 {
1365 return (cq->front == cq->rear);
1366 }
1367
__cq_full(struct circular_queue * cq)1368 static inline int __cq_full(struct circular_queue *cq)
1369 {
1370 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1371 }
1372
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1373 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1374 {
1375 if (__cq_full(cq))
1376 return -1;
1377
1378 cq->element[cq->rear] = elem;
1379 cq->rear = (cq->rear + 1) & CQ_MASK;
1380 return 0;
1381 }
1382
1383 /*
1384 * Dequeue an element from the circular_queue, return a lock_list if
1385 * the queue is not empty, or NULL if otherwise.
1386 */
__cq_dequeue(struct circular_queue * cq)1387 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1388 {
1389 struct lock_list * lock;
1390
1391 if (__cq_empty(cq))
1392 return NULL;
1393
1394 lock = cq->element[cq->front];
1395 cq->front = (cq->front + 1) & CQ_MASK;
1396
1397 return lock;
1398 }
1399
__cq_get_elem_count(struct circular_queue * cq)1400 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1401 {
1402 return (cq->rear - cq->front) & CQ_MASK;
1403 }
1404
mark_lock_accessed(struct lock_list * lock,struct lock_list * parent)1405 static inline void mark_lock_accessed(struct lock_list *lock,
1406 struct lock_list *parent)
1407 {
1408 unsigned long nr;
1409
1410 nr = lock - list_entries;
1411 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1412 lock->parent = parent;
1413 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1414 }
1415
lock_accessed(struct lock_list * lock)1416 static inline unsigned long lock_accessed(struct lock_list *lock)
1417 {
1418 unsigned long nr;
1419
1420 nr = lock - list_entries;
1421 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1422 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1423 }
1424
get_lock_parent(struct lock_list * child)1425 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1426 {
1427 return child->parent;
1428 }
1429
get_lock_depth(struct lock_list * child)1430 static inline int get_lock_depth(struct lock_list *child)
1431 {
1432 int depth = 0;
1433 struct lock_list *parent;
1434
1435 while ((parent = get_lock_parent(child))) {
1436 child = parent;
1437 depth++;
1438 }
1439 return depth;
1440 }
1441
1442 /*
1443 * Return the forward or backward dependency list.
1444 *
1445 * @lock: the lock_list to get its class's dependency list
1446 * @offset: the offset to struct lock_class to determine whether it is
1447 * locks_after or locks_before
1448 */
get_dep_list(struct lock_list * lock,int offset)1449 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1450 {
1451 void *lock_class = lock->class;
1452
1453 return lock_class + offset;
1454 }
1455
1456 /*
1457 * Forward- or backward-dependency search, used for both circular dependency
1458 * checking and hardirq-unsafe/softirq-unsafe checking.
1459 */
__bfs(struct lock_list * source_entry,void * data,int (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1460 static int __bfs(struct lock_list *source_entry,
1461 void *data,
1462 int (*match)(struct lock_list *entry, void *data),
1463 struct lock_list **target_entry,
1464 int offset)
1465 {
1466 struct lock_list *entry;
1467 struct lock_list *lock;
1468 struct list_head *head;
1469 struct circular_queue *cq = &lock_cq;
1470 int ret = 1;
1471
1472 if (match(source_entry, data)) {
1473 *target_entry = source_entry;
1474 ret = 0;
1475 goto exit;
1476 }
1477
1478 head = get_dep_list(source_entry, offset);
1479 if (list_empty(head))
1480 goto exit;
1481
1482 __cq_init(cq);
1483 __cq_enqueue(cq, source_entry);
1484
1485 while ((lock = __cq_dequeue(cq))) {
1486
1487 if (!lock->class) {
1488 ret = -2;
1489 goto exit;
1490 }
1491
1492 head = get_dep_list(lock, offset);
1493
1494 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1495
1496 list_for_each_entry_rcu(entry, head, entry) {
1497 if (!lock_accessed(entry)) {
1498 unsigned int cq_depth;
1499 mark_lock_accessed(entry, lock);
1500 if (match(entry, data)) {
1501 *target_entry = entry;
1502 ret = 0;
1503 goto exit;
1504 }
1505
1506 if (__cq_enqueue(cq, entry)) {
1507 ret = -1;
1508 goto exit;
1509 }
1510 cq_depth = __cq_get_elem_count(cq);
1511 if (max_bfs_queue_depth < cq_depth)
1512 max_bfs_queue_depth = cq_depth;
1513 }
1514 }
1515 }
1516 exit:
1517 return ret;
1518 }
1519
__bfs_forwards(struct lock_list * src_entry,void * data,int (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1520 static inline int __bfs_forwards(struct lock_list *src_entry,
1521 void *data,
1522 int (*match)(struct lock_list *entry, void *data),
1523 struct lock_list **target_entry)
1524 {
1525 return __bfs(src_entry, data, match, target_entry,
1526 offsetof(struct lock_class, locks_after));
1527
1528 }
1529
__bfs_backwards(struct lock_list * src_entry,void * data,int (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1530 static inline int __bfs_backwards(struct lock_list *src_entry,
1531 void *data,
1532 int (*match)(struct lock_list *entry, void *data),
1533 struct lock_list **target_entry)
1534 {
1535 return __bfs(src_entry, data, match, target_entry,
1536 offsetof(struct lock_class, locks_before));
1537
1538 }
1539
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1540 static void print_lock_trace(const struct lock_trace *trace,
1541 unsigned int spaces)
1542 {
1543 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1544 }
1545
1546 /*
1547 * Print a dependency chain entry (this is only done when a deadlock
1548 * has been detected):
1549 */
1550 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1551 print_circular_bug_entry(struct lock_list *target, int depth)
1552 {
1553 if (debug_locks_silent)
1554 return;
1555 printk("\n-> #%u", depth);
1556 print_lock_name(target->class);
1557 printk(KERN_CONT ":\n");
1558 print_lock_trace(target->trace, 6);
1559 }
1560
1561 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1562 print_circular_lock_scenario(struct held_lock *src,
1563 struct held_lock *tgt,
1564 struct lock_list *prt)
1565 {
1566 struct lock_class *source = hlock_class(src);
1567 struct lock_class *target = hlock_class(tgt);
1568 struct lock_class *parent = prt->class;
1569
1570 /*
1571 * A direct locking problem where unsafe_class lock is taken
1572 * directly by safe_class lock, then all we need to show
1573 * is the deadlock scenario, as it is obvious that the
1574 * unsafe lock is taken under the safe lock.
1575 *
1576 * But if there is a chain instead, where the safe lock takes
1577 * an intermediate lock (middle_class) where this lock is
1578 * not the same as the safe lock, then the lock chain is
1579 * used to describe the problem. Otherwise we would need
1580 * to show a different CPU case for each link in the chain
1581 * from the safe_class lock to the unsafe_class lock.
1582 */
1583 if (parent != source) {
1584 printk("Chain exists of:\n ");
1585 __print_lock_name(source);
1586 printk(KERN_CONT " --> ");
1587 __print_lock_name(parent);
1588 printk(KERN_CONT " --> ");
1589 __print_lock_name(target);
1590 printk(KERN_CONT "\n\n");
1591 }
1592
1593 printk(" Possible unsafe locking scenario:\n\n");
1594 printk(" CPU0 CPU1\n");
1595 printk(" ---- ----\n");
1596 printk(" lock(");
1597 __print_lock_name(target);
1598 printk(KERN_CONT ");\n");
1599 printk(" lock(");
1600 __print_lock_name(parent);
1601 printk(KERN_CONT ");\n");
1602 printk(" lock(");
1603 __print_lock_name(target);
1604 printk(KERN_CONT ");\n");
1605 printk(" lock(");
1606 __print_lock_name(source);
1607 printk(KERN_CONT ");\n");
1608 printk("\n *** DEADLOCK ***\n\n");
1609 }
1610
1611 /*
1612 * When a circular dependency is detected, print the
1613 * header first:
1614 */
1615 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1616 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1617 struct held_lock *check_src,
1618 struct held_lock *check_tgt)
1619 {
1620 struct task_struct *curr = current;
1621
1622 if (debug_locks_silent)
1623 return;
1624
1625 pr_warn("\n");
1626 pr_warn("======================================================\n");
1627 pr_warn("WARNING: possible circular locking dependency detected\n");
1628 print_kernel_ident();
1629 pr_warn("------------------------------------------------------\n");
1630 pr_warn("%s/%d is trying to acquire lock:\n",
1631 curr->comm, task_pid_nr(curr));
1632 print_lock(check_src);
1633
1634 pr_warn("\nbut task is already holding lock:\n");
1635
1636 print_lock(check_tgt);
1637 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1638 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1639
1640 print_circular_bug_entry(entry, depth);
1641 }
1642
class_equal(struct lock_list * entry,void * data)1643 static inline int class_equal(struct lock_list *entry, void *data)
1644 {
1645 return entry->class == data;
1646 }
1647
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1648 static noinline void print_circular_bug(struct lock_list *this,
1649 struct lock_list *target,
1650 struct held_lock *check_src,
1651 struct held_lock *check_tgt)
1652 {
1653 struct task_struct *curr = current;
1654 struct lock_list *parent;
1655 struct lock_list *first_parent;
1656 int depth;
1657
1658 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1659 return;
1660
1661 this->trace = save_trace();
1662 if (!this->trace)
1663 return;
1664
1665 depth = get_lock_depth(target);
1666
1667 print_circular_bug_header(target, depth, check_src, check_tgt);
1668
1669 parent = get_lock_parent(target);
1670 first_parent = parent;
1671
1672 while (parent) {
1673 print_circular_bug_entry(parent, --depth);
1674 parent = get_lock_parent(parent);
1675 }
1676
1677 printk("\nother info that might help us debug this:\n\n");
1678 print_circular_lock_scenario(check_src, check_tgt,
1679 first_parent);
1680
1681 lockdep_print_held_locks(curr);
1682
1683 printk("\nstack backtrace:\n");
1684 dump_stack();
1685 }
1686
print_bfs_bug(int ret)1687 static noinline void print_bfs_bug(int ret)
1688 {
1689 if (!debug_locks_off_graph_unlock())
1690 return;
1691
1692 /*
1693 * Breadth-first-search failed, graph got corrupted?
1694 */
1695 WARN(1, "lockdep bfs error:%d\n", ret);
1696 }
1697
noop_count(struct lock_list * entry,void * data)1698 static int noop_count(struct lock_list *entry, void *data)
1699 {
1700 (*(unsigned long *)data)++;
1701 return 0;
1702 }
1703
__lockdep_count_forward_deps(struct lock_list * this)1704 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1705 {
1706 unsigned long count = 0;
1707 struct lock_list *uninitialized_var(target_entry);
1708
1709 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1710
1711 return count;
1712 }
lockdep_count_forward_deps(struct lock_class * class)1713 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1714 {
1715 unsigned long ret, flags;
1716 struct lock_list this;
1717
1718 this.parent = NULL;
1719 this.class = class;
1720
1721 raw_local_irq_save(flags);
1722 arch_spin_lock(&lockdep_lock);
1723 ret = __lockdep_count_forward_deps(&this);
1724 arch_spin_unlock(&lockdep_lock);
1725 raw_local_irq_restore(flags);
1726
1727 return ret;
1728 }
1729
__lockdep_count_backward_deps(struct lock_list * this)1730 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1731 {
1732 unsigned long count = 0;
1733 struct lock_list *uninitialized_var(target_entry);
1734
1735 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1736
1737 return count;
1738 }
1739
lockdep_count_backward_deps(struct lock_class * class)1740 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1741 {
1742 unsigned long ret, flags;
1743 struct lock_list this;
1744
1745 this.parent = NULL;
1746 this.class = class;
1747
1748 raw_local_irq_save(flags);
1749 arch_spin_lock(&lockdep_lock);
1750 ret = __lockdep_count_backward_deps(&this);
1751 arch_spin_unlock(&lockdep_lock);
1752 raw_local_irq_restore(flags);
1753
1754 return ret;
1755 }
1756
1757 /*
1758 * Check that the dependency graph starting at <src> can lead to
1759 * <target> or not. Print an error and return 0 if it does.
1760 */
1761 static noinline int
check_path(struct lock_class * target,struct lock_list * src_entry,struct lock_list ** target_entry)1762 check_path(struct lock_class *target, struct lock_list *src_entry,
1763 struct lock_list **target_entry)
1764 {
1765 int ret;
1766
1767 ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1768 target_entry);
1769
1770 if (unlikely(ret < 0))
1771 print_bfs_bug(ret);
1772
1773 return ret;
1774 }
1775
1776 /*
1777 * Prove that the dependency graph starting at <src> can not
1778 * lead to <target>. If it can, there is a circle when adding
1779 * <target> -> <src> dependency.
1780 *
1781 * Print an error and return 0 if it does.
1782 */
1783 static noinline int
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)1784 check_noncircular(struct held_lock *src, struct held_lock *target,
1785 struct lock_trace **const trace)
1786 {
1787 int ret;
1788 struct lock_list *uninitialized_var(target_entry);
1789 struct lock_list src_entry = {
1790 .class = hlock_class(src),
1791 .parent = NULL,
1792 };
1793
1794 debug_atomic_inc(nr_cyclic_checks);
1795
1796 ret = check_path(hlock_class(target), &src_entry, &target_entry);
1797
1798 if (unlikely(!ret)) {
1799 if (!*trace) {
1800 /*
1801 * If save_trace fails here, the printing might
1802 * trigger a WARN but because of the !nr_entries it
1803 * should not do bad things.
1804 */
1805 *trace = save_trace();
1806 }
1807
1808 print_circular_bug(&src_entry, target_entry, src, target);
1809 }
1810
1811 return ret;
1812 }
1813
1814 #ifdef CONFIG_LOCKDEP_SMALL
1815 /*
1816 * Check that the dependency graph starting at <src> can lead to
1817 * <target> or not. If it can, <src> -> <target> dependency is already
1818 * in the graph.
1819 *
1820 * Print an error and return 2 if it does or 1 if it does not.
1821 */
1822 static noinline int
check_redundant(struct held_lock * src,struct held_lock * target)1823 check_redundant(struct held_lock *src, struct held_lock *target)
1824 {
1825 int ret;
1826 struct lock_list *uninitialized_var(target_entry);
1827 struct lock_list src_entry = {
1828 .class = hlock_class(src),
1829 .parent = NULL,
1830 };
1831
1832 debug_atomic_inc(nr_redundant_checks);
1833
1834 ret = check_path(hlock_class(target), &src_entry, &target_entry);
1835
1836 if (!ret) {
1837 debug_atomic_inc(nr_redundant);
1838 ret = 2;
1839 } else if (ret < 0)
1840 ret = 0;
1841
1842 return ret;
1843 }
1844 #endif
1845
1846 #ifdef CONFIG_TRACE_IRQFLAGS
1847
usage_accumulate(struct lock_list * entry,void * mask)1848 static inline int usage_accumulate(struct lock_list *entry, void *mask)
1849 {
1850 *(unsigned long *)mask |= entry->class->usage_mask;
1851
1852 return 0;
1853 }
1854
1855 /*
1856 * Forwards and backwards subgraph searching, for the purposes of
1857 * proving that two subgraphs can be connected by a new dependency
1858 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1859 */
1860
usage_match(struct lock_list * entry,void * mask)1861 static inline int usage_match(struct lock_list *entry, void *mask)
1862 {
1863 return entry->class->usage_mask & *(unsigned long *)mask;
1864 }
1865
1866 /*
1867 * Find a node in the forwards-direction dependency sub-graph starting
1868 * at @root->class that matches @bit.
1869 *
1870 * Return 0 if such a node exists in the subgraph, and put that node
1871 * into *@target_entry.
1872 *
1873 * Return 1 otherwise and keep *@target_entry unchanged.
1874 * Return <0 on error.
1875 */
1876 static int
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)1877 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1878 struct lock_list **target_entry)
1879 {
1880 int result;
1881
1882 debug_atomic_inc(nr_find_usage_forwards_checks);
1883
1884 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1885
1886 return result;
1887 }
1888
1889 /*
1890 * Find a node in the backwards-direction dependency sub-graph starting
1891 * at @root->class that matches @bit.
1892 *
1893 * Return 0 if such a node exists in the subgraph, and put that node
1894 * into *@target_entry.
1895 *
1896 * Return 1 otherwise and keep *@target_entry unchanged.
1897 * Return <0 on error.
1898 */
1899 static int
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)1900 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1901 struct lock_list **target_entry)
1902 {
1903 int result;
1904
1905 debug_atomic_inc(nr_find_usage_backwards_checks);
1906
1907 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1908
1909 return result;
1910 }
1911
print_lock_class_header(struct lock_class * class,int depth)1912 static void print_lock_class_header(struct lock_class *class, int depth)
1913 {
1914 int bit;
1915
1916 printk("%*s->", depth, "");
1917 print_lock_name(class);
1918 #ifdef CONFIG_DEBUG_LOCKDEP
1919 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1920 #endif
1921 printk(KERN_CONT " {\n");
1922
1923 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1924 if (class->usage_mask & (1 << bit)) {
1925 int len = depth;
1926
1927 len += printk("%*s %s", depth, "", usage_str[bit]);
1928 len += printk(KERN_CONT " at:\n");
1929 print_lock_trace(class->usage_traces[bit], len);
1930 }
1931 }
1932 printk("%*s }\n", depth, "");
1933
1934 printk("%*s ... key at: [<%px>] %pS\n",
1935 depth, "", class->key, class->key);
1936 }
1937
1938 /*
1939 * printk the shortest lock dependencies from @start to @end in reverse order:
1940 */
1941 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)1942 print_shortest_lock_dependencies(struct lock_list *leaf,
1943 struct lock_list *root)
1944 {
1945 struct lock_list *entry = leaf;
1946 int depth;
1947
1948 /*compute depth from generated tree by BFS*/
1949 depth = get_lock_depth(leaf);
1950
1951 do {
1952 print_lock_class_header(entry->class, depth);
1953 printk("%*s ... acquired at:\n", depth, "");
1954 print_lock_trace(entry->trace, 2);
1955 printk("\n");
1956
1957 if (depth == 0 && (entry != root)) {
1958 printk("lockdep:%s bad path found in chain graph\n", __func__);
1959 break;
1960 }
1961
1962 entry = get_lock_parent(entry);
1963 depth--;
1964 } while (entry && (depth >= 0));
1965 }
1966
1967 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)1968 print_irq_lock_scenario(struct lock_list *safe_entry,
1969 struct lock_list *unsafe_entry,
1970 struct lock_class *prev_class,
1971 struct lock_class *next_class)
1972 {
1973 struct lock_class *safe_class = safe_entry->class;
1974 struct lock_class *unsafe_class = unsafe_entry->class;
1975 struct lock_class *middle_class = prev_class;
1976
1977 if (middle_class == safe_class)
1978 middle_class = next_class;
1979
1980 /*
1981 * A direct locking problem where unsafe_class lock is taken
1982 * directly by safe_class lock, then all we need to show
1983 * is the deadlock scenario, as it is obvious that the
1984 * unsafe lock is taken under the safe lock.
1985 *
1986 * But if there is a chain instead, where the safe lock takes
1987 * an intermediate lock (middle_class) where this lock is
1988 * not the same as the safe lock, then the lock chain is
1989 * used to describe the problem. Otherwise we would need
1990 * to show a different CPU case for each link in the chain
1991 * from the safe_class lock to the unsafe_class lock.
1992 */
1993 if (middle_class != unsafe_class) {
1994 printk("Chain exists of:\n ");
1995 __print_lock_name(safe_class);
1996 printk(KERN_CONT " --> ");
1997 __print_lock_name(middle_class);
1998 printk(KERN_CONT " --> ");
1999 __print_lock_name(unsafe_class);
2000 printk(KERN_CONT "\n\n");
2001 }
2002
2003 printk(" Possible interrupt unsafe locking scenario:\n\n");
2004 printk(" CPU0 CPU1\n");
2005 printk(" ---- ----\n");
2006 printk(" lock(");
2007 __print_lock_name(unsafe_class);
2008 printk(KERN_CONT ");\n");
2009 printk(" local_irq_disable();\n");
2010 printk(" lock(");
2011 __print_lock_name(safe_class);
2012 printk(KERN_CONT ");\n");
2013 printk(" lock(");
2014 __print_lock_name(middle_class);
2015 printk(KERN_CONT ");\n");
2016 printk(" <Interrupt>\n");
2017 printk(" lock(");
2018 __print_lock_name(safe_class);
2019 printk(KERN_CONT ");\n");
2020 printk("\n *** DEADLOCK ***\n\n");
2021 }
2022
2023 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2024 print_bad_irq_dependency(struct task_struct *curr,
2025 struct lock_list *prev_root,
2026 struct lock_list *next_root,
2027 struct lock_list *backwards_entry,
2028 struct lock_list *forwards_entry,
2029 struct held_lock *prev,
2030 struct held_lock *next,
2031 enum lock_usage_bit bit1,
2032 enum lock_usage_bit bit2,
2033 const char *irqclass)
2034 {
2035 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2036 return;
2037
2038 pr_warn("\n");
2039 pr_warn("=====================================================\n");
2040 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2041 irqclass, irqclass);
2042 print_kernel_ident();
2043 pr_warn("-----------------------------------------------------\n");
2044 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2045 curr->comm, task_pid_nr(curr),
2046 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
2047 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2048 curr->hardirqs_enabled,
2049 curr->softirqs_enabled);
2050 print_lock(next);
2051
2052 pr_warn("\nand this task is already holding:\n");
2053 print_lock(prev);
2054 pr_warn("which would create a new lock dependency:\n");
2055 print_lock_name(hlock_class(prev));
2056 pr_cont(" ->");
2057 print_lock_name(hlock_class(next));
2058 pr_cont("\n");
2059
2060 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2061 irqclass);
2062 print_lock_name(backwards_entry->class);
2063 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2064
2065 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2066
2067 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2068 print_lock_name(forwards_entry->class);
2069 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2070 pr_warn("...");
2071
2072 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2073
2074 pr_warn("\nother info that might help us debug this:\n\n");
2075 print_irq_lock_scenario(backwards_entry, forwards_entry,
2076 hlock_class(prev), hlock_class(next));
2077
2078 lockdep_print_held_locks(curr);
2079
2080 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2081 prev_root->trace = save_trace();
2082 if (!prev_root->trace)
2083 return;
2084 print_shortest_lock_dependencies(backwards_entry, prev_root);
2085
2086 pr_warn("\nthe dependencies between the lock to be acquired");
2087 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2088 next_root->trace = save_trace();
2089 if (!next_root->trace)
2090 return;
2091 print_shortest_lock_dependencies(forwards_entry, next_root);
2092
2093 pr_warn("\nstack backtrace:\n");
2094 dump_stack();
2095 }
2096
2097 static const char *state_names[] = {
2098 #define LOCKDEP_STATE(__STATE) \
2099 __stringify(__STATE),
2100 #include "lockdep_states.h"
2101 #undef LOCKDEP_STATE
2102 };
2103
2104 static const char *state_rnames[] = {
2105 #define LOCKDEP_STATE(__STATE) \
2106 __stringify(__STATE)"-READ",
2107 #include "lockdep_states.h"
2108 #undef LOCKDEP_STATE
2109 };
2110
state_name(enum lock_usage_bit bit)2111 static inline const char *state_name(enum lock_usage_bit bit)
2112 {
2113 if (bit & LOCK_USAGE_READ_MASK)
2114 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2115 else
2116 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2117 }
2118
2119 /*
2120 * The bit number is encoded like:
2121 *
2122 * bit0: 0 exclusive, 1 read lock
2123 * bit1: 0 used in irq, 1 irq enabled
2124 * bit2-n: state
2125 */
exclusive_bit(int new_bit)2126 static int exclusive_bit(int new_bit)
2127 {
2128 int state = new_bit & LOCK_USAGE_STATE_MASK;
2129 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2130
2131 /*
2132 * keep state, bit flip the direction and strip read.
2133 */
2134 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2135 }
2136
2137 /*
2138 * Observe that when given a bitmask where each bitnr is encoded as above, a
2139 * right shift of the mask transforms the individual bitnrs as -1 and
2140 * conversely, a left shift transforms into +1 for the individual bitnrs.
2141 *
2142 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2143 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2144 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2145 *
2146 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2147 *
2148 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2149 * all bits set) and recompose with bitnr1 flipped.
2150 */
invert_dir_mask(unsigned long mask)2151 static unsigned long invert_dir_mask(unsigned long mask)
2152 {
2153 unsigned long excl = 0;
2154
2155 /* Invert dir */
2156 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2157 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2158
2159 return excl;
2160 }
2161
2162 /*
2163 * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2164 * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2165 * And then mask out all bitnr0.
2166 */
exclusive_mask(unsigned long mask)2167 static unsigned long exclusive_mask(unsigned long mask)
2168 {
2169 unsigned long excl = invert_dir_mask(mask);
2170
2171 /* Strip read */
2172 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2173 excl &= ~LOCKF_IRQ_READ;
2174
2175 return excl;
2176 }
2177
2178 /*
2179 * Retrieve the _possible_ original mask to which @mask is
2180 * exclusive. Ie: this is the opposite of exclusive_mask().
2181 * Note that 2 possible original bits can match an exclusive
2182 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2183 * cleared. So both are returned for each exclusive bit.
2184 */
original_mask(unsigned long mask)2185 static unsigned long original_mask(unsigned long mask)
2186 {
2187 unsigned long excl = invert_dir_mask(mask);
2188
2189 /* Include read in existing usages */
2190 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2191
2192 return excl;
2193 }
2194
2195 /*
2196 * Find the first pair of bit match between an original
2197 * usage mask and an exclusive usage mask.
2198 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2199 static int find_exclusive_match(unsigned long mask,
2200 unsigned long excl_mask,
2201 enum lock_usage_bit *bitp,
2202 enum lock_usage_bit *excl_bitp)
2203 {
2204 int bit, excl;
2205
2206 for_each_set_bit(bit, &mask, LOCK_USED) {
2207 excl = exclusive_bit(bit);
2208 if (excl_mask & lock_flag(excl)) {
2209 *bitp = bit;
2210 *excl_bitp = excl;
2211 return 0;
2212 }
2213 }
2214 return -1;
2215 }
2216
2217 /*
2218 * Prove that the new dependency does not connect a hardirq-safe(-read)
2219 * lock with a hardirq-unsafe lock - to achieve this we search
2220 * the backwards-subgraph starting at <prev>, and the
2221 * forwards-subgraph starting at <next>:
2222 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2223 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2224 struct held_lock *next)
2225 {
2226 unsigned long usage_mask = 0, forward_mask, backward_mask;
2227 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2228 struct lock_list *uninitialized_var(target_entry1);
2229 struct lock_list *uninitialized_var(target_entry);
2230 struct lock_list this, that;
2231 int ret;
2232
2233 /*
2234 * Step 1: gather all hard/soft IRQs usages backward in an
2235 * accumulated usage mask.
2236 */
2237 this.parent = NULL;
2238 this.class = hlock_class(prev);
2239
2240 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2241 if (ret < 0) {
2242 print_bfs_bug(ret);
2243 return 0;
2244 }
2245
2246 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2247 if (!usage_mask)
2248 return 1;
2249
2250 /*
2251 * Step 2: find exclusive uses forward that match the previous
2252 * backward accumulated mask.
2253 */
2254 forward_mask = exclusive_mask(usage_mask);
2255
2256 that.parent = NULL;
2257 that.class = hlock_class(next);
2258
2259 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2260 if (ret < 0) {
2261 print_bfs_bug(ret);
2262 return 0;
2263 }
2264 if (ret == 1)
2265 return ret;
2266
2267 /*
2268 * Step 3: we found a bad match! Now retrieve a lock from the backward
2269 * list whose usage mask matches the exclusive usage mask from the
2270 * lock found on the forward list.
2271 */
2272 backward_mask = original_mask(target_entry1->class->usage_mask);
2273
2274 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2275 if (ret < 0) {
2276 print_bfs_bug(ret);
2277 return 0;
2278 }
2279 if (DEBUG_LOCKS_WARN_ON(ret == 1))
2280 return 1;
2281
2282 /*
2283 * Step 4: narrow down to a pair of incompatible usage bits
2284 * and report it.
2285 */
2286 ret = find_exclusive_match(target_entry->class->usage_mask,
2287 target_entry1->class->usage_mask,
2288 &backward_bit, &forward_bit);
2289 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2290 return 1;
2291
2292 print_bad_irq_dependency(curr, &this, &that,
2293 target_entry, target_entry1,
2294 prev, next,
2295 backward_bit, forward_bit,
2296 state_name(backward_bit));
2297
2298 return 0;
2299 }
2300
inc_chains(void)2301 static void inc_chains(void)
2302 {
2303 if (current->hardirq_context)
2304 nr_hardirq_chains++;
2305 else {
2306 if (current->softirq_context)
2307 nr_softirq_chains++;
2308 else
2309 nr_process_chains++;
2310 }
2311 }
2312
2313 #else
2314
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2315 static inline int check_irq_usage(struct task_struct *curr,
2316 struct held_lock *prev, struct held_lock *next)
2317 {
2318 return 1;
2319 }
2320
inc_chains(void)2321 static inline void inc_chains(void)
2322 {
2323 nr_process_chains++;
2324 }
2325
2326 #endif /* CONFIG_TRACE_IRQFLAGS */
2327
2328 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2329 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2330 {
2331 struct lock_class *next = hlock_class(nxt);
2332 struct lock_class *prev = hlock_class(prv);
2333
2334 printk(" Possible unsafe locking scenario:\n\n");
2335 printk(" CPU0\n");
2336 printk(" ----\n");
2337 printk(" lock(");
2338 __print_lock_name(prev);
2339 printk(KERN_CONT ");\n");
2340 printk(" lock(");
2341 __print_lock_name(next);
2342 printk(KERN_CONT ");\n");
2343 printk("\n *** DEADLOCK ***\n\n");
2344 printk(" May be due to missing lock nesting notation\n\n");
2345 }
2346
2347 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2348 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2349 struct held_lock *next)
2350 {
2351 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2352 return;
2353
2354 pr_warn("\n");
2355 pr_warn("============================================\n");
2356 pr_warn("WARNING: possible recursive locking detected\n");
2357 print_kernel_ident();
2358 pr_warn("--------------------------------------------\n");
2359 pr_warn("%s/%d is trying to acquire lock:\n",
2360 curr->comm, task_pid_nr(curr));
2361 print_lock(next);
2362 pr_warn("\nbut task is already holding lock:\n");
2363 print_lock(prev);
2364
2365 pr_warn("\nother info that might help us debug this:\n");
2366 print_deadlock_scenario(next, prev);
2367 lockdep_print_held_locks(curr);
2368
2369 pr_warn("\nstack backtrace:\n");
2370 dump_stack();
2371 }
2372
2373 /*
2374 * Check whether we are holding such a class already.
2375 *
2376 * (Note that this has to be done separately, because the graph cannot
2377 * detect such classes of deadlocks.)
2378 *
2379 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2380 */
2381 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2382 check_deadlock(struct task_struct *curr, struct held_lock *next)
2383 {
2384 struct held_lock *prev;
2385 struct held_lock *nest = NULL;
2386 int i;
2387
2388 for (i = 0; i < curr->lockdep_depth; i++) {
2389 prev = curr->held_locks + i;
2390
2391 if (prev->instance == next->nest_lock)
2392 nest = prev;
2393
2394 if (hlock_class(prev) != hlock_class(next))
2395 continue;
2396
2397 /*
2398 * Allow read-after-read recursion of the same
2399 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2400 */
2401 if ((next->read == 2) && prev->read)
2402 return 2;
2403
2404 /*
2405 * We're holding the nest_lock, which serializes this lock's
2406 * nesting behaviour.
2407 */
2408 if (nest)
2409 return 2;
2410
2411 print_deadlock_bug(curr, prev, next);
2412 return 0;
2413 }
2414 return 1;
2415 }
2416
2417 /*
2418 * There was a chain-cache miss, and we are about to add a new dependency
2419 * to a previous lock. We validate the following rules:
2420 *
2421 * - would the adding of the <prev> -> <next> dependency create a
2422 * circular dependency in the graph? [== circular deadlock]
2423 *
2424 * - does the new prev->next dependency connect any hardirq-safe lock
2425 * (in the full backwards-subgraph starting at <prev>) with any
2426 * hardirq-unsafe lock (in the full forwards-subgraph starting at
2427 * <next>)? [== illegal lock inversion with hardirq contexts]
2428 *
2429 * - does the new prev->next dependency connect any softirq-safe lock
2430 * (in the full backwards-subgraph starting at <prev>) with any
2431 * softirq-unsafe lock (in the full forwards-subgraph starting at
2432 * <next>)? [== illegal lock inversion with softirq contexts]
2433 *
2434 * any of these scenarios could lead to a deadlock.
2435 *
2436 * Then if all the validations pass, we add the forwards and backwards
2437 * dependency.
2438 */
2439 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,int distance,struct lock_trace ** const trace)2440 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2441 struct held_lock *next, int distance,
2442 struct lock_trace **const trace)
2443 {
2444 struct lock_list *entry;
2445 int ret;
2446
2447 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2448 /*
2449 * The warning statements below may trigger a use-after-free
2450 * of the class name. It is better to trigger a use-after free
2451 * and to have the class name most of the time instead of not
2452 * having the class name available.
2453 */
2454 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2455 "Detected use-after-free of lock class %px/%s\n",
2456 hlock_class(prev),
2457 hlock_class(prev)->name);
2458 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2459 "Detected use-after-free of lock class %px/%s\n",
2460 hlock_class(next),
2461 hlock_class(next)->name);
2462 return 2;
2463 }
2464
2465 /*
2466 * Prove that the new <prev> -> <next> dependency would not
2467 * create a circular dependency in the graph. (We do this by
2468 * a breadth-first search into the graph starting at <next>,
2469 * and check whether we can reach <prev>.)
2470 *
2471 * The search is limited by the size of the circular queue (i.e.,
2472 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2473 * in the graph whose neighbours are to be checked.
2474 */
2475 ret = check_noncircular(next, prev, trace);
2476 if (unlikely(ret <= 0))
2477 return 0;
2478
2479 if (!check_irq_usage(curr, prev, next))
2480 return 0;
2481
2482 /*
2483 * For recursive read-locks we do all the dependency checks,
2484 * but we dont store read-triggered dependencies (only
2485 * write-triggered dependencies). This ensures that only the
2486 * write-side dependencies matter, and that if for example a
2487 * write-lock never takes any other locks, then the reads are
2488 * equivalent to a NOP.
2489 */
2490 if (next->read == 2 || prev->read == 2)
2491 return 1;
2492 /*
2493 * Is the <prev> -> <next> dependency already present?
2494 *
2495 * (this may occur even though this is a new chain: consider
2496 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2497 * chains - the second one will be new, but L1 already has
2498 * L2 added to its dependency list, due to the first chain.)
2499 */
2500 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2501 if (entry->class == hlock_class(next)) {
2502 if (distance == 1)
2503 entry->distance = 1;
2504 return 1;
2505 }
2506 }
2507
2508 #ifdef CONFIG_LOCKDEP_SMALL
2509 /*
2510 * Is the <prev> -> <next> link redundant?
2511 */
2512 ret = check_redundant(prev, next);
2513 if (ret != 1)
2514 return ret;
2515 #endif
2516
2517 if (!*trace) {
2518 *trace = save_trace();
2519 if (!*trace)
2520 return 0;
2521 }
2522
2523 /*
2524 * Ok, all validations passed, add the new lock
2525 * to the previous lock's dependency list:
2526 */
2527 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2528 &hlock_class(prev)->locks_after,
2529 next->acquire_ip, distance, *trace);
2530
2531 if (!ret)
2532 return 0;
2533
2534 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2535 &hlock_class(next)->locks_before,
2536 next->acquire_ip, distance, *trace);
2537 if (!ret)
2538 return 0;
2539
2540 return 2;
2541 }
2542
2543 /*
2544 * Add the dependency to all directly-previous locks that are 'relevant'.
2545 * The ones that are relevant are (in increasing distance from curr):
2546 * all consecutive trylock entries and the final non-trylock entry - or
2547 * the end of this context's lock-chain - whichever comes first.
2548 */
2549 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)2550 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2551 {
2552 struct lock_trace *trace = NULL;
2553 int depth = curr->lockdep_depth;
2554 struct held_lock *hlock;
2555
2556 /*
2557 * Debugging checks.
2558 *
2559 * Depth must not be zero for a non-head lock:
2560 */
2561 if (!depth)
2562 goto out_bug;
2563 /*
2564 * At least two relevant locks must exist for this
2565 * to be a head:
2566 */
2567 if (curr->held_locks[depth].irq_context !=
2568 curr->held_locks[depth-1].irq_context)
2569 goto out_bug;
2570
2571 for (;;) {
2572 int distance = curr->lockdep_depth - depth + 1;
2573 hlock = curr->held_locks + depth - 1;
2574
2575 /*
2576 * Only non-recursive-read entries get new dependencies
2577 * added:
2578 */
2579 if (hlock->read != 2 && hlock->check) {
2580 int ret = check_prev_add(curr, hlock, next, distance,
2581 &trace);
2582 if (!ret)
2583 return 0;
2584
2585 /*
2586 * Stop after the first non-trylock entry,
2587 * as non-trylock entries have added their
2588 * own direct dependencies already, so this
2589 * lock is connected to them indirectly:
2590 */
2591 if (!hlock->trylock)
2592 break;
2593 }
2594
2595 depth--;
2596 /*
2597 * End of lock-stack?
2598 */
2599 if (!depth)
2600 break;
2601 /*
2602 * Stop the search if we cross into another context:
2603 */
2604 if (curr->held_locks[depth].irq_context !=
2605 curr->held_locks[depth-1].irq_context)
2606 break;
2607 }
2608 return 1;
2609 out_bug:
2610 if (!debug_locks_off_graph_unlock())
2611 return 0;
2612
2613 /*
2614 * Clearly we all shouldn't be here, but since we made it we
2615 * can reliable say we messed up our state. See the above two
2616 * gotos for reasons why we could possibly end up here.
2617 */
2618 WARN_ON(1);
2619
2620 return 0;
2621 }
2622
2623 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2624 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2625 int nr_chain_hlocks;
2626 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2627
lock_chain_get_class(struct lock_chain * chain,int i)2628 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2629 {
2630 return lock_classes + chain_hlocks[chain->base + i];
2631 }
2632
2633 /*
2634 * Returns the index of the first held_lock of the current chain
2635 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)2636 static inline int get_first_held_lock(struct task_struct *curr,
2637 struct held_lock *hlock)
2638 {
2639 int i;
2640 struct held_lock *hlock_curr;
2641
2642 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2643 hlock_curr = curr->held_locks + i;
2644 if (hlock_curr->irq_context != hlock->irq_context)
2645 break;
2646
2647 }
2648
2649 return ++i;
2650 }
2651
2652 #ifdef CONFIG_DEBUG_LOCKDEP
2653 /*
2654 * Returns the next chain_key iteration
2655 */
print_chain_key_iteration(int class_idx,u64 chain_key)2656 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2657 {
2658 u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2659
2660 printk(" class_idx:%d -> chain_key:%016Lx",
2661 class_idx,
2662 (unsigned long long)new_chain_key);
2663 return new_chain_key;
2664 }
2665
2666 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)2667 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2668 {
2669 struct held_lock *hlock;
2670 u64 chain_key = INITIAL_CHAIN_KEY;
2671 int depth = curr->lockdep_depth;
2672 int i = get_first_held_lock(curr, hlock_next);
2673
2674 printk("depth: %u (irq_context %u)\n", depth - i + 1,
2675 hlock_next->irq_context);
2676 for (; i < depth; i++) {
2677 hlock = curr->held_locks + i;
2678 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2679
2680 print_lock(hlock);
2681 }
2682
2683 print_chain_key_iteration(hlock_next->class_idx, chain_key);
2684 print_lock(hlock_next);
2685 }
2686
print_chain_keys_chain(struct lock_chain * chain)2687 static void print_chain_keys_chain(struct lock_chain *chain)
2688 {
2689 int i;
2690 u64 chain_key = INITIAL_CHAIN_KEY;
2691 int class_id;
2692
2693 printk("depth: %u\n", chain->depth);
2694 for (i = 0; i < chain->depth; i++) {
2695 class_id = chain_hlocks[chain->base + i];
2696 chain_key = print_chain_key_iteration(class_id, chain_key);
2697
2698 print_lock_name(lock_classes + class_id);
2699 printk("\n");
2700 }
2701 }
2702
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)2703 static void print_collision(struct task_struct *curr,
2704 struct held_lock *hlock_next,
2705 struct lock_chain *chain)
2706 {
2707 pr_warn("\n");
2708 pr_warn("============================\n");
2709 pr_warn("WARNING: chain_key collision\n");
2710 print_kernel_ident();
2711 pr_warn("----------------------------\n");
2712 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2713 pr_warn("Hash chain already cached but the contents don't match!\n");
2714
2715 pr_warn("Held locks:");
2716 print_chain_keys_held_locks(curr, hlock_next);
2717
2718 pr_warn("Locks in cached chain:");
2719 print_chain_keys_chain(chain);
2720
2721 pr_warn("\nstack backtrace:\n");
2722 dump_stack();
2723 }
2724 #endif
2725
2726 /*
2727 * Checks whether the chain and the current held locks are consistent
2728 * in depth and also in content. If they are not it most likely means
2729 * that there was a collision during the calculation of the chain_key.
2730 * Returns: 0 not passed, 1 passed
2731 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)2732 static int check_no_collision(struct task_struct *curr,
2733 struct held_lock *hlock,
2734 struct lock_chain *chain)
2735 {
2736 #ifdef CONFIG_DEBUG_LOCKDEP
2737 int i, j, id;
2738
2739 i = get_first_held_lock(curr, hlock);
2740
2741 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2742 print_collision(curr, hlock, chain);
2743 return 0;
2744 }
2745
2746 for (j = 0; j < chain->depth - 1; j++, i++) {
2747 id = curr->held_locks[i].class_idx;
2748
2749 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2750 print_collision(curr, hlock, chain);
2751 return 0;
2752 }
2753 }
2754 #endif
2755 return 1;
2756 }
2757
2758 /*
2759 * Given an index that is >= -1, return the index of the next lock chain.
2760 * Return -2 if there is no next lock chain.
2761 */
lockdep_next_lockchain(long i)2762 long lockdep_next_lockchain(long i)
2763 {
2764 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
2765 return i < ARRAY_SIZE(lock_chains) ? i : -2;
2766 }
2767
lock_chain_count(void)2768 unsigned long lock_chain_count(void)
2769 {
2770 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
2771 }
2772
2773 /* Must be called with the graph lock held. */
alloc_lock_chain(void)2774 static struct lock_chain *alloc_lock_chain(void)
2775 {
2776 int idx = find_first_zero_bit(lock_chains_in_use,
2777 ARRAY_SIZE(lock_chains));
2778
2779 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
2780 return NULL;
2781 __set_bit(idx, lock_chains_in_use);
2782 return lock_chains + idx;
2783 }
2784
2785 /*
2786 * Adds a dependency chain into chain hashtable. And must be called with
2787 * graph_lock held.
2788 *
2789 * Return 0 if fail, and graph_lock is released.
2790 * Return 1 if succeed, with graph_lock held.
2791 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)2792 static inline int add_chain_cache(struct task_struct *curr,
2793 struct held_lock *hlock,
2794 u64 chain_key)
2795 {
2796 struct lock_class *class = hlock_class(hlock);
2797 struct hlist_head *hash_head = chainhashentry(chain_key);
2798 struct lock_chain *chain;
2799 int i, j;
2800
2801 /*
2802 * The caller must hold the graph lock, ensure we've got IRQs
2803 * disabled to make this an IRQ-safe lock.. for recursion reasons
2804 * lockdep won't complain about its own locking errors.
2805 */
2806 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2807 return 0;
2808
2809 chain = alloc_lock_chain();
2810 if (!chain) {
2811 if (!debug_locks_off_graph_unlock())
2812 return 0;
2813
2814 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2815 dump_stack();
2816 return 0;
2817 }
2818 chain->chain_key = chain_key;
2819 chain->irq_context = hlock->irq_context;
2820 i = get_first_held_lock(curr, hlock);
2821 chain->depth = curr->lockdep_depth + 1 - i;
2822
2823 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2824 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
2825 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2826
2827 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2828 chain->base = nr_chain_hlocks;
2829 for (j = 0; j < chain->depth - 1; j++, i++) {
2830 int lock_id = curr->held_locks[i].class_idx;
2831 chain_hlocks[chain->base + j] = lock_id;
2832 }
2833 chain_hlocks[chain->base + j] = class - lock_classes;
2834 nr_chain_hlocks += chain->depth;
2835 } else {
2836 if (!debug_locks_off_graph_unlock())
2837 return 0;
2838
2839 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2840 dump_stack();
2841 return 0;
2842 }
2843
2844 hlist_add_head_rcu(&chain->entry, hash_head);
2845 debug_atomic_inc(chain_lookup_misses);
2846 inc_chains();
2847
2848 return 1;
2849 }
2850
2851 /*
2852 * Look up a dependency chain. Must be called with either the graph lock or
2853 * the RCU read lock held.
2854 */
lookup_chain_cache(u64 chain_key)2855 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2856 {
2857 struct hlist_head *hash_head = chainhashentry(chain_key);
2858 struct lock_chain *chain;
2859
2860 hlist_for_each_entry_rcu(chain, hash_head, entry) {
2861 if (READ_ONCE(chain->chain_key) == chain_key) {
2862 debug_atomic_inc(chain_lookup_hits);
2863 return chain;
2864 }
2865 }
2866 return NULL;
2867 }
2868
2869 /*
2870 * If the key is not present yet in dependency chain cache then
2871 * add it and return 1 - in this case the new dependency chain is
2872 * validated. If the key is already hashed, return 0.
2873 * (On return with 1 graph_lock is held.)
2874 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)2875 static inline int lookup_chain_cache_add(struct task_struct *curr,
2876 struct held_lock *hlock,
2877 u64 chain_key)
2878 {
2879 struct lock_class *class = hlock_class(hlock);
2880 struct lock_chain *chain = lookup_chain_cache(chain_key);
2881
2882 if (chain) {
2883 cache_hit:
2884 if (!check_no_collision(curr, hlock, chain))
2885 return 0;
2886
2887 if (very_verbose(class)) {
2888 printk("\nhash chain already cached, key: "
2889 "%016Lx tail class: [%px] %s\n",
2890 (unsigned long long)chain_key,
2891 class->key, class->name);
2892 }
2893
2894 return 0;
2895 }
2896
2897 if (very_verbose(class)) {
2898 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
2899 (unsigned long long)chain_key, class->key, class->name);
2900 }
2901
2902 if (!graph_lock())
2903 return 0;
2904
2905 /*
2906 * We have to walk the chain again locked - to avoid duplicates:
2907 */
2908 chain = lookup_chain_cache(chain_key);
2909 if (chain) {
2910 graph_unlock();
2911 goto cache_hit;
2912 }
2913
2914 if (!add_chain_cache(curr, hlock, chain_key))
2915 return 0;
2916
2917 return 1;
2918 }
2919
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)2920 static int validate_chain(struct task_struct *curr,
2921 struct held_lock *hlock,
2922 int chain_head, u64 chain_key)
2923 {
2924 /*
2925 * Trylock needs to maintain the stack of held locks, but it
2926 * does not add new dependencies, because trylock can be done
2927 * in any order.
2928 *
2929 * We look up the chain_key and do the O(N^2) check and update of
2930 * the dependencies only if this is a new dependency chain.
2931 * (If lookup_chain_cache_add() return with 1 it acquires
2932 * graph_lock for us)
2933 */
2934 if (!hlock->trylock && hlock->check &&
2935 lookup_chain_cache_add(curr, hlock, chain_key)) {
2936 /*
2937 * Check whether last held lock:
2938 *
2939 * - is irq-safe, if this lock is irq-unsafe
2940 * - is softirq-safe, if this lock is hardirq-unsafe
2941 *
2942 * And check whether the new lock's dependency graph
2943 * could lead back to the previous lock:
2944 *
2945 * - within the current held-lock stack
2946 * - across our accumulated lock dependency records
2947 *
2948 * any of these scenarios could lead to a deadlock.
2949 */
2950 /*
2951 * The simple case: does the current hold the same lock
2952 * already?
2953 */
2954 int ret = check_deadlock(curr, hlock);
2955
2956 if (!ret)
2957 return 0;
2958 /*
2959 * Mark recursive read, as we jump over it when
2960 * building dependencies (just like we jump over
2961 * trylock entries):
2962 */
2963 if (ret == 2)
2964 hlock->read = 2;
2965 /*
2966 * Add dependency only if this lock is not the head
2967 * of the chain, and if it's not a secondary read-lock:
2968 */
2969 if (!chain_head && ret != 2) {
2970 if (!check_prevs_add(curr, hlock))
2971 return 0;
2972 }
2973
2974 graph_unlock();
2975 } else {
2976 /* after lookup_chain_cache_add(): */
2977 if (unlikely(!debug_locks))
2978 return 0;
2979 }
2980
2981 return 1;
2982 }
2983 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)2984 static inline int validate_chain(struct task_struct *curr,
2985 struct held_lock *hlock,
2986 int chain_head, u64 chain_key)
2987 {
2988 return 1;
2989 }
2990 #endif /* CONFIG_PROVE_LOCKING */
2991
2992 /*
2993 * We are building curr_chain_key incrementally, so double-check
2994 * it from scratch, to make sure that it's done correctly:
2995 */
check_chain_key(struct task_struct * curr)2996 static void check_chain_key(struct task_struct *curr)
2997 {
2998 #ifdef CONFIG_DEBUG_LOCKDEP
2999 struct held_lock *hlock, *prev_hlock = NULL;
3000 unsigned int i;
3001 u64 chain_key = INITIAL_CHAIN_KEY;
3002
3003 for (i = 0; i < curr->lockdep_depth; i++) {
3004 hlock = curr->held_locks + i;
3005 if (chain_key != hlock->prev_chain_key) {
3006 debug_locks_off();
3007 /*
3008 * We got mighty confused, our chain keys don't match
3009 * with what we expect, someone trample on our task state?
3010 */
3011 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3012 curr->lockdep_depth, i,
3013 (unsigned long long)chain_key,
3014 (unsigned long long)hlock->prev_chain_key);
3015 return;
3016 }
3017
3018 /*
3019 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3020 * it registered lock class index?
3021 */
3022 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3023 return;
3024
3025 if (prev_hlock && (prev_hlock->irq_context !=
3026 hlock->irq_context))
3027 chain_key = INITIAL_CHAIN_KEY;
3028 chain_key = iterate_chain_key(chain_key, hlock->class_idx);
3029 prev_hlock = hlock;
3030 }
3031 if (chain_key != curr->curr_chain_key) {
3032 debug_locks_off();
3033 /*
3034 * More smoking hash instead of calculating it, damn see these
3035 * numbers float.. I bet that a pink elephant stepped on my memory.
3036 */
3037 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3038 curr->lockdep_depth, i,
3039 (unsigned long long)chain_key,
3040 (unsigned long long)curr->curr_chain_key);
3041 }
3042 #endif
3043 }
3044
3045 #ifdef CONFIG_PROVE_LOCKING
3046 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3047 enum lock_usage_bit new_bit);
3048
print_usage_bug_scenario(struct held_lock * lock)3049 static void print_usage_bug_scenario(struct held_lock *lock)
3050 {
3051 struct lock_class *class = hlock_class(lock);
3052
3053 printk(" Possible unsafe locking scenario:\n\n");
3054 printk(" CPU0\n");
3055 printk(" ----\n");
3056 printk(" lock(");
3057 __print_lock_name(class);
3058 printk(KERN_CONT ");\n");
3059 printk(" <Interrupt>\n");
3060 printk(" lock(");
3061 __print_lock_name(class);
3062 printk(KERN_CONT ");\n");
3063 printk("\n *** DEADLOCK ***\n\n");
3064 }
3065
3066 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3067 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3068 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3069 {
3070 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3071 return;
3072
3073 pr_warn("\n");
3074 pr_warn("================================\n");
3075 pr_warn("WARNING: inconsistent lock state\n");
3076 print_kernel_ident();
3077 pr_warn("--------------------------------\n");
3078
3079 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3080 usage_str[prev_bit], usage_str[new_bit]);
3081
3082 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3083 curr->comm, task_pid_nr(curr),
3084 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
3085 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3086 trace_hardirqs_enabled(curr),
3087 trace_softirqs_enabled(curr));
3088 print_lock(this);
3089
3090 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3091 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3092
3093 print_irqtrace_events(curr);
3094 pr_warn("\nother info that might help us debug this:\n");
3095 print_usage_bug_scenario(this);
3096
3097 lockdep_print_held_locks(curr);
3098
3099 pr_warn("\nstack backtrace:\n");
3100 dump_stack();
3101 }
3102
3103 /*
3104 * Print out an error if an invalid bit is set:
3105 */
3106 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3107 valid_state(struct task_struct *curr, struct held_lock *this,
3108 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3109 {
3110 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3111 print_usage_bug(curr, this, bad_bit, new_bit);
3112 return 0;
3113 }
3114 return 1;
3115 }
3116
3117
3118 /*
3119 * print irq inversion bug:
3120 */
3121 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3122 print_irq_inversion_bug(struct task_struct *curr,
3123 struct lock_list *root, struct lock_list *other,
3124 struct held_lock *this, int forwards,
3125 const char *irqclass)
3126 {
3127 struct lock_list *entry = other;
3128 struct lock_list *middle = NULL;
3129 int depth;
3130
3131 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3132 return;
3133
3134 pr_warn("\n");
3135 pr_warn("========================================================\n");
3136 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3137 print_kernel_ident();
3138 pr_warn("--------------------------------------------------------\n");
3139 pr_warn("%s/%d just changed the state of lock:\n",
3140 curr->comm, task_pid_nr(curr));
3141 print_lock(this);
3142 if (forwards)
3143 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3144 else
3145 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3146 print_lock_name(other->class);
3147 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3148
3149 pr_warn("\nother info that might help us debug this:\n");
3150
3151 /* Find a middle lock (if one exists) */
3152 depth = get_lock_depth(other);
3153 do {
3154 if (depth == 0 && (entry != root)) {
3155 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3156 break;
3157 }
3158 middle = entry;
3159 entry = get_lock_parent(entry);
3160 depth--;
3161 } while (entry && entry != root && (depth >= 0));
3162 if (forwards)
3163 print_irq_lock_scenario(root, other,
3164 middle ? middle->class : root->class, other->class);
3165 else
3166 print_irq_lock_scenario(other, root,
3167 middle ? middle->class : other->class, root->class);
3168
3169 lockdep_print_held_locks(curr);
3170
3171 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3172 root->trace = save_trace();
3173 if (!root->trace)
3174 return;
3175 print_shortest_lock_dependencies(other, root);
3176
3177 pr_warn("\nstack backtrace:\n");
3178 dump_stack();
3179 }
3180
3181 /*
3182 * Prove that in the forwards-direction subgraph starting at <this>
3183 * there is no lock matching <mask>:
3184 */
3185 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit,const char * irqclass)3186 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3187 enum lock_usage_bit bit, const char *irqclass)
3188 {
3189 int ret;
3190 struct lock_list root;
3191 struct lock_list *uninitialized_var(target_entry);
3192
3193 root.parent = NULL;
3194 root.class = hlock_class(this);
3195 ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3196 if (ret < 0) {
3197 print_bfs_bug(ret);
3198 return 0;
3199 }
3200 if (ret == 1)
3201 return ret;
3202
3203 print_irq_inversion_bug(curr, &root, target_entry,
3204 this, 1, irqclass);
3205 return 0;
3206 }
3207
3208 /*
3209 * Prove that in the backwards-direction subgraph starting at <this>
3210 * there is no lock matching <mask>:
3211 */
3212 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit,const char * irqclass)3213 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3214 enum lock_usage_bit bit, const char *irqclass)
3215 {
3216 int ret;
3217 struct lock_list root;
3218 struct lock_list *uninitialized_var(target_entry);
3219
3220 root.parent = NULL;
3221 root.class = hlock_class(this);
3222 ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3223 if (ret < 0) {
3224 print_bfs_bug(ret);
3225 return 0;
3226 }
3227 if (ret == 1)
3228 return ret;
3229
3230 print_irq_inversion_bug(curr, &root, target_entry,
3231 this, 0, irqclass);
3232 return 0;
3233 }
3234
print_irqtrace_events(struct task_struct * curr)3235 void print_irqtrace_events(struct task_struct *curr)
3236 {
3237 printk("irq event stamp: %u\n", curr->irq_events);
3238 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
3239 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
3240 (void *)curr->hardirq_enable_ip);
3241 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3242 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
3243 (void *)curr->hardirq_disable_ip);
3244 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
3245 curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
3246 (void *)curr->softirq_enable_ip);
3247 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3248 curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
3249 (void *)curr->softirq_disable_ip);
3250 }
3251
HARDIRQ_verbose(struct lock_class * class)3252 static int HARDIRQ_verbose(struct lock_class *class)
3253 {
3254 #if HARDIRQ_VERBOSE
3255 return class_filter(class);
3256 #endif
3257 return 0;
3258 }
3259
SOFTIRQ_verbose(struct lock_class * class)3260 static int SOFTIRQ_verbose(struct lock_class *class)
3261 {
3262 #if SOFTIRQ_VERBOSE
3263 return class_filter(class);
3264 #endif
3265 return 0;
3266 }
3267
3268 #define STRICT_READ_CHECKS 1
3269
3270 static int (*state_verbose_f[])(struct lock_class *class) = {
3271 #define LOCKDEP_STATE(__STATE) \
3272 __STATE##_verbose,
3273 #include "lockdep_states.h"
3274 #undef LOCKDEP_STATE
3275 };
3276
state_verbose(enum lock_usage_bit bit,struct lock_class * class)3277 static inline int state_verbose(enum lock_usage_bit bit,
3278 struct lock_class *class)
3279 {
3280 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3281 }
3282
3283 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3284 enum lock_usage_bit bit, const char *name);
3285
3286 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)3287 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3288 enum lock_usage_bit new_bit)
3289 {
3290 int excl_bit = exclusive_bit(new_bit);
3291 int read = new_bit & LOCK_USAGE_READ_MASK;
3292 int dir = new_bit & LOCK_USAGE_DIR_MASK;
3293
3294 /*
3295 * mark USED_IN has to look forwards -- to ensure no dependency
3296 * has ENABLED state, which would allow recursion deadlocks.
3297 *
3298 * mark ENABLED has to look backwards -- to ensure no dependee
3299 * has USED_IN state, which, again, would allow recursion deadlocks.
3300 */
3301 check_usage_f usage = dir ?
3302 check_usage_backwards : check_usage_forwards;
3303
3304 /*
3305 * Validate that this particular lock does not have conflicting
3306 * usage states.
3307 */
3308 if (!valid_state(curr, this, new_bit, excl_bit))
3309 return 0;
3310
3311 /*
3312 * Validate that the lock dependencies don't have conflicting usage
3313 * states.
3314 */
3315 if ((!read || STRICT_READ_CHECKS) &&
3316 !usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3317 return 0;
3318
3319 /*
3320 * Check for read in write conflicts
3321 */
3322 if (!read) {
3323 if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
3324 return 0;
3325
3326 if (STRICT_READ_CHECKS &&
3327 !usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3328 state_name(new_bit + LOCK_USAGE_READ_MASK)))
3329 return 0;
3330 }
3331
3332 if (state_verbose(new_bit, hlock_class(this)))
3333 return 2;
3334
3335 return 1;
3336 }
3337
3338 /*
3339 * Mark all held locks with a usage bit:
3340 */
3341 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)3342 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3343 {
3344 struct held_lock *hlock;
3345 int i;
3346
3347 for (i = 0; i < curr->lockdep_depth; i++) {
3348 enum lock_usage_bit hlock_bit = base_bit;
3349 hlock = curr->held_locks + i;
3350
3351 if (hlock->read)
3352 hlock_bit += LOCK_USAGE_READ_MASK;
3353
3354 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3355
3356 if (!hlock->check)
3357 continue;
3358
3359 if (!mark_lock(curr, hlock, hlock_bit))
3360 return 0;
3361 }
3362
3363 return 1;
3364 }
3365
3366 /*
3367 * Hardirqs will be enabled:
3368 */
__trace_hardirqs_on_caller(unsigned long ip)3369 static void __trace_hardirqs_on_caller(unsigned long ip)
3370 {
3371 struct task_struct *curr = current;
3372
3373 /* we'll do an OFF -> ON transition: */
3374 curr->hardirqs_enabled = 1;
3375
3376 /*
3377 * We are going to turn hardirqs on, so set the
3378 * usage bit for all held locks:
3379 */
3380 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3381 return;
3382 /*
3383 * If we have softirqs enabled, then set the usage
3384 * bit for all held locks. (disabled hardirqs prevented
3385 * this bit from being set before)
3386 */
3387 if (curr->softirqs_enabled)
3388 if (!mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ))
3389 return;
3390
3391 curr->hardirq_enable_ip = ip;
3392 curr->hardirq_enable_event = ++curr->irq_events;
3393 debug_atomic_inc(hardirqs_on_events);
3394 }
3395
lockdep_hardirqs_on(unsigned long ip)3396 void lockdep_hardirqs_on(unsigned long ip)
3397 {
3398 if (unlikely(!debug_locks || current->lockdep_recursion))
3399 return;
3400
3401 if (unlikely(current->hardirqs_enabled)) {
3402 /*
3403 * Neither irq nor preemption are disabled here
3404 * so this is racy by nature but losing one hit
3405 * in a stat is not a big deal.
3406 */
3407 __debug_atomic_inc(redundant_hardirqs_on);
3408 return;
3409 }
3410
3411 /*
3412 * We're enabling irqs and according to our state above irqs weren't
3413 * already enabled, yet we find the hardware thinks they are in fact
3414 * enabled.. someone messed up their IRQ state tracing.
3415 */
3416 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3417 return;
3418
3419 /*
3420 * See the fine text that goes along with this variable definition.
3421 */
3422 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3423 return;
3424
3425 /*
3426 * Can't allow enabling interrupts while in an interrupt handler,
3427 * that's general bad form and such. Recursion, limited stack etc..
3428 */
3429 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
3430 return;
3431
3432 current->lockdep_recursion = 1;
3433 __trace_hardirqs_on_caller(ip);
3434 current->lockdep_recursion = 0;
3435 }
3436 NOKPROBE_SYMBOL(lockdep_hardirqs_on);
3437
3438 /*
3439 * Hardirqs were disabled:
3440 */
lockdep_hardirqs_off(unsigned long ip)3441 void lockdep_hardirqs_off(unsigned long ip)
3442 {
3443 struct task_struct *curr = current;
3444
3445 if (unlikely(!debug_locks || current->lockdep_recursion))
3446 return;
3447
3448 /*
3449 * So we're supposed to get called after you mask local IRQs, but for
3450 * some reason the hardware doesn't quite think you did a proper job.
3451 */
3452 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3453 return;
3454
3455 if (curr->hardirqs_enabled) {
3456 /*
3457 * We have done an ON -> OFF transition:
3458 */
3459 curr->hardirqs_enabled = 0;
3460 curr->hardirq_disable_ip = ip;
3461 curr->hardirq_disable_event = ++curr->irq_events;
3462 debug_atomic_inc(hardirqs_off_events);
3463 } else
3464 debug_atomic_inc(redundant_hardirqs_off);
3465 }
3466 NOKPROBE_SYMBOL(lockdep_hardirqs_off);
3467
3468 /*
3469 * Softirqs will be enabled:
3470 */
trace_softirqs_on(unsigned long ip)3471 void trace_softirqs_on(unsigned long ip)
3472 {
3473 struct task_struct *curr = current;
3474
3475 if (unlikely(!debug_locks || current->lockdep_recursion))
3476 return;
3477
3478 /*
3479 * We fancy IRQs being disabled here, see softirq.c, avoids
3480 * funny state and nesting things.
3481 */
3482 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3483 return;
3484
3485 if (curr->softirqs_enabled) {
3486 debug_atomic_inc(redundant_softirqs_on);
3487 return;
3488 }
3489
3490 current->lockdep_recursion = 1;
3491 /*
3492 * We'll do an OFF -> ON transition:
3493 */
3494 curr->softirqs_enabled = 1;
3495 curr->softirq_enable_ip = ip;
3496 curr->softirq_enable_event = ++curr->irq_events;
3497 debug_atomic_inc(softirqs_on_events);
3498 /*
3499 * We are going to turn softirqs on, so set the
3500 * usage bit for all held locks, if hardirqs are
3501 * enabled too:
3502 */
3503 if (curr->hardirqs_enabled)
3504 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3505 current->lockdep_recursion = 0;
3506 }
3507
3508 /*
3509 * Softirqs were disabled:
3510 */
trace_softirqs_off(unsigned long ip)3511 void trace_softirqs_off(unsigned long ip)
3512 {
3513 struct task_struct *curr = current;
3514
3515 if (unlikely(!debug_locks || current->lockdep_recursion))
3516 return;
3517
3518 /*
3519 * We fancy IRQs being disabled here, see softirq.c
3520 */
3521 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3522 return;
3523
3524 if (curr->softirqs_enabled) {
3525 /*
3526 * We have done an ON -> OFF transition:
3527 */
3528 curr->softirqs_enabled = 0;
3529 curr->softirq_disable_ip = ip;
3530 curr->softirq_disable_event = ++curr->irq_events;
3531 debug_atomic_inc(softirqs_off_events);
3532 /*
3533 * Whoops, we wanted softirqs off, so why aren't they?
3534 */
3535 DEBUG_LOCKS_WARN_ON(!softirq_count());
3536 } else
3537 debug_atomic_inc(redundant_softirqs_off);
3538 }
3539
3540 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)3541 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3542 {
3543 if (!check)
3544 goto lock_used;
3545
3546 /*
3547 * If non-trylock use in a hardirq or softirq context, then
3548 * mark the lock as used in these contexts:
3549 */
3550 if (!hlock->trylock) {
3551 if (hlock->read) {
3552 if (curr->hardirq_context)
3553 if (!mark_lock(curr, hlock,
3554 LOCK_USED_IN_HARDIRQ_READ))
3555 return 0;
3556 if (curr->softirq_context)
3557 if (!mark_lock(curr, hlock,
3558 LOCK_USED_IN_SOFTIRQ_READ))
3559 return 0;
3560 } else {
3561 if (curr->hardirq_context)
3562 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3563 return 0;
3564 if (curr->softirq_context)
3565 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3566 return 0;
3567 }
3568 }
3569 if (!hlock->hardirqs_off) {
3570 if (hlock->read) {
3571 if (!mark_lock(curr, hlock,
3572 LOCK_ENABLED_HARDIRQ_READ))
3573 return 0;
3574 if (curr->softirqs_enabled)
3575 if (!mark_lock(curr, hlock,
3576 LOCK_ENABLED_SOFTIRQ_READ))
3577 return 0;
3578 } else {
3579 if (!mark_lock(curr, hlock,
3580 LOCK_ENABLED_HARDIRQ))
3581 return 0;
3582 if (curr->softirqs_enabled)
3583 if (!mark_lock(curr, hlock,
3584 LOCK_ENABLED_SOFTIRQ))
3585 return 0;
3586 }
3587 }
3588
3589 lock_used:
3590 /* mark it as used: */
3591 if (!mark_lock(curr, hlock, LOCK_USED))
3592 return 0;
3593
3594 return 1;
3595 }
3596
task_irq_context(struct task_struct * task)3597 static inline unsigned int task_irq_context(struct task_struct *task)
3598 {
3599 return 2 * !!task->hardirq_context + !!task->softirq_context;
3600 }
3601
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)3602 static int separate_irq_context(struct task_struct *curr,
3603 struct held_lock *hlock)
3604 {
3605 unsigned int depth = curr->lockdep_depth;
3606
3607 /*
3608 * Keep track of points where we cross into an interrupt context:
3609 */
3610 if (depth) {
3611 struct held_lock *prev_hlock;
3612
3613 prev_hlock = curr->held_locks + depth-1;
3614 /*
3615 * If we cross into another context, reset the
3616 * hash key (this also prevents the checking and the
3617 * adding of the dependency to 'prev'):
3618 */
3619 if (prev_hlock->irq_context != hlock->irq_context)
3620 return 1;
3621 }
3622 return 0;
3623 }
3624
3625 /*
3626 * Mark a lock with a usage bit, and validate the state transition:
3627 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)3628 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3629 enum lock_usage_bit new_bit)
3630 {
3631 unsigned int new_mask = 1 << new_bit, ret = 1;
3632
3633 if (new_bit >= LOCK_USAGE_STATES) {
3634 DEBUG_LOCKS_WARN_ON(1);
3635 return 0;
3636 }
3637
3638 /*
3639 * If already set then do not dirty the cacheline,
3640 * nor do any checks:
3641 */
3642 if (likely(hlock_class(this)->usage_mask & new_mask))
3643 return 1;
3644
3645 if (!graph_lock())
3646 return 0;
3647 /*
3648 * Make sure we didn't race:
3649 */
3650 if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3651 graph_unlock();
3652 return 1;
3653 }
3654
3655 hlock_class(this)->usage_mask |= new_mask;
3656
3657 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
3658 return 0;
3659
3660 switch (new_bit) {
3661 case LOCK_USED:
3662 debug_atomic_dec(nr_unused_locks);
3663 break;
3664 default:
3665 ret = mark_lock_irq(curr, this, new_bit);
3666 if (!ret)
3667 return 0;
3668 }
3669
3670 graph_unlock();
3671
3672 /*
3673 * We must printk outside of the graph_lock:
3674 */
3675 if (ret == 2) {
3676 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3677 print_lock(this);
3678 print_irqtrace_events(curr);
3679 dump_stack();
3680 }
3681
3682 return ret;
3683 }
3684
3685 #else /* CONFIG_PROVE_LOCKING */
3686
3687 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)3688 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3689 {
3690 return 1;
3691 }
3692
task_irq_context(struct task_struct * task)3693 static inline unsigned int task_irq_context(struct task_struct *task)
3694 {
3695 return 0;
3696 }
3697
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)3698 static inline int separate_irq_context(struct task_struct *curr,
3699 struct held_lock *hlock)
3700 {
3701 return 0;
3702 }
3703
3704 #endif /* CONFIG_PROVE_LOCKING */
3705
3706 /*
3707 * Initialize a lock instance's lock-class mapping info:
3708 */
lockdep_init_map(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass)3709 void lockdep_init_map(struct lockdep_map *lock, const char *name,
3710 struct lock_class_key *key, int subclass)
3711 {
3712 int i;
3713
3714 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3715 lock->class_cache[i] = NULL;
3716
3717 #ifdef CONFIG_LOCK_STAT
3718 lock->cpu = raw_smp_processor_id();
3719 #endif
3720
3721 /*
3722 * Can't be having no nameless bastards around this place!
3723 */
3724 if (DEBUG_LOCKS_WARN_ON(!name)) {
3725 lock->name = "NULL";
3726 return;
3727 }
3728
3729 lock->name = name;
3730
3731 /*
3732 * No key, no joy, we need to hash something.
3733 */
3734 if (DEBUG_LOCKS_WARN_ON(!key))
3735 return;
3736 /*
3737 * Sanity check, the lock-class key must either have been allocated
3738 * statically or must have been registered as a dynamic key.
3739 */
3740 if (!static_obj(key) && !is_dynamic_key(key)) {
3741 if (debug_locks)
3742 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
3743 DEBUG_LOCKS_WARN_ON(1);
3744 return;
3745 }
3746 lock->key = key;
3747
3748 if (unlikely(!debug_locks))
3749 return;
3750
3751 if (subclass) {
3752 unsigned long flags;
3753
3754 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3755 return;
3756
3757 raw_local_irq_save(flags);
3758 current->lockdep_recursion = 1;
3759 register_lock_class(lock, subclass, 1);
3760 current->lockdep_recursion = 0;
3761 raw_local_irq_restore(flags);
3762 }
3763 }
3764 EXPORT_SYMBOL_GPL(lockdep_init_map);
3765
3766 struct lock_class_key __lockdep_no_validate__;
3767 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3768
3769 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock,unsigned long ip)3770 print_lock_nested_lock_not_held(struct task_struct *curr,
3771 struct held_lock *hlock,
3772 unsigned long ip)
3773 {
3774 if (!debug_locks_off())
3775 return;
3776 if (debug_locks_silent)
3777 return;
3778
3779 pr_warn("\n");
3780 pr_warn("==================================\n");
3781 pr_warn("WARNING: Nested lock was not taken\n");
3782 print_kernel_ident();
3783 pr_warn("----------------------------------\n");
3784
3785 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3786 print_lock(hlock);
3787
3788 pr_warn("\nbut this task is not holding:\n");
3789 pr_warn("%s\n", hlock->nest_lock->name);
3790
3791 pr_warn("\nstack backtrace:\n");
3792 dump_stack();
3793
3794 pr_warn("\nother info that might help us debug this:\n");
3795 lockdep_print_held_locks(curr);
3796
3797 pr_warn("\nstack backtrace:\n");
3798 dump_stack();
3799 }
3800
3801 static int __lock_is_held(const struct lockdep_map *lock, int read);
3802
3803 /*
3804 * This gets called for every mutex_lock*()/spin_lock*() operation.
3805 * We maintain the dependency maps and validate the locking attempt:
3806 *
3807 * The callers must make sure that IRQs are disabled before calling it,
3808 * otherwise we could get an interrupt which would want to take locks,
3809 * which would end up in lockdep again.
3810 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)3811 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3812 int trylock, int read, int check, int hardirqs_off,
3813 struct lockdep_map *nest_lock, unsigned long ip,
3814 int references, int pin_count)
3815 {
3816 struct task_struct *curr = current;
3817 struct lock_class *class = NULL;
3818 struct held_lock *hlock;
3819 unsigned int depth;
3820 int chain_head = 0;
3821 int class_idx;
3822 u64 chain_key;
3823
3824 if (unlikely(!debug_locks))
3825 return 0;
3826
3827 if (!prove_locking || lock->key == &__lockdep_no_validate__)
3828 check = 0;
3829
3830 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3831 class = lock->class_cache[subclass];
3832 /*
3833 * Not cached?
3834 */
3835 if (unlikely(!class)) {
3836 class = register_lock_class(lock, subclass, 0);
3837 if (!class)
3838 return 0;
3839 }
3840
3841 debug_class_ops_inc(class);
3842
3843 if (very_verbose(class)) {
3844 printk("\nacquire class [%px] %s", class->key, class->name);
3845 if (class->name_version > 1)
3846 printk(KERN_CONT "#%d", class->name_version);
3847 printk(KERN_CONT "\n");
3848 dump_stack();
3849 }
3850
3851 /*
3852 * Add the lock to the list of currently held locks.
3853 * (we dont increase the depth just yet, up until the
3854 * dependency checks are done)
3855 */
3856 depth = curr->lockdep_depth;
3857 /*
3858 * Ran out of static storage for our per-task lock stack again have we?
3859 */
3860 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3861 return 0;
3862
3863 class_idx = class - lock_classes;
3864
3865 if (depth) {
3866 hlock = curr->held_locks + depth - 1;
3867 if (hlock->class_idx == class_idx && nest_lock) {
3868 if (!references)
3869 references++;
3870
3871 if (!hlock->references)
3872 hlock->references++;
3873
3874 hlock->references += references;
3875
3876 /* Overflow */
3877 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
3878 return 0;
3879
3880 return 2;
3881 }
3882 }
3883
3884 hlock = curr->held_locks + depth;
3885 /*
3886 * Plain impossible, we just registered it and checked it weren't no
3887 * NULL like.. I bet this mushroom I ate was good!
3888 */
3889 if (DEBUG_LOCKS_WARN_ON(!class))
3890 return 0;
3891 hlock->class_idx = class_idx;
3892 hlock->acquire_ip = ip;
3893 hlock->instance = lock;
3894 hlock->nest_lock = nest_lock;
3895 hlock->irq_context = task_irq_context(curr);
3896 hlock->trylock = trylock;
3897 hlock->read = read;
3898 hlock->check = check;
3899 hlock->hardirqs_off = !!hardirqs_off;
3900 hlock->references = references;
3901 #ifdef CONFIG_LOCK_STAT
3902 hlock->waittime_stamp = 0;
3903 hlock->holdtime_stamp = lockstat_clock();
3904 #endif
3905 hlock->pin_count = pin_count;
3906
3907 /* Initialize the lock usage bit */
3908 if (!mark_usage(curr, hlock, check))
3909 return 0;
3910
3911 /*
3912 * Calculate the chain hash: it's the combined hash of all the
3913 * lock keys along the dependency chain. We save the hash value
3914 * at every step so that we can get the current hash easily
3915 * after unlock. The chain hash is then used to cache dependency
3916 * results.
3917 *
3918 * The 'key ID' is what is the most compact key value to drive
3919 * the hash, not class->key.
3920 */
3921 /*
3922 * Whoops, we did it again.. class_idx is invalid.
3923 */
3924 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
3925 return 0;
3926
3927 chain_key = curr->curr_chain_key;
3928 if (!depth) {
3929 /*
3930 * How can we have a chain hash when we ain't got no keys?!
3931 */
3932 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
3933 return 0;
3934 chain_head = 1;
3935 }
3936
3937 hlock->prev_chain_key = chain_key;
3938 if (separate_irq_context(curr, hlock)) {
3939 chain_key = INITIAL_CHAIN_KEY;
3940 chain_head = 1;
3941 }
3942 chain_key = iterate_chain_key(chain_key, class_idx);
3943
3944 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
3945 print_lock_nested_lock_not_held(curr, hlock, ip);
3946 return 0;
3947 }
3948
3949 if (!debug_locks_silent) {
3950 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
3951 WARN_ON_ONCE(!hlock_class(hlock)->key);
3952 }
3953
3954 if (!validate_chain(curr, hlock, chain_head, chain_key))
3955 return 0;
3956
3957 curr->curr_chain_key = chain_key;
3958 curr->lockdep_depth++;
3959 check_chain_key(curr);
3960 #ifdef CONFIG_DEBUG_LOCKDEP
3961 if (unlikely(!debug_locks))
3962 return 0;
3963 #endif
3964 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3965 debug_locks_off();
3966 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3967 printk(KERN_DEBUG "depth: %i max: %lu!\n",
3968 curr->lockdep_depth, MAX_LOCK_DEPTH);
3969
3970 lockdep_print_held_locks(current);
3971 debug_show_all_locks();
3972 dump_stack();
3973
3974 return 0;
3975 }
3976
3977 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3978 max_lockdep_depth = curr->lockdep_depth;
3979
3980 return 1;
3981 }
3982
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)3983 static void print_unlock_imbalance_bug(struct task_struct *curr,
3984 struct lockdep_map *lock,
3985 unsigned long ip)
3986 {
3987 if (!debug_locks_off())
3988 return;
3989 if (debug_locks_silent)
3990 return;
3991
3992 pr_warn("\n");
3993 pr_warn("=====================================\n");
3994 pr_warn("WARNING: bad unlock balance detected!\n");
3995 print_kernel_ident();
3996 pr_warn("-------------------------------------\n");
3997 pr_warn("%s/%d is trying to release lock (",
3998 curr->comm, task_pid_nr(curr));
3999 print_lockdep_cache(lock);
4000 pr_cont(") at:\n");
4001 print_ip_sym(ip);
4002 pr_warn("but there are no more locks to release!\n");
4003 pr_warn("\nother info that might help us debug this:\n");
4004 lockdep_print_held_locks(curr);
4005
4006 pr_warn("\nstack backtrace:\n");
4007 dump_stack();
4008 }
4009
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)4010 static int match_held_lock(const struct held_lock *hlock,
4011 const struct lockdep_map *lock)
4012 {
4013 if (hlock->instance == lock)
4014 return 1;
4015
4016 if (hlock->references) {
4017 const struct lock_class *class = lock->class_cache[0];
4018
4019 if (!class)
4020 class = look_up_lock_class(lock, 0);
4021
4022 /*
4023 * If look_up_lock_class() failed to find a class, we're trying
4024 * to test if we hold a lock that has never yet been acquired.
4025 * Clearly if the lock hasn't been acquired _ever_, we're not
4026 * holding it either, so report failure.
4027 */
4028 if (!class)
4029 return 0;
4030
4031 /*
4032 * References, but not a lock we're actually ref-counting?
4033 * State got messed up, follow the sites that change ->references
4034 * and try to make sense of it.
4035 */
4036 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4037 return 0;
4038
4039 if (hlock->class_idx == class - lock_classes)
4040 return 1;
4041 }
4042
4043 return 0;
4044 }
4045
4046 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)4047 static struct held_lock *find_held_lock(struct task_struct *curr,
4048 struct lockdep_map *lock,
4049 unsigned int depth, int *idx)
4050 {
4051 struct held_lock *ret, *hlock, *prev_hlock;
4052 int i;
4053
4054 i = depth - 1;
4055 hlock = curr->held_locks + i;
4056 ret = hlock;
4057 if (match_held_lock(hlock, lock))
4058 goto out;
4059
4060 ret = NULL;
4061 for (i--, prev_hlock = hlock--;
4062 i >= 0;
4063 i--, prev_hlock = hlock--) {
4064 /*
4065 * We must not cross into another context:
4066 */
4067 if (prev_hlock->irq_context != hlock->irq_context) {
4068 ret = NULL;
4069 break;
4070 }
4071 if (match_held_lock(hlock, lock)) {
4072 ret = hlock;
4073 break;
4074 }
4075 }
4076
4077 out:
4078 *idx = i;
4079 return ret;
4080 }
4081
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)4082 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4083 int idx, unsigned int *merged)
4084 {
4085 struct held_lock *hlock;
4086 int first_idx = idx;
4087
4088 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4089 return 0;
4090
4091 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4092 switch (__lock_acquire(hlock->instance,
4093 hlock_class(hlock)->subclass,
4094 hlock->trylock,
4095 hlock->read, hlock->check,
4096 hlock->hardirqs_off,
4097 hlock->nest_lock, hlock->acquire_ip,
4098 hlock->references, hlock->pin_count)) {
4099 case 0:
4100 return 1;
4101 case 1:
4102 break;
4103 case 2:
4104 *merged += (idx == first_idx);
4105 break;
4106 default:
4107 WARN_ON(1);
4108 return 0;
4109 }
4110 }
4111 return 0;
4112 }
4113
4114 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)4115 __lock_set_class(struct lockdep_map *lock, const char *name,
4116 struct lock_class_key *key, unsigned int subclass,
4117 unsigned long ip)
4118 {
4119 struct task_struct *curr = current;
4120 unsigned int depth, merged = 0;
4121 struct held_lock *hlock;
4122 struct lock_class *class;
4123 int i;
4124
4125 if (unlikely(!debug_locks))
4126 return 0;
4127
4128 depth = curr->lockdep_depth;
4129 /*
4130 * This function is about (re)setting the class of a held lock,
4131 * yet we're not actually holding any locks. Naughty user!
4132 */
4133 if (DEBUG_LOCKS_WARN_ON(!depth))
4134 return 0;
4135
4136 hlock = find_held_lock(curr, lock, depth, &i);
4137 if (!hlock) {
4138 print_unlock_imbalance_bug(curr, lock, ip);
4139 return 0;
4140 }
4141
4142 lockdep_init_map(lock, name, key, 0);
4143 class = register_lock_class(lock, subclass, 0);
4144 hlock->class_idx = class - lock_classes;
4145
4146 curr->lockdep_depth = i;
4147 curr->curr_chain_key = hlock->prev_chain_key;
4148
4149 if (reacquire_held_locks(curr, depth, i, &merged))
4150 return 0;
4151
4152 /*
4153 * I took it apart and put it back together again, except now I have
4154 * these 'spare' parts.. where shall I put them.
4155 */
4156 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4157 return 0;
4158 return 1;
4159 }
4160
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)4161 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4162 {
4163 struct task_struct *curr = current;
4164 unsigned int depth, merged = 0;
4165 struct held_lock *hlock;
4166 int i;
4167
4168 if (unlikely(!debug_locks))
4169 return 0;
4170
4171 depth = curr->lockdep_depth;
4172 /*
4173 * This function is about (re)setting the class of a held lock,
4174 * yet we're not actually holding any locks. Naughty user!
4175 */
4176 if (DEBUG_LOCKS_WARN_ON(!depth))
4177 return 0;
4178
4179 hlock = find_held_lock(curr, lock, depth, &i);
4180 if (!hlock) {
4181 print_unlock_imbalance_bug(curr, lock, ip);
4182 return 0;
4183 }
4184
4185 curr->lockdep_depth = i;
4186 curr->curr_chain_key = hlock->prev_chain_key;
4187
4188 WARN(hlock->read, "downgrading a read lock");
4189 hlock->read = 1;
4190 hlock->acquire_ip = ip;
4191
4192 if (reacquire_held_locks(curr, depth, i, &merged))
4193 return 0;
4194
4195 /* Merging can't happen with unchanged classes.. */
4196 if (DEBUG_LOCKS_WARN_ON(merged))
4197 return 0;
4198
4199 /*
4200 * I took it apart and put it back together again, except now I have
4201 * these 'spare' parts.. where shall I put them.
4202 */
4203 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4204 return 0;
4205
4206 return 1;
4207 }
4208
4209 /*
4210 * Remove the lock to the list of currently held locks - this gets
4211 * called on mutex_unlock()/spin_unlock*() (or on a failed
4212 * mutex_lock_interruptible()).
4213 *
4214 * @nested is an hysterical artifact, needs a tree wide cleanup.
4215 */
4216 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)4217 __lock_release(struct lockdep_map *lock, unsigned long ip)
4218 {
4219 struct task_struct *curr = current;
4220 unsigned int depth, merged = 1;
4221 struct held_lock *hlock;
4222 int i;
4223
4224 if (unlikely(!debug_locks))
4225 return 0;
4226
4227 depth = curr->lockdep_depth;
4228 /*
4229 * So we're all set to release this lock.. wait what lock? We don't
4230 * own any locks, you've been drinking again?
4231 */
4232 if (depth <= 0) {
4233 print_unlock_imbalance_bug(curr, lock, ip);
4234 return 0;
4235 }
4236
4237 /*
4238 * Check whether the lock exists in the current stack
4239 * of held locks:
4240 */
4241 hlock = find_held_lock(curr, lock, depth, &i);
4242 if (!hlock) {
4243 print_unlock_imbalance_bug(curr, lock, ip);
4244 return 0;
4245 }
4246
4247 if (hlock->instance == lock)
4248 lock_release_holdtime(hlock);
4249
4250 WARN(hlock->pin_count, "releasing a pinned lock\n");
4251
4252 if (hlock->references) {
4253 hlock->references--;
4254 if (hlock->references) {
4255 /*
4256 * We had, and after removing one, still have
4257 * references, the current lock stack is still
4258 * valid. We're done!
4259 */
4260 return 1;
4261 }
4262 }
4263
4264 /*
4265 * We have the right lock to unlock, 'hlock' points to it.
4266 * Now we remove it from the stack, and add back the other
4267 * entries (if any), recalculating the hash along the way:
4268 */
4269
4270 curr->lockdep_depth = i;
4271 curr->curr_chain_key = hlock->prev_chain_key;
4272
4273 /*
4274 * The most likely case is when the unlock is on the innermost
4275 * lock. In this case, we are done!
4276 */
4277 if (i == depth-1)
4278 return 1;
4279
4280 if (reacquire_held_locks(curr, depth, i + 1, &merged))
4281 return 0;
4282
4283 /*
4284 * We had N bottles of beer on the wall, we drank one, but now
4285 * there's not N-1 bottles of beer left on the wall...
4286 * Pouring two of the bottles together is acceptable.
4287 */
4288 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4289
4290 /*
4291 * Since reacquire_held_locks() would have called check_chain_key()
4292 * indirectly via __lock_acquire(), we don't need to do it again
4293 * on return.
4294 */
4295 return 0;
4296 }
4297
4298 static nokprobe_inline
__lock_is_held(const struct lockdep_map * lock,int read)4299 int __lock_is_held(const struct lockdep_map *lock, int read)
4300 {
4301 struct task_struct *curr = current;
4302 int i;
4303
4304 for (i = 0; i < curr->lockdep_depth; i++) {
4305 struct held_lock *hlock = curr->held_locks + i;
4306
4307 if (match_held_lock(hlock, lock)) {
4308 if (read == -1 || hlock->read == read)
4309 return 1;
4310
4311 return 0;
4312 }
4313 }
4314
4315 return 0;
4316 }
4317
__lock_pin_lock(struct lockdep_map * lock)4318 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4319 {
4320 struct pin_cookie cookie = NIL_COOKIE;
4321 struct task_struct *curr = current;
4322 int i;
4323
4324 if (unlikely(!debug_locks))
4325 return cookie;
4326
4327 for (i = 0; i < curr->lockdep_depth; i++) {
4328 struct held_lock *hlock = curr->held_locks + i;
4329
4330 if (match_held_lock(hlock, lock)) {
4331 /*
4332 * Grab 16bits of randomness; this is sufficient to not
4333 * be guessable and still allows some pin nesting in
4334 * our u32 pin_count.
4335 */
4336 cookie.val = 1 + (prandom_u32() >> 16);
4337 hlock->pin_count += cookie.val;
4338 return cookie;
4339 }
4340 }
4341
4342 WARN(1, "pinning an unheld lock\n");
4343 return cookie;
4344 }
4345
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4346 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4347 {
4348 struct task_struct *curr = current;
4349 int i;
4350
4351 if (unlikely(!debug_locks))
4352 return;
4353
4354 for (i = 0; i < curr->lockdep_depth; i++) {
4355 struct held_lock *hlock = curr->held_locks + i;
4356
4357 if (match_held_lock(hlock, lock)) {
4358 hlock->pin_count += cookie.val;
4359 return;
4360 }
4361 }
4362
4363 WARN(1, "pinning an unheld lock\n");
4364 }
4365
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4366 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4367 {
4368 struct task_struct *curr = current;
4369 int i;
4370
4371 if (unlikely(!debug_locks))
4372 return;
4373
4374 for (i = 0; i < curr->lockdep_depth; i++) {
4375 struct held_lock *hlock = curr->held_locks + i;
4376
4377 if (match_held_lock(hlock, lock)) {
4378 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4379 return;
4380
4381 hlock->pin_count -= cookie.val;
4382
4383 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4384 hlock->pin_count = 0;
4385
4386 return;
4387 }
4388 }
4389
4390 WARN(1, "unpinning an unheld lock\n");
4391 }
4392
4393 /*
4394 * Check whether we follow the irq-flags state precisely:
4395 */
check_flags(unsigned long flags)4396 static void check_flags(unsigned long flags)
4397 {
4398 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4399 if (!debug_locks)
4400 return;
4401
4402 if (irqs_disabled_flags(flags)) {
4403 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
4404 printk("possible reason: unannotated irqs-off.\n");
4405 }
4406 } else {
4407 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
4408 printk("possible reason: unannotated irqs-on.\n");
4409 }
4410 }
4411
4412 /*
4413 * We dont accurately track softirq state in e.g.
4414 * hardirq contexts (such as on 4KSTACKS), so only
4415 * check if not in hardirq contexts:
4416 */
4417 if (!hardirq_count()) {
4418 if (softirq_count()) {
4419 /* like the above, but with softirqs */
4420 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4421 } else {
4422 /* lick the above, does it taste good? */
4423 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4424 }
4425 }
4426
4427 if (!debug_locks)
4428 print_irqtrace_events(current);
4429 #endif
4430 }
4431
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)4432 void lock_set_class(struct lockdep_map *lock, const char *name,
4433 struct lock_class_key *key, unsigned int subclass,
4434 unsigned long ip)
4435 {
4436 unsigned long flags;
4437
4438 if (unlikely(current->lockdep_recursion))
4439 return;
4440
4441 raw_local_irq_save(flags);
4442 current->lockdep_recursion = 1;
4443 check_flags(flags);
4444 if (__lock_set_class(lock, name, key, subclass, ip))
4445 check_chain_key(current);
4446 current->lockdep_recursion = 0;
4447 raw_local_irq_restore(flags);
4448 }
4449 EXPORT_SYMBOL_GPL(lock_set_class);
4450
lock_downgrade(struct lockdep_map * lock,unsigned long ip)4451 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4452 {
4453 unsigned long flags;
4454
4455 if (unlikely(current->lockdep_recursion))
4456 return;
4457
4458 raw_local_irq_save(flags);
4459 current->lockdep_recursion = 1;
4460 check_flags(flags);
4461 if (__lock_downgrade(lock, ip))
4462 check_chain_key(current);
4463 current->lockdep_recursion = 0;
4464 raw_local_irq_restore(flags);
4465 }
4466 EXPORT_SYMBOL_GPL(lock_downgrade);
4467
4468 /*
4469 * We are not always called with irqs disabled - do that here,
4470 * and also avoid lockdep recursion:
4471 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)4472 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4473 int trylock, int read, int check,
4474 struct lockdep_map *nest_lock, unsigned long ip)
4475 {
4476 unsigned long flags;
4477
4478 if (unlikely(current->lockdep_recursion))
4479 return;
4480
4481 raw_local_irq_save(flags);
4482 check_flags(flags);
4483
4484 current->lockdep_recursion = 1;
4485 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4486 __lock_acquire(lock, subclass, trylock, read, check,
4487 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4488 current->lockdep_recursion = 0;
4489 raw_local_irq_restore(flags);
4490 }
4491 EXPORT_SYMBOL_GPL(lock_acquire);
4492
lock_release(struct lockdep_map * lock,int nested,unsigned long ip)4493 void lock_release(struct lockdep_map *lock, int nested,
4494 unsigned long ip)
4495 {
4496 unsigned long flags;
4497
4498 if (unlikely(current->lockdep_recursion))
4499 return;
4500
4501 raw_local_irq_save(flags);
4502 check_flags(flags);
4503 current->lockdep_recursion = 1;
4504 trace_lock_release(lock, ip);
4505 if (__lock_release(lock, ip))
4506 check_chain_key(current);
4507 current->lockdep_recursion = 0;
4508 raw_local_irq_restore(flags);
4509 }
4510 EXPORT_SYMBOL_GPL(lock_release);
4511
lock_is_held_type(const struct lockdep_map * lock,int read)4512 int lock_is_held_type(const struct lockdep_map *lock, int read)
4513 {
4514 unsigned long flags;
4515 int ret = 0;
4516
4517 if (unlikely(current->lockdep_recursion))
4518 return 1; /* avoid false negative lockdep_assert_held() */
4519
4520 raw_local_irq_save(flags);
4521 check_flags(flags);
4522
4523 current->lockdep_recursion = 1;
4524 ret = __lock_is_held(lock, read);
4525 current->lockdep_recursion = 0;
4526 raw_local_irq_restore(flags);
4527
4528 return ret;
4529 }
4530 EXPORT_SYMBOL_GPL(lock_is_held_type);
4531 NOKPROBE_SYMBOL(lock_is_held_type);
4532
lock_pin_lock(struct lockdep_map * lock)4533 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4534 {
4535 struct pin_cookie cookie = NIL_COOKIE;
4536 unsigned long flags;
4537
4538 if (unlikely(current->lockdep_recursion))
4539 return cookie;
4540
4541 raw_local_irq_save(flags);
4542 check_flags(flags);
4543
4544 current->lockdep_recursion = 1;
4545 cookie = __lock_pin_lock(lock);
4546 current->lockdep_recursion = 0;
4547 raw_local_irq_restore(flags);
4548
4549 return cookie;
4550 }
4551 EXPORT_SYMBOL_GPL(lock_pin_lock);
4552
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4553 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4554 {
4555 unsigned long flags;
4556
4557 if (unlikely(current->lockdep_recursion))
4558 return;
4559
4560 raw_local_irq_save(flags);
4561 check_flags(flags);
4562
4563 current->lockdep_recursion = 1;
4564 __lock_repin_lock(lock, cookie);
4565 current->lockdep_recursion = 0;
4566 raw_local_irq_restore(flags);
4567 }
4568 EXPORT_SYMBOL_GPL(lock_repin_lock);
4569
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4570 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4571 {
4572 unsigned long flags;
4573
4574 if (unlikely(current->lockdep_recursion))
4575 return;
4576
4577 raw_local_irq_save(flags);
4578 check_flags(flags);
4579
4580 current->lockdep_recursion = 1;
4581 __lock_unpin_lock(lock, cookie);
4582 current->lockdep_recursion = 0;
4583 raw_local_irq_restore(flags);
4584 }
4585 EXPORT_SYMBOL_GPL(lock_unpin_lock);
4586
4587 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)4588 static void print_lock_contention_bug(struct task_struct *curr,
4589 struct lockdep_map *lock,
4590 unsigned long ip)
4591 {
4592 if (!debug_locks_off())
4593 return;
4594 if (debug_locks_silent)
4595 return;
4596
4597 pr_warn("\n");
4598 pr_warn("=================================\n");
4599 pr_warn("WARNING: bad contention detected!\n");
4600 print_kernel_ident();
4601 pr_warn("---------------------------------\n");
4602 pr_warn("%s/%d is trying to contend lock (",
4603 curr->comm, task_pid_nr(curr));
4604 print_lockdep_cache(lock);
4605 pr_cont(") at:\n");
4606 print_ip_sym(ip);
4607 pr_warn("but there are no locks held!\n");
4608 pr_warn("\nother info that might help us debug this:\n");
4609 lockdep_print_held_locks(curr);
4610
4611 pr_warn("\nstack backtrace:\n");
4612 dump_stack();
4613 }
4614
4615 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)4616 __lock_contended(struct lockdep_map *lock, unsigned long ip)
4617 {
4618 struct task_struct *curr = current;
4619 struct held_lock *hlock;
4620 struct lock_class_stats *stats;
4621 unsigned int depth;
4622 int i, contention_point, contending_point;
4623
4624 depth = curr->lockdep_depth;
4625 /*
4626 * Whee, we contended on this lock, except it seems we're not
4627 * actually trying to acquire anything much at all..
4628 */
4629 if (DEBUG_LOCKS_WARN_ON(!depth))
4630 return;
4631
4632 hlock = find_held_lock(curr, lock, depth, &i);
4633 if (!hlock) {
4634 print_lock_contention_bug(curr, lock, ip);
4635 return;
4636 }
4637
4638 if (hlock->instance != lock)
4639 return;
4640
4641 hlock->waittime_stamp = lockstat_clock();
4642
4643 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4644 contending_point = lock_point(hlock_class(hlock)->contending_point,
4645 lock->ip);
4646
4647 stats = get_lock_stats(hlock_class(hlock));
4648 if (contention_point < LOCKSTAT_POINTS)
4649 stats->contention_point[contention_point]++;
4650 if (contending_point < LOCKSTAT_POINTS)
4651 stats->contending_point[contending_point]++;
4652 if (lock->cpu != smp_processor_id())
4653 stats->bounces[bounce_contended + !!hlock->read]++;
4654 }
4655
4656 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)4657 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
4658 {
4659 struct task_struct *curr = current;
4660 struct held_lock *hlock;
4661 struct lock_class_stats *stats;
4662 unsigned int depth;
4663 u64 now, waittime = 0;
4664 int i, cpu;
4665
4666 depth = curr->lockdep_depth;
4667 /*
4668 * Yay, we acquired ownership of this lock we didn't try to
4669 * acquire, how the heck did that happen?
4670 */
4671 if (DEBUG_LOCKS_WARN_ON(!depth))
4672 return;
4673
4674 hlock = find_held_lock(curr, lock, depth, &i);
4675 if (!hlock) {
4676 print_lock_contention_bug(curr, lock, _RET_IP_);
4677 return;
4678 }
4679
4680 if (hlock->instance != lock)
4681 return;
4682
4683 cpu = smp_processor_id();
4684 if (hlock->waittime_stamp) {
4685 now = lockstat_clock();
4686 waittime = now - hlock->waittime_stamp;
4687 hlock->holdtime_stamp = now;
4688 }
4689
4690 trace_lock_acquired(lock, ip);
4691
4692 stats = get_lock_stats(hlock_class(hlock));
4693 if (waittime) {
4694 if (hlock->read)
4695 lock_time_inc(&stats->read_waittime, waittime);
4696 else
4697 lock_time_inc(&stats->write_waittime, waittime);
4698 }
4699 if (lock->cpu != cpu)
4700 stats->bounces[bounce_acquired + !!hlock->read]++;
4701
4702 lock->cpu = cpu;
4703 lock->ip = ip;
4704 }
4705
lock_contended(struct lockdep_map * lock,unsigned long ip)4706 void lock_contended(struct lockdep_map *lock, unsigned long ip)
4707 {
4708 unsigned long flags;
4709
4710 if (unlikely(!lock_stat || !debug_locks))
4711 return;
4712
4713 if (unlikely(current->lockdep_recursion))
4714 return;
4715
4716 raw_local_irq_save(flags);
4717 check_flags(flags);
4718 current->lockdep_recursion = 1;
4719 trace_lock_contended(lock, ip);
4720 __lock_contended(lock, ip);
4721 current->lockdep_recursion = 0;
4722 raw_local_irq_restore(flags);
4723 }
4724 EXPORT_SYMBOL_GPL(lock_contended);
4725
lock_acquired(struct lockdep_map * lock,unsigned long ip)4726 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4727 {
4728 unsigned long flags;
4729
4730 if (unlikely(!lock_stat || !debug_locks))
4731 return;
4732
4733 if (unlikely(current->lockdep_recursion))
4734 return;
4735
4736 raw_local_irq_save(flags);
4737 check_flags(flags);
4738 current->lockdep_recursion = 1;
4739 __lock_acquired(lock, ip);
4740 current->lockdep_recursion = 0;
4741 raw_local_irq_restore(flags);
4742 }
4743 EXPORT_SYMBOL_GPL(lock_acquired);
4744 #endif
4745
4746 /*
4747 * Used by the testsuite, sanitize the validator state
4748 * after a simulated failure:
4749 */
4750
lockdep_reset(void)4751 void lockdep_reset(void)
4752 {
4753 unsigned long flags;
4754 int i;
4755
4756 raw_local_irq_save(flags);
4757 lockdep_init_task(current);
4758 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4759 nr_hardirq_chains = 0;
4760 nr_softirq_chains = 0;
4761 nr_process_chains = 0;
4762 debug_locks = 1;
4763 for (i = 0; i < CHAINHASH_SIZE; i++)
4764 INIT_HLIST_HEAD(chainhash_table + i);
4765 raw_local_irq_restore(flags);
4766 }
4767
4768 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)4769 static void remove_class_from_lock_chain(struct pending_free *pf,
4770 struct lock_chain *chain,
4771 struct lock_class *class)
4772 {
4773 #ifdef CONFIG_PROVE_LOCKING
4774 struct lock_chain *new_chain;
4775 u64 chain_key;
4776 int i;
4777
4778 for (i = chain->base; i < chain->base + chain->depth; i++) {
4779 if (chain_hlocks[i] != class - lock_classes)
4780 continue;
4781 /* The code below leaks one chain_hlock[] entry. */
4782 if (--chain->depth > 0) {
4783 memmove(&chain_hlocks[i], &chain_hlocks[i + 1],
4784 (chain->base + chain->depth - i) *
4785 sizeof(chain_hlocks[0]));
4786 }
4787 /*
4788 * Each lock class occurs at most once in a lock chain so once
4789 * we found a match we can break out of this loop.
4790 */
4791 goto recalc;
4792 }
4793 /* Since the chain has not been modified, return. */
4794 return;
4795
4796 recalc:
4797 chain_key = INITIAL_CHAIN_KEY;
4798 for (i = chain->base; i < chain->base + chain->depth; i++)
4799 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
4800 if (chain->depth && chain->chain_key == chain_key)
4801 return;
4802 /* Overwrite the chain key for concurrent RCU readers. */
4803 WRITE_ONCE(chain->chain_key, chain_key);
4804 /*
4805 * Note: calling hlist_del_rcu() from inside a
4806 * hlist_for_each_entry_rcu() loop is safe.
4807 */
4808 hlist_del_rcu(&chain->entry);
4809 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
4810 if (chain->depth == 0)
4811 return;
4812 /*
4813 * If the modified lock chain matches an existing lock chain, drop
4814 * the modified lock chain.
4815 */
4816 if (lookup_chain_cache(chain_key))
4817 return;
4818 new_chain = alloc_lock_chain();
4819 if (WARN_ON_ONCE(!new_chain)) {
4820 debug_locks_off();
4821 return;
4822 }
4823 *new_chain = *chain;
4824 hlist_add_head_rcu(&new_chain->entry, chainhashentry(chain_key));
4825 #endif
4826 }
4827
4828 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)4829 static void remove_class_from_lock_chains(struct pending_free *pf,
4830 struct lock_class *class)
4831 {
4832 struct lock_chain *chain;
4833 struct hlist_head *head;
4834 int i;
4835
4836 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
4837 head = chainhash_table + i;
4838 hlist_for_each_entry_rcu(chain, head, entry) {
4839 remove_class_from_lock_chain(pf, chain, class);
4840 }
4841 }
4842 }
4843
4844 /*
4845 * Remove all references to a lock class. The caller must hold the graph lock.
4846 */
zap_class(struct pending_free * pf,struct lock_class * class)4847 static void zap_class(struct pending_free *pf, struct lock_class *class)
4848 {
4849 struct lock_list *entry;
4850 int i;
4851
4852 WARN_ON_ONCE(!class->key);
4853
4854 /*
4855 * Remove all dependencies this lock is
4856 * involved in:
4857 */
4858 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
4859 entry = list_entries + i;
4860 if (entry->class != class && entry->links_to != class)
4861 continue;
4862 __clear_bit(i, list_entries_in_use);
4863 nr_list_entries--;
4864 list_del_rcu(&entry->entry);
4865 }
4866 if (list_empty(&class->locks_after) &&
4867 list_empty(&class->locks_before)) {
4868 list_move_tail(&class->lock_entry, &pf->zapped);
4869 hlist_del_rcu(&class->hash_entry);
4870 WRITE_ONCE(class->key, NULL);
4871 WRITE_ONCE(class->name, NULL);
4872 nr_lock_classes--;
4873 __clear_bit(class - lock_classes, lock_classes_in_use);
4874 } else {
4875 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
4876 class->name);
4877 }
4878
4879 remove_class_from_lock_chains(pf, class);
4880 }
4881
reinit_class(struct lock_class * class)4882 static void reinit_class(struct lock_class *class)
4883 {
4884 void *const p = class;
4885 const unsigned int offset = offsetof(struct lock_class, key);
4886
4887 WARN_ON_ONCE(!class->lock_entry.next);
4888 WARN_ON_ONCE(!list_empty(&class->locks_after));
4889 WARN_ON_ONCE(!list_empty(&class->locks_before));
4890 memset(p + offset, 0, sizeof(*class) - offset);
4891 WARN_ON_ONCE(!class->lock_entry.next);
4892 WARN_ON_ONCE(!list_empty(&class->locks_after));
4893 WARN_ON_ONCE(!list_empty(&class->locks_before));
4894 }
4895
within(const void * addr,void * start,unsigned long size)4896 static inline int within(const void *addr, void *start, unsigned long size)
4897 {
4898 return addr >= start && addr < start + size;
4899 }
4900
inside_selftest(void)4901 static bool inside_selftest(void)
4902 {
4903 return current == lockdep_selftest_task_struct;
4904 }
4905
4906 /* The caller must hold the graph lock. */
get_pending_free(void)4907 static struct pending_free *get_pending_free(void)
4908 {
4909 return delayed_free.pf + delayed_free.index;
4910 }
4911
4912 static void free_zapped_rcu(struct rcu_head *cb);
4913
4914 /*
4915 * Schedule an RCU callback if no RCU callback is pending. Must be called with
4916 * the graph lock held.
4917 */
call_rcu_zapped(struct pending_free * pf)4918 static void call_rcu_zapped(struct pending_free *pf)
4919 {
4920 WARN_ON_ONCE(inside_selftest());
4921
4922 if (list_empty(&pf->zapped))
4923 return;
4924
4925 if (delayed_free.scheduled)
4926 return;
4927
4928 delayed_free.scheduled = true;
4929
4930 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
4931 delayed_free.index ^= 1;
4932
4933 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
4934 }
4935
4936 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)4937 static void __free_zapped_classes(struct pending_free *pf)
4938 {
4939 struct lock_class *class;
4940
4941 check_data_structures();
4942
4943 list_for_each_entry(class, &pf->zapped, lock_entry)
4944 reinit_class(class);
4945
4946 list_splice_init(&pf->zapped, &free_lock_classes);
4947
4948 #ifdef CONFIG_PROVE_LOCKING
4949 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
4950 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
4951 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
4952 #endif
4953 }
4954
free_zapped_rcu(struct rcu_head * ch)4955 static void free_zapped_rcu(struct rcu_head *ch)
4956 {
4957 struct pending_free *pf;
4958 unsigned long flags;
4959
4960 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
4961 return;
4962
4963 raw_local_irq_save(flags);
4964 arch_spin_lock(&lockdep_lock);
4965 current->lockdep_recursion = 1;
4966
4967 /* closed head */
4968 pf = delayed_free.pf + (delayed_free.index ^ 1);
4969 __free_zapped_classes(pf);
4970 delayed_free.scheduled = false;
4971
4972 /*
4973 * If there's anything on the open list, close and start a new callback.
4974 */
4975 call_rcu_zapped(delayed_free.pf + delayed_free.index);
4976
4977 current->lockdep_recursion = 0;
4978 arch_spin_unlock(&lockdep_lock);
4979 raw_local_irq_restore(flags);
4980 }
4981
4982 /*
4983 * Remove all lock classes from the class hash table and from the
4984 * all_lock_classes list whose key or name is in the address range [start,
4985 * start + size). Move these lock classes to the zapped_classes list. Must
4986 * be called with the graph lock held.
4987 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)4988 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
4989 unsigned long size)
4990 {
4991 struct lock_class *class;
4992 struct hlist_head *head;
4993 int i;
4994
4995 /* Unhash all classes that were created by a module. */
4996 for (i = 0; i < CLASSHASH_SIZE; i++) {
4997 head = classhash_table + i;
4998 hlist_for_each_entry_rcu(class, head, hash_entry) {
4999 if (!within(class->key, start, size) &&
5000 !within(class->name, start, size))
5001 continue;
5002 zap_class(pf, class);
5003 }
5004 }
5005 }
5006
5007 /*
5008 * Used in module.c to remove lock classes from memory that is going to be
5009 * freed; and possibly re-used by other modules.
5010 *
5011 * We will have had one synchronize_rcu() before getting here, so we're
5012 * guaranteed nobody will look up these exact classes -- they're properly dead
5013 * but still allocated.
5014 */
lockdep_free_key_range_reg(void * start,unsigned long size)5015 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5016 {
5017 struct pending_free *pf;
5018 unsigned long flags;
5019
5020 init_data_structures_once();
5021
5022 raw_local_irq_save(flags);
5023 arch_spin_lock(&lockdep_lock);
5024 current->lockdep_recursion = 1;
5025 pf = get_pending_free();
5026 __lockdep_free_key_range(pf, start, size);
5027 call_rcu_zapped(pf);
5028 current->lockdep_recursion = 0;
5029 arch_spin_unlock(&lockdep_lock);
5030 raw_local_irq_restore(flags);
5031
5032 /*
5033 * Wait for any possible iterators from look_up_lock_class() to pass
5034 * before continuing to free the memory they refer to.
5035 */
5036 synchronize_rcu();
5037 }
5038
5039 /*
5040 * Free all lockdep keys in the range [start, start+size). Does not sleep.
5041 * Ignores debug_locks. Must only be used by the lockdep selftests.
5042 */
lockdep_free_key_range_imm(void * start,unsigned long size)5043 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5044 {
5045 struct pending_free *pf = delayed_free.pf;
5046 unsigned long flags;
5047
5048 init_data_structures_once();
5049
5050 raw_local_irq_save(flags);
5051 arch_spin_lock(&lockdep_lock);
5052 __lockdep_free_key_range(pf, start, size);
5053 __free_zapped_classes(pf);
5054 arch_spin_unlock(&lockdep_lock);
5055 raw_local_irq_restore(flags);
5056 }
5057
lockdep_free_key_range(void * start,unsigned long size)5058 void lockdep_free_key_range(void *start, unsigned long size)
5059 {
5060 init_data_structures_once();
5061
5062 if (inside_selftest())
5063 lockdep_free_key_range_imm(start, size);
5064 else
5065 lockdep_free_key_range_reg(start, size);
5066 }
5067
5068 /*
5069 * Check whether any element of the @lock->class_cache[] array refers to a
5070 * registered lock class. The caller must hold either the graph lock or the
5071 * RCU read lock.
5072 */
lock_class_cache_is_registered(struct lockdep_map * lock)5073 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5074 {
5075 struct lock_class *class;
5076 struct hlist_head *head;
5077 int i, j;
5078
5079 for (i = 0; i < CLASSHASH_SIZE; i++) {
5080 head = classhash_table + i;
5081 hlist_for_each_entry_rcu(class, head, hash_entry) {
5082 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5083 if (lock->class_cache[j] == class)
5084 return true;
5085 }
5086 }
5087 return false;
5088 }
5089
5090 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)5091 static void __lockdep_reset_lock(struct pending_free *pf,
5092 struct lockdep_map *lock)
5093 {
5094 struct lock_class *class;
5095 int j;
5096
5097 /*
5098 * Remove all classes this lock might have:
5099 */
5100 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5101 /*
5102 * If the class exists we look it up and zap it:
5103 */
5104 class = look_up_lock_class(lock, j);
5105 if (class)
5106 zap_class(pf, class);
5107 }
5108 /*
5109 * Debug check: in the end all mapped classes should
5110 * be gone.
5111 */
5112 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5113 debug_locks_off();
5114 }
5115
5116 /*
5117 * Remove all information lockdep has about a lock if debug_locks == 1. Free
5118 * released data structures from RCU context.
5119 */
lockdep_reset_lock_reg(struct lockdep_map * lock)5120 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5121 {
5122 struct pending_free *pf;
5123 unsigned long flags;
5124 int locked;
5125
5126 raw_local_irq_save(flags);
5127 locked = graph_lock();
5128 if (!locked)
5129 goto out_irq;
5130
5131 pf = get_pending_free();
5132 __lockdep_reset_lock(pf, lock);
5133 call_rcu_zapped(pf);
5134
5135 graph_unlock();
5136 out_irq:
5137 raw_local_irq_restore(flags);
5138 }
5139
5140 /*
5141 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5142 * lockdep selftests.
5143 */
lockdep_reset_lock_imm(struct lockdep_map * lock)5144 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5145 {
5146 struct pending_free *pf = delayed_free.pf;
5147 unsigned long flags;
5148
5149 raw_local_irq_save(flags);
5150 arch_spin_lock(&lockdep_lock);
5151 __lockdep_reset_lock(pf, lock);
5152 __free_zapped_classes(pf);
5153 arch_spin_unlock(&lockdep_lock);
5154 raw_local_irq_restore(flags);
5155 }
5156
lockdep_reset_lock(struct lockdep_map * lock)5157 void lockdep_reset_lock(struct lockdep_map *lock)
5158 {
5159 init_data_structures_once();
5160
5161 if (inside_selftest())
5162 lockdep_reset_lock_imm(lock);
5163 else
5164 lockdep_reset_lock_reg(lock);
5165 }
5166
5167 /* Unregister a dynamically allocated key. */
lockdep_unregister_key(struct lock_class_key * key)5168 void lockdep_unregister_key(struct lock_class_key *key)
5169 {
5170 struct hlist_head *hash_head = keyhashentry(key);
5171 struct lock_class_key *k;
5172 struct pending_free *pf;
5173 unsigned long flags;
5174 bool found = false;
5175
5176 might_sleep();
5177
5178 if (WARN_ON_ONCE(static_obj(key)))
5179 return;
5180
5181 raw_local_irq_save(flags);
5182 if (!graph_lock())
5183 goto out_irq;
5184
5185 pf = get_pending_free();
5186 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5187 if (k == key) {
5188 hlist_del_rcu(&k->hash_entry);
5189 found = true;
5190 break;
5191 }
5192 }
5193 WARN_ON_ONCE(!found);
5194 __lockdep_free_key_range(pf, key, 1);
5195 call_rcu_zapped(pf);
5196 graph_unlock();
5197 out_irq:
5198 raw_local_irq_restore(flags);
5199
5200 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5201 synchronize_rcu();
5202 }
5203 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5204
lockdep_init(void)5205 void __init lockdep_init(void)
5206 {
5207 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5208
5209 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
5210 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
5211 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
5212 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
5213 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
5214 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
5215 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
5216
5217 printk(" memory used by lock dependency info: %zu kB\n",
5218 (sizeof(lock_classes) +
5219 sizeof(lock_classes_in_use) +
5220 sizeof(classhash_table) +
5221 sizeof(list_entries) +
5222 sizeof(list_entries_in_use) +
5223 sizeof(chainhash_table) +
5224 sizeof(delayed_free)
5225 #ifdef CONFIG_PROVE_LOCKING
5226 + sizeof(lock_cq)
5227 + sizeof(lock_chains)
5228 + sizeof(lock_chains_in_use)
5229 + sizeof(chain_hlocks)
5230 #endif
5231 ) / 1024
5232 );
5233
5234 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
5235 printk(" memory used for stack traces: %zu kB\n",
5236 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
5237 );
5238 #endif
5239
5240 printk(" per task-struct memory footprint: %zu bytes\n",
5241 sizeof(((struct task_struct *)NULL)->held_locks));
5242 }
5243
5244 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)5245 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5246 const void *mem_to, struct held_lock *hlock)
5247 {
5248 if (!debug_locks_off())
5249 return;
5250 if (debug_locks_silent)
5251 return;
5252
5253 pr_warn("\n");
5254 pr_warn("=========================\n");
5255 pr_warn("WARNING: held lock freed!\n");
5256 print_kernel_ident();
5257 pr_warn("-------------------------\n");
5258 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5259 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5260 print_lock(hlock);
5261 lockdep_print_held_locks(curr);
5262
5263 pr_warn("\nstack backtrace:\n");
5264 dump_stack();
5265 }
5266
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)5267 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5268 const void* lock_from, unsigned long lock_len)
5269 {
5270 return lock_from + lock_len <= mem_from ||
5271 mem_from + mem_len <= lock_from;
5272 }
5273
5274 /*
5275 * Called when kernel memory is freed (or unmapped), or if a lock
5276 * is destroyed or reinitialized - this code checks whether there is
5277 * any held lock in the memory range of <from> to <to>:
5278 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)5279 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5280 {
5281 struct task_struct *curr = current;
5282 struct held_lock *hlock;
5283 unsigned long flags;
5284 int i;
5285
5286 if (unlikely(!debug_locks))
5287 return;
5288
5289 raw_local_irq_save(flags);
5290 for (i = 0; i < curr->lockdep_depth; i++) {
5291 hlock = curr->held_locks + i;
5292
5293 if (not_in_range(mem_from, mem_len, hlock->instance,
5294 sizeof(*hlock->instance)))
5295 continue;
5296
5297 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5298 break;
5299 }
5300 raw_local_irq_restore(flags);
5301 }
5302 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5303
print_held_locks_bug(void)5304 static void print_held_locks_bug(void)
5305 {
5306 if (!debug_locks_off())
5307 return;
5308 if (debug_locks_silent)
5309 return;
5310
5311 pr_warn("\n");
5312 pr_warn("====================================\n");
5313 pr_warn("WARNING: %s/%d still has locks held!\n",
5314 current->comm, task_pid_nr(current));
5315 print_kernel_ident();
5316 pr_warn("------------------------------------\n");
5317 lockdep_print_held_locks(current);
5318 pr_warn("\nstack backtrace:\n");
5319 dump_stack();
5320 }
5321
debug_check_no_locks_held(void)5322 void debug_check_no_locks_held(void)
5323 {
5324 if (unlikely(current->lockdep_depth > 0))
5325 print_held_locks_bug();
5326 }
5327 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5328
5329 #ifdef __KERNEL__
debug_show_all_locks(void)5330 void debug_show_all_locks(void)
5331 {
5332 struct task_struct *g, *p;
5333
5334 if (unlikely(!debug_locks)) {
5335 pr_warn("INFO: lockdep is turned off.\n");
5336 return;
5337 }
5338 pr_warn("\nShowing all locks held in the system:\n");
5339
5340 rcu_read_lock();
5341 for_each_process_thread(g, p) {
5342 if (!p->lockdep_depth)
5343 continue;
5344 lockdep_print_held_locks(p);
5345 touch_nmi_watchdog();
5346 touch_all_softlockup_watchdogs();
5347 }
5348 rcu_read_unlock();
5349
5350 pr_warn("\n");
5351 pr_warn("=============================================\n\n");
5352 }
5353 EXPORT_SYMBOL_GPL(debug_show_all_locks);
5354 #endif
5355
5356 /*
5357 * Careful: only use this function if you are sure that
5358 * the task cannot run in parallel!
5359 */
debug_show_held_locks(struct task_struct * task)5360 void debug_show_held_locks(struct task_struct *task)
5361 {
5362 if (unlikely(!debug_locks)) {
5363 printk("INFO: lockdep is turned off.\n");
5364 return;
5365 }
5366 lockdep_print_held_locks(task);
5367 }
5368 EXPORT_SYMBOL_GPL(debug_show_held_locks);
5369
lockdep_sys_exit(void)5370 asmlinkage __visible void lockdep_sys_exit(void)
5371 {
5372 struct task_struct *curr = current;
5373
5374 if (unlikely(curr->lockdep_depth)) {
5375 if (!debug_locks_off())
5376 return;
5377 pr_warn("\n");
5378 pr_warn("================================================\n");
5379 pr_warn("WARNING: lock held when returning to user space!\n");
5380 print_kernel_ident();
5381 pr_warn("------------------------------------------------\n");
5382 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5383 curr->comm, curr->pid);
5384 lockdep_print_held_locks(curr);
5385 }
5386
5387 /*
5388 * The lock history for each syscall should be independent. So wipe the
5389 * slate clean on return to userspace.
5390 */
5391 lockdep_invariant_state(false);
5392 }
5393
lockdep_rcu_suspicious(const char * file,const int line,const char * s)5394 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5395 {
5396 struct task_struct *curr = current;
5397
5398 /* Note: the following can be executed concurrently, so be careful. */
5399 pr_warn("\n");
5400 pr_warn("=============================\n");
5401 pr_warn("WARNING: suspicious RCU usage\n");
5402 print_kernel_ident();
5403 pr_warn("-----------------------------\n");
5404 pr_warn("%s:%d %s!\n", file, line, s);
5405 pr_warn("\nother info that might help us debug this:\n\n");
5406 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5407 !rcu_lockdep_current_cpu_online()
5408 ? "RCU used illegally from offline CPU!\n"
5409 : !rcu_is_watching()
5410 ? "RCU used illegally from idle CPU!\n"
5411 : "",
5412 rcu_scheduler_active, debug_locks);
5413
5414 /*
5415 * If a CPU is in the RCU-free window in idle (ie: in the section
5416 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5417 * considers that CPU to be in an "extended quiescent state",
5418 * which means that RCU will be completely ignoring that CPU.
5419 * Therefore, rcu_read_lock() and friends have absolutely no
5420 * effect on a CPU running in that state. In other words, even if
5421 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5422 * delete data structures out from under it. RCU really has no
5423 * choice here: we need to keep an RCU-free window in idle where
5424 * the CPU may possibly enter into low power mode. This way we can
5425 * notice an extended quiescent state to other CPUs that started a grace
5426 * period. Otherwise we would delay any grace period as long as we run
5427 * in the idle task.
5428 *
5429 * So complain bitterly if someone does call rcu_read_lock(),
5430 * rcu_read_lock_bh() and so on from extended quiescent states.
5431 */
5432 if (!rcu_is_watching())
5433 pr_warn("RCU used illegally from extended quiescent state!\n");
5434
5435 lockdep_print_held_locks(curr);
5436 pr_warn("\nstack backtrace:\n");
5437 dump_stack();
5438 }
5439 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
5440