1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21
22 #include "opp.h"
23
24 /*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35 {
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43 }
44
_find_opp_table_unlocked(struct device * dev)45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63 }
64
65 /**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
_find_opp_table(struct device * dev)76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90 }
91
92 /**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112 /**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
dev_pm_opp_get_freq(struct dev_pm_opp * opp)119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130 /**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148 /**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169 /**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
dev_pm_opp_get_max_clock_latency(struct device * dev)175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192 /**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
dev_pm_opp_get_max_volt_latency(struct device * dev)198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255 put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262 /**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
dev_pm_opp_get_max_transition_latency(struct device * dev)270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277 /**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
_get_opp_count(struct opp_table * opp_table)302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317 }
318
319 /**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
dev_pm_opp_get_opp_count(struct device * dev)326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346 /**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372 {
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404 /**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421 {
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454 {
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473 }
474
475 /**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495 {
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516 /**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536 {
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574 /**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
dev_pm_opp_find_freq_ceil_by_volt(struct device * dev,unsigned long u_volt)591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593 {
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630 {
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651 }
652
_generic_set_opp_clk_only(struct device * dev,struct clk * clk,unsigned long freq)653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655 {
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665 }
666
_generic_set_opp_regulator(const struct opp_table * opp_table,struct device * dev,unsigned long old_freq,unsigned long freq,struct dev_pm_opp_supply * old_supply,struct dev_pm_opp_supply * new_supply)667 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673 {
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 return 0;
703
704 restore_freq:
705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 __func__, old_freq);
708 restore_voltage:
709 /* This shouldn't harm even if the voltages weren't updated earlier */
710 if (old_supply)
711 _set_opp_voltage(dev, reg, old_supply);
712
713 return ret;
714 }
715
_set_opp_custom(const struct opp_table * opp_table,struct device * dev,unsigned long old_freq,unsigned long freq,struct dev_pm_opp_supply * old_supply,struct dev_pm_opp_supply * new_supply)716 static int _set_opp_custom(const struct opp_table *opp_table,
717 struct device *dev, unsigned long old_freq,
718 unsigned long freq,
719 struct dev_pm_opp_supply *old_supply,
720 struct dev_pm_opp_supply *new_supply)
721 {
722 struct dev_pm_set_opp_data *data;
723 int size;
724
725 data = opp_table->set_opp_data;
726 data->regulators = opp_table->regulators;
727 data->regulator_count = opp_table->regulator_count;
728 data->clk = opp_table->clk;
729 data->dev = dev;
730
731 data->old_opp.rate = old_freq;
732 size = sizeof(*old_supply) * opp_table->regulator_count;
733 if (!old_supply)
734 memset(data->old_opp.supplies, 0, size);
735 else
736 memcpy(data->old_opp.supplies, old_supply, size);
737
738 data->new_opp.rate = freq;
739 memcpy(data->new_opp.supplies, new_supply, size);
740
741 return opp_table->set_opp(data);
742 }
743
744 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp)745 static int _set_required_opps(struct device *dev,
746 struct opp_table *opp_table,
747 struct dev_pm_opp *opp)
748 {
749 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 unsigned int pstate;
752 int i, ret = 0;
753
754 if (!required_opp_tables)
755 return 0;
756
757 /* Single genpd case */
758 if (!genpd_virt_devs) {
759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 if (ret) {
762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 dev_name(dev), pstate, ret);
764 }
765 return ret;
766 }
767
768 /* Multiple genpd case */
769
770 /*
771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 * after it is freed from another thread.
773 */
774 mutex_lock(&opp_table->genpd_virt_dev_lock);
775
776 for (i = 0; i < opp_table->required_opp_count; i++) {
777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778
779 if (!genpd_virt_devs[i])
780 continue;
781
782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 if (ret) {
784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 dev_name(genpd_virt_devs[i]), pstate, ret);
786 break;
787 }
788 }
789 mutex_unlock(&opp_table->genpd_virt_dev_lock);
790
791 return ret;
792 }
793
794 /**
795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796 * @dev: device for which we do this operation
797 * @target_freq: frequency to achieve
798 *
799 * This configures the power-supplies to the levels specified by the OPP
800 * corresponding to the target_freq, and programs the clock to a value <=
801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802 * provided by the opp, should have already rounded to the target OPP's
803 * frequency.
804 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806 {
807 struct opp_table *opp_table;
808 unsigned long freq, old_freq, temp_freq;
809 struct dev_pm_opp *old_opp, *opp;
810 struct clk *clk;
811 int ret;
812
813 opp_table = _find_opp_table(dev);
814 if (IS_ERR(opp_table)) {
815 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 return PTR_ERR(opp_table);
817 }
818
819 if (unlikely(!target_freq)) {
820 if (opp_table->required_opp_tables) {
821 ret = _set_required_opps(dev, opp_table, NULL);
822 } else {
823 dev_err(dev, "target frequency can't be 0\n");
824 ret = -EINVAL;
825 }
826
827 goto put_opp_table;
828 }
829
830 clk = opp_table->clk;
831 if (IS_ERR(clk)) {
832 dev_err(dev, "%s: No clock available for the device\n",
833 __func__);
834 ret = PTR_ERR(clk);
835 goto put_opp_table;
836 }
837
838 freq = clk_round_rate(clk, target_freq);
839 if ((long)freq <= 0)
840 freq = target_freq;
841
842 old_freq = clk_get_rate(clk);
843
844 /* Return early if nothing to do */
845 if (old_freq == freq) {
846 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
847 __func__, freq);
848 ret = 0;
849 goto put_opp_table;
850 }
851
852 temp_freq = old_freq;
853 old_opp = _find_freq_ceil(opp_table, &temp_freq);
854 if (IS_ERR(old_opp)) {
855 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
856 __func__, old_freq, PTR_ERR(old_opp));
857 }
858
859 temp_freq = freq;
860 opp = _find_freq_ceil(opp_table, &temp_freq);
861 if (IS_ERR(opp)) {
862 ret = PTR_ERR(opp);
863 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
864 __func__, freq, ret);
865 goto put_old_opp;
866 }
867
868 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
869 old_freq, freq);
870
871 /* Scaling up? Configure required OPPs before frequency */
872 if (freq >= old_freq) {
873 ret = _set_required_opps(dev, opp_table, opp);
874 if (ret)
875 goto put_opp;
876 }
877
878 if (opp_table->set_opp) {
879 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
880 IS_ERR(old_opp) ? NULL : old_opp->supplies,
881 opp->supplies);
882 } else if (opp_table->regulators) {
883 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
884 IS_ERR(old_opp) ? NULL : old_opp->supplies,
885 opp->supplies);
886 } else {
887 /* Only frequency scaling */
888 ret = _generic_set_opp_clk_only(dev, clk, freq);
889 }
890
891 /* Scaling down? Configure required OPPs after frequency */
892 if (!ret && freq < old_freq) {
893 ret = _set_required_opps(dev, opp_table, opp);
894 if (ret)
895 dev_err(dev, "Failed to set required opps: %d\n", ret);
896 }
897
898 put_opp:
899 dev_pm_opp_put(opp);
900 put_old_opp:
901 if (!IS_ERR(old_opp))
902 dev_pm_opp_put(old_opp);
903 put_opp_table:
904 dev_pm_opp_put_opp_table(opp_table);
905 return ret;
906 }
907 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
908
909 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)910 static void _remove_opp_dev(struct opp_device *opp_dev,
911 struct opp_table *opp_table)
912 {
913 opp_debug_unregister(opp_dev, opp_table);
914 list_del(&opp_dev->node);
915 kfree(opp_dev);
916 }
917
_add_opp_dev_unlocked(const struct device * dev,struct opp_table * opp_table)918 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
919 struct opp_table *opp_table)
920 {
921 struct opp_device *opp_dev;
922
923 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
924 if (!opp_dev)
925 return NULL;
926
927 /* Initialize opp-dev */
928 opp_dev->dev = dev;
929
930 list_add(&opp_dev->node, &opp_table->dev_list);
931
932 /* Create debugfs entries for the opp_table */
933 opp_debug_register(opp_dev, opp_table);
934
935 return opp_dev;
936 }
937
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)938 struct opp_device *_add_opp_dev(const struct device *dev,
939 struct opp_table *opp_table)
940 {
941 struct opp_device *opp_dev;
942
943 mutex_lock(&opp_table->lock);
944 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
945 mutex_unlock(&opp_table->lock);
946
947 return opp_dev;
948 }
949
_allocate_opp_table(struct device * dev,int index)950 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
951 {
952 struct opp_table *opp_table;
953 struct opp_device *opp_dev;
954 int ret;
955
956 /*
957 * Allocate a new OPP table. In the infrequent case where a new
958 * device is needed to be added, we pay this penalty.
959 */
960 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
961 if (!opp_table)
962 return NULL;
963
964 mutex_init(&opp_table->lock);
965 mutex_init(&opp_table->genpd_virt_dev_lock);
966 INIT_LIST_HEAD(&opp_table->dev_list);
967
968 /* Mark regulator count uninitialized */
969 opp_table->regulator_count = -1;
970
971 opp_dev = _add_opp_dev(dev, opp_table);
972 if (!opp_dev) {
973 kfree(opp_table);
974 return NULL;
975 }
976
977 _of_init_opp_table(opp_table, dev, index);
978
979 /* Find clk for the device */
980 opp_table->clk = clk_get(dev, NULL);
981 if (IS_ERR(opp_table->clk)) {
982 ret = PTR_ERR(opp_table->clk);
983 if (ret != -EPROBE_DEFER)
984 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
985 ret);
986 }
987
988 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
989 INIT_LIST_HEAD(&opp_table->opp_list);
990 kref_init(&opp_table->kref);
991 kref_init(&opp_table->list_kref);
992
993 /* Secure the device table modification */
994 list_add(&opp_table->node, &opp_tables);
995 return opp_table;
996 }
997
_get_opp_table_kref(struct opp_table * opp_table)998 void _get_opp_table_kref(struct opp_table *opp_table)
999 {
1000 kref_get(&opp_table->kref);
1001 }
1002
_opp_get_opp_table(struct device * dev,int index)1003 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1004 {
1005 struct opp_table *opp_table;
1006
1007 /* Hold our table modification lock here */
1008 mutex_lock(&opp_table_lock);
1009
1010 opp_table = _find_opp_table_unlocked(dev);
1011 if (!IS_ERR(opp_table))
1012 goto unlock;
1013
1014 opp_table = _managed_opp(dev, index);
1015 if (opp_table) {
1016 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1017 dev_pm_opp_put_opp_table(opp_table);
1018 opp_table = NULL;
1019 }
1020 goto unlock;
1021 }
1022
1023 opp_table = _allocate_opp_table(dev, index);
1024
1025 unlock:
1026 mutex_unlock(&opp_table_lock);
1027
1028 return opp_table;
1029 }
1030
dev_pm_opp_get_opp_table(struct device * dev)1031 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1032 {
1033 return _opp_get_opp_table(dev, 0);
1034 }
1035 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1036
dev_pm_opp_get_opp_table_indexed(struct device * dev,int index)1037 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1038 int index)
1039 {
1040 return _opp_get_opp_table(dev, index);
1041 }
1042
_opp_table_kref_release(struct kref * kref)1043 static void _opp_table_kref_release(struct kref *kref)
1044 {
1045 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1046 struct opp_device *opp_dev, *temp;
1047
1048 _of_clear_opp_table(opp_table);
1049
1050 /* Release clk */
1051 if (!IS_ERR(opp_table->clk))
1052 clk_put(opp_table->clk);
1053
1054 WARN_ON(!list_empty(&opp_table->opp_list));
1055
1056 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1057 /*
1058 * The OPP table is getting removed, drop the performance state
1059 * constraints.
1060 */
1061 if (opp_table->genpd_performance_state)
1062 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1063
1064 _remove_opp_dev(opp_dev, opp_table);
1065 }
1066
1067 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1068 mutex_destroy(&opp_table->lock);
1069 list_del(&opp_table->node);
1070 kfree(opp_table);
1071
1072 mutex_unlock(&opp_table_lock);
1073 }
1074
_opp_remove_all_static(struct opp_table * opp_table)1075 void _opp_remove_all_static(struct opp_table *opp_table)
1076 {
1077 struct dev_pm_opp *opp, *tmp;
1078
1079 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1080 if (!opp->dynamic)
1081 dev_pm_opp_put(opp);
1082 }
1083
1084 opp_table->parsed_static_opps = false;
1085 }
1086
_opp_table_list_kref_release(struct kref * kref)1087 static void _opp_table_list_kref_release(struct kref *kref)
1088 {
1089 struct opp_table *opp_table = container_of(kref, struct opp_table,
1090 list_kref);
1091
1092 _opp_remove_all_static(opp_table);
1093 mutex_unlock(&opp_table_lock);
1094 }
1095
_put_opp_list_kref(struct opp_table * opp_table)1096 void _put_opp_list_kref(struct opp_table *opp_table)
1097 {
1098 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1099 &opp_table_lock);
1100 }
1101
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1102 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1103 {
1104 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1105 &opp_table_lock);
1106 }
1107 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1108
_opp_free(struct dev_pm_opp * opp)1109 void _opp_free(struct dev_pm_opp *opp)
1110 {
1111 kfree(opp);
1112 }
1113
_opp_kref_release(struct dev_pm_opp * opp,struct opp_table * opp_table)1114 static void _opp_kref_release(struct dev_pm_opp *opp,
1115 struct opp_table *opp_table)
1116 {
1117 /*
1118 * Notify the changes in the availability of the operable
1119 * frequency/voltage list.
1120 */
1121 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1122 _of_opp_free_required_opps(opp_table, opp);
1123 opp_debug_remove_one(opp);
1124 list_del(&opp->node);
1125 kfree(opp);
1126 }
1127
_opp_kref_release_unlocked(struct kref * kref)1128 static void _opp_kref_release_unlocked(struct kref *kref)
1129 {
1130 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1131 struct opp_table *opp_table = opp->opp_table;
1132
1133 _opp_kref_release(opp, opp_table);
1134 }
1135
_opp_kref_release_locked(struct kref * kref)1136 static void _opp_kref_release_locked(struct kref *kref)
1137 {
1138 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1139 struct opp_table *opp_table = opp->opp_table;
1140
1141 _opp_kref_release(opp, opp_table);
1142 mutex_unlock(&opp_table->lock);
1143 }
1144
dev_pm_opp_get(struct dev_pm_opp * opp)1145 void dev_pm_opp_get(struct dev_pm_opp *opp)
1146 {
1147 kref_get(&opp->kref);
1148 }
1149
dev_pm_opp_put(struct dev_pm_opp * opp)1150 void dev_pm_opp_put(struct dev_pm_opp *opp)
1151 {
1152 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1153 &opp->opp_table->lock);
1154 }
1155 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1156
dev_pm_opp_put_unlocked(struct dev_pm_opp * opp)1157 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1158 {
1159 kref_put(&opp->kref, _opp_kref_release_unlocked);
1160 }
1161
1162 /**
1163 * dev_pm_opp_remove() - Remove an OPP from OPP table
1164 * @dev: device for which we do this operation
1165 * @freq: OPP to remove with matching 'freq'
1166 *
1167 * This function removes an opp from the opp table.
1168 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1169 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1170 {
1171 struct dev_pm_opp *opp;
1172 struct opp_table *opp_table;
1173 bool found = false;
1174
1175 opp_table = _find_opp_table(dev);
1176 if (IS_ERR(opp_table))
1177 return;
1178
1179 mutex_lock(&opp_table->lock);
1180
1181 list_for_each_entry(opp, &opp_table->opp_list, node) {
1182 if (opp->rate == freq) {
1183 found = true;
1184 break;
1185 }
1186 }
1187
1188 mutex_unlock(&opp_table->lock);
1189
1190 if (found) {
1191 dev_pm_opp_put(opp);
1192
1193 /* Drop the reference taken by dev_pm_opp_add() */
1194 dev_pm_opp_put_opp_table(opp_table);
1195 } else {
1196 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1197 __func__, freq);
1198 }
1199
1200 /* Drop the reference taken by _find_opp_table() */
1201 dev_pm_opp_put_opp_table(opp_table);
1202 }
1203 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1204
1205 /**
1206 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1207 * @dev: device for which we do this operation
1208 *
1209 * This function removes all dynamically created OPPs from the opp table.
1210 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1211 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1212 {
1213 struct opp_table *opp_table;
1214 struct dev_pm_opp *opp, *temp;
1215 int count = 0;
1216
1217 opp_table = _find_opp_table(dev);
1218 if (IS_ERR(opp_table))
1219 return;
1220
1221 mutex_lock(&opp_table->lock);
1222 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1223 if (opp->dynamic) {
1224 dev_pm_opp_put_unlocked(opp);
1225 count++;
1226 }
1227 }
1228 mutex_unlock(&opp_table->lock);
1229
1230 /* Drop the references taken by dev_pm_opp_add() */
1231 while (count--)
1232 dev_pm_opp_put_opp_table(opp_table);
1233
1234 /* Drop the reference taken by _find_opp_table() */
1235 dev_pm_opp_put_opp_table(opp_table);
1236 }
1237 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1238
_opp_allocate(struct opp_table * table)1239 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1240 {
1241 struct dev_pm_opp *opp;
1242 int count, supply_size;
1243
1244 /* Allocate space for at least one supply */
1245 count = table->regulator_count > 0 ? table->regulator_count : 1;
1246 supply_size = sizeof(*opp->supplies) * count;
1247
1248 /* allocate new OPP node and supplies structures */
1249 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1250 if (!opp)
1251 return NULL;
1252
1253 /* Put the supplies at the end of the OPP structure as an empty array */
1254 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1255 INIT_LIST_HEAD(&opp->node);
1256
1257 return opp;
1258 }
1259
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1260 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1261 struct opp_table *opp_table)
1262 {
1263 struct regulator *reg;
1264 int i;
1265
1266 if (!opp_table->regulators)
1267 return true;
1268
1269 for (i = 0; i < opp_table->regulator_count; i++) {
1270 reg = opp_table->regulators[i];
1271
1272 if (!regulator_is_supported_voltage(reg,
1273 opp->supplies[i].u_volt_min,
1274 opp->supplies[i].u_volt_max)) {
1275 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1276 __func__, opp->supplies[i].u_volt_min,
1277 opp->supplies[i].u_volt_max);
1278 return false;
1279 }
1280 }
1281
1282 return true;
1283 }
1284
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1285 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1286 struct opp_table *opp_table,
1287 struct list_head **head)
1288 {
1289 struct dev_pm_opp *opp;
1290
1291 /*
1292 * Insert new OPP in order of increasing frequency and discard if
1293 * already present.
1294 *
1295 * Need to use &opp_table->opp_list in the condition part of the 'for'
1296 * loop, don't replace it with head otherwise it will become an infinite
1297 * loop.
1298 */
1299 list_for_each_entry(opp, &opp_table->opp_list, node) {
1300 if (new_opp->rate > opp->rate) {
1301 *head = &opp->node;
1302 continue;
1303 }
1304
1305 if (new_opp->rate < opp->rate)
1306 return 0;
1307
1308 /* Duplicate OPPs */
1309 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1310 __func__, opp->rate, opp->supplies[0].u_volt,
1311 opp->available, new_opp->rate,
1312 new_opp->supplies[0].u_volt, new_opp->available);
1313
1314 /* Should we compare voltages for all regulators here ? */
1315 return opp->available &&
1316 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1317 }
1318
1319 return 0;
1320 }
1321
1322 /*
1323 * Returns:
1324 * 0: On success. And appropriate error message for duplicate OPPs.
1325 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1326 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1327 * sure we don't print error messages unnecessarily if different parts of
1328 * kernel try to initialize the OPP table.
1329 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1330 * should be considered an error by the callers of _opp_add().
1331 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,bool rate_not_available)1332 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1333 struct opp_table *opp_table, bool rate_not_available)
1334 {
1335 struct list_head *head;
1336 int ret;
1337
1338 mutex_lock(&opp_table->lock);
1339 head = &opp_table->opp_list;
1340
1341 if (likely(!rate_not_available)) {
1342 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1343 if (ret) {
1344 mutex_unlock(&opp_table->lock);
1345 return ret;
1346 }
1347 }
1348
1349 list_add(&new_opp->node, head);
1350 mutex_unlock(&opp_table->lock);
1351
1352 new_opp->opp_table = opp_table;
1353 kref_init(&new_opp->kref);
1354
1355 opp_debug_create_one(new_opp, opp_table);
1356
1357 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1358 new_opp->available = false;
1359 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1360 __func__, new_opp->rate);
1361 }
1362
1363 return 0;
1364 }
1365
1366 /**
1367 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1368 * @opp_table: OPP table
1369 * @dev: device for which we do this operation
1370 * @freq: Frequency in Hz for this OPP
1371 * @u_volt: Voltage in uVolts for this OPP
1372 * @dynamic: Dynamically added OPPs.
1373 *
1374 * This function adds an opp definition to the opp table and returns status.
1375 * The opp is made available by default and it can be controlled using
1376 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1377 *
1378 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1379 * and freed by dev_pm_opp_of_remove_table.
1380 *
1381 * Return:
1382 * 0 On success OR
1383 * Duplicate OPPs (both freq and volt are same) and opp->available
1384 * -EEXIST Freq are same and volt are different OR
1385 * Duplicate OPPs (both freq and volt are same) and !opp->available
1386 * -ENOMEM Memory allocation failure
1387 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)1388 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1389 unsigned long freq, long u_volt, bool dynamic)
1390 {
1391 struct dev_pm_opp *new_opp;
1392 unsigned long tol;
1393 int ret;
1394
1395 new_opp = _opp_allocate(opp_table);
1396 if (!new_opp)
1397 return -ENOMEM;
1398
1399 /* populate the opp table */
1400 new_opp->rate = freq;
1401 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1402 new_opp->supplies[0].u_volt = u_volt;
1403 new_opp->supplies[0].u_volt_min = u_volt - tol;
1404 new_opp->supplies[0].u_volt_max = u_volt + tol;
1405 new_opp->available = true;
1406 new_opp->dynamic = dynamic;
1407
1408 ret = _opp_add(dev, new_opp, opp_table, false);
1409 if (ret) {
1410 /* Don't return error for duplicate OPPs */
1411 if (ret == -EBUSY)
1412 ret = 0;
1413 goto free_opp;
1414 }
1415
1416 /*
1417 * Notify the changes in the availability of the operable
1418 * frequency/voltage list.
1419 */
1420 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1421 return 0;
1422
1423 free_opp:
1424 _opp_free(new_opp);
1425
1426 return ret;
1427 }
1428
1429 /**
1430 * dev_pm_opp_set_supported_hw() - Set supported platforms
1431 * @dev: Device for which supported-hw has to be set.
1432 * @versions: Array of hierarchy of versions to match.
1433 * @count: Number of elements in the array.
1434 *
1435 * This is required only for the V2 bindings, and it enables a platform to
1436 * specify the hierarchy of versions it supports. OPP layer will then enable
1437 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1438 * property.
1439 */
dev_pm_opp_set_supported_hw(struct device * dev,const u32 * versions,unsigned int count)1440 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1441 const u32 *versions, unsigned int count)
1442 {
1443 struct opp_table *opp_table;
1444
1445 opp_table = dev_pm_opp_get_opp_table(dev);
1446 if (!opp_table)
1447 return ERR_PTR(-ENOMEM);
1448
1449 /* Make sure there are no concurrent readers while updating opp_table */
1450 WARN_ON(!list_empty(&opp_table->opp_list));
1451
1452 /* Another CPU that shares the OPP table has set the property ? */
1453 if (opp_table->supported_hw)
1454 return opp_table;
1455
1456 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1457 GFP_KERNEL);
1458 if (!opp_table->supported_hw) {
1459 dev_pm_opp_put_opp_table(opp_table);
1460 return ERR_PTR(-ENOMEM);
1461 }
1462
1463 opp_table->supported_hw_count = count;
1464
1465 return opp_table;
1466 }
1467 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1468
1469 /**
1470 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1471 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1472 *
1473 * This is required only for the V2 bindings, and is called for a matching
1474 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1475 * will not be freed.
1476 */
dev_pm_opp_put_supported_hw(struct opp_table * opp_table)1477 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1478 {
1479 /* Make sure there are no concurrent readers while updating opp_table */
1480 WARN_ON(!list_empty(&opp_table->opp_list));
1481
1482 kfree(opp_table->supported_hw);
1483 opp_table->supported_hw = NULL;
1484 opp_table->supported_hw_count = 0;
1485
1486 dev_pm_opp_put_opp_table(opp_table);
1487 }
1488 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1489
1490 /**
1491 * dev_pm_opp_set_prop_name() - Set prop-extn name
1492 * @dev: Device for which the prop-name has to be set.
1493 * @name: name to postfix to properties.
1494 *
1495 * This is required only for the V2 bindings, and it enables a platform to
1496 * specify the extn to be used for certain property names. The properties to
1497 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1498 * should postfix the property name with -<name> while looking for them.
1499 */
dev_pm_opp_set_prop_name(struct device * dev,const char * name)1500 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1501 {
1502 struct opp_table *opp_table;
1503
1504 opp_table = dev_pm_opp_get_opp_table(dev);
1505 if (!opp_table)
1506 return ERR_PTR(-ENOMEM);
1507
1508 /* Make sure there are no concurrent readers while updating opp_table */
1509 WARN_ON(!list_empty(&opp_table->opp_list));
1510
1511 /* Another CPU that shares the OPP table has set the property ? */
1512 if (opp_table->prop_name)
1513 return opp_table;
1514
1515 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1516 if (!opp_table->prop_name) {
1517 dev_pm_opp_put_opp_table(opp_table);
1518 return ERR_PTR(-ENOMEM);
1519 }
1520
1521 return opp_table;
1522 }
1523 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1524
1525 /**
1526 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1527 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1528 *
1529 * This is required only for the V2 bindings, and is called for a matching
1530 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1531 * will not be freed.
1532 */
dev_pm_opp_put_prop_name(struct opp_table * opp_table)1533 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1534 {
1535 /* Make sure there are no concurrent readers while updating opp_table */
1536 WARN_ON(!list_empty(&opp_table->opp_list));
1537
1538 kfree(opp_table->prop_name);
1539 opp_table->prop_name = NULL;
1540
1541 dev_pm_opp_put_opp_table(opp_table);
1542 }
1543 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1544
_allocate_set_opp_data(struct opp_table * opp_table)1545 static int _allocate_set_opp_data(struct opp_table *opp_table)
1546 {
1547 struct dev_pm_set_opp_data *data;
1548 int len, count = opp_table->regulator_count;
1549
1550 if (WARN_ON(!opp_table->regulators))
1551 return -EINVAL;
1552
1553 /* space for set_opp_data */
1554 len = sizeof(*data);
1555
1556 /* space for old_opp.supplies and new_opp.supplies */
1557 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1558
1559 data = kzalloc(len, GFP_KERNEL);
1560 if (!data)
1561 return -ENOMEM;
1562
1563 data->old_opp.supplies = (void *)(data + 1);
1564 data->new_opp.supplies = data->old_opp.supplies + count;
1565
1566 opp_table->set_opp_data = data;
1567
1568 return 0;
1569 }
1570
_free_set_opp_data(struct opp_table * opp_table)1571 static void _free_set_opp_data(struct opp_table *opp_table)
1572 {
1573 kfree(opp_table->set_opp_data);
1574 opp_table->set_opp_data = NULL;
1575 }
1576
1577 /**
1578 * dev_pm_opp_set_regulators() - Set regulator names for the device
1579 * @dev: Device for which regulator name is being set.
1580 * @names: Array of pointers to the names of the regulator.
1581 * @count: Number of regulators.
1582 *
1583 * In order to support OPP switching, OPP layer needs to know the name of the
1584 * device's regulators, as the core would be required to switch voltages as
1585 * well.
1586 *
1587 * This must be called before any OPPs are initialized for the device.
1588 */
dev_pm_opp_set_regulators(struct device * dev,const char * const names[],unsigned int count)1589 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1590 const char * const names[],
1591 unsigned int count)
1592 {
1593 struct opp_table *opp_table;
1594 struct regulator *reg;
1595 int ret, i;
1596
1597 opp_table = dev_pm_opp_get_opp_table(dev);
1598 if (!opp_table)
1599 return ERR_PTR(-ENOMEM);
1600
1601 /* This should be called before OPPs are initialized */
1602 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1603 ret = -EBUSY;
1604 goto err;
1605 }
1606
1607 /* Another CPU that shares the OPP table has set the regulators ? */
1608 if (opp_table->regulators)
1609 return opp_table;
1610
1611 opp_table->regulators = kmalloc_array(count,
1612 sizeof(*opp_table->regulators),
1613 GFP_KERNEL);
1614 if (!opp_table->regulators) {
1615 ret = -ENOMEM;
1616 goto err;
1617 }
1618
1619 for (i = 0; i < count; i++) {
1620 reg = regulator_get_optional(dev, names[i]);
1621 if (IS_ERR(reg)) {
1622 ret = PTR_ERR(reg);
1623 if (ret != -EPROBE_DEFER)
1624 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1625 __func__, names[i], ret);
1626 goto free_regulators;
1627 }
1628
1629 opp_table->regulators[i] = reg;
1630 }
1631
1632 opp_table->regulator_count = count;
1633
1634 /* Allocate block only once to pass to set_opp() routines */
1635 ret = _allocate_set_opp_data(opp_table);
1636 if (ret)
1637 goto free_regulators;
1638
1639 return opp_table;
1640
1641 free_regulators:
1642 while (i != 0)
1643 regulator_put(opp_table->regulators[--i]);
1644
1645 kfree(opp_table->regulators);
1646 opp_table->regulators = NULL;
1647 opp_table->regulator_count = -1;
1648 err:
1649 dev_pm_opp_put_opp_table(opp_table);
1650
1651 return ERR_PTR(ret);
1652 }
1653 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1654
1655 /**
1656 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1657 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1658 */
dev_pm_opp_put_regulators(struct opp_table * opp_table)1659 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1660 {
1661 int i;
1662
1663 if (!opp_table->regulators)
1664 goto put_opp_table;
1665
1666 /* Make sure there are no concurrent readers while updating opp_table */
1667 WARN_ON(!list_empty(&opp_table->opp_list));
1668
1669 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1670 regulator_put(opp_table->regulators[i]);
1671
1672 _free_set_opp_data(opp_table);
1673
1674 kfree(opp_table->regulators);
1675 opp_table->regulators = NULL;
1676 opp_table->regulator_count = -1;
1677
1678 put_opp_table:
1679 dev_pm_opp_put_opp_table(opp_table);
1680 }
1681 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1682
1683 /**
1684 * dev_pm_opp_set_clkname() - Set clk name for the device
1685 * @dev: Device for which clk name is being set.
1686 * @name: Clk name.
1687 *
1688 * In order to support OPP switching, OPP layer needs to get pointer to the
1689 * clock for the device. Simple cases work fine without using this routine (i.e.
1690 * by passing connection-id as NULL), but for a device with multiple clocks
1691 * available, the OPP core needs to know the exact name of the clk to use.
1692 *
1693 * This must be called before any OPPs are initialized for the device.
1694 */
dev_pm_opp_set_clkname(struct device * dev,const char * name)1695 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1696 {
1697 struct opp_table *opp_table;
1698 int ret;
1699
1700 opp_table = dev_pm_opp_get_opp_table(dev);
1701 if (!opp_table)
1702 return ERR_PTR(-ENOMEM);
1703
1704 /* This should be called before OPPs are initialized */
1705 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1706 ret = -EBUSY;
1707 goto err;
1708 }
1709
1710 /* Already have default clk set, free it */
1711 if (!IS_ERR(opp_table->clk))
1712 clk_put(opp_table->clk);
1713
1714 /* Find clk for the device */
1715 opp_table->clk = clk_get(dev, name);
1716 if (IS_ERR(opp_table->clk)) {
1717 ret = PTR_ERR(opp_table->clk);
1718 if (ret != -EPROBE_DEFER) {
1719 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1720 ret);
1721 }
1722 goto err;
1723 }
1724
1725 return opp_table;
1726
1727 err:
1728 dev_pm_opp_put_opp_table(opp_table);
1729
1730 return ERR_PTR(ret);
1731 }
1732 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1733
1734 /**
1735 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1736 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1737 */
dev_pm_opp_put_clkname(struct opp_table * opp_table)1738 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1739 {
1740 /* Make sure there are no concurrent readers while updating opp_table */
1741 WARN_ON(!list_empty(&opp_table->opp_list));
1742
1743 clk_put(opp_table->clk);
1744 opp_table->clk = ERR_PTR(-EINVAL);
1745
1746 dev_pm_opp_put_opp_table(opp_table);
1747 }
1748 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1749
1750 /**
1751 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1752 * @dev: Device for which the helper is getting registered.
1753 * @set_opp: Custom set OPP helper.
1754 *
1755 * This is useful to support complex platforms (like platforms with multiple
1756 * regulators per device), instead of the generic OPP set rate helper.
1757 *
1758 * This must be called before any OPPs are initialized for the device.
1759 */
dev_pm_opp_register_set_opp_helper(struct device * dev,int (* set_opp)(struct dev_pm_set_opp_data * data))1760 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1761 int (*set_opp)(struct dev_pm_set_opp_data *data))
1762 {
1763 struct opp_table *opp_table;
1764
1765 if (!set_opp)
1766 return ERR_PTR(-EINVAL);
1767
1768 opp_table = dev_pm_opp_get_opp_table(dev);
1769 if (!opp_table)
1770 return ERR_PTR(-ENOMEM);
1771
1772 /* This should be called before OPPs are initialized */
1773 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1774 dev_pm_opp_put_opp_table(opp_table);
1775 return ERR_PTR(-EBUSY);
1776 }
1777
1778 /* Another CPU that shares the OPP table has set the helper ? */
1779 if (!opp_table->set_opp)
1780 opp_table->set_opp = set_opp;
1781
1782 return opp_table;
1783 }
1784 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1785
1786 /**
1787 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1788 * set_opp helper
1789 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1790 *
1791 * Release resources blocked for platform specific set_opp helper.
1792 */
dev_pm_opp_unregister_set_opp_helper(struct opp_table * opp_table)1793 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1794 {
1795 /* Make sure there are no concurrent readers while updating opp_table */
1796 WARN_ON(!list_empty(&opp_table->opp_list));
1797
1798 opp_table->set_opp = NULL;
1799 dev_pm_opp_put_opp_table(opp_table);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1802
_opp_detach_genpd(struct opp_table * opp_table)1803 static void _opp_detach_genpd(struct opp_table *opp_table)
1804 {
1805 int index;
1806
1807 for (index = 0; index < opp_table->required_opp_count; index++) {
1808 if (!opp_table->genpd_virt_devs[index])
1809 continue;
1810
1811 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1812 opp_table->genpd_virt_devs[index] = NULL;
1813 }
1814
1815 kfree(opp_table->genpd_virt_devs);
1816 opp_table->genpd_virt_devs = NULL;
1817 }
1818
1819 /**
1820 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1821 * @dev: Consumer device for which the genpd is getting attached.
1822 * @names: Null terminated array of pointers containing names of genpd to attach.
1823 * @virt_devs: Pointer to return the array of virtual devices.
1824 *
1825 * Multiple generic power domains for a device are supported with the help of
1826 * virtual genpd devices, which are created for each consumer device - genpd
1827 * pair. These are the device structures which are attached to the power domain
1828 * and are required by the OPP core to set the performance state of the genpd.
1829 * The same API also works for the case where single genpd is available and so
1830 * we don't need to support that separately.
1831 *
1832 * This helper will normally be called by the consumer driver of the device
1833 * "dev", as only that has details of the genpd names.
1834 *
1835 * This helper needs to be called once with a list of all genpd to attach.
1836 * Otherwise the original device structure will be used instead by the OPP core.
1837 *
1838 * The order of entries in the names array must match the order in which
1839 * "required-opps" are added in DT.
1840 */
dev_pm_opp_attach_genpd(struct device * dev,const char ** names,struct device *** virt_devs)1841 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1842 const char **names, struct device ***virt_devs)
1843 {
1844 struct opp_table *opp_table;
1845 struct device *virt_dev;
1846 int index = 0, ret = -EINVAL;
1847 const char **name = names;
1848
1849 opp_table = dev_pm_opp_get_opp_table(dev);
1850 if (!opp_table)
1851 return ERR_PTR(-ENOMEM);
1852
1853 /*
1854 * If the genpd's OPP table isn't already initialized, parsing of the
1855 * required-opps fail for dev. We should retry this after genpd's OPP
1856 * table is added.
1857 */
1858 if (!opp_table->required_opp_count) {
1859 ret = -EPROBE_DEFER;
1860 goto put_table;
1861 }
1862
1863 mutex_lock(&opp_table->genpd_virt_dev_lock);
1864
1865 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1866 sizeof(*opp_table->genpd_virt_devs),
1867 GFP_KERNEL);
1868 if (!opp_table->genpd_virt_devs)
1869 goto unlock;
1870
1871 while (*name) {
1872 if (index >= opp_table->required_opp_count) {
1873 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1874 *name, opp_table->required_opp_count, index);
1875 goto err;
1876 }
1877
1878 if (opp_table->genpd_virt_devs[index]) {
1879 dev_err(dev, "Genpd virtual device already set %s\n",
1880 *name);
1881 goto err;
1882 }
1883
1884 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1885 if (IS_ERR(virt_dev)) {
1886 ret = PTR_ERR(virt_dev);
1887 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1888 goto err;
1889 }
1890
1891 opp_table->genpd_virt_devs[index] = virt_dev;
1892 index++;
1893 name++;
1894 }
1895
1896 if (virt_devs)
1897 *virt_devs = opp_table->genpd_virt_devs;
1898 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1899
1900 return opp_table;
1901
1902 err:
1903 _opp_detach_genpd(opp_table);
1904 unlock:
1905 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1906
1907 put_table:
1908 dev_pm_opp_put_opp_table(opp_table);
1909
1910 return ERR_PTR(ret);
1911 }
1912 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1913
1914 /**
1915 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1916 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1917 *
1918 * This detaches the genpd(s), resets the virtual device pointers, and puts the
1919 * OPP table.
1920 */
dev_pm_opp_detach_genpd(struct opp_table * opp_table)1921 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1922 {
1923 /*
1924 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1925 * used in parallel.
1926 */
1927 mutex_lock(&opp_table->genpd_virt_dev_lock);
1928 _opp_detach_genpd(opp_table);
1929 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1930
1931 dev_pm_opp_put_opp_table(opp_table);
1932 }
1933 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1934
1935 /**
1936 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1937 * @src_table: OPP table which has dst_table as one of its required OPP table.
1938 * @dst_table: Required OPP table of the src_table.
1939 * @pstate: Current performance state of the src_table.
1940 *
1941 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1942 * "required-opps" property of the OPP (present in @src_table) which has
1943 * performance state set to @pstate.
1944 *
1945 * Return: Zero or positive performance state on success, otherwise negative
1946 * value on errors.
1947 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)1948 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1949 struct opp_table *dst_table,
1950 unsigned int pstate)
1951 {
1952 struct dev_pm_opp *opp;
1953 int dest_pstate = -EINVAL;
1954 int i;
1955
1956 if (!pstate)
1957 return 0;
1958
1959 /*
1960 * Normally the src_table will have the "required_opps" property set to
1961 * point to one of the OPPs in the dst_table, but in some cases the
1962 * genpd and its master have one to one mapping of performance states
1963 * and so none of them have the "required-opps" property set. Return the
1964 * pstate of the src_table as it is in such cases.
1965 */
1966 if (!src_table->required_opp_count)
1967 return pstate;
1968
1969 for (i = 0; i < src_table->required_opp_count; i++) {
1970 if (src_table->required_opp_tables[i]->np == dst_table->np)
1971 break;
1972 }
1973
1974 if (unlikely(i == src_table->required_opp_count)) {
1975 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1976 __func__, src_table, dst_table);
1977 return -EINVAL;
1978 }
1979
1980 mutex_lock(&src_table->lock);
1981
1982 list_for_each_entry(opp, &src_table->opp_list, node) {
1983 if (opp->pstate == pstate) {
1984 dest_pstate = opp->required_opps[i]->pstate;
1985 goto unlock;
1986 }
1987 }
1988
1989 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1990 dst_table);
1991
1992 unlock:
1993 mutex_unlock(&src_table->lock);
1994
1995 return dest_pstate;
1996 }
1997
1998 /**
1999 * dev_pm_opp_add() - Add an OPP table from a table definitions
2000 * @dev: device for which we do this operation
2001 * @freq: Frequency in Hz for this OPP
2002 * @u_volt: Voltage in uVolts for this OPP
2003 *
2004 * This function adds an opp definition to the opp table and returns status.
2005 * The opp is made available by default and it can be controlled using
2006 * dev_pm_opp_enable/disable functions.
2007 *
2008 * Return:
2009 * 0 On success OR
2010 * Duplicate OPPs (both freq and volt are same) and opp->available
2011 * -EEXIST Freq are same and volt are different OR
2012 * Duplicate OPPs (both freq and volt are same) and !opp->available
2013 * -ENOMEM Memory allocation failure
2014 */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2015 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2016 {
2017 struct opp_table *opp_table;
2018 int ret;
2019
2020 opp_table = dev_pm_opp_get_opp_table(dev);
2021 if (!opp_table)
2022 return -ENOMEM;
2023
2024 /* Fix regulator count for dynamic OPPs */
2025 opp_table->regulator_count = 1;
2026
2027 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2028 if (ret)
2029 dev_pm_opp_put_opp_table(opp_table);
2030
2031 return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2034
2035 /**
2036 * _opp_set_availability() - helper to set the availability of an opp
2037 * @dev: device for which we do this operation
2038 * @freq: OPP frequency to modify availability
2039 * @availability_req: availability status requested for this opp
2040 *
2041 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2042 * which is isolated here.
2043 *
2044 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2045 * copy operation, returns 0 if no modification was done OR modification was
2046 * successful.
2047 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2048 static int _opp_set_availability(struct device *dev, unsigned long freq,
2049 bool availability_req)
2050 {
2051 struct opp_table *opp_table;
2052 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2053 int r = 0;
2054
2055 /* Find the opp_table */
2056 opp_table = _find_opp_table(dev);
2057 if (IS_ERR(opp_table)) {
2058 r = PTR_ERR(opp_table);
2059 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2060 return r;
2061 }
2062
2063 mutex_lock(&opp_table->lock);
2064
2065 /* Do we have the frequency? */
2066 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2067 if (tmp_opp->rate == freq) {
2068 opp = tmp_opp;
2069 break;
2070 }
2071 }
2072
2073 if (IS_ERR(opp)) {
2074 r = PTR_ERR(opp);
2075 goto unlock;
2076 }
2077
2078 /* Is update really needed? */
2079 if (opp->available == availability_req)
2080 goto unlock;
2081
2082 opp->available = availability_req;
2083
2084 dev_pm_opp_get(opp);
2085 mutex_unlock(&opp_table->lock);
2086
2087 /* Notify the change of the OPP availability */
2088 if (availability_req)
2089 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2090 opp);
2091 else
2092 blocking_notifier_call_chain(&opp_table->head,
2093 OPP_EVENT_DISABLE, opp);
2094
2095 dev_pm_opp_put(opp);
2096 goto put_table;
2097
2098 unlock:
2099 mutex_unlock(&opp_table->lock);
2100 put_table:
2101 dev_pm_opp_put_opp_table(opp_table);
2102 return r;
2103 }
2104
2105 /**
2106 * dev_pm_opp_enable() - Enable a specific OPP
2107 * @dev: device for which we do this operation
2108 * @freq: OPP frequency to enable
2109 *
2110 * Enables a provided opp. If the operation is valid, this returns 0, else the
2111 * corresponding error value. It is meant to be used for users an OPP available
2112 * after being temporarily made unavailable with dev_pm_opp_disable.
2113 *
2114 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2115 * copy operation, returns 0 if no modification was done OR modification was
2116 * successful.
2117 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)2118 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2119 {
2120 return _opp_set_availability(dev, freq, true);
2121 }
2122 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2123
2124 /**
2125 * dev_pm_opp_disable() - Disable a specific OPP
2126 * @dev: device for which we do this operation
2127 * @freq: OPP frequency to disable
2128 *
2129 * Disables a provided opp. If the operation is valid, this returns
2130 * 0, else the corresponding error value. It is meant to be a temporary
2131 * control by users to make this OPP not available until the circumstances are
2132 * right to make it available again (with a call to dev_pm_opp_enable).
2133 *
2134 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2135 * copy operation, returns 0 if no modification was done OR modification was
2136 * successful.
2137 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)2138 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2139 {
2140 return _opp_set_availability(dev, freq, false);
2141 }
2142 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2143
2144 /**
2145 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2146 * @dev: Device for which notifier needs to be registered
2147 * @nb: Notifier block to be registered
2148 *
2149 * Return: 0 on success or a negative error value.
2150 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)2151 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2152 {
2153 struct opp_table *opp_table;
2154 int ret;
2155
2156 opp_table = _find_opp_table(dev);
2157 if (IS_ERR(opp_table))
2158 return PTR_ERR(opp_table);
2159
2160 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2161
2162 dev_pm_opp_put_opp_table(opp_table);
2163
2164 return ret;
2165 }
2166 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2167
2168 /**
2169 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2170 * @dev: Device for which notifier needs to be unregistered
2171 * @nb: Notifier block to be unregistered
2172 *
2173 * Return: 0 on success or a negative error value.
2174 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)2175 int dev_pm_opp_unregister_notifier(struct device *dev,
2176 struct notifier_block *nb)
2177 {
2178 struct opp_table *opp_table;
2179 int ret;
2180
2181 opp_table = _find_opp_table(dev);
2182 if (IS_ERR(opp_table))
2183 return PTR_ERR(opp_table);
2184
2185 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2186
2187 dev_pm_opp_put_opp_table(opp_table);
2188
2189 return ret;
2190 }
2191 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2192
_dev_pm_opp_find_and_remove_table(struct device * dev)2193 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2194 {
2195 struct opp_table *opp_table;
2196
2197 /* Check for existing table for 'dev' */
2198 opp_table = _find_opp_table(dev);
2199 if (IS_ERR(opp_table)) {
2200 int error = PTR_ERR(opp_table);
2201
2202 if (error != -ENODEV)
2203 WARN(1, "%s: opp_table: %d\n",
2204 IS_ERR_OR_NULL(dev) ?
2205 "Invalid device" : dev_name(dev),
2206 error);
2207 return;
2208 }
2209
2210 _put_opp_list_kref(opp_table);
2211
2212 /* Drop reference taken by _find_opp_table() */
2213 dev_pm_opp_put_opp_table(opp_table);
2214
2215 /* Drop reference taken while the OPP table was added */
2216 dev_pm_opp_put_opp_table(opp_table);
2217 }
2218
2219 /**
2220 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2221 * @dev: device pointer used to lookup OPP table.
2222 *
2223 * Free both OPPs created using static entries present in DT and the
2224 * dynamically added entries.
2225 */
dev_pm_opp_remove_table(struct device * dev)2226 void dev_pm_opp_remove_table(struct device *dev)
2227 {
2228 _dev_pm_opp_find_and_remove_table(dev);
2229 }
2230 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2231