• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 #include "amdgpu_amdkfd.h"
37 
38 /* Size of the per-pipe EOP queue */
39 #define CIK_HPD_EOP_BYTES_LOG2 11
40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41 
42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43 					unsigned int pasid, unsigned int vmid);
44 
45 static int execute_queues_cpsch(struct device_queue_manager *dqm,
46 				enum kfd_unmap_queues_filter filter,
47 				uint32_t filter_param);
48 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param);
51 
52 static int map_queues_cpsch(struct device_queue_manager *dqm);
53 
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 				struct queue *q);
56 
57 static inline void deallocate_hqd(struct device_queue_manager *dqm,
58 				struct queue *q);
59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
60 static int allocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 static void kfd_process_hw_exception(struct work_struct *work);
63 
64 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66 {
67 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
68 		return KFD_MQD_TYPE_SDMA;
69 	return KFD_MQD_TYPE_CP;
70 }
71 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73 {
74 	int i;
75 	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
76 		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
77 
78 	/* queue is available for KFD usage if bit is 1 */
79 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80 		if (test_bit(pipe_offset + i,
81 			      dqm->dev->shared_resources.queue_bitmap))
82 			return true;
83 	return false;
84 }
85 
get_queues_num(struct device_queue_manager * dqm)86 unsigned int get_queues_num(struct device_queue_manager *dqm)
87 {
88 	return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
89 				KGD_MAX_QUEUES);
90 }
91 
get_queues_per_pipe(struct device_queue_manager * dqm)92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93 {
94 	return dqm->dev->shared_resources.num_queue_per_pipe;
95 }
96 
get_pipes_per_mec(struct device_queue_manager * dqm)97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98 {
99 	return dqm->dev->shared_resources.num_pipe_per_mec;
100 }
101 
get_num_sdma_engines(struct device_queue_manager * dqm)102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
103 {
104 	return dqm->dev->device_info->num_sdma_engines;
105 }
106 
get_num_xgmi_sdma_engines(struct device_queue_manager * dqm)107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
108 {
109 	return dqm->dev->device_info->num_xgmi_sdma_engines;
110 }
111 
get_num_sdma_queues(struct device_queue_manager * dqm)112 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
113 {
114 	return dqm->dev->device_info->num_sdma_engines
115 			* dqm->dev->device_info->num_sdma_queues_per_engine;
116 }
117 
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)118 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
119 {
120 	return dqm->dev->device_info->num_xgmi_sdma_engines
121 			* dqm->dev->device_info->num_sdma_queues_per_engine;
122 }
123 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)124 void program_sh_mem_settings(struct device_queue_manager *dqm,
125 					struct qcm_process_device *qpd)
126 {
127 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
128 						dqm->dev->kgd, qpd->vmid,
129 						qpd->sh_mem_config,
130 						qpd->sh_mem_ape1_base,
131 						qpd->sh_mem_ape1_limit,
132 						qpd->sh_mem_bases);
133 }
134 
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q)135 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
136 {
137 	struct kfd_dev *dev = qpd->dqm->dev;
138 
139 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
140 		/* On pre-SOC15 chips we need to use the queue ID to
141 		 * preserve the user mode ABI.
142 		 */
143 		q->doorbell_id = q->properties.queue_id;
144 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
145 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
146 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
147 		 * doorbell assignments based on the engine and queue id.
148 		 * The doobell index distance between RLC (2*i) and (2*i+1)
149 		 * for a SDMA engine is 512.
150 		 */
151 		uint32_t *idx_offset =
152 				dev->shared_resources.sdma_doorbell_idx;
153 
154 		q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
155 			+ (q->properties.sdma_queue_id & 1)
156 			* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
157 			+ (q->properties.sdma_queue_id >> 1);
158 	} else {
159 		/* For CP queues on SOC15 reserve a free doorbell ID */
160 		unsigned int found;
161 
162 		found = find_first_zero_bit(qpd->doorbell_bitmap,
163 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
164 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
165 			pr_debug("No doorbells available");
166 			return -EBUSY;
167 		}
168 		set_bit(found, qpd->doorbell_bitmap);
169 		q->doorbell_id = found;
170 	}
171 
172 	q->properties.doorbell_off =
173 		kfd_doorbell_id_to_offset(dev, q->process,
174 					  q->doorbell_id);
175 
176 	return 0;
177 }
178 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)179 static void deallocate_doorbell(struct qcm_process_device *qpd,
180 				struct queue *q)
181 {
182 	unsigned int old;
183 	struct kfd_dev *dev = qpd->dqm->dev;
184 
185 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
186 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
187 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
188 		return;
189 
190 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
191 	WARN_ON(!old);
192 }
193 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)194 static int allocate_vmid(struct device_queue_manager *dqm,
195 			struct qcm_process_device *qpd,
196 			struct queue *q)
197 {
198 	int bit, allocated_vmid;
199 
200 	if (dqm->vmid_bitmap == 0)
201 		return -ENOMEM;
202 
203 	bit = ffs(dqm->vmid_bitmap) - 1;
204 	dqm->vmid_bitmap &= ~(1 << bit);
205 
206 	allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd;
207 	pr_debug("vmid allocation %d\n", allocated_vmid);
208 	qpd->vmid = allocated_vmid;
209 	q->properties.vmid = allocated_vmid;
210 
211 	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
212 	program_sh_mem_settings(dqm, qpd);
213 
214 	/* qpd->page_table_base is set earlier when register_process()
215 	 * is called, i.e. when the first queue is created.
216 	 */
217 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
218 			qpd->vmid,
219 			qpd->page_table_base);
220 	/* invalidate the VM context after pasid and vmid mapping is set up */
221 	kfd_flush_tlb(qpd_to_pdd(qpd));
222 
223 	dqm->dev->kfd2kgd->set_scratch_backing_va(
224 		dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
225 
226 	return 0;
227 }
228 
flush_texture_cache_nocpsch(struct kfd_dev * kdev,struct qcm_process_device * qpd)229 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
230 				struct qcm_process_device *qpd)
231 {
232 	const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
233 	int ret;
234 
235 	if (!qpd->ib_kaddr)
236 		return -ENOMEM;
237 
238 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
239 	if (ret)
240 		return ret;
241 
242 	return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
243 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
244 				pmf->release_mem_size / sizeof(uint32_t));
245 }
246 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)247 static void deallocate_vmid(struct device_queue_manager *dqm,
248 				struct qcm_process_device *qpd,
249 				struct queue *q)
250 {
251 	int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
252 
253 	/* On GFX v7, CP doesn't flush TC at dequeue */
254 	if (q->device->device_info->asic_family == CHIP_HAWAII)
255 		if (flush_texture_cache_nocpsch(q->device, qpd))
256 			pr_err("Failed to flush TC\n");
257 
258 	kfd_flush_tlb(qpd_to_pdd(qpd));
259 
260 	/* Release the vmid mapping */
261 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
262 
263 	dqm->vmid_bitmap |= (1 << bit);
264 	qpd->vmid = 0;
265 	q->properties.vmid = 0;
266 }
267 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)268 static int create_queue_nocpsch(struct device_queue_manager *dqm,
269 				struct queue *q,
270 				struct qcm_process_device *qpd)
271 {
272 	struct mqd_manager *mqd_mgr;
273 	int retval;
274 
275 	print_queue(q);
276 
277 	dqm_lock(dqm);
278 
279 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
280 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
281 				dqm->total_queue_count);
282 		retval = -EPERM;
283 		goto out_unlock;
284 	}
285 
286 	if (list_empty(&qpd->queues_list)) {
287 		retval = allocate_vmid(dqm, qpd, q);
288 		if (retval)
289 			goto out_unlock;
290 	}
291 	q->properties.vmid = qpd->vmid;
292 	/*
293 	 * Eviction state logic: mark all queues as evicted, even ones
294 	 * not currently active. Restoring inactive queues later only
295 	 * updates the is_evicted flag but is a no-op otherwise.
296 	 */
297 	q->properties.is_evicted = !!qpd->evicted;
298 
299 	q->properties.tba_addr = qpd->tba_addr;
300 	q->properties.tma_addr = qpd->tma_addr;
301 
302 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
303 			q->properties.type)];
304 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
305 		retval = allocate_hqd(dqm, q);
306 		if (retval)
307 			goto deallocate_vmid;
308 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
309 			q->pipe, q->queue);
310 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
311 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
312 		retval = allocate_sdma_queue(dqm, q);
313 		if (retval)
314 			goto deallocate_vmid;
315 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
316 	}
317 
318 	retval = allocate_doorbell(qpd, q);
319 	if (retval)
320 		goto out_deallocate_hqd;
321 
322 	/* Temporarily release dqm lock to avoid a circular lock dependency */
323 	dqm_unlock(dqm);
324 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
325 	dqm_lock(dqm);
326 
327 	if (!q->mqd_mem_obj) {
328 		retval = -ENOMEM;
329 		goto out_deallocate_doorbell;
330 	}
331 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
332 				&q->gart_mqd_addr, &q->properties);
333 	if (q->properties.is_active) {
334 
335 		if (WARN(q->process->mm != current->mm,
336 					"should only run in user thread"))
337 			retval = -EFAULT;
338 		else
339 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
340 					q->queue, &q->properties, current->mm);
341 		if (retval)
342 			goto out_free_mqd;
343 	}
344 
345 	list_add(&q->list, &qpd->queues_list);
346 	qpd->queue_count++;
347 	if (q->properties.is_active)
348 		dqm->queue_count++;
349 
350 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
351 		dqm->sdma_queue_count++;
352 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
353 		dqm->xgmi_sdma_queue_count++;
354 
355 	/*
356 	 * Unconditionally increment this counter, regardless of the queue's
357 	 * type or whether the queue is active.
358 	 */
359 	dqm->total_queue_count++;
360 	pr_debug("Total of %d queues are accountable so far\n",
361 			dqm->total_queue_count);
362 	goto out_unlock;
363 
364 out_free_mqd:
365 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
366 out_deallocate_doorbell:
367 	deallocate_doorbell(qpd, q);
368 out_deallocate_hqd:
369 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
370 		deallocate_hqd(dqm, q);
371 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
372 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
373 		deallocate_sdma_queue(dqm, q);
374 deallocate_vmid:
375 	if (list_empty(&qpd->queues_list))
376 		deallocate_vmid(dqm, qpd, q);
377 out_unlock:
378 	dqm_unlock(dqm);
379 	return retval;
380 }
381 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)382 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
383 {
384 	bool set;
385 	int pipe, bit, i;
386 
387 	set = false;
388 
389 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
390 			i < get_pipes_per_mec(dqm);
391 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
392 
393 		if (!is_pipe_enabled(dqm, 0, pipe))
394 			continue;
395 
396 		if (dqm->allocated_queues[pipe] != 0) {
397 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
398 			dqm->allocated_queues[pipe] &= ~(1 << bit);
399 			q->pipe = pipe;
400 			q->queue = bit;
401 			set = true;
402 			break;
403 		}
404 	}
405 
406 	if (!set)
407 		return -EBUSY;
408 
409 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
410 	/* horizontal hqd allocation */
411 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
412 
413 	return 0;
414 }
415 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)416 static inline void deallocate_hqd(struct device_queue_manager *dqm,
417 				struct queue *q)
418 {
419 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
420 }
421 
422 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
423  * to avoid asynchronized access
424  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)425 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
426 				struct qcm_process_device *qpd,
427 				struct queue *q)
428 {
429 	int retval;
430 	struct mqd_manager *mqd_mgr;
431 
432 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
433 			q->properties.type)];
434 
435 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
436 		deallocate_hqd(dqm, q);
437 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
438 		dqm->sdma_queue_count--;
439 		deallocate_sdma_queue(dqm, q);
440 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
441 		dqm->xgmi_sdma_queue_count--;
442 		deallocate_sdma_queue(dqm, q);
443 	} else {
444 		pr_debug("q->properties.type %d is invalid\n",
445 				q->properties.type);
446 		return -EINVAL;
447 	}
448 	dqm->total_queue_count--;
449 
450 	deallocate_doorbell(qpd, q);
451 
452 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
453 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
454 				KFD_UNMAP_LATENCY_MS,
455 				q->pipe, q->queue);
456 	if (retval == -ETIME)
457 		qpd->reset_wavefronts = true;
458 
459 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
460 
461 	list_del(&q->list);
462 	if (list_empty(&qpd->queues_list)) {
463 		if (qpd->reset_wavefronts) {
464 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
465 					dqm->dev);
466 			/* dbgdev_wave_reset_wavefronts has to be called before
467 			 * deallocate_vmid(), i.e. when vmid is still in use.
468 			 */
469 			dbgdev_wave_reset_wavefronts(dqm->dev,
470 					qpd->pqm->process);
471 			qpd->reset_wavefronts = false;
472 		}
473 
474 		deallocate_vmid(dqm, qpd, q);
475 	}
476 	qpd->queue_count--;
477 	if (q->properties.is_active)
478 		dqm->queue_count--;
479 
480 	return retval;
481 }
482 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)483 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
484 				struct qcm_process_device *qpd,
485 				struct queue *q)
486 {
487 	int retval;
488 
489 	dqm_lock(dqm);
490 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
491 	dqm_unlock(dqm);
492 
493 	return retval;
494 }
495 
update_queue(struct device_queue_manager * dqm,struct queue * q)496 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
497 {
498 	int retval = 0;
499 	struct mqd_manager *mqd_mgr;
500 	struct kfd_process_device *pdd;
501 	bool prev_active = false;
502 
503 	dqm_lock(dqm);
504 	pdd = kfd_get_process_device_data(q->device, q->process);
505 	if (!pdd) {
506 		retval = -ENODEV;
507 		goto out_unlock;
508 	}
509 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
510 			q->properties.type)];
511 
512 	/* Save previous activity state for counters */
513 	prev_active = q->properties.is_active;
514 
515 	/* Make sure the queue is unmapped before updating the MQD */
516 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
517 		retval = unmap_queues_cpsch(dqm,
518 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
519 		if (retval) {
520 			pr_err("unmap queue failed\n");
521 			goto out_unlock;
522 		}
523 	} else if (prev_active &&
524 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
525 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
526 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
527 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
528 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
529 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
530 		if (retval) {
531 			pr_err("destroy mqd failed\n");
532 			goto out_unlock;
533 		}
534 	}
535 
536 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
537 
538 	/*
539 	 * check active state vs. the previous state and modify
540 	 * counter accordingly. map_queues_cpsch uses the
541 	 * dqm->queue_count to determine whether a new runlist must be
542 	 * uploaded.
543 	 */
544 	if (q->properties.is_active && !prev_active)
545 		dqm->queue_count++;
546 	else if (!q->properties.is_active && prev_active)
547 		dqm->queue_count--;
548 
549 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
550 		retval = map_queues_cpsch(dqm);
551 	else if (q->properties.is_active &&
552 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
553 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
554 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
555 		if (WARN(q->process->mm != current->mm,
556 			 "should only run in user thread"))
557 			retval = -EFAULT;
558 		else
559 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
560 						   q->pipe, q->queue,
561 						   &q->properties, current->mm);
562 	}
563 
564 out_unlock:
565 	dqm_unlock(dqm);
566 	return retval;
567 }
568 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)569 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
570 					struct qcm_process_device *qpd)
571 {
572 	struct queue *q;
573 	struct mqd_manager *mqd_mgr;
574 	struct kfd_process_device *pdd;
575 	int retval, ret = 0;
576 
577 	dqm_lock(dqm);
578 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
579 		goto out;
580 
581 	pdd = qpd_to_pdd(qpd);
582 	pr_info_ratelimited("Evicting PASID %u queues\n",
583 			    pdd->process->pasid);
584 
585 	/* Mark all queues as evicted. Deactivate all active queues on
586 	 * the qpd.
587 	 */
588 	list_for_each_entry(q, &qpd->queues_list, list) {
589 		q->properties.is_evicted = true;
590 		if (!q->properties.is_active)
591 			continue;
592 
593 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
594 				q->properties.type)];
595 		q->properties.is_active = false;
596 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
597 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
598 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
599 		if (retval && !ret)
600 			/* Return the first error, but keep going to
601 			 * maintain a consistent eviction state
602 			 */
603 			ret = retval;
604 		dqm->queue_count--;
605 	}
606 
607 out:
608 	dqm_unlock(dqm);
609 	return ret;
610 }
611 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)612 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
613 				      struct qcm_process_device *qpd)
614 {
615 	struct queue *q;
616 	struct kfd_process_device *pdd;
617 	int retval = 0;
618 
619 	dqm_lock(dqm);
620 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
621 		goto out;
622 
623 	pdd = qpd_to_pdd(qpd);
624 	pr_info_ratelimited("Evicting PASID %u queues\n",
625 			    pdd->process->pasid);
626 
627 	/* Mark all queues as evicted. Deactivate all active queues on
628 	 * the qpd.
629 	 */
630 	list_for_each_entry(q, &qpd->queues_list, list) {
631 		q->properties.is_evicted = true;
632 		if (!q->properties.is_active)
633 			continue;
634 
635 		q->properties.is_active = false;
636 		dqm->queue_count--;
637 	}
638 	retval = execute_queues_cpsch(dqm,
639 				qpd->is_debug ?
640 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
641 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
642 
643 out:
644 	dqm_unlock(dqm);
645 	return retval;
646 }
647 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)648 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
649 					  struct qcm_process_device *qpd)
650 {
651 	struct mm_struct *mm = NULL;
652 	struct queue *q;
653 	struct mqd_manager *mqd_mgr;
654 	struct kfd_process_device *pdd;
655 	uint64_t pd_base;
656 	int retval, ret = 0;
657 
658 	pdd = qpd_to_pdd(qpd);
659 	/* Retrieve PD base */
660 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
661 
662 	dqm_lock(dqm);
663 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
664 		goto out;
665 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
666 		qpd->evicted--;
667 		goto out;
668 	}
669 
670 	pr_info_ratelimited("Restoring PASID %u queues\n",
671 			    pdd->process->pasid);
672 
673 	/* Update PD Base in QPD */
674 	qpd->page_table_base = pd_base;
675 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
676 
677 	if (!list_empty(&qpd->queues_list)) {
678 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
679 				dqm->dev->kgd,
680 				qpd->vmid,
681 				qpd->page_table_base);
682 		kfd_flush_tlb(pdd);
683 	}
684 
685 	/* Take a safe reference to the mm_struct, which may otherwise
686 	 * disappear even while the kfd_process is still referenced.
687 	 */
688 	mm = get_task_mm(pdd->process->lead_thread);
689 	if (!mm) {
690 		ret = -EFAULT;
691 		goto out;
692 	}
693 
694 	/* Remove the eviction flags. Activate queues that are not
695 	 * inactive for other reasons.
696 	 */
697 	list_for_each_entry(q, &qpd->queues_list, list) {
698 		q->properties.is_evicted = false;
699 		if (!QUEUE_IS_ACTIVE(q->properties))
700 			continue;
701 
702 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
703 				q->properties.type)];
704 		q->properties.is_active = true;
705 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
706 				       q->queue, &q->properties, mm);
707 		if (retval && !ret)
708 			/* Return the first error, but keep going to
709 			 * maintain a consistent eviction state
710 			 */
711 			ret = retval;
712 		dqm->queue_count++;
713 	}
714 	qpd->evicted = 0;
715 out:
716 	if (mm)
717 		mmput(mm);
718 	dqm_unlock(dqm);
719 	return ret;
720 }
721 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)722 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
723 					struct qcm_process_device *qpd)
724 {
725 	struct queue *q;
726 	struct kfd_process_device *pdd;
727 	uint64_t pd_base;
728 	int retval = 0;
729 
730 	pdd = qpd_to_pdd(qpd);
731 	/* Retrieve PD base */
732 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
733 
734 	dqm_lock(dqm);
735 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
736 		goto out;
737 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
738 		qpd->evicted--;
739 		goto out;
740 	}
741 
742 	pr_info_ratelimited("Restoring PASID %u queues\n",
743 			    pdd->process->pasid);
744 
745 	/* Update PD Base in QPD */
746 	qpd->page_table_base = pd_base;
747 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
748 
749 	/* activate all active queues on the qpd */
750 	list_for_each_entry(q, &qpd->queues_list, list) {
751 		q->properties.is_evicted = false;
752 		if (!QUEUE_IS_ACTIVE(q->properties))
753 			continue;
754 
755 		q->properties.is_active = true;
756 		dqm->queue_count++;
757 	}
758 	retval = execute_queues_cpsch(dqm,
759 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
760 	qpd->evicted = 0;
761 out:
762 	dqm_unlock(dqm);
763 	return retval;
764 }
765 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)766 static int register_process(struct device_queue_manager *dqm,
767 					struct qcm_process_device *qpd)
768 {
769 	struct device_process_node *n;
770 	struct kfd_process_device *pdd;
771 	uint64_t pd_base;
772 	int retval;
773 
774 	n = kzalloc(sizeof(*n), GFP_KERNEL);
775 	if (!n)
776 		return -ENOMEM;
777 
778 	n->qpd = qpd;
779 
780 	pdd = qpd_to_pdd(qpd);
781 	/* Retrieve PD base */
782 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
783 
784 	dqm_lock(dqm);
785 	list_add(&n->list, &dqm->queues);
786 
787 	/* Update PD Base in QPD */
788 	qpd->page_table_base = pd_base;
789 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
790 
791 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
792 
793 	dqm->processes_count++;
794 
795 	dqm_unlock(dqm);
796 
797 	/* Outside the DQM lock because under the DQM lock we can't do
798 	 * reclaim or take other locks that others hold while reclaiming.
799 	 */
800 	kfd_inc_compute_active(dqm->dev);
801 
802 	return retval;
803 }
804 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)805 static int unregister_process(struct device_queue_manager *dqm,
806 					struct qcm_process_device *qpd)
807 {
808 	int retval;
809 	struct device_process_node *cur, *next;
810 
811 	pr_debug("qpd->queues_list is %s\n",
812 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
813 
814 	retval = 0;
815 	dqm_lock(dqm);
816 
817 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
818 		if (qpd == cur->qpd) {
819 			list_del(&cur->list);
820 			kfree(cur);
821 			dqm->processes_count--;
822 			goto out;
823 		}
824 	}
825 	/* qpd not found in dqm list */
826 	retval = 1;
827 out:
828 	dqm_unlock(dqm);
829 
830 	/* Outside the DQM lock because under the DQM lock we can't do
831 	 * reclaim or take other locks that others hold while reclaiming.
832 	 */
833 	if (!retval)
834 		kfd_dec_compute_active(dqm->dev);
835 
836 	return retval;
837 }
838 
839 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,unsigned int pasid,unsigned int vmid)840 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
841 			unsigned int vmid)
842 {
843 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
844 						dqm->dev->kgd, pasid, vmid);
845 }
846 
init_interrupts(struct device_queue_manager * dqm)847 static void init_interrupts(struct device_queue_manager *dqm)
848 {
849 	unsigned int i;
850 
851 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
852 		if (is_pipe_enabled(dqm, 0, i))
853 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
854 }
855 
initialize_nocpsch(struct device_queue_manager * dqm)856 static int initialize_nocpsch(struct device_queue_manager *dqm)
857 {
858 	int pipe, queue;
859 
860 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
861 
862 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
863 					sizeof(unsigned int), GFP_KERNEL);
864 	if (!dqm->allocated_queues)
865 		return -ENOMEM;
866 
867 	mutex_init(&dqm->lock_hidden);
868 	INIT_LIST_HEAD(&dqm->queues);
869 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
870 	dqm->sdma_queue_count = 0;
871 	dqm->xgmi_sdma_queue_count = 0;
872 
873 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
874 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
875 
876 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
877 			if (test_bit(pipe_offset + queue,
878 				     dqm->dev->shared_resources.queue_bitmap))
879 				dqm->allocated_queues[pipe] |= 1 << queue;
880 	}
881 
882 	dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1;
883 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
884 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
885 
886 	return 0;
887 }
888 
uninitialize(struct device_queue_manager * dqm)889 static void uninitialize(struct device_queue_manager *dqm)
890 {
891 	int i;
892 
893 	WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
894 
895 	kfree(dqm->allocated_queues);
896 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
897 		kfree(dqm->mqd_mgrs[i]);
898 	mutex_destroy(&dqm->lock_hidden);
899 	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
900 }
901 
start_nocpsch(struct device_queue_manager * dqm)902 static int start_nocpsch(struct device_queue_manager *dqm)
903 {
904 	init_interrupts(dqm);
905 	return pm_init(&dqm->packets, dqm);
906 }
907 
stop_nocpsch(struct device_queue_manager * dqm)908 static int stop_nocpsch(struct device_queue_manager *dqm)
909 {
910 	pm_uninit(&dqm->packets);
911 	return 0;
912 }
913 
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)914 static int allocate_sdma_queue(struct device_queue_manager *dqm,
915 				struct queue *q)
916 {
917 	int bit;
918 
919 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
920 		if (dqm->sdma_bitmap == 0)
921 			return -ENOMEM;
922 		bit = __ffs64(dqm->sdma_bitmap);
923 		dqm->sdma_bitmap &= ~(1ULL << bit);
924 		q->sdma_id = bit;
925 		q->properties.sdma_engine_id = q->sdma_id %
926 				get_num_sdma_engines(dqm);
927 		q->properties.sdma_queue_id = q->sdma_id /
928 				get_num_sdma_engines(dqm);
929 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
930 		if (dqm->xgmi_sdma_bitmap == 0)
931 			return -ENOMEM;
932 		bit = __ffs64(dqm->xgmi_sdma_bitmap);
933 		dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
934 		q->sdma_id = bit;
935 		/* sdma_engine_id is sdma id including
936 		 * both PCIe-optimized SDMAs and XGMI-
937 		 * optimized SDMAs. The calculation below
938 		 * assumes the first N engines are always
939 		 * PCIe-optimized ones
940 		 */
941 		q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
942 				q->sdma_id % get_num_xgmi_sdma_engines(dqm);
943 		q->properties.sdma_queue_id = q->sdma_id /
944 				get_num_xgmi_sdma_engines(dqm);
945 	}
946 
947 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
948 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
949 
950 	return 0;
951 }
952 
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)953 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
954 				struct queue *q)
955 {
956 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
957 		if (q->sdma_id >= get_num_sdma_queues(dqm))
958 			return;
959 		dqm->sdma_bitmap |= (1ULL << q->sdma_id);
960 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
961 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
962 			return;
963 		dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
964 	}
965 }
966 
967 /*
968  * Device Queue Manager implementation for cp scheduler
969  */
970 
set_sched_resources(struct device_queue_manager * dqm)971 static int set_sched_resources(struct device_queue_manager *dqm)
972 {
973 	int i, mec;
974 	struct scheduling_resources res;
975 
976 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
977 
978 	res.queue_mask = 0;
979 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
980 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
981 			/ dqm->dev->shared_resources.num_pipe_per_mec;
982 
983 		if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
984 			continue;
985 
986 		/* only acquire queues from the first MEC */
987 		if (mec > 0)
988 			continue;
989 
990 		/* This situation may be hit in the future if a new HW
991 		 * generation exposes more than 64 queues. If so, the
992 		 * definition of res.queue_mask needs updating
993 		 */
994 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
995 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
996 			break;
997 		}
998 
999 		res.queue_mask |= (1ull << i);
1000 	}
1001 	res.gws_mask = ~0ull;
1002 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1003 
1004 	pr_debug("Scheduling resources:\n"
1005 			"vmid mask: 0x%8X\n"
1006 			"queue mask: 0x%8llX\n",
1007 			res.vmid_mask, res.queue_mask);
1008 
1009 	return pm_send_set_resources(&dqm->packets, &res);
1010 }
1011 
initialize_cpsch(struct device_queue_manager * dqm)1012 static int initialize_cpsch(struct device_queue_manager *dqm)
1013 {
1014 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1015 
1016 	mutex_init(&dqm->lock_hidden);
1017 	INIT_LIST_HEAD(&dqm->queues);
1018 	dqm->queue_count = dqm->processes_count = 0;
1019 	dqm->sdma_queue_count = 0;
1020 	dqm->xgmi_sdma_queue_count = 0;
1021 	dqm->active_runlist = false;
1022 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1023 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1024 
1025 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1026 
1027 	return 0;
1028 }
1029 
start_cpsch(struct device_queue_manager * dqm)1030 static int start_cpsch(struct device_queue_manager *dqm)
1031 {
1032 	int retval;
1033 
1034 	retval = 0;
1035 
1036 	retval = pm_init(&dqm->packets, dqm);
1037 	if (retval)
1038 		goto fail_packet_manager_init;
1039 
1040 	retval = set_sched_resources(dqm);
1041 	if (retval)
1042 		goto fail_set_sched_resources;
1043 
1044 	pr_debug("Allocating fence memory\n");
1045 
1046 	/* allocate fence memory on the gart */
1047 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1048 					&dqm->fence_mem);
1049 
1050 	if (retval)
1051 		goto fail_allocate_vidmem;
1052 
1053 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1054 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1055 
1056 	init_interrupts(dqm);
1057 
1058 	dqm_lock(dqm);
1059 	/* clear hang status when driver try to start the hw scheduler */
1060 	dqm->is_hws_hang = false;
1061 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1062 	dqm_unlock(dqm);
1063 
1064 	return 0;
1065 fail_allocate_vidmem:
1066 fail_set_sched_resources:
1067 	pm_uninit(&dqm->packets);
1068 fail_packet_manager_init:
1069 	return retval;
1070 }
1071 
stop_cpsch(struct device_queue_manager * dqm)1072 static int stop_cpsch(struct device_queue_manager *dqm)
1073 {
1074 	dqm_lock(dqm);
1075 	unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1076 	dqm_unlock(dqm);
1077 
1078 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1079 	pm_uninit(&dqm->packets);
1080 
1081 	return 0;
1082 }
1083 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1084 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1085 					struct kernel_queue *kq,
1086 					struct qcm_process_device *qpd)
1087 {
1088 	dqm_lock(dqm);
1089 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1090 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1091 				dqm->total_queue_count);
1092 		dqm_unlock(dqm);
1093 		return -EPERM;
1094 	}
1095 
1096 	/*
1097 	 * Unconditionally increment this counter, regardless of the queue's
1098 	 * type or whether the queue is active.
1099 	 */
1100 	dqm->total_queue_count++;
1101 	pr_debug("Total of %d queues are accountable so far\n",
1102 			dqm->total_queue_count);
1103 
1104 	list_add(&kq->list, &qpd->priv_queue_list);
1105 	dqm->queue_count++;
1106 	qpd->is_debug = true;
1107 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1108 	dqm_unlock(dqm);
1109 
1110 	return 0;
1111 }
1112 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1113 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1114 					struct kernel_queue *kq,
1115 					struct qcm_process_device *qpd)
1116 {
1117 	dqm_lock(dqm);
1118 	list_del(&kq->list);
1119 	dqm->queue_count--;
1120 	qpd->is_debug = false;
1121 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1122 	/*
1123 	 * Unconditionally decrement this counter, regardless of the queue's
1124 	 * type.
1125 	 */
1126 	dqm->total_queue_count--;
1127 	pr_debug("Total of %d queues are accountable so far\n",
1128 			dqm->total_queue_count);
1129 	dqm_unlock(dqm);
1130 }
1131 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)1132 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1133 			struct qcm_process_device *qpd)
1134 {
1135 	int retval;
1136 	struct mqd_manager *mqd_mgr;
1137 
1138 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1139 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1140 				dqm->total_queue_count);
1141 		retval = -EPERM;
1142 		goto out;
1143 	}
1144 
1145 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1146 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1147 		dqm_lock(dqm);
1148 		retval = allocate_sdma_queue(dqm, q);
1149 		dqm_unlock(dqm);
1150 		if (retval)
1151 			goto out;
1152 	}
1153 
1154 	retval = allocate_doorbell(qpd, q);
1155 	if (retval)
1156 		goto out_deallocate_sdma_queue;
1157 
1158 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1159 			q->properties.type)];
1160 
1161 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1162 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1163 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1164 	q->properties.tba_addr = qpd->tba_addr;
1165 	q->properties.tma_addr = qpd->tma_addr;
1166 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1167 	if (!q->mqd_mem_obj) {
1168 		retval = -ENOMEM;
1169 		goto out_deallocate_doorbell;
1170 	}
1171 
1172 	dqm_lock(dqm);
1173 	/*
1174 	 * Eviction state logic: mark all queues as evicted, even ones
1175 	 * not currently active. Restoring inactive queues later only
1176 	 * updates the is_evicted flag but is a no-op otherwise.
1177 	 */
1178 	q->properties.is_evicted = !!qpd->evicted;
1179 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1180 				&q->gart_mqd_addr, &q->properties);
1181 
1182 	list_add(&q->list, &qpd->queues_list);
1183 	qpd->queue_count++;
1184 	if (q->properties.is_active) {
1185 		dqm->queue_count++;
1186 		retval = execute_queues_cpsch(dqm,
1187 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1188 	}
1189 
1190 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1191 		dqm->sdma_queue_count++;
1192 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1193 		dqm->xgmi_sdma_queue_count++;
1194 	/*
1195 	 * Unconditionally increment this counter, regardless of the queue's
1196 	 * type or whether the queue is active.
1197 	 */
1198 	dqm->total_queue_count++;
1199 
1200 	pr_debug("Total of %d queues are accountable so far\n",
1201 			dqm->total_queue_count);
1202 
1203 	dqm_unlock(dqm);
1204 	return retval;
1205 
1206 out_deallocate_doorbell:
1207 	deallocate_doorbell(qpd, q);
1208 out_deallocate_sdma_queue:
1209 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1210 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1211 		dqm_lock(dqm);
1212 		deallocate_sdma_queue(dqm, q);
1213 		dqm_unlock(dqm);
1214 	}
1215 out:
1216 	return retval;
1217 }
1218 
amdkfd_fence_wait_timeout(unsigned int * fence_addr,unsigned int fence_value,unsigned int timeout_ms)1219 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1220 				unsigned int fence_value,
1221 				unsigned int timeout_ms)
1222 {
1223 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1224 
1225 	while (*fence_addr != fence_value) {
1226 		if (time_after(jiffies, end_jiffies)) {
1227 			pr_err("qcm fence wait loop timeout expired\n");
1228 			/* In HWS case, this is used to halt the driver thread
1229 			 * in order not to mess up CP states before doing
1230 			 * scandumps for FW debugging.
1231 			 */
1232 			while (halt_if_hws_hang)
1233 				schedule();
1234 
1235 			return -ETIME;
1236 		}
1237 		schedule();
1238 	}
1239 
1240 	return 0;
1241 }
1242 
unmap_sdma_queues(struct device_queue_manager * dqm)1243 static int unmap_sdma_queues(struct device_queue_manager *dqm)
1244 {
1245 	int i, retval = 0;
1246 
1247 	for (i = 0; i < dqm->dev->device_info->num_sdma_engines +
1248 		dqm->dev->device_info->num_xgmi_sdma_engines; i++) {
1249 		retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1250 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false, i);
1251 		if (retval)
1252 			return retval;
1253 	}
1254 	return retval;
1255 }
1256 
1257 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1258 static int map_queues_cpsch(struct device_queue_manager *dqm)
1259 {
1260 	int retval;
1261 
1262 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1263 		return 0;
1264 
1265 	if (dqm->active_runlist)
1266 		return 0;
1267 
1268 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1269 	pr_debug("%s sent runlist\n", __func__);
1270 	if (retval) {
1271 		pr_err("failed to execute runlist\n");
1272 		return retval;
1273 	}
1274 	dqm->active_runlist = true;
1275 
1276 	return retval;
1277 }
1278 
1279 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1280 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1281 				enum kfd_unmap_queues_filter filter,
1282 				uint32_t filter_param)
1283 {
1284 	int retval = 0;
1285 
1286 	if (dqm->is_hws_hang)
1287 		return -EIO;
1288 	if (!dqm->active_runlist)
1289 		return retval;
1290 
1291 	pr_debug("Before destroying queues, sdma queue count is : %u, xgmi sdma queue count is : %u\n",
1292 		dqm->sdma_queue_count, dqm->xgmi_sdma_queue_count);
1293 
1294 	if (dqm->sdma_queue_count > 0 || dqm->xgmi_sdma_queue_count)
1295 		unmap_sdma_queues(dqm);
1296 
1297 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1298 			filter, filter_param, false, 0);
1299 	if (retval)
1300 		return retval;
1301 
1302 	*dqm->fence_addr = KFD_FENCE_INIT;
1303 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1304 				KFD_FENCE_COMPLETED);
1305 	/* should be timed out */
1306 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1307 				queue_preemption_timeout_ms);
1308 	if (retval)
1309 		return retval;
1310 
1311 	pm_release_ib(&dqm->packets);
1312 	dqm->active_runlist = false;
1313 
1314 	return retval;
1315 }
1316 
1317 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1318 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1319 				enum kfd_unmap_queues_filter filter,
1320 				uint32_t filter_param)
1321 {
1322 	int retval;
1323 
1324 	if (dqm->is_hws_hang)
1325 		return -EIO;
1326 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1327 	if (retval) {
1328 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1329 		dqm->is_hws_hang = true;
1330 		schedule_work(&dqm->hw_exception_work);
1331 		return retval;
1332 	}
1333 
1334 	return map_queues_cpsch(dqm);
1335 }
1336 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1337 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1338 				struct qcm_process_device *qpd,
1339 				struct queue *q)
1340 {
1341 	int retval;
1342 	struct mqd_manager *mqd_mgr;
1343 
1344 	retval = 0;
1345 
1346 	/* remove queue from list to prevent rescheduling after preemption */
1347 	dqm_lock(dqm);
1348 
1349 	if (qpd->is_debug) {
1350 		/*
1351 		 * error, currently we do not allow to destroy a queue
1352 		 * of a currently debugged process
1353 		 */
1354 		retval = -EBUSY;
1355 		goto failed_try_destroy_debugged_queue;
1356 
1357 	}
1358 
1359 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1360 			q->properties.type)];
1361 
1362 	deallocate_doorbell(qpd, q);
1363 
1364 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1365 		dqm->sdma_queue_count--;
1366 		deallocate_sdma_queue(dqm, q);
1367 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1368 		dqm->xgmi_sdma_queue_count--;
1369 		deallocate_sdma_queue(dqm, q);
1370 	}
1371 
1372 	list_del(&q->list);
1373 	qpd->queue_count--;
1374 	if (q->properties.is_active) {
1375 		dqm->queue_count--;
1376 		retval = execute_queues_cpsch(dqm,
1377 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1378 		if (retval == -ETIME)
1379 			qpd->reset_wavefronts = true;
1380 	}
1381 
1382 	/*
1383 	 * Unconditionally decrement this counter, regardless of the queue's
1384 	 * type
1385 	 */
1386 	dqm->total_queue_count--;
1387 	pr_debug("Total of %d queues are accountable so far\n",
1388 			dqm->total_queue_count);
1389 
1390 	dqm_unlock(dqm);
1391 
1392 	/* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1393 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1394 
1395 	return retval;
1396 
1397 failed_try_destroy_debugged_queue:
1398 
1399 	dqm_unlock(dqm);
1400 	return retval;
1401 }
1402 
1403 /*
1404  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1405  * stay in user mode.
1406  */
1407 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1408 /* APE1 limit is inclusive and 64K aligned. */
1409 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1410 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)1411 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1412 				   struct qcm_process_device *qpd,
1413 				   enum cache_policy default_policy,
1414 				   enum cache_policy alternate_policy,
1415 				   void __user *alternate_aperture_base,
1416 				   uint64_t alternate_aperture_size)
1417 {
1418 	bool retval = true;
1419 
1420 	if (!dqm->asic_ops.set_cache_memory_policy)
1421 		return retval;
1422 
1423 	dqm_lock(dqm);
1424 
1425 	if (alternate_aperture_size == 0) {
1426 		/* base > limit disables APE1 */
1427 		qpd->sh_mem_ape1_base = 1;
1428 		qpd->sh_mem_ape1_limit = 0;
1429 	} else {
1430 		/*
1431 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1432 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1433 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1434 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1435 		 * Verify that the base and size parameters can be
1436 		 * represented in this format and convert them.
1437 		 * Additionally restrict APE1 to user-mode addresses.
1438 		 */
1439 
1440 		uint64_t base = (uintptr_t)alternate_aperture_base;
1441 		uint64_t limit = base + alternate_aperture_size - 1;
1442 
1443 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1444 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1445 			retval = false;
1446 			goto out;
1447 		}
1448 
1449 		qpd->sh_mem_ape1_base = base >> 16;
1450 		qpd->sh_mem_ape1_limit = limit >> 16;
1451 	}
1452 
1453 	retval = dqm->asic_ops.set_cache_memory_policy(
1454 			dqm,
1455 			qpd,
1456 			default_policy,
1457 			alternate_policy,
1458 			alternate_aperture_base,
1459 			alternate_aperture_size);
1460 
1461 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1462 		program_sh_mem_settings(dqm, qpd);
1463 
1464 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1465 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1466 		qpd->sh_mem_ape1_limit);
1467 
1468 out:
1469 	dqm_unlock(dqm);
1470 	return retval;
1471 }
1472 
set_trap_handler(struct device_queue_manager * dqm,struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1473 static int set_trap_handler(struct device_queue_manager *dqm,
1474 				struct qcm_process_device *qpd,
1475 				uint64_t tba_addr,
1476 				uint64_t tma_addr)
1477 {
1478 	uint64_t *tma;
1479 
1480 	if (dqm->dev->cwsr_enabled) {
1481 		/* Jump from CWSR trap handler to user trap */
1482 		tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1483 		tma[0] = tba_addr;
1484 		tma[1] = tma_addr;
1485 	} else {
1486 		qpd->tba_addr = tba_addr;
1487 		qpd->tma_addr = tma_addr;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1493 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1494 		struct qcm_process_device *qpd)
1495 {
1496 	struct queue *q, *next;
1497 	struct device_process_node *cur, *next_dpn;
1498 	int retval = 0;
1499 	bool found = false;
1500 
1501 	dqm_lock(dqm);
1502 
1503 	/* Clear all user mode queues */
1504 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1505 		int ret;
1506 
1507 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1508 		if (ret)
1509 			retval = ret;
1510 	}
1511 
1512 	/* Unregister process */
1513 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1514 		if (qpd == cur->qpd) {
1515 			list_del(&cur->list);
1516 			kfree(cur);
1517 			dqm->processes_count--;
1518 			found = true;
1519 			break;
1520 		}
1521 	}
1522 
1523 	dqm_unlock(dqm);
1524 
1525 	/* Outside the DQM lock because under the DQM lock we can't do
1526 	 * reclaim or take other locks that others hold while reclaiming.
1527 	 */
1528 	if (found)
1529 		kfd_dec_compute_active(dqm->dev);
1530 
1531 	return retval;
1532 }
1533 
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)1534 static int get_wave_state(struct device_queue_manager *dqm,
1535 			  struct queue *q,
1536 			  void __user *ctl_stack,
1537 			  u32 *ctl_stack_used_size,
1538 			  u32 *save_area_used_size)
1539 {
1540 	struct mqd_manager *mqd_mgr;
1541 	int r;
1542 
1543 	dqm_lock(dqm);
1544 
1545 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1546 	    q->properties.is_active || !q->device->cwsr_enabled) {
1547 		r = -EINVAL;
1548 		goto dqm_unlock;
1549 	}
1550 
1551 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_COMPUTE];
1552 
1553 	if (!mqd_mgr->get_wave_state) {
1554 		r = -EINVAL;
1555 		goto dqm_unlock;
1556 	}
1557 
1558 	r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1559 			ctl_stack_used_size, save_area_used_size);
1560 
1561 dqm_unlock:
1562 	dqm_unlock(dqm);
1563 	return r;
1564 }
1565 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1566 static int process_termination_cpsch(struct device_queue_manager *dqm,
1567 		struct qcm_process_device *qpd)
1568 {
1569 	int retval;
1570 	struct queue *q, *next;
1571 	struct kernel_queue *kq, *kq_next;
1572 	struct mqd_manager *mqd_mgr;
1573 	struct device_process_node *cur, *next_dpn;
1574 	enum kfd_unmap_queues_filter filter =
1575 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1576 	bool found = false;
1577 
1578 	retval = 0;
1579 
1580 	dqm_lock(dqm);
1581 
1582 	/* Clean all kernel queues */
1583 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1584 		list_del(&kq->list);
1585 		dqm->queue_count--;
1586 		qpd->is_debug = false;
1587 		dqm->total_queue_count--;
1588 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1589 	}
1590 
1591 	/* Clear all user mode queues */
1592 	list_for_each_entry(q, &qpd->queues_list, list) {
1593 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1594 			dqm->sdma_queue_count--;
1595 			deallocate_sdma_queue(dqm, q);
1596 		} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1597 			dqm->xgmi_sdma_queue_count--;
1598 			deallocate_sdma_queue(dqm, q);
1599 		}
1600 
1601 		if (q->properties.is_active)
1602 			dqm->queue_count--;
1603 
1604 		dqm->total_queue_count--;
1605 	}
1606 
1607 	/* Unregister process */
1608 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1609 		if (qpd == cur->qpd) {
1610 			list_del(&cur->list);
1611 			kfree(cur);
1612 			dqm->processes_count--;
1613 			found = true;
1614 			break;
1615 		}
1616 	}
1617 
1618 	retval = execute_queues_cpsch(dqm, filter, 0);
1619 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1620 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1621 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1622 		qpd->reset_wavefronts = false;
1623 	}
1624 
1625 	dqm_unlock(dqm);
1626 
1627 	/* Outside the DQM lock because under the DQM lock we can't do
1628 	 * reclaim or take other locks that others hold while reclaiming.
1629 	 */
1630 	if (found)
1631 		kfd_dec_compute_active(dqm->dev);
1632 
1633 	/* Lastly, free mqd resources.
1634 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
1635 	 */
1636 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1637 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1638 				q->properties.type)];
1639 		list_del(&q->list);
1640 		qpd->queue_count--;
1641 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1642 	}
1643 
1644 	return retval;
1645 }
1646 
init_mqd_managers(struct device_queue_manager * dqm)1647 static int init_mqd_managers(struct device_queue_manager *dqm)
1648 {
1649 	int i, j;
1650 	struct mqd_manager *mqd_mgr;
1651 
1652 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1653 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1654 		if (!mqd_mgr) {
1655 			pr_err("mqd manager [%d] initialization failed\n", i);
1656 			goto out_free;
1657 		}
1658 		dqm->mqd_mgrs[i] = mqd_mgr;
1659 	}
1660 
1661 	return 0;
1662 
1663 out_free:
1664 	for (j = 0; j < i; j++) {
1665 		kfree(dqm->mqd_mgrs[j]);
1666 		dqm->mqd_mgrs[j] = NULL;
1667 	}
1668 
1669 	return -ENOMEM;
1670 }
1671 
1672 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)1673 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1674 {
1675 	int retval;
1676 	struct kfd_dev *dev = dqm->dev;
1677 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1678 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1679 		(dev->device_info->num_sdma_engines +
1680 		dev->device_info->num_xgmi_sdma_engines) *
1681 		dev->device_info->num_sdma_queues_per_engine +
1682 		dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1683 
1684 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1685 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1686 		(void *)&(mem_obj->cpu_ptr), true);
1687 
1688 	return retval;
1689 }
1690 
device_queue_manager_init(struct kfd_dev * dev)1691 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1692 {
1693 	struct device_queue_manager *dqm;
1694 
1695 	pr_debug("Loading device queue manager\n");
1696 
1697 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1698 	if (!dqm)
1699 		return NULL;
1700 
1701 	switch (dev->device_info->asic_family) {
1702 	/* HWS is not available on Hawaii. */
1703 	case CHIP_HAWAII:
1704 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1705 	 * available on Tonga.
1706 	 *
1707 	 * FIXME: This argument also applies to Kaveri.
1708 	 */
1709 	case CHIP_TONGA:
1710 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1711 		break;
1712 	default:
1713 		dqm->sched_policy = sched_policy;
1714 		break;
1715 	}
1716 
1717 	dqm->dev = dev;
1718 	switch (dqm->sched_policy) {
1719 	case KFD_SCHED_POLICY_HWS:
1720 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1721 		/* initialize dqm for cp scheduling */
1722 		dqm->ops.create_queue = create_queue_cpsch;
1723 		dqm->ops.initialize = initialize_cpsch;
1724 		dqm->ops.start = start_cpsch;
1725 		dqm->ops.stop = stop_cpsch;
1726 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1727 		dqm->ops.update_queue = update_queue;
1728 		dqm->ops.register_process = register_process;
1729 		dqm->ops.unregister_process = unregister_process;
1730 		dqm->ops.uninitialize = uninitialize;
1731 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1732 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1733 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1734 		dqm->ops.set_trap_handler = set_trap_handler;
1735 		dqm->ops.process_termination = process_termination_cpsch;
1736 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1737 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1738 		dqm->ops.get_wave_state = get_wave_state;
1739 		break;
1740 	case KFD_SCHED_POLICY_NO_HWS:
1741 		/* initialize dqm for no cp scheduling */
1742 		dqm->ops.start = start_nocpsch;
1743 		dqm->ops.stop = stop_nocpsch;
1744 		dqm->ops.create_queue = create_queue_nocpsch;
1745 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1746 		dqm->ops.update_queue = update_queue;
1747 		dqm->ops.register_process = register_process;
1748 		dqm->ops.unregister_process = unregister_process;
1749 		dqm->ops.initialize = initialize_nocpsch;
1750 		dqm->ops.uninitialize = uninitialize;
1751 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1752 		dqm->ops.set_trap_handler = set_trap_handler;
1753 		dqm->ops.process_termination = process_termination_nocpsch;
1754 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1755 		dqm->ops.restore_process_queues =
1756 			restore_process_queues_nocpsch;
1757 		dqm->ops.get_wave_state = get_wave_state;
1758 		break;
1759 	default:
1760 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1761 		goto out_free;
1762 	}
1763 
1764 	switch (dev->device_info->asic_family) {
1765 	case CHIP_CARRIZO:
1766 		device_queue_manager_init_vi(&dqm->asic_ops);
1767 		break;
1768 
1769 	case CHIP_KAVERI:
1770 		device_queue_manager_init_cik(&dqm->asic_ops);
1771 		break;
1772 
1773 	case CHIP_HAWAII:
1774 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1775 		break;
1776 
1777 	case CHIP_TONGA:
1778 	case CHIP_FIJI:
1779 	case CHIP_POLARIS10:
1780 	case CHIP_POLARIS11:
1781 	case CHIP_POLARIS12:
1782 	case CHIP_VEGAM:
1783 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1784 		break;
1785 
1786 	case CHIP_VEGA10:
1787 	case CHIP_VEGA12:
1788 	case CHIP_VEGA20:
1789 	case CHIP_RAVEN:
1790 	case CHIP_ARCTURUS:
1791 		device_queue_manager_init_v9(&dqm->asic_ops);
1792 		break;
1793 	case CHIP_NAVI10:
1794 		device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1795 		break;
1796 	default:
1797 		WARN(1, "Unexpected ASIC family %u",
1798 		     dev->device_info->asic_family);
1799 		goto out_free;
1800 	}
1801 
1802 	if (init_mqd_managers(dqm))
1803 		goto out_free;
1804 
1805 	if (allocate_hiq_sdma_mqd(dqm)) {
1806 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1807 		goto out_free;
1808 	}
1809 
1810 	if (!dqm->ops.initialize(dqm))
1811 		return dqm;
1812 
1813 out_free:
1814 	kfree(dqm);
1815 	return NULL;
1816 }
1817 
deallocate_hiq_sdma_mqd(struct kfd_dev * dev,struct kfd_mem_obj * mqd)1818 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1819 				    struct kfd_mem_obj *mqd)
1820 {
1821 	WARN(!mqd, "No hiq sdma mqd trunk to free");
1822 
1823 	amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
1824 }
1825 
device_queue_manager_uninit(struct device_queue_manager * dqm)1826 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1827 {
1828 	dqm->ops.uninitialize(dqm);
1829 	deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
1830 	kfree(dqm);
1831 }
1832 
kfd_process_vm_fault(struct device_queue_manager * dqm,unsigned int pasid)1833 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1834 			 unsigned int pasid)
1835 {
1836 	struct kfd_process_device *pdd;
1837 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1838 	int ret = 0;
1839 
1840 	if (!p)
1841 		return -EINVAL;
1842 	pdd = kfd_get_process_device_data(dqm->dev, p);
1843 	if (pdd)
1844 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1845 	kfd_unref_process(p);
1846 
1847 	return ret;
1848 }
1849 
kfd_process_hw_exception(struct work_struct * work)1850 static void kfd_process_hw_exception(struct work_struct *work)
1851 {
1852 	struct device_queue_manager *dqm = container_of(work,
1853 			struct device_queue_manager, hw_exception_work);
1854 	amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
1855 }
1856 
1857 #if defined(CONFIG_DEBUG_FS)
1858 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)1859 static void seq_reg_dump(struct seq_file *m,
1860 			 uint32_t (*dump)[2], uint32_t n_regs)
1861 {
1862 	uint32_t i, count;
1863 
1864 	for (i = 0, count = 0; i < n_regs; i++) {
1865 		if (count == 0 ||
1866 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1867 			seq_printf(m, "%s    %08x: %08x",
1868 				   i ? "\n" : "",
1869 				   dump[i][0], dump[i][1]);
1870 			count = 7;
1871 		} else {
1872 			seq_printf(m, " %08x", dump[i][1]);
1873 			count--;
1874 		}
1875 	}
1876 
1877 	seq_puts(m, "\n");
1878 }
1879 
dqm_debugfs_hqds(struct seq_file * m,void * data)1880 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1881 {
1882 	struct device_queue_manager *dqm = data;
1883 	uint32_t (*dump)[2], n_regs;
1884 	int pipe, queue;
1885 	int r = 0;
1886 
1887 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1888 					KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
1889 					&dump, &n_regs);
1890 	if (!r) {
1891 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
1892 			   KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1893 			   KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1894 			   KFD_CIK_HIQ_QUEUE);
1895 		seq_reg_dump(m, dump, n_regs);
1896 
1897 		kfree(dump);
1898 	}
1899 
1900 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1901 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1902 
1903 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1904 			if (!test_bit(pipe_offset + queue,
1905 				      dqm->dev->shared_resources.queue_bitmap))
1906 				continue;
1907 
1908 			r = dqm->dev->kfd2kgd->hqd_dump(
1909 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1910 			if (r)
1911 				break;
1912 
1913 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
1914 				  pipe, queue);
1915 			seq_reg_dump(m, dump, n_regs);
1916 
1917 			kfree(dump);
1918 		}
1919 	}
1920 
1921 	for (pipe = 0; pipe < get_num_sdma_engines(dqm); pipe++) {
1922 		for (queue = 0;
1923 		     queue < dqm->dev->device_info->num_sdma_queues_per_engine;
1924 		     queue++) {
1925 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
1926 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1927 			if (r)
1928 				break;
1929 
1930 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
1931 				  pipe, queue);
1932 			seq_reg_dump(m, dump, n_regs);
1933 
1934 			kfree(dump);
1935 		}
1936 	}
1937 
1938 	return r;
1939 }
1940 
dqm_debugfs_execute_queues(struct device_queue_manager * dqm)1941 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
1942 {
1943 	int r = 0;
1944 
1945 	dqm_lock(dqm);
1946 	dqm->active_runlist = true;
1947 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1948 	dqm_unlock(dqm);
1949 
1950 	return r;
1951 }
1952 
1953 #endif
1954