• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 
22 /* magic values for the inode_only field in btrfs_log_inode:
23  *
24  * LOG_INODE_ALL means to log everything
25  * LOG_INODE_EXISTS means to log just enough to recreate the inode
26  * during log replay
27  */
28 enum {
29 	LOG_INODE_ALL,
30 	LOG_INODE_EXISTS,
31 	LOG_OTHER_INODE,
32 	LOG_OTHER_INODE_ALL,
33 };
34 
35 /*
36  * directory trouble cases
37  *
38  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39  * log, we must force a full commit before doing an fsync of the directory
40  * where the unlink was done.
41  * ---> record transid of last unlink/rename per directory
42  *
43  * mkdir foo/some_dir
44  * normal commit
45  * rename foo/some_dir foo2/some_dir
46  * mkdir foo/some_dir
47  * fsync foo/some_dir/some_file
48  *
49  * The fsync above will unlink the original some_dir without recording
50  * it in its new location (foo2).  After a crash, some_dir will be gone
51  * unless the fsync of some_file forces a full commit
52  *
53  * 2) we must log any new names for any file or dir that is in the fsync
54  * log. ---> check inode while renaming/linking.
55  *
56  * 2a) we must log any new names for any file or dir during rename
57  * when the directory they are being removed from was logged.
58  * ---> check inode and old parent dir during rename
59  *
60  *  2a is actually the more important variant.  With the extra logging
61  *  a crash might unlink the old name without recreating the new one
62  *
63  * 3) after a crash, we must go through any directories with a link count
64  * of zero and redo the rm -rf
65  *
66  * mkdir f1/foo
67  * normal commit
68  * rm -rf f1/foo
69  * fsync(f1)
70  *
71  * The directory f1 was fully removed from the FS, but fsync was never
72  * called on f1, only its parent dir.  After a crash the rm -rf must
73  * be replayed.  This must be able to recurse down the entire
74  * directory tree.  The inode link count fixup code takes care of the
75  * ugly details.
76  */
77 
78 /*
79  * stages for the tree walking.  The first
80  * stage (0) is to only pin down the blocks we find
81  * the second stage (1) is to make sure that all the inodes
82  * we find in the log are created in the subvolume.
83  *
84  * The last stage is to deal with directories and links and extents
85  * and all the other fun semantics
86  */
87 enum {
88 	LOG_WALK_PIN_ONLY,
89 	LOG_WALK_REPLAY_INODES,
90 	LOG_WALK_REPLAY_DIR_INDEX,
91 	LOG_WALK_REPLAY_ALL,
92 };
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			   struct btrfs_root *root, struct btrfs_inode *inode,
96 			   int inode_only,
97 			   const loff_t start,
98 			   const loff_t end,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 		root->log_start_pid = current->pid;
172 	}
173 
174 	atomic_inc(&root->log_batch);
175 	atomic_inc(&root->log_writers);
176 	if (ctx) {
177 		int index = root->log_transid % 2;
178 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
179 		ctx->log_transid = root->log_transid;
180 	}
181 
182 out:
183 	mutex_unlock(&root->log_mutex);
184 	return ret;
185 }
186 
187 /*
188  * returns 0 if there was a log transaction running and we were able
189  * to join, or returns -ENOENT if there were not transactions
190  * in progress
191  */
join_running_log_trans(struct btrfs_root * root)192 static int join_running_log_trans(struct btrfs_root *root)
193 {
194 	int ret = -ENOENT;
195 
196 	mutex_lock(&root->log_mutex);
197 	if (root->log_root) {
198 		ret = 0;
199 		atomic_inc(&root->log_writers);
200 	}
201 	mutex_unlock(&root->log_mutex);
202 	return ret;
203 }
204 
205 /*
206  * This either makes the current running log transaction wait
207  * until you call btrfs_end_log_trans() or it makes any future
208  * log transactions wait until you call btrfs_end_log_trans()
209  */
btrfs_pin_log_trans(struct btrfs_root * root)210 void btrfs_pin_log_trans(struct btrfs_root *root)
211 {
212 	mutex_lock(&root->log_mutex);
213 	atomic_inc(&root->log_writers);
214 	mutex_unlock(&root->log_mutex);
215 }
216 
217 /*
218  * indicate we're done making changes to the log tree
219  * and wake up anyone waiting to do a sync
220  */
btrfs_end_log_trans(struct btrfs_root * root)221 void btrfs_end_log_trans(struct btrfs_root *root)
222 {
223 	if (atomic_dec_and_test(&root->log_writers)) {
224 		/* atomic_dec_and_test implies a barrier */
225 		cond_wake_up_nomb(&root->log_writer_wait);
226 	}
227 }
228 
btrfs_write_tree_block(struct extent_buffer * buf)229 static int btrfs_write_tree_block(struct extent_buffer *buf)
230 {
231 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 					buf->start + buf->len - 1);
233 }
234 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)235 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236 {
237 	filemap_fdatawait_range(buf->pages[0]->mapping,
238 			        buf->start, buf->start + buf->len - 1);
239 }
240 
241 /*
242  * the walk control struct is used to pass state down the chain when
243  * processing the log tree.  The stage field tells us which part
244  * of the log tree processing we are currently doing.  The others
245  * are state fields used for that specific part
246  */
247 struct walk_control {
248 	/* should we free the extent on disk when done?  This is used
249 	 * at transaction commit time while freeing a log tree
250 	 */
251 	int free;
252 
253 	/* should we write out the extent buffer?  This is used
254 	 * while flushing the log tree to disk during a sync
255 	 */
256 	int write;
257 
258 	/* should we wait for the extent buffer io to finish?  Also used
259 	 * while flushing the log tree to disk for a sync
260 	 */
261 	int wait;
262 
263 	/* pin only walk, we record which extents on disk belong to the
264 	 * log trees
265 	 */
266 	int pin;
267 
268 	/* what stage of the replay code we're currently in */
269 	int stage;
270 
271 	/*
272 	 * Ignore any items from the inode currently being processed. Needs
273 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 	 * the LOG_WALK_REPLAY_INODES stage.
275 	 */
276 	bool ignore_cur_inode;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen, int level);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen, int level)
299 {
300 	struct btrfs_fs_info *fs_info = log->fs_info;
301 	int ret = 0;
302 
303 	/*
304 	 * If this fs is mixed then we need to be able to process the leaves to
305 	 * pin down any logged extents, so we have to read the block.
306 	 */
307 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308 		ret = btrfs_read_buffer(eb, gen, level, NULL);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	if (wc->pin)
314 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 						      eb->len);
316 
317 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 		if (wc->pin && btrfs_header_level(eb) == 0)
319 			ret = btrfs_exclude_logged_extents(eb);
320 		if (wc->write)
321 			btrfs_write_tree_block(eb);
322 		if (wc->wait)
323 			btrfs_wait_tree_block_writeback(eb);
324 	}
325 	return ret;
326 }
327 
328 /*
329  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
330  * to the src data we are copying out.
331  *
332  * root is the tree we are copying into, and path is a scratch
333  * path for use in this function (it should be released on entry and
334  * will be released on exit).
335  *
336  * If the key is already in the destination tree the existing item is
337  * overwritten.  If the existing item isn't big enough, it is extended.
338  * If it is too large, it is truncated.
339  *
340  * If the key isn't in the destination yet, a new item is inserted.
341  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)342 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 				   struct btrfs_root *root,
344 				   struct btrfs_path *path,
345 				   struct extent_buffer *eb, int slot,
346 				   struct btrfs_key *key)
347 {
348 	int ret;
349 	u32 item_size;
350 	u64 saved_i_size = 0;
351 	int save_old_i_size = 0;
352 	unsigned long src_ptr;
353 	unsigned long dst_ptr;
354 	int overwrite_root = 0;
355 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 
357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 		overwrite_root = 1;
359 
360 	item_size = btrfs_item_size_nr(eb, slot);
361 	src_ptr = btrfs_item_ptr_offset(eb, slot);
362 
363 	/* look for the key in the destination tree */
364 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 	if (ret < 0)
366 		return ret;
367 
368 	if (ret == 0) {
369 		char *src_copy;
370 		char *dst_copy;
371 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 						  path->slots[0]);
373 		if (dst_size != item_size)
374 			goto insert;
375 
376 		if (item_size == 0) {
377 			btrfs_release_path(path);
378 			return 0;
379 		}
380 		dst_copy = kmalloc(item_size, GFP_NOFS);
381 		src_copy = kmalloc(item_size, GFP_NOFS);
382 		if (!dst_copy || !src_copy) {
383 			btrfs_release_path(path);
384 			kfree(dst_copy);
385 			kfree(src_copy);
386 			return -ENOMEM;
387 		}
388 
389 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 
391 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 				   item_size);
394 		ret = memcmp(dst_copy, src_copy, item_size);
395 
396 		kfree(dst_copy);
397 		kfree(src_copy);
398 		/*
399 		 * they have the same contents, just return, this saves
400 		 * us from cowing blocks in the destination tree and doing
401 		 * extra writes that may not have been done by a previous
402 		 * sync
403 		 */
404 		if (ret == 0) {
405 			btrfs_release_path(path);
406 			return 0;
407 		}
408 
409 		/*
410 		 * We need to load the old nbytes into the inode so when we
411 		 * replay the extents we've logged we get the right nbytes.
412 		 */
413 		if (inode_item) {
414 			struct btrfs_inode_item *item;
415 			u64 nbytes;
416 			u32 mode;
417 
418 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 					      struct btrfs_inode_item);
420 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 			item = btrfs_item_ptr(eb, slot,
422 					      struct btrfs_inode_item);
423 			btrfs_set_inode_nbytes(eb, item, nbytes);
424 
425 			/*
426 			 * If this is a directory we need to reset the i_size to
427 			 * 0 so that we can set it up properly when replaying
428 			 * the rest of the items in this log.
429 			 */
430 			mode = btrfs_inode_mode(eb, item);
431 			if (S_ISDIR(mode))
432 				btrfs_set_inode_size(eb, item, 0);
433 		}
434 	} else if (inode_item) {
435 		struct btrfs_inode_item *item;
436 		u32 mode;
437 
438 		/*
439 		 * New inode, set nbytes to 0 so that the nbytes comes out
440 		 * properly when we replay the extents.
441 		 */
442 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 		btrfs_set_inode_nbytes(eb, item, 0);
444 
445 		/*
446 		 * If this is a directory we need to reset the i_size to 0 so
447 		 * that we can set it up properly when replaying the rest of
448 		 * the items in this log.
449 		 */
450 		mode = btrfs_inode_mode(eb, item);
451 		if (S_ISDIR(mode))
452 			btrfs_set_inode_size(eb, item, 0);
453 	}
454 insert:
455 	btrfs_release_path(path);
456 	/* try to insert the key into the destination tree */
457 	path->skip_release_on_error = 1;
458 	ret = btrfs_insert_empty_item(trans, root, path,
459 				      key, item_size);
460 	path->skip_release_on_error = 0;
461 
462 	/* make sure any existing item is the correct size */
463 	if (ret == -EEXIST || ret == -EOVERFLOW) {
464 		u32 found_size;
465 		found_size = btrfs_item_size_nr(path->nodes[0],
466 						path->slots[0]);
467 		if (found_size > item_size)
468 			btrfs_truncate_item(path, item_size, 1);
469 		else if (found_size < item_size)
470 			btrfs_extend_item(path, item_size - found_size);
471 	} else if (ret) {
472 		return ret;
473 	}
474 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 					path->slots[0]);
476 
477 	/* don't overwrite an existing inode if the generation number
478 	 * was logged as zero.  This is done when the tree logging code
479 	 * is just logging an inode to make sure it exists after recovery.
480 	 *
481 	 * Also, don't overwrite i_size on directories during replay.
482 	 * log replay inserts and removes directory items based on the
483 	 * state of the tree found in the subvolume, and i_size is modified
484 	 * as it goes
485 	 */
486 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 		struct btrfs_inode_item *src_item;
488 		struct btrfs_inode_item *dst_item;
489 
490 		src_item = (struct btrfs_inode_item *)src_ptr;
491 		dst_item = (struct btrfs_inode_item *)dst_ptr;
492 
493 		if (btrfs_inode_generation(eb, src_item) == 0) {
494 			struct extent_buffer *dst_eb = path->nodes[0];
495 			const u64 ino_size = btrfs_inode_size(eb, src_item);
496 
497 			/*
498 			 * For regular files an ino_size == 0 is used only when
499 			 * logging that an inode exists, as part of a directory
500 			 * fsync, and the inode wasn't fsynced before. In this
501 			 * case don't set the size of the inode in the fs/subvol
502 			 * tree, otherwise we would be throwing valid data away.
503 			 */
504 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 			    ino_size != 0) {
507 				struct btrfs_map_token token;
508 
509 				btrfs_init_map_token(&token, dst_eb);
510 				btrfs_set_token_inode_size(dst_eb, dst_item,
511 							   ino_size, &token);
512 			}
513 			goto no_copy;
514 		}
515 
516 		if (overwrite_root &&
517 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 			save_old_i_size = 1;
520 			saved_i_size = btrfs_inode_size(path->nodes[0],
521 							dst_item);
522 		}
523 	}
524 
525 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 			   src_ptr, item_size);
527 
528 	if (save_old_i_size) {
529 		struct btrfs_inode_item *dst_item;
530 		dst_item = (struct btrfs_inode_item *)dst_ptr;
531 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 	}
533 
534 	/* make sure the generation is filled in */
535 	if (key->type == BTRFS_INODE_ITEM_KEY) {
536 		struct btrfs_inode_item *dst_item;
537 		dst_item = (struct btrfs_inode_item *)dst_ptr;
538 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 			btrfs_set_inode_generation(path->nodes[0], dst_item,
540 						   trans->transid);
541 		}
542 	}
543 no_copy:
544 	btrfs_mark_buffer_dirty(path->nodes[0]);
545 	btrfs_release_path(path);
546 	return 0;
547 }
548 
549 /*
550  * simple helper to read an inode off the disk from a given root
551  * This can only be called for subvolume roots and not for the log
552  */
read_one_inode(struct btrfs_root * root,u64 objectid)553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 					     u64 objectid)
555 {
556 	struct btrfs_key key;
557 	struct inode *inode;
558 
559 	key.objectid = objectid;
560 	key.type = BTRFS_INODE_ITEM_KEY;
561 	key.offset = 0;
562 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 	if (IS_ERR(inode))
564 		inode = NULL;
565 	return inode;
566 }
567 
568 /* replays a single extent in 'eb' at 'slot' with 'key' into the
569  * subvolume 'root'.  path is released on entry and should be released
570  * on exit.
571  *
572  * extents in the log tree have not been allocated out of the extent
573  * tree yet.  So, this completes the allocation, taking a reference
574  * as required if the extent already exists or creating a new extent
575  * if it isn't in the extent allocation tree yet.
576  *
577  * The extent is inserted into the file, dropping any existing extents
578  * from the file that overlap the new one.
579  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)580 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 				      struct btrfs_root *root,
582 				      struct btrfs_path *path,
583 				      struct extent_buffer *eb, int slot,
584 				      struct btrfs_key *key)
585 {
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	int found_type;
588 	u64 extent_end;
589 	u64 start = key->offset;
590 	u64 nbytes = 0;
591 	struct btrfs_file_extent_item *item;
592 	struct inode *inode = NULL;
593 	unsigned long size;
594 	int ret = 0;
595 
596 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 	found_type = btrfs_file_extent_type(eb, item);
598 
599 	if (found_type == BTRFS_FILE_EXTENT_REG ||
600 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 		nbytes = btrfs_file_extent_num_bytes(eb, item);
602 		extent_end = start + nbytes;
603 
604 		/*
605 		 * We don't add to the inodes nbytes if we are prealloc or a
606 		 * hole.
607 		 */
608 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 			nbytes = 0;
610 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611 		size = btrfs_file_extent_ram_bytes(eb, item);
612 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
613 		extent_end = ALIGN(start + size,
614 				   fs_info->sectorsize);
615 	} else {
616 		ret = 0;
617 		goto out;
618 	}
619 
620 	inode = read_one_inode(root, key->objectid);
621 	if (!inode) {
622 		ret = -EIO;
623 		goto out;
624 	}
625 
626 	/*
627 	 * first check to see if we already have this extent in the
628 	 * file.  This must be done before the btrfs_drop_extents run
629 	 * so we don't try to drop this extent.
630 	 */
631 	ret = btrfs_lookup_file_extent(trans, root, path,
632 			btrfs_ino(BTRFS_I(inode)), start, 0);
633 
634 	if (ret == 0 &&
635 	    (found_type == BTRFS_FILE_EXTENT_REG ||
636 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637 		struct btrfs_file_extent_item cmp1;
638 		struct btrfs_file_extent_item cmp2;
639 		struct btrfs_file_extent_item *existing;
640 		struct extent_buffer *leaf;
641 
642 		leaf = path->nodes[0];
643 		existing = btrfs_item_ptr(leaf, path->slots[0],
644 					  struct btrfs_file_extent_item);
645 
646 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 				   sizeof(cmp1));
648 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 				   sizeof(cmp2));
650 
651 		/*
652 		 * we already have a pointer to this exact extent,
653 		 * we don't have to do anything
654 		 */
655 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656 			btrfs_release_path(path);
657 			goto out;
658 		}
659 	}
660 	btrfs_release_path(path);
661 
662 	/* drop any overlapping extents */
663 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664 	if (ret)
665 		goto out;
666 
667 	if (found_type == BTRFS_FILE_EXTENT_REG ||
668 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669 		u64 offset;
670 		unsigned long dest_offset;
671 		struct btrfs_key ins;
672 
673 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 		    btrfs_fs_incompat(fs_info, NO_HOLES))
675 			goto update_inode;
676 
677 		ret = btrfs_insert_empty_item(trans, root, path, key,
678 					      sizeof(*item));
679 		if (ret)
680 			goto out;
681 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 						    path->slots[0]);
683 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 				(unsigned long)item,  sizeof(*item));
685 
686 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 		ins.type = BTRFS_EXTENT_ITEM_KEY;
689 		offset = key->offset - btrfs_file_extent_offset(eb, item);
690 
691 		/*
692 		 * Manually record dirty extent, as here we did a shallow
693 		 * file extent item copy and skip normal backref update,
694 		 * but modifying extent tree all by ourselves.
695 		 * So need to manually record dirty extent for qgroup,
696 		 * as the owner of the file extent changed from log tree
697 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 		 */
699 		ret = btrfs_qgroup_trace_extent(trans,
700 				btrfs_file_extent_disk_bytenr(eb, item),
701 				btrfs_file_extent_disk_num_bytes(eb, item),
702 				GFP_NOFS);
703 		if (ret < 0)
704 			goto out;
705 
706 		if (ins.objectid > 0) {
707 			struct btrfs_ref ref = { 0 };
708 			u64 csum_start;
709 			u64 csum_end;
710 			LIST_HEAD(ordered_sums);
711 
712 			/*
713 			 * is this extent already allocated in the extent
714 			 * allocation tree?  If so, just add a reference
715 			 */
716 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717 						ins.offset);
718 			if (ret == 0) {
719 				btrfs_init_generic_ref(&ref,
720 						BTRFS_ADD_DELAYED_REF,
721 						ins.objectid, ins.offset, 0);
722 				btrfs_init_data_ref(&ref,
723 						root->root_key.objectid,
724 						key->objectid, offset);
725 				ret = btrfs_inc_extent_ref(trans, &ref);
726 				if (ret)
727 					goto out;
728 			} else {
729 				/*
730 				 * insert the extent pointer in the extent
731 				 * allocation tree
732 				 */
733 				ret = btrfs_alloc_logged_file_extent(trans,
734 						root->root_key.objectid,
735 						key->objectid, offset, &ins);
736 				if (ret)
737 					goto out;
738 			}
739 			btrfs_release_path(path);
740 
741 			if (btrfs_file_extent_compression(eb, item)) {
742 				csum_start = ins.objectid;
743 				csum_end = csum_start + ins.offset;
744 			} else {
745 				csum_start = ins.objectid +
746 					btrfs_file_extent_offset(eb, item);
747 				csum_end = csum_start +
748 					btrfs_file_extent_num_bytes(eb, item);
749 			}
750 
751 			ret = btrfs_lookup_csums_range(root->log_root,
752 						csum_start, csum_end - 1,
753 						&ordered_sums, 0);
754 			if (ret)
755 				goto out;
756 			/*
757 			 * Now delete all existing cums in the csum root that
758 			 * cover our range. We do this because we can have an
759 			 * extent that is completely referenced by one file
760 			 * extent item and partially referenced by another
761 			 * file extent item (like after using the clone or
762 			 * extent_same ioctls). In this case if we end up doing
763 			 * the replay of the one that partially references the
764 			 * extent first, and we do not do the csum deletion
765 			 * below, we can get 2 csum items in the csum tree that
766 			 * overlap each other. For example, imagine our log has
767 			 * the two following file extent items:
768 			 *
769 			 * key (257 EXTENT_DATA 409600)
770 			 *     extent data disk byte 12845056 nr 102400
771 			 *     extent data offset 20480 nr 20480 ram 102400
772 			 *
773 			 * key (257 EXTENT_DATA 819200)
774 			 *     extent data disk byte 12845056 nr 102400
775 			 *     extent data offset 0 nr 102400 ram 102400
776 			 *
777 			 * Where the second one fully references the 100K extent
778 			 * that starts at disk byte 12845056, and the log tree
779 			 * has a single csum item that covers the entire range
780 			 * of the extent:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 			 *
784 			 * After the first file extent item is replayed, the
785 			 * csum tree gets the following csum item:
786 			 *
787 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 			 *
789 			 * Which covers the 20K sub-range starting at offset 20K
790 			 * of our extent. Now when we replay the second file
791 			 * extent item, if we do not delete existing csum items
792 			 * that cover any of its blocks, we end up getting two
793 			 * csum items in our csum tree that overlap each other:
794 			 *
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 			 *
798 			 * Which is a problem, because after this anyone trying
799 			 * to lookup up for the checksum of any block of our
800 			 * extent starting at an offset of 40K or higher, will
801 			 * end up looking at the second csum item only, which
802 			 * does not contain the checksum for any block starting
803 			 * at offset 40K or higher of our extent.
804 			 */
805 			while (!list_empty(&ordered_sums)) {
806 				struct btrfs_ordered_sum *sums;
807 				sums = list_entry(ordered_sums.next,
808 						struct btrfs_ordered_sum,
809 						list);
810 				if (!ret)
811 					ret = btrfs_del_csums(trans,
812 							      fs_info->csum_root,
813 							      sums->bytenr,
814 							      sums->len);
815 				if (!ret)
816 					ret = btrfs_csum_file_blocks(trans,
817 						fs_info->csum_root, sums);
818 				list_del(&sums->list);
819 				kfree(sums);
820 			}
821 			if (ret)
822 				goto out;
823 		} else {
824 			btrfs_release_path(path);
825 		}
826 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 		/* inline extents are easy, we just overwrite them */
828 		ret = overwrite_item(trans, root, path, eb, slot, key);
829 		if (ret)
830 			goto out;
831 	}
832 
833 	inode_add_bytes(inode, nbytes);
834 update_inode:
835 	ret = btrfs_update_inode(trans, root, inode);
836 out:
837 	if (inode)
838 		iput(inode);
839 	return ret;
840 }
841 
842 /*
843  * when cleaning up conflicts between the directory names in the
844  * subvolume, directory names in the log and directory names in the
845  * inode back references, we may have to unlink inodes from directories.
846  *
847  * This is a helper function to do the unlink of a specific directory
848  * item
849  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 				      struct btrfs_root *root,
852 				      struct btrfs_path *path,
853 				      struct btrfs_inode *dir,
854 				      struct btrfs_dir_item *di)
855 {
856 	struct inode *inode;
857 	char *name;
858 	int name_len;
859 	struct extent_buffer *leaf;
860 	struct btrfs_key location;
861 	int ret;
862 
863 	leaf = path->nodes[0];
864 
865 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 	name_len = btrfs_dir_name_len(leaf, di);
867 	name = kmalloc(name_len, GFP_NOFS);
868 	if (!name)
869 		return -ENOMEM;
870 
871 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 	btrfs_release_path(path);
873 
874 	inode = read_one_inode(root, location.objectid);
875 	if (!inode) {
876 		ret = -EIO;
877 		goto out;
878 	}
879 
880 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 	if (ret)
882 		goto out;
883 
884 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 			name_len);
886 	if (ret)
887 		goto out;
888 	else
889 		ret = btrfs_run_delayed_items(trans);
890 out:
891 	kfree(name);
892 	iput(inode);
893 	return ret;
894 }
895 
896 /*
897  * helper function to see if a given name and sequence number found
898  * in an inode back reference are already in a directory and correctly
899  * point to this inode
900  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)901 static noinline int inode_in_dir(struct btrfs_root *root,
902 				 struct btrfs_path *path,
903 				 u64 dirid, u64 objectid, u64 index,
904 				 const char *name, int name_len)
905 {
906 	struct btrfs_dir_item *di;
907 	struct btrfs_key location;
908 	int match = 0;
909 
910 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 					 index, name, name_len, 0);
912 	if (di && !IS_ERR(di)) {
913 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 		if (location.objectid != objectid)
915 			goto out;
916 	} else
917 		goto out;
918 	btrfs_release_path(path);
919 
920 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 	if (di && !IS_ERR(di)) {
922 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 		if (location.objectid != objectid)
924 			goto out;
925 	} else
926 		goto out;
927 	match = 1;
928 out:
929 	btrfs_release_path(path);
930 	return match;
931 }
932 
933 /*
934  * helper function to check a log tree for a named back reference in
935  * an inode.  This is used to decide if a back reference that is
936  * found in the subvolume conflicts with what we find in the log.
937  *
938  * inode backreferences may have multiple refs in a single item,
939  * during replay we process one reference at a time, and we don't
940  * want to delete valid links to a file from the subvolume if that
941  * link is also in the log.
942  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)943 static noinline int backref_in_log(struct btrfs_root *log,
944 				   struct btrfs_key *key,
945 				   u64 ref_objectid,
946 				   const char *name, int namelen)
947 {
948 	struct btrfs_path *path;
949 	struct btrfs_inode_ref *ref;
950 	unsigned long ptr;
951 	unsigned long ptr_end;
952 	unsigned long name_ptr;
953 	int found_name_len;
954 	int item_size;
955 	int ret;
956 	int match = 0;
957 
958 	path = btrfs_alloc_path();
959 	if (!path)
960 		return -ENOMEM;
961 
962 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 	if (ret != 0)
964 		goto out;
965 
966 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
967 
968 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
969 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
970 						   path->slots[0],
971 						   ref_objectid,
972 						   name, namelen))
973 			match = 1;
974 
975 		goto out;
976 	}
977 
978 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
979 	ptr_end = ptr + item_size;
980 	while (ptr < ptr_end) {
981 		ref = (struct btrfs_inode_ref *)ptr;
982 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
983 		if (found_name_len == namelen) {
984 			name_ptr = (unsigned long)(ref + 1);
985 			ret = memcmp_extent_buffer(path->nodes[0], name,
986 						   name_ptr, namelen);
987 			if (ret == 0) {
988 				match = 1;
989 				goto out;
990 			}
991 		}
992 		ptr = (unsigned long)(ref + 1) + found_name_len;
993 	}
994 out:
995 	btrfs_free_path(path);
996 	return match;
997 }
998 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)999 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1000 				  struct btrfs_root *root,
1001 				  struct btrfs_path *path,
1002 				  struct btrfs_root *log_root,
1003 				  struct btrfs_inode *dir,
1004 				  struct btrfs_inode *inode,
1005 				  u64 inode_objectid, u64 parent_objectid,
1006 				  u64 ref_index, char *name, int namelen,
1007 				  int *search_done)
1008 {
1009 	int ret;
1010 	char *victim_name;
1011 	int victim_name_len;
1012 	struct extent_buffer *leaf;
1013 	struct btrfs_dir_item *di;
1014 	struct btrfs_key search_key;
1015 	struct btrfs_inode_extref *extref;
1016 
1017 again:
1018 	/* Search old style refs */
1019 	search_key.objectid = inode_objectid;
1020 	search_key.type = BTRFS_INODE_REF_KEY;
1021 	search_key.offset = parent_objectid;
1022 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1023 	if (ret == 0) {
1024 		struct btrfs_inode_ref *victim_ref;
1025 		unsigned long ptr;
1026 		unsigned long ptr_end;
1027 
1028 		leaf = path->nodes[0];
1029 
1030 		/* are we trying to overwrite a back ref for the root directory
1031 		 * if so, just jump out, we're done
1032 		 */
1033 		if (search_key.objectid == search_key.offset)
1034 			return 1;
1035 
1036 		/* check all the names in this back reference to see
1037 		 * if they are in the log.  if so, we allow them to stay
1038 		 * otherwise they must be unlinked as a conflict
1039 		 */
1040 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1041 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1042 		while (ptr < ptr_end) {
1043 			victim_ref = (struct btrfs_inode_ref *)ptr;
1044 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1045 								   victim_ref);
1046 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1047 			if (!victim_name)
1048 				return -ENOMEM;
1049 
1050 			read_extent_buffer(leaf, victim_name,
1051 					   (unsigned long)(victim_ref + 1),
1052 					   victim_name_len);
1053 
1054 			if (!backref_in_log(log_root, &search_key,
1055 					    parent_objectid,
1056 					    victim_name,
1057 					    victim_name_len)) {
1058 				inc_nlink(&inode->vfs_inode);
1059 				btrfs_release_path(path);
1060 
1061 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1062 						victim_name, victim_name_len);
1063 				kfree(victim_name);
1064 				if (ret)
1065 					return ret;
1066 				ret = btrfs_run_delayed_items(trans);
1067 				if (ret)
1068 					return ret;
1069 				*search_done = 1;
1070 				goto again;
1071 			}
1072 			kfree(victim_name);
1073 
1074 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1075 		}
1076 
1077 		/*
1078 		 * NOTE: we have searched root tree and checked the
1079 		 * corresponding ref, it does not need to check again.
1080 		 */
1081 		*search_done = 1;
1082 	}
1083 	btrfs_release_path(path);
1084 
1085 	/* Same search but for extended refs */
1086 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1087 					   inode_objectid, parent_objectid, 0,
1088 					   0);
1089 	if (!IS_ERR_OR_NULL(extref)) {
1090 		u32 item_size;
1091 		u32 cur_offset = 0;
1092 		unsigned long base;
1093 		struct inode *victim_parent;
1094 
1095 		leaf = path->nodes[0];
1096 
1097 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1098 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1099 
1100 		while (cur_offset < item_size) {
1101 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1102 
1103 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1104 
1105 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1106 				goto next;
1107 
1108 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1109 			if (!victim_name)
1110 				return -ENOMEM;
1111 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1112 					   victim_name_len);
1113 
1114 			search_key.objectid = inode_objectid;
1115 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1116 			search_key.offset = btrfs_extref_hash(parent_objectid,
1117 							      victim_name,
1118 							      victim_name_len);
1119 			ret = 0;
1120 			if (!backref_in_log(log_root, &search_key,
1121 					    parent_objectid, victim_name,
1122 					    victim_name_len)) {
1123 				ret = -ENOENT;
1124 				victim_parent = read_one_inode(root,
1125 						parent_objectid);
1126 				if (victim_parent) {
1127 					inc_nlink(&inode->vfs_inode);
1128 					btrfs_release_path(path);
1129 
1130 					ret = btrfs_unlink_inode(trans, root,
1131 							BTRFS_I(victim_parent),
1132 							inode,
1133 							victim_name,
1134 							victim_name_len);
1135 					if (!ret)
1136 						ret = btrfs_run_delayed_items(
1137 								  trans);
1138 				}
1139 				iput(victim_parent);
1140 				kfree(victim_name);
1141 				if (ret)
1142 					return ret;
1143 				*search_done = 1;
1144 				goto again;
1145 			}
1146 			kfree(victim_name);
1147 next:
1148 			cur_offset += victim_name_len + sizeof(*extref);
1149 		}
1150 		*search_done = 1;
1151 	}
1152 	btrfs_release_path(path);
1153 
1154 	/* look for a conflicting sequence number */
1155 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1156 					 ref_index, name, namelen, 0);
1157 	if (di && !IS_ERR(di)) {
1158 		ret = drop_one_dir_item(trans, root, path, dir, di);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 	btrfs_release_path(path);
1163 
1164 	/* look for a conflicting name */
1165 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1166 				   name, namelen, 0);
1167 	if (di && !IS_ERR(di)) {
1168 		ret = drop_one_dir_item(trans, root, path, dir, di);
1169 		if (ret)
1170 			return ret;
1171 	}
1172 	btrfs_release_path(path);
1173 
1174 	return 0;
1175 }
1176 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1177 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1178 			     u32 *namelen, char **name, u64 *index,
1179 			     u64 *parent_objectid)
1180 {
1181 	struct btrfs_inode_extref *extref;
1182 
1183 	extref = (struct btrfs_inode_extref *)ref_ptr;
1184 
1185 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1186 	*name = kmalloc(*namelen, GFP_NOFS);
1187 	if (*name == NULL)
1188 		return -ENOMEM;
1189 
1190 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1191 			   *namelen);
1192 
1193 	if (index)
1194 		*index = btrfs_inode_extref_index(eb, extref);
1195 	if (parent_objectid)
1196 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197 
1198 	return 0;
1199 }
1200 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1201 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 			  u32 *namelen, char **name, u64 *index)
1203 {
1204 	struct btrfs_inode_ref *ref;
1205 
1206 	ref = (struct btrfs_inode_ref *)ref_ptr;
1207 
1208 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1209 	*name = kmalloc(*namelen, GFP_NOFS);
1210 	if (*name == NULL)
1211 		return -ENOMEM;
1212 
1213 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1214 
1215 	if (index)
1216 		*index = btrfs_inode_ref_index(eb, ref);
1217 
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Take an inode reference item from the log tree and iterate all names from the
1223  * inode reference item in the subvolume tree with the same key (if it exists).
1224  * For any name that is not in the inode reference item from the log tree, do a
1225  * proper unlink of that name (that is, remove its entry from the inode
1226  * reference item and both dir index keys).
1227  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1228 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1229 				 struct btrfs_root *root,
1230 				 struct btrfs_path *path,
1231 				 struct btrfs_inode *inode,
1232 				 struct extent_buffer *log_eb,
1233 				 int log_slot,
1234 				 struct btrfs_key *key)
1235 {
1236 	int ret;
1237 	unsigned long ref_ptr;
1238 	unsigned long ref_end;
1239 	struct extent_buffer *eb;
1240 
1241 again:
1242 	btrfs_release_path(path);
1243 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1244 	if (ret > 0) {
1245 		ret = 0;
1246 		goto out;
1247 	}
1248 	if (ret < 0)
1249 		goto out;
1250 
1251 	eb = path->nodes[0];
1252 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1253 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1254 	while (ref_ptr < ref_end) {
1255 		char *name = NULL;
1256 		int namelen;
1257 		u64 parent_id;
1258 
1259 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1260 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1261 						NULL, &parent_id);
1262 		} else {
1263 			parent_id = key->offset;
1264 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1265 					     NULL);
1266 		}
1267 		if (ret)
1268 			goto out;
1269 
1270 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1271 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1272 							       parent_id, name,
1273 							       namelen);
1274 		else
1275 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1276 							   name, namelen);
1277 
1278 		if (!ret) {
1279 			struct inode *dir;
1280 
1281 			btrfs_release_path(path);
1282 			dir = read_one_inode(root, parent_id);
1283 			if (!dir) {
1284 				ret = -ENOENT;
1285 				kfree(name);
1286 				goto out;
1287 			}
1288 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1289 						 inode, name, namelen);
1290 			kfree(name);
1291 			iput(dir);
1292 			if (ret)
1293 				goto out;
1294 			goto again;
1295 		}
1296 
1297 		kfree(name);
1298 		ref_ptr += namelen;
1299 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1300 			ref_ptr += sizeof(struct btrfs_inode_extref);
1301 		else
1302 			ref_ptr += sizeof(struct btrfs_inode_ref);
1303 	}
1304 	ret = 0;
1305  out:
1306 	btrfs_release_path(path);
1307 	return ret;
1308 }
1309 
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1310 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1311 				  const u8 ref_type, const char *name,
1312 				  const int namelen)
1313 {
1314 	struct btrfs_key key;
1315 	struct btrfs_path *path;
1316 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1317 	int ret;
1318 
1319 	path = btrfs_alloc_path();
1320 	if (!path)
1321 		return -ENOMEM;
1322 
1323 	key.objectid = btrfs_ino(BTRFS_I(inode));
1324 	key.type = ref_type;
1325 	if (key.type == BTRFS_INODE_REF_KEY)
1326 		key.offset = parent_id;
1327 	else
1328 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1329 
1330 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1331 	if (ret < 0)
1332 		goto out;
1333 	if (ret > 0) {
1334 		ret = 0;
1335 		goto out;
1336 	}
1337 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1338 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1339 				path->slots[0], parent_id, name, namelen);
1340 	else
1341 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1342 						   name, namelen);
1343 
1344 out:
1345 	btrfs_free_path(path);
1346 	return ret;
1347 }
1348 
add_link(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int namelen,u64 ref_index)1349 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1350 		    struct inode *dir, struct inode *inode, const char *name,
1351 		    int namelen, u64 ref_index)
1352 {
1353 	struct btrfs_dir_item *dir_item;
1354 	struct btrfs_key key;
1355 	struct btrfs_path *path;
1356 	struct inode *other_inode = NULL;
1357 	int ret;
1358 
1359 	path = btrfs_alloc_path();
1360 	if (!path)
1361 		return -ENOMEM;
1362 
1363 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1364 					 btrfs_ino(BTRFS_I(dir)),
1365 					 name, namelen, 0);
1366 	if (!dir_item) {
1367 		btrfs_release_path(path);
1368 		goto add_link;
1369 	} else if (IS_ERR(dir_item)) {
1370 		ret = PTR_ERR(dir_item);
1371 		goto out;
1372 	}
1373 
1374 	/*
1375 	 * Our inode's dentry collides with the dentry of another inode which is
1376 	 * in the log but not yet processed since it has a higher inode number.
1377 	 * So delete that other dentry.
1378 	 */
1379 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1380 	btrfs_release_path(path);
1381 	other_inode = read_one_inode(root, key.objectid);
1382 	if (!other_inode) {
1383 		ret = -ENOENT;
1384 		goto out;
1385 	}
1386 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1387 				 name, namelen);
1388 	if (ret)
1389 		goto out;
1390 	/*
1391 	 * If we dropped the link count to 0, bump it so that later the iput()
1392 	 * on the inode will not free it. We will fixup the link count later.
1393 	 */
1394 	if (other_inode->i_nlink == 0)
1395 		inc_nlink(other_inode);
1396 
1397 	ret = btrfs_run_delayed_items(trans);
1398 	if (ret)
1399 		goto out;
1400 add_link:
1401 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1402 			     name, namelen, 0, ref_index);
1403 out:
1404 	iput(other_inode);
1405 	btrfs_free_path(path);
1406 
1407 	return ret;
1408 }
1409 
1410 /*
1411  * replay one inode back reference item found in the log tree.
1412  * eb, slot and key refer to the buffer and key found in the log tree.
1413  * root is the destination we are replaying into, and path is for temp
1414  * use by this function.  (it should be released on return).
1415  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1416 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1417 				  struct btrfs_root *root,
1418 				  struct btrfs_root *log,
1419 				  struct btrfs_path *path,
1420 				  struct extent_buffer *eb, int slot,
1421 				  struct btrfs_key *key)
1422 {
1423 	struct inode *dir = NULL;
1424 	struct inode *inode = NULL;
1425 	unsigned long ref_ptr;
1426 	unsigned long ref_end;
1427 	char *name = NULL;
1428 	int namelen;
1429 	int ret;
1430 	int search_done = 0;
1431 	int log_ref_ver = 0;
1432 	u64 parent_objectid;
1433 	u64 inode_objectid;
1434 	u64 ref_index = 0;
1435 	int ref_struct_size;
1436 
1437 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1438 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1439 
1440 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1441 		struct btrfs_inode_extref *r;
1442 
1443 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1444 		log_ref_ver = 1;
1445 		r = (struct btrfs_inode_extref *)ref_ptr;
1446 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1447 	} else {
1448 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1449 		parent_objectid = key->offset;
1450 	}
1451 	inode_objectid = key->objectid;
1452 
1453 	/*
1454 	 * it is possible that we didn't log all the parent directories
1455 	 * for a given inode.  If we don't find the dir, just don't
1456 	 * copy the back ref in.  The link count fixup code will take
1457 	 * care of the rest
1458 	 */
1459 	dir = read_one_inode(root, parent_objectid);
1460 	if (!dir) {
1461 		ret = -ENOENT;
1462 		goto out;
1463 	}
1464 
1465 	inode = read_one_inode(root, inode_objectid);
1466 	if (!inode) {
1467 		ret = -EIO;
1468 		goto out;
1469 	}
1470 
1471 	while (ref_ptr < ref_end) {
1472 		if (log_ref_ver) {
1473 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1474 						&ref_index, &parent_objectid);
1475 			/*
1476 			 * parent object can change from one array
1477 			 * item to another.
1478 			 */
1479 			if (!dir)
1480 				dir = read_one_inode(root, parent_objectid);
1481 			if (!dir) {
1482 				ret = -ENOENT;
1483 				goto out;
1484 			}
1485 		} else {
1486 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1487 					     &ref_index);
1488 		}
1489 		if (ret)
1490 			goto out;
1491 
1492 		/* if we already have a perfect match, we're done */
1493 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1494 					btrfs_ino(BTRFS_I(inode)), ref_index,
1495 					name, namelen)) {
1496 			/*
1497 			 * look for a conflicting back reference in the
1498 			 * metadata. if we find one we have to unlink that name
1499 			 * of the file before we add our new link.  Later on, we
1500 			 * overwrite any existing back reference, and we don't
1501 			 * want to create dangling pointers in the directory.
1502 			 */
1503 
1504 			if (!search_done) {
1505 				ret = __add_inode_ref(trans, root, path, log,
1506 						      BTRFS_I(dir),
1507 						      BTRFS_I(inode),
1508 						      inode_objectid,
1509 						      parent_objectid,
1510 						      ref_index, name, namelen,
1511 						      &search_done);
1512 				if (ret) {
1513 					if (ret == 1)
1514 						ret = 0;
1515 					goto out;
1516 				}
1517 			}
1518 
1519 			/*
1520 			 * If a reference item already exists for this inode
1521 			 * with the same parent and name, but different index,
1522 			 * drop it and the corresponding directory index entries
1523 			 * from the parent before adding the new reference item
1524 			 * and dir index entries, otherwise we would fail with
1525 			 * -EEXIST returned from btrfs_add_link() below.
1526 			 */
1527 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1528 						     name, namelen);
1529 			if (ret > 0) {
1530 				ret = btrfs_unlink_inode(trans, root,
1531 							 BTRFS_I(dir),
1532 							 BTRFS_I(inode),
1533 							 name, namelen);
1534 				/*
1535 				 * If we dropped the link count to 0, bump it so
1536 				 * that later the iput() on the inode will not
1537 				 * free it. We will fixup the link count later.
1538 				 */
1539 				if (!ret && inode->i_nlink == 0)
1540 					inc_nlink(inode);
1541 			}
1542 			if (ret < 0)
1543 				goto out;
1544 
1545 			/* insert our name */
1546 			ret = add_link(trans, root, dir, inode, name, namelen,
1547 				       ref_index);
1548 			if (ret)
1549 				goto out;
1550 
1551 			btrfs_update_inode(trans, root, inode);
1552 		}
1553 
1554 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1555 		kfree(name);
1556 		name = NULL;
1557 		if (log_ref_ver) {
1558 			iput(dir);
1559 			dir = NULL;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Before we overwrite the inode reference item in the subvolume tree
1565 	 * with the item from the log tree, we must unlink all names from the
1566 	 * parent directory that are in the subvolume's tree inode reference
1567 	 * item, otherwise we end up with an inconsistent subvolume tree where
1568 	 * dir index entries exist for a name but there is no inode reference
1569 	 * item with the same name.
1570 	 */
1571 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1572 				    key);
1573 	if (ret)
1574 		goto out;
1575 
1576 	/* finally write the back reference in the inode */
1577 	ret = overwrite_item(trans, root, path, eb, slot, key);
1578 out:
1579 	btrfs_release_path(path);
1580 	kfree(name);
1581 	iput(dir);
1582 	iput(inode);
1583 	return ret;
1584 }
1585 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1586 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1587 			      struct btrfs_root *root, u64 ino)
1588 {
1589 	int ret;
1590 
1591 	ret = btrfs_insert_orphan_item(trans, root, ino);
1592 	if (ret == -EEXIST)
1593 		ret = 0;
1594 
1595 	return ret;
1596 }
1597 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1598 static int count_inode_extrefs(struct btrfs_root *root,
1599 		struct btrfs_inode *inode, struct btrfs_path *path)
1600 {
1601 	int ret = 0;
1602 	int name_len;
1603 	unsigned int nlink = 0;
1604 	u32 item_size;
1605 	u32 cur_offset = 0;
1606 	u64 inode_objectid = btrfs_ino(inode);
1607 	u64 offset = 0;
1608 	unsigned long ptr;
1609 	struct btrfs_inode_extref *extref;
1610 	struct extent_buffer *leaf;
1611 
1612 	while (1) {
1613 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1614 					    &extref, &offset);
1615 		if (ret)
1616 			break;
1617 
1618 		leaf = path->nodes[0];
1619 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1621 		cur_offset = 0;
1622 
1623 		while (cur_offset < item_size) {
1624 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1625 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1626 
1627 			nlink++;
1628 
1629 			cur_offset += name_len + sizeof(*extref);
1630 		}
1631 
1632 		offset++;
1633 		btrfs_release_path(path);
1634 	}
1635 	btrfs_release_path(path);
1636 
1637 	if (ret < 0 && ret != -ENOENT)
1638 		return ret;
1639 	return nlink;
1640 }
1641 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1642 static int count_inode_refs(struct btrfs_root *root,
1643 			struct btrfs_inode *inode, struct btrfs_path *path)
1644 {
1645 	int ret;
1646 	struct btrfs_key key;
1647 	unsigned int nlink = 0;
1648 	unsigned long ptr;
1649 	unsigned long ptr_end;
1650 	int name_len;
1651 	u64 ino = btrfs_ino(inode);
1652 
1653 	key.objectid = ino;
1654 	key.type = BTRFS_INODE_REF_KEY;
1655 	key.offset = (u64)-1;
1656 
1657 	while (1) {
1658 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1659 		if (ret < 0)
1660 			break;
1661 		if (ret > 0) {
1662 			if (path->slots[0] == 0)
1663 				break;
1664 			path->slots[0]--;
1665 		}
1666 process_slot:
1667 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1668 				      path->slots[0]);
1669 		if (key.objectid != ino ||
1670 		    key.type != BTRFS_INODE_REF_KEY)
1671 			break;
1672 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1673 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1674 						   path->slots[0]);
1675 		while (ptr < ptr_end) {
1676 			struct btrfs_inode_ref *ref;
1677 
1678 			ref = (struct btrfs_inode_ref *)ptr;
1679 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1680 							    ref);
1681 			ptr = (unsigned long)(ref + 1) + name_len;
1682 			nlink++;
1683 		}
1684 
1685 		if (key.offset == 0)
1686 			break;
1687 		if (path->slots[0] > 0) {
1688 			path->slots[0]--;
1689 			goto process_slot;
1690 		}
1691 		key.offset--;
1692 		btrfs_release_path(path);
1693 	}
1694 	btrfs_release_path(path);
1695 
1696 	return nlink;
1697 }
1698 
1699 /*
1700  * There are a few corners where the link count of the file can't
1701  * be properly maintained during replay.  So, instead of adding
1702  * lots of complexity to the log code, we just scan the backrefs
1703  * for any file that has been through replay.
1704  *
1705  * The scan will update the link count on the inode to reflect the
1706  * number of back refs found.  If it goes down to zero, the iput
1707  * will free the inode.
1708  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1709 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1710 					   struct btrfs_root *root,
1711 					   struct inode *inode)
1712 {
1713 	struct btrfs_path *path;
1714 	int ret;
1715 	u64 nlink = 0;
1716 	u64 ino = btrfs_ino(BTRFS_I(inode));
1717 
1718 	path = btrfs_alloc_path();
1719 	if (!path)
1720 		return -ENOMEM;
1721 
1722 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1723 	if (ret < 0)
1724 		goto out;
1725 
1726 	nlink = ret;
1727 
1728 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1729 	if (ret < 0)
1730 		goto out;
1731 
1732 	nlink += ret;
1733 
1734 	ret = 0;
1735 
1736 	if (nlink != inode->i_nlink) {
1737 		set_nlink(inode, nlink);
1738 		btrfs_update_inode(trans, root, inode);
1739 	}
1740 	BTRFS_I(inode)->index_cnt = (u64)-1;
1741 
1742 	if (inode->i_nlink == 0) {
1743 		if (S_ISDIR(inode->i_mode)) {
1744 			ret = replay_dir_deletes(trans, root, NULL, path,
1745 						 ino, 1);
1746 			if (ret)
1747 				goto out;
1748 		}
1749 		ret = insert_orphan_item(trans, root, ino);
1750 	}
1751 
1752 out:
1753 	btrfs_free_path(path);
1754 	return ret;
1755 }
1756 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1757 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1758 					    struct btrfs_root *root,
1759 					    struct btrfs_path *path)
1760 {
1761 	int ret;
1762 	struct btrfs_key key;
1763 	struct inode *inode;
1764 
1765 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1766 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1767 	key.offset = (u64)-1;
1768 	while (1) {
1769 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1770 		if (ret < 0)
1771 			break;
1772 
1773 		if (ret == 1) {
1774 			if (path->slots[0] == 0)
1775 				break;
1776 			path->slots[0]--;
1777 		}
1778 
1779 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1780 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1781 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1782 			break;
1783 
1784 		ret = btrfs_del_item(trans, root, path);
1785 		if (ret)
1786 			goto out;
1787 
1788 		btrfs_release_path(path);
1789 		inode = read_one_inode(root, key.offset);
1790 		if (!inode)
1791 			return -EIO;
1792 
1793 		ret = fixup_inode_link_count(trans, root, inode);
1794 		iput(inode);
1795 		if (ret)
1796 			goto out;
1797 
1798 		/*
1799 		 * fixup on a directory may create new entries,
1800 		 * make sure we always look for the highset possible
1801 		 * offset
1802 		 */
1803 		key.offset = (u64)-1;
1804 	}
1805 	ret = 0;
1806 out:
1807 	btrfs_release_path(path);
1808 	return ret;
1809 }
1810 
1811 
1812 /*
1813  * record a given inode in the fixup dir so we can check its link
1814  * count when replay is done.  The link count is incremented here
1815  * so the inode won't go away until we check it
1816  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1817 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1818 				      struct btrfs_root *root,
1819 				      struct btrfs_path *path,
1820 				      u64 objectid)
1821 {
1822 	struct btrfs_key key;
1823 	int ret = 0;
1824 	struct inode *inode;
1825 
1826 	inode = read_one_inode(root, objectid);
1827 	if (!inode)
1828 		return -EIO;
1829 
1830 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1831 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1832 	key.offset = objectid;
1833 
1834 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1835 
1836 	btrfs_release_path(path);
1837 	if (ret == 0) {
1838 		if (!inode->i_nlink)
1839 			set_nlink(inode, 1);
1840 		else
1841 			inc_nlink(inode);
1842 		ret = btrfs_update_inode(trans, root, inode);
1843 	} else if (ret == -EEXIST) {
1844 		ret = 0;
1845 	} else {
1846 		BUG(); /* Logic Error */
1847 	}
1848 	iput(inode);
1849 
1850 	return ret;
1851 }
1852 
1853 /*
1854  * when replaying the log for a directory, we only insert names
1855  * for inodes that actually exist.  This means an fsync on a directory
1856  * does not implicitly fsync all the new files in it
1857  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1858 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1859 				    struct btrfs_root *root,
1860 				    u64 dirid, u64 index,
1861 				    char *name, int name_len,
1862 				    struct btrfs_key *location)
1863 {
1864 	struct inode *inode;
1865 	struct inode *dir;
1866 	int ret;
1867 
1868 	inode = read_one_inode(root, location->objectid);
1869 	if (!inode)
1870 		return -ENOENT;
1871 
1872 	dir = read_one_inode(root, dirid);
1873 	if (!dir) {
1874 		iput(inode);
1875 		return -EIO;
1876 	}
1877 
1878 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1879 			name_len, 1, index);
1880 
1881 	/* FIXME, put inode into FIXUP list */
1882 
1883 	iput(inode);
1884 	iput(dir);
1885 	return ret;
1886 }
1887 
1888 /*
1889  * Return true if an inode reference exists in the log for the given name,
1890  * inode and parent inode.
1891  */
name_in_log_ref(struct btrfs_root * log_root,const char * name,const int name_len,const u64 dirid,const u64 ino)1892 static bool name_in_log_ref(struct btrfs_root *log_root,
1893 			    const char *name, const int name_len,
1894 			    const u64 dirid, const u64 ino)
1895 {
1896 	struct btrfs_key search_key;
1897 
1898 	search_key.objectid = ino;
1899 	search_key.type = BTRFS_INODE_REF_KEY;
1900 	search_key.offset = dirid;
1901 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1902 		return true;
1903 
1904 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1905 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1906 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1907 		return true;
1908 
1909 	return false;
1910 }
1911 
1912 /*
1913  * take a single entry in a log directory item and replay it into
1914  * the subvolume.
1915  *
1916  * if a conflicting item exists in the subdirectory already,
1917  * the inode it points to is unlinked and put into the link count
1918  * fix up tree.
1919  *
1920  * If a name from the log points to a file or directory that does
1921  * not exist in the FS, it is skipped.  fsyncs on directories
1922  * do not force down inodes inside that directory, just changes to the
1923  * names or unlinks in a directory.
1924  *
1925  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1926  * non-existing inode) and 1 if the name was replayed.
1927  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1928 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1929 				    struct btrfs_root *root,
1930 				    struct btrfs_path *path,
1931 				    struct extent_buffer *eb,
1932 				    struct btrfs_dir_item *di,
1933 				    struct btrfs_key *key)
1934 {
1935 	char *name;
1936 	int name_len;
1937 	struct btrfs_dir_item *dst_di;
1938 	struct btrfs_key found_key;
1939 	struct btrfs_key log_key;
1940 	struct inode *dir;
1941 	u8 log_type;
1942 	int exists;
1943 	int ret = 0;
1944 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1945 	bool name_added = false;
1946 
1947 	dir = read_one_inode(root, key->objectid);
1948 	if (!dir)
1949 		return -EIO;
1950 
1951 	name_len = btrfs_dir_name_len(eb, di);
1952 	name = kmalloc(name_len, GFP_NOFS);
1953 	if (!name) {
1954 		ret = -ENOMEM;
1955 		goto out;
1956 	}
1957 
1958 	log_type = btrfs_dir_type(eb, di);
1959 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1960 		   name_len);
1961 
1962 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1963 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1964 	if (exists == 0)
1965 		exists = 1;
1966 	else
1967 		exists = 0;
1968 	btrfs_release_path(path);
1969 
1970 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1971 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1972 				       name, name_len, 1);
1973 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1974 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1975 						     key->objectid,
1976 						     key->offset, name,
1977 						     name_len, 1);
1978 	} else {
1979 		/* Corruption */
1980 		ret = -EINVAL;
1981 		goto out;
1982 	}
1983 	if (IS_ERR_OR_NULL(dst_di)) {
1984 		/* we need a sequence number to insert, so we only
1985 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1986 		 */
1987 		if (key->type != BTRFS_DIR_INDEX_KEY)
1988 			goto out;
1989 		goto insert;
1990 	}
1991 
1992 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1993 	/* the existing item matches the logged item */
1994 	if (found_key.objectid == log_key.objectid &&
1995 	    found_key.type == log_key.type &&
1996 	    found_key.offset == log_key.offset &&
1997 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1998 		update_size = false;
1999 		goto out;
2000 	}
2001 
2002 	/*
2003 	 * don't drop the conflicting directory entry if the inode
2004 	 * for the new entry doesn't exist
2005 	 */
2006 	if (!exists)
2007 		goto out;
2008 
2009 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2010 	if (ret)
2011 		goto out;
2012 
2013 	if (key->type == BTRFS_DIR_INDEX_KEY)
2014 		goto insert;
2015 out:
2016 	btrfs_release_path(path);
2017 	if (!ret && update_size) {
2018 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2019 		ret = btrfs_update_inode(trans, root, dir);
2020 	}
2021 	kfree(name);
2022 	iput(dir);
2023 	if (!ret && name_added)
2024 		ret = 1;
2025 	return ret;
2026 
2027 insert:
2028 	if (name_in_log_ref(root->log_root, name, name_len,
2029 			    key->objectid, log_key.objectid)) {
2030 		/* The dentry will be added later. */
2031 		ret = 0;
2032 		update_size = false;
2033 		goto out;
2034 	}
2035 	btrfs_release_path(path);
2036 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2037 			      name, name_len, &log_key);
2038 	if (ret && ret != -ENOENT && ret != -EEXIST)
2039 		goto out;
2040 	if (!ret)
2041 		name_added = true;
2042 	update_size = false;
2043 	ret = 0;
2044 	goto out;
2045 }
2046 
2047 /*
2048  * find all the names in a directory item and reconcile them into
2049  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2050  * one name in a directory item, but the same code gets used for
2051  * both directory index types
2052  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2053 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2054 					struct btrfs_root *root,
2055 					struct btrfs_path *path,
2056 					struct extent_buffer *eb, int slot,
2057 					struct btrfs_key *key)
2058 {
2059 	int ret = 0;
2060 	u32 item_size = btrfs_item_size_nr(eb, slot);
2061 	struct btrfs_dir_item *di;
2062 	int name_len;
2063 	unsigned long ptr;
2064 	unsigned long ptr_end;
2065 	struct btrfs_path *fixup_path = NULL;
2066 
2067 	ptr = btrfs_item_ptr_offset(eb, slot);
2068 	ptr_end = ptr + item_size;
2069 	while (ptr < ptr_end) {
2070 		di = (struct btrfs_dir_item *)ptr;
2071 		name_len = btrfs_dir_name_len(eb, di);
2072 		ret = replay_one_name(trans, root, path, eb, di, key);
2073 		if (ret < 0)
2074 			break;
2075 		ptr = (unsigned long)(di + 1);
2076 		ptr += name_len;
2077 
2078 		/*
2079 		 * If this entry refers to a non-directory (directories can not
2080 		 * have a link count > 1) and it was added in the transaction
2081 		 * that was not committed, make sure we fixup the link count of
2082 		 * the inode it the entry points to. Otherwise something like
2083 		 * the following would result in a directory pointing to an
2084 		 * inode with a wrong link that does not account for this dir
2085 		 * entry:
2086 		 *
2087 		 * mkdir testdir
2088 		 * touch testdir/foo
2089 		 * touch testdir/bar
2090 		 * sync
2091 		 *
2092 		 * ln testdir/bar testdir/bar_link
2093 		 * ln testdir/foo testdir/foo_link
2094 		 * xfs_io -c "fsync" testdir/bar
2095 		 *
2096 		 * <power failure>
2097 		 *
2098 		 * mount fs, log replay happens
2099 		 *
2100 		 * File foo would remain with a link count of 1 when it has two
2101 		 * entries pointing to it in the directory testdir. This would
2102 		 * make it impossible to ever delete the parent directory has
2103 		 * it would result in stale dentries that can never be deleted.
2104 		 */
2105 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2106 			struct btrfs_key di_key;
2107 
2108 			if (!fixup_path) {
2109 				fixup_path = btrfs_alloc_path();
2110 				if (!fixup_path) {
2111 					ret = -ENOMEM;
2112 					break;
2113 				}
2114 			}
2115 
2116 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2117 			ret = link_to_fixup_dir(trans, root, fixup_path,
2118 						di_key.objectid);
2119 			if (ret)
2120 				break;
2121 		}
2122 		ret = 0;
2123 	}
2124 	btrfs_free_path(fixup_path);
2125 	return ret;
2126 }
2127 
2128 /*
2129  * directory replay has two parts.  There are the standard directory
2130  * items in the log copied from the subvolume, and range items
2131  * created in the log while the subvolume was logged.
2132  *
2133  * The range items tell us which parts of the key space the log
2134  * is authoritative for.  During replay, if a key in the subvolume
2135  * directory is in a logged range item, but not actually in the log
2136  * that means it was deleted from the directory before the fsync
2137  * and should be removed.
2138  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2139 static noinline int find_dir_range(struct btrfs_root *root,
2140 				   struct btrfs_path *path,
2141 				   u64 dirid, int key_type,
2142 				   u64 *start_ret, u64 *end_ret)
2143 {
2144 	struct btrfs_key key;
2145 	u64 found_end;
2146 	struct btrfs_dir_log_item *item;
2147 	int ret;
2148 	int nritems;
2149 
2150 	if (*start_ret == (u64)-1)
2151 		return 1;
2152 
2153 	key.objectid = dirid;
2154 	key.type = key_type;
2155 	key.offset = *start_ret;
2156 
2157 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2158 	if (ret < 0)
2159 		goto out;
2160 	if (ret > 0) {
2161 		if (path->slots[0] == 0)
2162 			goto out;
2163 		path->slots[0]--;
2164 	}
2165 	if (ret != 0)
2166 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2167 
2168 	if (key.type != key_type || key.objectid != dirid) {
2169 		ret = 1;
2170 		goto next;
2171 	}
2172 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2173 			      struct btrfs_dir_log_item);
2174 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2175 
2176 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2177 		ret = 0;
2178 		*start_ret = key.offset;
2179 		*end_ret = found_end;
2180 		goto out;
2181 	}
2182 	ret = 1;
2183 next:
2184 	/* check the next slot in the tree to see if it is a valid item */
2185 	nritems = btrfs_header_nritems(path->nodes[0]);
2186 	path->slots[0]++;
2187 	if (path->slots[0] >= nritems) {
2188 		ret = btrfs_next_leaf(root, path);
2189 		if (ret)
2190 			goto out;
2191 	}
2192 
2193 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2194 
2195 	if (key.type != key_type || key.objectid != dirid) {
2196 		ret = 1;
2197 		goto out;
2198 	}
2199 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2200 			      struct btrfs_dir_log_item);
2201 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2202 	*start_ret = key.offset;
2203 	*end_ret = found_end;
2204 	ret = 0;
2205 out:
2206 	btrfs_release_path(path);
2207 	return ret;
2208 }
2209 
2210 /*
2211  * this looks for a given directory item in the log.  If the directory
2212  * item is not in the log, the item is removed and the inode it points
2213  * to is unlinked
2214  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2215 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2216 				      struct btrfs_root *root,
2217 				      struct btrfs_root *log,
2218 				      struct btrfs_path *path,
2219 				      struct btrfs_path *log_path,
2220 				      struct inode *dir,
2221 				      struct btrfs_key *dir_key)
2222 {
2223 	int ret;
2224 	struct extent_buffer *eb;
2225 	int slot;
2226 	u32 item_size;
2227 	struct btrfs_dir_item *di;
2228 	struct btrfs_dir_item *log_di;
2229 	int name_len;
2230 	unsigned long ptr;
2231 	unsigned long ptr_end;
2232 	char *name;
2233 	struct inode *inode;
2234 	struct btrfs_key location;
2235 
2236 again:
2237 	eb = path->nodes[0];
2238 	slot = path->slots[0];
2239 	item_size = btrfs_item_size_nr(eb, slot);
2240 	ptr = btrfs_item_ptr_offset(eb, slot);
2241 	ptr_end = ptr + item_size;
2242 	while (ptr < ptr_end) {
2243 		di = (struct btrfs_dir_item *)ptr;
2244 		name_len = btrfs_dir_name_len(eb, di);
2245 		name = kmalloc(name_len, GFP_NOFS);
2246 		if (!name) {
2247 			ret = -ENOMEM;
2248 			goto out;
2249 		}
2250 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2251 				  name_len);
2252 		log_di = NULL;
2253 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2254 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2255 						       dir_key->objectid,
2256 						       name, name_len, 0);
2257 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2258 			log_di = btrfs_lookup_dir_index_item(trans, log,
2259 						     log_path,
2260 						     dir_key->objectid,
2261 						     dir_key->offset,
2262 						     name, name_len, 0);
2263 		}
2264 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2265 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2266 			btrfs_release_path(path);
2267 			btrfs_release_path(log_path);
2268 			inode = read_one_inode(root, location.objectid);
2269 			if (!inode) {
2270 				kfree(name);
2271 				return -EIO;
2272 			}
2273 
2274 			ret = link_to_fixup_dir(trans, root,
2275 						path, location.objectid);
2276 			if (ret) {
2277 				kfree(name);
2278 				iput(inode);
2279 				goto out;
2280 			}
2281 
2282 			inc_nlink(inode);
2283 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2284 					BTRFS_I(inode), name, name_len);
2285 			if (!ret)
2286 				ret = btrfs_run_delayed_items(trans);
2287 			kfree(name);
2288 			iput(inode);
2289 			if (ret)
2290 				goto out;
2291 
2292 			/* there might still be more names under this key
2293 			 * check and repeat if required
2294 			 */
2295 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2296 						0, 0);
2297 			if (ret == 0)
2298 				goto again;
2299 			ret = 0;
2300 			goto out;
2301 		} else if (IS_ERR(log_di)) {
2302 			kfree(name);
2303 			return PTR_ERR(log_di);
2304 		}
2305 		btrfs_release_path(log_path);
2306 		kfree(name);
2307 
2308 		ptr = (unsigned long)(di + 1);
2309 		ptr += name_len;
2310 	}
2311 	ret = 0;
2312 out:
2313 	btrfs_release_path(path);
2314 	btrfs_release_path(log_path);
2315 	return ret;
2316 }
2317 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2318 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2319 			      struct btrfs_root *root,
2320 			      struct btrfs_root *log,
2321 			      struct btrfs_path *path,
2322 			      const u64 ino)
2323 {
2324 	struct btrfs_key search_key;
2325 	struct btrfs_path *log_path;
2326 	int i;
2327 	int nritems;
2328 	int ret;
2329 
2330 	log_path = btrfs_alloc_path();
2331 	if (!log_path)
2332 		return -ENOMEM;
2333 
2334 	search_key.objectid = ino;
2335 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2336 	search_key.offset = 0;
2337 again:
2338 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2339 	if (ret < 0)
2340 		goto out;
2341 process_leaf:
2342 	nritems = btrfs_header_nritems(path->nodes[0]);
2343 	for (i = path->slots[0]; i < nritems; i++) {
2344 		struct btrfs_key key;
2345 		struct btrfs_dir_item *di;
2346 		struct btrfs_dir_item *log_di;
2347 		u32 total_size;
2348 		u32 cur;
2349 
2350 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2351 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2352 			ret = 0;
2353 			goto out;
2354 		}
2355 
2356 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2357 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2358 		cur = 0;
2359 		while (cur < total_size) {
2360 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2361 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2362 			u32 this_len = sizeof(*di) + name_len + data_len;
2363 			char *name;
2364 
2365 			name = kmalloc(name_len, GFP_NOFS);
2366 			if (!name) {
2367 				ret = -ENOMEM;
2368 				goto out;
2369 			}
2370 			read_extent_buffer(path->nodes[0], name,
2371 					   (unsigned long)(di + 1), name_len);
2372 
2373 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2374 						    name, name_len, 0);
2375 			btrfs_release_path(log_path);
2376 			if (!log_di) {
2377 				/* Doesn't exist in log tree, so delete it. */
2378 				btrfs_release_path(path);
2379 				di = btrfs_lookup_xattr(trans, root, path, ino,
2380 							name, name_len, -1);
2381 				kfree(name);
2382 				if (IS_ERR(di)) {
2383 					ret = PTR_ERR(di);
2384 					goto out;
2385 				}
2386 				ASSERT(di);
2387 				ret = btrfs_delete_one_dir_name(trans, root,
2388 								path, di);
2389 				if (ret)
2390 					goto out;
2391 				btrfs_release_path(path);
2392 				search_key = key;
2393 				goto again;
2394 			}
2395 			kfree(name);
2396 			if (IS_ERR(log_di)) {
2397 				ret = PTR_ERR(log_di);
2398 				goto out;
2399 			}
2400 			cur += this_len;
2401 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2402 		}
2403 	}
2404 	ret = btrfs_next_leaf(root, path);
2405 	if (ret > 0)
2406 		ret = 0;
2407 	else if (ret == 0)
2408 		goto process_leaf;
2409 out:
2410 	btrfs_free_path(log_path);
2411 	btrfs_release_path(path);
2412 	return ret;
2413 }
2414 
2415 
2416 /*
2417  * deletion replay happens before we copy any new directory items
2418  * out of the log or out of backreferences from inodes.  It
2419  * scans the log to find ranges of keys that log is authoritative for,
2420  * and then scans the directory to find items in those ranges that are
2421  * not present in the log.
2422  *
2423  * Anything we don't find in the log is unlinked and removed from the
2424  * directory.
2425  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2426 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2427 				       struct btrfs_root *root,
2428 				       struct btrfs_root *log,
2429 				       struct btrfs_path *path,
2430 				       u64 dirid, int del_all)
2431 {
2432 	u64 range_start;
2433 	u64 range_end;
2434 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2435 	int ret = 0;
2436 	struct btrfs_key dir_key;
2437 	struct btrfs_key found_key;
2438 	struct btrfs_path *log_path;
2439 	struct inode *dir;
2440 
2441 	dir_key.objectid = dirid;
2442 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2443 	log_path = btrfs_alloc_path();
2444 	if (!log_path)
2445 		return -ENOMEM;
2446 
2447 	dir = read_one_inode(root, dirid);
2448 	/* it isn't an error if the inode isn't there, that can happen
2449 	 * because we replay the deletes before we copy in the inode item
2450 	 * from the log
2451 	 */
2452 	if (!dir) {
2453 		btrfs_free_path(log_path);
2454 		return 0;
2455 	}
2456 again:
2457 	range_start = 0;
2458 	range_end = 0;
2459 	while (1) {
2460 		if (del_all)
2461 			range_end = (u64)-1;
2462 		else {
2463 			ret = find_dir_range(log, path, dirid, key_type,
2464 					     &range_start, &range_end);
2465 			if (ret != 0)
2466 				break;
2467 		}
2468 
2469 		dir_key.offset = range_start;
2470 		while (1) {
2471 			int nritems;
2472 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2473 						0, 0);
2474 			if (ret < 0)
2475 				goto out;
2476 
2477 			nritems = btrfs_header_nritems(path->nodes[0]);
2478 			if (path->slots[0] >= nritems) {
2479 				ret = btrfs_next_leaf(root, path);
2480 				if (ret == 1)
2481 					break;
2482 				else if (ret < 0)
2483 					goto out;
2484 			}
2485 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2486 					      path->slots[0]);
2487 			if (found_key.objectid != dirid ||
2488 			    found_key.type != dir_key.type)
2489 				goto next_type;
2490 
2491 			if (found_key.offset > range_end)
2492 				break;
2493 
2494 			ret = check_item_in_log(trans, root, log, path,
2495 						log_path, dir,
2496 						&found_key);
2497 			if (ret)
2498 				goto out;
2499 			if (found_key.offset == (u64)-1)
2500 				break;
2501 			dir_key.offset = found_key.offset + 1;
2502 		}
2503 		btrfs_release_path(path);
2504 		if (range_end == (u64)-1)
2505 			break;
2506 		range_start = range_end + 1;
2507 	}
2508 
2509 next_type:
2510 	ret = 0;
2511 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2512 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2513 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2514 		btrfs_release_path(path);
2515 		goto again;
2516 	}
2517 out:
2518 	btrfs_release_path(path);
2519 	btrfs_free_path(log_path);
2520 	iput(dir);
2521 	return ret;
2522 }
2523 
2524 /*
2525  * the process_func used to replay items from the log tree.  This
2526  * gets called in two different stages.  The first stage just looks
2527  * for inodes and makes sure they are all copied into the subvolume.
2528  *
2529  * The second stage copies all the other item types from the log into
2530  * the subvolume.  The two stage approach is slower, but gets rid of
2531  * lots of complexity around inodes referencing other inodes that exist
2532  * only in the log (references come from either directory items or inode
2533  * back refs).
2534  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2535 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2536 			     struct walk_control *wc, u64 gen, int level)
2537 {
2538 	int nritems;
2539 	struct btrfs_path *path;
2540 	struct btrfs_root *root = wc->replay_dest;
2541 	struct btrfs_key key;
2542 	int i;
2543 	int ret;
2544 
2545 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2546 	if (ret)
2547 		return ret;
2548 
2549 	level = btrfs_header_level(eb);
2550 
2551 	if (level != 0)
2552 		return 0;
2553 
2554 	path = btrfs_alloc_path();
2555 	if (!path)
2556 		return -ENOMEM;
2557 
2558 	nritems = btrfs_header_nritems(eb);
2559 	for (i = 0; i < nritems; i++) {
2560 		btrfs_item_key_to_cpu(eb, &key, i);
2561 
2562 		/* inode keys are done during the first stage */
2563 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2564 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2565 			struct btrfs_inode_item *inode_item;
2566 			u32 mode;
2567 
2568 			inode_item = btrfs_item_ptr(eb, i,
2569 					    struct btrfs_inode_item);
2570 			/*
2571 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2572 			 * and never got linked before the fsync, skip it, as
2573 			 * replaying it is pointless since it would be deleted
2574 			 * later. We skip logging tmpfiles, but it's always
2575 			 * possible we are replaying a log created with a kernel
2576 			 * that used to log tmpfiles.
2577 			 */
2578 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2579 				wc->ignore_cur_inode = true;
2580 				continue;
2581 			} else {
2582 				wc->ignore_cur_inode = false;
2583 			}
2584 			ret = replay_xattr_deletes(wc->trans, root, log,
2585 						   path, key.objectid);
2586 			if (ret)
2587 				break;
2588 			mode = btrfs_inode_mode(eb, inode_item);
2589 			if (S_ISDIR(mode)) {
2590 				ret = replay_dir_deletes(wc->trans,
2591 					 root, log, path, key.objectid, 0);
2592 				if (ret)
2593 					break;
2594 			}
2595 			ret = overwrite_item(wc->trans, root, path,
2596 					     eb, i, &key);
2597 			if (ret)
2598 				break;
2599 
2600 			/*
2601 			 * Before replaying extents, truncate the inode to its
2602 			 * size. We need to do it now and not after log replay
2603 			 * because before an fsync we can have prealloc extents
2604 			 * added beyond the inode's i_size. If we did it after,
2605 			 * through orphan cleanup for example, we would drop
2606 			 * those prealloc extents just after replaying them.
2607 			 */
2608 			if (S_ISREG(mode)) {
2609 				struct inode *inode;
2610 				u64 from;
2611 
2612 				inode = read_one_inode(root, key.objectid);
2613 				if (!inode) {
2614 					ret = -EIO;
2615 					break;
2616 				}
2617 				from = ALIGN(i_size_read(inode),
2618 					     root->fs_info->sectorsize);
2619 				ret = btrfs_drop_extents(wc->trans, root, inode,
2620 							 from, (u64)-1, 1);
2621 				if (!ret) {
2622 					/* Update the inode's nbytes. */
2623 					ret = btrfs_update_inode(wc->trans,
2624 								 root, inode);
2625 				}
2626 				iput(inode);
2627 				if (ret)
2628 					break;
2629 			}
2630 
2631 			ret = link_to_fixup_dir(wc->trans, root,
2632 						path, key.objectid);
2633 			if (ret)
2634 				break;
2635 		}
2636 
2637 		if (wc->ignore_cur_inode)
2638 			continue;
2639 
2640 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2641 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2642 			ret = replay_one_dir_item(wc->trans, root, path,
2643 						  eb, i, &key);
2644 			if (ret)
2645 				break;
2646 		}
2647 
2648 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2649 			continue;
2650 
2651 		/* these keys are simply copied */
2652 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2653 			ret = overwrite_item(wc->trans, root, path,
2654 					     eb, i, &key);
2655 			if (ret)
2656 				break;
2657 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2658 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2659 			ret = add_inode_ref(wc->trans, root, log, path,
2660 					    eb, i, &key);
2661 			if (ret && ret != -ENOENT)
2662 				break;
2663 			ret = 0;
2664 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2665 			ret = replay_one_extent(wc->trans, root, path,
2666 						eb, i, &key);
2667 			if (ret)
2668 				break;
2669 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2670 			ret = replay_one_dir_item(wc->trans, root, path,
2671 						  eb, i, &key);
2672 			if (ret)
2673 				break;
2674 		}
2675 	}
2676 	btrfs_free_path(path);
2677 	return ret;
2678 }
2679 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2680 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2681 				   struct btrfs_root *root,
2682 				   struct btrfs_path *path, int *level,
2683 				   struct walk_control *wc)
2684 {
2685 	struct btrfs_fs_info *fs_info = root->fs_info;
2686 	u64 root_owner;
2687 	u64 bytenr;
2688 	u64 ptr_gen;
2689 	struct extent_buffer *next;
2690 	struct extent_buffer *cur;
2691 	struct extent_buffer *parent;
2692 	u32 blocksize;
2693 	int ret = 0;
2694 
2695 	WARN_ON(*level < 0);
2696 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2697 
2698 	while (*level > 0) {
2699 		struct btrfs_key first_key;
2700 
2701 		WARN_ON(*level < 0);
2702 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2703 		cur = path->nodes[*level];
2704 
2705 		WARN_ON(btrfs_header_level(cur) != *level);
2706 
2707 		if (path->slots[*level] >=
2708 		    btrfs_header_nritems(cur))
2709 			break;
2710 
2711 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714 		blocksize = fs_info->nodesize;
2715 
2716 		parent = path->nodes[*level];
2717 		root_owner = btrfs_header_owner(parent);
2718 
2719 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2720 		if (IS_ERR(next))
2721 			return PTR_ERR(next);
2722 
2723 		if (*level == 1) {
2724 			ret = wc->process_func(root, next, wc, ptr_gen,
2725 					       *level - 1);
2726 			if (ret) {
2727 				free_extent_buffer(next);
2728 				return ret;
2729 			}
2730 
2731 			path->slots[*level]++;
2732 			if (wc->free) {
2733 				ret = btrfs_read_buffer(next, ptr_gen,
2734 							*level - 1, &first_key);
2735 				if (ret) {
2736 					free_extent_buffer(next);
2737 					return ret;
2738 				}
2739 
2740 				if (trans) {
2741 					btrfs_tree_lock(next);
2742 					btrfs_set_lock_blocking_write(next);
2743 					btrfs_clean_tree_block(next);
2744 					btrfs_wait_tree_block_writeback(next);
2745 					btrfs_tree_unlock(next);
2746 				} else {
2747 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2748 						clear_extent_buffer_dirty(next);
2749 				}
2750 
2751 				WARN_ON(root_owner !=
2752 					BTRFS_TREE_LOG_OBJECTID);
2753 				ret = btrfs_free_and_pin_reserved_extent(
2754 							fs_info, bytenr,
2755 							blocksize);
2756 				if (ret) {
2757 					free_extent_buffer(next);
2758 					return ret;
2759 				}
2760 			}
2761 			free_extent_buffer(next);
2762 			continue;
2763 		}
2764 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2765 		if (ret) {
2766 			free_extent_buffer(next);
2767 			return ret;
2768 		}
2769 
2770 		WARN_ON(*level <= 0);
2771 		if (path->nodes[*level-1])
2772 			free_extent_buffer(path->nodes[*level-1]);
2773 		path->nodes[*level-1] = next;
2774 		*level = btrfs_header_level(next);
2775 		path->slots[*level] = 0;
2776 		cond_resched();
2777 	}
2778 	WARN_ON(*level < 0);
2779 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2780 
2781 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2782 
2783 	cond_resched();
2784 	return 0;
2785 }
2786 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2787 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2788 				 struct btrfs_root *root,
2789 				 struct btrfs_path *path, int *level,
2790 				 struct walk_control *wc)
2791 {
2792 	struct btrfs_fs_info *fs_info = root->fs_info;
2793 	u64 root_owner;
2794 	int i;
2795 	int slot;
2796 	int ret;
2797 
2798 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2799 		slot = path->slots[i];
2800 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2801 			path->slots[i]++;
2802 			*level = i;
2803 			WARN_ON(*level == 0);
2804 			return 0;
2805 		} else {
2806 			struct extent_buffer *parent;
2807 			if (path->nodes[*level] == root->node)
2808 				parent = path->nodes[*level];
2809 			else
2810 				parent = path->nodes[*level + 1];
2811 
2812 			root_owner = btrfs_header_owner(parent);
2813 			ret = wc->process_func(root, path->nodes[*level], wc,
2814 				 btrfs_header_generation(path->nodes[*level]),
2815 				 *level);
2816 			if (ret)
2817 				return ret;
2818 
2819 			if (wc->free) {
2820 				struct extent_buffer *next;
2821 
2822 				next = path->nodes[*level];
2823 
2824 				if (trans) {
2825 					btrfs_tree_lock(next);
2826 					btrfs_set_lock_blocking_write(next);
2827 					btrfs_clean_tree_block(next);
2828 					btrfs_wait_tree_block_writeback(next);
2829 					btrfs_tree_unlock(next);
2830 				} else {
2831 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2832 						clear_extent_buffer_dirty(next);
2833 				}
2834 
2835 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2836 				ret = btrfs_free_and_pin_reserved_extent(
2837 						fs_info,
2838 						path->nodes[*level]->start,
2839 						path->nodes[*level]->len);
2840 				if (ret)
2841 					return ret;
2842 			}
2843 			free_extent_buffer(path->nodes[*level]);
2844 			path->nodes[*level] = NULL;
2845 			*level = i + 1;
2846 		}
2847 	}
2848 	return 1;
2849 }
2850 
2851 /*
2852  * drop the reference count on the tree rooted at 'snap'.  This traverses
2853  * the tree freeing any blocks that have a ref count of zero after being
2854  * decremented.
2855  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2856 static int walk_log_tree(struct btrfs_trans_handle *trans,
2857 			 struct btrfs_root *log, struct walk_control *wc)
2858 {
2859 	struct btrfs_fs_info *fs_info = log->fs_info;
2860 	int ret = 0;
2861 	int wret;
2862 	int level;
2863 	struct btrfs_path *path;
2864 	int orig_level;
2865 
2866 	path = btrfs_alloc_path();
2867 	if (!path)
2868 		return -ENOMEM;
2869 
2870 	level = btrfs_header_level(log->node);
2871 	orig_level = level;
2872 	path->nodes[level] = log->node;
2873 	extent_buffer_get(log->node);
2874 	path->slots[level] = 0;
2875 
2876 	while (1) {
2877 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2878 		if (wret > 0)
2879 			break;
2880 		if (wret < 0) {
2881 			ret = wret;
2882 			goto out;
2883 		}
2884 
2885 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2886 		if (wret > 0)
2887 			break;
2888 		if (wret < 0) {
2889 			ret = wret;
2890 			goto out;
2891 		}
2892 	}
2893 
2894 	/* was the root node processed? if not, catch it here */
2895 	if (path->nodes[orig_level]) {
2896 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2897 			 btrfs_header_generation(path->nodes[orig_level]),
2898 			 orig_level);
2899 		if (ret)
2900 			goto out;
2901 		if (wc->free) {
2902 			struct extent_buffer *next;
2903 
2904 			next = path->nodes[orig_level];
2905 
2906 			if (trans) {
2907 				btrfs_tree_lock(next);
2908 				btrfs_set_lock_blocking_write(next);
2909 				btrfs_clean_tree_block(next);
2910 				btrfs_wait_tree_block_writeback(next);
2911 				btrfs_tree_unlock(next);
2912 			} else {
2913 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2914 					clear_extent_buffer_dirty(next);
2915 			}
2916 
2917 			WARN_ON(log->root_key.objectid !=
2918 				BTRFS_TREE_LOG_OBJECTID);
2919 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2920 							next->start, next->len);
2921 			if (ret)
2922 				goto out;
2923 		}
2924 	}
2925 
2926 out:
2927 	btrfs_free_path(path);
2928 	return ret;
2929 }
2930 
2931 /*
2932  * helper function to update the item for a given subvolumes log root
2933  * in the tree of log roots
2934  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2935 static int update_log_root(struct btrfs_trans_handle *trans,
2936 			   struct btrfs_root *log,
2937 			   struct btrfs_root_item *root_item)
2938 {
2939 	struct btrfs_fs_info *fs_info = log->fs_info;
2940 	int ret;
2941 
2942 	if (log->log_transid == 1) {
2943 		/* insert root item on the first sync */
2944 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2945 				&log->root_key, root_item);
2946 	} else {
2947 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2948 				&log->root_key, root_item);
2949 	}
2950 	return ret;
2951 }
2952 
wait_log_commit(struct btrfs_root * root,int transid)2953 static void wait_log_commit(struct btrfs_root *root, int transid)
2954 {
2955 	DEFINE_WAIT(wait);
2956 	int index = transid % 2;
2957 
2958 	/*
2959 	 * we only allow two pending log transactions at a time,
2960 	 * so we know that if ours is more than 2 older than the
2961 	 * current transaction, we're done
2962 	 */
2963 	for (;;) {
2964 		prepare_to_wait(&root->log_commit_wait[index],
2965 				&wait, TASK_UNINTERRUPTIBLE);
2966 
2967 		if (!(root->log_transid_committed < transid &&
2968 		      atomic_read(&root->log_commit[index])))
2969 			break;
2970 
2971 		mutex_unlock(&root->log_mutex);
2972 		schedule();
2973 		mutex_lock(&root->log_mutex);
2974 	}
2975 	finish_wait(&root->log_commit_wait[index], &wait);
2976 }
2977 
wait_for_writer(struct btrfs_root * root)2978 static void wait_for_writer(struct btrfs_root *root)
2979 {
2980 	DEFINE_WAIT(wait);
2981 
2982 	for (;;) {
2983 		prepare_to_wait(&root->log_writer_wait, &wait,
2984 				TASK_UNINTERRUPTIBLE);
2985 		if (!atomic_read(&root->log_writers))
2986 			break;
2987 
2988 		mutex_unlock(&root->log_mutex);
2989 		schedule();
2990 		mutex_lock(&root->log_mutex);
2991 	}
2992 	finish_wait(&root->log_writer_wait, &wait);
2993 }
2994 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2995 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2996 					struct btrfs_log_ctx *ctx)
2997 {
2998 	if (!ctx)
2999 		return;
3000 
3001 	mutex_lock(&root->log_mutex);
3002 	list_del_init(&ctx->list);
3003 	mutex_unlock(&root->log_mutex);
3004 }
3005 
3006 /*
3007  * Invoked in log mutex context, or be sure there is no other task which
3008  * can access the list.
3009  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3010 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3011 					     int index, int error)
3012 {
3013 	struct btrfs_log_ctx *ctx;
3014 	struct btrfs_log_ctx *safe;
3015 
3016 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3017 		list_del_init(&ctx->list);
3018 		ctx->log_ret = error;
3019 	}
3020 
3021 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3022 }
3023 
3024 /*
3025  * btrfs_sync_log does sends a given tree log down to the disk and
3026  * updates the super blocks to record it.  When this call is done,
3027  * you know that any inodes previously logged are safely on disk only
3028  * if it returns 0.
3029  *
3030  * Any other return value means you need to call btrfs_commit_transaction.
3031  * Some of the edge cases for fsyncing directories that have had unlinks
3032  * or renames done in the past mean that sometimes the only safe
3033  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3034  * that has happened.
3035  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3036 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3037 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3038 {
3039 	int index1;
3040 	int index2;
3041 	int mark;
3042 	int ret;
3043 	struct btrfs_fs_info *fs_info = root->fs_info;
3044 	struct btrfs_root *log = root->log_root;
3045 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3046 	struct btrfs_root_item new_root_item;
3047 	int log_transid = 0;
3048 	struct btrfs_log_ctx root_log_ctx;
3049 	struct blk_plug plug;
3050 
3051 	mutex_lock(&root->log_mutex);
3052 	log_transid = ctx->log_transid;
3053 	if (root->log_transid_committed >= log_transid) {
3054 		mutex_unlock(&root->log_mutex);
3055 		return ctx->log_ret;
3056 	}
3057 
3058 	index1 = log_transid % 2;
3059 	if (atomic_read(&root->log_commit[index1])) {
3060 		wait_log_commit(root, log_transid);
3061 		mutex_unlock(&root->log_mutex);
3062 		return ctx->log_ret;
3063 	}
3064 	ASSERT(log_transid == root->log_transid);
3065 	atomic_set(&root->log_commit[index1], 1);
3066 
3067 	/* wait for previous tree log sync to complete */
3068 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3069 		wait_log_commit(root, log_transid - 1);
3070 
3071 	while (1) {
3072 		int batch = atomic_read(&root->log_batch);
3073 		/* when we're on an ssd, just kick the log commit out */
3074 		if (!btrfs_test_opt(fs_info, SSD) &&
3075 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3076 			mutex_unlock(&root->log_mutex);
3077 			schedule_timeout_uninterruptible(1);
3078 			mutex_lock(&root->log_mutex);
3079 		}
3080 		wait_for_writer(root);
3081 		if (batch == atomic_read(&root->log_batch))
3082 			break;
3083 	}
3084 
3085 	/* bail out if we need to do a full commit */
3086 	if (btrfs_need_log_full_commit(trans)) {
3087 		ret = -EAGAIN;
3088 		mutex_unlock(&root->log_mutex);
3089 		goto out;
3090 	}
3091 
3092 	if (log_transid % 2 == 0)
3093 		mark = EXTENT_DIRTY;
3094 	else
3095 		mark = EXTENT_NEW;
3096 
3097 	/* we start IO on  all the marked extents here, but we don't actually
3098 	 * wait for them until later.
3099 	 */
3100 	blk_start_plug(&plug);
3101 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3102 	if (ret) {
3103 		blk_finish_plug(&plug);
3104 		btrfs_abort_transaction(trans, ret);
3105 		btrfs_set_log_full_commit(trans);
3106 		mutex_unlock(&root->log_mutex);
3107 		goto out;
3108 	}
3109 
3110 	/*
3111 	 * We _must_ update under the root->log_mutex in order to make sure we
3112 	 * have a consistent view of the log root we are trying to commit at
3113 	 * this moment.
3114 	 *
3115 	 * We _must_ copy this into a local copy, because we are not holding the
3116 	 * log_root_tree->log_mutex yet.  This is important because when we
3117 	 * commit the log_root_tree we must have a consistent view of the
3118 	 * log_root_tree when we update the super block to point at the
3119 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3120 	 * with the commit and possibly point at the new block which we may not
3121 	 * have written out.
3122 	 */
3123 	btrfs_set_root_node(&log->root_item, log->node);
3124 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3125 
3126 	root->log_transid++;
3127 	log->log_transid = root->log_transid;
3128 	root->log_start_pid = 0;
3129 	/*
3130 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3131 	 * in their headers. new modifications of the log will be written to
3132 	 * new positions. so it's safe to allow log writers to go in.
3133 	 */
3134 	mutex_unlock(&root->log_mutex);
3135 
3136 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3137 
3138 	mutex_lock(&log_root_tree->log_mutex);
3139 	atomic_inc(&log_root_tree->log_batch);
3140 	atomic_inc(&log_root_tree->log_writers);
3141 
3142 	index2 = log_root_tree->log_transid % 2;
3143 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3144 	root_log_ctx.log_transid = log_root_tree->log_transid;
3145 
3146 	mutex_unlock(&log_root_tree->log_mutex);
3147 
3148 	mutex_lock(&log_root_tree->log_mutex);
3149 
3150 	/*
3151 	 * Now we are safe to update the log_root_tree because we're under the
3152 	 * log_mutex, and we're a current writer so we're holding the commit
3153 	 * open until we drop the log_mutex.
3154 	 */
3155 	ret = update_log_root(trans, log, &new_root_item);
3156 
3157 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3158 		/* atomic_dec_and_test implies a barrier */
3159 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3160 	}
3161 
3162 	if (ret) {
3163 		if (!list_empty(&root_log_ctx.list))
3164 			list_del_init(&root_log_ctx.list);
3165 
3166 		blk_finish_plug(&plug);
3167 		btrfs_set_log_full_commit(trans);
3168 
3169 		if (ret != -ENOSPC) {
3170 			btrfs_abort_transaction(trans, ret);
3171 			mutex_unlock(&log_root_tree->log_mutex);
3172 			goto out;
3173 		}
3174 		btrfs_wait_tree_log_extents(log, mark);
3175 		mutex_unlock(&log_root_tree->log_mutex);
3176 		ret = -EAGAIN;
3177 		goto out;
3178 	}
3179 
3180 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3181 		blk_finish_plug(&plug);
3182 		list_del_init(&root_log_ctx.list);
3183 		mutex_unlock(&log_root_tree->log_mutex);
3184 		ret = root_log_ctx.log_ret;
3185 		goto out;
3186 	}
3187 
3188 	index2 = root_log_ctx.log_transid % 2;
3189 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3190 		blk_finish_plug(&plug);
3191 		ret = btrfs_wait_tree_log_extents(log, mark);
3192 		wait_log_commit(log_root_tree,
3193 				root_log_ctx.log_transid);
3194 		mutex_unlock(&log_root_tree->log_mutex);
3195 		if (!ret)
3196 			ret = root_log_ctx.log_ret;
3197 		goto out;
3198 	}
3199 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3200 	atomic_set(&log_root_tree->log_commit[index2], 1);
3201 
3202 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3203 		wait_log_commit(log_root_tree,
3204 				root_log_ctx.log_transid - 1);
3205 	}
3206 
3207 	wait_for_writer(log_root_tree);
3208 
3209 	/*
3210 	 * now that we've moved on to the tree of log tree roots,
3211 	 * check the full commit flag again
3212 	 */
3213 	if (btrfs_need_log_full_commit(trans)) {
3214 		blk_finish_plug(&plug);
3215 		btrfs_wait_tree_log_extents(log, mark);
3216 		mutex_unlock(&log_root_tree->log_mutex);
3217 		ret = -EAGAIN;
3218 		goto out_wake_log_root;
3219 	}
3220 
3221 	ret = btrfs_write_marked_extents(fs_info,
3222 					 &log_root_tree->dirty_log_pages,
3223 					 EXTENT_DIRTY | EXTENT_NEW);
3224 	blk_finish_plug(&plug);
3225 	if (ret) {
3226 		btrfs_set_log_full_commit(trans);
3227 		btrfs_abort_transaction(trans, ret);
3228 		mutex_unlock(&log_root_tree->log_mutex);
3229 		goto out_wake_log_root;
3230 	}
3231 	ret = btrfs_wait_tree_log_extents(log, mark);
3232 	if (!ret)
3233 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3234 						  EXTENT_NEW | EXTENT_DIRTY);
3235 	if (ret) {
3236 		btrfs_set_log_full_commit(trans);
3237 		mutex_unlock(&log_root_tree->log_mutex);
3238 		goto out_wake_log_root;
3239 	}
3240 
3241 	btrfs_set_super_log_root(fs_info->super_for_commit,
3242 				 log_root_tree->node->start);
3243 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3244 				       btrfs_header_level(log_root_tree->node));
3245 
3246 	log_root_tree->log_transid++;
3247 	mutex_unlock(&log_root_tree->log_mutex);
3248 
3249 	/*
3250 	 * Nobody else is going to jump in and write the ctree
3251 	 * super here because the log_commit atomic below is protecting
3252 	 * us.  We must be called with a transaction handle pinning
3253 	 * the running transaction open, so a full commit can't hop
3254 	 * in and cause problems either.
3255 	 */
3256 	ret = write_all_supers(fs_info, 1);
3257 	if (ret) {
3258 		btrfs_set_log_full_commit(trans);
3259 		btrfs_abort_transaction(trans, ret);
3260 		goto out_wake_log_root;
3261 	}
3262 
3263 	mutex_lock(&root->log_mutex);
3264 	if (root->last_log_commit < log_transid)
3265 		root->last_log_commit = log_transid;
3266 	mutex_unlock(&root->log_mutex);
3267 
3268 out_wake_log_root:
3269 	mutex_lock(&log_root_tree->log_mutex);
3270 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3271 
3272 	log_root_tree->log_transid_committed++;
3273 	atomic_set(&log_root_tree->log_commit[index2], 0);
3274 	mutex_unlock(&log_root_tree->log_mutex);
3275 
3276 	/*
3277 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3278 	 * all the updates above are seen by the woken threads. It might not be
3279 	 * necessary, but proving that seems to be hard.
3280 	 */
3281 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3282 out:
3283 	mutex_lock(&root->log_mutex);
3284 	btrfs_remove_all_log_ctxs(root, index1, ret);
3285 	root->log_transid_committed++;
3286 	atomic_set(&root->log_commit[index1], 0);
3287 	mutex_unlock(&root->log_mutex);
3288 
3289 	/*
3290 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3291 	 * all the updates above are seen by the woken threads. It might not be
3292 	 * necessary, but proving that seems to be hard.
3293 	 */
3294 	cond_wake_up(&root->log_commit_wait[index1]);
3295 	return ret;
3296 }
3297 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3298 static void free_log_tree(struct btrfs_trans_handle *trans,
3299 			  struct btrfs_root *log)
3300 {
3301 	int ret;
3302 	struct walk_control wc = {
3303 		.free = 1,
3304 		.process_func = process_one_buffer
3305 	};
3306 
3307 	ret = walk_log_tree(trans, log, &wc);
3308 	if (ret) {
3309 		if (trans)
3310 			btrfs_abort_transaction(trans, ret);
3311 		else
3312 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3313 	}
3314 
3315 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3316 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3317 	free_extent_buffer(log->node);
3318 	kfree(log);
3319 }
3320 
3321 /*
3322  * free all the extents used by the tree log.  This should be called
3323  * at commit time of the full transaction
3324  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3325 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3326 {
3327 	if (root->log_root) {
3328 		free_log_tree(trans, root->log_root);
3329 		root->log_root = NULL;
3330 	}
3331 	return 0;
3332 }
3333 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3334 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3335 			     struct btrfs_fs_info *fs_info)
3336 {
3337 	if (fs_info->log_root_tree) {
3338 		free_log_tree(trans, fs_info->log_root_tree);
3339 		fs_info->log_root_tree = NULL;
3340 	}
3341 	return 0;
3342 }
3343 
3344 /*
3345  * Check if an inode was logged in the current transaction. We can't always rely
3346  * on an inode's logged_trans value, because it's an in-memory only field and
3347  * therefore not persisted. This means that its value is lost if the inode gets
3348  * evicted and loaded again from disk (in which case it has a value of 0, and
3349  * certainly it is smaller then any possible transaction ID), when that happens
3350  * the full_sync flag is set in the inode's runtime flags, so on that case we
3351  * assume eviction happened and ignore the logged_trans value, assuming the
3352  * worst case, that the inode was logged before in the current transaction.
3353  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3354 static bool inode_logged(struct btrfs_trans_handle *trans,
3355 			 struct btrfs_inode *inode)
3356 {
3357 	if (inode->logged_trans == trans->transid)
3358 		return true;
3359 
3360 	if (inode->last_trans == trans->transid &&
3361 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3362 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3363 		return true;
3364 
3365 	return false;
3366 }
3367 
3368 /*
3369  * If both a file and directory are logged, and unlinks or renames are
3370  * mixed in, we have a few interesting corners:
3371  *
3372  * create file X in dir Y
3373  * link file X to X.link in dir Y
3374  * fsync file X
3375  * unlink file X but leave X.link
3376  * fsync dir Y
3377  *
3378  * After a crash we would expect only X.link to exist.  But file X
3379  * didn't get fsync'd again so the log has back refs for X and X.link.
3380  *
3381  * We solve this by removing directory entries and inode backrefs from the
3382  * log when a file that was logged in the current transaction is
3383  * unlinked.  Any later fsync will include the updated log entries, and
3384  * we'll be able to reconstruct the proper directory items from backrefs.
3385  *
3386  * This optimizations allows us to avoid relogging the entire inode
3387  * or the entire directory.
3388  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3389 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3390 				 struct btrfs_root *root,
3391 				 const char *name, int name_len,
3392 				 struct btrfs_inode *dir, u64 index)
3393 {
3394 	struct btrfs_root *log;
3395 	struct btrfs_dir_item *di;
3396 	struct btrfs_path *path;
3397 	int ret;
3398 	int err = 0;
3399 	int bytes_del = 0;
3400 	u64 dir_ino = btrfs_ino(dir);
3401 
3402 	if (!inode_logged(trans, dir))
3403 		return 0;
3404 
3405 	ret = join_running_log_trans(root);
3406 	if (ret)
3407 		return 0;
3408 
3409 	mutex_lock(&dir->log_mutex);
3410 
3411 	log = root->log_root;
3412 	path = btrfs_alloc_path();
3413 	if (!path) {
3414 		err = -ENOMEM;
3415 		goto out_unlock;
3416 	}
3417 
3418 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3419 				   name, name_len, -1);
3420 	if (IS_ERR(di)) {
3421 		err = PTR_ERR(di);
3422 		goto fail;
3423 	}
3424 	if (di) {
3425 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3426 		bytes_del += name_len;
3427 		if (ret) {
3428 			err = ret;
3429 			goto fail;
3430 		}
3431 	}
3432 	btrfs_release_path(path);
3433 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3434 					 index, name, name_len, -1);
3435 	if (IS_ERR(di)) {
3436 		err = PTR_ERR(di);
3437 		goto fail;
3438 	}
3439 	if (di) {
3440 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3441 		bytes_del += name_len;
3442 		if (ret) {
3443 			err = ret;
3444 			goto fail;
3445 		}
3446 	}
3447 
3448 	/* update the directory size in the log to reflect the names
3449 	 * we have removed
3450 	 */
3451 	if (bytes_del) {
3452 		struct btrfs_key key;
3453 
3454 		key.objectid = dir_ino;
3455 		key.offset = 0;
3456 		key.type = BTRFS_INODE_ITEM_KEY;
3457 		btrfs_release_path(path);
3458 
3459 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3460 		if (ret < 0) {
3461 			err = ret;
3462 			goto fail;
3463 		}
3464 		if (ret == 0) {
3465 			struct btrfs_inode_item *item;
3466 			u64 i_size;
3467 
3468 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3469 					      struct btrfs_inode_item);
3470 			i_size = btrfs_inode_size(path->nodes[0], item);
3471 			if (i_size > bytes_del)
3472 				i_size -= bytes_del;
3473 			else
3474 				i_size = 0;
3475 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3476 			btrfs_mark_buffer_dirty(path->nodes[0]);
3477 		} else
3478 			ret = 0;
3479 		btrfs_release_path(path);
3480 	}
3481 fail:
3482 	btrfs_free_path(path);
3483 out_unlock:
3484 	mutex_unlock(&dir->log_mutex);
3485 	if (ret == -ENOSPC) {
3486 		btrfs_set_log_full_commit(trans);
3487 		ret = 0;
3488 	} else if (ret < 0)
3489 		btrfs_abort_transaction(trans, ret);
3490 
3491 	btrfs_end_log_trans(root);
3492 
3493 	return err;
3494 }
3495 
3496 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3497 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3498 			       struct btrfs_root *root,
3499 			       const char *name, int name_len,
3500 			       struct btrfs_inode *inode, u64 dirid)
3501 {
3502 	struct btrfs_root *log;
3503 	u64 index;
3504 	int ret;
3505 
3506 	if (!inode_logged(trans, inode))
3507 		return 0;
3508 
3509 	ret = join_running_log_trans(root);
3510 	if (ret)
3511 		return 0;
3512 	log = root->log_root;
3513 	mutex_lock(&inode->log_mutex);
3514 
3515 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3516 				  dirid, &index);
3517 	mutex_unlock(&inode->log_mutex);
3518 	if (ret == -ENOSPC) {
3519 		btrfs_set_log_full_commit(trans);
3520 		ret = 0;
3521 	} else if (ret < 0 && ret != -ENOENT)
3522 		btrfs_abort_transaction(trans, ret);
3523 	btrfs_end_log_trans(root);
3524 
3525 	return ret;
3526 }
3527 
3528 /*
3529  * creates a range item in the log for 'dirid'.  first_offset and
3530  * last_offset tell us which parts of the key space the log should
3531  * be considered authoritative for.
3532  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3533 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3534 				       struct btrfs_root *log,
3535 				       struct btrfs_path *path,
3536 				       int key_type, u64 dirid,
3537 				       u64 first_offset, u64 last_offset)
3538 {
3539 	int ret;
3540 	struct btrfs_key key;
3541 	struct btrfs_dir_log_item *item;
3542 
3543 	key.objectid = dirid;
3544 	key.offset = first_offset;
3545 	if (key_type == BTRFS_DIR_ITEM_KEY)
3546 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3547 	else
3548 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3549 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3550 	if (ret)
3551 		return ret;
3552 
3553 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3554 			      struct btrfs_dir_log_item);
3555 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3556 	btrfs_mark_buffer_dirty(path->nodes[0]);
3557 	btrfs_release_path(path);
3558 	return 0;
3559 }
3560 
3561 /*
3562  * log all the items included in the current transaction for a given
3563  * directory.  This also creates the range items in the log tree required
3564  * to replay anything deleted before the fsync
3565  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3566 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3567 			  struct btrfs_root *root, struct btrfs_inode *inode,
3568 			  struct btrfs_path *path,
3569 			  struct btrfs_path *dst_path, int key_type,
3570 			  struct btrfs_log_ctx *ctx,
3571 			  u64 min_offset, u64 *last_offset_ret)
3572 {
3573 	struct btrfs_key min_key;
3574 	struct btrfs_root *log = root->log_root;
3575 	struct extent_buffer *src;
3576 	int err = 0;
3577 	int ret;
3578 	int i;
3579 	int nritems;
3580 	u64 first_offset = min_offset;
3581 	u64 last_offset = (u64)-1;
3582 	u64 ino = btrfs_ino(inode);
3583 
3584 	log = root->log_root;
3585 
3586 	min_key.objectid = ino;
3587 	min_key.type = key_type;
3588 	min_key.offset = min_offset;
3589 
3590 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3591 
3592 	/*
3593 	 * we didn't find anything from this transaction, see if there
3594 	 * is anything at all
3595 	 */
3596 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3597 		min_key.objectid = ino;
3598 		min_key.type = key_type;
3599 		min_key.offset = (u64)-1;
3600 		btrfs_release_path(path);
3601 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3602 		if (ret < 0) {
3603 			btrfs_release_path(path);
3604 			return ret;
3605 		}
3606 		ret = btrfs_previous_item(root, path, ino, key_type);
3607 
3608 		/* if ret == 0 there are items for this type,
3609 		 * create a range to tell us the last key of this type.
3610 		 * otherwise, there are no items in this directory after
3611 		 * *min_offset, and we create a range to indicate that.
3612 		 */
3613 		if (ret == 0) {
3614 			struct btrfs_key tmp;
3615 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3616 					      path->slots[0]);
3617 			if (key_type == tmp.type)
3618 				first_offset = max(min_offset, tmp.offset) + 1;
3619 		}
3620 		goto done;
3621 	}
3622 
3623 	/* go backward to find any previous key */
3624 	ret = btrfs_previous_item(root, path, ino, key_type);
3625 	if (ret == 0) {
3626 		struct btrfs_key tmp;
3627 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3628 		if (key_type == tmp.type) {
3629 			first_offset = tmp.offset;
3630 			ret = overwrite_item(trans, log, dst_path,
3631 					     path->nodes[0], path->slots[0],
3632 					     &tmp);
3633 			if (ret) {
3634 				err = ret;
3635 				goto done;
3636 			}
3637 		}
3638 	}
3639 	btrfs_release_path(path);
3640 
3641 	/*
3642 	 * Find the first key from this transaction again.  See the note for
3643 	 * log_new_dir_dentries, if we're logging a directory recursively we
3644 	 * won't be holding its i_mutex, which means we can modify the directory
3645 	 * while we're logging it.  If we remove an entry between our first
3646 	 * search and this search we'll not find the key again and can just
3647 	 * bail.
3648 	 */
3649 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3650 	if (ret != 0)
3651 		goto done;
3652 
3653 	/*
3654 	 * we have a block from this transaction, log every item in it
3655 	 * from our directory
3656 	 */
3657 	while (1) {
3658 		struct btrfs_key tmp;
3659 		src = path->nodes[0];
3660 		nritems = btrfs_header_nritems(src);
3661 		for (i = path->slots[0]; i < nritems; i++) {
3662 			struct btrfs_dir_item *di;
3663 
3664 			btrfs_item_key_to_cpu(src, &min_key, i);
3665 
3666 			if (min_key.objectid != ino || min_key.type != key_type)
3667 				goto done;
3668 			ret = overwrite_item(trans, log, dst_path, src, i,
3669 					     &min_key);
3670 			if (ret) {
3671 				err = ret;
3672 				goto done;
3673 			}
3674 
3675 			/*
3676 			 * We must make sure that when we log a directory entry,
3677 			 * the corresponding inode, after log replay, has a
3678 			 * matching link count. For example:
3679 			 *
3680 			 * touch foo
3681 			 * mkdir mydir
3682 			 * sync
3683 			 * ln foo mydir/bar
3684 			 * xfs_io -c "fsync" mydir
3685 			 * <crash>
3686 			 * <mount fs and log replay>
3687 			 *
3688 			 * Would result in a fsync log that when replayed, our
3689 			 * file inode would have a link count of 1, but we get
3690 			 * two directory entries pointing to the same inode.
3691 			 * After removing one of the names, it would not be
3692 			 * possible to remove the other name, which resulted
3693 			 * always in stale file handle errors, and would not
3694 			 * be possible to rmdir the parent directory, since
3695 			 * its i_size could never decrement to the value
3696 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3697 			 */
3698 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3699 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3700 			if (ctx &&
3701 			    (btrfs_dir_transid(src, di) == trans->transid ||
3702 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3703 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3704 				ctx->log_new_dentries = true;
3705 		}
3706 		path->slots[0] = nritems;
3707 
3708 		/*
3709 		 * look ahead to the next item and see if it is also
3710 		 * from this directory and from this transaction
3711 		 */
3712 		ret = btrfs_next_leaf(root, path);
3713 		if (ret) {
3714 			if (ret == 1)
3715 				last_offset = (u64)-1;
3716 			else
3717 				err = ret;
3718 			goto done;
3719 		}
3720 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3721 		if (tmp.objectid != ino || tmp.type != key_type) {
3722 			last_offset = (u64)-1;
3723 			goto done;
3724 		}
3725 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3726 			ret = overwrite_item(trans, log, dst_path,
3727 					     path->nodes[0], path->slots[0],
3728 					     &tmp);
3729 			if (ret)
3730 				err = ret;
3731 			else
3732 				last_offset = tmp.offset;
3733 			goto done;
3734 		}
3735 	}
3736 done:
3737 	btrfs_release_path(path);
3738 	btrfs_release_path(dst_path);
3739 
3740 	if (err == 0) {
3741 		*last_offset_ret = last_offset;
3742 		/*
3743 		 * insert the log range keys to indicate where the log
3744 		 * is valid
3745 		 */
3746 		ret = insert_dir_log_key(trans, log, path, key_type,
3747 					 ino, first_offset, last_offset);
3748 		if (ret)
3749 			err = ret;
3750 	}
3751 	return err;
3752 }
3753 
3754 /*
3755  * logging directories is very similar to logging inodes, We find all the items
3756  * from the current transaction and write them to the log.
3757  *
3758  * The recovery code scans the directory in the subvolume, and if it finds a
3759  * key in the range logged that is not present in the log tree, then it means
3760  * that dir entry was unlinked during the transaction.
3761  *
3762  * In order for that scan to work, we must include one key smaller than
3763  * the smallest logged by this transaction and one key larger than the largest
3764  * key logged by this transaction.
3765  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3766 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3767 			  struct btrfs_root *root, struct btrfs_inode *inode,
3768 			  struct btrfs_path *path,
3769 			  struct btrfs_path *dst_path,
3770 			  struct btrfs_log_ctx *ctx)
3771 {
3772 	u64 min_key;
3773 	u64 max_key;
3774 	int ret;
3775 	int key_type = BTRFS_DIR_ITEM_KEY;
3776 
3777 again:
3778 	min_key = 0;
3779 	max_key = 0;
3780 	while (1) {
3781 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3782 				ctx, min_key, &max_key);
3783 		if (ret)
3784 			return ret;
3785 		if (max_key == (u64)-1)
3786 			break;
3787 		min_key = max_key + 1;
3788 	}
3789 
3790 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3791 		key_type = BTRFS_DIR_INDEX_KEY;
3792 		goto again;
3793 	}
3794 	return 0;
3795 }
3796 
3797 /*
3798  * a helper function to drop items from the log before we relog an
3799  * inode.  max_key_type indicates the highest item type to remove.
3800  * This cannot be run for file data extents because it does not
3801  * free the extents they point to.
3802  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3803 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3804 				  struct btrfs_root *log,
3805 				  struct btrfs_path *path,
3806 				  u64 objectid, int max_key_type)
3807 {
3808 	int ret;
3809 	struct btrfs_key key;
3810 	struct btrfs_key found_key;
3811 	int start_slot;
3812 
3813 	key.objectid = objectid;
3814 	key.type = max_key_type;
3815 	key.offset = (u64)-1;
3816 
3817 	while (1) {
3818 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3819 		BUG_ON(ret == 0); /* Logic error */
3820 		if (ret < 0)
3821 			break;
3822 
3823 		if (path->slots[0] == 0)
3824 			break;
3825 
3826 		path->slots[0]--;
3827 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3828 				      path->slots[0]);
3829 
3830 		if (found_key.objectid != objectid)
3831 			break;
3832 
3833 		found_key.offset = 0;
3834 		found_key.type = 0;
3835 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3836 				       &start_slot);
3837 		if (ret < 0)
3838 			break;
3839 
3840 		ret = btrfs_del_items(trans, log, path, start_slot,
3841 				      path->slots[0] - start_slot + 1);
3842 		/*
3843 		 * If start slot isn't 0 then we don't need to re-search, we've
3844 		 * found the last guy with the objectid in this tree.
3845 		 */
3846 		if (ret || start_slot != 0)
3847 			break;
3848 		btrfs_release_path(path);
3849 	}
3850 	btrfs_release_path(path);
3851 	if (ret > 0)
3852 		ret = 0;
3853 	return ret;
3854 }
3855 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3856 static void fill_inode_item(struct btrfs_trans_handle *trans,
3857 			    struct extent_buffer *leaf,
3858 			    struct btrfs_inode_item *item,
3859 			    struct inode *inode, int log_inode_only,
3860 			    u64 logged_isize)
3861 {
3862 	struct btrfs_map_token token;
3863 
3864 	btrfs_init_map_token(&token, leaf);
3865 
3866 	if (log_inode_only) {
3867 		/* set the generation to zero so the recover code
3868 		 * can tell the difference between an logging
3869 		 * just to say 'this inode exists' and a logging
3870 		 * to say 'update this inode with these values'
3871 		 */
3872 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3873 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3874 	} else {
3875 		btrfs_set_token_inode_generation(leaf, item,
3876 						 BTRFS_I(inode)->generation,
3877 						 &token);
3878 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3879 	}
3880 
3881 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3882 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3883 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3884 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3885 
3886 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3887 				     inode->i_atime.tv_sec, &token);
3888 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3889 				      inode->i_atime.tv_nsec, &token);
3890 
3891 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3892 				     inode->i_mtime.tv_sec, &token);
3893 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3894 				      inode->i_mtime.tv_nsec, &token);
3895 
3896 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3897 				     inode->i_ctime.tv_sec, &token);
3898 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3899 				      inode->i_ctime.tv_nsec, &token);
3900 
3901 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3902 				     &token);
3903 
3904 	btrfs_set_token_inode_sequence(leaf, item,
3905 				       inode_peek_iversion(inode), &token);
3906 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3907 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3908 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3909 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3910 }
3911 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3912 static int log_inode_item(struct btrfs_trans_handle *trans,
3913 			  struct btrfs_root *log, struct btrfs_path *path,
3914 			  struct btrfs_inode *inode)
3915 {
3916 	struct btrfs_inode_item *inode_item;
3917 	int ret;
3918 
3919 	ret = btrfs_insert_empty_item(trans, log, path,
3920 				      &inode->location, sizeof(*inode_item));
3921 	if (ret && ret != -EEXIST)
3922 		return ret;
3923 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3924 				    struct btrfs_inode_item);
3925 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3926 			0, 0);
3927 	btrfs_release_path(path);
3928 	return 0;
3929 }
3930 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3931 static int log_csums(struct btrfs_trans_handle *trans,
3932 		     struct btrfs_root *log_root,
3933 		     struct btrfs_ordered_sum *sums)
3934 {
3935 	int ret;
3936 
3937 	/*
3938 	 * Due to extent cloning, we might have logged a csum item that covers a
3939 	 * subrange of a cloned extent, and later we can end up logging a csum
3940 	 * item for a larger subrange of the same extent or the entire range.
3941 	 * This would leave csum items in the log tree that cover the same range
3942 	 * and break the searches for checksums in the log tree, resulting in
3943 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3944 	 * trim and adjust) any existing csum items in the log for this range.
3945 	 */
3946 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3947 	if (ret)
3948 		return ret;
3949 
3950 	return btrfs_csum_file_blocks(trans, log_root, sums);
3951 }
3952 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,u64 * last_extent,int start_slot,int nr,int inode_only,u64 logged_isize)3953 static noinline int copy_items(struct btrfs_trans_handle *trans,
3954 			       struct btrfs_inode *inode,
3955 			       struct btrfs_path *dst_path,
3956 			       struct btrfs_path *src_path, u64 *last_extent,
3957 			       int start_slot, int nr, int inode_only,
3958 			       u64 logged_isize)
3959 {
3960 	struct btrfs_fs_info *fs_info = trans->fs_info;
3961 	unsigned long src_offset;
3962 	unsigned long dst_offset;
3963 	struct btrfs_root *log = inode->root->log_root;
3964 	struct btrfs_file_extent_item *extent;
3965 	struct btrfs_inode_item *inode_item;
3966 	struct extent_buffer *src = src_path->nodes[0];
3967 	struct btrfs_key first_key, last_key, key;
3968 	int ret;
3969 	struct btrfs_key *ins_keys;
3970 	u32 *ins_sizes;
3971 	char *ins_data;
3972 	int i;
3973 	struct list_head ordered_sums;
3974 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3975 	bool has_extents = false;
3976 	bool need_find_last_extent = true;
3977 	bool done = false;
3978 
3979 	INIT_LIST_HEAD(&ordered_sums);
3980 
3981 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3982 			   nr * sizeof(u32), GFP_NOFS);
3983 	if (!ins_data)
3984 		return -ENOMEM;
3985 
3986 	first_key.objectid = (u64)-1;
3987 
3988 	ins_sizes = (u32 *)ins_data;
3989 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3990 
3991 	for (i = 0; i < nr; i++) {
3992 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3993 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3994 	}
3995 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3996 				       ins_keys, ins_sizes, nr);
3997 	if (ret) {
3998 		kfree(ins_data);
3999 		return ret;
4000 	}
4001 
4002 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4003 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4004 						   dst_path->slots[0]);
4005 
4006 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4007 
4008 		if (i == nr - 1)
4009 			last_key = ins_keys[i];
4010 
4011 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4012 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4013 						    dst_path->slots[0],
4014 						    struct btrfs_inode_item);
4015 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4016 					&inode->vfs_inode,
4017 					inode_only == LOG_INODE_EXISTS,
4018 					logged_isize);
4019 		} else {
4020 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4021 					   src_offset, ins_sizes[i]);
4022 		}
4023 
4024 		/*
4025 		 * We set need_find_last_extent here in case we know we were
4026 		 * processing other items and then walk into the first extent in
4027 		 * the inode.  If we don't hit an extent then nothing changes,
4028 		 * we'll do the last search the next time around.
4029 		 */
4030 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4031 			has_extents = true;
4032 			if (first_key.objectid == (u64)-1)
4033 				first_key = ins_keys[i];
4034 		} else {
4035 			need_find_last_extent = false;
4036 		}
4037 
4038 		/* take a reference on file data extents so that truncates
4039 		 * or deletes of this inode don't have to relog the inode
4040 		 * again
4041 		 */
4042 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4043 		    !skip_csum) {
4044 			int found_type;
4045 			extent = btrfs_item_ptr(src, start_slot + i,
4046 						struct btrfs_file_extent_item);
4047 
4048 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4049 				continue;
4050 
4051 			found_type = btrfs_file_extent_type(src, extent);
4052 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4053 				u64 ds, dl, cs, cl;
4054 				ds = btrfs_file_extent_disk_bytenr(src,
4055 								extent);
4056 				/* ds == 0 is a hole */
4057 				if (ds == 0)
4058 					continue;
4059 
4060 				dl = btrfs_file_extent_disk_num_bytes(src,
4061 								extent);
4062 				cs = btrfs_file_extent_offset(src, extent);
4063 				cl = btrfs_file_extent_num_bytes(src,
4064 								extent);
4065 				if (btrfs_file_extent_compression(src,
4066 								  extent)) {
4067 					cs = 0;
4068 					cl = dl;
4069 				}
4070 
4071 				ret = btrfs_lookup_csums_range(
4072 						fs_info->csum_root,
4073 						ds + cs, ds + cs + cl - 1,
4074 						&ordered_sums, 0);
4075 				if (ret) {
4076 					btrfs_release_path(dst_path);
4077 					kfree(ins_data);
4078 					return ret;
4079 				}
4080 			}
4081 		}
4082 	}
4083 
4084 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4085 	btrfs_release_path(dst_path);
4086 	kfree(ins_data);
4087 
4088 	/*
4089 	 * we have to do this after the loop above to avoid changing the
4090 	 * log tree while trying to change the log tree.
4091 	 */
4092 	ret = 0;
4093 	while (!list_empty(&ordered_sums)) {
4094 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4095 						   struct btrfs_ordered_sum,
4096 						   list);
4097 		if (!ret)
4098 			ret = log_csums(trans, log, sums);
4099 		list_del(&sums->list);
4100 		kfree(sums);
4101 	}
4102 
4103 	if (!has_extents)
4104 		return ret;
4105 
4106 	if (need_find_last_extent && *last_extent == first_key.offset) {
4107 		/*
4108 		 * We don't have any leafs between our current one and the one
4109 		 * we processed before that can have file extent items for our
4110 		 * inode (and have a generation number smaller than our current
4111 		 * transaction id).
4112 		 */
4113 		need_find_last_extent = false;
4114 	}
4115 
4116 	/*
4117 	 * Because we use btrfs_search_forward we could skip leaves that were
4118 	 * not modified and then assume *last_extent is valid when it really
4119 	 * isn't.  So back up to the previous leaf and read the end of the last
4120 	 * extent before we go and fill in holes.
4121 	 */
4122 	if (need_find_last_extent) {
4123 		u64 len;
4124 
4125 		ret = btrfs_prev_leaf(inode->root, src_path);
4126 		if (ret < 0)
4127 			return ret;
4128 		if (ret)
4129 			goto fill_holes;
4130 		if (src_path->slots[0])
4131 			src_path->slots[0]--;
4132 		src = src_path->nodes[0];
4133 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4134 		if (key.objectid != btrfs_ino(inode) ||
4135 		    key.type != BTRFS_EXTENT_DATA_KEY)
4136 			goto fill_holes;
4137 		extent = btrfs_item_ptr(src, src_path->slots[0],
4138 					struct btrfs_file_extent_item);
4139 		if (btrfs_file_extent_type(src, extent) ==
4140 		    BTRFS_FILE_EXTENT_INLINE) {
4141 			len = btrfs_file_extent_ram_bytes(src, extent);
4142 			*last_extent = ALIGN(key.offset + len,
4143 					     fs_info->sectorsize);
4144 		} else {
4145 			len = btrfs_file_extent_num_bytes(src, extent);
4146 			*last_extent = key.offset + len;
4147 		}
4148 	}
4149 fill_holes:
4150 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4151 	 * things could have happened
4152 	 *
4153 	 * 1) A merge could have happened, so we could currently be on a leaf
4154 	 * that holds what we were copying in the first place.
4155 	 * 2) A split could have happened, and now not all of the items we want
4156 	 * are on the same leaf.
4157 	 *
4158 	 * So we need to adjust how we search for holes, we need to drop the
4159 	 * path and re-search for the first extent key we found, and then walk
4160 	 * forward until we hit the last one we copied.
4161 	 */
4162 	if (need_find_last_extent) {
4163 		/* btrfs_prev_leaf could return 1 without releasing the path */
4164 		btrfs_release_path(src_path);
4165 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4166 				src_path, 0, 0);
4167 		if (ret < 0)
4168 			return ret;
4169 		ASSERT(ret == 0);
4170 		src = src_path->nodes[0];
4171 		i = src_path->slots[0];
4172 	} else {
4173 		i = start_slot;
4174 	}
4175 
4176 	/*
4177 	 * Ok so here we need to go through and fill in any holes we may have
4178 	 * to make sure that holes are punched for those areas in case they had
4179 	 * extents previously.
4180 	 */
4181 	while (!done) {
4182 		u64 offset, len;
4183 		u64 extent_end;
4184 
4185 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4186 			ret = btrfs_next_leaf(inode->root, src_path);
4187 			if (ret < 0)
4188 				return ret;
4189 			ASSERT(ret == 0);
4190 			src = src_path->nodes[0];
4191 			i = 0;
4192 			need_find_last_extent = true;
4193 		}
4194 
4195 		btrfs_item_key_to_cpu(src, &key, i);
4196 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4197 			done = true;
4198 		if (key.objectid != btrfs_ino(inode) ||
4199 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4200 			i++;
4201 			continue;
4202 		}
4203 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4204 		if (btrfs_file_extent_type(src, extent) ==
4205 		    BTRFS_FILE_EXTENT_INLINE) {
4206 			len = btrfs_file_extent_ram_bytes(src, extent);
4207 			extent_end = ALIGN(key.offset + len,
4208 					   fs_info->sectorsize);
4209 		} else {
4210 			len = btrfs_file_extent_num_bytes(src, extent);
4211 			extent_end = key.offset + len;
4212 		}
4213 		i++;
4214 
4215 		if (*last_extent == key.offset) {
4216 			*last_extent = extent_end;
4217 			continue;
4218 		}
4219 		offset = *last_extent;
4220 		len = key.offset - *last_extent;
4221 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4222 				offset, 0, 0, len, 0, len, 0, 0, 0);
4223 		if (ret)
4224 			break;
4225 		*last_extent = extent_end;
4226 	}
4227 
4228 	/*
4229 	 * Check if there is a hole between the last extent found in our leaf
4230 	 * and the first extent in the next leaf. If there is one, we need to
4231 	 * log an explicit hole so that at replay time we can punch the hole.
4232 	 */
4233 	if (ret == 0 &&
4234 	    key.objectid == btrfs_ino(inode) &&
4235 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4236 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4237 		ret = btrfs_next_leaf(inode->root, src_path);
4238 		need_find_last_extent = true;
4239 		if (ret > 0) {
4240 			ret = 0;
4241 		} else if (ret == 0) {
4242 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4243 					      src_path->slots[0]);
4244 			if (key.objectid == btrfs_ino(inode) &&
4245 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4246 			    *last_extent < key.offset) {
4247 				const u64 len = key.offset - *last_extent;
4248 
4249 				ret = btrfs_insert_file_extent(trans, log,
4250 							       btrfs_ino(inode),
4251 							       *last_extent, 0,
4252 							       0, len, 0, len,
4253 							       0, 0, 0);
4254 				*last_extent += len;
4255 			}
4256 		}
4257 	}
4258 	/*
4259 	 * Need to let the callers know we dropped the path so they should
4260 	 * re-search.
4261 	 */
4262 	if (!ret && need_find_last_extent)
4263 		ret = 1;
4264 	return ret;
4265 }
4266 
extent_cmp(void * priv,struct list_head * a,struct list_head * b)4267 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4268 {
4269 	struct extent_map *em1, *em2;
4270 
4271 	em1 = list_entry(a, struct extent_map, list);
4272 	em2 = list_entry(b, struct extent_map, list);
4273 
4274 	if (em1->start < em2->start)
4275 		return -1;
4276 	else if (em1->start > em2->start)
4277 		return 1;
4278 	return 0;
4279 }
4280 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em)4281 static int log_extent_csums(struct btrfs_trans_handle *trans,
4282 			    struct btrfs_inode *inode,
4283 			    struct btrfs_root *log_root,
4284 			    const struct extent_map *em)
4285 {
4286 	u64 csum_offset;
4287 	u64 csum_len;
4288 	LIST_HEAD(ordered_sums);
4289 	int ret = 0;
4290 
4291 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4292 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4293 	    em->block_start == EXTENT_MAP_HOLE)
4294 		return 0;
4295 
4296 	/* If we're compressed we have to save the entire range of csums. */
4297 	if (em->compress_type) {
4298 		csum_offset = 0;
4299 		csum_len = max(em->block_len, em->orig_block_len);
4300 	} else {
4301 		csum_offset = em->mod_start - em->start;
4302 		csum_len = em->mod_len;
4303 	}
4304 
4305 	/* block start is already adjusted for the file extent offset. */
4306 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4307 				       em->block_start + csum_offset,
4308 				       em->block_start + csum_offset +
4309 				       csum_len - 1, &ordered_sums, 0);
4310 	if (ret)
4311 		return ret;
4312 
4313 	while (!list_empty(&ordered_sums)) {
4314 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4315 						   struct btrfs_ordered_sum,
4316 						   list);
4317 		if (!ret)
4318 			ret = log_csums(trans, log_root, sums);
4319 		list_del(&sums->list);
4320 		kfree(sums);
4321 	}
4322 
4323 	return ret;
4324 }
4325 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4326 static int log_one_extent(struct btrfs_trans_handle *trans,
4327 			  struct btrfs_inode *inode, struct btrfs_root *root,
4328 			  const struct extent_map *em,
4329 			  struct btrfs_path *path,
4330 			  struct btrfs_log_ctx *ctx)
4331 {
4332 	struct btrfs_root *log = root->log_root;
4333 	struct btrfs_file_extent_item *fi;
4334 	struct extent_buffer *leaf;
4335 	struct btrfs_map_token token;
4336 	struct btrfs_key key;
4337 	u64 extent_offset = em->start - em->orig_start;
4338 	u64 block_len;
4339 	int ret;
4340 	int extent_inserted = 0;
4341 
4342 	ret = log_extent_csums(trans, inode, log, em);
4343 	if (ret)
4344 		return ret;
4345 
4346 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4347 				   em->start + em->len, NULL, 0, 1,
4348 				   sizeof(*fi), &extent_inserted);
4349 	if (ret)
4350 		return ret;
4351 
4352 	if (!extent_inserted) {
4353 		key.objectid = btrfs_ino(inode);
4354 		key.type = BTRFS_EXTENT_DATA_KEY;
4355 		key.offset = em->start;
4356 
4357 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4358 					      sizeof(*fi));
4359 		if (ret)
4360 			return ret;
4361 	}
4362 	leaf = path->nodes[0];
4363 	btrfs_init_map_token(&token, leaf);
4364 	fi = btrfs_item_ptr(leaf, path->slots[0],
4365 			    struct btrfs_file_extent_item);
4366 
4367 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4368 					       &token);
4369 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4370 		btrfs_set_token_file_extent_type(leaf, fi,
4371 						 BTRFS_FILE_EXTENT_PREALLOC,
4372 						 &token);
4373 	else
4374 		btrfs_set_token_file_extent_type(leaf, fi,
4375 						 BTRFS_FILE_EXTENT_REG,
4376 						 &token);
4377 
4378 	block_len = max(em->block_len, em->orig_block_len);
4379 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4380 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4381 							em->block_start,
4382 							&token);
4383 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4384 							   &token);
4385 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4386 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4387 							em->block_start -
4388 							extent_offset, &token);
4389 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4390 							   &token);
4391 	} else {
4392 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4393 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4394 							   &token);
4395 	}
4396 
4397 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4398 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4399 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4400 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4401 						&token);
4402 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4403 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4404 	btrfs_mark_buffer_dirty(leaf);
4405 
4406 	btrfs_release_path(path);
4407 
4408 	return ret;
4409 }
4410 
4411 /*
4412  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4413  * lose them after doing a fast fsync and replaying the log. We scan the
4414  * subvolume's root instead of iterating the inode's extent map tree because
4415  * otherwise we can log incorrect extent items based on extent map conversion.
4416  * That can happen due to the fact that extent maps are merged when they
4417  * are not in the extent map tree's list of modified extents.
4418  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4419 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4420 				      struct btrfs_inode *inode,
4421 				      struct btrfs_path *path)
4422 {
4423 	struct btrfs_root *root = inode->root;
4424 	struct btrfs_key key;
4425 	const u64 i_size = i_size_read(&inode->vfs_inode);
4426 	const u64 ino = btrfs_ino(inode);
4427 	struct btrfs_path *dst_path = NULL;
4428 	u64 last_extent = (u64)-1;
4429 	int ins_nr = 0;
4430 	int start_slot;
4431 	int ret;
4432 
4433 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4434 		return 0;
4435 
4436 	key.objectid = ino;
4437 	key.type = BTRFS_EXTENT_DATA_KEY;
4438 	key.offset = i_size;
4439 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4440 	if (ret < 0)
4441 		goto out;
4442 
4443 	while (true) {
4444 		struct extent_buffer *leaf = path->nodes[0];
4445 		int slot = path->slots[0];
4446 
4447 		if (slot >= btrfs_header_nritems(leaf)) {
4448 			if (ins_nr > 0) {
4449 				ret = copy_items(trans, inode, dst_path, path,
4450 						 &last_extent, start_slot,
4451 						 ins_nr, 1, 0);
4452 				if (ret < 0)
4453 					goto out;
4454 				ins_nr = 0;
4455 			}
4456 			ret = btrfs_next_leaf(root, path);
4457 			if (ret < 0)
4458 				goto out;
4459 			if (ret > 0) {
4460 				ret = 0;
4461 				break;
4462 			}
4463 			continue;
4464 		}
4465 
4466 		btrfs_item_key_to_cpu(leaf, &key, slot);
4467 		if (key.objectid > ino)
4468 			break;
4469 		if (WARN_ON_ONCE(key.objectid < ino) ||
4470 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4471 		    key.offset < i_size) {
4472 			path->slots[0]++;
4473 			continue;
4474 		}
4475 		if (last_extent == (u64)-1) {
4476 			last_extent = key.offset;
4477 			/*
4478 			 * Avoid logging extent items logged in past fsync calls
4479 			 * and leading to duplicate keys in the log tree.
4480 			 */
4481 			do {
4482 				ret = btrfs_truncate_inode_items(trans,
4483 							 root->log_root,
4484 							 &inode->vfs_inode,
4485 							 i_size,
4486 							 BTRFS_EXTENT_DATA_KEY);
4487 			} while (ret == -EAGAIN);
4488 			if (ret)
4489 				goto out;
4490 		}
4491 		if (ins_nr == 0)
4492 			start_slot = slot;
4493 		ins_nr++;
4494 		path->slots[0]++;
4495 		if (!dst_path) {
4496 			dst_path = btrfs_alloc_path();
4497 			if (!dst_path) {
4498 				ret = -ENOMEM;
4499 				goto out;
4500 			}
4501 		}
4502 	}
4503 	if (ins_nr > 0) {
4504 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4505 				 start_slot, ins_nr, 1, 0);
4506 		if (ret > 0)
4507 			ret = 0;
4508 	}
4509 out:
4510 	btrfs_release_path(path);
4511 	btrfs_free_path(dst_path);
4512 	return ret;
4513 }
4514 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const u64 start,const u64 end)4515 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4516 				     struct btrfs_root *root,
4517 				     struct btrfs_inode *inode,
4518 				     struct btrfs_path *path,
4519 				     struct btrfs_log_ctx *ctx,
4520 				     const u64 start,
4521 				     const u64 end)
4522 {
4523 	struct extent_map *em, *n;
4524 	struct list_head extents;
4525 	struct extent_map_tree *tree = &inode->extent_tree;
4526 	u64 test_gen;
4527 	int ret = 0;
4528 	int num = 0;
4529 
4530 	INIT_LIST_HEAD(&extents);
4531 
4532 	write_lock(&tree->lock);
4533 	test_gen = root->fs_info->last_trans_committed;
4534 
4535 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4536 		/*
4537 		 * Skip extents outside our logging range. It's important to do
4538 		 * it for correctness because if we don't ignore them, we may
4539 		 * log them before their ordered extent completes, and therefore
4540 		 * we could log them without logging their respective checksums
4541 		 * (the checksum items are added to the csum tree at the very
4542 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4543 		 * outside of our range in the list, since we may have another
4544 		 * ranged fsync in the near future that needs them. If an extent
4545 		 * outside our range corresponds to a hole, log it to avoid
4546 		 * leaving gaps between extents (fsck will complain when we are
4547 		 * not using the NO_HOLES feature).
4548 		 */
4549 		if ((em->start > end || em->start + em->len <= start) &&
4550 		    em->block_start != EXTENT_MAP_HOLE)
4551 			continue;
4552 
4553 		list_del_init(&em->list);
4554 		/*
4555 		 * Just an arbitrary number, this can be really CPU intensive
4556 		 * once we start getting a lot of extents, and really once we
4557 		 * have a bunch of extents we just want to commit since it will
4558 		 * be faster.
4559 		 */
4560 		if (++num > 32768) {
4561 			list_del_init(&tree->modified_extents);
4562 			ret = -EFBIG;
4563 			goto process;
4564 		}
4565 
4566 		if (em->generation <= test_gen)
4567 			continue;
4568 
4569 		/* We log prealloc extents beyond eof later. */
4570 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4571 		    em->start >= i_size_read(&inode->vfs_inode))
4572 			continue;
4573 
4574 		/* Need a ref to keep it from getting evicted from cache */
4575 		refcount_inc(&em->refs);
4576 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4577 		list_add_tail(&em->list, &extents);
4578 		num++;
4579 	}
4580 
4581 	list_sort(NULL, &extents, extent_cmp);
4582 process:
4583 	while (!list_empty(&extents)) {
4584 		em = list_entry(extents.next, struct extent_map, list);
4585 
4586 		list_del_init(&em->list);
4587 
4588 		/*
4589 		 * If we had an error we just need to delete everybody from our
4590 		 * private list.
4591 		 */
4592 		if (ret) {
4593 			clear_em_logging(tree, em);
4594 			free_extent_map(em);
4595 			continue;
4596 		}
4597 
4598 		write_unlock(&tree->lock);
4599 
4600 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4601 		write_lock(&tree->lock);
4602 		clear_em_logging(tree, em);
4603 		free_extent_map(em);
4604 	}
4605 	WARN_ON(!list_empty(&extents));
4606 	write_unlock(&tree->lock);
4607 
4608 	btrfs_release_path(path);
4609 	if (!ret)
4610 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4611 
4612 	return ret;
4613 }
4614 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4615 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4616 			     struct btrfs_path *path, u64 *size_ret)
4617 {
4618 	struct btrfs_key key;
4619 	int ret;
4620 
4621 	key.objectid = btrfs_ino(inode);
4622 	key.type = BTRFS_INODE_ITEM_KEY;
4623 	key.offset = 0;
4624 
4625 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4626 	if (ret < 0) {
4627 		return ret;
4628 	} else if (ret > 0) {
4629 		*size_ret = 0;
4630 	} else {
4631 		struct btrfs_inode_item *item;
4632 
4633 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4634 				      struct btrfs_inode_item);
4635 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4636 		/*
4637 		 * If the in-memory inode's i_size is smaller then the inode
4638 		 * size stored in the btree, return the inode's i_size, so
4639 		 * that we get a correct inode size after replaying the log
4640 		 * when before a power failure we had a shrinking truncate
4641 		 * followed by addition of a new name (rename / new hard link).
4642 		 * Otherwise return the inode size from the btree, to avoid
4643 		 * data loss when replaying a log due to previously doing a
4644 		 * write that expands the inode's size and logging a new name
4645 		 * immediately after.
4646 		 */
4647 		if (*size_ret > inode->vfs_inode.i_size)
4648 			*size_ret = inode->vfs_inode.i_size;
4649 	}
4650 
4651 	btrfs_release_path(path);
4652 	return 0;
4653 }
4654 
4655 /*
4656  * At the moment we always log all xattrs. This is to figure out at log replay
4657  * time which xattrs must have their deletion replayed. If a xattr is missing
4658  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4659  * because if a xattr is deleted, the inode is fsynced and a power failure
4660  * happens, causing the log to be replayed the next time the fs is mounted,
4661  * we want the xattr to not exist anymore (same behaviour as other filesystems
4662  * with a journal, ext3/4, xfs, f2fs, etc).
4663  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4664 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4665 				struct btrfs_root *root,
4666 				struct btrfs_inode *inode,
4667 				struct btrfs_path *path,
4668 				struct btrfs_path *dst_path)
4669 {
4670 	int ret;
4671 	struct btrfs_key key;
4672 	const u64 ino = btrfs_ino(inode);
4673 	int ins_nr = 0;
4674 	int start_slot = 0;
4675 
4676 	key.objectid = ino;
4677 	key.type = BTRFS_XATTR_ITEM_KEY;
4678 	key.offset = 0;
4679 
4680 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4681 	if (ret < 0)
4682 		return ret;
4683 
4684 	while (true) {
4685 		int slot = path->slots[0];
4686 		struct extent_buffer *leaf = path->nodes[0];
4687 		int nritems = btrfs_header_nritems(leaf);
4688 
4689 		if (slot >= nritems) {
4690 			if (ins_nr > 0) {
4691 				u64 last_extent = 0;
4692 
4693 				ret = copy_items(trans, inode, dst_path, path,
4694 						 &last_extent, start_slot,
4695 						 ins_nr, 1, 0);
4696 				/* can't be 1, extent items aren't processed */
4697 				ASSERT(ret <= 0);
4698 				if (ret < 0)
4699 					return ret;
4700 				ins_nr = 0;
4701 			}
4702 			ret = btrfs_next_leaf(root, path);
4703 			if (ret < 0)
4704 				return ret;
4705 			else if (ret > 0)
4706 				break;
4707 			continue;
4708 		}
4709 
4710 		btrfs_item_key_to_cpu(leaf, &key, slot);
4711 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4712 			break;
4713 
4714 		if (ins_nr == 0)
4715 			start_slot = slot;
4716 		ins_nr++;
4717 		path->slots[0]++;
4718 		cond_resched();
4719 	}
4720 	if (ins_nr > 0) {
4721 		u64 last_extent = 0;
4722 
4723 		ret = copy_items(trans, inode, dst_path, path,
4724 				 &last_extent, start_slot,
4725 				 ins_nr, 1, 0);
4726 		/* can't be 1, extent items aren't processed */
4727 		ASSERT(ret <= 0);
4728 		if (ret < 0)
4729 			return ret;
4730 	}
4731 
4732 	return 0;
4733 }
4734 
4735 /*
4736  * If the no holes feature is enabled we need to make sure any hole between the
4737  * last extent and the i_size of our inode is explicitly marked in the log. This
4738  * is to make sure that doing something like:
4739  *
4740  *      1) create file with 128Kb of data
4741  *      2) truncate file to 64Kb
4742  *      3) truncate file to 256Kb
4743  *      4) fsync file
4744  *      5) <crash/power failure>
4745  *      6) mount fs and trigger log replay
4746  *
4747  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4748  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4749  * file correspond to a hole. The presence of explicit holes in a log tree is
4750  * what guarantees that log replay will remove/adjust file extent items in the
4751  * fs/subvol tree.
4752  *
4753  * Here we do not need to care about holes between extents, that is already done
4754  * by copy_items(). We also only need to do this in the full sync path, where we
4755  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4756  * lookup the list of modified extent maps and if any represents a hole, we
4757  * insert a corresponding extent representing a hole in the log tree.
4758  */
btrfs_log_trailing_hole(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4759 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4760 				   struct btrfs_root *root,
4761 				   struct btrfs_inode *inode,
4762 				   struct btrfs_path *path)
4763 {
4764 	struct btrfs_fs_info *fs_info = root->fs_info;
4765 	int ret;
4766 	struct btrfs_key key;
4767 	u64 hole_start;
4768 	u64 hole_size;
4769 	struct extent_buffer *leaf;
4770 	struct btrfs_root *log = root->log_root;
4771 	const u64 ino = btrfs_ino(inode);
4772 	const u64 i_size = i_size_read(&inode->vfs_inode);
4773 
4774 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4775 		return 0;
4776 
4777 	key.objectid = ino;
4778 	key.type = BTRFS_EXTENT_DATA_KEY;
4779 	key.offset = (u64)-1;
4780 
4781 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4782 	ASSERT(ret != 0);
4783 	if (ret < 0)
4784 		return ret;
4785 
4786 	ASSERT(path->slots[0] > 0);
4787 	path->slots[0]--;
4788 	leaf = path->nodes[0];
4789 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4790 
4791 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4792 		/* inode does not have any extents */
4793 		hole_start = 0;
4794 		hole_size = i_size;
4795 	} else {
4796 		struct btrfs_file_extent_item *extent;
4797 		u64 len;
4798 
4799 		/*
4800 		 * If there's an extent beyond i_size, an explicit hole was
4801 		 * already inserted by copy_items().
4802 		 */
4803 		if (key.offset >= i_size)
4804 			return 0;
4805 
4806 		extent = btrfs_item_ptr(leaf, path->slots[0],
4807 					struct btrfs_file_extent_item);
4808 
4809 		if (btrfs_file_extent_type(leaf, extent) ==
4810 		    BTRFS_FILE_EXTENT_INLINE)
4811 			return 0;
4812 
4813 		len = btrfs_file_extent_num_bytes(leaf, extent);
4814 		/* Last extent goes beyond i_size, no need to log a hole. */
4815 		if (key.offset + len > i_size)
4816 			return 0;
4817 		hole_start = key.offset + len;
4818 		hole_size = i_size - hole_start;
4819 	}
4820 	btrfs_release_path(path);
4821 
4822 	/* Last extent ends at i_size. */
4823 	if (hole_size == 0)
4824 		return 0;
4825 
4826 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4827 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4828 				       hole_size, 0, hole_size, 0, 0, 0);
4829 	return ret;
4830 }
4831 
4832 /*
4833  * When we are logging a new inode X, check if it doesn't have a reference that
4834  * matches the reference from some other inode Y created in a past transaction
4835  * and that was renamed in the current transaction. If we don't do this, then at
4836  * log replay time we can lose inode Y (and all its files if it's a directory):
4837  *
4838  * mkdir /mnt/x
4839  * echo "hello world" > /mnt/x/foobar
4840  * sync
4841  * mv /mnt/x /mnt/y
4842  * mkdir /mnt/x                 # or touch /mnt/x
4843  * xfs_io -c fsync /mnt/x
4844  * <power fail>
4845  * mount fs, trigger log replay
4846  *
4847  * After the log replay procedure, we would lose the first directory and all its
4848  * files (file foobar).
4849  * For the case where inode Y is not a directory we simply end up losing it:
4850  *
4851  * echo "123" > /mnt/foo
4852  * sync
4853  * mv /mnt/foo /mnt/bar
4854  * echo "abc" > /mnt/foo
4855  * xfs_io -c fsync /mnt/foo
4856  * <power fail>
4857  *
4858  * We also need this for cases where a snapshot entry is replaced by some other
4859  * entry (file or directory) otherwise we end up with an unreplayable log due to
4860  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4861  * if it were a regular entry:
4862  *
4863  * mkdir /mnt/x
4864  * btrfs subvolume snapshot /mnt /mnt/x/snap
4865  * btrfs subvolume delete /mnt/x/snap
4866  * rmdir /mnt/x
4867  * mkdir /mnt/x
4868  * fsync /mnt/x or fsync some new file inside it
4869  * <power fail>
4870  *
4871  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4872  * the same transaction.
4873  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)4874 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4875 					 const int slot,
4876 					 const struct btrfs_key *key,
4877 					 struct btrfs_inode *inode,
4878 					 u64 *other_ino, u64 *other_parent)
4879 {
4880 	int ret;
4881 	struct btrfs_path *search_path;
4882 	char *name = NULL;
4883 	u32 name_len = 0;
4884 	u32 item_size = btrfs_item_size_nr(eb, slot);
4885 	u32 cur_offset = 0;
4886 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4887 
4888 	search_path = btrfs_alloc_path();
4889 	if (!search_path)
4890 		return -ENOMEM;
4891 	search_path->search_commit_root = 1;
4892 	search_path->skip_locking = 1;
4893 
4894 	while (cur_offset < item_size) {
4895 		u64 parent;
4896 		u32 this_name_len;
4897 		u32 this_len;
4898 		unsigned long name_ptr;
4899 		struct btrfs_dir_item *di;
4900 
4901 		if (key->type == BTRFS_INODE_REF_KEY) {
4902 			struct btrfs_inode_ref *iref;
4903 
4904 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4905 			parent = key->offset;
4906 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4907 			name_ptr = (unsigned long)(iref + 1);
4908 			this_len = sizeof(*iref) + this_name_len;
4909 		} else {
4910 			struct btrfs_inode_extref *extref;
4911 
4912 			extref = (struct btrfs_inode_extref *)(ptr +
4913 							       cur_offset);
4914 			parent = btrfs_inode_extref_parent(eb, extref);
4915 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4916 			name_ptr = (unsigned long)&extref->name;
4917 			this_len = sizeof(*extref) + this_name_len;
4918 		}
4919 
4920 		if (this_name_len > name_len) {
4921 			char *new_name;
4922 
4923 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4924 			if (!new_name) {
4925 				ret = -ENOMEM;
4926 				goto out;
4927 			}
4928 			name_len = this_name_len;
4929 			name = new_name;
4930 		}
4931 
4932 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4933 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4934 				parent, name, this_name_len, 0);
4935 		if (di && !IS_ERR(di)) {
4936 			struct btrfs_key di_key;
4937 
4938 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4939 						  di, &di_key);
4940 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4941 				if (di_key.objectid != key->objectid) {
4942 					ret = 1;
4943 					*other_ino = di_key.objectid;
4944 					*other_parent = parent;
4945 				} else {
4946 					ret = 0;
4947 				}
4948 			} else {
4949 				ret = -EAGAIN;
4950 			}
4951 			goto out;
4952 		} else if (IS_ERR(di)) {
4953 			ret = PTR_ERR(di);
4954 			goto out;
4955 		}
4956 		btrfs_release_path(search_path);
4957 
4958 		cur_offset += this_len;
4959 	}
4960 	ret = 0;
4961 out:
4962 	btrfs_free_path(search_path);
4963 	kfree(name);
4964 	return ret;
4965 }
4966 
4967 struct btrfs_ino_list {
4968 	u64 ino;
4969 	u64 parent;
4970 	struct list_head list;
4971 };
4972 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx,u64 ino,u64 parent)4973 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4974 				  struct btrfs_root *root,
4975 				  struct btrfs_path *path,
4976 				  struct btrfs_log_ctx *ctx,
4977 				  u64 ino, u64 parent)
4978 {
4979 	struct btrfs_ino_list *ino_elem;
4980 	LIST_HEAD(inode_list);
4981 	int ret = 0;
4982 
4983 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4984 	if (!ino_elem)
4985 		return -ENOMEM;
4986 	ino_elem->ino = ino;
4987 	ino_elem->parent = parent;
4988 	list_add_tail(&ino_elem->list, &inode_list);
4989 
4990 	while (!list_empty(&inode_list)) {
4991 		struct btrfs_fs_info *fs_info = root->fs_info;
4992 		struct btrfs_key key;
4993 		struct inode *inode;
4994 
4995 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4996 					    list);
4997 		ino = ino_elem->ino;
4998 		parent = ino_elem->parent;
4999 		list_del(&ino_elem->list);
5000 		kfree(ino_elem);
5001 		if (ret)
5002 			continue;
5003 
5004 		btrfs_release_path(path);
5005 
5006 		key.objectid = ino;
5007 		key.type = BTRFS_INODE_ITEM_KEY;
5008 		key.offset = 0;
5009 		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
5010 		/*
5011 		 * If the other inode that had a conflicting dir entry was
5012 		 * deleted in the current transaction, we need to log its parent
5013 		 * directory.
5014 		 */
5015 		if (IS_ERR(inode)) {
5016 			ret = PTR_ERR(inode);
5017 			if (ret == -ENOENT) {
5018 				key.objectid = parent;
5019 				inode = btrfs_iget(fs_info->sb, &key, root,
5020 						   NULL);
5021 				if (IS_ERR(inode)) {
5022 					ret = PTR_ERR(inode);
5023 				} else {
5024 					ret = btrfs_log_inode(trans, root,
5025 						      BTRFS_I(inode),
5026 						      LOG_OTHER_INODE_ALL,
5027 						      0, LLONG_MAX, ctx);
5028 					btrfs_add_delayed_iput(inode);
5029 				}
5030 			}
5031 			continue;
5032 		}
5033 		/*
5034 		 * We are safe logging the other inode without acquiring its
5035 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5036 		 * are safe against concurrent renames of the other inode as
5037 		 * well because during a rename we pin the log and update the
5038 		 * log with the new name before we unpin it.
5039 		 */
5040 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5041 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5042 		if (ret) {
5043 			btrfs_add_delayed_iput(inode);
5044 			continue;
5045 		}
5046 
5047 		key.objectid = ino;
5048 		key.type = BTRFS_INODE_REF_KEY;
5049 		key.offset = 0;
5050 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5051 		if (ret < 0) {
5052 			btrfs_add_delayed_iput(inode);
5053 			continue;
5054 		}
5055 
5056 		while (true) {
5057 			struct extent_buffer *leaf = path->nodes[0];
5058 			int slot = path->slots[0];
5059 			u64 other_ino = 0;
5060 			u64 other_parent = 0;
5061 
5062 			if (slot >= btrfs_header_nritems(leaf)) {
5063 				ret = btrfs_next_leaf(root, path);
5064 				if (ret < 0) {
5065 					break;
5066 				} else if (ret > 0) {
5067 					ret = 0;
5068 					break;
5069 				}
5070 				continue;
5071 			}
5072 
5073 			btrfs_item_key_to_cpu(leaf, &key, slot);
5074 			if (key.objectid != ino ||
5075 			    (key.type != BTRFS_INODE_REF_KEY &&
5076 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5077 				ret = 0;
5078 				break;
5079 			}
5080 
5081 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5082 					BTRFS_I(inode), &other_ino,
5083 					&other_parent);
5084 			if (ret < 0)
5085 				break;
5086 			if (ret > 0) {
5087 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5088 				if (!ino_elem) {
5089 					ret = -ENOMEM;
5090 					break;
5091 				}
5092 				ino_elem->ino = other_ino;
5093 				ino_elem->parent = other_parent;
5094 				list_add_tail(&ino_elem->list, &inode_list);
5095 				ret = 0;
5096 			}
5097 			path->slots[0]++;
5098 		}
5099 		btrfs_add_delayed_iput(inode);
5100 	}
5101 
5102 	return ret;
5103 }
5104 
5105 /* log a single inode in the tree log.
5106  * At least one parent directory for this inode must exist in the tree
5107  * or be logged already.
5108  *
5109  * Any items from this inode changed by the current transaction are copied
5110  * to the log tree.  An extra reference is taken on any extents in this
5111  * file, allowing us to avoid a whole pile of corner cases around logging
5112  * blocks that have been removed from the tree.
5113  *
5114  * See LOG_INODE_ALL and related defines for a description of what inode_only
5115  * does.
5116  *
5117  * This handles both files and directories.
5118  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)5119 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5120 			   struct btrfs_root *root, struct btrfs_inode *inode,
5121 			   int inode_only,
5122 			   const loff_t start,
5123 			   const loff_t end,
5124 			   struct btrfs_log_ctx *ctx)
5125 {
5126 	struct btrfs_fs_info *fs_info = root->fs_info;
5127 	struct btrfs_path *path;
5128 	struct btrfs_path *dst_path;
5129 	struct btrfs_key min_key;
5130 	struct btrfs_key max_key;
5131 	struct btrfs_root *log = root->log_root;
5132 	u64 last_extent = 0;
5133 	int err = 0;
5134 	int ret;
5135 	int nritems;
5136 	int ins_start_slot = 0;
5137 	int ins_nr;
5138 	bool fast_search = false;
5139 	u64 ino = btrfs_ino(inode);
5140 	struct extent_map_tree *em_tree = &inode->extent_tree;
5141 	u64 logged_isize = 0;
5142 	bool need_log_inode_item = true;
5143 	bool xattrs_logged = false;
5144 	bool recursive_logging = false;
5145 
5146 	path = btrfs_alloc_path();
5147 	if (!path)
5148 		return -ENOMEM;
5149 	dst_path = btrfs_alloc_path();
5150 	if (!dst_path) {
5151 		btrfs_free_path(path);
5152 		return -ENOMEM;
5153 	}
5154 
5155 	min_key.objectid = ino;
5156 	min_key.type = BTRFS_INODE_ITEM_KEY;
5157 	min_key.offset = 0;
5158 
5159 	max_key.objectid = ino;
5160 
5161 
5162 	/* today the code can only do partial logging of directories */
5163 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5164 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5165 		       &inode->runtime_flags) &&
5166 	     inode_only >= LOG_INODE_EXISTS))
5167 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5168 	else
5169 		max_key.type = (u8)-1;
5170 	max_key.offset = (u64)-1;
5171 
5172 	/*
5173 	 * Only run delayed items if we are a dir or a new file.
5174 	 * Otherwise commit the delayed inode only, which is needed in
5175 	 * order for the log replay code to mark inodes for link count
5176 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5177 	 */
5178 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5179 	    inode->generation > fs_info->last_trans_committed)
5180 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5181 	else
5182 		ret = btrfs_commit_inode_delayed_inode(inode);
5183 
5184 	if (ret) {
5185 		btrfs_free_path(path);
5186 		btrfs_free_path(dst_path);
5187 		return ret;
5188 	}
5189 
5190 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5191 		recursive_logging = true;
5192 		if (inode_only == LOG_OTHER_INODE)
5193 			inode_only = LOG_INODE_EXISTS;
5194 		else
5195 			inode_only = LOG_INODE_ALL;
5196 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5197 	} else {
5198 		mutex_lock(&inode->log_mutex);
5199 	}
5200 
5201 	/*
5202 	 * a brute force approach to making sure we get the most uptodate
5203 	 * copies of everything.
5204 	 */
5205 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5206 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5207 
5208 		if (inode_only == LOG_INODE_EXISTS)
5209 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5210 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5211 	} else {
5212 		if (inode_only == LOG_INODE_EXISTS) {
5213 			/*
5214 			 * Make sure the new inode item we write to the log has
5215 			 * the same isize as the current one (if it exists).
5216 			 * This is necessary to prevent data loss after log
5217 			 * replay, and also to prevent doing a wrong expanding
5218 			 * truncate - for e.g. create file, write 4K into offset
5219 			 * 0, fsync, write 4K into offset 4096, add hard link,
5220 			 * fsync some other file (to sync log), power fail - if
5221 			 * we use the inode's current i_size, after log replay
5222 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5223 			 * (zeroes), as if an expanding truncate happened,
5224 			 * instead of getting a file of 4Kb only.
5225 			 */
5226 			err = logged_inode_size(log, inode, path, &logged_isize);
5227 			if (err)
5228 				goto out_unlock;
5229 		}
5230 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5231 			     &inode->runtime_flags)) {
5232 			if (inode_only == LOG_INODE_EXISTS) {
5233 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5234 				ret = drop_objectid_items(trans, log, path, ino,
5235 							  max_key.type);
5236 			} else {
5237 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5238 					  &inode->runtime_flags);
5239 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5240 					  &inode->runtime_flags);
5241 				while(1) {
5242 					ret = btrfs_truncate_inode_items(trans,
5243 						log, &inode->vfs_inode, 0, 0);
5244 					if (ret != -EAGAIN)
5245 						break;
5246 				}
5247 			}
5248 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5249 					      &inode->runtime_flags) ||
5250 			   inode_only == LOG_INODE_EXISTS) {
5251 			if (inode_only == LOG_INODE_ALL)
5252 				fast_search = true;
5253 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5254 			ret = drop_objectid_items(trans, log, path, ino,
5255 						  max_key.type);
5256 		} else {
5257 			if (inode_only == LOG_INODE_ALL)
5258 				fast_search = true;
5259 			goto log_extents;
5260 		}
5261 
5262 	}
5263 	if (ret) {
5264 		err = ret;
5265 		goto out_unlock;
5266 	}
5267 
5268 	while (1) {
5269 		ins_nr = 0;
5270 		ret = btrfs_search_forward(root, &min_key,
5271 					   path, trans->transid);
5272 		if (ret < 0) {
5273 			err = ret;
5274 			goto out_unlock;
5275 		}
5276 		if (ret != 0)
5277 			break;
5278 again:
5279 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5280 		if (min_key.objectid != ino)
5281 			break;
5282 		if (min_key.type > max_key.type)
5283 			break;
5284 
5285 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5286 			need_log_inode_item = false;
5287 
5288 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5289 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5290 		    inode->generation == trans->transid &&
5291 		    !recursive_logging) {
5292 			u64 other_ino = 0;
5293 			u64 other_parent = 0;
5294 
5295 			ret = btrfs_check_ref_name_override(path->nodes[0],
5296 					path->slots[0], &min_key, inode,
5297 					&other_ino, &other_parent);
5298 			if (ret < 0) {
5299 				err = ret;
5300 				goto out_unlock;
5301 			} else if (ret > 0 && ctx &&
5302 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5303 				if (ins_nr > 0) {
5304 					ins_nr++;
5305 				} else {
5306 					ins_nr = 1;
5307 					ins_start_slot = path->slots[0];
5308 				}
5309 				ret = copy_items(trans, inode, dst_path, path,
5310 						 &last_extent, ins_start_slot,
5311 						 ins_nr, inode_only,
5312 						 logged_isize);
5313 				if (ret < 0) {
5314 					err = ret;
5315 					goto out_unlock;
5316 				}
5317 				ins_nr = 0;
5318 
5319 				err = log_conflicting_inodes(trans, root, path,
5320 						ctx, other_ino, other_parent);
5321 				if (err)
5322 					goto out_unlock;
5323 				btrfs_release_path(path);
5324 				goto next_key;
5325 			}
5326 		}
5327 
5328 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5329 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5330 			if (ins_nr == 0)
5331 				goto next_slot;
5332 			ret = copy_items(trans, inode, dst_path, path,
5333 					 &last_extent, ins_start_slot,
5334 					 ins_nr, inode_only, logged_isize);
5335 			if (ret < 0) {
5336 				err = ret;
5337 				goto out_unlock;
5338 			}
5339 			ins_nr = 0;
5340 			if (ret) {
5341 				btrfs_release_path(path);
5342 				continue;
5343 			}
5344 			goto next_slot;
5345 		}
5346 
5347 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5348 			ins_nr++;
5349 			goto next_slot;
5350 		} else if (!ins_nr) {
5351 			ins_start_slot = path->slots[0];
5352 			ins_nr = 1;
5353 			goto next_slot;
5354 		}
5355 
5356 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5357 				 ins_start_slot, ins_nr, inode_only,
5358 				 logged_isize);
5359 		if (ret < 0) {
5360 			err = ret;
5361 			goto out_unlock;
5362 		}
5363 		if (ret) {
5364 			ins_nr = 0;
5365 			btrfs_release_path(path);
5366 			continue;
5367 		}
5368 		ins_nr = 1;
5369 		ins_start_slot = path->slots[0];
5370 next_slot:
5371 
5372 		nritems = btrfs_header_nritems(path->nodes[0]);
5373 		path->slots[0]++;
5374 		if (path->slots[0] < nritems) {
5375 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5376 					      path->slots[0]);
5377 			goto again;
5378 		}
5379 		if (ins_nr) {
5380 			ret = copy_items(trans, inode, dst_path, path,
5381 					 &last_extent, ins_start_slot,
5382 					 ins_nr, inode_only, logged_isize);
5383 			if (ret < 0) {
5384 				err = ret;
5385 				goto out_unlock;
5386 			}
5387 			ret = 0;
5388 			ins_nr = 0;
5389 		}
5390 		btrfs_release_path(path);
5391 next_key:
5392 		if (min_key.offset < (u64)-1) {
5393 			min_key.offset++;
5394 		} else if (min_key.type < max_key.type) {
5395 			min_key.type++;
5396 			min_key.offset = 0;
5397 		} else {
5398 			break;
5399 		}
5400 	}
5401 	if (ins_nr) {
5402 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5403 				 ins_start_slot, ins_nr, inode_only,
5404 				 logged_isize);
5405 		if (ret < 0) {
5406 			err = ret;
5407 			goto out_unlock;
5408 		}
5409 		ret = 0;
5410 		ins_nr = 0;
5411 	}
5412 
5413 	btrfs_release_path(path);
5414 	btrfs_release_path(dst_path);
5415 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5416 	if (err)
5417 		goto out_unlock;
5418 	xattrs_logged = true;
5419 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5420 		btrfs_release_path(path);
5421 		btrfs_release_path(dst_path);
5422 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5423 		if (err)
5424 			goto out_unlock;
5425 	}
5426 log_extents:
5427 	btrfs_release_path(path);
5428 	btrfs_release_path(dst_path);
5429 	if (need_log_inode_item) {
5430 		err = log_inode_item(trans, log, dst_path, inode);
5431 		if (!err && !xattrs_logged) {
5432 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5433 						   dst_path);
5434 			btrfs_release_path(path);
5435 		}
5436 		if (err)
5437 			goto out_unlock;
5438 	}
5439 	if (fast_search) {
5440 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5441 						ctx, start, end);
5442 		if (ret) {
5443 			err = ret;
5444 			goto out_unlock;
5445 		}
5446 	} else if (inode_only == LOG_INODE_ALL) {
5447 		struct extent_map *em, *n;
5448 
5449 		write_lock(&em_tree->lock);
5450 		/*
5451 		 * We can't just remove every em if we're called for a ranged
5452 		 * fsync - that is, one that doesn't cover the whole possible
5453 		 * file range (0 to LLONG_MAX). This is because we can have
5454 		 * em's that fall outside the range we're logging and therefore
5455 		 * their ordered operations haven't completed yet
5456 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5457 		 * didn't get their respective file extent item in the fs/subvol
5458 		 * tree yet, and need to let the next fast fsync (one which
5459 		 * consults the list of modified extent maps) find the em so
5460 		 * that it logs a matching file extent item and waits for the
5461 		 * respective ordered operation to complete (if it's still
5462 		 * running).
5463 		 *
5464 		 * Removing every em outside the range we're logging would make
5465 		 * the next fast fsync not log their matching file extent items,
5466 		 * therefore making us lose data after a log replay.
5467 		 */
5468 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5469 					 list) {
5470 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5471 
5472 			if (em->mod_start >= start && mod_end <= end)
5473 				list_del_init(&em->list);
5474 		}
5475 		write_unlock(&em_tree->lock);
5476 	}
5477 
5478 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5479 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5480 					ctx);
5481 		if (ret) {
5482 			err = ret;
5483 			goto out_unlock;
5484 		}
5485 	}
5486 
5487 	/*
5488 	 * Don't update last_log_commit if we logged that an inode exists after
5489 	 * it was loaded to memory (full_sync bit set).
5490 	 * This is to prevent data loss when we do a write to the inode, then
5491 	 * the inode gets evicted after all delalloc was flushed, then we log
5492 	 * it exists (due to a rename for example) and then fsync it. This last
5493 	 * fsync would do nothing (not logging the extents previously written).
5494 	 */
5495 	spin_lock(&inode->lock);
5496 	inode->logged_trans = trans->transid;
5497 	if (inode_only != LOG_INODE_EXISTS ||
5498 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5499 		inode->last_log_commit = inode->last_sub_trans;
5500 	spin_unlock(&inode->lock);
5501 out_unlock:
5502 	mutex_unlock(&inode->log_mutex);
5503 
5504 	btrfs_free_path(path);
5505 	btrfs_free_path(dst_path);
5506 	return err;
5507 }
5508 
5509 /*
5510  * Check if we must fallback to a transaction commit when logging an inode.
5511  * This must be called after logging the inode and is used only in the context
5512  * when fsyncing an inode requires the need to log some other inode - in which
5513  * case we can't lock the i_mutex of each other inode we need to log as that
5514  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5515  * log inodes up or down in the hierarchy) or rename operations for example. So
5516  * we take the log_mutex of the inode after we have logged it and then check for
5517  * its last_unlink_trans value - this is safe because any task setting
5518  * last_unlink_trans must take the log_mutex and it must do this before it does
5519  * the actual unlink operation, so if we do this check before a concurrent task
5520  * sets last_unlink_trans it means we've logged a consistent version/state of
5521  * all the inode items, otherwise we are not sure and must do a transaction
5522  * commit (the concurrent task might have only updated last_unlink_trans before
5523  * we logged the inode or it might have also done the unlink).
5524  */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5525 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5526 					  struct btrfs_inode *inode)
5527 {
5528 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5529 	bool ret = false;
5530 
5531 	mutex_lock(&inode->log_mutex);
5532 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5533 		/*
5534 		 * Make sure any commits to the log are forced to be full
5535 		 * commits.
5536 		 */
5537 		btrfs_set_log_full_commit(trans);
5538 		ret = true;
5539 	}
5540 	mutex_unlock(&inode->log_mutex);
5541 
5542 	return ret;
5543 }
5544 
5545 /*
5546  * follow the dentry parent pointers up the chain and see if any
5547  * of the directories in it require a full commit before they can
5548  * be logged.  Returns zero if nothing special needs to be done or 1 if
5549  * a full commit is required.
5550  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5551 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5552 					       struct btrfs_inode *inode,
5553 					       struct dentry *parent,
5554 					       struct super_block *sb,
5555 					       u64 last_committed)
5556 {
5557 	int ret = 0;
5558 	struct dentry *old_parent = NULL;
5559 
5560 	/*
5561 	 * for regular files, if its inode is already on disk, we don't
5562 	 * have to worry about the parents at all.  This is because
5563 	 * we can use the last_unlink_trans field to record renames
5564 	 * and other fun in this file.
5565 	 */
5566 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5567 	    inode->generation <= last_committed &&
5568 	    inode->last_unlink_trans <= last_committed)
5569 		goto out;
5570 
5571 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5572 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5573 			goto out;
5574 		inode = BTRFS_I(d_inode(parent));
5575 	}
5576 
5577 	while (1) {
5578 		if (btrfs_must_commit_transaction(trans, inode)) {
5579 			ret = 1;
5580 			break;
5581 		}
5582 
5583 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5584 			break;
5585 
5586 		if (IS_ROOT(parent)) {
5587 			inode = BTRFS_I(d_inode(parent));
5588 			if (btrfs_must_commit_transaction(trans, inode))
5589 				ret = 1;
5590 			break;
5591 		}
5592 
5593 		parent = dget_parent(parent);
5594 		dput(old_parent);
5595 		old_parent = parent;
5596 		inode = BTRFS_I(d_inode(parent));
5597 
5598 	}
5599 	dput(old_parent);
5600 out:
5601 	return ret;
5602 }
5603 
5604 struct btrfs_dir_list {
5605 	u64 ino;
5606 	struct list_head list;
5607 };
5608 
5609 /*
5610  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5611  * details about the why it is needed.
5612  * This is a recursive operation - if an existing dentry corresponds to a
5613  * directory, that directory's new entries are logged too (same behaviour as
5614  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5615  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5616  * complains about the following circular lock dependency / possible deadlock:
5617  *
5618  *        CPU0                                        CPU1
5619  *        ----                                        ----
5620  * lock(&type->i_mutex_dir_key#3/2);
5621  *                                            lock(sb_internal#2);
5622  *                                            lock(&type->i_mutex_dir_key#3/2);
5623  * lock(&sb->s_type->i_mutex_key#14);
5624  *
5625  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5626  * sb_start_intwrite() in btrfs_start_transaction().
5627  * Not locking i_mutex of the inodes is still safe because:
5628  *
5629  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5630  *    that while logging the inode new references (names) are added or removed
5631  *    from the inode, leaving the logged inode item with a link count that does
5632  *    not match the number of logged inode reference items. This is fine because
5633  *    at log replay time we compute the real number of links and correct the
5634  *    link count in the inode item (see replay_one_buffer() and
5635  *    link_to_fixup_dir());
5636  *
5637  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5638  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5639  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5640  *    has a size that doesn't match the sum of the lengths of all the logged
5641  *    names. This does not result in a problem because if a dir_item key is
5642  *    logged but its matching dir_index key is not logged, at log replay time we
5643  *    don't use it to replay the respective name (see replay_one_name()). On the
5644  *    other hand if only the dir_index key ends up being logged, the respective
5645  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5646  *    keys created (see replay_one_name()).
5647  *    The directory's inode item with a wrong i_size is not a problem as well,
5648  *    since we don't use it at log replay time to set the i_size in the inode
5649  *    item of the fs/subvol tree (see overwrite_item()).
5650  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5651 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5652 				struct btrfs_root *root,
5653 				struct btrfs_inode *start_inode,
5654 				struct btrfs_log_ctx *ctx)
5655 {
5656 	struct btrfs_fs_info *fs_info = root->fs_info;
5657 	struct btrfs_root *log = root->log_root;
5658 	struct btrfs_path *path;
5659 	LIST_HEAD(dir_list);
5660 	struct btrfs_dir_list *dir_elem;
5661 	int ret = 0;
5662 
5663 	path = btrfs_alloc_path();
5664 	if (!path)
5665 		return -ENOMEM;
5666 
5667 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5668 	if (!dir_elem) {
5669 		btrfs_free_path(path);
5670 		return -ENOMEM;
5671 	}
5672 	dir_elem->ino = btrfs_ino(start_inode);
5673 	list_add_tail(&dir_elem->list, &dir_list);
5674 
5675 	while (!list_empty(&dir_list)) {
5676 		struct extent_buffer *leaf;
5677 		struct btrfs_key min_key;
5678 		int nritems;
5679 		int i;
5680 
5681 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5682 					    list);
5683 		if (ret)
5684 			goto next_dir_inode;
5685 
5686 		min_key.objectid = dir_elem->ino;
5687 		min_key.type = BTRFS_DIR_ITEM_KEY;
5688 		min_key.offset = 0;
5689 again:
5690 		btrfs_release_path(path);
5691 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5692 		if (ret < 0) {
5693 			goto next_dir_inode;
5694 		} else if (ret > 0) {
5695 			ret = 0;
5696 			goto next_dir_inode;
5697 		}
5698 
5699 process_leaf:
5700 		leaf = path->nodes[0];
5701 		nritems = btrfs_header_nritems(leaf);
5702 		for (i = path->slots[0]; i < nritems; i++) {
5703 			struct btrfs_dir_item *di;
5704 			struct btrfs_key di_key;
5705 			struct inode *di_inode;
5706 			struct btrfs_dir_list *new_dir_elem;
5707 			int log_mode = LOG_INODE_EXISTS;
5708 			int type;
5709 
5710 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5711 			if (min_key.objectid != dir_elem->ino ||
5712 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5713 				goto next_dir_inode;
5714 
5715 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5716 			type = btrfs_dir_type(leaf, di);
5717 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5718 			    type != BTRFS_FT_DIR)
5719 				continue;
5720 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5721 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5722 				continue;
5723 
5724 			btrfs_release_path(path);
5725 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5726 			if (IS_ERR(di_inode)) {
5727 				ret = PTR_ERR(di_inode);
5728 				goto next_dir_inode;
5729 			}
5730 
5731 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5732 				btrfs_add_delayed_iput(di_inode);
5733 				break;
5734 			}
5735 
5736 			ctx->log_new_dentries = false;
5737 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5738 				log_mode = LOG_INODE_ALL;
5739 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5740 					      log_mode, 0, LLONG_MAX, ctx);
5741 			if (!ret &&
5742 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5743 				ret = 1;
5744 			btrfs_add_delayed_iput(di_inode);
5745 			if (ret)
5746 				goto next_dir_inode;
5747 			if (ctx->log_new_dentries) {
5748 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5749 						       GFP_NOFS);
5750 				if (!new_dir_elem) {
5751 					ret = -ENOMEM;
5752 					goto next_dir_inode;
5753 				}
5754 				new_dir_elem->ino = di_key.objectid;
5755 				list_add_tail(&new_dir_elem->list, &dir_list);
5756 			}
5757 			break;
5758 		}
5759 		if (i == nritems) {
5760 			ret = btrfs_next_leaf(log, path);
5761 			if (ret < 0) {
5762 				goto next_dir_inode;
5763 			} else if (ret > 0) {
5764 				ret = 0;
5765 				goto next_dir_inode;
5766 			}
5767 			goto process_leaf;
5768 		}
5769 		if (min_key.offset < (u64)-1) {
5770 			min_key.offset++;
5771 			goto again;
5772 		}
5773 next_dir_inode:
5774 		list_del(&dir_elem->list);
5775 		kfree(dir_elem);
5776 	}
5777 
5778 	btrfs_free_path(path);
5779 	return ret;
5780 }
5781 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5782 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5783 				 struct btrfs_inode *inode,
5784 				 struct btrfs_log_ctx *ctx)
5785 {
5786 	struct btrfs_fs_info *fs_info = trans->fs_info;
5787 	int ret;
5788 	struct btrfs_path *path;
5789 	struct btrfs_key key;
5790 	struct btrfs_root *root = inode->root;
5791 	const u64 ino = btrfs_ino(inode);
5792 
5793 	path = btrfs_alloc_path();
5794 	if (!path)
5795 		return -ENOMEM;
5796 	path->skip_locking = 1;
5797 	path->search_commit_root = 1;
5798 
5799 	key.objectid = ino;
5800 	key.type = BTRFS_INODE_REF_KEY;
5801 	key.offset = 0;
5802 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5803 	if (ret < 0)
5804 		goto out;
5805 
5806 	while (true) {
5807 		struct extent_buffer *leaf = path->nodes[0];
5808 		int slot = path->slots[0];
5809 		u32 cur_offset = 0;
5810 		u32 item_size;
5811 		unsigned long ptr;
5812 
5813 		if (slot >= btrfs_header_nritems(leaf)) {
5814 			ret = btrfs_next_leaf(root, path);
5815 			if (ret < 0)
5816 				goto out;
5817 			else if (ret > 0)
5818 				break;
5819 			continue;
5820 		}
5821 
5822 		btrfs_item_key_to_cpu(leaf, &key, slot);
5823 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5824 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5825 			break;
5826 
5827 		item_size = btrfs_item_size_nr(leaf, slot);
5828 		ptr = btrfs_item_ptr_offset(leaf, slot);
5829 		while (cur_offset < item_size) {
5830 			struct btrfs_key inode_key;
5831 			struct inode *dir_inode;
5832 
5833 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5834 			inode_key.offset = 0;
5835 
5836 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5837 				struct btrfs_inode_extref *extref;
5838 
5839 				extref = (struct btrfs_inode_extref *)
5840 					(ptr + cur_offset);
5841 				inode_key.objectid = btrfs_inode_extref_parent(
5842 					leaf, extref);
5843 				cur_offset += sizeof(*extref);
5844 				cur_offset += btrfs_inode_extref_name_len(leaf,
5845 					extref);
5846 			} else {
5847 				inode_key.objectid = key.offset;
5848 				cur_offset = item_size;
5849 			}
5850 
5851 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5852 					       root, NULL);
5853 			/*
5854 			 * If the parent inode was deleted, return an error to
5855 			 * fallback to a transaction commit. This is to prevent
5856 			 * getting an inode that was moved from one parent A to
5857 			 * a parent B, got its former parent A deleted and then
5858 			 * it got fsync'ed, from existing at both parents after
5859 			 * a log replay (and the old parent still existing).
5860 			 * Example:
5861 			 *
5862 			 * mkdir /mnt/A
5863 			 * mkdir /mnt/B
5864 			 * touch /mnt/B/bar
5865 			 * sync
5866 			 * mv /mnt/B/bar /mnt/A/bar
5867 			 * mv -T /mnt/A /mnt/B
5868 			 * fsync /mnt/B/bar
5869 			 * <power fail>
5870 			 *
5871 			 * If we ignore the old parent B which got deleted,
5872 			 * after a log replay we would have file bar linked
5873 			 * at both parents and the old parent B would still
5874 			 * exist.
5875 			 */
5876 			if (IS_ERR(dir_inode)) {
5877 				ret = PTR_ERR(dir_inode);
5878 				goto out;
5879 			}
5880 
5881 			if (ctx)
5882 				ctx->log_new_dentries = false;
5883 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5884 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5885 			if (!ret &&
5886 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5887 				ret = 1;
5888 			if (!ret && ctx && ctx->log_new_dentries)
5889 				ret = log_new_dir_dentries(trans, root,
5890 						   BTRFS_I(dir_inode), ctx);
5891 			btrfs_add_delayed_iput(dir_inode);
5892 			if (ret)
5893 				goto out;
5894 		}
5895 		path->slots[0]++;
5896 	}
5897 	ret = 0;
5898 out:
5899 	btrfs_free_path(path);
5900 	return ret;
5901 }
5902 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5903 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5904 			     struct btrfs_root *root,
5905 			     struct btrfs_path *path,
5906 			     struct btrfs_log_ctx *ctx)
5907 {
5908 	struct btrfs_key found_key;
5909 
5910 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5911 
5912 	while (true) {
5913 		struct btrfs_fs_info *fs_info = root->fs_info;
5914 		const u64 last_committed = fs_info->last_trans_committed;
5915 		struct extent_buffer *leaf = path->nodes[0];
5916 		int slot = path->slots[0];
5917 		struct btrfs_key search_key;
5918 		struct inode *inode;
5919 		int ret = 0;
5920 
5921 		btrfs_release_path(path);
5922 
5923 		search_key.objectid = found_key.offset;
5924 		search_key.type = BTRFS_INODE_ITEM_KEY;
5925 		search_key.offset = 0;
5926 		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5927 		if (IS_ERR(inode))
5928 			return PTR_ERR(inode);
5929 
5930 		if (BTRFS_I(inode)->generation > last_committed)
5931 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5932 					      LOG_INODE_EXISTS,
5933 					      0, LLONG_MAX, ctx);
5934 		btrfs_add_delayed_iput(inode);
5935 		if (ret)
5936 			return ret;
5937 
5938 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5939 			break;
5940 
5941 		search_key.type = BTRFS_INODE_REF_KEY;
5942 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5943 		if (ret < 0)
5944 			return ret;
5945 
5946 		leaf = path->nodes[0];
5947 		slot = path->slots[0];
5948 		if (slot >= btrfs_header_nritems(leaf)) {
5949 			ret = btrfs_next_leaf(root, path);
5950 			if (ret < 0)
5951 				return ret;
5952 			else if (ret > 0)
5953 				return -ENOENT;
5954 			leaf = path->nodes[0];
5955 			slot = path->slots[0];
5956 		}
5957 
5958 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5959 		if (found_key.objectid != search_key.objectid ||
5960 		    found_key.type != BTRFS_INODE_REF_KEY)
5961 			return -ENOENT;
5962 	}
5963 	return 0;
5964 }
5965 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5966 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5967 				  struct btrfs_inode *inode,
5968 				  struct dentry *parent,
5969 				  struct btrfs_log_ctx *ctx)
5970 {
5971 	struct btrfs_root *root = inode->root;
5972 	struct btrfs_fs_info *fs_info = root->fs_info;
5973 	struct dentry *old_parent = NULL;
5974 	struct super_block *sb = inode->vfs_inode.i_sb;
5975 	int ret = 0;
5976 
5977 	while (true) {
5978 		if (!parent || d_really_is_negative(parent) ||
5979 		    sb != parent->d_sb)
5980 			break;
5981 
5982 		inode = BTRFS_I(d_inode(parent));
5983 		if (root != inode->root)
5984 			break;
5985 
5986 		if (inode->generation > fs_info->last_trans_committed) {
5987 			ret = btrfs_log_inode(trans, root, inode,
5988 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5989 			if (ret)
5990 				break;
5991 		}
5992 		if (IS_ROOT(parent))
5993 			break;
5994 
5995 		parent = dget_parent(parent);
5996 		dput(old_parent);
5997 		old_parent = parent;
5998 	}
5999 	dput(old_parent);
6000 
6001 	return ret;
6002 }
6003 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6004 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6005 				 struct btrfs_inode *inode,
6006 				 struct dentry *parent,
6007 				 struct btrfs_log_ctx *ctx)
6008 {
6009 	struct btrfs_root *root = inode->root;
6010 	const u64 ino = btrfs_ino(inode);
6011 	struct btrfs_path *path;
6012 	struct btrfs_key search_key;
6013 	int ret;
6014 
6015 	/*
6016 	 * For a single hard link case, go through a fast path that does not
6017 	 * need to iterate the fs/subvolume tree.
6018 	 */
6019 	if (inode->vfs_inode.i_nlink < 2)
6020 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6021 
6022 	path = btrfs_alloc_path();
6023 	if (!path)
6024 		return -ENOMEM;
6025 
6026 	search_key.objectid = ino;
6027 	search_key.type = BTRFS_INODE_REF_KEY;
6028 	search_key.offset = 0;
6029 again:
6030 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6031 	if (ret < 0)
6032 		goto out;
6033 	if (ret == 0)
6034 		path->slots[0]++;
6035 
6036 	while (true) {
6037 		struct extent_buffer *leaf = path->nodes[0];
6038 		int slot = path->slots[0];
6039 		struct btrfs_key found_key;
6040 
6041 		if (slot >= btrfs_header_nritems(leaf)) {
6042 			ret = btrfs_next_leaf(root, path);
6043 			if (ret < 0)
6044 				goto out;
6045 			else if (ret > 0)
6046 				break;
6047 			continue;
6048 		}
6049 
6050 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6051 		if (found_key.objectid != ino ||
6052 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6053 			break;
6054 
6055 		/*
6056 		 * Don't deal with extended references because they are rare
6057 		 * cases and too complex to deal with (we would need to keep
6058 		 * track of which subitem we are processing for each item in
6059 		 * this loop, etc). So just return some error to fallback to
6060 		 * a transaction commit.
6061 		 */
6062 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6063 			ret = -EMLINK;
6064 			goto out;
6065 		}
6066 
6067 		/*
6068 		 * Logging ancestors needs to do more searches on the fs/subvol
6069 		 * tree, so it releases the path as needed to avoid deadlocks.
6070 		 * Keep track of the last inode ref key and resume from that key
6071 		 * after logging all new ancestors for the current hard link.
6072 		 */
6073 		memcpy(&search_key, &found_key, sizeof(search_key));
6074 
6075 		ret = log_new_ancestors(trans, root, path, ctx);
6076 		if (ret)
6077 			goto out;
6078 		btrfs_release_path(path);
6079 		goto again;
6080 	}
6081 	ret = 0;
6082 out:
6083 	btrfs_free_path(path);
6084 	return ret;
6085 }
6086 
6087 /*
6088  * helper function around btrfs_log_inode to make sure newly created
6089  * parent directories also end up in the log.  A minimal inode and backref
6090  * only logging is done of any parent directories that are older than
6091  * the last committed transaction
6092  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,const loff_t start,const loff_t end,int inode_only,struct btrfs_log_ctx * ctx)6093 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6094 				  struct btrfs_inode *inode,
6095 				  struct dentry *parent,
6096 				  const loff_t start,
6097 				  const loff_t end,
6098 				  int inode_only,
6099 				  struct btrfs_log_ctx *ctx)
6100 {
6101 	struct btrfs_root *root = inode->root;
6102 	struct btrfs_fs_info *fs_info = root->fs_info;
6103 	struct super_block *sb;
6104 	int ret = 0;
6105 	u64 last_committed = fs_info->last_trans_committed;
6106 	bool log_dentries = false;
6107 
6108 	sb = inode->vfs_inode.i_sb;
6109 
6110 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6111 		ret = 1;
6112 		goto end_no_trans;
6113 	}
6114 
6115 	/*
6116 	 * The prev transaction commit doesn't complete, we need do
6117 	 * full commit by ourselves.
6118 	 */
6119 	if (fs_info->last_trans_log_full_commit >
6120 	    fs_info->last_trans_committed) {
6121 		ret = 1;
6122 		goto end_no_trans;
6123 	}
6124 
6125 	if (btrfs_root_refs(&root->root_item) == 0) {
6126 		ret = 1;
6127 		goto end_no_trans;
6128 	}
6129 
6130 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6131 			last_committed);
6132 	if (ret)
6133 		goto end_no_trans;
6134 
6135 	/*
6136 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6137 	 * (since logging them is pointless, a link count of 0 means they
6138 	 * will never be accessible).
6139 	 */
6140 	if (btrfs_inode_in_log(inode, trans->transid) ||
6141 	    inode->vfs_inode.i_nlink == 0) {
6142 		ret = BTRFS_NO_LOG_SYNC;
6143 		goto end_no_trans;
6144 	}
6145 
6146 	ret = start_log_trans(trans, root, ctx);
6147 	if (ret)
6148 		goto end_no_trans;
6149 
6150 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6151 	if (ret)
6152 		goto end_trans;
6153 
6154 	/*
6155 	 * for regular files, if its inode is already on disk, we don't
6156 	 * have to worry about the parents at all.  This is because
6157 	 * we can use the last_unlink_trans field to record renames
6158 	 * and other fun in this file.
6159 	 */
6160 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6161 	    inode->generation <= last_committed &&
6162 	    inode->last_unlink_trans <= last_committed) {
6163 		ret = 0;
6164 		goto end_trans;
6165 	}
6166 
6167 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6168 		log_dentries = true;
6169 
6170 	/*
6171 	 * On unlink we must make sure all our current and old parent directory
6172 	 * inodes are fully logged. This is to prevent leaving dangling
6173 	 * directory index entries in directories that were our parents but are
6174 	 * not anymore. Not doing this results in old parent directory being
6175 	 * impossible to delete after log replay (rmdir will always fail with
6176 	 * error -ENOTEMPTY).
6177 	 *
6178 	 * Example 1:
6179 	 *
6180 	 * mkdir testdir
6181 	 * touch testdir/foo
6182 	 * ln testdir/foo testdir/bar
6183 	 * sync
6184 	 * unlink testdir/bar
6185 	 * xfs_io -c fsync testdir/foo
6186 	 * <power failure>
6187 	 * mount fs, triggers log replay
6188 	 *
6189 	 * If we don't log the parent directory (testdir), after log replay the
6190 	 * directory still has an entry pointing to the file inode using the bar
6191 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6192 	 * the file inode has a link count of 1.
6193 	 *
6194 	 * Example 2:
6195 	 *
6196 	 * mkdir testdir
6197 	 * touch foo
6198 	 * ln foo testdir/foo2
6199 	 * ln foo testdir/foo3
6200 	 * sync
6201 	 * unlink testdir/foo3
6202 	 * xfs_io -c fsync foo
6203 	 * <power failure>
6204 	 * mount fs, triggers log replay
6205 	 *
6206 	 * Similar as the first example, after log replay the parent directory
6207 	 * testdir still has an entry pointing to the inode file with name foo3
6208 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6209 	 * and has a link count of 2.
6210 	 */
6211 	if (inode->last_unlink_trans > last_committed) {
6212 		ret = btrfs_log_all_parents(trans, inode, ctx);
6213 		if (ret)
6214 			goto end_trans;
6215 	}
6216 
6217 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6218 	if (ret)
6219 		goto end_trans;
6220 
6221 	if (log_dentries)
6222 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6223 	else
6224 		ret = 0;
6225 end_trans:
6226 	if (ret < 0) {
6227 		btrfs_set_log_full_commit(trans);
6228 		ret = 1;
6229 	}
6230 
6231 	if (ret)
6232 		btrfs_remove_log_ctx(root, ctx);
6233 	btrfs_end_log_trans(root);
6234 end_no_trans:
6235 	return ret;
6236 }
6237 
6238 /*
6239  * it is not safe to log dentry if the chunk root has added new
6240  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6241  * If this returns 1, you must commit the transaction to safely get your
6242  * data on disk.
6243  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)6244 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6245 			  struct dentry *dentry,
6246 			  const loff_t start,
6247 			  const loff_t end,
6248 			  struct btrfs_log_ctx *ctx)
6249 {
6250 	struct dentry *parent = dget_parent(dentry);
6251 	int ret;
6252 
6253 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6254 				     start, end, LOG_INODE_ALL, ctx);
6255 	dput(parent);
6256 
6257 	return ret;
6258 }
6259 
6260 /*
6261  * should be called during mount to recover any replay any log trees
6262  * from the FS
6263  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)6264 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6265 {
6266 	int ret;
6267 	struct btrfs_path *path;
6268 	struct btrfs_trans_handle *trans;
6269 	struct btrfs_key key;
6270 	struct btrfs_key found_key;
6271 	struct btrfs_key tmp_key;
6272 	struct btrfs_root *log;
6273 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6274 	struct walk_control wc = {
6275 		.process_func = process_one_buffer,
6276 		.stage = LOG_WALK_PIN_ONLY,
6277 	};
6278 
6279 	path = btrfs_alloc_path();
6280 	if (!path)
6281 		return -ENOMEM;
6282 
6283 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6284 
6285 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6286 	if (IS_ERR(trans)) {
6287 		ret = PTR_ERR(trans);
6288 		goto error;
6289 	}
6290 
6291 	wc.trans = trans;
6292 	wc.pin = 1;
6293 
6294 	ret = walk_log_tree(trans, log_root_tree, &wc);
6295 	if (ret) {
6296 		btrfs_handle_fs_error(fs_info, ret,
6297 			"Failed to pin buffers while recovering log root tree.");
6298 		goto error;
6299 	}
6300 
6301 again:
6302 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6303 	key.offset = (u64)-1;
6304 	key.type = BTRFS_ROOT_ITEM_KEY;
6305 
6306 	while (1) {
6307 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6308 
6309 		if (ret < 0) {
6310 			btrfs_handle_fs_error(fs_info, ret,
6311 				    "Couldn't find tree log root.");
6312 			goto error;
6313 		}
6314 		if (ret > 0) {
6315 			if (path->slots[0] == 0)
6316 				break;
6317 			path->slots[0]--;
6318 		}
6319 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6320 				      path->slots[0]);
6321 		btrfs_release_path(path);
6322 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6323 			break;
6324 
6325 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6326 		if (IS_ERR(log)) {
6327 			ret = PTR_ERR(log);
6328 			btrfs_handle_fs_error(fs_info, ret,
6329 				    "Couldn't read tree log root.");
6330 			goto error;
6331 		}
6332 
6333 		tmp_key.objectid = found_key.offset;
6334 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6335 		tmp_key.offset = (u64)-1;
6336 
6337 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6338 		if (IS_ERR(wc.replay_dest)) {
6339 			ret = PTR_ERR(wc.replay_dest);
6340 
6341 			/*
6342 			 * We didn't find the subvol, likely because it was
6343 			 * deleted.  This is ok, simply skip this log and go to
6344 			 * the next one.
6345 			 *
6346 			 * We need to exclude the root because we can't have
6347 			 * other log replays overwriting this log as we'll read
6348 			 * it back in a few more times.  This will keep our
6349 			 * block from being modified, and we'll just bail for
6350 			 * each subsequent pass.
6351 			 */
6352 			if (ret == -ENOENT)
6353 				ret = btrfs_pin_extent_for_log_replay(fs_info,
6354 							log->node->start,
6355 							log->node->len);
6356 			free_extent_buffer(log->node);
6357 			free_extent_buffer(log->commit_root);
6358 			kfree(log);
6359 
6360 			if (!ret)
6361 				goto next;
6362 			btrfs_handle_fs_error(fs_info, ret,
6363 				"Couldn't read target root for tree log recovery.");
6364 			goto error;
6365 		}
6366 
6367 		wc.replay_dest->log_root = log;
6368 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6369 		ret = walk_log_tree(trans, log, &wc);
6370 
6371 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6372 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6373 						      path);
6374 		}
6375 
6376 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6377 			struct btrfs_root *root = wc.replay_dest;
6378 
6379 			btrfs_release_path(path);
6380 
6381 			/*
6382 			 * We have just replayed everything, and the highest
6383 			 * objectid of fs roots probably has changed in case
6384 			 * some inode_item's got replayed.
6385 			 *
6386 			 * root->objectid_mutex is not acquired as log replay
6387 			 * could only happen during mount.
6388 			 */
6389 			ret = btrfs_find_highest_objectid(root,
6390 						  &root->highest_objectid);
6391 		}
6392 
6393 		wc.replay_dest->log_root = NULL;
6394 		free_extent_buffer(log->node);
6395 		free_extent_buffer(log->commit_root);
6396 		kfree(log);
6397 
6398 		if (ret)
6399 			goto error;
6400 next:
6401 		if (found_key.offset == 0)
6402 			break;
6403 		key.offset = found_key.offset - 1;
6404 	}
6405 	btrfs_release_path(path);
6406 
6407 	/* step one is to pin it all, step two is to replay just inodes */
6408 	if (wc.pin) {
6409 		wc.pin = 0;
6410 		wc.process_func = replay_one_buffer;
6411 		wc.stage = LOG_WALK_REPLAY_INODES;
6412 		goto again;
6413 	}
6414 	/* step three is to replay everything */
6415 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6416 		wc.stage++;
6417 		goto again;
6418 	}
6419 
6420 	btrfs_free_path(path);
6421 
6422 	/* step 4: commit the transaction, which also unpins the blocks */
6423 	ret = btrfs_commit_transaction(trans);
6424 	if (ret)
6425 		return ret;
6426 
6427 	free_extent_buffer(log_root_tree->node);
6428 	log_root_tree->log_root = NULL;
6429 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6430 	kfree(log_root_tree);
6431 
6432 	return 0;
6433 error:
6434 	if (wc.trans)
6435 		btrfs_end_transaction(wc.trans);
6436 	btrfs_free_path(path);
6437 	return ret;
6438 }
6439 
6440 /*
6441  * there are some corner cases where we want to force a full
6442  * commit instead of allowing a directory to be logged.
6443  *
6444  * They revolve around files there were unlinked from the directory, and
6445  * this function updates the parent directory so that a full commit is
6446  * properly done if it is fsync'd later after the unlinks are done.
6447  *
6448  * Must be called before the unlink operations (updates to the subvolume tree,
6449  * inodes, etc) are done.
6450  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6451 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6452 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6453 			     int for_rename)
6454 {
6455 	/*
6456 	 * when we're logging a file, if it hasn't been renamed
6457 	 * or unlinked, and its inode is fully committed on disk,
6458 	 * we don't have to worry about walking up the directory chain
6459 	 * to log its parents.
6460 	 *
6461 	 * So, we use the last_unlink_trans field to put this transid
6462 	 * into the file.  When the file is logged we check it and
6463 	 * don't log the parents if the file is fully on disk.
6464 	 */
6465 	mutex_lock(&inode->log_mutex);
6466 	inode->last_unlink_trans = trans->transid;
6467 	mutex_unlock(&inode->log_mutex);
6468 
6469 	/*
6470 	 * if this directory was already logged any new
6471 	 * names for this file/dir will get recorded
6472 	 */
6473 	if (dir->logged_trans == trans->transid)
6474 		return;
6475 
6476 	/*
6477 	 * if the inode we're about to unlink was logged,
6478 	 * the log will be properly updated for any new names
6479 	 */
6480 	if (inode->logged_trans == trans->transid)
6481 		return;
6482 
6483 	/*
6484 	 * when renaming files across directories, if the directory
6485 	 * there we're unlinking from gets fsync'd later on, there's
6486 	 * no way to find the destination directory later and fsync it
6487 	 * properly.  So, we have to be conservative and force commits
6488 	 * so the new name gets discovered.
6489 	 */
6490 	if (for_rename)
6491 		goto record;
6492 
6493 	/* we can safely do the unlink without any special recording */
6494 	return;
6495 
6496 record:
6497 	mutex_lock(&dir->log_mutex);
6498 	dir->last_unlink_trans = trans->transid;
6499 	mutex_unlock(&dir->log_mutex);
6500 }
6501 
6502 /*
6503  * Make sure that if someone attempts to fsync the parent directory of a deleted
6504  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6505  * that after replaying the log tree of the parent directory's root we will not
6506  * see the snapshot anymore and at log replay time we will not see any log tree
6507  * corresponding to the deleted snapshot's root, which could lead to replaying
6508  * it after replaying the log tree of the parent directory (which would replay
6509  * the snapshot delete operation).
6510  *
6511  * Must be called before the actual snapshot destroy operation (updates to the
6512  * parent root and tree of tree roots trees, etc) are done.
6513  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6514 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6515 				   struct btrfs_inode *dir)
6516 {
6517 	mutex_lock(&dir->log_mutex);
6518 	dir->last_unlink_trans = trans->transid;
6519 	mutex_unlock(&dir->log_mutex);
6520 }
6521 
6522 /*
6523  * Call this after adding a new name for a file and it will properly
6524  * update the log to reflect the new name.
6525  *
6526  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6527  * true (because it's not used).
6528  *
6529  * Return value depends on whether @sync_log is true or false.
6530  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6531  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6532  *            otherwise.
6533  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6534  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6535  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6536  *             committed (without attempting to sync the log).
6537  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent,bool sync_log,struct btrfs_log_ctx * ctx)6538 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6539 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6540 			struct dentry *parent,
6541 			bool sync_log, struct btrfs_log_ctx *ctx)
6542 {
6543 	struct btrfs_fs_info *fs_info = trans->fs_info;
6544 	int ret;
6545 
6546 	/*
6547 	 * this will force the logging code to walk the dentry chain
6548 	 * up for the file
6549 	 */
6550 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6551 		inode->last_unlink_trans = trans->transid;
6552 
6553 	/*
6554 	 * if this inode hasn't been logged and directory we're renaming it
6555 	 * from hasn't been logged, we don't need to log it
6556 	 */
6557 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6558 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6559 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6560 			BTRFS_DONT_NEED_LOG_SYNC;
6561 
6562 	if (sync_log) {
6563 		struct btrfs_log_ctx ctx2;
6564 
6565 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6566 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6567 					     LOG_INODE_EXISTS, &ctx2);
6568 		if (ret == BTRFS_NO_LOG_SYNC)
6569 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6570 		else if (ret)
6571 			return BTRFS_NEED_TRANS_COMMIT;
6572 
6573 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6574 		if (ret)
6575 			return BTRFS_NEED_TRANS_COMMIT;
6576 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6577 	}
6578 
6579 	ASSERT(ctx);
6580 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6581 				     LOG_INODE_EXISTS, ctx);
6582 	if (ret == BTRFS_NO_LOG_SYNC)
6583 		return BTRFS_DONT_NEED_LOG_SYNC;
6584 	else if (ret)
6585 		return BTRFS_NEED_TRANS_COMMIT;
6586 
6587 	return BTRFS_NEED_LOG_SYNC;
6588 }
6589 
6590