1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 #include <linux/blk-crypto.h>
29 #include <linux/keyslot-manager.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 /*
34 * Cookies are numeric values sent with CHANGE and REMOVE
35 * uevents while resuming, removing or renaming the device.
36 */
37 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
38 #define DM_COOKIE_LENGTH 24
39
40 static const char *_name = DM_NAME;
41
42 static unsigned int major = 0;
43 static unsigned int _major = 0;
44
45 static DEFINE_IDR(_minor_idr);
46
47 static DEFINE_SPINLOCK(_minor_lock);
48
49 static void do_deferred_remove(struct work_struct *w);
50
51 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
52
53 static struct workqueue_struct *deferred_remove_workqueue;
54
55 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
56 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
57
dm_issue_global_event(void)58 void dm_issue_global_event(void)
59 {
60 atomic_inc(&dm_global_event_nr);
61 wake_up(&dm_global_eventq);
62 }
63
64 /*
65 * One of these is allocated (on-stack) per original bio.
66 */
67 struct clone_info {
68 struct dm_table *map;
69 struct bio *bio;
70 struct dm_io *io;
71 sector_t sector;
72 unsigned sector_count;
73 };
74
75 /*
76 * One of these is allocated per clone bio.
77 */
78 #define DM_TIO_MAGIC 7282014
79 struct dm_target_io {
80 unsigned magic;
81 struct dm_io *io;
82 struct dm_target *ti;
83 unsigned target_bio_nr;
84 unsigned *len_ptr;
85 bool inside_dm_io;
86 struct bio clone;
87 };
88
89 /*
90 * One of these is allocated per original bio.
91 * It contains the first clone used for that original.
92 */
93 #define DM_IO_MAGIC 5191977
94 struct dm_io {
95 unsigned magic;
96 struct mapped_device *md;
97 blk_status_t status;
98 atomic_t io_count;
99 struct bio *orig_bio;
100 unsigned long start_time;
101 spinlock_t endio_lock;
102 struct dm_stats_aux stats_aux;
103 /* last member of dm_target_io is 'struct bio' */
104 struct dm_target_io tio;
105 };
106
dm_per_bio_data(struct bio * bio,size_t data_size)107 void *dm_per_bio_data(struct bio *bio, size_t data_size)
108 {
109 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
110 if (!tio->inside_dm_io)
111 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
112 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
113 }
114 EXPORT_SYMBOL_GPL(dm_per_bio_data);
115
dm_bio_from_per_bio_data(void * data,size_t data_size)116 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
117 {
118 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
119 if (io->magic == DM_IO_MAGIC)
120 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
121 BUG_ON(io->magic != DM_TIO_MAGIC);
122 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
123 }
124 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
125
dm_bio_get_target_bio_nr(const struct bio * bio)126 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
127 {
128 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
129 }
130 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
131
132 #define MINOR_ALLOCED ((void *)-1)
133
134 /*
135 * Bits for the md->flags field.
136 */
137 #define DMF_BLOCK_IO_FOR_SUSPEND 0
138 #define DMF_SUSPENDED 1
139 #define DMF_FROZEN 2
140 #define DMF_FREEING 3
141 #define DMF_DELETING 4
142 #define DMF_NOFLUSH_SUSPENDING 5
143 #define DMF_DEFERRED_REMOVE 6
144 #define DMF_SUSPENDED_INTERNALLY 7
145
146 #define DM_NUMA_NODE NUMA_NO_NODE
147 static int dm_numa_node = DM_NUMA_NODE;
148
149 /*
150 * For mempools pre-allocation at the table loading time.
151 */
152 struct dm_md_mempools {
153 struct bio_set bs;
154 struct bio_set io_bs;
155 };
156
157 struct table_device {
158 struct list_head list;
159 refcount_t count;
160 struct dm_dev dm_dev;
161 };
162
163 /*
164 * Bio-based DM's mempools' reserved IOs set by the user.
165 */
166 #define RESERVED_BIO_BASED_IOS 16
167 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
168
__dm_get_module_param_int(int * module_param,int min,int max)169 static int __dm_get_module_param_int(int *module_param, int min, int max)
170 {
171 int param = READ_ONCE(*module_param);
172 int modified_param = 0;
173 bool modified = true;
174
175 if (param < min)
176 modified_param = min;
177 else if (param > max)
178 modified_param = max;
179 else
180 modified = false;
181
182 if (modified) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
185 }
186
187 return param;
188 }
189
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)190 unsigned __dm_get_module_param(unsigned *module_param,
191 unsigned def, unsigned max)
192 {
193 unsigned param = READ_ONCE(*module_param);
194 unsigned modified_param = 0;
195
196 if (!param)
197 modified_param = def;
198 else if (param > max)
199 modified_param = max;
200
201 if (modified_param) {
202 (void)cmpxchg(module_param, param, modified_param);
203 param = modified_param;
204 }
205
206 return param;
207 }
208
dm_get_reserved_bio_based_ios(void)209 unsigned dm_get_reserved_bio_based_ios(void)
210 {
211 return __dm_get_module_param(&reserved_bio_based_ios,
212 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
213 }
214 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
215
dm_get_numa_node(void)216 static unsigned dm_get_numa_node(void)
217 {
218 return __dm_get_module_param_int(&dm_numa_node,
219 DM_NUMA_NODE, num_online_nodes() - 1);
220 }
221
local_init(void)222 static int __init local_init(void)
223 {
224 int r;
225
226 r = dm_uevent_init();
227 if (r)
228 return r;
229
230 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
231 if (!deferred_remove_workqueue) {
232 r = -ENOMEM;
233 goto out_uevent_exit;
234 }
235
236 _major = major;
237 r = register_blkdev(_major, _name);
238 if (r < 0)
239 goto out_free_workqueue;
240
241 if (!_major)
242 _major = r;
243
244 return 0;
245
246 out_free_workqueue:
247 destroy_workqueue(deferred_remove_workqueue);
248 out_uevent_exit:
249 dm_uevent_exit();
250
251 return r;
252 }
253
local_exit(void)254 static void local_exit(void)
255 {
256 flush_scheduled_work();
257 destroy_workqueue(deferred_remove_workqueue);
258
259 unregister_blkdev(_major, _name);
260 dm_uevent_exit();
261
262 _major = 0;
263
264 DMINFO("cleaned up");
265 }
266
267 static int (*_inits[])(void) __initdata = {
268 local_init,
269 dm_target_init,
270 dm_linear_init,
271 dm_stripe_init,
272 dm_io_init,
273 dm_kcopyd_init,
274 dm_interface_init,
275 dm_statistics_init,
276 };
277
278 static void (*_exits[])(void) = {
279 local_exit,
280 dm_target_exit,
281 dm_linear_exit,
282 dm_stripe_exit,
283 dm_io_exit,
284 dm_kcopyd_exit,
285 dm_interface_exit,
286 dm_statistics_exit,
287 };
288
dm_init(void)289 static int __init dm_init(void)
290 {
291 const int count = ARRAY_SIZE(_inits);
292
293 int r, i;
294
295 for (i = 0; i < count; i++) {
296 r = _inits[i]();
297 if (r)
298 goto bad;
299 }
300
301 return 0;
302
303 bad:
304 while (i--)
305 _exits[i]();
306
307 return r;
308 }
309
dm_exit(void)310 static void __exit dm_exit(void)
311 {
312 int i = ARRAY_SIZE(_exits);
313
314 while (i--)
315 _exits[i]();
316
317 /*
318 * Should be empty by this point.
319 */
320 idr_destroy(&_minor_idr);
321 }
322
323 /*
324 * Block device functions
325 */
dm_deleting_md(struct mapped_device * md)326 int dm_deleting_md(struct mapped_device *md)
327 {
328 return test_bit(DMF_DELETING, &md->flags);
329 }
330
dm_blk_open(struct block_device * bdev,fmode_t mode)331 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
332 {
333 struct mapped_device *md;
334
335 spin_lock(&_minor_lock);
336
337 md = bdev->bd_disk->private_data;
338 if (!md)
339 goto out;
340
341 if (test_bit(DMF_FREEING, &md->flags) ||
342 dm_deleting_md(md)) {
343 md = NULL;
344 goto out;
345 }
346
347 dm_get(md);
348 atomic_inc(&md->open_count);
349 out:
350 spin_unlock(&_minor_lock);
351
352 return md ? 0 : -ENXIO;
353 }
354
dm_blk_close(struct gendisk * disk,fmode_t mode)355 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
356 {
357 struct mapped_device *md;
358
359 spin_lock(&_minor_lock);
360
361 md = disk->private_data;
362 if (WARN_ON(!md))
363 goto out;
364
365 if (atomic_dec_and_test(&md->open_count) &&
366 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
367 queue_work(deferred_remove_workqueue, &deferred_remove_work);
368
369 dm_put(md);
370 out:
371 spin_unlock(&_minor_lock);
372 }
373
dm_open_count(struct mapped_device * md)374 int dm_open_count(struct mapped_device *md)
375 {
376 return atomic_read(&md->open_count);
377 }
378
379 /*
380 * Guarantees nothing is using the device before it's deleted.
381 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)382 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
383 {
384 int r = 0;
385
386 spin_lock(&_minor_lock);
387
388 if (dm_open_count(md)) {
389 r = -EBUSY;
390 if (mark_deferred)
391 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
392 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
393 r = -EEXIST;
394 else
395 set_bit(DMF_DELETING, &md->flags);
396
397 spin_unlock(&_minor_lock);
398
399 return r;
400 }
401
dm_cancel_deferred_remove(struct mapped_device * md)402 int dm_cancel_deferred_remove(struct mapped_device *md)
403 {
404 int r = 0;
405
406 spin_lock(&_minor_lock);
407
408 if (test_bit(DMF_DELETING, &md->flags))
409 r = -EBUSY;
410 else
411 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
412
413 spin_unlock(&_minor_lock);
414
415 return r;
416 }
417
do_deferred_remove(struct work_struct * w)418 static void do_deferred_remove(struct work_struct *w)
419 {
420 dm_deferred_remove();
421 }
422
dm_get_size(struct mapped_device * md)423 sector_t dm_get_size(struct mapped_device *md)
424 {
425 return get_capacity(md->disk);
426 }
427
dm_get_md_queue(struct mapped_device * md)428 struct request_queue *dm_get_md_queue(struct mapped_device *md)
429 {
430 return md->queue;
431 }
432
dm_get_stats(struct mapped_device * md)433 struct dm_stats *dm_get_stats(struct mapped_device *md)
434 {
435 return &md->stats;
436 }
437
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)438 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
439 {
440 struct mapped_device *md = bdev->bd_disk->private_data;
441
442 return dm_get_geometry(md, geo);
443 }
444
445 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)446 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
447 {
448 struct dm_report_zones_args *args = data;
449 sector_t sector_diff = args->tgt->begin - args->start;
450
451 /*
452 * Ignore zones beyond the target range.
453 */
454 if (zone->start >= args->start + args->tgt->len)
455 return 0;
456
457 /*
458 * Remap the start sector and write pointer position of the zone
459 * to match its position in the target range.
460 */
461 zone->start += sector_diff;
462 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
463 if (zone->cond == BLK_ZONE_COND_FULL)
464 zone->wp = zone->start + zone->len;
465 else if (zone->cond == BLK_ZONE_COND_EMPTY)
466 zone->wp = zone->start;
467 else
468 zone->wp += sector_diff;
469 }
470
471 args->next_sector = zone->start + zone->len;
472 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
473 }
474 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
475
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)476 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
477 unsigned int nr_zones, report_zones_cb cb, void *data)
478 {
479 struct mapped_device *md = disk->private_data;
480 struct dm_table *map;
481 int srcu_idx, ret;
482 struct dm_report_zones_args args = {
483 .next_sector = sector,
484 .orig_data = data,
485 .orig_cb = cb,
486 };
487
488 if (dm_suspended_md(md))
489 return -EAGAIN;
490
491 map = dm_get_live_table(md, &srcu_idx);
492 if (!map)
493 return -EIO;
494
495 do {
496 struct dm_target *tgt;
497
498 tgt = dm_table_find_target(map, args.next_sector);
499 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
500 ret = -EIO;
501 goto out;
502 }
503
504 args.tgt = tgt;
505 ret = tgt->type->report_zones(tgt, &args, nr_zones);
506 if (ret < 0)
507 goto out;
508 } while (args.zone_idx < nr_zones &&
509 args.next_sector < get_capacity(disk));
510
511 ret = args.zone_idx;
512 out:
513 dm_put_live_table(md, srcu_idx);
514 return ret;
515 }
516 #else
517 #define dm_blk_report_zones NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
519
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 struct block_device **bdev)
522 __acquires(md->io_barrier)
523 {
524 struct dm_target *tgt;
525 struct dm_table *map;
526 int r;
527
528 retry:
529 r = -ENOTTY;
530 map = dm_get_live_table(md, srcu_idx);
531 if (!map || !dm_table_get_size(map))
532 return r;
533
534 /* We only support devices that have a single target */
535 if (dm_table_get_num_targets(map) != 1)
536 return r;
537
538 tgt = dm_table_get_target(map, 0);
539 if (!tgt->type->prepare_ioctl)
540 return r;
541
542 if (dm_suspended_md(md))
543 return -EAGAIN;
544
545 r = tgt->type->prepare_ioctl(tgt, bdev);
546 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
547 dm_put_live_table(md, *srcu_idx);
548 msleep(10);
549 goto retry;
550 }
551
552 return r;
553 }
554
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
556 __releases(md->io_barrier)
557 {
558 dm_put_live_table(md, srcu_idx);
559 }
560
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)561 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
562 unsigned int cmd, unsigned long arg)
563 {
564 struct mapped_device *md = bdev->bd_disk->private_data;
565 int r, srcu_idx;
566
567 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
568 if (r < 0)
569 goto out;
570
571 if (r > 0) {
572 /*
573 * Target determined this ioctl is being issued against a
574 * subset of the parent bdev; require extra privileges.
575 */
576 if (!capable(CAP_SYS_RAWIO)) {
577 DMWARN_LIMIT(
578 "%s: sending ioctl %x to DM device without required privilege.",
579 current->comm, cmd);
580 r = -ENOIOCTLCMD;
581 goto out;
582 }
583 }
584
585 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
586 out:
587 dm_unprepare_ioctl(md, srcu_idx);
588 return r;
589 }
590
591 static void start_io_acct(struct dm_io *io);
592
alloc_io(struct mapped_device * md,struct bio * bio)593 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
594 {
595 struct dm_io *io;
596 struct dm_target_io *tio;
597 struct bio *clone;
598
599 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
600 if (!clone)
601 return NULL;
602
603 tio = container_of(clone, struct dm_target_io, clone);
604 tio->inside_dm_io = true;
605 tio->io = NULL;
606
607 io = container_of(tio, struct dm_io, tio);
608 io->magic = DM_IO_MAGIC;
609 io->status = 0;
610 atomic_set(&io->io_count, 1);
611 io->orig_bio = bio;
612 io->md = md;
613 spin_lock_init(&io->endio_lock);
614
615 start_io_acct(io);
616
617 return io;
618 }
619
free_io(struct mapped_device * md,struct dm_io * io)620 static void free_io(struct mapped_device *md, struct dm_io *io)
621 {
622 bio_put(&io->tio.clone);
623 }
624
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)625 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
626 unsigned target_bio_nr, gfp_t gfp_mask)
627 {
628 struct dm_target_io *tio;
629
630 if (!ci->io->tio.io) {
631 /* the dm_target_io embedded in ci->io is available */
632 tio = &ci->io->tio;
633 } else {
634 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
635 if (!clone)
636 return NULL;
637
638 tio = container_of(clone, struct dm_target_io, clone);
639 tio->inside_dm_io = false;
640 }
641
642 tio->magic = DM_TIO_MAGIC;
643 tio->io = ci->io;
644 tio->ti = ti;
645 tio->target_bio_nr = target_bio_nr;
646
647 return tio;
648 }
649
free_tio(struct dm_target_io * tio)650 static void free_tio(struct dm_target_io *tio)
651 {
652 if (tio->inside_dm_io)
653 return;
654 bio_put(&tio->clone);
655 }
656
md_in_flight_bios(struct mapped_device * md)657 static bool md_in_flight_bios(struct mapped_device *md)
658 {
659 int cpu;
660 struct hd_struct *part = &dm_disk(md)->part0;
661 long sum = 0;
662
663 for_each_possible_cpu(cpu) {
664 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
665 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
666 }
667
668 return sum != 0;
669 }
670
md_in_flight(struct mapped_device * md)671 static bool md_in_flight(struct mapped_device *md)
672 {
673 if (queue_is_mq(md->queue))
674 return blk_mq_queue_inflight(md->queue);
675 else
676 return md_in_flight_bios(md);
677 }
678
start_io_acct(struct dm_io * io)679 static void start_io_acct(struct dm_io *io)
680 {
681 struct mapped_device *md = io->md;
682 struct bio *bio = io->orig_bio;
683
684 io->start_time = jiffies;
685
686 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
687 &dm_disk(md)->part0);
688
689 if (unlikely(dm_stats_used(&md->stats)))
690 dm_stats_account_io(&md->stats, bio_data_dir(bio),
691 bio->bi_iter.bi_sector, bio_sectors(bio),
692 false, 0, &io->stats_aux);
693 }
694
end_io_acct(struct dm_io * io)695 static void end_io_acct(struct dm_io *io)
696 {
697 struct mapped_device *md = io->md;
698 struct bio *bio = io->orig_bio;
699 unsigned long duration = jiffies - io->start_time;
700
701 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
702 io->start_time);
703
704 if (unlikely(dm_stats_used(&md->stats)))
705 dm_stats_account_io(&md->stats, bio_data_dir(bio),
706 bio->bi_iter.bi_sector, bio_sectors(bio),
707 true, duration, &io->stats_aux);
708
709 /* nudge anyone waiting on suspend queue */
710 if (unlikely(wq_has_sleeper(&md->wait)))
711 wake_up(&md->wait);
712 }
713
714 /*
715 * Add the bio to the list of deferred io.
716 */
queue_io(struct mapped_device * md,struct bio * bio)717 static void queue_io(struct mapped_device *md, struct bio *bio)
718 {
719 unsigned long flags;
720
721 spin_lock_irqsave(&md->deferred_lock, flags);
722 bio_list_add(&md->deferred, bio);
723 spin_unlock_irqrestore(&md->deferred_lock, flags);
724 queue_work(md->wq, &md->work);
725 }
726
727 /*
728 * Everyone (including functions in this file), should use this
729 * function to access the md->map field, and make sure they call
730 * dm_put_live_table() when finished.
731 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)732 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
733 {
734 *srcu_idx = srcu_read_lock(&md->io_barrier);
735
736 return srcu_dereference(md->map, &md->io_barrier);
737 }
738
dm_put_live_table(struct mapped_device * md,int srcu_idx)739 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
740 {
741 srcu_read_unlock(&md->io_barrier, srcu_idx);
742 }
743
dm_sync_table(struct mapped_device * md)744 void dm_sync_table(struct mapped_device *md)
745 {
746 synchronize_srcu(&md->io_barrier);
747 synchronize_rcu_expedited();
748 }
749
750 /*
751 * A fast alternative to dm_get_live_table/dm_put_live_table.
752 * The caller must not block between these two functions.
753 */
dm_get_live_table_fast(struct mapped_device * md)754 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
755 {
756 rcu_read_lock();
757 return rcu_dereference(md->map);
758 }
759
dm_put_live_table_fast(struct mapped_device * md)760 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
761 {
762 rcu_read_unlock();
763 }
764
765 static char *_dm_claim_ptr = "I belong to device-mapper";
766
767 /*
768 * Open a table device so we can use it as a map destination.
769 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)770 static int open_table_device(struct table_device *td, dev_t dev,
771 struct mapped_device *md)
772 {
773 struct block_device *bdev;
774
775 int r;
776
777 BUG_ON(td->dm_dev.bdev);
778
779 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
780 if (IS_ERR(bdev))
781 return PTR_ERR(bdev);
782
783 r = bd_link_disk_holder(bdev, dm_disk(md));
784 if (r) {
785 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
786 return r;
787 }
788
789 td->dm_dev.bdev = bdev;
790 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
791 return 0;
792 }
793
794 /*
795 * Close a table device that we've been using.
796 */
close_table_device(struct table_device * td,struct mapped_device * md)797 static void close_table_device(struct table_device *td, struct mapped_device *md)
798 {
799 if (!td->dm_dev.bdev)
800 return;
801
802 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
803 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
804 put_dax(td->dm_dev.dax_dev);
805 td->dm_dev.bdev = NULL;
806 td->dm_dev.dax_dev = NULL;
807 }
808
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)809 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
810 fmode_t mode)
811 {
812 struct table_device *td;
813
814 list_for_each_entry(td, l, list)
815 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
816 return td;
817
818 return NULL;
819 }
820
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)821 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
822 struct dm_dev **result)
823 {
824 int r;
825 struct table_device *td;
826
827 mutex_lock(&md->table_devices_lock);
828 td = find_table_device(&md->table_devices, dev, mode);
829 if (!td) {
830 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
831 if (!td) {
832 mutex_unlock(&md->table_devices_lock);
833 return -ENOMEM;
834 }
835
836 td->dm_dev.mode = mode;
837 td->dm_dev.bdev = NULL;
838
839 if ((r = open_table_device(td, dev, md))) {
840 mutex_unlock(&md->table_devices_lock);
841 kfree(td);
842 return r;
843 }
844
845 format_dev_t(td->dm_dev.name, dev);
846
847 refcount_set(&td->count, 1);
848 list_add(&td->list, &md->table_devices);
849 } else {
850 refcount_inc(&td->count);
851 }
852 mutex_unlock(&md->table_devices_lock);
853
854 *result = &td->dm_dev;
855 return 0;
856 }
857 EXPORT_SYMBOL_GPL(dm_get_table_device);
858
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)859 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
860 {
861 struct table_device *td = container_of(d, struct table_device, dm_dev);
862
863 mutex_lock(&md->table_devices_lock);
864 if (refcount_dec_and_test(&td->count)) {
865 close_table_device(td, md);
866 list_del(&td->list);
867 kfree(td);
868 }
869 mutex_unlock(&md->table_devices_lock);
870 }
871 EXPORT_SYMBOL(dm_put_table_device);
872
free_table_devices(struct list_head * devices)873 static void free_table_devices(struct list_head *devices)
874 {
875 struct list_head *tmp, *next;
876
877 list_for_each_safe(tmp, next, devices) {
878 struct table_device *td = list_entry(tmp, struct table_device, list);
879
880 DMWARN("dm_destroy: %s still exists with %d references",
881 td->dm_dev.name, refcount_read(&td->count));
882 kfree(td);
883 }
884 }
885
886 /*
887 * Get the geometry associated with a dm device
888 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)889 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
890 {
891 *geo = md->geometry;
892
893 return 0;
894 }
895
896 /*
897 * Set the geometry of a device.
898 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)899 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
900 {
901 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
902
903 if (geo->start > sz) {
904 DMWARN("Start sector is beyond the geometry limits.");
905 return -EINVAL;
906 }
907
908 md->geometry = *geo;
909
910 return 0;
911 }
912
__noflush_suspending(struct mapped_device * md)913 static int __noflush_suspending(struct mapped_device *md)
914 {
915 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
916 }
917
918 /*
919 * Decrements the number of outstanding ios that a bio has been
920 * cloned into, completing the original io if necc.
921 */
dec_pending(struct dm_io * io,blk_status_t error)922 static void dec_pending(struct dm_io *io, blk_status_t error)
923 {
924 unsigned long flags;
925 blk_status_t io_error;
926 struct bio *bio;
927 struct mapped_device *md = io->md;
928
929 /* Push-back supersedes any I/O errors */
930 if (unlikely(error)) {
931 spin_lock_irqsave(&io->endio_lock, flags);
932 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
933 io->status = error;
934 spin_unlock_irqrestore(&io->endio_lock, flags);
935 }
936
937 if (atomic_dec_and_test(&io->io_count)) {
938 if (io->status == BLK_STS_DM_REQUEUE) {
939 /*
940 * Target requested pushing back the I/O.
941 */
942 spin_lock_irqsave(&md->deferred_lock, flags);
943 if (__noflush_suspending(md))
944 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
945 bio_list_add_head(&md->deferred, io->orig_bio);
946 else
947 /* noflush suspend was interrupted. */
948 io->status = BLK_STS_IOERR;
949 spin_unlock_irqrestore(&md->deferred_lock, flags);
950 }
951
952 io_error = io->status;
953 bio = io->orig_bio;
954 end_io_acct(io);
955 free_io(md, io);
956
957 if (io_error == BLK_STS_DM_REQUEUE)
958 return;
959
960 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
961 /*
962 * Preflush done for flush with data, reissue
963 * without REQ_PREFLUSH.
964 */
965 bio->bi_opf &= ~REQ_PREFLUSH;
966 queue_io(md, bio);
967 } else {
968 /* done with normal IO or empty flush */
969 if (io_error)
970 bio->bi_status = io_error;
971 bio_endio(bio);
972 }
973 }
974 }
975
disable_discard(struct mapped_device * md)976 void disable_discard(struct mapped_device *md)
977 {
978 struct queue_limits *limits = dm_get_queue_limits(md);
979
980 /* device doesn't really support DISCARD, disable it */
981 limits->max_discard_sectors = 0;
982 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
983 }
984
disable_write_same(struct mapped_device * md)985 void disable_write_same(struct mapped_device *md)
986 {
987 struct queue_limits *limits = dm_get_queue_limits(md);
988
989 /* device doesn't really support WRITE SAME, disable it */
990 limits->max_write_same_sectors = 0;
991 }
992
disable_write_zeroes(struct mapped_device * md)993 void disable_write_zeroes(struct mapped_device *md)
994 {
995 struct queue_limits *limits = dm_get_queue_limits(md);
996
997 /* device doesn't really support WRITE ZEROES, disable it */
998 limits->max_write_zeroes_sectors = 0;
999 }
1000
clone_endio(struct bio * bio)1001 static void clone_endio(struct bio *bio)
1002 {
1003 blk_status_t error = bio->bi_status;
1004 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1005 struct dm_io *io = tio->io;
1006 struct mapped_device *md = tio->io->md;
1007 dm_endio_fn endio = tio->ti->type->end_io;
1008
1009 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1010 if (bio_op(bio) == REQ_OP_DISCARD &&
1011 !bio->bi_disk->queue->limits.max_discard_sectors)
1012 disable_discard(md);
1013 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1014 !bio->bi_disk->queue->limits.max_write_same_sectors)
1015 disable_write_same(md);
1016 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1017 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1018 disable_write_zeroes(md);
1019 }
1020
1021 if (endio) {
1022 int r = endio(tio->ti, bio, &error);
1023 switch (r) {
1024 case DM_ENDIO_REQUEUE:
1025 error = BLK_STS_DM_REQUEUE;
1026 /*FALLTHRU*/
1027 case DM_ENDIO_DONE:
1028 break;
1029 case DM_ENDIO_INCOMPLETE:
1030 /* The target will handle the io */
1031 return;
1032 default:
1033 DMWARN("unimplemented target endio return value: %d", r);
1034 BUG();
1035 }
1036 }
1037
1038 free_tio(tio);
1039 dec_pending(io, error);
1040 }
1041
1042 /*
1043 * Return maximum size of I/O possible at the supplied sector up to the current
1044 * target boundary.
1045 */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)1046 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1047 {
1048 sector_t target_offset = dm_target_offset(ti, sector);
1049
1050 return ti->len - target_offset;
1051 }
1052
max_io_len(sector_t sector,struct dm_target * ti)1053 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1054 {
1055 sector_t len = max_io_len_target_boundary(sector, ti);
1056 sector_t offset, max_len;
1057
1058 /*
1059 * Does the target need to split even further?
1060 */
1061 if (ti->max_io_len) {
1062 offset = dm_target_offset(ti, sector);
1063 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1064 max_len = sector_div(offset, ti->max_io_len);
1065 else
1066 max_len = offset & (ti->max_io_len - 1);
1067 max_len = ti->max_io_len - max_len;
1068
1069 if (len > max_len)
1070 len = max_len;
1071 }
1072
1073 return len;
1074 }
1075
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1076 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1077 {
1078 if (len > UINT_MAX) {
1079 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1080 (unsigned long long)len, UINT_MAX);
1081 ti->error = "Maximum size of target IO is too large";
1082 return -EINVAL;
1083 }
1084
1085 ti->max_io_len = (uint32_t) len;
1086
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1090
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1091 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1092 sector_t sector, int *srcu_idx)
1093 __acquires(md->io_barrier)
1094 {
1095 struct dm_table *map;
1096 struct dm_target *ti;
1097
1098 map = dm_get_live_table(md, srcu_idx);
1099 if (!map)
1100 return NULL;
1101
1102 ti = dm_table_find_target(map, sector);
1103 if (!ti)
1104 return NULL;
1105
1106 return ti;
1107 }
1108
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1109 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1110 long nr_pages, void **kaddr, pfn_t *pfn)
1111 {
1112 struct mapped_device *md = dax_get_private(dax_dev);
1113 sector_t sector = pgoff * PAGE_SECTORS;
1114 struct dm_target *ti;
1115 long len, ret = -EIO;
1116 int srcu_idx;
1117
1118 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1119
1120 if (!ti)
1121 goto out;
1122 if (!ti->type->direct_access)
1123 goto out;
1124 len = max_io_len(sector, ti) / PAGE_SECTORS;
1125 if (len < 1)
1126 goto out;
1127 nr_pages = min(len, nr_pages);
1128 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1129
1130 out:
1131 dm_put_live_table(md, srcu_idx);
1132
1133 return ret;
1134 }
1135
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1136 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1137 int blocksize, sector_t start, sector_t len)
1138 {
1139 struct mapped_device *md = dax_get_private(dax_dev);
1140 struct dm_table *map;
1141 int srcu_idx;
1142 bool ret;
1143
1144 map = dm_get_live_table(md, &srcu_idx);
1145 if (!map)
1146 return false;
1147
1148 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1149
1150 dm_put_live_table(md, srcu_idx);
1151
1152 return ret;
1153 }
1154
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1155 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1156 void *addr, size_t bytes, struct iov_iter *i)
1157 {
1158 struct mapped_device *md = dax_get_private(dax_dev);
1159 sector_t sector = pgoff * PAGE_SECTORS;
1160 struct dm_target *ti;
1161 long ret = 0;
1162 int srcu_idx;
1163
1164 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1165
1166 if (!ti)
1167 goto out;
1168 if (!ti->type->dax_copy_from_iter) {
1169 ret = copy_from_iter(addr, bytes, i);
1170 goto out;
1171 }
1172 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1173 out:
1174 dm_put_live_table(md, srcu_idx);
1175
1176 return ret;
1177 }
1178
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1179 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1180 void *addr, size_t bytes, struct iov_iter *i)
1181 {
1182 struct mapped_device *md = dax_get_private(dax_dev);
1183 sector_t sector = pgoff * PAGE_SECTORS;
1184 struct dm_target *ti;
1185 long ret = 0;
1186 int srcu_idx;
1187
1188 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1189
1190 if (!ti)
1191 goto out;
1192 if (!ti->type->dax_copy_to_iter) {
1193 ret = copy_to_iter(addr, bytes, i);
1194 goto out;
1195 }
1196 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1197 out:
1198 dm_put_live_table(md, srcu_idx);
1199
1200 return ret;
1201 }
1202
1203 /*
1204 * A target may call dm_accept_partial_bio only from the map routine. It is
1205 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1206 *
1207 * dm_accept_partial_bio informs the dm that the target only wants to process
1208 * additional n_sectors sectors of the bio and the rest of the data should be
1209 * sent in a next bio.
1210 *
1211 * A diagram that explains the arithmetics:
1212 * +--------------------+---------------+-------+
1213 * | 1 | 2 | 3 |
1214 * +--------------------+---------------+-------+
1215 *
1216 * <-------------- *tio->len_ptr --------------->
1217 * <------- bi_size ------->
1218 * <-- n_sectors -->
1219 *
1220 * Region 1 was already iterated over with bio_advance or similar function.
1221 * (it may be empty if the target doesn't use bio_advance)
1222 * Region 2 is the remaining bio size that the target wants to process.
1223 * (it may be empty if region 1 is non-empty, although there is no reason
1224 * to make it empty)
1225 * The target requires that region 3 is to be sent in the next bio.
1226 *
1227 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1228 * the partially processed part (the sum of regions 1+2) must be the same for all
1229 * copies of the bio.
1230 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1231 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1232 {
1233 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1234 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1235 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1236 BUG_ON(bi_size > *tio->len_ptr);
1237 BUG_ON(n_sectors > bi_size);
1238 *tio->len_ptr -= bi_size - n_sectors;
1239 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1240 }
1241 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1242
__map_bio(struct dm_target_io * tio)1243 static blk_qc_t __map_bio(struct dm_target_io *tio)
1244 {
1245 int r;
1246 sector_t sector;
1247 struct bio *clone = &tio->clone;
1248 struct dm_io *io = tio->io;
1249 struct mapped_device *md = io->md;
1250 struct dm_target *ti = tio->ti;
1251 blk_qc_t ret = BLK_QC_T_NONE;
1252
1253 clone->bi_end_io = clone_endio;
1254
1255 /*
1256 * Map the clone. If r == 0 we don't need to do
1257 * anything, the target has assumed ownership of
1258 * this io.
1259 */
1260 atomic_inc(&io->io_count);
1261 sector = clone->bi_iter.bi_sector;
1262
1263 r = ti->type->map(ti, clone);
1264 switch (r) {
1265 case DM_MAPIO_SUBMITTED:
1266 break;
1267 case DM_MAPIO_REMAPPED:
1268 /* the bio has been remapped so dispatch it */
1269 trace_block_bio_remap(clone->bi_disk->queue, clone,
1270 bio_dev(io->orig_bio), sector);
1271 if (md->type == DM_TYPE_NVME_BIO_BASED)
1272 ret = direct_make_request(clone);
1273 else
1274 ret = generic_make_request(clone);
1275 break;
1276 case DM_MAPIO_KILL:
1277 free_tio(tio);
1278 dec_pending(io, BLK_STS_IOERR);
1279 break;
1280 case DM_MAPIO_REQUEUE:
1281 free_tio(tio);
1282 dec_pending(io, BLK_STS_DM_REQUEUE);
1283 break;
1284 default:
1285 DMWARN("unimplemented target map return value: %d", r);
1286 BUG();
1287 }
1288
1289 return ret;
1290 }
1291
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1292 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1293 {
1294 bio->bi_iter.bi_sector = sector;
1295 bio->bi_iter.bi_size = to_bytes(len);
1296 }
1297
1298 /*
1299 * Creates a bio that consists of range of complete bvecs.
1300 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1301 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1302 sector_t sector, unsigned len)
1303 {
1304 struct bio *clone = &tio->clone;
1305
1306 __bio_clone_fast(clone, bio);
1307
1308 bio_crypt_clone(clone, bio, GFP_NOIO);
1309
1310 if (bio_integrity(bio)) {
1311 int r;
1312 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1313 !dm_target_passes_integrity(tio->ti->type))) {
1314 DMWARN("%s: the target %s doesn't support integrity data.",
1315 dm_device_name(tio->io->md),
1316 tio->ti->type->name);
1317 return -EIO;
1318 }
1319
1320 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1321 if (r < 0)
1322 return r;
1323 }
1324
1325 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1326 clone->bi_iter.bi_size = to_bytes(len);
1327
1328 if (bio_integrity(bio))
1329 bio_integrity_trim(clone);
1330
1331 return 0;
1332 }
1333
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1334 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1335 struct dm_target *ti, unsigned num_bios)
1336 {
1337 struct dm_target_io *tio;
1338 int try;
1339
1340 if (!num_bios)
1341 return;
1342
1343 if (num_bios == 1) {
1344 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1345 bio_list_add(blist, &tio->clone);
1346 return;
1347 }
1348
1349 for (try = 0; try < 2; try++) {
1350 int bio_nr;
1351 struct bio *bio;
1352
1353 if (try)
1354 mutex_lock(&ci->io->md->table_devices_lock);
1355 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1356 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1357 if (!tio)
1358 break;
1359
1360 bio_list_add(blist, &tio->clone);
1361 }
1362 if (try)
1363 mutex_unlock(&ci->io->md->table_devices_lock);
1364 if (bio_nr == num_bios)
1365 return;
1366
1367 while ((bio = bio_list_pop(blist))) {
1368 tio = container_of(bio, struct dm_target_io, clone);
1369 free_tio(tio);
1370 }
1371 }
1372 }
1373
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1374 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1375 struct dm_target_io *tio, unsigned *len)
1376 {
1377 struct bio *clone = &tio->clone;
1378
1379 tio->len_ptr = len;
1380
1381 __bio_clone_fast(clone, ci->bio);
1382 if (len)
1383 bio_setup_sector(clone, ci->sector, *len);
1384
1385 return __map_bio(tio);
1386 }
1387
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1388 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1389 unsigned num_bios, unsigned *len)
1390 {
1391 struct bio_list blist = BIO_EMPTY_LIST;
1392 struct bio *bio;
1393 struct dm_target_io *tio;
1394
1395 alloc_multiple_bios(&blist, ci, ti, num_bios);
1396
1397 while ((bio = bio_list_pop(&blist))) {
1398 tio = container_of(bio, struct dm_target_io, clone);
1399 (void) __clone_and_map_simple_bio(ci, tio, len);
1400 }
1401 }
1402
__send_empty_flush(struct clone_info * ci)1403 static int __send_empty_flush(struct clone_info *ci)
1404 {
1405 unsigned target_nr = 0;
1406 struct dm_target *ti;
1407
1408 /*
1409 * Empty flush uses a statically initialized bio, as the base for
1410 * cloning. However, blkg association requires that a bdev is
1411 * associated with a gendisk, which doesn't happen until the bdev is
1412 * opened. So, blkg association is done at issue time of the flush
1413 * rather than when the device is created in alloc_dev().
1414 */
1415 bio_set_dev(ci->bio, ci->io->md->bdev);
1416
1417 BUG_ON(bio_has_data(ci->bio));
1418 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1419 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1420
1421 bio_disassociate_blkg(ci->bio);
1422
1423 return 0;
1424 }
1425
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1426 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1427 sector_t sector, unsigned *len)
1428 {
1429 struct bio *bio = ci->bio;
1430 struct dm_target_io *tio;
1431 int r;
1432
1433 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1434 tio->len_ptr = len;
1435 r = clone_bio(tio, bio, sector, *len);
1436 if (r < 0) {
1437 free_tio(tio);
1438 return r;
1439 }
1440 (void) __map_bio(tio);
1441
1442 return 0;
1443 }
1444
1445 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1446
get_num_discard_bios(struct dm_target * ti)1447 static unsigned get_num_discard_bios(struct dm_target *ti)
1448 {
1449 return ti->num_discard_bios;
1450 }
1451
get_num_secure_erase_bios(struct dm_target * ti)1452 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1453 {
1454 return ti->num_secure_erase_bios;
1455 }
1456
get_num_write_same_bios(struct dm_target * ti)1457 static unsigned get_num_write_same_bios(struct dm_target *ti)
1458 {
1459 return ti->num_write_same_bios;
1460 }
1461
get_num_write_zeroes_bios(struct dm_target * ti)1462 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1463 {
1464 return ti->num_write_zeroes_bios;
1465 }
1466
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1467 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1468 unsigned num_bios)
1469 {
1470 unsigned len;
1471
1472 /*
1473 * Even though the device advertised support for this type of
1474 * request, that does not mean every target supports it, and
1475 * reconfiguration might also have changed that since the
1476 * check was performed.
1477 */
1478 if (!num_bios)
1479 return -EOPNOTSUPP;
1480
1481 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1482
1483 __send_duplicate_bios(ci, ti, num_bios, &len);
1484
1485 ci->sector += len;
1486 ci->sector_count -= len;
1487
1488 return 0;
1489 }
1490
__send_discard(struct clone_info * ci,struct dm_target * ti)1491 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1492 {
1493 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1494 }
1495
__send_secure_erase(struct clone_info * ci,struct dm_target * ti)1496 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1497 {
1498 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1499 }
1500
__send_write_same(struct clone_info * ci,struct dm_target * ti)1501 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1502 {
1503 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1504 }
1505
__send_write_zeroes(struct clone_info * ci,struct dm_target * ti)1506 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1507 {
1508 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1509 }
1510
is_abnormal_io(struct bio * bio)1511 static bool is_abnormal_io(struct bio *bio)
1512 {
1513 bool r = false;
1514
1515 switch (bio_op(bio)) {
1516 case REQ_OP_DISCARD:
1517 case REQ_OP_SECURE_ERASE:
1518 case REQ_OP_WRITE_SAME:
1519 case REQ_OP_WRITE_ZEROES:
1520 r = true;
1521 break;
1522 }
1523
1524 return r;
1525 }
1526
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1527 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1528 int *result)
1529 {
1530 struct bio *bio = ci->bio;
1531
1532 if (bio_op(bio) == REQ_OP_DISCARD)
1533 *result = __send_discard(ci, ti);
1534 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1535 *result = __send_secure_erase(ci, ti);
1536 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1537 *result = __send_write_same(ci, ti);
1538 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1539 *result = __send_write_zeroes(ci, ti);
1540 else
1541 return false;
1542
1543 return true;
1544 }
1545
1546 /*
1547 * Select the correct strategy for processing a non-flush bio.
1548 */
__split_and_process_non_flush(struct clone_info * ci)1549 static int __split_and_process_non_flush(struct clone_info *ci)
1550 {
1551 struct dm_target *ti;
1552 unsigned len;
1553 int r;
1554
1555 ti = dm_table_find_target(ci->map, ci->sector);
1556 if (!ti)
1557 return -EIO;
1558
1559 if (__process_abnormal_io(ci, ti, &r))
1560 return r;
1561
1562 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1563
1564 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1565 if (r < 0)
1566 return r;
1567
1568 ci->sector += len;
1569 ci->sector_count -= len;
1570
1571 return 0;
1572 }
1573
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1574 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1575 struct dm_table *map, struct bio *bio)
1576 {
1577 ci->map = map;
1578 ci->io = alloc_io(md, bio);
1579 ci->sector = bio->bi_iter.bi_sector;
1580 }
1581
1582 #define __dm_part_stat_sub(part, field, subnd) \
1583 (part_stat_get(part, field) -= (subnd))
1584
1585 /*
1586 * Entry point to split a bio into clones and submit them to the targets.
1587 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1588 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1589 struct dm_table *map, struct bio *bio)
1590 {
1591 struct clone_info ci;
1592 blk_qc_t ret = BLK_QC_T_NONE;
1593 int error = 0;
1594
1595 init_clone_info(&ci, md, map, bio);
1596
1597 if (bio->bi_opf & REQ_PREFLUSH) {
1598 struct bio flush_bio;
1599
1600 /*
1601 * Use an on-stack bio for this, it's safe since we don't
1602 * need to reference it after submit. It's just used as
1603 * the basis for the clone(s).
1604 */
1605 bio_init(&flush_bio, NULL, 0);
1606 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1607 ci.bio = &flush_bio;
1608 ci.sector_count = 0;
1609 error = __send_empty_flush(&ci);
1610 /* dec_pending submits any data associated with flush */
1611 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1612 ci.bio = bio;
1613 ci.sector_count = 0;
1614 error = __split_and_process_non_flush(&ci);
1615 } else {
1616 ci.bio = bio;
1617 ci.sector_count = bio_sectors(bio);
1618 while (ci.sector_count && !error) {
1619 error = __split_and_process_non_flush(&ci);
1620 if (current->bio_list && ci.sector_count && !error) {
1621 /*
1622 * Remainder must be passed to generic_make_request()
1623 * so that it gets handled *after* bios already submitted
1624 * have been completely processed.
1625 * We take a clone of the original to store in
1626 * ci.io->orig_bio to be used by end_io_acct() and
1627 * for dec_pending to use for completion handling.
1628 */
1629 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1630 GFP_NOIO, &md->queue->bio_split);
1631 ci.io->orig_bio = b;
1632
1633 /*
1634 * Adjust IO stats for each split, otherwise upon queue
1635 * reentry there will be redundant IO accounting.
1636 * NOTE: this is a stop-gap fix, a proper fix involves
1637 * significant refactoring of DM core's bio splitting
1638 * (by eliminating DM's splitting and just using bio_split)
1639 */
1640 part_stat_lock();
1641 __dm_part_stat_sub(&dm_disk(md)->part0,
1642 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1643 part_stat_unlock();
1644
1645 bio_chain(b, bio);
1646 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1647 ret = generic_make_request(bio);
1648 break;
1649 }
1650 }
1651 }
1652
1653 /* drop the extra reference count */
1654 dec_pending(ci.io, errno_to_blk_status(error));
1655 return ret;
1656 }
1657
1658 /*
1659 * Optimized variant of __split_and_process_bio that leverages the
1660 * fact that targets that use it do _not_ have a need to split bios.
1661 */
__process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio,struct dm_target * ti)1662 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1663 struct bio *bio, struct dm_target *ti)
1664 {
1665 struct clone_info ci;
1666 blk_qc_t ret = BLK_QC_T_NONE;
1667 int error = 0;
1668
1669 init_clone_info(&ci, md, map, bio);
1670
1671 if (bio->bi_opf & REQ_PREFLUSH) {
1672 struct bio flush_bio;
1673
1674 /*
1675 * Use an on-stack bio for this, it's safe since we don't
1676 * need to reference it after submit. It's just used as
1677 * the basis for the clone(s).
1678 */
1679 bio_init(&flush_bio, NULL, 0);
1680 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1681 ci.bio = &flush_bio;
1682 ci.sector_count = 0;
1683 error = __send_empty_flush(&ci);
1684 /* dec_pending submits any data associated with flush */
1685 } else {
1686 struct dm_target_io *tio;
1687
1688 ci.bio = bio;
1689 ci.sector_count = bio_sectors(bio);
1690 if (__process_abnormal_io(&ci, ti, &error))
1691 goto out;
1692
1693 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1694 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1695 }
1696 out:
1697 /* drop the extra reference count */
1698 dec_pending(ci.io, errno_to_blk_status(error));
1699 return ret;
1700 }
1701
dm_queue_split(struct mapped_device * md,struct dm_target * ti,struct bio ** bio)1702 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1703 {
1704 unsigned len, sector_count;
1705
1706 sector_count = bio_sectors(*bio);
1707 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1708
1709 if (sector_count > len) {
1710 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1711
1712 bio_chain(split, *bio);
1713 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1714 generic_make_request(*bio);
1715 *bio = split;
1716 }
1717 }
1718
dm_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1719 static blk_qc_t dm_process_bio(struct mapped_device *md,
1720 struct dm_table *map, struct bio *bio)
1721 {
1722 blk_qc_t ret = BLK_QC_T_NONE;
1723 struct dm_target *ti = md->immutable_target;
1724
1725 if (unlikely(!map)) {
1726 bio_io_error(bio);
1727 return ret;
1728 }
1729
1730 if (!ti) {
1731 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1732 if (unlikely(!ti)) {
1733 bio_io_error(bio);
1734 return ret;
1735 }
1736 }
1737
1738 /*
1739 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1740 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1741 * won't be imposed.
1742 */
1743 if (current->bio_list) {
1744 blk_queue_split(md->queue, &bio);
1745 if (!is_abnormal_io(bio))
1746 dm_queue_split(md, ti, &bio);
1747 }
1748
1749 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1750 return __process_bio(md, map, bio, ti);
1751 else
1752 return __split_and_process_bio(md, map, bio);
1753 }
1754
dm_make_request(struct request_queue * q,struct bio * bio)1755 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1756 {
1757 struct mapped_device *md = q->queuedata;
1758 blk_qc_t ret = BLK_QC_T_NONE;
1759 int srcu_idx;
1760 struct dm_table *map;
1761
1762 map = dm_get_live_table(md, &srcu_idx);
1763
1764 /* if we're suspended, we have to queue this io for later */
1765 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1766 dm_put_live_table(md, srcu_idx);
1767
1768 if (!(bio->bi_opf & REQ_RAHEAD))
1769 queue_io(md, bio);
1770 else
1771 bio_io_error(bio);
1772 return ret;
1773 }
1774
1775 ret = dm_process_bio(md, map, bio);
1776
1777 dm_put_live_table(md, srcu_idx);
1778 return ret;
1779 }
1780
dm_any_congested(void * congested_data,int bdi_bits)1781 static int dm_any_congested(void *congested_data, int bdi_bits)
1782 {
1783 int r = bdi_bits;
1784 struct mapped_device *md = congested_data;
1785 struct dm_table *map;
1786
1787 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1788 if (dm_request_based(md)) {
1789 /*
1790 * With request-based DM we only need to check the
1791 * top-level queue for congestion.
1792 */
1793 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1794 } else {
1795 map = dm_get_live_table_fast(md);
1796 if (map)
1797 r = dm_table_any_congested(map, bdi_bits);
1798 dm_put_live_table_fast(md);
1799 }
1800 }
1801
1802 return r;
1803 }
1804
1805 /*-----------------------------------------------------------------
1806 * An IDR is used to keep track of allocated minor numbers.
1807 *---------------------------------------------------------------*/
free_minor(int minor)1808 static void free_minor(int minor)
1809 {
1810 spin_lock(&_minor_lock);
1811 idr_remove(&_minor_idr, minor);
1812 spin_unlock(&_minor_lock);
1813 }
1814
1815 /*
1816 * See if the device with a specific minor # is free.
1817 */
specific_minor(int minor)1818 static int specific_minor(int minor)
1819 {
1820 int r;
1821
1822 if (minor >= (1 << MINORBITS))
1823 return -EINVAL;
1824
1825 idr_preload(GFP_KERNEL);
1826 spin_lock(&_minor_lock);
1827
1828 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1829
1830 spin_unlock(&_minor_lock);
1831 idr_preload_end();
1832 if (r < 0)
1833 return r == -ENOSPC ? -EBUSY : r;
1834 return 0;
1835 }
1836
next_free_minor(int * minor)1837 static int next_free_minor(int *minor)
1838 {
1839 int r;
1840
1841 idr_preload(GFP_KERNEL);
1842 spin_lock(&_minor_lock);
1843
1844 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1845
1846 spin_unlock(&_minor_lock);
1847 idr_preload_end();
1848 if (r < 0)
1849 return r;
1850 *minor = r;
1851 return 0;
1852 }
1853
1854 static const struct block_device_operations dm_blk_dops;
1855 static const struct dax_operations dm_dax_ops;
1856
1857 static void dm_wq_work(struct work_struct *work);
1858
dm_init_normal_md_queue(struct mapped_device * md)1859 static void dm_init_normal_md_queue(struct mapped_device *md)
1860 {
1861 /*
1862 * Initialize aspects of queue that aren't relevant for blk-mq
1863 */
1864 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1865 }
1866
1867 static void dm_destroy_inline_encryption(struct request_queue *q);
1868
cleanup_mapped_device(struct mapped_device * md)1869 static void cleanup_mapped_device(struct mapped_device *md)
1870 {
1871 if (md->wq)
1872 destroy_workqueue(md->wq);
1873 bioset_exit(&md->bs);
1874 bioset_exit(&md->io_bs);
1875
1876 if (md->dax_dev) {
1877 kill_dax(md->dax_dev);
1878 put_dax(md->dax_dev);
1879 md->dax_dev = NULL;
1880 }
1881
1882 if (md->disk) {
1883 spin_lock(&_minor_lock);
1884 md->disk->private_data = NULL;
1885 spin_unlock(&_minor_lock);
1886 del_gendisk(md->disk);
1887 put_disk(md->disk);
1888 }
1889
1890 if (md->queue) {
1891 dm_destroy_inline_encryption(md->queue);
1892 blk_cleanup_queue(md->queue);
1893 }
1894
1895 cleanup_srcu_struct(&md->io_barrier);
1896
1897 if (md->bdev) {
1898 bdput(md->bdev);
1899 md->bdev = NULL;
1900 }
1901
1902 mutex_destroy(&md->suspend_lock);
1903 mutex_destroy(&md->type_lock);
1904 mutex_destroy(&md->table_devices_lock);
1905
1906 dm_mq_cleanup_mapped_device(md);
1907 }
1908
1909 /*
1910 * Allocate and initialise a blank device with a given minor.
1911 */
alloc_dev(int minor)1912 static struct mapped_device *alloc_dev(int minor)
1913 {
1914 int r, numa_node_id = dm_get_numa_node();
1915 struct mapped_device *md;
1916 void *old_md;
1917
1918 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1919 if (!md) {
1920 DMWARN("unable to allocate device, out of memory.");
1921 return NULL;
1922 }
1923
1924 if (!try_module_get(THIS_MODULE))
1925 goto bad_module_get;
1926
1927 /* get a minor number for the dev */
1928 if (minor == DM_ANY_MINOR)
1929 r = next_free_minor(&minor);
1930 else
1931 r = specific_minor(minor);
1932 if (r < 0)
1933 goto bad_minor;
1934
1935 r = init_srcu_struct(&md->io_barrier);
1936 if (r < 0)
1937 goto bad_io_barrier;
1938
1939 md->numa_node_id = numa_node_id;
1940 md->init_tio_pdu = false;
1941 md->type = DM_TYPE_NONE;
1942 mutex_init(&md->suspend_lock);
1943 mutex_init(&md->type_lock);
1944 mutex_init(&md->table_devices_lock);
1945 spin_lock_init(&md->deferred_lock);
1946 atomic_set(&md->holders, 1);
1947 atomic_set(&md->open_count, 0);
1948 atomic_set(&md->event_nr, 0);
1949 atomic_set(&md->uevent_seq, 0);
1950 INIT_LIST_HEAD(&md->uevent_list);
1951 INIT_LIST_HEAD(&md->table_devices);
1952 spin_lock_init(&md->uevent_lock);
1953
1954 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1955 if (!md->queue)
1956 goto bad;
1957 md->queue->queuedata = md;
1958 md->queue->backing_dev_info->congested_data = md;
1959
1960 md->disk = alloc_disk_node(1, md->numa_node_id);
1961 if (!md->disk)
1962 goto bad;
1963
1964 init_waitqueue_head(&md->wait);
1965 INIT_WORK(&md->work, dm_wq_work);
1966 init_waitqueue_head(&md->eventq);
1967 init_completion(&md->kobj_holder.completion);
1968
1969 md->disk->major = _major;
1970 md->disk->first_minor = minor;
1971 md->disk->fops = &dm_blk_dops;
1972 md->disk->queue = md->queue;
1973 md->disk->private_data = md;
1974 sprintf(md->disk->disk_name, "dm-%d", minor);
1975
1976 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1977 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1978 &dm_dax_ops, 0);
1979 if (!md->dax_dev)
1980 goto bad;
1981 }
1982
1983 add_disk_no_queue_reg(md->disk);
1984 format_dev_t(md->name, MKDEV(_major, minor));
1985
1986 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1987 if (!md->wq)
1988 goto bad;
1989
1990 md->bdev = bdget_disk(md->disk, 0);
1991 if (!md->bdev)
1992 goto bad;
1993
1994 dm_stats_init(&md->stats);
1995
1996 /* Populate the mapping, nobody knows we exist yet */
1997 spin_lock(&_minor_lock);
1998 old_md = idr_replace(&_minor_idr, md, minor);
1999 spin_unlock(&_minor_lock);
2000
2001 BUG_ON(old_md != MINOR_ALLOCED);
2002
2003 return md;
2004
2005 bad:
2006 cleanup_mapped_device(md);
2007 bad_io_barrier:
2008 free_minor(minor);
2009 bad_minor:
2010 module_put(THIS_MODULE);
2011 bad_module_get:
2012 kvfree(md);
2013 return NULL;
2014 }
2015
2016 static void unlock_fs(struct mapped_device *md);
2017
free_dev(struct mapped_device * md)2018 static void free_dev(struct mapped_device *md)
2019 {
2020 int minor = MINOR(disk_devt(md->disk));
2021
2022 unlock_fs(md);
2023
2024 cleanup_mapped_device(md);
2025
2026 free_table_devices(&md->table_devices);
2027 dm_stats_cleanup(&md->stats);
2028 free_minor(minor);
2029
2030 module_put(THIS_MODULE);
2031 kvfree(md);
2032 }
2033
__bind_mempools(struct mapped_device * md,struct dm_table * t)2034 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2035 {
2036 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2037 int ret = 0;
2038
2039 if (dm_table_bio_based(t)) {
2040 /*
2041 * The md may already have mempools that need changing.
2042 * If so, reload bioset because front_pad may have changed
2043 * because a different table was loaded.
2044 */
2045 bioset_exit(&md->bs);
2046 bioset_exit(&md->io_bs);
2047
2048 } else if (bioset_initialized(&md->bs)) {
2049 /*
2050 * There's no need to reload with request-based dm
2051 * because the size of front_pad doesn't change.
2052 * Note for future: If you are to reload bioset,
2053 * prep-ed requests in the queue may refer
2054 * to bio from the old bioset, so you must walk
2055 * through the queue to unprep.
2056 */
2057 goto out;
2058 }
2059
2060 BUG_ON(!p ||
2061 bioset_initialized(&md->bs) ||
2062 bioset_initialized(&md->io_bs));
2063
2064 ret = bioset_init_from_src(&md->bs, &p->bs);
2065 if (ret)
2066 goto out;
2067 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2068 if (ret)
2069 bioset_exit(&md->bs);
2070 out:
2071 /* mempool bind completed, no longer need any mempools in the table */
2072 dm_table_free_md_mempools(t);
2073 return ret;
2074 }
2075
2076 /*
2077 * Bind a table to the device.
2078 */
event_callback(void * context)2079 static void event_callback(void *context)
2080 {
2081 unsigned long flags;
2082 LIST_HEAD(uevents);
2083 struct mapped_device *md = (struct mapped_device *) context;
2084
2085 spin_lock_irqsave(&md->uevent_lock, flags);
2086 list_splice_init(&md->uevent_list, &uevents);
2087 spin_unlock_irqrestore(&md->uevent_lock, flags);
2088
2089 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2090
2091 atomic_inc(&md->event_nr);
2092 wake_up(&md->eventq);
2093 dm_issue_global_event();
2094 }
2095
2096 /*
2097 * Protected by md->suspend_lock obtained by dm_swap_table().
2098 */
__set_size(struct mapped_device * md,sector_t size)2099 static void __set_size(struct mapped_device *md, sector_t size)
2100 {
2101 lockdep_assert_held(&md->suspend_lock);
2102
2103 set_capacity(md->disk, size);
2104
2105 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2106 }
2107
2108 /*
2109 * Returns old map, which caller must destroy.
2110 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2111 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2112 struct queue_limits *limits)
2113 {
2114 struct dm_table *old_map;
2115 struct request_queue *q = md->queue;
2116 bool request_based = dm_table_request_based(t);
2117 sector_t size;
2118 int ret;
2119
2120 lockdep_assert_held(&md->suspend_lock);
2121
2122 size = dm_table_get_size(t);
2123
2124 /*
2125 * Wipe any geometry if the size of the table changed.
2126 */
2127 if (size != dm_get_size(md))
2128 memset(&md->geometry, 0, sizeof(md->geometry));
2129
2130 __set_size(md, size);
2131
2132 dm_table_event_callback(t, event_callback, md);
2133
2134 /*
2135 * The queue hasn't been stopped yet, if the old table type wasn't
2136 * for request-based during suspension. So stop it to prevent
2137 * I/O mapping before resume.
2138 * This must be done before setting the queue restrictions,
2139 * because request-based dm may be run just after the setting.
2140 */
2141 if (request_based)
2142 dm_stop_queue(q);
2143
2144 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2145 /*
2146 * Leverage the fact that request-based DM targets and
2147 * NVMe bio based targets are immutable singletons
2148 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2149 * and __process_bio.
2150 */
2151 md->immutable_target = dm_table_get_immutable_target(t);
2152 }
2153
2154 ret = __bind_mempools(md, t);
2155 if (ret) {
2156 old_map = ERR_PTR(ret);
2157 goto out;
2158 }
2159
2160 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2161 rcu_assign_pointer(md->map, (void *)t);
2162 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2163
2164 dm_table_set_restrictions(t, q, limits);
2165 if (old_map)
2166 dm_sync_table(md);
2167
2168 out:
2169 return old_map;
2170 }
2171
2172 /*
2173 * Returns unbound table for the caller to free.
2174 */
__unbind(struct mapped_device * md)2175 static struct dm_table *__unbind(struct mapped_device *md)
2176 {
2177 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2178
2179 if (!map)
2180 return NULL;
2181
2182 dm_table_event_callback(map, NULL, NULL);
2183 RCU_INIT_POINTER(md->map, NULL);
2184 dm_sync_table(md);
2185
2186 return map;
2187 }
2188
2189 /*
2190 * Constructor for a new device.
2191 */
dm_create(int minor,struct mapped_device ** result)2192 int dm_create(int minor, struct mapped_device **result)
2193 {
2194 int r;
2195 struct mapped_device *md;
2196
2197 md = alloc_dev(minor);
2198 if (!md)
2199 return -ENXIO;
2200
2201 r = dm_sysfs_init(md);
2202 if (r) {
2203 free_dev(md);
2204 return r;
2205 }
2206
2207 *result = md;
2208 return 0;
2209 }
2210
2211 /*
2212 * Functions to manage md->type.
2213 * All are required to hold md->type_lock.
2214 */
dm_lock_md_type(struct mapped_device * md)2215 void dm_lock_md_type(struct mapped_device *md)
2216 {
2217 mutex_lock(&md->type_lock);
2218 }
2219
dm_unlock_md_type(struct mapped_device * md)2220 void dm_unlock_md_type(struct mapped_device *md)
2221 {
2222 mutex_unlock(&md->type_lock);
2223 }
2224
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2225 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2226 {
2227 BUG_ON(!mutex_is_locked(&md->type_lock));
2228 md->type = type;
2229 }
2230
dm_get_md_type(struct mapped_device * md)2231 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2232 {
2233 return md->type;
2234 }
2235
dm_get_immutable_target_type(struct mapped_device * md)2236 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2237 {
2238 return md->immutable_target_type;
2239 }
2240
2241 /*
2242 * The queue_limits are only valid as long as you have a reference
2243 * count on 'md'.
2244 */
dm_get_queue_limits(struct mapped_device * md)2245 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2246 {
2247 BUG_ON(!atomic_read(&md->holders));
2248 return &md->queue->limits;
2249 }
2250 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2251
2252 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
2253 struct dm_keyslot_evict_args {
2254 const struct blk_crypto_key *key;
2255 int err;
2256 };
2257
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2258 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
2259 sector_t start, sector_t len, void *data)
2260 {
2261 struct dm_keyslot_evict_args *args = data;
2262 int err;
2263
2264 err = blk_crypto_evict_key(dev->bdev->bd_queue, args->key);
2265 if (!args->err)
2266 args->err = err;
2267 /* Always try to evict the key from all devices. */
2268 return 0;
2269 }
2270
2271 /*
2272 * When an inline encryption key is evicted from a device-mapper device, evict
2273 * it from all the underlying devices.
2274 */
dm_keyslot_evict(struct keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)2275 static int dm_keyslot_evict(struct keyslot_manager *ksm,
2276 const struct blk_crypto_key *key, unsigned int slot)
2277 {
2278 struct mapped_device *md = keyslot_manager_private(ksm);
2279 struct dm_keyslot_evict_args args = { key };
2280 struct dm_table *t;
2281 int srcu_idx;
2282 int i;
2283 struct dm_target *ti;
2284
2285 t = dm_get_live_table(md, &srcu_idx);
2286 if (!t)
2287 return 0;
2288 for (i = 0; i < dm_table_get_num_targets(t); i++) {
2289 ti = dm_table_get_target(t, i);
2290 if (!ti->type->iterate_devices)
2291 continue;
2292 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
2293 }
2294 dm_put_live_table(md, srcu_idx);
2295 return args.err;
2296 }
2297
2298 static struct keyslot_mgmt_ll_ops dm_ksm_ll_ops = {
2299 .keyslot_evict = dm_keyslot_evict,
2300 };
2301
dm_init_inline_encryption(struct mapped_device * md)2302 static int dm_init_inline_encryption(struct mapped_device *md)
2303 {
2304 unsigned int mode_masks[BLK_ENCRYPTION_MODE_MAX];
2305
2306 /*
2307 * Start out with all crypto mode support bits set. Any unsupported
2308 * bits will be cleared later when calculating the device restrictions.
2309 */
2310 memset(mode_masks, 0xFF, sizeof(mode_masks));
2311
2312 md->queue->ksm = keyslot_manager_create_passthrough(&dm_ksm_ll_ops,
2313 mode_masks, md);
2314 if (!md->queue->ksm)
2315 return -ENOMEM;
2316 return 0;
2317 }
2318
dm_destroy_inline_encryption(struct request_queue * q)2319 static void dm_destroy_inline_encryption(struct request_queue *q)
2320 {
2321 keyslot_manager_destroy(q->ksm);
2322 q->ksm = NULL;
2323 }
2324 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
dm_init_inline_encryption(struct mapped_device * md)2325 static inline int dm_init_inline_encryption(struct mapped_device *md)
2326 {
2327 return 0;
2328 }
2329
dm_destroy_inline_encryption(struct request_queue * q)2330 static inline void dm_destroy_inline_encryption(struct request_queue *q)
2331 {
2332 }
2333 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2334
2335 /*
2336 * Setup the DM device's queue based on md's type
2337 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2338 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2339 {
2340 int r;
2341 struct queue_limits limits;
2342 enum dm_queue_mode type = dm_get_md_type(md);
2343
2344 switch (type) {
2345 case DM_TYPE_REQUEST_BASED:
2346 r = dm_mq_init_request_queue(md, t);
2347 if (r) {
2348 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2349 return r;
2350 }
2351 break;
2352 case DM_TYPE_BIO_BASED:
2353 case DM_TYPE_DAX_BIO_BASED:
2354 case DM_TYPE_NVME_BIO_BASED:
2355 dm_init_normal_md_queue(md);
2356 blk_queue_make_request(md->queue, dm_make_request);
2357 break;
2358 case DM_TYPE_NONE:
2359 WARN_ON_ONCE(true);
2360 break;
2361 }
2362
2363 r = dm_calculate_queue_limits(t, &limits);
2364 if (r) {
2365 DMERR("Cannot calculate initial queue limits");
2366 return r;
2367 }
2368
2369 r = dm_init_inline_encryption(md);
2370 if (r) {
2371 DMERR("Cannot initialize inline encryption");
2372 return r;
2373 }
2374
2375 dm_table_set_restrictions(t, md->queue, &limits);
2376 blk_register_queue(md->disk);
2377
2378 return 0;
2379 }
2380
dm_get_md(dev_t dev)2381 struct mapped_device *dm_get_md(dev_t dev)
2382 {
2383 struct mapped_device *md;
2384 unsigned minor = MINOR(dev);
2385
2386 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2387 return NULL;
2388
2389 spin_lock(&_minor_lock);
2390
2391 md = idr_find(&_minor_idr, minor);
2392 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2393 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2394 md = NULL;
2395 goto out;
2396 }
2397 dm_get(md);
2398 out:
2399 spin_unlock(&_minor_lock);
2400
2401 return md;
2402 }
2403 EXPORT_SYMBOL_GPL(dm_get_md);
2404
dm_get_mdptr(struct mapped_device * md)2405 void *dm_get_mdptr(struct mapped_device *md)
2406 {
2407 return md->interface_ptr;
2408 }
2409
dm_set_mdptr(struct mapped_device * md,void * ptr)2410 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2411 {
2412 md->interface_ptr = ptr;
2413 }
2414
dm_get(struct mapped_device * md)2415 void dm_get(struct mapped_device *md)
2416 {
2417 atomic_inc(&md->holders);
2418 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2419 }
2420
dm_hold(struct mapped_device * md)2421 int dm_hold(struct mapped_device *md)
2422 {
2423 spin_lock(&_minor_lock);
2424 if (test_bit(DMF_FREEING, &md->flags)) {
2425 spin_unlock(&_minor_lock);
2426 return -EBUSY;
2427 }
2428 dm_get(md);
2429 spin_unlock(&_minor_lock);
2430 return 0;
2431 }
2432 EXPORT_SYMBOL_GPL(dm_hold);
2433
dm_device_name(struct mapped_device * md)2434 const char *dm_device_name(struct mapped_device *md)
2435 {
2436 return md->name;
2437 }
2438 EXPORT_SYMBOL_GPL(dm_device_name);
2439
__dm_destroy(struct mapped_device * md,bool wait)2440 static void __dm_destroy(struct mapped_device *md, bool wait)
2441 {
2442 struct dm_table *map;
2443 int srcu_idx;
2444
2445 might_sleep();
2446
2447 spin_lock(&_minor_lock);
2448 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2449 set_bit(DMF_FREEING, &md->flags);
2450 spin_unlock(&_minor_lock);
2451
2452 blk_set_queue_dying(md->queue);
2453
2454 /*
2455 * Take suspend_lock so that presuspend and postsuspend methods
2456 * do not race with internal suspend.
2457 */
2458 mutex_lock(&md->suspend_lock);
2459 map = dm_get_live_table(md, &srcu_idx);
2460 if (!dm_suspended_md(md)) {
2461 dm_table_presuspend_targets(map);
2462 dm_table_postsuspend_targets(map);
2463 }
2464 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2465 dm_put_live_table(md, srcu_idx);
2466 mutex_unlock(&md->suspend_lock);
2467
2468 /*
2469 * Rare, but there may be I/O requests still going to complete,
2470 * for example. Wait for all references to disappear.
2471 * No one should increment the reference count of the mapped_device,
2472 * after the mapped_device state becomes DMF_FREEING.
2473 */
2474 if (wait)
2475 while (atomic_read(&md->holders))
2476 msleep(1);
2477 else if (atomic_read(&md->holders))
2478 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2479 dm_device_name(md), atomic_read(&md->holders));
2480
2481 dm_sysfs_exit(md);
2482 dm_table_destroy(__unbind(md));
2483 free_dev(md);
2484 }
2485
dm_destroy(struct mapped_device * md)2486 void dm_destroy(struct mapped_device *md)
2487 {
2488 __dm_destroy(md, true);
2489 }
2490
dm_destroy_immediate(struct mapped_device * md)2491 void dm_destroy_immediate(struct mapped_device *md)
2492 {
2493 __dm_destroy(md, false);
2494 }
2495
dm_put(struct mapped_device * md)2496 void dm_put(struct mapped_device *md)
2497 {
2498 atomic_dec(&md->holders);
2499 }
2500 EXPORT_SYMBOL_GPL(dm_put);
2501
dm_wait_for_completion(struct mapped_device * md,long task_state)2502 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2503 {
2504 int r = 0;
2505 DEFINE_WAIT(wait);
2506
2507 while (1) {
2508 prepare_to_wait(&md->wait, &wait, task_state);
2509
2510 if (!md_in_flight(md))
2511 break;
2512
2513 if (signal_pending_state(task_state, current)) {
2514 r = -EINTR;
2515 break;
2516 }
2517
2518 io_schedule();
2519 }
2520 finish_wait(&md->wait, &wait);
2521
2522 return r;
2523 }
2524
2525 /*
2526 * Process the deferred bios
2527 */
dm_wq_work(struct work_struct * work)2528 static void dm_wq_work(struct work_struct *work)
2529 {
2530 struct mapped_device *md = container_of(work, struct mapped_device,
2531 work);
2532 struct bio *c;
2533 int srcu_idx;
2534 struct dm_table *map;
2535
2536 map = dm_get_live_table(md, &srcu_idx);
2537
2538 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2539 spin_lock_irq(&md->deferred_lock);
2540 c = bio_list_pop(&md->deferred);
2541 spin_unlock_irq(&md->deferred_lock);
2542
2543 if (!c)
2544 break;
2545
2546 if (dm_request_based(md))
2547 (void) generic_make_request(c);
2548 else
2549 (void) dm_process_bio(md, map, c);
2550 }
2551
2552 dm_put_live_table(md, srcu_idx);
2553 }
2554
dm_queue_flush(struct mapped_device * md)2555 static void dm_queue_flush(struct mapped_device *md)
2556 {
2557 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2558 smp_mb__after_atomic();
2559 queue_work(md->wq, &md->work);
2560 }
2561
2562 /*
2563 * Swap in a new table, returning the old one for the caller to destroy.
2564 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2565 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2566 {
2567 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2568 struct queue_limits limits;
2569 int r;
2570
2571 mutex_lock(&md->suspend_lock);
2572
2573 /* device must be suspended */
2574 if (!dm_suspended_md(md))
2575 goto out;
2576
2577 /*
2578 * If the new table has no data devices, retain the existing limits.
2579 * This helps multipath with queue_if_no_path if all paths disappear,
2580 * then new I/O is queued based on these limits, and then some paths
2581 * reappear.
2582 */
2583 if (dm_table_has_no_data_devices(table)) {
2584 live_map = dm_get_live_table_fast(md);
2585 if (live_map)
2586 limits = md->queue->limits;
2587 dm_put_live_table_fast(md);
2588 }
2589
2590 if (!live_map) {
2591 r = dm_calculate_queue_limits(table, &limits);
2592 if (r) {
2593 map = ERR_PTR(r);
2594 goto out;
2595 }
2596 }
2597
2598 map = __bind(md, table, &limits);
2599 dm_issue_global_event();
2600
2601 out:
2602 mutex_unlock(&md->suspend_lock);
2603 return map;
2604 }
2605
2606 /*
2607 * Functions to lock and unlock any filesystem running on the
2608 * device.
2609 */
lock_fs(struct mapped_device * md)2610 static int lock_fs(struct mapped_device *md)
2611 {
2612 int r;
2613
2614 WARN_ON(md->frozen_sb);
2615
2616 md->frozen_sb = freeze_bdev(md->bdev);
2617 if (IS_ERR(md->frozen_sb)) {
2618 r = PTR_ERR(md->frozen_sb);
2619 md->frozen_sb = NULL;
2620 return r;
2621 }
2622
2623 set_bit(DMF_FROZEN, &md->flags);
2624
2625 return 0;
2626 }
2627
unlock_fs(struct mapped_device * md)2628 static void unlock_fs(struct mapped_device *md)
2629 {
2630 if (!test_bit(DMF_FROZEN, &md->flags))
2631 return;
2632
2633 thaw_bdev(md->bdev, md->frozen_sb);
2634 md->frozen_sb = NULL;
2635 clear_bit(DMF_FROZEN, &md->flags);
2636 }
2637
2638 /*
2639 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2640 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2641 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2642 *
2643 * If __dm_suspend returns 0, the device is completely quiescent
2644 * now. There is no request-processing activity. All new requests
2645 * are being added to md->deferred list.
2646 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2647 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2648 unsigned suspend_flags, long task_state,
2649 int dmf_suspended_flag)
2650 {
2651 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2652 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2653 int r;
2654
2655 lockdep_assert_held(&md->suspend_lock);
2656
2657 /*
2658 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2659 * This flag is cleared before dm_suspend returns.
2660 */
2661 if (noflush)
2662 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2663 else
2664 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2665
2666 /*
2667 * This gets reverted if there's an error later and the targets
2668 * provide the .presuspend_undo hook.
2669 */
2670 dm_table_presuspend_targets(map);
2671
2672 /*
2673 * Flush I/O to the device.
2674 * Any I/O submitted after lock_fs() may not be flushed.
2675 * noflush takes precedence over do_lockfs.
2676 * (lock_fs() flushes I/Os and waits for them to complete.)
2677 */
2678 if (!noflush && do_lockfs) {
2679 r = lock_fs(md);
2680 if (r) {
2681 dm_table_presuspend_undo_targets(map);
2682 return r;
2683 }
2684 }
2685
2686 /*
2687 * Here we must make sure that no processes are submitting requests
2688 * to target drivers i.e. no one may be executing
2689 * __split_and_process_bio. This is called from dm_request and
2690 * dm_wq_work.
2691 *
2692 * To get all processes out of __split_and_process_bio in dm_request,
2693 * we take the write lock. To prevent any process from reentering
2694 * __split_and_process_bio from dm_request and quiesce the thread
2695 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2696 * flush_workqueue(md->wq).
2697 */
2698 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2699 if (map)
2700 synchronize_srcu(&md->io_barrier);
2701
2702 /*
2703 * Stop md->queue before flushing md->wq in case request-based
2704 * dm defers requests to md->wq from md->queue.
2705 */
2706 if (dm_request_based(md))
2707 dm_stop_queue(md->queue);
2708
2709 flush_workqueue(md->wq);
2710
2711 /*
2712 * At this point no more requests are entering target request routines.
2713 * We call dm_wait_for_completion to wait for all existing requests
2714 * to finish.
2715 */
2716 r = dm_wait_for_completion(md, task_state);
2717 if (!r)
2718 set_bit(dmf_suspended_flag, &md->flags);
2719
2720 if (noflush)
2721 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2722 if (map)
2723 synchronize_srcu(&md->io_barrier);
2724
2725 /* were we interrupted ? */
2726 if (r < 0) {
2727 dm_queue_flush(md);
2728
2729 if (dm_request_based(md))
2730 dm_start_queue(md->queue);
2731
2732 unlock_fs(md);
2733 dm_table_presuspend_undo_targets(map);
2734 /* pushback list is already flushed, so skip flush */
2735 }
2736
2737 return r;
2738 }
2739
2740 /*
2741 * We need to be able to change a mapping table under a mounted
2742 * filesystem. For example we might want to move some data in
2743 * the background. Before the table can be swapped with
2744 * dm_bind_table, dm_suspend must be called to flush any in
2745 * flight bios and ensure that any further io gets deferred.
2746 */
2747 /*
2748 * Suspend mechanism in request-based dm.
2749 *
2750 * 1. Flush all I/Os by lock_fs() if needed.
2751 * 2. Stop dispatching any I/O by stopping the request_queue.
2752 * 3. Wait for all in-flight I/Os to be completed or requeued.
2753 *
2754 * To abort suspend, start the request_queue.
2755 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2756 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2757 {
2758 struct dm_table *map = NULL;
2759 int r = 0;
2760
2761 retry:
2762 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2763
2764 if (dm_suspended_md(md)) {
2765 r = -EINVAL;
2766 goto out_unlock;
2767 }
2768
2769 if (dm_suspended_internally_md(md)) {
2770 /* already internally suspended, wait for internal resume */
2771 mutex_unlock(&md->suspend_lock);
2772 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2773 if (r)
2774 return r;
2775 goto retry;
2776 }
2777
2778 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2779
2780 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2781 if (r)
2782 goto out_unlock;
2783
2784 dm_table_postsuspend_targets(map);
2785
2786 out_unlock:
2787 mutex_unlock(&md->suspend_lock);
2788 return r;
2789 }
2790
__dm_resume(struct mapped_device * md,struct dm_table * map)2791 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2792 {
2793 if (map) {
2794 int r = dm_table_resume_targets(map);
2795 if (r)
2796 return r;
2797 }
2798
2799 dm_queue_flush(md);
2800
2801 /*
2802 * Flushing deferred I/Os must be done after targets are resumed
2803 * so that mapping of targets can work correctly.
2804 * Request-based dm is queueing the deferred I/Os in its request_queue.
2805 */
2806 if (dm_request_based(md))
2807 dm_start_queue(md->queue);
2808
2809 unlock_fs(md);
2810
2811 return 0;
2812 }
2813
dm_resume(struct mapped_device * md)2814 int dm_resume(struct mapped_device *md)
2815 {
2816 int r;
2817 struct dm_table *map = NULL;
2818
2819 retry:
2820 r = -EINVAL;
2821 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2822
2823 if (!dm_suspended_md(md))
2824 goto out;
2825
2826 if (dm_suspended_internally_md(md)) {
2827 /* already internally suspended, wait for internal resume */
2828 mutex_unlock(&md->suspend_lock);
2829 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2830 if (r)
2831 return r;
2832 goto retry;
2833 }
2834
2835 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2836 if (!map || !dm_table_get_size(map))
2837 goto out;
2838
2839 r = __dm_resume(md, map);
2840 if (r)
2841 goto out;
2842
2843 clear_bit(DMF_SUSPENDED, &md->flags);
2844 out:
2845 mutex_unlock(&md->suspend_lock);
2846
2847 return r;
2848 }
2849
2850 /*
2851 * Internal suspend/resume works like userspace-driven suspend. It waits
2852 * until all bios finish and prevents issuing new bios to the target drivers.
2853 * It may be used only from the kernel.
2854 */
2855
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2856 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2857 {
2858 struct dm_table *map = NULL;
2859
2860 lockdep_assert_held(&md->suspend_lock);
2861
2862 if (md->internal_suspend_count++)
2863 return; /* nested internal suspend */
2864
2865 if (dm_suspended_md(md)) {
2866 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2867 return; /* nest suspend */
2868 }
2869
2870 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2871
2872 /*
2873 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2874 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2875 * would require changing .presuspend to return an error -- avoid this
2876 * until there is a need for more elaborate variants of internal suspend.
2877 */
2878 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2879 DMF_SUSPENDED_INTERNALLY);
2880
2881 dm_table_postsuspend_targets(map);
2882 }
2883
__dm_internal_resume(struct mapped_device * md)2884 static void __dm_internal_resume(struct mapped_device *md)
2885 {
2886 BUG_ON(!md->internal_suspend_count);
2887
2888 if (--md->internal_suspend_count)
2889 return; /* resume from nested internal suspend */
2890
2891 if (dm_suspended_md(md))
2892 goto done; /* resume from nested suspend */
2893
2894 /*
2895 * NOTE: existing callers don't need to call dm_table_resume_targets
2896 * (which may fail -- so best to avoid it for now by passing NULL map)
2897 */
2898 (void) __dm_resume(md, NULL);
2899
2900 done:
2901 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2902 smp_mb__after_atomic();
2903 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2904 }
2905
dm_internal_suspend_noflush(struct mapped_device * md)2906 void dm_internal_suspend_noflush(struct mapped_device *md)
2907 {
2908 mutex_lock(&md->suspend_lock);
2909 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2910 mutex_unlock(&md->suspend_lock);
2911 }
2912 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2913
dm_internal_resume(struct mapped_device * md)2914 void dm_internal_resume(struct mapped_device *md)
2915 {
2916 mutex_lock(&md->suspend_lock);
2917 __dm_internal_resume(md);
2918 mutex_unlock(&md->suspend_lock);
2919 }
2920 EXPORT_SYMBOL_GPL(dm_internal_resume);
2921
2922 /*
2923 * Fast variants of internal suspend/resume hold md->suspend_lock,
2924 * which prevents interaction with userspace-driven suspend.
2925 */
2926
dm_internal_suspend_fast(struct mapped_device * md)2927 void dm_internal_suspend_fast(struct mapped_device *md)
2928 {
2929 mutex_lock(&md->suspend_lock);
2930 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2931 return;
2932
2933 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2934 synchronize_srcu(&md->io_barrier);
2935 flush_workqueue(md->wq);
2936 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2937 }
2938 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2939
dm_internal_resume_fast(struct mapped_device * md)2940 void dm_internal_resume_fast(struct mapped_device *md)
2941 {
2942 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2943 goto done;
2944
2945 dm_queue_flush(md);
2946
2947 done:
2948 mutex_unlock(&md->suspend_lock);
2949 }
2950 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2951
2952 /*-----------------------------------------------------------------
2953 * Event notification.
2954 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2955 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2956 unsigned cookie)
2957 {
2958 char udev_cookie[DM_COOKIE_LENGTH];
2959 char *envp[] = { udev_cookie, NULL };
2960
2961 if (!cookie)
2962 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2963 else {
2964 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2965 DM_COOKIE_ENV_VAR_NAME, cookie);
2966 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2967 action, envp);
2968 }
2969 }
2970
dm_next_uevent_seq(struct mapped_device * md)2971 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2972 {
2973 return atomic_add_return(1, &md->uevent_seq);
2974 }
2975
dm_get_event_nr(struct mapped_device * md)2976 uint32_t dm_get_event_nr(struct mapped_device *md)
2977 {
2978 return atomic_read(&md->event_nr);
2979 }
2980
dm_wait_event(struct mapped_device * md,int event_nr)2981 int dm_wait_event(struct mapped_device *md, int event_nr)
2982 {
2983 return wait_event_interruptible(md->eventq,
2984 (event_nr != atomic_read(&md->event_nr)));
2985 }
2986
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2987 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2988 {
2989 unsigned long flags;
2990
2991 spin_lock_irqsave(&md->uevent_lock, flags);
2992 list_add(elist, &md->uevent_list);
2993 spin_unlock_irqrestore(&md->uevent_lock, flags);
2994 }
2995
2996 /*
2997 * The gendisk is only valid as long as you have a reference
2998 * count on 'md'.
2999 */
dm_disk(struct mapped_device * md)3000 struct gendisk *dm_disk(struct mapped_device *md)
3001 {
3002 return md->disk;
3003 }
3004 EXPORT_SYMBOL_GPL(dm_disk);
3005
dm_kobject(struct mapped_device * md)3006 struct kobject *dm_kobject(struct mapped_device *md)
3007 {
3008 return &md->kobj_holder.kobj;
3009 }
3010
dm_get_from_kobject(struct kobject * kobj)3011 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3012 {
3013 struct mapped_device *md;
3014
3015 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3016
3017 spin_lock(&_minor_lock);
3018 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3019 md = NULL;
3020 goto out;
3021 }
3022 dm_get(md);
3023 out:
3024 spin_unlock(&_minor_lock);
3025
3026 return md;
3027 }
3028
dm_suspended_md(struct mapped_device * md)3029 int dm_suspended_md(struct mapped_device *md)
3030 {
3031 return test_bit(DMF_SUSPENDED, &md->flags);
3032 }
3033
dm_suspended_internally_md(struct mapped_device * md)3034 int dm_suspended_internally_md(struct mapped_device *md)
3035 {
3036 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3037 }
3038
dm_test_deferred_remove_flag(struct mapped_device * md)3039 int dm_test_deferred_remove_flag(struct mapped_device *md)
3040 {
3041 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3042 }
3043
dm_suspended(struct dm_target * ti)3044 int dm_suspended(struct dm_target *ti)
3045 {
3046 return dm_suspended_md(dm_table_get_md(ti->table));
3047 }
3048 EXPORT_SYMBOL_GPL(dm_suspended);
3049
dm_noflush_suspending(struct dm_target * ti)3050 int dm_noflush_suspending(struct dm_target *ti)
3051 {
3052 return __noflush_suspending(dm_table_get_md(ti->table));
3053 }
3054 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3055
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)3056 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3057 unsigned integrity, unsigned per_io_data_size,
3058 unsigned min_pool_size)
3059 {
3060 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3061 unsigned int pool_size = 0;
3062 unsigned int front_pad, io_front_pad;
3063 int ret;
3064
3065 if (!pools)
3066 return NULL;
3067
3068 switch (type) {
3069 case DM_TYPE_BIO_BASED:
3070 case DM_TYPE_DAX_BIO_BASED:
3071 case DM_TYPE_NVME_BIO_BASED:
3072 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3073 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3074 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3075 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3076 if (ret)
3077 goto out;
3078 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3079 goto out;
3080 break;
3081 case DM_TYPE_REQUEST_BASED:
3082 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3083 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3084 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3085 break;
3086 default:
3087 BUG();
3088 }
3089
3090 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3091 if (ret)
3092 goto out;
3093
3094 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3095 goto out;
3096
3097 return pools;
3098
3099 out:
3100 dm_free_md_mempools(pools);
3101
3102 return NULL;
3103 }
3104
dm_free_md_mempools(struct dm_md_mempools * pools)3105 void dm_free_md_mempools(struct dm_md_mempools *pools)
3106 {
3107 if (!pools)
3108 return;
3109
3110 bioset_exit(&pools->bs);
3111 bioset_exit(&pools->io_bs);
3112
3113 kfree(pools);
3114 }
3115
3116 struct dm_pr {
3117 u64 old_key;
3118 u64 new_key;
3119 u32 flags;
3120 bool fail_early;
3121 };
3122
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)3123 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3124 void *data)
3125 {
3126 struct mapped_device *md = bdev->bd_disk->private_data;
3127 struct dm_table *table;
3128 struct dm_target *ti;
3129 int ret = -ENOTTY, srcu_idx;
3130
3131 table = dm_get_live_table(md, &srcu_idx);
3132 if (!table || !dm_table_get_size(table))
3133 goto out;
3134
3135 /* We only support devices that have a single target */
3136 if (dm_table_get_num_targets(table) != 1)
3137 goto out;
3138 ti = dm_table_get_target(table, 0);
3139
3140 ret = -EINVAL;
3141 if (!ti->type->iterate_devices)
3142 goto out;
3143
3144 ret = ti->type->iterate_devices(ti, fn, data);
3145 out:
3146 dm_put_live_table(md, srcu_idx);
3147 return ret;
3148 }
3149
3150 /*
3151 * For register / unregister we need to manually call out to every path.
3152 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3153 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3154 sector_t start, sector_t len, void *data)
3155 {
3156 struct dm_pr *pr = data;
3157 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3158
3159 if (!ops || !ops->pr_register)
3160 return -EOPNOTSUPP;
3161 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3162 }
3163
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3164 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3165 u32 flags)
3166 {
3167 struct dm_pr pr = {
3168 .old_key = old_key,
3169 .new_key = new_key,
3170 .flags = flags,
3171 .fail_early = true,
3172 };
3173 int ret;
3174
3175 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3176 if (ret && new_key) {
3177 /* unregister all paths if we failed to register any path */
3178 pr.old_key = new_key;
3179 pr.new_key = 0;
3180 pr.flags = 0;
3181 pr.fail_early = false;
3182 dm_call_pr(bdev, __dm_pr_register, &pr);
3183 }
3184
3185 return ret;
3186 }
3187
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3188 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3189 u32 flags)
3190 {
3191 struct mapped_device *md = bdev->bd_disk->private_data;
3192 const struct pr_ops *ops;
3193 int r, srcu_idx;
3194
3195 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3196 if (r < 0)
3197 goto out;
3198
3199 ops = bdev->bd_disk->fops->pr_ops;
3200 if (ops && ops->pr_reserve)
3201 r = ops->pr_reserve(bdev, key, type, flags);
3202 else
3203 r = -EOPNOTSUPP;
3204 out:
3205 dm_unprepare_ioctl(md, srcu_idx);
3206 return r;
3207 }
3208
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3209 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3210 {
3211 struct mapped_device *md = bdev->bd_disk->private_data;
3212 const struct pr_ops *ops;
3213 int r, srcu_idx;
3214
3215 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3216 if (r < 0)
3217 goto out;
3218
3219 ops = bdev->bd_disk->fops->pr_ops;
3220 if (ops && ops->pr_release)
3221 r = ops->pr_release(bdev, key, type);
3222 else
3223 r = -EOPNOTSUPP;
3224 out:
3225 dm_unprepare_ioctl(md, srcu_idx);
3226 return r;
3227 }
3228
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3229 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3230 enum pr_type type, bool abort)
3231 {
3232 struct mapped_device *md = bdev->bd_disk->private_data;
3233 const struct pr_ops *ops;
3234 int r, srcu_idx;
3235
3236 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3237 if (r < 0)
3238 goto out;
3239
3240 ops = bdev->bd_disk->fops->pr_ops;
3241 if (ops && ops->pr_preempt)
3242 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3243 else
3244 r = -EOPNOTSUPP;
3245 out:
3246 dm_unprepare_ioctl(md, srcu_idx);
3247 return r;
3248 }
3249
dm_pr_clear(struct block_device * bdev,u64 key)3250 static int dm_pr_clear(struct block_device *bdev, u64 key)
3251 {
3252 struct mapped_device *md = bdev->bd_disk->private_data;
3253 const struct pr_ops *ops;
3254 int r, srcu_idx;
3255
3256 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3257 if (r < 0)
3258 goto out;
3259
3260 ops = bdev->bd_disk->fops->pr_ops;
3261 if (ops && ops->pr_clear)
3262 r = ops->pr_clear(bdev, key);
3263 else
3264 r = -EOPNOTSUPP;
3265 out:
3266 dm_unprepare_ioctl(md, srcu_idx);
3267 return r;
3268 }
3269
3270 static const struct pr_ops dm_pr_ops = {
3271 .pr_register = dm_pr_register,
3272 .pr_reserve = dm_pr_reserve,
3273 .pr_release = dm_pr_release,
3274 .pr_preempt = dm_pr_preempt,
3275 .pr_clear = dm_pr_clear,
3276 };
3277
3278 static const struct block_device_operations dm_blk_dops = {
3279 .open = dm_blk_open,
3280 .release = dm_blk_close,
3281 .ioctl = dm_blk_ioctl,
3282 .getgeo = dm_blk_getgeo,
3283 .report_zones = dm_blk_report_zones,
3284 .pr_ops = &dm_pr_ops,
3285 .owner = THIS_MODULE
3286 };
3287
3288 static const struct dax_operations dm_dax_ops = {
3289 .direct_access = dm_dax_direct_access,
3290 .dax_supported = dm_dax_supported,
3291 .copy_from_iter = dm_dax_copy_from_iter,
3292 .copy_to_iter = dm_dax_copy_to_iter,
3293 };
3294
3295 /*
3296 * module hooks
3297 */
3298 module_init(dm_init);
3299 module_exit(dm_exit);
3300
3301 module_param(major, uint, 0);
3302 MODULE_PARM_DESC(major, "The major number of the device mapper");
3303
3304 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3305 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3306
3307 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3308 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3309
3310 MODULE_DESCRIPTION(DM_NAME " driver");
3311 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3312 MODULE_LICENSE("GPL");
3313